memcg: move charges to root cgroup if use_hierarchy=0
[pandora-kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41                                  unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55
56 static struct swap_list_t swap_list = {-1, -1};
57
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59
60 static DEFINE_MUTEX(swapon_mutex);
61
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
69 }
70
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75         swp_entry_t entry = swp_entry(si->type, offset);
76         struct page *page;
77         int ret = 0;
78
79         page = find_get_page(&swapper_space, entry.val);
80         if (!page)
81                 return 0;
82         /*
83          * This function is called from scan_swap_map() and it's called
84          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85          * We have to use trylock for avoiding deadlock. This is a special
86          * case and you should use try_to_free_swap() with explicit lock_page()
87          * in usual operations.
88          */
89         if (trylock_page(page)) {
90                 ret = try_to_free_swap(page);
91                 unlock_page(page);
92         }
93         page_cache_release(page);
94         return ret;
95 }
96
97 /*
98  * swapon tell device that all the old swap contents can be discarded,
99  * to allow the swap device to optimize its wear-levelling.
100  */
101 static int discard_swap(struct swap_info_struct *si)
102 {
103         struct swap_extent *se;
104         sector_t start_block;
105         sector_t nr_blocks;
106         int err = 0;
107
108         /* Do not discard the swap header page! */
109         se = &si->first_swap_extent;
110         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112         if (nr_blocks) {
113                 err = blkdev_issue_discard(si->bdev, start_block,
114                                 nr_blocks, GFP_KERNEL, 0);
115                 if (err)
116                         return err;
117                 cond_resched();
118         }
119
120         list_for_each_entry(se, &si->first_swap_extent.list, list) {
121                 start_block = se->start_block << (PAGE_SHIFT - 9);
122                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123
124                 err = blkdev_issue_discard(si->bdev, start_block,
125                                 nr_blocks, GFP_KERNEL, 0);
126                 if (err)
127                         break;
128
129                 cond_resched();
130         }
131         return err;             /* That will often be -EOPNOTSUPP */
132 }
133
134 /*
135  * swap allocation tell device that a cluster of swap can now be discarded,
136  * to allow the swap device to optimize its wear-levelling.
137  */
138 static void discard_swap_cluster(struct swap_info_struct *si,
139                                  pgoff_t start_page, pgoff_t nr_pages)
140 {
141         struct swap_extent *se = si->curr_swap_extent;
142         int found_extent = 0;
143
144         while (nr_pages) {
145                 struct list_head *lh;
146
147                 if (se->start_page <= start_page &&
148                     start_page < se->start_page + se->nr_pages) {
149                         pgoff_t offset = start_page - se->start_page;
150                         sector_t start_block = se->start_block + offset;
151                         sector_t nr_blocks = se->nr_pages - offset;
152
153                         if (nr_blocks > nr_pages)
154                                 nr_blocks = nr_pages;
155                         start_page += nr_blocks;
156                         nr_pages -= nr_blocks;
157
158                         if (!found_extent++)
159                                 si->curr_swap_extent = se;
160
161                         start_block <<= PAGE_SHIFT - 9;
162                         nr_blocks <<= PAGE_SHIFT - 9;
163                         if (blkdev_issue_discard(si->bdev, start_block,
164                                     nr_blocks, GFP_NOIO, 0))
165                                 break;
166                 }
167
168                 lh = se->list.next;
169                 se = list_entry(lh, struct swap_extent, list);
170         }
171 }
172
173 static int wait_for_discard(void *word)
174 {
175         schedule();
176         return 0;
177 }
178
179 #define SWAPFILE_CLUSTER        256
180 #define LATENCY_LIMIT           256
181
182 static unsigned long scan_swap_map(struct swap_info_struct *si,
183                                    unsigned char usage)
184 {
185         unsigned long offset;
186         unsigned long scan_base;
187         unsigned long last_in_cluster = 0;
188         int latency_ration = LATENCY_LIMIT;
189         int found_free_cluster = 0;
190
191         /*
192          * We try to cluster swap pages by allocating them sequentially
193          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
194          * way, however, we resort to first-free allocation, starting
195          * a new cluster.  This prevents us from scattering swap pages
196          * all over the entire swap partition, so that we reduce
197          * overall disk seek times between swap pages.  -- sct
198          * But we do now try to find an empty cluster.  -Andrea
199          * And we let swap pages go all over an SSD partition.  Hugh
200          */
201
202         si->flags += SWP_SCANNING;
203         scan_base = offset = si->cluster_next;
204
205         if (unlikely(!si->cluster_nr--)) {
206                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
208                         goto checks;
209                 }
210                 if (si->flags & SWP_DISCARDABLE) {
211                         /*
212                          * Start range check on racing allocations, in case
213                          * they overlap the cluster we eventually decide on
214                          * (we scan without swap_lock to allow preemption).
215                          * It's hardly conceivable that cluster_nr could be
216                          * wrapped during our scan, but don't depend on it.
217                          */
218                         if (si->lowest_alloc)
219                                 goto checks;
220                         si->lowest_alloc = si->max;
221                         si->highest_alloc = 0;
222                 }
223                 spin_unlock(&swap_lock);
224
225                 /*
226                  * If seek is expensive, start searching for new cluster from
227                  * start of partition, to minimize the span of allocated swap.
228                  * But if seek is cheap, search from our current position, so
229                  * that swap is allocated from all over the partition: if the
230                  * Flash Translation Layer only remaps within limited zones,
231                  * we don't want to wear out the first zone too quickly.
232                  */
233                 if (!(si->flags & SWP_SOLIDSTATE))
234                         scan_base = offset = si->lowest_bit;
235                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236
237                 /* Locate the first empty (unaligned) cluster */
238                 for (; last_in_cluster <= si->highest_bit; offset++) {
239                         if (si->swap_map[offset])
240                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
241                         else if (offset == last_in_cluster) {
242                                 spin_lock(&swap_lock);
243                                 offset -= SWAPFILE_CLUSTER - 1;
244                                 si->cluster_next = offset;
245                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
246                                 found_free_cluster = 1;
247                                 goto checks;
248                         }
249                         if (unlikely(--latency_ration < 0)) {
250                                 cond_resched();
251                                 latency_ration = LATENCY_LIMIT;
252                         }
253                 }
254
255                 offset = si->lowest_bit;
256                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257
258                 /* Locate the first empty (unaligned) cluster */
259                 for (; last_in_cluster < scan_base; offset++) {
260                         if (si->swap_map[offset])
261                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
262                         else if (offset == last_in_cluster) {
263                                 spin_lock(&swap_lock);
264                                 offset -= SWAPFILE_CLUSTER - 1;
265                                 si->cluster_next = offset;
266                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
267                                 found_free_cluster = 1;
268                                 goto checks;
269                         }
270                         if (unlikely(--latency_ration < 0)) {
271                                 cond_resched();
272                                 latency_ration = LATENCY_LIMIT;
273                         }
274                 }
275
276                 offset = scan_base;
277                 spin_lock(&swap_lock);
278                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279                 si->lowest_alloc = 0;
280         }
281
282 checks:
283         if (!(si->flags & SWP_WRITEOK))
284                 goto no_page;
285         if (!si->highest_bit)
286                 goto no_page;
287         if (offset > si->highest_bit)
288                 scan_base = offset = si->lowest_bit;
289
290         /* reuse swap entry of cache-only swap if not busy. */
291         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292                 int swap_was_freed;
293                 spin_unlock(&swap_lock);
294                 swap_was_freed = __try_to_reclaim_swap(si, offset);
295                 spin_lock(&swap_lock);
296                 /* entry was freed successfully, try to use this again */
297                 if (swap_was_freed)
298                         goto checks;
299                 goto scan; /* check next one */
300         }
301
302         if (si->swap_map[offset])
303                 goto scan;
304
305         if (offset == si->lowest_bit)
306                 si->lowest_bit++;
307         if (offset == si->highest_bit)
308                 si->highest_bit--;
309         si->inuse_pages++;
310         if (si->inuse_pages == si->pages) {
311                 si->lowest_bit = si->max;
312                 si->highest_bit = 0;
313         }
314         si->swap_map[offset] = usage;
315         si->cluster_next = offset + 1;
316         si->flags -= SWP_SCANNING;
317
318         if (si->lowest_alloc) {
319                 /*
320                  * Only set when SWP_DISCARDABLE, and there's a scan
321                  * for a free cluster in progress or just completed.
322                  */
323                 if (found_free_cluster) {
324                         /*
325                          * To optimize wear-levelling, discard the
326                          * old data of the cluster, taking care not to
327                          * discard any of its pages that have already
328                          * been allocated by racing tasks (offset has
329                          * already stepped over any at the beginning).
330                          */
331                         if (offset < si->highest_alloc &&
332                             si->lowest_alloc <= last_in_cluster)
333                                 last_in_cluster = si->lowest_alloc - 1;
334                         si->flags |= SWP_DISCARDING;
335                         spin_unlock(&swap_lock);
336
337                         if (offset < last_in_cluster)
338                                 discard_swap_cluster(si, offset,
339                                         last_in_cluster - offset + 1);
340
341                         spin_lock(&swap_lock);
342                         si->lowest_alloc = 0;
343                         si->flags &= ~SWP_DISCARDING;
344
345                         smp_mb();       /* wake_up_bit advises this */
346                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347
348                 } else if (si->flags & SWP_DISCARDING) {
349                         /*
350                          * Delay using pages allocated by racing tasks
351                          * until the whole discard has been issued. We
352                          * could defer that delay until swap_writepage,
353                          * but it's easier to keep this self-contained.
354                          */
355                         spin_unlock(&swap_lock);
356                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
358                         spin_lock(&swap_lock);
359                 } else {
360                         /*
361                          * Note pages allocated by racing tasks while
362                          * scan for a free cluster is in progress, so
363                          * that its final discard can exclude them.
364                          */
365                         if (offset < si->lowest_alloc)
366                                 si->lowest_alloc = offset;
367                         if (offset > si->highest_alloc)
368                                 si->highest_alloc = offset;
369                 }
370         }
371         return offset;
372
373 scan:
374         spin_unlock(&swap_lock);
375         while (++offset <= si->highest_bit) {
376                 if (!si->swap_map[offset]) {
377                         spin_lock(&swap_lock);
378                         goto checks;
379                 }
380                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381                         spin_lock(&swap_lock);
382                         goto checks;
383                 }
384                 if (unlikely(--latency_ration < 0)) {
385                         cond_resched();
386                         latency_ration = LATENCY_LIMIT;
387                 }
388         }
389         offset = si->lowest_bit;
390         while (++offset < scan_base) {
391                 if (!si->swap_map[offset]) {
392                         spin_lock(&swap_lock);
393                         goto checks;
394                 }
395                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396                         spin_lock(&swap_lock);
397                         goto checks;
398                 }
399                 if (unlikely(--latency_ration < 0)) {
400                         cond_resched();
401                         latency_ration = LATENCY_LIMIT;
402                 }
403         }
404         spin_lock(&swap_lock);
405
406 no_page:
407         si->flags -= SWP_SCANNING;
408         return 0;
409 }
410
411 swp_entry_t get_swap_page(void)
412 {
413         struct swap_info_struct *si;
414         pgoff_t offset;
415         int type, next;
416         int wrapped = 0;
417
418         spin_lock(&swap_lock);
419         if (nr_swap_pages <= 0)
420                 goto noswap;
421         nr_swap_pages--;
422
423         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424                 si = swap_info[type];
425                 next = si->next;
426                 if (next < 0 ||
427                     (!wrapped && si->prio != swap_info[next]->prio)) {
428                         next = swap_list.head;
429                         wrapped++;
430                 }
431
432                 if (!si->highest_bit)
433                         continue;
434                 if (!(si->flags & SWP_WRITEOK))
435                         continue;
436
437                 swap_list.next = next;
438                 /* This is called for allocating swap entry for cache */
439                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
440                 if (offset) {
441                         spin_unlock(&swap_lock);
442                         return swp_entry(type, offset);
443                 }
444                 next = swap_list.next;
445         }
446
447         nr_swap_pages++;
448 noswap:
449         spin_unlock(&swap_lock);
450         return (swp_entry_t) {0};
451 }
452
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t get_swap_page_of_type(int type)
455 {
456         struct swap_info_struct *si;
457         pgoff_t offset;
458
459         spin_lock(&swap_lock);
460         si = swap_info[type];
461         if (si && (si->flags & SWP_WRITEOK)) {
462                 nr_swap_pages--;
463                 /* This is called for allocating swap entry, not cache */
464                 offset = scan_swap_map(si, 1);
465                 if (offset) {
466                         spin_unlock(&swap_lock);
467                         return swp_entry(type, offset);
468                 }
469                 nr_swap_pages++;
470         }
471         spin_unlock(&swap_lock);
472         return (swp_entry_t) {0};
473 }
474
475 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476 {
477         struct swap_info_struct *p;
478         unsigned long offset, type;
479
480         if (!entry.val)
481                 goto out;
482         type = swp_type(entry);
483         if (type >= nr_swapfiles)
484                 goto bad_nofile;
485         p = swap_info[type];
486         if (!(p->flags & SWP_USED))
487                 goto bad_device;
488         offset = swp_offset(entry);
489         if (offset >= p->max)
490                 goto bad_offset;
491         if (!p->swap_map[offset])
492                 goto bad_free;
493         spin_lock(&swap_lock);
494         return p;
495
496 bad_free:
497         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498         goto out;
499 bad_offset:
500         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501         goto out;
502 bad_device:
503         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504         goto out;
505 bad_nofile:
506         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507 out:
508         return NULL;
509 }
510
511 static unsigned char swap_entry_free(struct swap_info_struct *p,
512                                      swp_entry_t entry, unsigned char usage)
513 {
514         unsigned long offset = swp_offset(entry);
515         unsigned char count;
516         unsigned char has_cache;
517
518         count = p->swap_map[offset];
519         has_cache = count & SWAP_HAS_CACHE;
520         count &= ~SWAP_HAS_CACHE;
521
522         if (usage == SWAP_HAS_CACHE) {
523                 VM_BUG_ON(!has_cache);
524                 has_cache = 0;
525         } else if (count == SWAP_MAP_SHMEM) {
526                 /*
527                  * Or we could insist on shmem.c using a special
528                  * swap_shmem_free() and free_shmem_swap_and_cache()...
529                  */
530                 count = 0;
531         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532                 if (count == COUNT_CONTINUED) {
533                         if (swap_count_continued(p, offset, count))
534                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
535                         else
536                                 count = SWAP_MAP_MAX;
537                 } else
538                         count--;
539         }
540
541         if (!count)
542                 mem_cgroup_uncharge_swap(entry);
543
544         usage = count | has_cache;
545         p->swap_map[offset] = usage;
546
547         /* free if no reference */
548         if (!usage) {
549                 struct gendisk *disk = p->bdev->bd_disk;
550                 if (offset < p->lowest_bit)
551                         p->lowest_bit = offset;
552                 if (offset > p->highest_bit)
553                         p->highest_bit = offset;
554                 if (swap_list.next >= 0 &&
555                     p->prio > swap_info[swap_list.next]->prio)
556                         swap_list.next = p->type;
557                 nr_swap_pages++;
558                 p->inuse_pages--;
559                 if ((p->flags & SWP_BLKDEV) &&
560                                 disk->fops->swap_slot_free_notify)
561                         disk->fops->swap_slot_free_notify(p->bdev, offset);
562         }
563
564         return usage;
565 }
566
567 /*
568  * Caller has made sure that the swapdevice corresponding to entry
569  * is still around or has not been recycled.
570  */
571 void swap_free(swp_entry_t entry)
572 {
573         struct swap_info_struct *p;
574
575         p = swap_info_get(entry);
576         if (p) {
577                 swap_entry_free(p, entry, 1);
578                 spin_unlock(&swap_lock);
579         }
580 }
581
582 /*
583  * Called after dropping swapcache to decrease refcnt to swap entries.
584  */
585 void swapcache_free(swp_entry_t entry, struct page *page)
586 {
587         struct swap_info_struct *p;
588         unsigned char count;
589
590         p = swap_info_get(entry);
591         if (p) {
592                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593                 if (page)
594                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
595                 spin_unlock(&swap_lock);
596         }
597 }
598
599 /*
600  * How many references to page are currently swapped out?
601  * This does not give an exact answer when swap count is continued,
602  * but does include the high COUNT_CONTINUED flag to allow for that.
603  */
604 int page_swapcount(struct page *page)
605 {
606         int count = 0;
607         struct swap_info_struct *p;
608         swp_entry_t entry;
609
610         entry.val = page_private(page);
611         p = swap_info_get(entry);
612         if (p) {
613                 count = swap_count(p->swap_map[swp_offset(entry)]);
614                 spin_unlock(&swap_lock);
615         }
616         return count;
617 }
618
619 /*
620  * We can write to an anon page without COW if there are no other references
621  * to it.  And as a side-effect, free up its swap: because the old content
622  * on disk will never be read, and seeking back there to write new content
623  * later would only waste time away from clustering.
624  */
625 int reuse_swap_page(struct page *page)
626 {
627         int count;
628
629         VM_BUG_ON(!PageLocked(page));
630         if (unlikely(PageKsm(page)))
631                 return 0;
632         count = page_mapcount(page);
633         if (count <= 1 && PageSwapCache(page)) {
634                 count += page_swapcount(page);
635                 if (count == 1 && !PageWriteback(page)) {
636                         delete_from_swap_cache(page);
637                         SetPageDirty(page);
638                 }
639         }
640         return count <= 1;
641 }
642
643 /*
644  * If swap is getting full, or if there are no more mappings of this page,
645  * then try_to_free_swap is called to free its swap space.
646  */
647 int try_to_free_swap(struct page *page)
648 {
649         VM_BUG_ON(!PageLocked(page));
650
651         if (!PageSwapCache(page))
652                 return 0;
653         if (PageWriteback(page))
654                 return 0;
655         if (page_swapcount(page))
656                 return 0;
657
658         /*
659          * Once hibernation has begun to create its image of memory,
660          * there's a danger that one of the calls to try_to_free_swap()
661          * - most probably a call from __try_to_reclaim_swap() while
662          * hibernation is allocating its own swap pages for the image,
663          * but conceivably even a call from memory reclaim - will free
664          * the swap from a page which has already been recorded in the
665          * image as a clean swapcache page, and then reuse its swap for
666          * another page of the image.  On waking from hibernation, the
667          * original page might be freed under memory pressure, then
668          * later read back in from swap, now with the wrong data.
669          *
670          * Hibration suspends storage while it is writing the image
671          * to disk so check that here.
672          */
673         if (pm_suspended_storage())
674                 return 0;
675
676         delete_from_swap_cache(page);
677         SetPageDirty(page);
678         return 1;
679 }
680
681 /*
682  * Free the swap entry like above, but also try to
683  * free the page cache entry if it is the last user.
684  */
685 int free_swap_and_cache(swp_entry_t entry)
686 {
687         struct swap_info_struct *p;
688         struct page *page = NULL;
689
690         if (non_swap_entry(entry))
691                 return 1;
692
693         p = swap_info_get(entry);
694         if (p) {
695                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
696                         page = find_get_page(&swapper_space, entry.val);
697                         if (page && !trylock_page(page)) {
698                                 page_cache_release(page);
699                                 page = NULL;
700                         }
701                 }
702                 spin_unlock(&swap_lock);
703         }
704         if (page) {
705                 /*
706                  * Not mapped elsewhere, or swap space full? Free it!
707                  * Also recheck PageSwapCache now page is locked (above).
708                  */
709                 if (PageSwapCache(page) && !PageWriteback(page) &&
710                                 (!page_mapped(page) || vm_swap_full())) {
711                         delete_from_swap_cache(page);
712                         SetPageDirty(page);
713                 }
714                 unlock_page(page);
715                 page_cache_release(page);
716         }
717         return p != NULL;
718 }
719
720 #ifdef CONFIG_HIBERNATION
721 /*
722  * Find the swap type that corresponds to given device (if any).
723  *
724  * @offset - number of the PAGE_SIZE-sized block of the device, starting
725  * from 0, in which the swap header is expected to be located.
726  *
727  * This is needed for the suspend to disk (aka swsusp).
728  */
729 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
730 {
731         struct block_device *bdev = NULL;
732         int type;
733
734         if (device)
735                 bdev = bdget(device);
736
737         spin_lock(&swap_lock);
738         for (type = 0; type < nr_swapfiles; type++) {
739                 struct swap_info_struct *sis = swap_info[type];
740
741                 if (!(sis->flags & SWP_WRITEOK))
742                         continue;
743
744                 if (!bdev) {
745                         if (bdev_p)
746                                 *bdev_p = bdgrab(sis->bdev);
747
748                         spin_unlock(&swap_lock);
749                         return type;
750                 }
751                 if (bdev == sis->bdev) {
752                         struct swap_extent *se = &sis->first_swap_extent;
753
754                         if (se->start_block == offset) {
755                                 if (bdev_p)
756                                         *bdev_p = bdgrab(sis->bdev);
757
758                                 spin_unlock(&swap_lock);
759                                 bdput(bdev);
760                                 return type;
761                         }
762                 }
763         }
764         spin_unlock(&swap_lock);
765         if (bdev)
766                 bdput(bdev);
767
768         return -ENODEV;
769 }
770
771 /*
772  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
773  * corresponding to given index in swap_info (swap type).
774  */
775 sector_t swapdev_block(int type, pgoff_t offset)
776 {
777         struct block_device *bdev;
778
779         if ((unsigned int)type >= nr_swapfiles)
780                 return 0;
781         if (!(swap_info[type]->flags & SWP_WRITEOK))
782                 return 0;
783         return map_swap_entry(swp_entry(type, offset), &bdev);
784 }
785
786 /*
787  * Return either the total number of swap pages of given type, or the number
788  * of free pages of that type (depending on @free)
789  *
790  * This is needed for software suspend
791  */
792 unsigned int count_swap_pages(int type, int free)
793 {
794         unsigned int n = 0;
795
796         spin_lock(&swap_lock);
797         if ((unsigned int)type < nr_swapfiles) {
798                 struct swap_info_struct *sis = swap_info[type];
799
800                 if (sis->flags & SWP_WRITEOK) {
801                         n = sis->pages;
802                         if (free)
803                                 n -= sis->inuse_pages;
804                 }
805         }
806         spin_unlock(&swap_lock);
807         return n;
808 }
809 #endif /* CONFIG_HIBERNATION */
810
811 /*
812  * No need to decide whether this PTE shares the swap entry with others,
813  * just let do_wp_page work it out if a write is requested later - to
814  * force COW, vm_page_prot omits write permission from any private vma.
815  */
816 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
817                 unsigned long addr, swp_entry_t entry, struct page *page)
818 {
819         struct mem_cgroup *memcg;
820         spinlock_t *ptl;
821         pte_t *pte;
822         int ret = 1;
823
824         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
825                                          GFP_KERNEL, &memcg)) {
826                 ret = -ENOMEM;
827                 goto out_nolock;
828         }
829
830         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
831         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
832                 if (ret > 0)
833                         mem_cgroup_cancel_charge_swapin(memcg);
834                 ret = 0;
835                 goto out;
836         }
837
838         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
839         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
840         get_page(page);
841         set_pte_at(vma->vm_mm, addr, pte,
842                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
843         page_add_anon_rmap(page, vma, addr);
844         mem_cgroup_commit_charge_swapin(page, memcg);
845         swap_free(entry);
846         /*
847          * Move the page to the active list so it is not
848          * immediately swapped out again after swapon.
849          */
850         activate_page(page);
851 out:
852         pte_unmap_unlock(pte, ptl);
853 out_nolock:
854         return ret;
855 }
856
857 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
858                                 unsigned long addr, unsigned long end,
859                                 swp_entry_t entry, struct page *page)
860 {
861         pte_t swp_pte = swp_entry_to_pte(entry);
862         pte_t *pte;
863         int ret = 0;
864
865         /*
866          * We don't actually need pte lock while scanning for swp_pte: since
867          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
868          * page table while we're scanning; though it could get zapped, and on
869          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
870          * of unmatched parts which look like swp_pte, so unuse_pte must
871          * recheck under pte lock.  Scanning without pte lock lets it be
872          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
873          */
874         pte = pte_offset_map(pmd, addr);
875         do {
876                 /*
877                  * swapoff spends a _lot_ of time in this loop!
878                  * Test inline before going to call unuse_pte.
879                  */
880                 if (unlikely(pte_same(*pte, swp_pte))) {
881                         pte_unmap(pte);
882                         ret = unuse_pte(vma, pmd, addr, entry, page);
883                         if (ret)
884                                 goto out;
885                         pte = pte_offset_map(pmd, addr);
886                 }
887         } while (pte++, addr += PAGE_SIZE, addr != end);
888         pte_unmap(pte - 1);
889 out:
890         return ret;
891 }
892
893 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
894                                 unsigned long addr, unsigned long end,
895                                 swp_entry_t entry, struct page *page)
896 {
897         pmd_t *pmd;
898         unsigned long next;
899         int ret;
900
901         pmd = pmd_offset(pud, addr);
902         do {
903                 next = pmd_addr_end(addr, end);
904                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
905                         continue;
906                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
907                 if (ret)
908                         return ret;
909         } while (pmd++, addr = next, addr != end);
910         return 0;
911 }
912
913 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
914                                 unsigned long addr, unsigned long end,
915                                 swp_entry_t entry, struct page *page)
916 {
917         pud_t *pud;
918         unsigned long next;
919         int ret;
920
921         pud = pud_offset(pgd, addr);
922         do {
923                 next = pud_addr_end(addr, end);
924                 if (pud_none_or_clear_bad(pud))
925                         continue;
926                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
927                 if (ret)
928                         return ret;
929         } while (pud++, addr = next, addr != end);
930         return 0;
931 }
932
933 static int unuse_vma(struct vm_area_struct *vma,
934                                 swp_entry_t entry, struct page *page)
935 {
936         pgd_t *pgd;
937         unsigned long addr, end, next;
938         int ret;
939
940         if (page_anon_vma(page)) {
941                 addr = page_address_in_vma(page, vma);
942                 if (addr == -EFAULT)
943                         return 0;
944                 else
945                         end = addr + PAGE_SIZE;
946         } else {
947                 addr = vma->vm_start;
948                 end = vma->vm_end;
949         }
950
951         pgd = pgd_offset(vma->vm_mm, addr);
952         do {
953                 next = pgd_addr_end(addr, end);
954                 if (pgd_none_or_clear_bad(pgd))
955                         continue;
956                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
957                 if (ret)
958                         return ret;
959         } while (pgd++, addr = next, addr != end);
960         return 0;
961 }
962
963 static int unuse_mm(struct mm_struct *mm,
964                                 swp_entry_t entry, struct page *page)
965 {
966         struct vm_area_struct *vma;
967         int ret = 0;
968
969         if (!down_read_trylock(&mm->mmap_sem)) {
970                 /*
971                  * Activate page so shrink_inactive_list is unlikely to unmap
972                  * its ptes while lock is dropped, so swapoff can make progress.
973                  */
974                 activate_page(page);
975                 unlock_page(page);
976                 down_read(&mm->mmap_sem);
977                 lock_page(page);
978         }
979         for (vma = mm->mmap; vma; vma = vma->vm_next) {
980                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
981                         break;
982         }
983         up_read(&mm->mmap_sem);
984         return (ret < 0)? ret: 0;
985 }
986
987 /*
988  * Scan swap_map from current position to next entry still in use.
989  * Recycle to start on reaching the end, returning 0 when empty.
990  */
991 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
992                                         unsigned int prev)
993 {
994         unsigned int max = si->max;
995         unsigned int i = prev;
996         unsigned char count;
997
998         /*
999          * No need for swap_lock here: we're just looking
1000          * for whether an entry is in use, not modifying it; false
1001          * hits are okay, and sys_swapoff() has already prevented new
1002          * allocations from this area (while holding swap_lock).
1003          */
1004         for (;;) {
1005                 if (++i >= max) {
1006                         if (!prev) {
1007                                 i = 0;
1008                                 break;
1009                         }
1010                         /*
1011                          * No entries in use at top of swap_map,
1012                          * loop back to start and recheck there.
1013                          */
1014                         max = prev + 1;
1015                         prev = 0;
1016                         i = 1;
1017                 }
1018                 count = si->swap_map[i];
1019                 if (count && swap_count(count) != SWAP_MAP_BAD)
1020                         break;
1021         }
1022         return i;
1023 }
1024
1025 /*
1026  * We completely avoid races by reading each swap page in advance,
1027  * and then search for the process using it.  All the necessary
1028  * page table adjustments can then be made atomically.
1029  */
1030 static int try_to_unuse(unsigned int type)
1031 {
1032         struct swap_info_struct *si = swap_info[type];
1033         struct mm_struct *start_mm;
1034         unsigned char *swap_map;
1035         unsigned char swcount;
1036         struct page *page;
1037         swp_entry_t entry;
1038         unsigned int i = 0;
1039         int retval = 0;
1040
1041         /*
1042          * When searching mms for an entry, a good strategy is to
1043          * start at the first mm we freed the previous entry from
1044          * (though actually we don't notice whether we or coincidence
1045          * freed the entry).  Initialize this start_mm with a hold.
1046          *
1047          * A simpler strategy would be to start at the last mm we
1048          * freed the previous entry from; but that would take less
1049          * advantage of mmlist ordering, which clusters forked mms
1050          * together, child after parent.  If we race with dup_mmap(), we
1051          * prefer to resolve parent before child, lest we miss entries
1052          * duplicated after we scanned child: using last mm would invert
1053          * that.
1054          */
1055         start_mm = &init_mm;
1056         atomic_inc(&init_mm.mm_users);
1057
1058         /*
1059          * Keep on scanning until all entries have gone.  Usually,
1060          * one pass through swap_map is enough, but not necessarily:
1061          * there are races when an instance of an entry might be missed.
1062          */
1063         while ((i = find_next_to_unuse(si, i)) != 0) {
1064                 if (signal_pending(current)) {
1065                         retval = -EINTR;
1066                         break;
1067                 }
1068
1069                 /*
1070                  * Get a page for the entry, using the existing swap
1071                  * cache page if there is one.  Otherwise, get a clean
1072                  * page and read the swap into it.
1073                  */
1074                 swap_map = &si->swap_map[i];
1075                 entry = swp_entry(type, i);
1076                 page = read_swap_cache_async(entry,
1077                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1078                 if (!page) {
1079                         /*
1080                          * Either swap_duplicate() failed because entry
1081                          * has been freed independently, and will not be
1082                          * reused since sys_swapoff() already disabled
1083                          * allocation from here, or alloc_page() failed.
1084                          */
1085                         if (!*swap_map)
1086                                 continue;
1087                         retval = -ENOMEM;
1088                         break;
1089                 }
1090
1091                 /*
1092                  * Don't hold on to start_mm if it looks like exiting.
1093                  */
1094                 if (atomic_read(&start_mm->mm_users) == 1) {
1095                         mmput(start_mm);
1096                         start_mm = &init_mm;
1097                         atomic_inc(&init_mm.mm_users);
1098                 }
1099
1100                 /*
1101                  * Wait for and lock page.  When do_swap_page races with
1102                  * try_to_unuse, do_swap_page can handle the fault much
1103                  * faster than try_to_unuse can locate the entry.  This
1104                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105                  * defer to do_swap_page in such a case - in some tests,
1106                  * do_swap_page and try_to_unuse repeatedly compete.
1107                  */
1108                 wait_on_page_locked(page);
1109                 wait_on_page_writeback(page);
1110                 lock_page(page);
1111                 wait_on_page_writeback(page);
1112
1113                 /*
1114                  * Remove all references to entry.
1115                  */
1116                 swcount = *swap_map;
1117                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1118                         retval = shmem_unuse(entry, page);
1119                         /* page has already been unlocked and released */
1120                         if (retval < 0)
1121                                 break;
1122                         continue;
1123                 }
1124                 if (swap_count(swcount) && start_mm != &init_mm)
1125                         retval = unuse_mm(start_mm, entry, page);
1126
1127                 if (swap_count(*swap_map)) {
1128                         int set_start_mm = (*swap_map >= swcount);
1129                         struct list_head *p = &start_mm->mmlist;
1130                         struct mm_struct *new_start_mm = start_mm;
1131                         struct mm_struct *prev_mm = start_mm;
1132                         struct mm_struct *mm;
1133
1134                         atomic_inc(&new_start_mm->mm_users);
1135                         atomic_inc(&prev_mm->mm_users);
1136                         spin_lock(&mmlist_lock);
1137                         while (swap_count(*swap_map) && !retval &&
1138                                         (p = p->next) != &start_mm->mmlist) {
1139                                 mm = list_entry(p, struct mm_struct, mmlist);
1140                                 if (!atomic_inc_not_zero(&mm->mm_users))
1141                                         continue;
1142                                 spin_unlock(&mmlist_lock);
1143                                 mmput(prev_mm);
1144                                 prev_mm = mm;
1145
1146                                 cond_resched();
1147
1148                                 swcount = *swap_map;
1149                                 if (!swap_count(swcount)) /* any usage ? */
1150                                         ;
1151                                 else if (mm == &init_mm)
1152                                         set_start_mm = 1;
1153                                 else
1154                                         retval = unuse_mm(mm, entry, page);
1155
1156                                 if (set_start_mm && *swap_map < swcount) {
1157                                         mmput(new_start_mm);
1158                                         atomic_inc(&mm->mm_users);
1159                                         new_start_mm = mm;
1160                                         set_start_mm = 0;
1161                                 }
1162                                 spin_lock(&mmlist_lock);
1163                         }
1164                         spin_unlock(&mmlist_lock);
1165                         mmput(prev_mm);
1166                         mmput(start_mm);
1167                         start_mm = new_start_mm;
1168                 }
1169                 if (retval) {
1170                         unlock_page(page);
1171                         page_cache_release(page);
1172                         break;
1173                 }
1174
1175                 /*
1176                  * If a reference remains (rare), we would like to leave
1177                  * the page in the swap cache; but try_to_unmap could
1178                  * then re-duplicate the entry once we drop page lock,
1179                  * so we might loop indefinitely; also, that page could
1180                  * not be swapped out to other storage meanwhile.  So:
1181                  * delete from cache even if there's another reference,
1182                  * after ensuring that the data has been saved to disk -
1183                  * since if the reference remains (rarer), it will be
1184                  * read from disk into another page.  Splitting into two
1185                  * pages would be incorrect if swap supported "shared
1186                  * private" pages, but they are handled by tmpfs files.
1187                  *
1188                  * Given how unuse_vma() targets one particular offset
1189                  * in an anon_vma, once the anon_vma has been determined,
1190                  * this splitting happens to be just what is needed to
1191                  * handle where KSM pages have been swapped out: re-reading
1192                  * is unnecessarily slow, but we can fix that later on.
1193                  */
1194                 if (swap_count(*swap_map) &&
1195                      PageDirty(page) && PageSwapCache(page)) {
1196                         struct writeback_control wbc = {
1197                                 .sync_mode = WB_SYNC_NONE,
1198                         };
1199
1200                         swap_writepage(page, &wbc);
1201                         lock_page(page);
1202                         wait_on_page_writeback(page);
1203                 }
1204
1205                 /*
1206                  * It is conceivable that a racing task removed this page from
1207                  * swap cache just before we acquired the page lock at the top,
1208                  * or while we dropped it in unuse_mm().  The page might even
1209                  * be back in swap cache on another swap area: that we must not
1210                  * delete, since it may not have been written out to swap yet.
1211                  */
1212                 if (PageSwapCache(page) &&
1213                     likely(page_private(page) == entry.val))
1214                         delete_from_swap_cache(page);
1215
1216                 /*
1217                  * So we could skip searching mms once swap count went
1218                  * to 1, we did not mark any present ptes as dirty: must
1219                  * mark page dirty so shrink_page_list will preserve it.
1220                  */
1221                 SetPageDirty(page);
1222                 unlock_page(page);
1223                 page_cache_release(page);
1224
1225                 /*
1226                  * Make sure that we aren't completely killing
1227                  * interactive performance.
1228                  */
1229                 cond_resched();
1230         }
1231
1232         mmput(start_mm);
1233         return retval;
1234 }
1235
1236 /*
1237  * After a successful try_to_unuse, if no swap is now in use, we know
1238  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1239  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1240  * added to the mmlist just after page_duplicate - before would be racy.
1241  */
1242 static void drain_mmlist(void)
1243 {
1244         struct list_head *p, *next;
1245         unsigned int type;
1246
1247         for (type = 0; type < nr_swapfiles; type++)
1248                 if (swap_info[type]->inuse_pages)
1249                         return;
1250         spin_lock(&mmlist_lock);
1251         list_for_each_safe(p, next, &init_mm.mmlist)
1252                 list_del_init(p);
1253         spin_unlock(&mmlist_lock);
1254 }
1255
1256 /*
1257  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1258  * corresponds to page offset for the specified swap entry.
1259  * Note that the type of this function is sector_t, but it returns page offset
1260  * into the bdev, not sector offset.
1261  */
1262 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1263 {
1264         struct swap_info_struct *sis;
1265         struct swap_extent *start_se;
1266         struct swap_extent *se;
1267         pgoff_t offset;
1268
1269         sis = swap_info[swp_type(entry)];
1270         *bdev = sis->bdev;
1271
1272         offset = swp_offset(entry);
1273         start_se = sis->curr_swap_extent;
1274         se = start_se;
1275
1276         for ( ; ; ) {
1277                 struct list_head *lh;
1278
1279                 if (se->start_page <= offset &&
1280                                 offset < (se->start_page + se->nr_pages)) {
1281                         return se->start_block + (offset - se->start_page);
1282                 }
1283                 lh = se->list.next;
1284                 se = list_entry(lh, struct swap_extent, list);
1285                 sis->curr_swap_extent = se;
1286                 BUG_ON(se == start_se);         /* It *must* be present */
1287         }
1288 }
1289
1290 /*
1291  * Returns the page offset into bdev for the specified page's swap entry.
1292  */
1293 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1294 {
1295         swp_entry_t entry;
1296         entry.val = page_private(page);
1297         return map_swap_entry(entry, bdev);
1298 }
1299
1300 /*
1301  * Free all of a swapdev's extent information
1302  */
1303 static void destroy_swap_extents(struct swap_info_struct *sis)
1304 {
1305         while (!list_empty(&sis->first_swap_extent.list)) {
1306                 struct swap_extent *se;
1307
1308                 se = list_entry(sis->first_swap_extent.list.next,
1309                                 struct swap_extent, list);
1310                 list_del(&se->list);
1311                 kfree(se);
1312         }
1313 }
1314
1315 /*
1316  * Add a block range (and the corresponding page range) into this swapdev's
1317  * extent list.  The extent list is kept sorted in page order.
1318  *
1319  * This function rather assumes that it is called in ascending page order.
1320  */
1321 static int
1322 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1323                 unsigned long nr_pages, sector_t start_block)
1324 {
1325         struct swap_extent *se;
1326         struct swap_extent *new_se;
1327         struct list_head *lh;
1328
1329         if (start_page == 0) {
1330                 se = &sis->first_swap_extent;
1331                 sis->curr_swap_extent = se;
1332                 se->start_page = 0;
1333                 se->nr_pages = nr_pages;
1334                 se->start_block = start_block;
1335                 return 1;
1336         } else {
1337                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1338                 se = list_entry(lh, struct swap_extent, list);
1339                 BUG_ON(se->start_page + se->nr_pages != start_page);
1340                 if (se->start_block + se->nr_pages == start_block) {
1341                         /* Merge it */
1342                         se->nr_pages += nr_pages;
1343                         return 0;
1344                 }
1345         }
1346
1347         /*
1348          * No merge.  Insert a new extent, preserving ordering.
1349          */
1350         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1351         if (new_se == NULL)
1352                 return -ENOMEM;
1353         new_se->start_page = start_page;
1354         new_se->nr_pages = nr_pages;
1355         new_se->start_block = start_block;
1356
1357         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1358         return 1;
1359 }
1360
1361 /*
1362  * A `swap extent' is a simple thing which maps a contiguous range of pages
1363  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1364  * is built at swapon time and is then used at swap_writepage/swap_readpage
1365  * time for locating where on disk a page belongs.
1366  *
1367  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1368  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1369  * swap files identically.
1370  *
1371  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1372  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1373  * swapfiles are handled *identically* after swapon time.
1374  *
1375  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1376  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1377  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1378  * requirements, they are simply tossed out - we will never use those blocks
1379  * for swapping.
1380  *
1381  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1382  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1383  * which will scribble on the fs.
1384  *
1385  * The amount of disk space which a single swap extent represents varies.
1386  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1387  * extents in the list.  To avoid much list walking, we cache the previous
1388  * search location in `curr_swap_extent', and start new searches from there.
1389  * This is extremely effective.  The average number of iterations in
1390  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1391  */
1392 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1393 {
1394         struct inode *inode;
1395         unsigned blocks_per_page;
1396         unsigned long page_no;
1397         unsigned blkbits;
1398         sector_t probe_block;
1399         sector_t last_block;
1400         sector_t lowest_block = -1;
1401         sector_t highest_block = 0;
1402         int nr_extents = 0;
1403         int ret;
1404
1405         inode = sis->swap_file->f_mapping->host;
1406         if (S_ISBLK(inode->i_mode)) {
1407                 ret = add_swap_extent(sis, 0, sis->max, 0);
1408                 *span = sis->pages;
1409                 goto out;
1410         }
1411
1412         blkbits = inode->i_blkbits;
1413         blocks_per_page = PAGE_SIZE >> blkbits;
1414
1415         /*
1416          * Map all the blocks into the extent list.  This code doesn't try
1417          * to be very smart.
1418          */
1419         probe_block = 0;
1420         page_no = 0;
1421         last_block = i_size_read(inode) >> blkbits;
1422         while ((probe_block + blocks_per_page) <= last_block &&
1423                         page_no < sis->max) {
1424                 unsigned block_in_page;
1425                 sector_t first_block;
1426
1427                 first_block = bmap(inode, probe_block);
1428                 if (first_block == 0)
1429                         goto bad_bmap;
1430
1431                 /*
1432                  * It must be PAGE_SIZE aligned on-disk
1433                  */
1434                 if (first_block & (blocks_per_page - 1)) {
1435                         probe_block++;
1436                         goto reprobe;
1437                 }
1438
1439                 for (block_in_page = 1; block_in_page < blocks_per_page;
1440                                         block_in_page++) {
1441                         sector_t block;
1442
1443                         block = bmap(inode, probe_block + block_in_page);
1444                         if (block == 0)
1445                                 goto bad_bmap;
1446                         if (block != first_block + block_in_page) {
1447                                 /* Discontiguity */
1448                                 probe_block++;
1449                                 goto reprobe;
1450                         }
1451                 }
1452
1453                 first_block >>= (PAGE_SHIFT - blkbits);
1454                 if (page_no) {  /* exclude the header page */
1455                         if (first_block < lowest_block)
1456                                 lowest_block = first_block;
1457                         if (first_block > highest_block)
1458                                 highest_block = first_block;
1459                 }
1460
1461                 /*
1462                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1463                  */
1464                 ret = add_swap_extent(sis, page_no, 1, first_block);
1465                 if (ret < 0)
1466                         goto out;
1467                 nr_extents += ret;
1468                 page_no++;
1469                 probe_block += blocks_per_page;
1470 reprobe:
1471                 continue;
1472         }
1473         ret = nr_extents;
1474         *span = 1 + highest_block - lowest_block;
1475         if (page_no == 0)
1476                 page_no = 1;    /* force Empty message */
1477         sis->max = page_no;
1478         sis->pages = page_no - 1;
1479         sis->highest_bit = page_no - 1;
1480 out:
1481         return ret;
1482 bad_bmap:
1483         printk(KERN_ERR "swapon: swapfile has holes\n");
1484         ret = -EINVAL;
1485         goto out;
1486 }
1487
1488 static void enable_swap_info(struct swap_info_struct *p, int prio,
1489                                 unsigned char *swap_map)
1490 {
1491         int i, prev;
1492
1493         spin_lock(&swap_lock);
1494         if (prio >= 0)
1495                 p->prio = prio;
1496         else
1497                 p->prio = --least_priority;
1498         p->swap_map = swap_map;
1499         p->flags |= SWP_WRITEOK;
1500         nr_swap_pages += p->pages;
1501         total_swap_pages += p->pages;
1502
1503         /* insert swap space into swap_list: */
1504         prev = -1;
1505         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1506                 if (p->prio >= swap_info[i]->prio)
1507                         break;
1508                 prev = i;
1509         }
1510         p->next = i;
1511         if (prev < 0)
1512                 swap_list.head = swap_list.next = p->type;
1513         else
1514                 swap_info[prev]->next = p->type;
1515         spin_unlock(&swap_lock);
1516 }
1517
1518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1519 {
1520         struct swap_info_struct *p = NULL;
1521         unsigned char *swap_map;
1522         struct file *swap_file, *victim;
1523         struct address_space *mapping;
1524         struct inode *inode;
1525         char *pathname;
1526         int oom_score_adj;
1527         int i, type, prev;
1528         int err;
1529
1530         if (!capable(CAP_SYS_ADMIN))
1531                 return -EPERM;
1532
1533         BUG_ON(!current->mm);
1534
1535         pathname = getname(specialfile);
1536         err = PTR_ERR(pathname);
1537         if (IS_ERR(pathname))
1538                 goto out;
1539
1540         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1541         putname(pathname);
1542         err = PTR_ERR(victim);
1543         if (IS_ERR(victim))
1544                 goto out;
1545
1546         mapping = victim->f_mapping;
1547         prev = -1;
1548         spin_lock(&swap_lock);
1549         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1550                 p = swap_info[type];
1551                 if (p->flags & SWP_WRITEOK) {
1552                         if (p->swap_file->f_mapping == mapping)
1553                                 break;
1554                 }
1555                 prev = type;
1556         }
1557         if (type < 0) {
1558                 err = -EINVAL;
1559                 spin_unlock(&swap_lock);
1560                 goto out_dput;
1561         }
1562         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1563                 vm_unacct_memory(p->pages);
1564         else {
1565                 err = -ENOMEM;
1566                 spin_unlock(&swap_lock);
1567                 goto out_dput;
1568         }
1569         if (prev < 0)
1570                 swap_list.head = p->next;
1571         else
1572                 swap_info[prev]->next = p->next;
1573         if (type == swap_list.next) {
1574                 /* just pick something that's safe... */
1575                 swap_list.next = swap_list.head;
1576         }
1577         if (p->prio < 0) {
1578                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1579                         swap_info[i]->prio = p->prio--;
1580                 least_priority++;
1581         }
1582         nr_swap_pages -= p->pages;
1583         total_swap_pages -= p->pages;
1584         p->flags &= ~SWP_WRITEOK;
1585         spin_unlock(&swap_lock);
1586
1587         oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1588         err = try_to_unuse(type);
1589         compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1590
1591         if (err) {
1592                 /*
1593                  * reading p->prio and p->swap_map outside the lock is
1594                  * safe here because only sys_swapon and sys_swapoff
1595                  * change them, and there can be no other sys_swapon or
1596                  * sys_swapoff for this swap_info_struct at this point.
1597                  */
1598                 /* re-insert swap space back into swap_list */
1599                 enable_swap_info(p, p->prio, p->swap_map);
1600                 goto out_dput;
1601         }
1602
1603         destroy_swap_extents(p);
1604         if (p->flags & SWP_CONTINUED)
1605                 free_swap_count_continuations(p);
1606
1607         mutex_lock(&swapon_mutex);
1608         spin_lock(&swap_lock);
1609         drain_mmlist();
1610
1611         /* wait for anyone still in scan_swap_map */
1612         p->highest_bit = 0;             /* cuts scans short */
1613         while (p->flags >= SWP_SCANNING) {
1614                 spin_unlock(&swap_lock);
1615                 schedule_timeout_uninterruptible(1);
1616                 spin_lock(&swap_lock);
1617         }
1618
1619         swap_file = p->swap_file;
1620         p->swap_file = NULL;
1621         p->max = 0;
1622         swap_map = p->swap_map;
1623         p->swap_map = NULL;
1624         p->flags = 0;
1625         spin_unlock(&swap_lock);
1626         mutex_unlock(&swapon_mutex);
1627         vfree(swap_map);
1628         /* Destroy swap account informatin */
1629         swap_cgroup_swapoff(type);
1630
1631         inode = mapping->host;
1632         if (S_ISBLK(inode->i_mode)) {
1633                 struct block_device *bdev = I_BDEV(inode);
1634                 set_blocksize(bdev, p->old_block_size);
1635                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1636         } else {
1637                 mutex_lock(&inode->i_mutex);
1638                 inode->i_flags &= ~S_SWAPFILE;
1639                 mutex_unlock(&inode->i_mutex);
1640         }
1641         filp_close(swap_file, NULL);
1642         err = 0;
1643         atomic_inc(&proc_poll_event);
1644         wake_up_interruptible(&proc_poll_wait);
1645
1646 out_dput:
1647         filp_close(victim, NULL);
1648 out:
1649         return err;
1650 }
1651
1652 #ifdef CONFIG_PROC_FS
1653 static unsigned swaps_poll(struct file *file, poll_table *wait)
1654 {
1655         struct seq_file *seq = file->private_data;
1656
1657         poll_wait(file, &proc_poll_wait, wait);
1658
1659         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1660                 seq->poll_event = atomic_read(&proc_poll_event);
1661                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1662         }
1663
1664         return POLLIN | POLLRDNORM;
1665 }
1666
1667 /* iterator */
1668 static void *swap_start(struct seq_file *swap, loff_t *pos)
1669 {
1670         struct swap_info_struct *si;
1671         int type;
1672         loff_t l = *pos;
1673
1674         mutex_lock(&swapon_mutex);
1675
1676         if (!l)
1677                 return SEQ_START_TOKEN;
1678
1679         for (type = 0; type < nr_swapfiles; type++) {
1680                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1681                 si = swap_info[type];
1682                 if (!(si->flags & SWP_USED) || !si->swap_map)
1683                         continue;
1684                 if (!--l)
1685                         return si;
1686         }
1687
1688         return NULL;
1689 }
1690
1691 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1692 {
1693         struct swap_info_struct *si = v;
1694         int type;
1695
1696         if (v == SEQ_START_TOKEN)
1697                 type = 0;
1698         else
1699                 type = si->type + 1;
1700
1701         for (; type < nr_swapfiles; type++) {
1702                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1703                 si = swap_info[type];
1704                 if (!(si->flags & SWP_USED) || !si->swap_map)
1705                         continue;
1706                 ++*pos;
1707                 return si;
1708         }
1709
1710         return NULL;
1711 }
1712
1713 static void swap_stop(struct seq_file *swap, void *v)
1714 {
1715         mutex_unlock(&swapon_mutex);
1716 }
1717
1718 static int swap_show(struct seq_file *swap, void *v)
1719 {
1720         struct swap_info_struct *si = v;
1721         struct file *file;
1722         int len;
1723
1724         if (si == SEQ_START_TOKEN) {
1725                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1726                 return 0;
1727         }
1728
1729         file = si->swap_file;
1730         len = seq_path(swap, &file->f_path, " \t\n\\");
1731         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1732                         len < 40 ? 40 - len : 1, " ",
1733                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1734                                 "partition" : "file\t",
1735                         si->pages << (PAGE_SHIFT - 10),
1736                         si->inuse_pages << (PAGE_SHIFT - 10),
1737                         si->prio);
1738         return 0;
1739 }
1740
1741 static const struct seq_operations swaps_op = {
1742         .start =        swap_start,
1743         .next =         swap_next,
1744         .stop =         swap_stop,
1745         .show =         swap_show
1746 };
1747
1748 static int swaps_open(struct inode *inode, struct file *file)
1749 {
1750         struct seq_file *seq;
1751         int ret;
1752
1753         ret = seq_open(file, &swaps_op);
1754         if (ret)
1755                 return ret;
1756
1757         seq = file->private_data;
1758         seq->poll_event = atomic_read(&proc_poll_event);
1759         return 0;
1760 }
1761
1762 static const struct file_operations proc_swaps_operations = {
1763         .open           = swaps_open,
1764         .read           = seq_read,
1765         .llseek         = seq_lseek,
1766         .release        = seq_release,
1767         .poll           = swaps_poll,
1768 };
1769
1770 static int __init procswaps_init(void)
1771 {
1772         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1773         return 0;
1774 }
1775 __initcall(procswaps_init);
1776 #endif /* CONFIG_PROC_FS */
1777
1778 #ifdef MAX_SWAPFILES_CHECK
1779 static int __init max_swapfiles_check(void)
1780 {
1781         MAX_SWAPFILES_CHECK();
1782         return 0;
1783 }
1784 late_initcall(max_swapfiles_check);
1785 #endif
1786
1787 static struct swap_info_struct *alloc_swap_info(void)
1788 {
1789         struct swap_info_struct *p;
1790         unsigned int type;
1791
1792         p = kzalloc(sizeof(*p), GFP_KERNEL);
1793         if (!p)
1794                 return ERR_PTR(-ENOMEM);
1795
1796         spin_lock(&swap_lock);
1797         for (type = 0; type < nr_swapfiles; type++) {
1798                 if (!(swap_info[type]->flags & SWP_USED))
1799                         break;
1800         }
1801         if (type >= MAX_SWAPFILES) {
1802                 spin_unlock(&swap_lock);
1803                 kfree(p);
1804                 return ERR_PTR(-EPERM);
1805         }
1806         if (type >= nr_swapfiles) {
1807                 p->type = type;
1808                 swap_info[type] = p;
1809                 /*
1810                  * Write swap_info[type] before nr_swapfiles, in case a
1811                  * racing procfs swap_start() or swap_next() is reading them.
1812                  * (We never shrink nr_swapfiles, we never free this entry.)
1813                  */
1814                 smp_wmb();
1815                 nr_swapfiles++;
1816         } else {
1817                 kfree(p);
1818                 p = swap_info[type];
1819                 /*
1820                  * Do not memset this entry: a racing procfs swap_next()
1821                  * would be relying on p->type to remain valid.
1822                  */
1823         }
1824         INIT_LIST_HEAD(&p->first_swap_extent.list);
1825         p->flags = SWP_USED;
1826         p->next = -1;
1827         spin_unlock(&swap_lock);
1828
1829         return p;
1830 }
1831
1832 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1833 {
1834         int error;
1835
1836         if (S_ISBLK(inode->i_mode)) {
1837                 p->bdev = bdgrab(I_BDEV(inode));
1838                 error = blkdev_get(p->bdev,
1839                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1840                                    sys_swapon);
1841                 if (error < 0) {
1842                         p->bdev = NULL;
1843                         return -EINVAL;
1844                 }
1845                 p->old_block_size = block_size(p->bdev);
1846                 error = set_blocksize(p->bdev, PAGE_SIZE);
1847                 if (error < 0)
1848                         return error;
1849                 p->flags |= SWP_BLKDEV;
1850         } else if (S_ISREG(inode->i_mode)) {
1851                 p->bdev = inode->i_sb->s_bdev;
1852                 mutex_lock(&inode->i_mutex);
1853                 if (IS_SWAPFILE(inode))
1854                         return -EBUSY;
1855         } else
1856                 return -EINVAL;
1857
1858         return 0;
1859 }
1860
1861 static unsigned long read_swap_header(struct swap_info_struct *p,
1862                                         union swap_header *swap_header,
1863                                         struct inode *inode)
1864 {
1865         int i;
1866         unsigned long maxpages;
1867         unsigned long swapfilepages;
1868
1869         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1870                 printk(KERN_ERR "Unable to find swap-space signature\n");
1871                 return 0;
1872         }
1873
1874         /* swap partition endianess hack... */
1875         if (swab32(swap_header->info.version) == 1) {
1876                 swab32s(&swap_header->info.version);
1877                 swab32s(&swap_header->info.last_page);
1878                 swab32s(&swap_header->info.nr_badpages);
1879                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1880                         swab32s(&swap_header->info.badpages[i]);
1881         }
1882         /* Check the swap header's sub-version */
1883         if (swap_header->info.version != 1) {
1884                 printk(KERN_WARNING
1885                        "Unable to handle swap header version %d\n",
1886                        swap_header->info.version);
1887                 return 0;
1888         }
1889
1890         p->lowest_bit  = 1;
1891         p->cluster_next = 1;
1892         p->cluster_nr = 0;
1893
1894         /*
1895          * Find out how many pages are allowed for a single swap
1896          * device. There are three limiting factors: 1) the number
1897          * of bits for the swap offset in the swp_entry_t type, and
1898          * 2) the number of bits in the swap pte as defined by the
1899          * the different architectures, and 3) the number of free bits
1900          * in an exceptional radix_tree entry. In order to find the
1901          * largest possible bit mask, a swap entry with swap type 0
1902          * and swap offset ~0UL is created, encoded to a swap pte,
1903          * decoded to a swp_entry_t again, and finally the swap
1904          * offset is extracted. This will mask all the bits from
1905          * the initial ~0UL mask that can't be encoded in either
1906          * the swp_entry_t or the architecture definition of a
1907          * swap pte.  Then the same is done for a radix_tree entry.
1908          */
1909         maxpages = swp_offset(pte_to_swp_entry(
1910                         swp_entry_to_pte(swp_entry(0, ~0UL))));
1911         maxpages = swp_offset(radix_to_swp_entry(
1912                         swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1913
1914         if (maxpages > swap_header->info.last_page) {
1915                 maxpages = swap_header->info.last_page + 1;
1916                 /* p->max is an unsigned int: don't overflow it */
1917                 if ((unsigned int)maxpages == 0)
1918                         maxpages = UINT_MAX;
1919         }
1920         p->highest_bit = maxpages - 1;
1921
1922         if (!maxpages)
1923                 return 0;
1924         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1925         if (swapfilepages && maxpages > swapfilepages) {
1926                 printk(KERN_WARNING
1927                        "Swap area shorter than signature indicates\n");
1928                 return 0;
1929         }
1930         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1931                 return 0;
1932         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1933                 return 0;
1934
1935         return maxpages;
1936 }
1937
1938 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1939                                         union swap_header *swap_header,
1940                                         unsigned char *swap_map,
1941                                         unsigned long maxpages,
1942                                         sector_t *span)
1943 {
1944         int i;
1945         unsigned int nr_good_pages;
1946         int nr_extents;
1947
1948         nr_good_pages = maxpages - 1;   /* omit header page */
1949
1950         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1951                 unsigned int page_nr = swap_header->info.badpages[i];
1952                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1953                         return -EINVAL;
1954                 if (page_nr < maxpages) {
1955                         swap_map[page_nr] = SWAP_MAP_BAD;
1956                         nr_good_pages--;
1957                 }
1958         }
1959
1960         if (nr_good_pages) {
1961                 swap_map[0] = SWAP_MAP_BAD;
1962                 p->max = maxpages;
1963                 p->pages = nr_good_pages;
1964                 nr_extents = setup_swap_extents(p, span);
1965                 if (nr_extents < 0)
1966                         return nr_extents;
1967                 nr_good_pages = p->pages;
1968         }
1969         if (!nr_good_pages) {
1970                 printk(KERN_WARNING "Empty swap-file\n");
1971                 return -EINVAL;
1972         }
1973
1974         return nr_extents;
1975 }
1976
1977 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1978 {
1979         struct swap_info_struct *p;
1980         char *name;
1981         struct file *swap_file = NULL;
1982         struct address_space *mapping;
1983         int i;
1984         int prio;
1985         int error;
1986         union swap_header *swap_header;
1987         int nr_extents;
1988         sector_t span;
1989         unsigned long maxpages;
1990         unsigned char *swap_map = NULL;
1991         struct page *page = NULL;
1992         struct inode *inode = NULL;
1993
1994         if (swap_flags & ~SWAP_FLAGS_VALID)
1995                 return -EINVAL;
1996
1997         if (!capable(CAP_SYS_ADMIN))
1998                 return -EPERM;
1999
2000         p = alloc_swap_info();
2001         if (IS_ERR(p))
2002                 return PTR_ERR(p);
2003
2004         name = getname(specialfile);
2005         if (IS_ERR(name)) {
2006                 error = PTR_ERR(name);
2007                 name = NULL;
2008                 goto bad_swap;
2009         }
2010         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2011         if (IS_ERR(swap_file)) {
2012                 error = PTR_ERR(swap_file);
2013                 swap_file = NULL;
2014                 goto bad_swap;
2015         }
2016
2017         p->swap_file = swap_file;
2018         mapping = swap_file->f_mapping;
2019
2020         for (i = 0; i < nr_swapfiles; i++) {
2021                 struct swap_info_struct *q = swap_info[i];
2022
2023                 if (q == p || !q->swap_file)
2024                         continue;
2025                 if (mapping == q->swap_file->f_mapping) {
2026                         error = -EBUSY;
2027                         goto bad_swap;
2028                 }
2029         }
2030
2031         inode = mapping->host;
2032         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2033         error = claim_swapfile(p, inode);
2034         if (unlikely(error))
2035                 goto bad_swap;
2036
2037         /*
2038          * Read the swap header.
2039          */
2040         if (!mapping->a_ops->readpage) {
2041                 error = -EINVAL;
2042                 goto bad_swap;
2043         }
2044         page = read_mapping_page(mapping, 0, swap_file);
2045         if (IS_ERR(page)) {
2046                 error = PTR_ERR(page);
2047                 goto bad_swap;
2048         }
2049         swap_header = kmap(page);
2050
2051         maxpages = read_swap_header(p, swap_header, inode);
2052         if (unlikely(!maxpages)) {
2053                 error = -EINVAL;
2054                 goto bad_swap;
2055         }
2056
2057         /* OK, set up the swap map and apply the bad block list */
2058         swap_map = vzalloc(maxpages);
2059         if (!swap_map) {
2060                 error = -ENOMEM;
2061                 goto bad_swap;
2062         }
2063
2064         error = swap_cgroup_swapon(p->type, maxpages);
2065         if (error)
2066                 goto bad_swap;
2067
2068         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2069                 maxpages, &span);
2070         if (unlikely(nr_extents < 0)) {
2071                 error = nr_extents;
2072                 goto bad_swap;
2073         }
2074
2075         if (p->bdev) {
2076                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2077                         p->flags |= SWP_SOLIDSTATE;
2078                         p->cluster_next = 1 + (random32() % p->highest_bit);
2079                 }
2080                 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2081                         p->flags |= SWP_DISCARDABLE;
2082         }
2083
2084         mutex_lock(&swapon_mutex);
2085         prio = -1;
2086         if (swap_flags & SWAP_FLAG_PREFER)
2087                 prio =
2088                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2089         enable_swap_info(p, prio, swap_map);
2090
2091         printk(KERN_INFO "Adding %uk swap on %s.  "
2092                         "Priority:%d extents:%d across:%lluk %s%s\n",
2093                 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2094                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2095                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2096                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2097
2098         mutex_unlock(&swapon_mutex);
2099         atomic_inc(&proc_poll_event);
2100         wake_up_interruptible(&proc_poll_wait);
2101
2102         if (S_ISREG(inode->i_mode))
2103                 inode->i_flags |= S_SWAPFILE;
2104         error = 0;
2105         goto out;
2106 bad_swap:
2107         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2108                 set_blocksize(p->bdev, p->old_block_size);
2109                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2110         }
2111         destroy_swap_extents(p);
2112         swap_cgroup_swapoff(p->type);
2113         spin_lock(&swap_lock);
2114         p->swap_file = NULL;
2115         p->flags = 0;
2116         spin_unlock(&swap_lock);
2117         vfree(swap_map);
2118         if (swap_file) {
2119                 if (inode && S_ISREG(inode->i_mode)) {
2120                         mutex_unlock(&inode->i_mutex);
2121                         inode = NULL;
2122                 }
2123                 filp_close(swap_file, NULL);
2124         }
2125 out:
2126         if (page && !IS_ERR(page)) {
2127                 kunmap(page);
2128                 page_cache_release(page);
2129         }
2130         if (name)
2131                 putname(name);
2132         if (inode && S_ISREG(inode->i_mode))
2133                 mutex_unlock(&inode->i_mutex);
2134         return error;
2135 }
2136
2137 void si_swapinfo(struct sysinfo *val)
2138 {
2139         unsigned int type;
2140         unsigned long nr_to_be_unused = 0;
2141
2142         spin_lock(&swap_lock);
2143         for (type = 0; type < nr_swapfiles; type++) {
2144                 struct swap_info_struct *si = swap_info[type];
2145
2146                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2147                         nr_to_be_unused += si->inuse_pages;
2148         }
2149         val->freeswap = nr_swap_pages + nr_to_be_unused;
2150         val->totalswap = total_swap_pages + nr_to_be_unused;
2151         spin_unlock(&swap_lock);
2152 }
2153
2154 /*
2155  * Verify that a swap entry is valid and increment its swap map count.
2156  *
2157  * Returns error code in following case.
2158  * - success -> 0
2159  * - swp_entry is invalid -> EINVAL
2160  * - swp_entry is migration entry -> EINVAL
2161  * - swap-cache reference is requested but there is already one. -> EEXIST
2162  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2163  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2164  */
2165 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2166 {
2167         struct swap_info_struct *p;
2168         unsigned long offset, type;
2169         unsigned char count;
2170         unsigned char has_cache;
2171         int err = -EINVAL;
2172
2173         if (non_swap_entry(entry))
2174                 goto out;
2175
2176         type = swp_type(entry);
2177         if (type >= nr_swapfiles)
2178                 goto bad_file;
2179         p = swap_info[type];
2180         offset = swp_offset(entry);
2181
2182         spin_lock(&swap_lock);
2183         if (unlikely(offset >= p->max))
2184                 goto unlock_out;
2185
2186         count = p->swap_map[offset];
2187         has_cache = count & SWAP_HAS_CACHE;
2188         count &= ~SWAP_HAS_CACHE;
2189         err = 0;
2190
2191         if (usage == SWAP_HAS_CACHE) {
2192
2193                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2194                 if (!has_cache && count)
2195                         has_cache = SWAP_HAS_CACHE;
2196                 else if (has_cache)             /* someone else added cache */
2197                         err = -EEXIST;
2198                 else                            /* no users remaining */
2199                         err = -ENOENT;
2200
2201         } else if (count || has_cache) {
2202
2203                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2204                         count += usage;
2205                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2206                         err = -EINVAL;
2207                 else if (swap_count_continued(p, offset, count))
2208                         count = COUNT_CONTINUED;
2209                 else
2210                         err = -ENOMEM;
2211         } else
2212                 err = -ENOENT;                  /* unused swap entry */
2213
2214         p->swap_map[offset] = count | has_cache;
2215
2216 unlock_out:
2217         spin_unlock(&swap_lock);
2218 out:
2219         return err;
2220
2221 bad_file:
2222         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2223         goto out;
2224 }
2225
2226 /*
2227  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2228  * (in which case its reference count is never incremented).
2229  */
2230 void swap_shmem_alloc(swp_entry_t entry)
2231 {
2232         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2233 }
2234
2235 /*
2236  * Increase reference count of swap entry by 1.
2237  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2238  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2239  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2240  * might occur if a page table entry has got corrupted.
2241  */
2242 int swap_duplicate(swp_entry_t entry)
2243 {
2244         int err = 0;
2245
2246         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2247                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2248         return err;
2249 }
2250
2251 /*
2252  * @entry: swap entry for which we allocate swap cache.
2253  *
2254  * Called when allocating swap cache for existing swap entry,
2255  * This can return error codes. Returns 0 at success.
2256  * -EBUSY means there is a swap cache.
2257  * Note: return code is different from swap_duplicate().
2258  */
2259 int swapcache_prepare(swp_entry_t entry)
2260 {
2261         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2262 }
2263
2264 /*
2265  * add_swap_count_continuation - called when a swap count is duplicated
2266  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2267  * page of the original vmalloc'ed swap_map, to hold the continuation count
2268  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2269  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2270  *
2271  * These continuation pages are seldom referenced: the common paths all work
2272  * on the original swap_map, only referring to a continuation page when the
2273  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2274  *
2275  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2276  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2277  * can be called after dropping locks.
2278  */
2279 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2280 {
2281         struct swap_info_struct *si;
2282         struct page *head;
2283         struct page *page;
2284         struct page *list_page;
2285         pgoff_t offset;
2286         unsigned char count;
2287
2288         /*
2289          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2290          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2291          */
2292         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2293
2294         si = swap_info_get(entry);
2295         if (!si) {
2296                 /*
2297                  * An acceptable race has occurred since the failing
2298                  * __swap_duplicate(): the swap entry has been freed,
2299                  * perhaps even the whole swap_map cleared for swapoff.
2300                  */
2301                 goto outer;
2302         }
2303
2304         offset = swp_offset(entry);
2305         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2306
2307         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2308                 /*
2309                  * The higher the swap count, the more likely it is that tasks
2310                  * will race to add swap count continuation: we need to avoid
2311                  * over-provisioning.
2312                  */
2313                 goto out;
2314         }
2315
2316         if (!page) {
2317                 spin_unlock(&swap_lock);
2318                 return -ENOMEM;
2319         }
2320
2321         /*
2322          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2323          * no architecture is using highmem pages for kernel pagetables: so it
2324          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2325          */
2326         head = vmalloc_to_page(si->swap_map + offset);
2327         offset &= ~PAGE_MASK;
2328
2329         /*
2330          * Page allocation does not initialize the page's lru field,
2331          * but it does always reset its private field.
2332          */
2333         if (!page_private(head)) {
2334                 BUG_ON(count & COUNT_CONTINUED);
2335                 INIT_LIST_HEAD(&head->lru);
2336                 set_page_private(head, SWP_CONTINUED);
2337                 si->flags |= SWP_CONTINUED;
2338         }
2339
2340         list_for_each_entry(list_page, &head->lru, lru) {
2341                 unsigned char *map;
2342
2343                 /*
2344                  * If the previous map said no continuation, but we've found
2345                  * a continuation page, free our allocation and use this one.
2346                  */
2347                 if (!(count & COUNT_CONTINUED))
2348                         goto out;
2349
2350                 map = kmap_atomic(list_page) + offset;
2351                 count = *map;
2352                 kunmap_atomic(map);
2353
2354                 /*
2355                  * If this continuation count now has some space in it,
2356                  * free our allocation and use this one.
2357                  */
2358                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2359                         goto out;
2360         }
2361
2362         list_add_tail(&page->lru, &head->lru);
2363         page = NULL;                    /* now it's attached, don't free it */
2364 out:
2365         spin_unlock(&swap_lock);
2366 outer:
2367         if (page)
2368                 __free_page(page);
2369         return 0;
2370 }
2371
2372 /*
2373  * swap_count_continued - when the original swap_map count is incremented
2374  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2375  * into, carry if so, or else fail until a new continuation page is allocated;
2376  * when the original swap_map count is decremented from 0 with continuation,
2377  * borrow from the continuation and report whether it still holds more.
2378  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2379  */
2380 static bool swap_count_continued(struct swap_info_struct *si,
2381                                  pgoff_t offset, unsigned char count)
2382 {
2383         struct page *head;
2384         struct page *page;
2385         unsigned char *map;
2386
2387         head = vmalloc_to_page(si->swap_map + offset);
2388         if (page_private(head) != SWP_CONTINUED) {
2389                 BUG_ON(count & COUNT_CONTINUED);
2390                 return false;           /* need to add count continuation */
2391         }
2392
2393         offset &= ~PAGE_MASK;
2394         page = list_entry(head->lru.next, struct page, lru);
2395         map = kmap_atomic(page) + offset;
2396
2397         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2398                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2399
2400         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2401                 /*
2402                  * Think of how you add 1 to 999
2403                  */
2404                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2405                         kunmap_atomic(map);
2406                         page = list_entry(page->lru.next, struct page, lru);
2407                         BUG_ON(page == head);
2408                         map = kmap_atomic(page) + offset;
2409                 }
2410                 if (*map == SWAP_CONT_MAX) {
2411                         kunmap_atomic(map);
2412                         page = list_entry(page->lru.next, struct page, lru);
2413                         if (page == head)
2414                                 return false;   /* add count continuation */
2415                         map = kmap_atomic(page) + offset;
2416 init_map:               *map = 0;               /* we didn't zero the page */
2417                 }
2418                 *map += 1;
2419                 kunmap_atomic(map);
2420                 page = list_entry(page->lru.prev, struct page, lru);
2421                 while (page != head) {
2422                         map = kmap_atomic(page) + offset;
2423                         *map = COUNT_CONTINUED;
2424                         kunmap_atomic(map);
2425                         page = list_entry(page->lru.prev, struct page, lru);
2426                 }
2427                 return true;                    /* incremented */
2428
2429         } else {                                /* decrementing */
2430                 /*
2431                  * Think of how you subtract 1 from 1000
2432                  */
2433                 BUG_ON(count != COUNT_CONTINUED);
2434                 while (*map == COUNT_CONTINUED) {
2435                         kunmap_atomic(map);
2436                         page = list_entry(page->lru.next, struct page, lru);
2437                         BUG_ON(page == head);
2438                         map = kmap_atomic(page) + offset;
2439                 }
2440                 BUG_ON(*map == 0);
2441                 *map -= 1;
2442                 if (*map == 0)
2443                         count = 0;
2444                 kunmap_atomic(map);
2445                 page = list_entry(page->lru.prev, struct page, lru);
2446                 while (page != head) {
2447                         map = kmap_atomic(page) + offset;
2448                         *map = SWAP_CONT_MAX | count;
2449                         count = COUNT_CONTINUED;
2450                         kunmap_atomic(map);
2451                         page = list_entry(page->lru.prev, struct page, lru);
2452                 }
2453                 return count == COUNT_CONTINUED;
2454         }
2455 }
2456
2457 /*
2458  * free_swap_count_continuations - swapoff free all the continuation pages
2459  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2460  */
2461 static void free_swap_count_continuations(struct swap_info_struct *si)
2462 {
2463         pgoff_t offset;
2464
2465         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2466                 struct page *head;
2467                 head = vmalloc_to_page(si->swap_map + offset);
2468                 if (page_private(head)) {
2469                         struct list_head *this, *next;
2470                         list_for_each_safe(this, next, &head->lru) {
2471                                 struct page *page;
2472                                 page = list_entry(this, struct page, lru);
2473                                 list_del(this);
2474                                 __free_page(page);
2475                         }
2476                 }
2477         }
2478 }