x86, sparse: Do not force removal of __user when calling copy_to/from_user_nocheck()
[pandora-kernel.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6
7 /*
8  * State of the slab allocator.
9  *
10  * This is used to describe the states of the allocator during bootup.
11  * Allocators use this to gradually bootstrap themselves. Most allocators
12  * have the problem that the structures used for managing slab caches are
13  * allocated from slab caches themselves.
14  */
15 enum slab_state {
16         DOWN,                   /* No slab functionality yet */
17         PARTIAL,                /* SLUB: kmem_cache_node available */
18         PARTIAL_ARRAYCACHE,     /* SLAB: kmalloc size for arraycache available */
19         PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
20         UP,                     /* Slab caches usable but not all extras yet */
21         FULL                    /* Everything is working */
22 };
23
24 extern enum slab_state slab_state;
25
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
28
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
31
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
34
35 unsigned long calculate_alignment(unsigned long flags,
36                 unsigned long align, unsigned long size);
37
38 #ifndef CONFIG_SLOB
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
41
42 /* Find the kmalloc slab corresponding for a certain size */
43 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
44 #endif
45
46
47 /* Functions provided by the slab allocators */
48 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
49
50 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
51                         unsigned long flags);
52 extern void create_boot_cache(struct kmem_cache *, const char *name,
53                         size_t size, unsigned long flags);
54
55 struct mem_cgroup;
56 #ifdef CONFIG_SLUB
57 struct kmem_cache *
58 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
59                    size_t align, unsigned long flags, void (*ctor)(void *));
60 #else
61 static inline struct kmem_cache *
62 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
63                    size_t align, unsigned long flags, void (*ctor)(void *))
64 { return NULL; }
65 #endif
66
67
68 /* Legal flag mask for kmem_cache_create(), for various configurations */
69 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70                          SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
71
72 #if defined(CONFIG_DEBUG_SLAB)
73 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74 #elif defined(CONFIG_SLUB_DEBUG)
75 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76                           SLAB_TRACE | SLAB_DEBUG_FREE)
77 #else
78 #define SLAB_DEBUG_FLAGS (0)
79 #endif
80
81 #if defined(CONFIG_SLAB)
82 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83                           SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84 #elif defined(CONFIG_SLUB)
85 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86                           SLAB_TEMPORARY | SLAB_NOTRACK)
87 #else
88 #define SLAB_CACHE_FLAGS (0)
89 #endif
90
91 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
92
93 int __kmem_cache_shutdown(struct kmem_cache *);
94
95 struct seq_file;
96 struct file;
97
98 struct slabinfo {
99         unsigned long active_objs;
100         unsigned long num_objs;
101         unsigned long active_slabs;
102         unsigned long num_slabs;
103         unsigned long shared_avail;
104         unsigned int limit;
105         unsigned int batchcount;
106         unsigned int shared;
107         unsigned int objects_per_slab;
108         unsigned int cache_order;
109 };
110
111 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
112 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
113 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
114                        size_t count, loff_t *ppos);
115
116 #ifdef CONFIG_MEMCG_KMEM
117 static inline bool is_root_cache(struct kmem_cache *s)
118 {
119         return !s->memcg_params || s->memcg_params->is_root_cache;
120 }
121
122 static inline bool cache_match_memcg(struct kmem_cache *cachep,
123                                      struct mem_cgroup *memcg)
124 {
125         return (is_root_cache(cachep) && !memcg) ||
126                                 (cachep->memcg_params->memcg == memcg);
127 }
128
129 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
130 {
131         if (!is_root_cache(s))
132                 atomic_add(1 << order, &s->memcg_params->nr_pages);
133 }
134
135 static inline void memcg_release_pages(struct kmem_cache *s, int order)
136 {
137         if (is_root_cache(s))
138                 return;
139
140         if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
141                 mem_cgroup_destroy_cache(s);
142 }
143
144 static inline bool slab_equal_or_root(struct kmem_cache *s,
145                                         struct kmem_cache *p)
146 {
147         return (p == s) ||
148                 (s->memcg_params && (p == s->memcg_params->root_cache));
149 }
150
151 /*
152  * We use suffixes to the name in memcg because we can't have caches
153  * created in the system with the same name. But when we print them
154  * locally, better refer to them with the base name
155  */
156 static inline const char *cache_name(struct kmem_cache *s)
157 {
158         if (!is_root_cache(s))
159                 return s->memcg_params->root_cache->name;
160         return s->name;
161 }
162
163 static inline struct kmem_cache *
164 cache_from_memcg_idx(struct kmem_cache *s, int idx)
165 {
166         if (!s->memcg_params)
167                 return NULL;
168         return s->memcg_params->memcg_caches[idx];
169 }
170
171 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
172 {
173         if (is_root_cache(s))
174                 return s;
175         return s->memcg_params->root_cache;
176 }
177 #else
178 static inline bool is_root_cache(struct kmem_cache *s)
179 {
180         return true;
181 }
182
183 static inline bool cache_match_memcg(struct kmem_cache *cachep,
184                                      struct mem_cgroup *memcg)
185 {
186         return true;
187 }
188
189 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
190 {
191 }
192
193 static inline void memcg_release_pages(struct kmem_cache *s, int order)
194 {
195 }
196
197 static inline bool slab_equal_or_root(struct kmem_cache *s,
198                                       struct kmem_cache *p)
199 {
200         return true;
201 }
202
203 static inline const char *cache_name(struct kmem_cache *s)
204 {
205         return s->name;
206 }
207
208 static inline struct kmem_cache *
209 cache_from_memcg_idx(struct kmem_cache *s, int idx)
210 {
211         return NULL;
212 }
213
214 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
215 {
216         return s;
217 }
218 #endif
219
220 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
221 {
222         struct kmem_cache *cachep;
223         struct page *page;
224
225         /*
226          * When kmemcg is not being used, both assignments should return the
227          * same value. but we don't want to pay the assignment price in that
228          * case. If it is not compiled in, the compiler should be smart enough
229          * to not do even the assignment. In that case, slab_equal_or_root
230          * will also be a constant.
231          */
232         if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
233                 return s;
234
235         page = virt_to_head_page(x);
236         cachep = page->slab_cache;
237         if (slab_equal_or_root(cachep, s))
238                 return cachep;
239
240         pr_err("%s: Wrong slab cache. %s but object is from %s\n",
241                 __FUNCTION__, cachep->name, s->name);
242         WARN_ON_ONCE(1);
243         return s;
244 }
245 #endif
246
247
248 /*
249  * The slab lists for all objects.
250  */
251 struct kmem_cache_node {
252         spinlock_t list_lock;
253
254 #ifdef CONFIG_SLAB
255         struct list_head slabs_partial; /* partial list first, better asm code */
256         struct list_head slabs_full;
257         struct list_head slabs_free;
258         unsigned long free_objects;
259         unsigned int free_limit;
260         unsigned int colour_next;       /* Per-node cache coloring */
261         struct array_cache *shared;     /* shared per node */
262         struct array_cache **alien;     /* on other nodes */
263         unsigned long next_reap;        /* updated without locking */
264         int free_touched;               /* updated without locking */
265 #endif
266
267 #ifdef CONFIG_SLUB
268         unsigned long nr_partial;
269         struct list_head partial;
270 #ifdef CONFIG_SLUB_DEBUG
271         atomic_long_t nr_slabs;
272         atomic_long_t total_objects;
273         struct list_head full;
274 #endif
275 #endif
276
277 };
278
279 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
280 void slab_stop(struct seq_file *m, void *p);