staging: drm/omap: multiplanar and YUV support
[pandora-kernel.git] / mm / swap_state.c
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/migrate.h>
19 #include <linux/page_cgroup.h>
20
21 #include <asm/pgtable.h>
22
23 /*
24  * swapper_space is a fiction, retained to simplify the path through
25  * vmscan's shrink_page_list.
26  */
27 static const struct address_space_operations swap_aops = {
28         .writepage      = swap_writepage,
29         .set_page_dirty = __set_page_dirty_nobuffers,
30         .migratepage    = migrate_page,
31 };
32
33 static struct backing_dev_info swap_backing_dev_info = {
34         .name           = "swap",
35         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
36 };
37
38 struct address_space swapper_space = {
39         .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
40         .tree_lock      = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
41         .a_ops          = &swap_aops,
42         .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
43         .backing_dev_info = &swap_backing_dev_info,
44 };
45
46 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
47
48 static struct {
49         unsigned long add_total;
50         unsigned long del_total;
51         unsigned long find_success;
52         unsigned long find_total;
53 } swap_cache_info;
54
55 void show_swap_cache_info(void)
56 {
57         printk("%lu pages in swap cache\n", total_swapcache_pages);
58         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
59                 swap_cache_info.add_total, swap_cache_info.del_total,
60                 swap_cache_info.find_success, swap_cache_info.find_total);
61         printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
62         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
63 }
64
65 /*
66  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
67  * but sets SwapCache flag and private instead of mapping and index.
68  */
69 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
70 {
71         int error;
72
73         VM_BUG_ON(!PageLocked(page));
74         VM_BUG_ON(PageSwapCache(page));
75         VM_BUG_ON(!PageSwapBacked(page));
76
77         page_cache_get(page);
78         SetPageSwapCache(page);
79         set_page_private(page, entry.val);
80
81         spin_lock_irq(&swapper_space.tree_lock);
82         error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
83         if (likely(!error)) {
84                 total_swapcache_pages++;
85                 __inc_zone_page_state(page, NR_FILE_PAGES);
86                 INC_CACHE_INFO(add_total);
87         }
88         spin_unlock_irq(&swapper_space.tree_lock);
89
90         if (unlikely(error)) {
91                 /*
92                  * Only the context which have set SWAP_HAS_CACHE flag
93                  * would call add_to_swap_cache().
94                  * So add_to_swap_cache() doesn't returns -EEXIST.
95                  */
96                 VM_BUG_ON(error == -EEXIST);
97                 set_page_private(page, 0UL);
98                 ClearPageSwapCache(page);
99                 page_cache_release(page);
100         }
101
102         return error;
103 }
104
105
106 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
107 {
108         int error;
109
110         error = radix_tree_preload(gfp_mask);
111         if (!error) {
112                 error = __add_to_swap_cache(page, entry);
113                 radix_tree_preload_end();
114         }
115         return error;
116 }
117
118 /*
119  * This must be called only on pages that have
120  * been verified to be in the swap cache.
121  */
122 void __delete_from_swap_cache(struct page *page)
123 {
124         VM_BUG_ON(!PageLocked(page));
125         VM_BUG_ON(!PageSwapCache(page));
126         VM_BUG_ON(PageWriteback(page));
127
128         radix_tree_delete(&swapper_space.page_tree, page_private(page));
129         set_page_private(page, 0);
130         ClearPageSwapCache(page);
131         total_swapcache_pages--;
132         __dec_zone_page_state(page, NR_FILE_PAGES);
133         INC_CACHE_INFO(del_total);
134 }
135
136 /**
137  * add_to_swap - allocate swap space for a page
138  * @page: page we want to move to swap
139  *
140  * Allocate swap space for the page and add the page to the
141  * swap cache.  Caller needs to hold the page lock. 
142  */
143 int add_to_swap(struct page *page)
144 {
145         swp_entry_t entry;
146         int err;
147
148         VM_BUG_ON(!PageLocked(page));
149         VM_BUG_ON(!PageUptodate(page));
150
151         entry = get_swap_page();
152         if (!entry.val)
153                 return 0;
154
155         if (unlikely(PageTransHuge(page)))
156                 if (unlikely(split_huge_page(page))) {
157                         swapcache_free(entry, NULL);
158                         return 0;
159                 }
160
161         /*
162          * Radix-tree node allocations from PF_MEMALLOC contexts could
163          * completely exhaust the page allocator. __GFP_NOMEMALLOC
164          * stops emergency reserves from being allocated.
165          *
166          * TODO: this could cause a theoretical memory reclaim
167          * deadlock in the swap out path.
168          */
169         /*
170          * Add it to the swap cache and mark it dirty
171          */
172         err = add_to_swap_cache(page, entry,
173                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
174
175         if (!err) {     /* Success */
176                 SetPageDirty(page);
177                 return 1;
178         } else {        /* -ENOMEM radix-tree allocation failure */
179                 /*
180                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
181                  * clear SWAP_HAS_CACHE flag.
182                  */
183                 swapcache_free(entry, NULL);
184                 return 0;
185         }
186 }
187
188 /*
189  * This must be called only on pages that have
190  * been verified to be in the swap cache and locked.
191  * It will never put the page into the free list,
192  * the caller has a reference on the page.
193  */
194 void delete_from_swap_cache(struct page *page)
195 {
196         swp_entry_t entry;
197
198         entry.val = page_private(page);
199
200         spin_lock_irq(&swapper_space.tree_lock);
201         __delete_from_swap_cache(page);
202         spin_unlock_irq(&swapper_space.tree_lock);
203
204         swapcache_free(entry, page);
205         page_cache_release(page);
206 }
207
208 /* 
209  * If we are the only user, then try to free up the swap cache. 
210  * 
211  * Its ok to check for PageSwapCache without the page lock
212  * here because we are going to recheck again inside
213  * try_to_free_swap() _with_ the lock.
214  *                                      - Marcelo
215  */
216 static inline void free_swap_cache(struct page *page)
217 {
218         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
219                 try_to_free_swap(page);
220                 unlock_page(page);
221         }
222 }
223
224 /* 
225  * Perform a free_page(), also freeing any swap cache associated with
226  * this page if it is the last user of the page.
227  */
228 void free_page_and_swap_cache(struct page *page)
229 {
230         free_swap_cache(page);
231         page_cache_release(page);
232 }
233
234 /*
235  * Passed an array of pages, drop them all from swapcache and then release
236  * them.  They are removed from the LRU and freed if this is their last use.
237  */
238 void free_pages_and_swap_cache(struct page **pages, int nr)
239 {
240         struct page **pagep = pages;
241
242         lru_add_drain();
243         while (nr) {
244                 int todo = min(nr, PAGEVEC_SIZE);
245                 int i;
246
247                 for (i = 0; i < todo; i++)
248                         free_swap_cache(pagep[i]);
249                 release_pages(pagep, todo, 0);
250                 pagep += todo;
251                 nr -= todo;
252         }
253 }
254
255 /*
256  * Lookup a swap entry in the swap cache. A found page will be returned
257  * unlocked and with its refcount incremented - we rely on the kernel
258  * lock getting page table operations atomic even if we drop the page
259  * lock before returning.
260  */
261 struct page * lookup_swap_cache(swp_entry_t entry)
262 {
263         struct page *page;
264
265         page = find_get_page(&swapper_space, entry.val);
266
267         if (page)
268                 INC_CACHE_INFO(find_success);
269
270         INC_CACHE_INFO(find_total);
271         return page;
272 }
273
274 /* 
275  * Locate a page of swap in physical memory, reserving swap cache space
276  * and reading the disk if it is not already cached.
277  * A failure return means that either the page allocation failed or that
278  * the swap entry is no longer in use.
279  */
280 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
281                         struct vm_area_struct *vma, unsigned long addr)
282 {
283         struct page *found_page, *new_page = NULL;
284         int err;
285
286         do {
287                 /*
288                  * First check the swap cache.  Since this is normally
289                  * called after lookup_swap_cache() failed, re-calling
290                  * that would confuse statistics.
291                  */
292                 found_page = find_get_page(&swapper_space, entry.val);
293                 if (found_page)
294                         break;
295
296                 /*
297                  * Get a new page to read into from swap.
298                  */
299                 if (!new_page) {
300                         new_page = alloc_page_vma(gfp_mask, vma, addr);
301                         if (!new_page)
302                                 break;          /* Out of memory */
303                         /*
304                          * The memcg-specific accounting when moving
305                          * pages around the LRU lists relies on the
306                          * page's owner (memcg) to be valid.  Usually,
307                          * pages are assigned to a new owner before
308                          * being put on the LRU list, but since this
309                          * is not the case here, the stale owner from
310                          * a previous allocation cycle must be reset.
311                          */
312                         mem_cgroup_reset_owner(new_page);
313                 }
314
315                 /*
316                  * call radix_tree_preload() while we can wait.
317                  */
318                 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
319                 if (err)
320                         break;
321
322                 /*
323                  * Swap entry may have been freed since our caller observed it.
324                  */
325                 err = swapcache_prepare(entry);
326                 if (err == -EEXIST) {   /* seems racy */
327                         radix_tree_preload_end();
328                         continue;
329                 }
330                 if (err) {              /* swp entry is obsolete ? */
331                         radix_tree_preload_end();
332                         break;
333                 }
334
335                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
336                 __set_page_locked(new_page);
337                 SetPageSwapBacked(new_page);
338                 err = __add_to_swap_cache(new_page, entry);
339                 if (likely(!err)) {
340                         radix_tree_preload_end();
341                         /*
342                          * Initiate read into locked page and return.
343                          */
344                         lru_cache_add_anon(new_page);
345                         swap_readpage(new_page);
346                         return new_page;
347                 }
348                 radix_tree_preload_end();
349                 ClearPageSwapBacked(new_page);
350                 __clear_page_locked(new_page);
351                 /*
352                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
353                  * clear SWAP_HAS_CACHE flag.
354                  */
355                 swapcache_free(entry, NULL);
356         } while (err != -ENOMEM);
357
358         if (new_page)
359                 page_cache_release(new_page);
360         return found_page;
361 }
362
363 /**
364  * swapin_readahead - swap in pages in hope we need them soon
365  * @entry: swap entry of this memory
366  * @gfp_mask: memory allocation flags
367  * @vma: user vma this address belongs to
368  * @addr: target address for mempolicy
369  *
370  * Returns the struct page for entry and addr, after queueing swapin.
371  *
372  * Primitive swap readahead code. We simply read an aligned block of
373  * (1 << page_cluster) entries in the swap area. This method is chosen
374  * because it doesn't cost us any seek time.  We also make sure to queue
375  * the 'original' request together with the readahead ones...
376  *
377  * This has been extended to use the NUMA policies from the mm triggering
378  * the readahead.
379  *
380  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
381  */
382 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
383                         struct vm_area_struct *vma, unsigned long addr)
384 {
385         int nr_pages;
386         struct page *page;
387         unsigned long offset;
388         unsigned long end_offset;
389
390         /*
391          * Get starting offset for readaround, and number of pages to read.
392          * Adjust starting address by readbehind (for NUMA interleave case)?
393          * No, it's very unlikely that swap layout would follow vma layout,
394          * more likely that neighbouring swap pages came from the same node:
395          * so use the same "addr" to choose the same node for each swap read.
396          */
397         nr_pages = valid_swaphandles(entry, &offset);
398         for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
399                 /* Ok, do the async read-ahead now */
400                 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
401                                                 gfp_mask, vma, addr);
402                 if (!page)
403                         break;
404                 page_cache_release(page);
405         }
406         lru_add_drain();        /* Push any new pages onto the LRU now */
407         return read_swap_cache_async(entry, gfp_mask, vma, addr);
408 }