Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[pandora-kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35
36 DEFINE_SPINLOCK(swap_lock);
37 unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45
46 struct swap_list_t swap_list = {-1, -1};
47
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50 static DEFINE_MUTEX(swapon_mutex);
51
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_lock while calling the unplug_fn. And swap_lock
55  * cannot be turned into a mutex.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61         swp_entry_t entry;
62
63         down_read(&swap_unplug_sem);
64         entry.val = page_private(page);
65         if (PageSwapCache(page)) {
66                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67                 struct backing_dev_info *bdi;
68
69                 /*
70                  * If the page is removed from swapcache from under us (with a
71                  * racy try_to_unuse/swapoff) we need an additional reference
72                  * count to avoid reading garbage from page_private(page) above.
73                  * If the WARN_ON triggers during a swapoff it maybe the race
74                  * condition and it's harmless. However if it triggers without
75                  * swapoff it signals a problem.
76                  */
77                 WARN_ON(page_count(page) <= 1);
78
79                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80                 blk_run_backing_dev(bdi, page);
81         }
82         up_read(&swap_unplug_sem);
83 }
84
85 #define SWAPFILE_CLUSTER        256
86 #define LATENCY_LIMIT           256
87
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90         unsigned long offset, last_in_cluster;
91         int latency_ration = LATENCY_LIMIT;
92
93         /* 
94          * We try to cluster swap pages by allocating them sequentially
95          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96          * way, however, we resort to first-free allocation, starting
97          * a new cluster.  This prevents us from scattering swap pages
98          * all over the entire swap partition, so that we reduce
99          * overall disk seek times between swap pages.  -- sct
100          * But we do now try to find an empty cluster.  -Andrea
101          */
102
103         si->flags += SWP_SCANNING;
104         if (unlikely(!si->cluster_nr)) {
105                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107                         goto lowest;
108                 spin_unlock(&swap_lock);
109
110                 offset = si->lowest_bit;
111                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113                 /* Locate the first empty (unaligned) cluster */
114                 for (; last_in_cluster <= si->highest_bit; offset++) {
115                         if (si->swap_map[offset])
116                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
117                         else if (offset == last_in_cluster) {
118                                 spin_lock(&swap_lock);
119                                 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120                                 goto cluster;
121                         }
122                         if (unlikely(--latency_ration < 0)) {
123                                 cond_resched();
124                                 latency_ration = LATENCY_LIMIT;
125                         }
126                 }
127                 spin_lock(&swap_lock);
128                 goto lowest;
129         }
130
131         si->cluster_nr--;
132 cluster:
133         offset = si->cluster_next;
134         if (offset > si->highest_bit)
135 lowest:         offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
137                 goto no_page;
138         if (!si->highest_bit)
139                 goto no_page;
140         if (!si->swap_map[offset]) {
141                 if (offset == si->lowest_bit)
142                         si->lowest_bit++;
143                 if (offset == si->highest_bit)
144                         si->highest_bit--;
145                 si->inuse_pages++;
146                 if (si->inuse_pages == si->pages) {
147                         si->lowest_bit = si->max;
148                         si->highest_bit = 0;
149                 }
150                 si->swap_map[offset] = 1;
151                 si->cluster_next = offset + 1;
152                 si->flags -= SWP_SCANNING;
153                 return offset;
154         }
155
156         spin_unlock(&swap_lock);
157         while (++offset <= si->highest_bit) {
158                 if (!si->swap_map[offset]) {
159                         spin_lock(&swap_lock);
160                         goto checks;
161                 }
162                 if (unlikely(--latency_ration < 0)) {
163                         cond_resched();
164                         latency_ration = LATENCY_LIMIT;
165                 }
166         }
167         spin_lock(&swap_lock);
168         goto lowest;
169
170 no_page:
171         si->flags -= SWP_SCANNING;
172         return 0;
173 }
174
175 swp_entry_t get_swap_page(void)
176 {
177         struct swap_info_struct *si;
178         pgoff_t offset;
179         int type, next;
180         int wrapped = 0;
181
182         spin_lock(&swap_lock);
183         if (nr_swap_pages <= 0)
184                 goto noswap;
185         nr_swap_pages--;
186
187         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188                 si = swap_info + type;
189                 next = si->next;
190                 if (next < 0 ||
191                     (!wrapped && si->prio != swap_info[next].prio)) {
192                         next = swap_list.head;
193                         wrapped++;
194                 }
195
196                 if (!si->highest_bit)
197                         continue;
198                 if (!(si->flags & SWP_WRITEOK))
199                         continue;
200
201                 swap_list.next = next;
202                 offset = scan_swap_map(si);
203                 if (offset) {
204                         spin_unlock(&swap_lock);
205                         return swp_entry(type, offset);
206                 }
207                 next = swap_list.next;
208         }
209
210         nr_swap_pages++;
211 noswap:
212         spin_unlock(&swap_lock);
213         return (swp_entry_t) {0};
214 }
215
216 swp_entry_t get_swap_page_of_type(int type)
217 {
218         struct swap_info_struct *si;
219         pgoff_t offset;
220
221         spin_lock(&swap_lock);
222         si = swap_info + type;
223         if (si->flags & SWP_WRITEOK) {
224                 nr_swap_pages--;
225                 offset = scan_swap_map(si);
226                 if (offset) {
227                         spin_unlock(&swap_lock);
228                         return swp_entry(type, offset);
229                 }
230                 nr_swap_pages++;
231         }
232         spin_unlock(&swap_lock);
233         return (swp_entry_t) {0};
234 }
235
236 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237 {
238         struct swap_info_struct * p;
239         unsigned long offset, type;
240
241         if (!entry.val)
242                 goto out;
243         type = swp_type(entry);
244         if (type >= nr_swapfiles)
245                 goto bad_nofile;
246         p = & swap_info[type];
247         if (!(p->flags & SWP_USED))
248                 goto bad_device;
249         offset = swp_offset(entry);
250         if (offset >= p->max)
251                 goto bad_offset;
252         if (!p->swap_map[offset])
253                 goto bad_free;
254         spin_lock(&swap_lock);
255         return p;
256
257 bad_free:
258         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259         goto out;
260 bad_offset:
261         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262         goto out;
263 bad_device:
264         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265         goto out;
266 bad_nofile:
267         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268 out:
269         return NULL;
270 }       
271
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 {
274         int count = p->swap_map[offset];
275
276         if (count < SWAP_MAP_MAX) {
277                 count--;
278                 p->swap_map[offset] = count;
279                 if (!count) {
280                         if (offset < p->lowest_bit)
281                                 p->lowest_bit = offset;
282                         if (offset > p->highest_bit)
283                                 p->highest_bit = offset;
284                         if (p->prio > swap_info[swap_list.next].prio)
285                                 swap_list.next = p - swap_info;
286                         nr_swap_pages++;
287                         p->inuse_pages--;
288                 }
289         }
290         return count;
291 }
292
293 /*
294  * Caller has made sure that the swapdevice corresponding to entry
295  * is still around or has not been recycled.
296  */
297 void swap_free(swp_entry_t entry)
298 {
299         struct swap_info_struct * p;
300
301         p = swap_info_get(entry);
302         if (p) {
303                 swap_entry_free(p, swp_offset(entry));
304                 spin_unlock(&swap_lock);
305         }
306 }
307
308 /*
309  * How many references to page are currently swapped out?
310  */
311 static inline int page_swapcount(struct page *page)
312 {
313         int count = 0;
314         struct swap_info_struct *p;
315         swp_entry_t entry;
316
317         entry.val = page_private(page);
318         p = swap_info_get(entry);
319         if (p) {
320                 /* Subtract the 1 for the swap cache itself */
321                 count = p->swap_map[swp_offset(entry)] - 1;
322                 spin_unlock(&swap_lock);
323         }
324         return count;
325 }
326
327 /*
328  * We can use this swap cache entry directly
329  * if there are no other references to it.
330  */
331 int can_share_swap_page(struct page *page)
332 {
333         int count;
334
335         BUG_ON(!PageLocked(page));
336         count = page_mapcount(page);
337         if (count <= 1 && PageSwapCache(page))
338                 count += page_swapcount(page);
339         return count == 1;
340 }
341
342 /*
343  * Work out if there are any other processes sharing this
344  * swap cache page. Free it if you can. Return success.
345  */
346 int remove_exclusive_swap_page(struct page *page)
347 {
348         int retval;
349         struct swap_info_struct * p;
350         swp_entry_t entry;
351
352         BUG_ON(PagePrivate(page));
353         BUG_ON(!PageLocked(page));
354
355         if (!PageSwapCache(page))
356                 return 0;
357         if (PageWriteback(page))
358                 return 0;
359         if (page_count(page) != 2) /* 2: us + cache */
360                 return 0;
361
362         entry.val = page_private(page);
363         p = swap_info_get(entry);
364         if (!p)
365                 return 0;
366
367         /* Is the only swap cache user the cache itself? */
368         retval = 0;
369         if (p->swap_map[swp_offset(entry)] == 1) {
370                 /* Recheck the page count with the swapcache lock held.. */
371                 write_lock_irq(&swapper_space.tree_lock);
372                 if ((page_count(page) == 2) && !PageWriteback(page)) {
373                         __delete_from_swap_cache(page);
374                         SetPageDirty(page);
375                         retval = 1;
376                 }
377                 write_unlock_irq(&swapper_space.tree_lock);
378         }
379         spin_unlock(&swap_lock);
380
381         if (retval) {
382                 swap_free(entry);
383                 page_cache_release(page);
384         }
385
386         return retval;
387 }
388
389 /*
390  * Free the swap entry like above, but also try to
391  * free the page cache entry if it is the last user.
392  */
393 void free_swap_and_cache(swp_entry_t entry)
394 {
395         struct swap_info_struct * p;
396         struct page *page = NULL;
397
398         p = swap_info_get(entry);
399         if (p) {
400                 if (swap_entry_free(p, swp_offset(entry)) == 1)
401                         page = find_trylock_page(&swapper_space, entry.val);
402                 spin_unlock(&swap_lock);
403         }
404         if (page) {
405                 int one_user;
406
407                 BUG_ON(PagePrivate(page));
408                 page_cache_get(page);
409                 one_user = (page_count(page) == 2);
410                 /* Only cache user (+us), or swap space full? Free it! */
411                 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
412                         delete_from_swap_cache(page);
413                         SetPageDirty(page);
414                 }
415                 unlock_page(page);
416                 page_cache_release(page);
417         }
418 }
419
420 /*
421  * No need to decide whether this PTE shares the swap entry with others,
422  * just let do_wp_page work it out if a write is requested later - to
423  * force COW, vm_page_prot omits write permission from any private vma.
424  */
425 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
426                 unsigned long addr, swp_entry_t entry, struct page *page)
427 {
428         inc_mm_counter(vma->vm_mm, anon_rss);
429         get_page(page);
430         set_pte_at(vma->vm_mm, addr, pte,
431                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
432         page_add_anon_rmap(page, vma, addr);
433         swap_free(entry);
434         /*
435          * Move the page to the active list so it is not
436          * immediately swapped out again after swapon.
437          */
438         activate_page(page);
439 }
440
441 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
442                                 unsigned long addr, unsigned long end,
443                                 swp_entry_t entry, struct page *page)
444 {
445         pte_t swp_pte = swp_entry_to_pte(entry);
446         pte_t *pte;
447         spinlock_t *ptl;
448         int found = 0;
449
450         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
451         do {
452                 /*
453                  * swapoff spends a _lot_ of time in this loop!
454                  * Test inline before going to call unuse_pte.
455                  */
456                 if (unlikely(pte_same(*pte, swp_pte))) {
457                         unuse_pte(vma, pte++, addr, entry, page);
458                         found = 1;
459                         break;
460                 }
461         } while (pte++, addr += PAGE_SIZE, addr != end);
462         pte_unmap_unlock(pte - 1, ptl);
463         return found;
464 }
465
466 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
467                                 unsigned long addr, unsigned long end,
468                                 swp_entry_t entry, struct page *page)
469 {
470         pmd_t *pmd;
471         unsigned long next;
472
473         pmd = pmd_offset(pud, addr);
474         do {
475                 next = pmd_addr_end(addr, end);
476                 if (pmd_none_or_clear_bad(pmd))
477                         continue;
478                 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
479                         return 1;
480         } while (pmd++, addr = next, addr != end);
481         return 0;
482 }
483
484 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
485                                 unsigned long addr, unsigned long end,
486                                 swp_entry_t entry, struct page *page)
487 {
488         pud_t *pud;
489         unsigned long next;
490
491         pud = pud_offset(pgd, addr);
492         do {
493                 next = pud_addr_end(addr, end);
494                 if (pud_none_or_clear_bad(pud))
495                         continue;
496                 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
497                         return 1;
498         } while (pud++, addr = next, addr != end);
499         return 0;
500 }
501
502 static int unuse_vma(struct vm_area_struct *vma,
503                                 swp_entry_t entry, struct page *page)
504 {
505         pgd_t *pgd;
506         unsigned long addr, end, next;
507
508         if (page->mapping) {
509                 addr = page_address_in_vma(page, vma);
510                 if (addr == -EFAULT)
511                         return 0;
512                 else
513                         end = addr + PAGE_SIZE;
514         } else {
515                 addr = vma->vm_start;
516                 end = vma->vm_end;
517         }
518
519         pgd = pgd_offset(vma->vm_mm, addr);
520         do {
521                 next = pgd_addr_end(addr, end);
522                 if (pgd_none_or_clear_bad(pgd))
523                         continue;
524                 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
525                         return 1;
526         } while (pgd++, addr = next, addr != end);
527         return 0;
528 }
529
530 static int unuse_mm(struct mm_struct *mm,
531                                 swp_entry_t entry, struct page *page)
532 {
533         struct vm_area_struct *vma;
534
535         if (!down_read_trylock(&mm->mmap_sem)) {
536                 /*
537                  * Activate page so shrink_cache is unlikely to unmap its
538                  * ptes while lock is dropped, so swapoff can make progress.
539                  */
540                 activate_page(page);
541                 unlock_page(page);
542                 down_read(&mm->mmap_sem);
543                 lock_page(page);
544         }
545         for (vma = mm->mmap; vma; vma = vma->vm_next) {
546                 if (vma->anon_vma && unuse_vma(vma, entry, page))
547                         break;
548         }
549         up_read(&mm->mmap_sem);
550         /*
551          * Currently unuse_mm cannot fail, but leave error handling
552          * at call sites for now, since we change it from time to time.
553          */
554         return 0;
555 }
556
557 /*
558  * Scan swap_map from current position to next entry still in use.
559  * Recycle to start on reaching the end, returning 0 when empty.
560  */
561 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
562                                         unsigned int prev)
563 {
564         unsigned int max = si->max;
565         unsigned int i = prev;
566         int count;
567
568         /*
569          * No need for swap_lock here: we're just looking
570          * for whether an entry is in use, not modifying it; false
571          * hits are okay, and sys_swapoff() has already prevented new
572          * allocations from this area (while holding swap_lock).
573          */
574         for (;;) {
575                 if (++i >= max) {
576                         if (!prev) {
577                                 i = 0;
578                                 break;
579                         }
580                         /*
581                          * No entries in use at top of swap_map,
582                          * loop back to start and recheck there.
583                          */
584                         max = prev + 1;
585                         prev = 0;
586                         i = 1;
587                 }
588                 count = si->swap_map[i];
589                 if (count && count != SWAP_MAP_BAD)
590                         break;
591         }
592         return i;
593 }
594
595 /*
596  * We completely avoid races by reading each swap page in advance,
597  * and then search for the process using it.  All the necessary
598  * page table adjustments can then be made atomically.
599  */
600 static int try_to_unuse(unsigned int type)
601 {
602         struct swap_info_struct * si = &swap_info[type];
603         struct mm_struct *start_mm;
604         unsigned short *swap_map;
605         unsigned short swcount;
606         struct page *page;
607         swp_entry_t entry;
608         unsigned int i = 0;
609         int retval = 0;
610         int reset_overflow = 0;
611         int shmem;
612
613         /*
614          * When searching mms for an entry, a good strategy is to
615          * start at the first mm we freed the previous entry from
616          * (though actually we don't notice whether we or coincidence
617          * freed the entry).  Initialize this start_mm with a hold.
618          *
619          * A simpler strategy would be to start at the last mm we
620          * freed the previous entry from; but that would take less
621          * advantage of mmlist ordering, which clusters forked mms
622          * together, child after parent.  If we race with dup_mmap(), we
623          * prefer to resolve parent before child, lest we miss entries
624          * duplicated after we scanned child: using last mm would invert
625          * that.  Though it's only a serious concern when an overflowed
626          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
627          */
628         start_mm = &init_mm;
629         atomic_inc(&init_mm.mm_users);
630
631         /*
632          * Keep on scanning until all entries have gone.  Usually,
633          * one pass through swap_map is enough, but not necessarily:
634          * there are races when an instance of an entry might be missed.
635          */
636         while ((i = find_next_to_unuse(si, i)) != 0) {
637                 if (signal_pending(current)) {
638                         retval = -EINTR;
639                         break;
640                 }
641
642                 /* 
643                  * Get a page for the entry, using the existing swap
644                  * cache page if there is one.  Otherwise, get a clean
645                  * page and read the swap into it. 
646                  */
647                 swap_map = &si->swap_map[i];
648                 entry = swp_entry(type, i);
649                 page = read_swap_cache_async(entry, NULL, 0);
650                 if (!page) {
651                         /*
652                          * Either swap_duplicate() failed because entry
653                          * has been freed independently, and will not be
654                          * reused since sys_swapoff() already disabled
655                          * allocation from here, or alloc_page() failed.
656                          */
657                         if (!*swap_map)
658                                 continue;
659                         retval = -ENOMEM;
660                         break;
661                 }
662
663                 /*
664                  * Don't hold on to start_mm if it looks like exiting.
665                  */
666                 if (atomic_read(&start_mm->mm_users) == 1) {
667                         mmput(start_mm);
668                         start_mm = &init_mm;
669                         atomic_inc(&init_mm.mm_users);
670                 }
671
672                 /*
673                  * Wait for and lock page.  When do_swap_page races with
674                  * try_to_unuse, do_swap_page can handle the fault much
675                  * faster than try_to_unuse can locate the entry.  This
676                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
677                  * defer to do_swap_page in such a case - in some tests,
678                  * do_swap_page and try_to_unuse repeatedly compete.
679                  */
680                 wait_on_page_locked(page);
681                 wait_on_page_writeback(page);
682                 lock_page(page);
683                 wait_on_page_writeback(page);
684
685                 /*
686                  * Remove all references to entry.
687                  * Whenever we reach init_mm, there's no address space
688                  * to search, but use it as a reminder to search shmem.
689                  */
690                 shmem = 0;
691                 swcount = *swap_map;
692                 if (swcount > 1) {
693                         if (start_mm == &init_mm)
694                                 shmem = shmem_unuse(entry, page);
695                         else
696                                 retval = unuse_mm(start_mm, entry, page);
697                 }
698                 if (*swap_map > 1) {
699                         int set_start_mm = (*swap_map >= swcount);
700                         struct list_head *p = &start_mm->mmlist;
701                         struct mm_struct *new_start_mm = start_mm;
702                         struct mm_struct *prev_mm = start_mm;
703                         struct mm_struct *mm;
704
705                         atomic_inc(&new_start_mm->mm_users);
706                         atomic_inc(&prev_mm->mm_users);
707                         spin_lock(&mmlist_lock);
708                         while (*swap_map > 1 && !retval &&
709                                         (p = p->next) != &start_mm->mmlist) {
710                                 mm = list_entry(p, struct mm_struct, mmlist);
711                                 if (atomic_inc_return(&mm->mm_users) == 1) {
712                                         atomic_dec(&mm->mm_users);
713                                         continue;
714                                 }
715                                 spin_unlock(&mmlist_lock);
716                                 mmput(prev_mm);
717                                 prev_mm = mm;
718
719                                 cond_resched();
720
721                                 swcount = *swap_map;
722                                 if (swcount <= 1)
723                                         ;
724                                 else if (mm == &init_mm) {
725                                         set_start_mm = 1;
726                                         shmem = shmem_unuse(entry, page);
727                                 } else
728                                         retval = unuse_mm(mm, entry, page);
729                                 if (set_start_mm && *swap_map < swcount) {
730                                         mmput(new_start_mm);
731                                         atomic_inc(&mm->mm_users);
732                                         new_start_mm = mm;
733                                         set_start_mm = 0;
734                                 }
735                                 spin_lock(&mmlist_lock);
736                         }
737                         spin_unlock(&mmlist_lock);
738                         mmput(prev_mm);
739                         mmput(start_mm);
740                         start_mm = new_start_mm;
741                 }
742                 if (retval) {
743                         unlock_page(page);
744                         page_cache_release(page);
745                         break;
746                 }
747
748                 /*
749                  * How could swap count reach 0x7fff when the maximum
750                  * pid is 0x7fff, and there's no way to repeat a swap
751                  * page within an mm (except in shmem, where it's the
752                  * shared object which takes the reference count)?
753                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
754                  *
755                  * If that's wrong, then we should worry more about
756                  * exit_mmap() and do_munmap() cases described above:
757                  * we might be resetting SWAP_MAP_MAX too early here.
758                  * We know "Undead"s can happen, they're okay, so don't
759                  * report them; but do report if we reset SWAP_MAP_MAX.
760                  */
761                 if (*swap_map == SWAP_MAP_MAX) {
762                         spin_lock(&swap_lock);
763                         *swap_map = 1;
764                         spin_unlock(&swap_lock);
765                         reset_overflow = 1;
766                 }
767
768                 /*
769                  * If a reference remains (rare), we would like to leave
770                  * the page in the swap cache; but try_to_unmap could
771                  * then re-duplicate the entry once we drop page lock,
772                  * so we might loop indefinitely; also, that page could
773                  * not be swapped out to other storage meanwhile.  So:
774                  * delete from cache even if there's another reference,
775                  * after ensuring that the data has been saved to disk -
776                  * since if the reference remains (rarer), it will be
777                  * read from disk into another page.  Splitting into two
778                  * pages would be incorrect if swap supported "shared
779                  * private" pages, but they are handled by tmpfs files.
780                  *
781                  * Note shmem_unuse already deleted a swappage from
782                  * the swap cache, unless the move to filepage failed:
783                  * in which case it left swappage in cache, lowered its
784                  * swap count to pass quickly through the loops above,
785                  * and now we must reincrement count to try again later.
786                  */
787                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
788                         struct writeback_control wbc = {
789                                 .sync_mode = WB_SYNC_NONE,
790                         };
791
792                         swap_writepage(page, &wbc);
793                         lock_page(page);
794                         wait_on_page_writeback(page);
795                 }
796                 if (PageSwapCache(page)) {
797                         if (shmem)
798                                 swap_duplicate(entry);
799                         else
800                                 delete_from_swap_cache(page);
801                 }
802
803                 /*
804                  * So we could skip searching mms once swap count went
805                  * to 1, we did not mark any present ptes as dirty: must
806                  * mark page dirty so shrink_list will preserve it.
807                  */
808                 SetPageDirty(page);
809                 unlock_page(page);
810                 page_cache_release(page);
811
812                 /*
813                  * Make sure that we aren't completely killing
814                  * interactive performance.
815                  */
816                 cond_resched();
817         }
818
819         mmput(start_mm);
820         if (reset_overflow) {
821                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
822                 swap_overflow = 0;
823         }
824         return retval;
825 }
826
827 /*
828  * After a successful try_to_unuse, if no swap is now in use, we know
829  * we can empty the mmlist.  swap_lock must be held on entry and exit.
830  * Note that mmlist_lock nests inside swap_lock, and an mm must be
831  * added to the mmlist just after page_duplicate - before would be racy.
832  */
833 static void drain_mmlist(void)
834 {
835         struct list_head *p, *next;
836         unsigned int i;
837
838         for (i = 0; i < nr_swapfiles; i++)
839                 if (swap_info[i].inuse_pages)
840                         return;
841         spin_lock(&mmlist_lock);
842         list_for_each_safe(p, next, &init_mm.mmlist)
843                 list_del_init(p);
844         spin_unlock(&mmlist_lock);
845 }
846
847 /*
848  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
849  * corresponds to page offset `offset'.
850  */
851 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
852 {
853         struct swap_extent *se = sis->curr_swap_extent;
854         struct swap_extent *start_se = se;
855
856         for ( ; ; ) {
857                 struct list_head *lh;
858
859                 if (se->start_page <= offset &&
860                                 offset < (se->start_page + se->nr_pages)) {
861                         return se->start_block + (offset - se->start_page);
862                 }
863                 lh = se->list.next;
864                 if (lh == &sis->extent_list)
865                         lh = lh->next;
866                 se = list_entry(lh, struct swap_extent, list);
867                 sis->curr_swap_extent = se;
868                 BUG_ON(se == start_se);         /* It *must* be present */
869         }
870 }
871
872 /*
873  * Free all of a swapdev's extent information
874  */
875 static void destroy_swap_extents(struct swap_info_struct *sis)
876 {
877         while (!list_empty(&sis->extent_list)) {
878                 struct swap_extent *se;
879
880                 se = list_entry(sis->extent_list.next,
881                                 struct swap_extent, list);
882                 list_del(&se->list);
883                 kfree(se);
884         }
885 }
886
887 /*
888  * Add a block range (and the corresponding page range) into this swapdev's
889  * extent list.  The extent list is kept sorted in page order.
890  *
891  * This function rather assumes that it is called in ascending page order.
892  */
893 static int
894 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
895                 unsigned long nr_pages, sector_t start_block)
896 {
897         struct swap_extent *se;
898         struct swap_extent *new_se;
899         struct list_head *lh;
900
901         lh = sis->extent_list.prev;     /* The highest page extent */
902         if (lh != &sis->extent_list) {
903                 se = list_entry(lh, struct swap_extent, list);
904                 BUG_ON(se->start_page + se->nr_pages != start_page);
905                 if (se->start_block + se->nr_pages == start_block) {
906                         /* Merge it */
907                         se->nr_pages += nr_pages;
908                         return 0;
909                 }
910         }
911
912         /*
913          * No merge.  Insert a new extent, preserving ordering.
914          */
915         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
916         if (new_se == NULL)
917                 return -ENOMEM;
918         new_se->start_page = start_page;
919         new_se->nr_pages = nr_pages;
920         new_se->start_block = start_block;
921
922         list_add_tail(&new_se->list, &sis->extent_list);
923         return 1;
924 }
925
926 /*
927  * A `swap extent' is a simple thing which maps a contiguous range of pages
928  * onto a contiguous range of disk blocks.  An ordered list of swap extents
929  * is built at swapon time and is then used at swap_writepage/swap_readpage
930  * time for locating where on disk a page belongs.
931  *
932  * If the swapfile is an S_ISBLK block device, a single extent is installed.
933  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
934  * swap files identically.
935  *
936  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
937  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
938  * swapfiles are handled *identically* after swapon time.
939  *
940  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
941  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
942  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
943  * requirements, they are simply tossed out - we will never use those blocks
944  * for swapping.
945  *
946  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
947  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
948  * which will scribble on the fs.
949  *
950  * The amount of disk space which a single swap extent represents varies.
951  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
952  * extents in the list.  To avoid much list walking, we cache the previous
953  * search location in `curr_swap_extent', and start new searches from there.
954  * This is extremely effective.  The average number of iterations in
955  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
956  */
957 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
958 {
959         struct inode *inode;
960         unsigned blocks_per_page;
961         unsigned long page_no;
962         unsigned blkbits;
963         sector_t probe_block;
964         sector_t last_block;
965         sector_t lowest_block = -1;
966         sector_t highest_block = 0;
967         int nr_extents = 0;
968         int ret;
969
970         inode = sis->swap_file->f_mapping->host;
971         if (S_ISBLK(inode->i_mode)) {
972                 ret = add_swap_extent(sis, 0, sis->max, 0);
973                 *span = sis->pages;
974                 goto done;
975         }
976
977         blkbits = inode->i_blkbits;
978         blocks_per_page = PAGE_SIZE >> blkbits;
979
980         /*
981          * Map all the blocks into the extent list.  This code doesn't try
982          * to be very smart.
983          */
984         probe_block = 0;
985         page_no = 0;
986         last_block = i_size_read(inode) >> blkbits;
987         while ((probe_block + blocks_per_page) <= last_block &&
988                         page_no < sis->max) {
989                 unsigned block_in_page;
990                 sector_t first_block;
991
992                 first_block = bmap(inode, probe_block);
993                 if (first_block == 0)
994                         goto bad_bmap;
995
996                 /*
997                  * It must be PAGE_SIZE aligned on-disk
998                  */
999                 if (first_block & (blocks_per_page - 1)) {
1000                         probe_block++;
1001                         goto reprobe;
1002                 }
1003
1004                 for (block_in_page = 1; block_in_page < blocks_per_page;
1005                                         block_in_page++) {
1006                         sector_t block;
1007
1008                         block = bmap(inode, probe_block + block_in_page);
1009                         if (block == 0)
1010                                 goto bad_bmap;
1011                         if (block != first_block + block_in_page) {
1012                                 /* Discontiguity */
1013                                 probe_block++;
1014                                 goto reprobe;
1015                         }
1016                 }
1017
1018                 first_block >>= (PAGE_SHIFT - blkbits);
1019                 if (page_no) {  /* exclude the header page */
1020                         if (first_block < lowest_block)
1021                                 lowest_block = first_block;
1022                         if (first_block > highest_block)
1023                                 highest_block = first_block;
1024                 }
1025
1026                 /*
1027                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1028                  */
1029                 ret = add_swap_extent(sis, page_no, 1, first_block);
1030                 if (ret < 0)
1031                         goto out;
1032                 nr_extents += ret;
1033                 page_no++;
1034                 probe_block += blocks_per_page;
1035 reprobe:
1036                 continue;
1037         }
1038         ret = nr_extents;
1039         *span = 1 + highest_block - lowest_block;
1040         if (page_no == 0)
1041                 page_no = 1;    /* force Empty message */
1042         sis->max = page_no;
1043         sis->pages = page_no - 1;
1044         sis->highest_bit = page_no - 1;
1045 done:
1046         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1047                                         struct swap_extent, list);
1048         goto out;
1049 bad_bmap:
1050         printk(KERN_ERR "swapon: swapfile has holes\n");
1051         ret = -EINVAL;
1052 out:
1053         return ret;
1054 }
1055
1056 #if 0   /* We don't need this yet */
1057 #include <linux/backing-dev.h>
1058 int page_queue_congested(struct page *page)
1059 {
1060         struct backing_dev_info *bdi;
1061
1062         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1063
1064         if (PageSwapCache(page)) {
1065                 swp_entry_t entry = { .val = page_private(page) };
1066                 struct swap_info_struct *sis;
1067
1068                 sis = get_swap_info_struct(swp_type(entry));
1069                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1070         } else
1071                 bdi = page->mapping->backing_dev_info;
1072         return bdi_write_congested(bdi);
1073 }
1074 #endif
1075
1076 asmlinkage long sys_swapoff(const char __user * specialfile)
1077 {
1078         struct swap_info_struct * p = NULL;
1079         unsigned short *swap_map;
1080         struct file *swap_file, *victim;
1081         struct address_space *mapping;
1082         struct inode *inode;
1083         char * pathname;
1084         int i, type, prev;
1085         int err;
1086         
1087         if (!capable(CAP_SYS_ADMIN))
1088                 return -EPERM;
1089
1090         pathname = getname(specialfile);
1091         err = PTR_ERR(pathname);
1092         if (IS_ERR(pathname))
1093                 goto out;
1094
1095         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1096         putname(pathname);
1097         err = PTR_ERR(victim);
1098         if (IS_ERR(victim))
1099                 goto out;
1100
1101         mapping = victim->f_mapping;
1102         prev = -1;
1103         spin_lock(&swap_lock);
1104         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1105                 p = swap_info + type;
1106                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1107                         if (p->swap_file->f_mapping == mapping)
1108                                 break;
1109                 }
1110                 prev = type;
1111         }
1112         if (type < 0) {
1113                 err = -EINVAL;
1114                 spin_unlock(&swap_lock);
1115                 goto out_dput;
1116         }
1117         if (!security_vm_enough_memory(p->pages))
1118                 vm_unacct_memory(p->pages);
1119         else {
1120                 err = -ENOMEM;
1121                 spin_unlock(&swap_lock);
1122                 goto out_dput;
1123         }
1124         if (prev < 0) {
1125                 swap_list.head = p->next;
1126         } else {
1127                 swap_info[prev].next = p->next;
1128         }
1129         if (type == swap_list.next) {
1130                 /* just pick something that's safe... */
1131                 swap_list.next = swap_list.head;
1132         }
1133         nr_swap_pages -= p->pages;
1134         total_swap_pages -= p->pages;
1135         p->flags &= ~SWP_WRITEOK;
1136         spin_unlock(&swap_lock);
1137
1138         current->flags |= PF_SWAPOFF;
1139         err = try_to_unuse(type);
1140         current->flags &= ~PF_SWAPOFF;
1141
1142         if (err) {
1143                 /* re-insert swap space back into swap_list */
1144                 spin_lock(&swap_lock);
1145                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1146                         if (p->prio >= swap_info[i].prio)
1147                                 break;
1148                 p->next = i;
1149                 if (prev < 0)
1150                         swap_list.head = swap_list.next = p - swap_info;
1151                 else
1152                         swap_info[prev].next = p - swap_info;
1153                 nr_swap_pages += p->pages;
1154                 total_swap_pages += p->pages;
1155                 p->flags |= SWP_WRITEOK;
1156                 spin_unlock(&swap_lock);
1157                 goto out_dput;
1158         }
1159
1160         /* wait for any unplug function to finish */
1161         down_write(&swap_unplug_sem);
1162         up_write(&swap_unplug_sem);
1163
1164         destroy_swap_extents(p);
1165         mutex_lock(&swapon_mutex);
1166         spin_lock(&swap_lock);
1167         drain_mmlist();
1168
1169         /* wait for anyone still in scan_swap_map */
1170         p->highest_bit = 0;             /* cuts scans short */
1171         while (p->flags >= SWP_SCANNING) {
1172                 spin_unlock(&swap_lock);
1173                 schedule_timeout_uninterruptible(1);
1174                 spin_lock(&swap_lock);
1175         }
1176
1177         swap_file = p->swap_file;
1178         p->swap_file = NULL;
1179         p->max = 0;
1180         swap_map = p->swap_map;
1181         p->swap_map = NULL;
1182         p->flags = 0;
1183         spin_unlock(&swap_lock);
1184         mutex_unlock(&swapon_mutex);
1185         vfree(swap_map);
1186         inode = mapping->host;
1187         if (S_ISBLK(inode->i_mode)) {
1188                 struct block_device *bdev = I_BDEV(inode);
1189                 set_blocksize(bdev, p->old_block_size);
1190                 bd_release(bdev);
1191         } else {
1192                 mutex_lock(&inode->i_mutex);
1193                 inode->i_flags &= ~S_SWAPFILE;
1194                 mutex_unlock(&inode->i_mutex);
1195         }
1196         filp_close(swap_file, NULL);
1197         err = 0;
1198
1199 out_dput:
1200         filp_close(victim, NULL);
1201 out:
1202         return err;
1203 }
1204
1205 #ifdef CONFIG_PROC_FS
1206 /* iterator */
1207 static void *swap_start(struct seq_file *swap, loff_t *pos)
1208 {
1209         struct swap_info_struct *ptr = swap_info;
1210         int i;
1211         loff_t l = *pos;
1212
1213         mutex_lock(&swapon_mutex);
1214
1215         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1216                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1217                         continue;
1218                 if (!l--)
1219                         return ptr;
1220         }
1221
1222         return NULL;
1223 }
1224
1225 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1226 {
1227         struct swap_info_struct *ptr = v;
1228         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1229
1230         for (++ptr; ptr < endptr; ptr++) {
1231                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1232                         continue;
1233                 ++*pos;
1234                 return ptr;
1235         }
1236
1237         return NULL;
1238 }
1239
1240 static void swap_stop(struct seq_file *swap, void *v)
1241 {
1242         mutex_unlock(&swapon_mutex);
1243 }
1244
1245 static int swap_show(struct seq_file *swap, void *v)
1246 {
1247         struct swap_info_struct *ptr = v;
1248         struct file *file;
1249         int len;
1250
1251         if (v == swap_info)
1252                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1253
1254         file = ptr->swap_file;
1255         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1256         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1257                        len < 40 ? 40 - len : 1, " ",
1258                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1259                                 "partition" : "file\t",
1260                        ptr->pages << (PAGE_SHIFT - 10),
1261                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1262                        ptr->prio);
1263         return 0;
1264 }
1265
1266 static struct seq_operations swaps_op = {
1267         .start =        swap_start,
1268         .next =         swap_next,
1269         .stop =         swap_stop,
1270         .show =         swap_show
1271 };
1272
1273 static int swaps_open(struct inode *inode, struct file *file)
1274 {
1275         return seq_open(file, &swaps_op);
1276 }
1277
1278 static struct file_operations proc_swaps_operations = {
1279         .open           = swaps_open,
1280         .read           = seq_read,
1281         .llseek         = seq_lseek,
1282         .release        = seq_release,
1283 };
1284
1285 static int __init procswaps_init(void)
1286 {
1287         struct proc_dir_entry *entry;
1288
1289         entry = create_proc_entry("swaps", 0, NULL);
1290         if (entry)
1291                 entry->proc_fops = &proc_swaps_operations;
1292         return 0;
1293 }
1294 __initcall(procswaps_init);
1295 #endif /* CONFIG_PROC_FS */
1296
1297 /*
1298  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1299  *
1300  * The swapon system call
1301  */
1302 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1303 {
1304         struct swap_info_struct * p;
1305         char *name = NULL;
1306         struct block_device *bdev = NULL;
1307         struct file *swap_file = NULL;
1308         struct address_space *mapping;
1309         unsigned int type;
1310         int i, prev;
1311         int error;
1312         static int least_priority;
1313         union swap_header *swap_header = NULL;
1314         int swap_header_version;
1315         unsigned int nr_good_pages = 0;
1316         int nr_extents = 0;
1317         sector_t span;
1318         unsigned long maxpages = 1;
1319         int swapfilesize;
1320         unsigned short *swap_map;
1321         struct page *page = NULL;
1322         struct inode *inode = NULL;
1323         int did_down = 0;
1324
1325         if (!capable(CAP_SYS_ADMIN))
1326                 return -EPERM;
1327         spin_lock(&swap_lock);
1328         p = swap_info;
1329         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1330                 if (!(p->flags & SWP_USED))
1331                         break;
1332         error = -EPERM;
1333         /*
1334          * Test if adding another swap device is possible. There are
1335          * two limiting factors: 1) the number of bits for the swap
1336          * type swp_entry_t definition and 2) the number of bits for
1337          * the swap type in the swap ptes as defined by the different
1338          * architectures. To honor both limitations a swap entry
1339          * with swap offset 0 and swap type ~0UL is created, encoded
1340          * to a swap pte, decoded to a swp_entry_t again and finally
1341          * the swap type part is extracted. This will mask all bits
1342          * from the initial ~0UL that can't be encoded in either the
1343          * swp_entry_t or the architecture definition of a swap pte.
1344          */
1345         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1346                 spin_unlock(&swap_lock);
1347                 goto out;
1348         }
1349         if (type >= nr_swapfiles)
1350                 nr_swapfiles = type+1;
1351         INIT_LIST_HEAD(&p->extent_list);
1352         p->flags = SWP_USED;
1353         p->swap_file = NULL;
1354         p->old_block_size = 0;
1355         p->swap_map = NULL;
1356         p->lowest_bit = 0;
1357         p->highest_bit = 0;
1358         p->cluster_nr = 0;
1359         p->inuse_pages = 0;
1360         p->next = -1;
1361         if (swap_flags & SWAP_FLAG_PREFER) {
1362                 p->prio =
1363                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1364         } else {
1365                 p->prio = --least_priority;
1366         }
1367         spin_unlock(&swap_lock);
1368         name = getname(specialfile);
1369         error = PTR_ERR(name);
1370         if (IS_ERR(name)) {
1371                 name = NULL;
1372                 goto bad_swap_2;
1373         }
1374         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1375         error = PTR_ERR(swap_file);
1376         if (IS_ERR(swap_file)) {
1377                 swap_file = NULL;
1378                 goto bad_swap_2;
1379         }
1380
1381         p->swap_file = swap_file;
1382         mapping = swap_file->f_mapping;
1383         inode = mapping->host;
1384
1385         error = -EBUSY;
1386         for (i = 0; i < nr_swapfiles; i++) {
1387                 struct swap_info_struct *q = &swap_info[i];
1388
1389                 if (i == type || !q->swap_file)
1390                         continue;
1391                 if (mapping == q->swap_file->f_mapping)
1392                         goto bad_swap;
1393         }
1394
1395         error = -EINVAL;
1396         if (S_ISBLK(inode->i_mode)) {
1397                 bdev = I_BDEV(inode);
1398                 error = bd_claim(bdev, sys_swapon);
1399                 if (error < 0) {
1400                         bdev = NULL;
1401                         error = -EINVAL;
1402                         goto bad_swap;
1403                 }
1404                 p->old_block_size = block_size(bdev);
1405                 error = set_blocksize(bdev, PAGE_SIZE);
1406                 if (error < 0)
1407                         goto bad_swap;
1408                 p->bdev = bdev;
1409         } else if (S_ISREG(inode->i_mode)) {
1410                 p->bdev = inode->i_sb->s_bdev;
1411                 mutex_lock(&inode->i_mutex);
1412                 did_down = 1;
1413                 if (IS_SWAPFILE(inode)) {
1414                         error = -EBUSY;
1415                         goto bad_swap;
1416                 }
1417         } else {
1418                 goto bad_swap;
1419         }
1420
1421         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1422
1423         /*
1424          * Read the swap header.
1425          */
1426         if (!mapping->a_ops->readpage) {
1427                 error = -EINVAL;
1428                 goto bad_swap;
1429         }
1430         page = read_cache_page(mapping, 0,
1431                         (filler_t *)mapping->a_ops->readpage, swap_file);
1432         if (IS_ERR(page)) {
1433                 error = PTR_ERR(page);
1434                 goto bad_swap;
1435         }
1436         wait_on_page_locked(page);
1437         if (!PageUptodate(page))
1438                 goto bad_swap;
1439         kmap(page);
1440         swap_header = page_address(page);
1441
1442         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1443                 swap_header_version = 1;
1444         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1445                 swap_header_version = 2;
1446         else {
1447                 printk(KERN_ERR "Unable to find swap-space signature\n");
1448                 error = -EINVAL;
1449                 goto bad_swap;
1450         }
1451         
1452         switch (swap_header_version) {
1453         case 1:
1454                 printk(KERN_ERR "version 0 swap is no longer supported. "
1455                         "Use mkswap -v1 %s\n", name);
1456                 error = -EINVAL;
1457                 goto bad_swap;
1458         case 2:
1459                 /* Check the swap header's sub-version and the size of
1460                    the swap file and bad block lists */
1461                 if (swap_header->info.version != 1) {
1462                         printk(KERN_WARNING
1463                                "Unable to handle swap header version %d\n",
1464                                swap_header->info.version);
1465                         error = -EINVAL;
1466                         goto bad_swap;
1467                 }
1468
1469                 p->lowest_bit  = 1;
1470                 p->cluster_next = 1;
1471
1472                 /*
1473                  * Find out how many pages are allowed for a single swap
1474                  * device. There are two limiting factors: 1) the number of
1475                  * bits for the swap offset in the swp_entry_t type and
1476                  * 2) the number of bits in the a swap pte as defined by
1477                  * the different architectures. In order to find the
1478                  * largest possible bit mask a swap entry with swap type 0
1479                  * and swap offset ~0UL is created, encoded to a swap pte,
1480                  * decoded to a swp_entry_t again and finally the swap
1481                  * offset is extracted. This will mask all the bits from
1482                  * the initial ~0UL mask that can't be encoded in either
1483                  * the swp_entry_t or the architecture definition of a
1484                  * swap pte.
1485                  */
1486                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1487                 if (maxpages > swap_header->info.last_page)
1488                         maxpages = swap_header->info.last_page;
1489                 p->highest_bit = maxpages - 1;
1490
1491                 error = -EINVAL;
1492                 if (!maxpages)
1493                         goto bad_swap;
1494                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1495                         goto bad_swap;
1496                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1497                         goto bad_swap;
1498
1499                 /* OK, set up the swap map and apply the bad block list */
1500                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1501                         error = -ENOMEM;
1502                         goto bad_swap;
1503                 }
1504
1505                 error = 0;
1506                 memset(p->swap_map, 0, maxpages * sizeof(short));
1507                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1508                         int page_nr = swap_header->info.badpages[i];
1509                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1510                                 error = -EINVAL;
1511                         else
1512                                 p->swap_map[page_nr] = SWAP_MAP_BAD;
1513                 }
1514                 nr_good_pages = swap_header->info.last_page -
1515                                 swap_header->info.nr_badpages -
1516                                 1 /* header page */;
1517                 if (error)
1518                         goto bad_swap;
1519         }
1520
1521         if (swapfilesize && maxpages > swapfilesize) {
1522                 printk(KERN_WARNING
1523                        "Swap area shorter than signature indicates\n");
1524                 error = -EINVAL;
1525                 goto bad_swap;
1526         }
1527         if (nr_good_pages) {
1528                 p->swap_map[0] = SWAP_MAP_BAD;
1529                 p->max = maxpages;
1530                 p->pages = nr_good_pages;
1531                 nr_extents = setup_swap_extents(p, &span);
1532                 if (nr_extents < 0) {
1533                         error = nr_extents;
1534                         goto bad_swap;
1535                 }
1536                 nr_good_pages = p->pages;
1537         }
1538         if (!nr_good_pages) {
1539                 printk(KERN_WARNING "Empty swap-file\n");
1540                 error = -EINVAL;
1541                 goto bad_swap;
1542         }
1543
1544         mutex_lock(&swapon_mutex);
1545         spin_lock(&swap_lock);
1546         p->flags = SWP_ACTIVE;
1547         nr_swap_pages += nr_good_pages;
1548         total_swap_pages += nr_good_pages;
1549
1550         printk(KERN_INFO "Adding %uk swap on %s.  "
1551                         "Priority:%d extents:%d across:%lluk\n",
1552                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1553                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1554
1555         /* insert swap space into swap_list: */
1556         prev = -1;
1557         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1558                 if (p->prio >= swap_info[i].prio) {
1559                         break;
1560                 }
1561                 prev = i;
1562         }
1563         p->next = i;
1564         if (prev < 0) {
1565                 swap_list.head = swap_list.next = p - swap_info;
1566         } else {
1567                 swap_info[prev].next = p - swap_info;
1568         }
1569         spin_unlock(&swap_lock);
1570         mutex_unlock(&swapon_mutex);
1571         error = 0;
1572         goto out;
1573 bad_swap:
1574         if (bdev) {
1575                 set_blocksize(bdev, p->old_block_size);
1576                 bd_release(bdev);
1577         }
1578         destroy_swap_extents(p);
1579 bad_swap_2:
1580         spin_lock(&swap_lock);
1581         swap_map = p->swap_map;
1582         p->swap_file = NULL;
1583         p->swap_map = NULL;
1584         p->flags = 0;
1585         if (!(swap_flags & SWAP_FLAG_PREFER))
1586                 ++least_priority;
1587         spin_unlock(&swap_lock);
1588         vfree(swap_map);
1589         if (swap_file)
1590                 filp_close(swap_file, NULL);
1591 out:
1592         if (page && !IS_ERR(page)) {
1593                 kunmap(page);
1594                 page_cache_release(page);
1595         }
1596         if (name)
1597                 putname(name);
1598         if (did_down) {
1599                 if (!error)
1600                         inode->i_flags |= S_SWAPFILE;
1601                 mutex_unlock(&inode->i_mutex);
1602         }
1603         return error;
1604 }
1605
1606 void si_swapinfo(struct sysinfo *val)
1607 {
1608         unsigned int i;
1609         unsigned long nr_to_be_unused = 0;
1610
1611         spin_lock(&swap_lock);
1612         for (i = 0; i < nr_swapfiles; i++) {
1613                 if (!(swap_info[i].flags & SWP_USED) ||
1614                      (swap_info[i].flags & SWP_WRITEOK))
1615                         continue;
1616                 nr_to_be_unused += swap_info[i].inuse_pages;
1617         }
1618         val->freeswap = nr_swap_pages + nr_to_be_unused;
1619         val->totalswap = total_swap_pages + nr_to_be_unused;
1620         spin_unlock(&swap_lock);
1621 }
1622
1623 /*
1624  * Verify that a swap entry is valid and increment its swap map count.
1625  *
1626  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1627  * "permanent", but will be reclaimed by the next swapoff.
1628  */
1629 int swap_duplicate(swp_entry_t entry)
1630 {
1631         struct swap_info_struct * p;
1632         unsigned long offset, type;
1633         int result = 0;
1634
1635         type = swp_type(entry);
1636         if (type >= nr_swapfiles)
1637                 goto bad_file;
1638         p = type + swap_info;
1639         offset = swp_offset(entry);
1640
1641         spin_lock(&swap_lock);
1642         if (offset < p->max && p->swap_map[offset]) {
1643                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1644                         p->swap_map[offset]++;
1645                         result = 1;
1646                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1647                         if (swap_overflow++ < 5)
1648                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1649                         p->swap_map[offset] = SWAP_MAP_MAX;
1650                         result = 1;
1651                 }
1652         }
1653         spin_unlock(&swap_lock);
1654 out:
1655         return result;
1656
1657 bad_file:
1658         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1659         goto out;
1660 }
1661
1662 struct swap_info_struct *
1663 get_swap_info_struct(unsigned type)
1664 {
1665         return &swap_info[type];
1666 }
1667
1668 /*
1669  * swap_lock prevents swap_map being freed. Don't grab an extra
1670  * reference on the swaphandle, it doesn't matter if it becomes unused.
1671  */
1672 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1673 {
1674         int ret = 0, i = 1 << page_cluster;
1675         unsigned long toff;
1676         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1677
1678         if (!page_cluster)      /* no readahead */
1679                 return 0;
1680         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1681         if (!toff)              /* first page is swap header */
1682                 toff++, i--;
1683         *offset = toff;
1684
1685         spin_lock(&swap_lock);
1686         do {
1687                 /* Don't read-ahead past the end of the swap area */
1688                 if (toff >= swapdev->max)
1689                         break;
1690                 /* Don't read in free or bad pages */
1691                 if (!swapdev->swap_map[toff])
1692                         break;
1693                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1694                         break;
1695                 toff++;
1696                 ret++;
1697         } while (--i);
1698         spin_unlock(&swap_lock);
1699         return ret;
1700 }