memcg: rename high level charging functions
[pandora-kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate and shmem_writepage communicate via inode->i_private
84  * (with i_mutex making sure that it has only one user at a time):
85  * we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         pgoff_t start;          /* start of range currently being fallocated */
89         pgoff_t next;           /* the next page offset to be fallocated */
90         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
91         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96         SGP_READ,       /* don't exceed i_size, don't allocate page */
97         SGP_CACHE,      /* don't exceed i_size, may allocate page */
98         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
99         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
100         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106         return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117                                 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122         struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124         return shmem_getpage_gfp(inode, index, pagep, sgp,
125                         mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130         return sb->s_fs_info;
131 }
132
133 /*
134  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135  * for shared memory and for shared anonymous (/dev/zero) mappings
136  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137  * consistent with the pre-accounting of private mappings ...
138  */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141         return (flags & VM_NORESERVE) ?
142                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147         if (!(flags & VM_NORESERVE))
148                 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152  * ... whereas tmpfs objects are accounted incrementally as
153  * pages are allocated, in order to allow huge sparse files.
154  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156  */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159         return (flags & VM_NORESERVE) ?
160                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165         if (flags & VM_NORESERVE)
166                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178         .ra_pages       = 0,    /* No readahead */
179         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188         if (sbinfo->max_inodes) {
189                 spin_lock(&sbinfo->stat_lock);
190                 if (!sbinfo->free_inodes) {
191                         spin_unlock(&sbinfo->stat_lock);
192                         return -ENOSPC;
193                 }
194                 sbinfo->free_inodes--;
195                 spin_unlock(&sbinfo->stat_lock);
196         }
197         return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203         if (sbinfo->max_inodes) {
204                 spin_lock(&sbinfo->stat_lock);
205                 sbinfo->free_inodes++;
206                 spin_unlock(&sbinfo->stat_lock);
207         }
208 }
209
210 /**
211  * shmem_recalc_inode - recalculate the block usage of an inode
212  * @inode: inode to recalc
213  *
214  * We have to calculate the free blocks since the mm can drop
215  * undirtied hole pages behind our back.
216  *
217  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219  *
220  * It has to be called with the spinlock held.
221  */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224         struct shmem_inode_info *info = SHMEM_I(inode);
225         long freed;
226
227         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228         if (freed > 0) {
229                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230                 if (sbinfo->max_blocks)
231                         percpu_counter_add(&sbinfo->used_blocks, -freed);
232                 info->alloced -= freed;
233                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234                 shmem_unacct_blocks(info->flags, freed);
235         }
236 }
237
238 /*
239  * Replace item expected in radix tree by a new item, while holding tree lock.
240  */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242                         pgoff_t index, void *expected, void *replacement)
243 {
244         void **pslot;
245         void *item;
246
247         VM_BUG_ON(!expected);
248         VM_BUG_ON(!replacement);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (!pslot)
251                 return -ENOENT;
252         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         radix_tree_replace_slot(pslot, replacement);
256         return 0;
257 }
258
259 /*
260  * Sometimes, before we decide whether to proceed or to fail, we must check
261  * that an entry was not already brought back from swap by a racing thread.
262  *
263  * Checking page is not enough: by the time a SwapCache page is locked, it
264  * might be reused, and again be SwapCache, using the same swap as before.
265  */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267                                pgoff_t index, swp_entry_t swap)
268 {
269         void *item;
270
271         rcu_read_lock();
272         item = radix_tree_lookup(&mapping->page_tree, index);
273         rcu_read_unlock();
274         return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278  * Like add_to_page_cache_locked, but error if expected item has gone.
279  */
280 static int shmem_add_to_page_cache(struct page *page,
281                                    struct address_space *mapping,
282                                    pgoff_t index, gfp_t gfp, void *expected)
283 {
284         int error;
285
286         VM_BUG_ON_PAGE(!PageLocked(page), page);
287         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289         page_cache_get(page);
290         page->mapping = mapping;
291         page->index = index;
292
293         spin_lock_irq(&mapping->tree_lock);
294         if (!expected)
295                 error = radix_tree_insert(&mapping->page_tree, index, page);
296         else
297                 error = shmem_radix_tree_replace(mapping, index, expected,
298                                                                  page);
299         if (!error) {
300                 mapping->nrpages++;
301                 __inc_zone_page_state(page, NR_FILE_PAGES);
302                 __inc_zone_page_state(page, NR_SHMEM);
303                 spin_unlock_irq(&mapping->tree_lock);
304         } else {
305                 page->mapping = NULL;
306                 spin_unlock_irq(&mapping->tree_lock);
307                 page_cache_release(page);
308         }
309         return error;
310 }
311
312 /*
313  * Like delete_from_page_cache, but substitutes swap for page.
314  */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317         struct address_space *mapping = page->mapping;
318         int error;
319
320         spin_lock_irq(&mapping->tree_lock);
321         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322         page->mapping = NULL;
323         mapping->nrpages--;
324         __dec_zone_page_state(page, NR_FILE_PAGES);
325         __dec_zone_page_state(page, NR_SHMEM);
326         spin_unlock_irq(&mapping->tree_lock);
327         page_cache_release(page);
328         BUG_ON(error);
329 }
330
331 /*
332  * Remove swap entry from radix tree, free the swap and its page cache.
333  */
334 static int shmem_free_swap(struct address_space *mapping,
335                            pgoff_t index, void *radswap)
336 {
337         void *old;
338
339         spin_lock_irq(&mapping->tree_lock);
340         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341         spin_unlock_irq(&mapping->tree_lock);
342         if (old != radswap)
343                 return -ENOENT;
344         free_swap_and_cache(radix_to_swp_entry(radswap));
345         return 0;
346 }
347
348 /*
349  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350  */
351 void shmem_unlock_mapping(struct address_space *mapping)
352 {
353         struct pagevec pvec;
354         pgoff_t indices[PAGEVEC_SIZE];
355         pgoff_t index = 0;
356
357         pagevec_init(&pvec, 0);
358         /*
359          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360          */
361         while (!mapping_unevictable(mapping)) {
362                 /*
363                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365                  */
366                 pvec.nr = find_get_entries(mapping, index,
367                                            PAGEVEC_SIZE, pvec.pages, indices);
368                 if (!pvec.nr)
369                         break;
370                 index = indices[pvec.nr - 1] + 1;
371                 pagevec_remove_exceptionals(&pvec);
372                 check_move_unevictable_pages(pvec.pages, pvec.nr);
373                 pagevec_release(&pvec);
374                 cond_resched();
375         }
376 }
377
378 /*
379  * Remove range of pages and swap entries from radix tree, and free them.
380  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381  */
382 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383                                                                  bool unfalloc)
384 {
385         struct address_space *mapping = inode->i_mapping;
386         struct shmem_inode_info *info = SHMEM_I(inode);
387         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391         struct pagevec pvec;
392         pgoff_t indices[PAGEVEC_SIZE];
393         long nr_swaps_freed = 0;
394         pgoff_t index;
395         int i;
396
397         if (lend == -1)
398                 end = -1;       /* unsigned, so actually very big */
399
400         pagevec_init(&pvec, 0);
401         index = start;
402         while (index < end) {
403                 pvec.nr = find_get_entries(mapping, index,
404                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
405                         pvec.pages, indices);
406                 if (!pvec.nr)
407                         break;
408                 mem_cgroup_uncharge_start();
409                 for (i = 0; i < pagevec_count(&pvec); i++) {
410                         struct page *page = pvec.pages[i];
411
412                         index = indices[i];
413                         if (index >= end)
414                                 break;
415
416                         if (radix_tree_exceptional_entry(page)) {
417                                 if (unfalloc)
418                                         continue;
419                                 nr_swaps_freed += !shmem_free_swap(mapping,
420                                                                 index, page);
421                                 continue;
422                         }
423
424                         if (!trylock_page(page))
425                                 continue;
426                         if (!unfalloc || !PageUptodate(page)) {
427                                 if (page->mapping == mapping) {
428                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
429                                         truncate_inode_page(mapping, page);
430                                 }
431                         }
432                         unlock_page(page);
433                 }
434                 pagevec_remove_exceptionals(&pvec);
435                 pagevec_release(&pvec);
436                 mem_cgroup_uncharge_end();
437                 cond_resched();
438                 index++;
439         }
440
441         if (partial_start) {
442                 struct page *page = NULL;
443                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444                 if (page) {
445                         unsigned int top = PAGE_CACHE_SIZE;
446                         if (start > end) {
447                                 top = partial_end;
448                                 partial_end = 0;
449                         }
450                         zero_user_segment(page, partial_start, top);
451                         set_page_dirty(page);
452                         unlock_page(page);
453                         page_cache_release(page);
454                 }
455         }
456         if (partial_end) {
457                 struct page *page = NULL;
458                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459                 if (page) {
460                         zero_user_segment(page, 0, partial_end);
461                         set_page_dirty(page);
462                         unlock_page(page);
463                         page_cache_release(page);
464                 }
465         }
466         if (start >= end)
467                 return;
468
469         index = start;
470         for ( ; ; ) {
471                 cond_resched();
472
473                 pvec.nr = find_get_entries(mapping, index,
474                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
475                                 pvec.pages, indices);
476                 if (!pvec.nr) {
477                         if (index == start || unfalloc)
478                                 break;
479                         index = start;
480                         continue;
481                 }
482                 if ((index == start || unfalloc) && indices[0] >= end) {
483                         pagevec_remove_exceptionals(&pvec);
484                         pagevec_release(&pvec);
485                         break;
486                 }
487                 mem_cgroup_uncharge_start();
488                 for (i = 0; i < pagevec_count(&pvec); i++) {
489                         struct page *page = pvec.pages[i];
490
491                         index = indices[i];
492                         if (index >= end)
493                                 break;
494
495                         if (radix_tree_exceptional_entry(page)) {
496                                 if (unfalloc)
497                                         continue;
498                                 nr_swaps_freed += !shmem_free_swap(mapping,
499                                                                 index, page);
500                                 continue;
501                         }
502
503                         lock_page(page);
504                         if (!unfalloc || !PageUptodate(page)) {
505                                 if (page->mapping == mapping) {
506                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
507                                         truncate_inode_page(mapping, page);
508                                 }
509                         }
510                         unlock_page(page);
511                 }
512                 pagevec_remove_exceptionals(&pvec);
513                 pagevec_release(&pvec);
514                 mem_cgroup_uncharge_end();
515                 index++;
516         }
517
518         spin_lock(&info->lock);
519         info->swapped -= nr_swaps_freed;
520         shmem_recalc_inode(inode);
521         spin_unlock(&info->lock);
522 }
523
524 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525 {
526         shmem_undo_range(inode, lstart, lend, false);
527         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528 }
529 EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532 {
533         struct inode *inode = dentry->d_inode;
534         int error;
535
536         error = inode_change_ok(inode, attr);
537         if (error)
538                 return error;
539
540         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541                 loff_t oldsize = inode->i_size;
542                 loff_t newsize = attr->ia_size;
543
544                 if (newsize != oldsize) {
545                         i_size_write(inode, newsize);
546                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547                 }
548                 if (newsize < oldsize) {
549                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
550                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551                         shmem_truncate_range(inode, newsize, (loff_t)-1);
552                         /* unmap again to remove racily COWed private pages */
553                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554                 }
555         }
556
557         setattr_copy(inode, attr);
558         if (attr->ia_valid & ATTR_MODE)
559                 error = posix_acl_chmod(inode, inode->i_mode);
560         return error;
561 }
562
563 static void shmem_evict_inode(struct inode *inode)
564 {
565         struct shmem_inode_info *info = SHMEM_I(inode);
566
567         if (inode->i_mapping->a_ops == &shmem_aops) {
568                 shmem_unacct_size(info->flags, inode->i_size);
569                 inode->i_size = 0;
570                 shmem_truncate_range(inode, 0, (loff_t)-1);
571                 if (!list_empty(&info->swaplist)) {
572                         mutex_lock(&shmem_swaplist_mutex);
573                         list_del_init(&info->swaplist);
574                         mutex_unlock(&shmem_swaplist_mutex);
575                 }
576         } else
577                 kfree(info->symlink);
578
579         simple_xattrs_free(&info->xattrs);
580         WARN_ON(inode->i_blocks);
581         shmem_free_inode(inode->i_sb);
582         clear_inode(inode);
583 }
584
585 /*
586  * If swap found in inode, free it and move page from swapcache to filecache.
587  */
588 static int shmem_unuse_inode(struct shmem_inode_info *info,
589                              swp_entry_t swap, struct page **pagep)
590 {
591         struct address_space *mapping = info->vfs_inode.i_mapping;
592         void *radswap;
593         pgoff_t index;
594         gfp_t gfp;
595         int error = 0;
596
597         radswap = swp_to_radix_entry(swap);
598         index = radix_tree_locate_item(&mapping->page_tree, radswap);
599         if (index == -1)
600                 return 0;
601
602         /*
603          * Move _head_ to start search for next from here.
604          * But be careful: shmem_evict_inode checks list_empty without taking
605          * mutex, and there's an instant in list_move_tail when info->swaplist
606          * would appear empty, if it were the only one on shmem_swaplist.
607          */
608         if (shmem_swaplist.next != &info->swaplist)
609                 list_move_tail(&shmem_swaplist, &info->swaplist);
610
611         gfp = mapping_gfp_mask(mapping);
612         if (shmem_should_replace_page(*pagep, gfp)) {
613                 mutex_unlock(&shmem_swaplist_mutex);
614                 error = shmem_replace_page(pagep, gfp, info, index);
615                 mutex_lock(&shmem_swaplist_mutex);
616                 /*
617                  * We needed to drop mutex to make that restrictive page
618                  * allocation, but the inode might have been freed while we
619                  * dropped it: although a racing shmem_evict_inode() cannot
620                  * complete without emptying the radix_tree, our page lock
621                  * on this swapcache page is not enough to prevent that -
622                  * free_swap_and_cache() of our swap entry will only
623                  * trylock_page(), removing swap from radix_tree whatever.
624                  *
625                  * We must not proceed to shmem_add_to_page_cache() if the
626                  * inode has been freed, but of course we cannot rely on
627                  * inode or mapping or info to check that.  However, we can
628                  * safely check if our swap entry is still in use (and here
629                  * it can't have got reused for another page): if it's still
630                  * in use, then the inode cannot have been freed yet, and we
631                  * can safely proceed (if it's no longer in use, that tells
632                  * nothing about the inode, but we don't need to unuse swap).
633                  */
634                 if (!page_swapcount(*pagep))
635                         error = -ENOENT;
636         }
637
638         /*
639          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640          * but also to hold up shmem_evict_inode(): so inode cannot be freed
641          * beneath us (pagelock doesn't help until the page is in pagecache).
642          */
643         if (!error)
644                 error = shmem_add_to_page_cache(*pagep, mapping, index,
645                                                 GFP_NOWAIT, radswap);
646         if (error != -ENOMEM) {
647                 /*
648                  * Truncation and eviction use free_swap_and_cache(), which
649                  * only does trylock page: if we raced, best clean up here.
650                  */
651                 delete_from_swap_cache(*pagep);
652                 set_page_dirty(*pagep);
653                 if (!error) {
654                         spin_lock(&info->lock);
655                         info->swapped--;
656                         spin_unlock(&info->lock);
657                         swap_free(swap);
658                 }
659                 error = 1;      /* not an error, but entry was found */
660         }
661         return error;
662 }
663
664 /*
665  * Search through swapped inodes to find and replace swap by page.
666  */
667 int shmem_unuse(swp_entry_t swap, struct page *page)
668 {
669         struct list_head *this, *next;
670         struct shmem_inode_info *info;
671         int found = 0;
672         int error = 0;
673
674         /*
675          * There's a faint possibility that swap page was replaced before
676          * caller locked it: caller will come back later with the right page.
677          */
678         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679                 goto out;
680
681         /*
682          * Charge page using GFP_KERNEL while we can wait, before taking
683          * the shmem_swaplist_mutex which might hold up shmem_writepage().
684          * Charged back to the user (not to caller) when swap account is used.
685          */
686         error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687         if (error)
688                 goto out;
689         /* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691         mutex_lock(&shmem_swaplist_mutex);
692         list_for_each_safe(this, next, &shmem_swaplist) {
693                 info = list_entry(this, struct shmem_inode_info, swaplist);
694                 if (info->swapped)
695                         found = shmem_unuse_inode(info, swap, &page);
696                 else
697                         list_del_init(&info->swaplist);
698                 cond_resched();
699                 if (found)
700                         break;
701         }
702         mutex_unlock(&shmem_swaplist_mutex);
703
704         if (found < 0)
705                 error = found;
706 out:
707         unlock_page(page);
708         page_cache_release(page);
709         return error;
710 }
711
712 /*
713  * Move the page from the page cache to the swap cache.
714  */
715 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716 {
717         struct shmem_inode_info *info;
718         struct address_space *mapping;
719         struct inode *inode;
720         swp_entry_t swap;
721         pgoff_t index;
722
723         BUG_ON(!PageLocked(page));
724         mapping = page->mapping;
725         index = page->index;
726         inode = mapping->host;
727         info = SHMEM_I(inode);
728         if (info->flags & VM_LOCKED)
729                 goto redirty;
730         if (!total_swap_pages)
731                 goto redirty;
732
733         /*
734          * shmem_backing_dev_info's capabilities prevent regular writeback or
735          * sync from ever calling shmem_writepage; but a stacking filesystem
736          * might use ->writepage of its underlying filesystem, in which case
737          * tmpfs should write out to swap only in response to memory pressure,
738          * and not for the writeback threads or sync.
739          */
740         if (!wbc->for_reclaim) {
741                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
742                 goto redirty;
743         }
744
745         /*
746          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747          * value into swapfile.c, the only way we can correctly account for a
748          * fallocated page arriving here is now to initialize it and write it.
749          *
750          * That's okay for a page already fallocated earlier, but if we have
751          * not yet completed the fallocation, then (a) we want to keep track
752          * of this page in case we have to undo it, and (b) it may not be a
753          * good idea to continue anyway, once we're pushing into swap.  So
754          * reactivate the page, and let shmem_fallocate() quit when too many.
755          */
756         if (!PageUptodate(page)) {
757                 if (inode->i_private) {
758                         struct shmem_falloc *shmem_falloc;
759                         spin_lock(&inode->i_lock);
760                         shmem_falloc = inode->i_private;
761                         if (shmem_falloc &&
762                             index >= shmem_falloc->start &&
763                             index < shmem_falloc->next)
764                                 shmem_falloc->nr_unswapped++;
765                         else
766                                 shmem_falloc = NULL;
767                         spin_unlock(&inode->i_lock);
768                         if (shmem_falloc)
769                                 goto redirty;
770                 }
771                 clear_highpage(page);
772                 flush_dcache_page(page);
773                 SetPageUptodate(page);
774         }
775
776         swap = get_swap_page();
777         if (!swap.val)
778                 goto redirty;
779
780         /*
781          * Add inode to shmem_unuse()'s list of swapped-out inodes,
782          * if it's not already there.  Do it now before the page is
783          * moved to swap cache, when its pagelock no longer protects
784          * the inode from eviction.  But don't unlock the mutex until
785          * we've incremented swapped, because shmem_unuse_inode() will
786          * prune a !swapped inode from the swaplist under this mutex.
787          */
788         mutex_lock(&shmem_swaplist_mutex);
789         if (list_empty(&info->swaplist))
790                 list_add_tail(&info->swaplist, &shmem_swaplist);
791
792         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793                 swap_shmem_alloc(swap);
794                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796                 spin_lock(&info->lock);
797                 info->swapped++;
798                 shmem_recalc_inode(inode);
799                 spin_unlock(&info->lock);
800
801                 mutex_unlock(&shmem_swaplist_mutex);
802                 BUG_ON(page_mapped(page));
803                 swap_writepage(page, wbc);
804                 return 0;
805         }
806
807         mutex_unlock(&shmem_swaplist_mutex);
808         swapcache_free(swap, NULL);
809 redirty:
810         set_page_dirty(page);
811         if (wbc->for_reclaim)
812                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
813         unlock_page(page);
814         return 0;
815 }
816
817 #ifdef CONFIG_NUMA
818 #ifdef CONFIG_TMPFS
819 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820 {
821         char buffer[64];
822
823         if (!mpol || mpol->mode == MPOL_DEFAULT)
824                 return;         /* show nothing */
825
826         mpol_to_str(buffer, sizeof(buffer), mpol);
827
828         seq_printf(seq, ",mpol=%s", buffer);
829 }
830
831 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832 {
833         struct mempolicy *mpol = NULL;
834         if (sbinfo->mpol) {
835                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
836                 mpol = sbinfo->mpol;
837                 mpol_get(mpol);
838                 spin_unlock(&sbinfo->stat_lock);
839         }
840         return mpol;
841 }
842 #endif /* CONFIG_TMPFS */
843
844 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845                         struct shmem_inode_info *info, pgoff_t index)
846 {
847         struct vm_area_struct pvma;
848         struct page *page;
849
850         /* Create a pseudo vma that just contains the policy */
851         pvma.vm_start = 0;
852         /* Bias interleave by inode number to distribute better across nodes */
853         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854         pvma.vm_ops = NULL;
855         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857         page = swapin_readahead(swap, gfp, &pvma, 0);
858
859         /* Drop reference taken by mpol_shared_policy_lookup() */
860         mpol_cond_put(pvma.vm_policy);
861
862         return page;
863 }
864
865 static struct page *shmem_alloc_page(gfp_t gfp,
866                         struct shmem_inode_info *info, pgoff_t index)
867 {
868         struct vm_area_struct pvma;
869         struct page *page;
870
871         /* Create a pseudo vma that just contains the policy */
872         pvma.vm_start = 0;
873         /* Bias interleave by inode number to distribute better across nodes */
874         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875         pvma.vm_ops = NULL;
876         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878         page = alloc_page_vma(gfp, &pvma, 0);
879
880         /* Drop reference taken by mpol_shared_policy_lookup() */
881         mpol_cond_put(pvma.vm_policy);
882
883         return page;
884 }
885 #else /* !CONFIG_NUMA */
886 #ifdef CONFIG_TMPFS
887 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 }
890 #endif /* CONFIG_TMPFS */
891
892 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893                         struct shmem_inode_info *info, pgoff_t index)
894 {
895         return swapin_readahead(swap, gfp, NULL, 0);
896 }
897
898 static inline struct page *shmem_alloc_page(gfp_t gfp,
899                         struct shmem_inode_info *info, pgoff_t index)
900 {
901         return alloc_page(gfp);
902 }
903 #endif /* CONFIG_NUMA */
904
905 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908         return NULL;
909 }
910 #endif
911
912 /*
913  * When a page is moved from swapcache to shmem filecache (either by the
914  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915  * shmem_unuse_inode()), it may have been read in earlier from swap, in
916  * ignorance of the mapping it belongs to.  If that mapping has special
917  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918  * we may need to copy to a suitable page before moving to filecache.
919  *
920  * In a future release, this may well be extended to respect cpuset and
921  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922  * but for now it is a simple matter of zone.
923  */
924 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925 {
926         return page_zonenum(page) > gfp_zone(gfp);
927 }
928
929 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930                                 struct shmem_inode_info *info, pgoff_t index)
931 {
932         struct page *oldpage, *newpage;
933         struct address_space *swap_mapping;
934         pgoff_t swap_index;
935         int error;
936
937         oldpage = *pagep;
938         swap_index = page_private(oldpage);
939         swap_mapping = page_mapping(oldpage);
940
941         /*
942          * We have arrived here because our zones are constrained, so don't
943          * limit chance of success by further cpuset and node constraints.
944          */
945         gfp &= ~GFP_CONSTRAINT_MASK;
946         newpage = shmem_alloc_page(gfp, info, index);
947         if (!newpage)
948                 return -ENOMEM;
949
950         page_cache_get(newpage);
951         copy_highpage(newpage, oldpage);
952         flush_dcache_page(newpage);
953
954         __set_page_locked(newpage);
955         SetPageUptodate(newpage);
956         SetPageSwapBacked(newpage);
957         set_page_private(newpage, swap_index);
958         SetPageSwapCache(newpage);
959
960         /*
961          * Our caller will very soon move newpage out of swapcache, but it's
962          * a nice clean interface for us to replace oldpage by newpage there.
963          */
964         spin_lock_irq(&swap_mapping->tree_lock);
965         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966                                                                    newpage);
967         if (!error) {
968                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970         }
971         spin_unlock_irq(&swap_mapping->tree_lock);
972
973         if (unlikely(error)) {
974                 /*
975                  * Is this possible?  I think not, now that our callers check
976                  * both PageSwapCache and page_private after getting page lock;
977                  * but be defensive.  Reverse old to newpage for clear and free.
978                  */
979                 oldpage = newpage;
980         } else {
981                 mem_cgroup_replace_page_cache(oldpage, newpage);
982                 lru_cache_add_anon(newpage);
983                 *pagep = newpage;
984         }
985
986         ClearPageSwapCache(oldpage);
987         set_page_private(oldpage, 0);
988
989         unlock_page(oldpage);
990         page_cache_release(oldpage);
991         page_cache_release(oldpage);
992         return error;
993 }
994
995 /*
996  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997  *
998  * If we allocate a new one we do not mark it dirty. That's up to the
999  * vm. If we swap it in we mark it dirty since we also free the swap
1000  * entry since a page cannot live in both the swap and page cache
1001  */
1002 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004 {
1005         struct address_space *mapping = inode->i_mapping;
1006         struct shmem_inode_info *info;
1007         struct shmem_sb_info *sbinfo;
1008         struct page *page;
1009         swp_entry_t swap;
1010         int error;
1011         int once = 0;
1012         int alloced = 0;
1013
1014         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015                 return -EFBIG;
1016 repeat:
1017         swap.val = 0;
1018         page = find_lock_entry(mapping, index);
1019         if (radix_tree_exceptional_entry(page)) {
1020                 swap = radix_to_swp_entry(page);
1021                 page = NULL;
1022         }
1023
1024         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026                 error = -EINVAL;
1027                 goto failed;
1028         }
1029
1030         /* fallocated page? */
1031         if (page && !PageUptodate(page)) {
1032                 if (sgp != SGP_READ)
1033                         goto clear;
1034                 unlock_page(page);
1035                 page_cache_release(page);
1036                 page = NULL;
1037         }
1038         if (page || (sgp == SGP_READ && !swap.val)) {
1039                 *pagep = page;
1040                 return 0;
1041         }
1042
1043         /*
1044          * Fast cache lookup did not find it:
1045          * bring it back from swap or allocate.
1046          */
1047         info = SHMEM_I(inode);
1048         sbinfo = SHMEM_SB(inode->i_sb);
1049
1050         if (swap.val) {
1051                 /* Look it up and read it in.. */
1052                 page = lookup_swap_cache(swap);
1053                 if (!page) {
1054                         /* here we actually do the io */
1055                         if (fault_type)
1056                                 *fault_type |= VM_FAULT_MAJOR;
1057                         page = shmem_swapin(swap, gfp, info, index);
1058                         if (!page) {
1059                                 error = -ENOMEM;
1060                                 goto failed;
1061                         }
1062                 }
1063
1064                 /* We have to do this with page locked to prevent races */
1065                 lock_page(page);
1066                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067                     !shmem_confirm_swap(mapping, index, swap)) {
1068                         error = -EEXIST;        /* try again */
1069                         goto unlock;
1070                 }
1071                 if (!PageUptodate(page)) {
1072                         error = -EIO;
1073                         goto failed;
1074                 }
1075                 wait_on_page_writeback(page);
1076
1077                 if (shmem_should_replace_page(page, gfp)) {
1078                         error = shmem_replace_page(&page, gfp, info, index);
1079                         if (error)
1080                                 goto failed;
1081                 }
1082
1083                 error = mem_cgroup_charge_file(page, current->mm,
1084                                                 gfp & GFP_RECLAIM_MASK);
1085                 if (!error) {
1086                         error = shmem_add_to_page_cache(page, mapping, index,
1087                                                 gfp, swp_to_radix_entry(swap));
1088                         /*
1089                          * We already confirmed swap under page lock, and make
1090                          * no memory allocation here, so usually no possibility
1091                          * of error; but free_swap_and_cache() only trylocks a
1092                          * page, so it is just possible that the entry has been
1093                          * truncated or holepunched since swap was confirmed.
1094                          * shmem_undo_range() will have done some of the
1095                          * unaccounting, now delete_from_swap_cache() will do
1096                          * the rest (including mem_cgroup_uncharge_swapcache).
1097                          * Reset swap.val? No, leave it so "failed" goes back to
1098                          * "repeat": reading a hole and writing should succeed.
1099                          */
1100                         if (error)
1101                                 delete_from_swap_cache(page);
1102                 }
1103                 if (error)
1104                         goto failed;
1105
1106                 spin_lock(&info->lock);
1107                 info->swapped--;
1108                 shmem_recalc_inode(inode);
1109                 spin_unlock(&info->lock);
1110
1111                 delete_from_swap_cache(page);
1112                 set_page_dirty(page);
1113                 swap_free(swap);
1114
1115         } else {
1116                 if (shmem_acct_block(info->flags)) {
1117                         error = -ENOSPC;
1118                         goto failed;
1119                 }
1120                 if (sbinfo->max_blocks) {
1121                         if (percpu_counter_compare(&sbinfo->used_blocks,
1122                                                 sbinfo->max_blocks) >= 0) {
1123                                 error = -ENOSPC;
1124                                 goto unacct;
1125                         }
1126                         percpu_counter_inc(&sbinfo->used_blocks);
1127                 }
1128
1129                 page = shmem_alloc_page(gfp, info, index);
1130                 if (!page) {
1131                         error = -ENOMEM;
1132                         goto decused;
1133                 }
1134
1135                 SetPageSwapBacked(page);
1136                 __set_page_locked(page);
1137                 error = mem_cgroup_charge_file(page, current->mm,
1138                                                 gfp & GFP_RECLAIM_MASK);
1139                 if (error)
1140                         goto decused;
1141                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142                 if (!error) {
1143                         error = shmem_add_to_page_cache(page, mapping, index,
1144                                                         gfp, NULL);
1145                         radix_tree_preload_end();
1146                 }
1147                 if (error) {
1148                         mem_cgroup_uncharge_cache_page(page);
1149                         goto decused;
1150                 }
1151                 lru_cache_add_anon(page);
1152
1153                 spin_lock(&info->lock);
1154                 info->alloced++;
1155                 inode->i_blocks += BLOCKS_PER_PAGE;
1156                 shmem_recalc_inode(inode);
1157                 spin_unlock(&info->lock);
1158                 alloced = true;
1159
1160                 /*
1161                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162                  */
1163                 if (sgp == SGP_FALLOC)
1164                         sgp = SGP_WRITE;
1165 clear:
1166                 /*
1167                  * Let SGP_WRITE caller clear ends if write does not fill page;
1168                  * but SGP_FALLOC on a page fallocated earlier must initialize
1169                  * it now, lest undo on failure cancel our earlier guarantee.
1170                  */
1171                 if (sgp != SGP_WRITE) {
1172                         clear_highpage(page);
1173                         flush_dcache_page(page);
1174                         SetPageUptodate(page);
1175                 }
1176                 if (sgp == SGP_DIRTY)
1177                         set_page_dirty(page);
1178         }
1179
1180         /* Perhaps the file has been truncated since we checked */
1181         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183                 error = -EINVAL;
1184                 if (alloced)
1185                         goto trunc;
1186                 else
1187                         goto failed;
1188         }
1189         *pagep = page;
1190         return 0;
1191
1192         /*
1193          * Error recovery.
1194          */
1195 trunc:
1196         info = SHMEM_I(inode);
1197         ClearPageDirty(page);
1198         delete_from_page_cache(page);
1199         spin_lock(&info->lock);
1200         info->alloced--;
1201         inode->i_blocks -= BLOCKS_PER_PAGE;
1202         spin_unlock(&info->lock);
1203 decused:
1204         sbinfo = SHMEM_SB(inode->i_sb);
1205         if (sbinfo->max_blocks)
1206                 percpu_counter_add(&sbinfo->used_blocks, -1);
1207 unacct:
1208         shmem_unacct_blocks(info->flags, 1);
1209 failed:
1210         if (swap.val && error != -EINVAL &&
1211             !shmem_confirm_swap(mapping, index, swap))
1212                 error = -EEXIST;
1213 unlock:
1214         if (page) {
1215                 unlock_page(page);
1216                 page_cache_release(page);
1217         }
1218         if (error == -ENOSPC && !once++) {
1219                 info = SHMEM_I(inode);
1220                 spin_lock(&info->lock);
1221                 shmem_recalc_inode(inode);
1222                 spin_unlock(&info->lock);
1223                 goto repeat;
1224         }
1225         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1226                 goto repeat;
1227         return error;
1228 }
1229
1230 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231 {
1232         struct inode *inode = file_inode(vma->vm_file);
1233         int error;
1234         int ret = VM_FAULT_LOCKED;
1235
1236         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237         if (error)
1238                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240         if (ret & VM_FAULT_MAJOR) {
1241                 count_vm_event(PGMAJFAULT);
1242                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243         }
1244         return ret;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249 {
1250         struct inode *inode = file_inode(vma->vm_file);
1251         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252 }
1253
1254 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255                                           unsigned long addr)
1256 {
1257         struct inode *inode = file_inode(vma->vm_file);
1258         pgoff_t index;
1259
1260         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262 }
1263 #endif
1264
1265 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266 {
1267         struct inode *inode = file_inode(file);
1268         struct shmem_inode_info *info = SHMEM_I(inode);
1269         int retval = -ENOMEM;
1270
1271         spin_lock(&info->lock);
1272         if (lock && !(info->flags & VM_LOCKED)) {
1273                 if (!user_shm_lock(inode->i_size, user))
1274                         goto out_nomem;
1275                 info->flags |= VM_LOCKED;
1276                 mapping_set_unevictable(file->f_mapping);
1277         }
1278         if (!lock && (info->flags & VM_LOCKED) && user) {
1279                 user_shm_unlock(inode->i_size, user);
1280                 info->flags &= ~VM_LOCKED;
1281                 mapping_clear_unevictable(file->f_mapping);
1282         }
1283         retval = 0;
1284
1285 out_nomem:
1286         spin_unlock(&info->lock);
1287         return retval;
1288 }
1289
1290 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291 {
1292         file_accessed(file);
1293         vma->vm_ops = &shmem_vm_ops;
1294         return 0;
1295 }
1296
1297 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298                                      umode_t mode, dev_t dev, unsigned long flags)
1299 {
1300         struct inode *inode;
1301         struct shmem_inode_info *info;
1302         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304         if (shmem_reserve_inode(sb))
1305                 return NULL;
1306
1307         inode = new_inode(sb);
1308         if (inode) {
1309                 inode->i_ino = get_next_ino();
1310                 inode_init_owner(inode, dir, mode);
1311                 inode->i_blocks = 0;
1312                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314                 inode->i_generation = get_seconds();
1315                 info = SHMEM_I(inode);
1316                 memset(info, 0, (char *)inode - (char *)info);
1317                 spin_lock_init(&info->lock);
1318                 info->flags = flags & VM_NORESERVE;
1319                 INIT_LIST_HEAD(&info->swaplist);
1320                 simple_xattrs_init(&info->xattrs);
1321                 cache_no_acl(inode);
1322
1323                 switch (mode & S_IFMT) {
1324                 default:
1325                         inode->i_op = &shmem_special_inode_operations;
1326                         init_special_inode(inode, mode, dev);
1327                         break;
1328                 case S_IFREG:
1329                         inode->i_mapping->a_ops = &shmem_aops;
1330                         inode->i_op = &shmem_inode_operations;
1331                         inode->i_fop = &shmem_file_operations;
1332                         mpol_shared_policy_init(&info->policy,
1333                                                  shmem_get_sbmpol(sbinfo));
1334                         break;
1335                 case S_IFDIR:
1336                         inc_nlink(inode);
1337                         /* Some things misbehave if size == 0 on a directory */
1338                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339                         inode->i_op = &shmem_dir_inode_operations;
1340                         inode->i_fop = &simple_dir_operations;
1341                         break;
1342                 case S_IFLNK:
1343                         /*
1344                          * Must not load anything in the rbtree,
1345                          * mpol_free_shared_policy will not be called.
1346                          */
1347                         mpol_shared_policy_init(&info->policy, NULL);
1348                         break;
1349                 }
1350         } else
1351                 shmem_free_inode(sb);
1352         return inode;
1353 }
1354
1355 bool shmem_mapping(struct address_space *mapping)
1356 {
1357         return mapping->backing_dev_info == &shmem_backing_dev_info;
1358 }
1359
1360 #ifdef CONFIG_TMPFS
1361 static const struct inode_operations shmem_symlink_inode_operations;
1362 static const struct inode_operations shmem_short_symlink_operations;
1363
1364 #ifdef CONFIG_TMPFS_XATTR
1365 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366 #else
1367 #define shmem_initxattrs NULL
1368 #endif
1369
1370 static int
1371 shmem_write_begin(struct file *file, struct address_space *mapping,
1372                         loff_t pos, unsigned len, unsigned flags,
1373                         struct page **pagep, void **fsdata)
1374 {
1375         struct inode *inode = mapping->host;
1376         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378 }
1379
1380 static int
1381 shmem_write_end(struct file *file, struct address_space *mapping,
1382                         loff_t pos, unsigned len, unsigned copied,
1383                         struct page *page, void *fsdata)
1384 {
1385         struct inode *inode = mapping->host;
1386
1387         if (pos + copied > inode->i_size)
1388                 i_size_write(inode, pos + copied);
1389
1390         if (!PageUptodate(page)) {
1391                 if (copied < PAGE_CACHE_SIZE) {
1392                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393                         zero_user_segments(page, 0, from,
1394                                         from + copied, PAGE_CACHE_SIZE);
1395                 }
1396                 SetPageUptodate(page);
1397         }
1398         set_page_dirty(page);
1399         unlock_page(page);
1400         page_cache_release(page);
1401
1402         return copied;
1403 }
1404
1405 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1406 {
1407         struct inode *inode = file_inode(filp);
1408         struct address_space *mapping = inode->i_mapping;
1409         pgoff_t index;
1410         unsigned long offset;
1411         enum sgp_type sgp = SGP_READ;
1412
1413         /*
1414          * Might this read be for a stacking filesystem?  Then when reading
1415          * holes of a sparse file, we actually need to allocate those pages,
1416          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1417          */
1418         if (segment_eq(get_fs(), KERNEL_DS))
1419                 sgp = SGP_DIRTY;
1420
1421         index = *ppos >> PAGE_CACHE_SHIFT;
1422         offset = *ppos & ~PAGE_CACHE_MASK;
1423
1424         for (;;) {
1425                 struct page *page = NULL;
1426                 pgoff_t end_index;
1427                 unsigned long nr, ret;
1428                 loff_t i_size = i_size_read(inode);
1429
1430                 end_index = i_size >> PAGE_CACHE_SHIFT;
1431                 if (index > end_index)
1432                         break;
1433                 if (index == end_index) {
1434                         nr = i_size & ~PAGE_CACHE_MASK;
1435                         if (nr <= offset)
1436                                 break;
1437                 }
1438
1439                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1440                 if (desc->error) {
1441                         if (desc->error == -EINVAL)
1442                                 desc->error = 0;
1443                         break;
1444                 }
1445                 if (page)
1446                         unlock_page(page);
1447
1448                 /*
1449                  * We must evaluate after, since reads (unlike writes)
1450                  * are called without i_mutex protection against truncate
1451                  */
1452                 nr = PAGE_CACHE_SIZE;
1453                 i_size = i_size_read(inode);
1454                 end_index = i_size >> PAGE_CACHE_SHIFT;
1455                 if (index == end_index) {
1456                         nr = i_size & ~PAGE_CACHE_MASK;
1457                         if (nr <= offset) {
1458                                 if (page)
1459                                         page_cache_release(page);
1460                                 break;
1461                         }
1462                 }
1463                 nr -= offset;
1464
1465                 if (page) {
1466                         /*
1467                          * If users can be writing to this page using arbitrary
1468                          * virtual addresses, take care about potential aliasing
1469                          * before reading the page on the kernel side.
1470                          */
1471                         if (mapping_writably_mapped(mapping))
1472                                 flush_dcache_page(page);
1473                         /*
1474                          * Mark the page accessed if we read the beginning.
1475                          */
1476                         if (!offset)
1477                                 mark_page_accessed(page);
1478                 } else {
1479                         page = ZERO_PAGE(0);
1480                         page_cache_get(page);
1481                 }
1482
1483                 /*
1484                  * Ok, we have the page, and it's up-to-date, so
1485                  * now we can copy it to user space...
1486                  *
1487                  * The actor routine returns how many bytes were actually used..
1488                  * NOTE! This may not be the same as how much of a user buffer
1489                  * we filled up (we may be padding etc), so we can only update
1490                  * "pos" here (the actor routine has to update the user buffer
1491                  * pointers and the remaining count).
1492                  */
1493                 ret = actor(desc, page, offset, nr);
1494                 offset += ret;
1495                 index += offset >> PAGE_CACHE_SHIFT;
1496                 offset &= ~PAGE_CACHE_MASK;
1497
1498                 page_cache_release(page);
1499                 if (ret != nr || !desc->count)
1500                         break;
1501
1502                 cond_resched();
1503         }
1504
1505         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1506         file_accessed(filp);
1507 }
1508
1509 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1510                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1511 {
1512         struct file *filp = iocb->ki_filp;
1513         ssize_t retval;
1514         unsigned long seg;
1515         size_t count;
1516         loff_t *ppos = &iocb->ki_pos;
1517
1518         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1519         if (retval)
1520                 return retval;
1521
1522         for (seg = 0; seg < nr_segs; seg++) {
1523                 read_descriptor_t desc;
1524
1525                 desc.written = 0;
1526                 desc.arg.buf = iov[seg].iov_base;
1527                 desc.count = iov[seg].iov_len;
1528                 if (desc.count == 0)
1529                         continue;
1530                 desc.error = 0;
1531                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1532                 retval += desc.written;
1533                 if (desc.error) {
1534                         retval = retval ?: desc.error;
1535                         break;
1536                 }
1537                 if (desc.count > 0)
1538                         break;
1539         }
1540         return retval;
1541 }
1542
1543 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1544                                 struct pipe_inode_info *pipe, size_t len,
1545                                 unsigned int flags)
1546 {
1547         struct address_space *mapping = in->f_mapping;
1548         struct inode *inode = mapping->host;
1549         unsigned int loff, nr_pages, req_pages;
1550         struct page *pages[PIPE_DEF_BUFFERS];
1551         struct partial_page partial[PIPE_DEF_BUFFERS];
1552         struct page *page;
1553         pgoff_t index, end_index;
1554         loff_t isize, left;
1555         int error, page_nr;
1556         struct splice_pipe_desc spd = {
1557                 .pages = pages,
1558                 .partial = partial,
1559                 .nr_pages_max = PIPE_DEF_BUFFERS,
1560                 .flags = flags,
1561                 .ops = &page_cache_pipe_buf_ops,
1562                 .spd_release = spd_release_page,
1563         };
1564
1565         isize = i_size_read(inode);
1566         if (unlikely(*ppos >= isize))
1567                 return 0;
1568
1569         left = isize - *ppos;
1570         if (unlikely(left < len))
1571                 len = left;
1572
1573         if (splice_grow_spd(pipe, &spd))
1574                 return -ENOMEM;
1575
1576         index = *ppos >> PAGE_CACHE_SHIFT;
1577         loff = *ppos & ~PAGE_CACHE_MASK;
1578         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1579         nr_pages = min(req_pages, pipe->buffers);
1580
1581         spd.nr_pages = find_get_pages_contig(mapping, index,
1582                                                 nr_pages, spd.pages);
1583         index += spd.nr_pages;
1584         error = 0;
1585
1586         while (spd.nr_pages < nr_pages) {
1587                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1588                 if (error)
1589                         break;
1590                 unlock_page(page);
1591                 spd.pages[spd.nr_pages++] = page;
1592                 index++;
1593         }
1594
1595         index = *ppos >> PAGE_CACHE_SHIFT;
1596         nr_pages = spd.nr_pages;
1597         spd.nr_pages = 0;
1598
1599         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1600                 unsigned int this_len;
1601
1602                 if (!len)
1603                         break;
1604
1605                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1606                 page = spd.pages[page_nr];
1607
1608                 if (!PageUptodate(page) || page->mapping != mapping) {
1609                         error = shmem_getpage(inode, index, &page,
1610                                                         SGP_CACHE, NULL);
1611                         if (error)
1612                                 break;
1613                         unlock_page(page);
1614                         page_cache_release(spd.pages[page_nr]);
1615                         spd.pages[page_nr] = page;
1616                 }
1617
1618                 isize = i_size_read(inode);
1619                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1620                 if (unlikely(!isize || index > end_index))
1621                         break;
1622
1623                 if (end_index == index) {
1624                         unsigned int plen;
1625
1626                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1627                         if (plen <= loff)
1628                                 break;
1629
1630                         this_len = min(this_len, plen - loff);
1631                         len = this_len;
1632                 }
1633
1634                 spd.partial[page_nr].offset = loff;
1635                 spd.partial[page_nr].len = this_len;
1636                 len -= this_len;
1637                 loff = 0;
1638                 spd.nr_pages++;
1639                 index++;
1640         }
1641
1642         while (page_nr < nr_pages)
1643                 page_cache_release(spd.pages[page_nr++]);
1644
1645         if (spd.nr_pages)
1646                 error = splice_to_pipe(pipe, &spd);
1647
1648         splice_shrink_spd(&spd);
1649
1650         if (error > 0) {
1651                 *ppos += error;
1652                 file_accessed(in);
1653         }
1654         return error;
1655 }
1656
1657 /*
1658  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1659  */
1660 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1661                                     pgoff_t index, pgoff_t end, int whence)
1662 {
1663         struct page *page;
1664         struct pagevec pvec;
1665         pgoff_t indices[PAGEVEC_SIZE];
1666         bool done = false;
1667         int i;
1668
1669         pagevec_init(&pvec, 0);
1670         pvec.nr = 1;            /* start small: we may be there already */
1671         while (!done) {
1672                 pvec.nr = find_get_entries(mapping, index,
1673                                         pvec.nr, pvec.pages, indices);
1674                 if (!pvec.nr) {
1675                         if (whence == SEEK_DATA)
1676                                 index = end;
1677                         break;
1678                 }
1679                 for (i = 0; i < pvec.nr; i++, index++) {
1680                         if (index < indices[i]) {
1681                                 if (whence == SEEK_HOLE) {
1682                                         done = true;
1683                                         break;
1684                                 }
1685                                 index = indices[i];
1686                         }
1687                         page = pvec.pages[i];
1688                         if (page && !radix_tree_exceptional_entry(page)) {
1689                                 if (!PageUptodate(page))
1690                                         page = NULL;
1691                         }
1692                         if (index >= end ||
1693                             (page && whence == SEEK_DATA) ||
1694                             (!page && whence == SEEK_HOLE)) {
1695                                 done = true;
1696                                 break;
1697                         }
1698                 }
1699                 pagevec_remove_exceptionals(&pvec);
1700                 pagevec_release(&pvec);
1701                 pvec.nr = PAGEVEC_SIZE;
1702                 cond_resched();
1703         }
1704         return index;
1705 }
1706
1707 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1708 {
1709         struct address_space *mapping = file->f_mapping;
1710         struct inode *inode = mapping->host;
1711         pgoff_t start, end;
1712         loff_t new_offset;
1713
1714         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1715                 return generic_file_llseek_size(file, offset, whence,
1716                                         MAX_LFS_FILESIZE, i_size_read(inode));
1717         mutex_lock(&inode->i_mutex);
1718         /* We're holding i_mutex so we can access i_size directly */
1719
1720         if (offset < 0)
1721                 offset = -EINVAL;
1722         else if (offset >= inode->i_size)
1723                 offset = -ENXIO;
1724         else {
1725                 start = offset >> PAGE_CACHE_SHIFT;
1726                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1727                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1728                 new_offset <<= PAGE_CACHE_SHIFT;
1729                 if (new_offset > offset) {
1730                         if (new_offset < inode->i_size)
1731                                 offset = new_offset;
1732                         else if (whence == SEEK_DATA)
1733                                 offset = -ENXIO;
1734                         else
1735                                 offset = inode->i_size;
1736                 }
1737         }
1738
1739         if (offset >= 0)
1740                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1741         mutex_unlock(&inode->i_mutex);
1742         return offset;
1743 }
1744
1745 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1746                                                          loff_t len)
1747 {
1748         struct inode *inode = file_inode(file);
1749         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1750         struct shmem_falloc shmem_falloc;
1751         pgoff_t start, index, end;
1752         int error;
1753
1754         mutex_lock(&inode->i_mutex);
1755
1756         if (mode & FALLOC_FL_PUNCH_HOLE) {
1757                 struct address_space *mapping = file->f_mapping;
1758                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1759                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1760
1761                 if ((u64)unmap_end > (u64)unmap_start)
1762                         unmap_mapping_range(mapping, unmap_start,
1763                                             1 + unmap_end - unmap_start, 0);
1764                 shmem_truncate_range(inode, offset, offset + len - 1);
1765                 /* No need to unmap again: hole-punching leaves COWed pages */
1766                 error = 0;
1767                 goto out;
1768         }
1769
1770         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1771         error = inode_newsize_ok(inode, offset + len);
1772         if (error)
1773                 goto out;
1774
1775         start = offset >> PAGE_CACHE_SHIFT;
1776         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1777         /* Try to avoid a swapstorm if len is impossible to satisfy */
1778         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1779                 error = -ENOSPC;
1780                 goto out;
1781         }
1782
1783         shmem_falloc.start = start;
1784         shmem_falloc.next  = start;
1785         shmem_falloc.nr_falloced = 0;
1786         shmem_falloc.nr_unswapped = 0;
1787         spin_lock(&inode->i_lock);
1788         inode->i_private = &shmem_falloc;
1789         spin_unlock(&inode->i_lock);
1790
1791         for (index = start; index < end; index++) {
1792                 struct page *page;
1793
1794                 /*
1795                  * Good, the fallocate(2) manpage permits EINTR: we may have
1796                  * been interrupted because we are using up too much memory.
1797                  */
1798                 if (signal_pending(current))
1799                         error = -EINTR;
1800                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1801                         error = -ENOMEM;
1802                 else
1803                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1804                                                                         NULL);
1805                 if (error) {
1806                         /* Remove the !PageUptodate pages we added */
1807                         shmem_undo_range(inode,
1808                                 (loff_t)start << PAGE_CACHE_SHIFT,
1809                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1810                         goto undone;
1811                 }
1812
1813                 /*
1814                  * Inform shmem_writepage() how far we have reached.
1815                  * No need for lock or barrier: we have the page lock.
1816                  */
1817                 shmem_falloc.next++;
1818                 if (!PageUptodate(page))
1819                         shmem_falloc.nr_falloced++;
1820
1821                 /*
1822                  * If !PageUptodate, leave it that way so that freeable pages
1823                  * can be recognized if we need to rollback on error later.
1824                  * But set_page_dirty so that memory pressure will swap rather
1825                  * than free the pages we are allocating (and SGP_CACHE pages
1826                  * might still be clean: we now need to mark those dirty too).
1827                  */
1828                 set_page_dirty(page);
1829                 unlock_page(page);
1830                 page_cache_release(page);
1831                 cond_resched();
1832         }
1833
1834         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1835                 i_size_write(inode, offset + len);
1836         inode->i_ctime = CURRENT_TIME;
1837 undone:
1838         spin_lock(&inode->i_lock);
1839         inode->i_private = NULL;
1840         spin_unlock(&inode->i_lock);
1841 out:
1842         mutex_unlock(&inode->i_mutex);
1843         return error;
1844 }
1845
1846 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1847 {
1848         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1849
1850         buf->f_type = TMPFS_MAGIC;
1851         buf->f_bsize = PAGE_CACHE_SIZE;
1852         buf->f_namelen = NAME_MAX;
1853         if (sbinfo->max_blocks) {
1854                 buf->f_blocks = sbinfo->max_blocks;
1855                 buf->f_bavail =
1856                 buf->f_bfree  = sbinfo->max_blocks -
1857                                 percpu_counter_sum(&sbinfo->used_blocks);
1858         }
1859         if (sbinfo->max_inodes) {
1860                 buf->f_files = sbinfo->max_inodes;
1861                 buf->f_ffree = sbinfo->free_inodes;
1862         }
1863         /* else leave those fields 0 like simple_statfs */
1864         return 0;
1865 }
1866
1867 /*
1868  * File creation. Allocate an inode, and we're done..
1869  */
1870 static int
1871 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1872 {
1873         struct inode *inode;
1874         int error = -ENOSPC;
1875
1876         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1877         if (inode) {
1878                 error = simple_acl_create(dir, inode);
1879                 if (error)
1880                         goto out_iput;
1881                 error = security_inode_init_security(inode, dir,
1882                                                      &dentry->d_name,
1883                                                      shmem_initxattrs, NULL);
1884                 if (error && error != -EOPNOTSUPP)
1885                         goto out_iput;
1886
1887                 error = 0;
1888                 dir->i_size += BOGO_DIRENT_SIZE;
1889                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1890                 d_instantiate(dentry, inode);
1891                 dget(dentry); /* Extra count - pin the dentry in core */
1892         }
1893         return error;
1894 out_iput:
1895         iput(inode);
1896         return error;
1897 }
1898
1899 static int
1900 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1901 {
1902         struct inode *inode;
1903         int error = -ENOSPC;
1904
1905         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1906         if (inode) {
1907                 error = security_inode_init_security(inode, dir,
1908                                                      NULL,
1909                                                      shmem_initxattrs, NULL);
1910                 if (error && error != -EOPNOTSUPP)
1911                         goto out_iput;
1912                 error = simple_acl_create(dir, inode);
1913                 if (error)
1914                         goto out_iput;
1915                 d_tmpfile(dentry, inode);
1916         }
1917         return error;
1918 out_iput:
1919         iput(inode);
1920         return error;
1921 }
1922
1923 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1924 {
1925         int error;
1926
1927         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1928                 return error;
1929         inc_nlink(dir);
1930         return 0;
1931 }
1932
1933 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1934                 bool excl)
1935 {
1936         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1937 }
1938
1939 /*
1940  * Link a file..
1941  */
1942 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1943 {
1944         struct inode *inode = old_dentry->d_inode;
1945         int ret;
1946
1947         /*
1948          * No ordinary (disk based) filesystem counts links as inodes;
1949          * but each new link needs a new dentry, pinning lowmem, and
1950          * tmpfs dentries cannot be pruned until they are unlinked.
1951          */
1952         ret = shmem_reserve_inode(inode->i_sb);
1953         if (ret)
1954                 goto out;
1955
1956         dir->i_size += BOGO_DIRENT_SIZE;
1957         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1958         inc_nlink(inode);
1959         ihold(inode);   /* New dentry reference */
1960         dget(dentry);           /* Extra pinning count for the created dentry */
1961         d_instantiate(dentry, inode);
1962 out:
1963         return ret;
1964 }
1965
1966 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1967 {
1968         struct inode *inode = dentry->d_inode;
1969
1970         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1971                 shmem_free_inode(inode->i_sb);
1972
1973         dir->i_size -= BOGO_DIRENT_SIZE;
1974         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1975         drop_nlink(inode);
1976         dput(dentry);   /* Undo the count from "create" - this does all the work */
1977         return 0;
1978 }
1979
1980 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1981 {
1982         if (!simple_empty(dentry))
1983                 return -ENOTEMPTY;
1984
1985         drop_nlink(dentry->d_inode);
1986         drop_nlink(dir);
1987         return shmem_unlink(dir, dentry);
1988 }
1989
1990 /*
1991  * The VFS layer already does all the dentry stuff for rename,
1992  * we just have to decrement the usage count for the target if
1993  * it exists so that the VFS layer correctly free's it when it
1994  * gets overwritten.
1995  */
1996 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1997 {
1998         struct inode *inode = old_dentry->d_inode;
1999         int they_are_dirs = S_ISDIR(inode->i_mode);
2000
2001         if (!simple_empty(new_dentry))
2002                 return -ENOTEMPTY;
2003
2004         if (new_dentry->d_inode) {
2005                 (void) shmem_unlink(new_dir, new_dentry);
2006                 if (they_are_dirs)
2007                         drop_nlink(old_dir);
2008         } else if (they_are_dirs) {
2009                 drop_nlink(old_dir);
2010                 inc_nlink(new_dir);
2011         }
2012
2013         old_dir->i_size -= BOGO_DIRENT_SIZE;
2014         new_dir->i_size += BOGO_DIRENT_SIZE;
2015         old_dir->i_ctime = old_dir->i_mtime =
2016         new_dir->i_ctime = new_dir->i_mtime =
2017         inode->i_ctime = CURRENT_TIME;
2018         return 0;
2019 }
2020
2021 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2022 {
2023         int error;
2024         int len;
2025         struct inode *inode;
2026         struct page *page;
2027         char *kaddr;
2028         struct shmem_inode_info *info;
2029
2030         len = strlen(symname) + 1;
2031         if (len > PAGE_CACHE_SIZE)
2032                 return -ENAMETOOLONG;
2033
2034         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2035         if (!inode)
2036                 return -ENOSPC;
2037
2038         error = security_inode_init_security(inode, dir, &dentry->d_name,
2039                                              shmem_initxattrs, NULL);
2040         if (error) {
2041                 if (error != -EOPNOTSUPP) {
2042                         iput(inode);
2043                         return error;
2044                 }
2045                 error = 0;
2046         }
2047
2048         info = SHMEM_I(inode);
2049         inode->i_size = len-1;
2050         if (len <= SHORT_SYMLINK_LEN) {
2051                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2052                 if (!info->symlink) {
2053                         iput(inode);
2054                         return -ENOMEM;
2055                 }
2056                 inode->i_op = &shmem_short_symlink_operations;
2057         } else {
2058                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2059                 if (error) {
2060                         iput(inode);
2061                         return error;
2062                 }
2063                 inode->i_mapping->a_ops = &shmem_aops;
2064                 inode->i_op = &shmem_symlink_inode_operations;
2065                 kaddr = kmap_atomic(page);
2066                 memcpy(kaddr, symname, len);
2067                 kunmap_atomic(kaddr);
2068                 SetPageUptodate(page);
2069                 set_page_dirty(page);
2070                 unlock_page(page);
2071                 page_cache_release(page);
2072         }
2073         dir->i_size += BOGO_DIRENT_SIZE;
2074         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2075         d_instantiate(dentry, inode);
2076         dget(dentry);
2077         return 0;
2078 }
2079
2080 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2081 {
2082         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2083         return NULL;
2084 }
2085
2086 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2087 {
2088         struct page *page = NULL;
2089         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2090         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2091         if (page)
2092                 unlock_page(page);
2093         return page;
2094 }
2095
2096 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2097 {
2098         if (!IS_ERR(nd_get_link(nd))) {
2099                 struct page *page = cookie;
2100                 kunmap(page);
2101                 mark_page_accessed(page);
2102                 page_cache_release(page);
2103         }
2104 }
2105
2106 #ifdef CONFIG_TMPFS_XATTR
2107 /*
2108  * Superblocks without xattr inode operations may get some security.* xattr
2109  * support from the LSM "for free". As soon as we have any other xattrs
2110  * like ACLs, we also need to implement the security.* handlers at
2111  * filesystem level, though.
2112  */
2113
2114 /*
2115  * Callback for security_inode_init_security() for acquiring xattrs.
2116  */
2117 static int shmem_initxattrs(struct inode *inode,
2118                             const struct xattr *xattr_array,
2119                             void *fs_info)
2120 {
2121         struct shmem_inode_info *info = SHMEM_I(inode);
2122         const struct xattr *xattr;
2123         struct simple_xattr *new_xattr;
2124         size_t len;
2125
2126         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2127                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2128                 if (!new_xattr)
2129                         return -ENOMEM;
2130
2131                 len = strlen(xattr->name) + 1;
2132                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2133                                           GFP_KERNEL);
2134                 if (!new_xattr->name) {
2135                         kfree(new_xattr);
2136                         return -ENOMEM;
2137                 }
2138
2139                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2140                        XATTR_SECURITY_PREFIX_LEN);
2141                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2142                        xattr->name, len);
2143
2144                 simple_xattr_list_add(&info->xattrs, new_xattr);
2145         }
2146
2147         return 0;
2148 }
2149
2150 static const struct xattr_handler *shmem_xattr_handlers[] = {
2151 #ifdef CONFIG_TMPFS_POSIX_ACL
2152         &posix_acl_access_xattr_handler,
2153         &posix_acl_default_xattr_handler,
2154 #endif
2155         NULL
2156 };
2157
2158 static int shmem_xattr_validate(const char *name)
2159 {
2160         struct { const char *prefix; size_t len; } arr[] = {
2161                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2162                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2163         };
2164         int i;
2165
2166         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2167                 size_t preflen = arr[i].len;
2168                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2169                         if (!name[preflen])
2170                                 return -EINVAL;
2171                         return 0;
2172                 }
2173         }
2174         return -EOPNOTSUPP;
2175 }
2176
2177 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2178                               void *buffer, size_t size)
2179 {
2180         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2181         int err;
2182
2183         /*
2184          * If this is a request for a synthetic attribute in the system.*
2185          * namespace use the generic infrastructure to resolve a handler
2186          * for it via sb->s_xattr.
2187          */
2188         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2189                 return generic_getxattr(dentry, name, buffer, size);
2190
2191         err = shmem_xattr_validate(name);
2192         if (err)
2193                 return err;
2194
2195         return simple_xattr_get(&info->xattrs, name, buffer, size);
2196 }
2197
2198 static int shmem_setxattr(struct dentry *dentry, const char *name,
2199                           const void *value, size_t size, int flags)
2200 {
2201         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2202         int err;
2203
2204         /*
2205          * If this is a request for a synthetic attribute in the system.*
2206          * namespace use the generic infrastructure to resolve a handler
2207          * for it via sb->s_xattr.
2208          */
2209         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2210                 return generic_setxattr(dentry, name, value, size, flags);
2211
2212         err = shmem_xattr_validate(name);
2213         if (err)
2214                 return err;
2215
2216         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2217 }
2218
2219 static int shmem_removexattr(struct dentry *dentry, const char *name)
2220 {
2221         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2222         int err;
2223
2224         /*
2225          * If this is a request for a synthetic attribute in the system.*
2226          * namespace use the generic infrastructure to resolve a handler
2227          * for it via sb->s_xattr.
2228          */
2229         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2230                 return generic_removexattr(dentry, name);
2231
2232         err = shmem_xattr_validate(name);
2233         if (err)
2234                 return err;
2235
2236         return simple_xattr_remove(&info->xattrs, name);
2237 }
2238
2239 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2240 {
2241         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2242         return simple_xattr_list(&info->xattrs, buffer, size);
2243 }
2244 #endif /* CONFIG_TMPFS_XATTR */
2245
2246 static const struct inode_operations shmem_short_symlink_operations = {
2247         .readlink       = generic_readlink,
2248         .follow_link    = shmem_follow_short_symlink,
2249 #ifdef CONFIG_TMPFS_XATTR
2250         .setxattr       = shmem_setxattr,
2251         .getxattr       = shmem_getxattr,
2252         .listxattr      = shmem_listxattr,
2253         .removexattr    = shmem_removexattr,
2254 #endif
2255 };
2256
2257 static const struct inode_operations shmem_symlink_inode_operations = {
2258         .readlink       = generic_readlink,
2259         .follow_link    = shmem_follow_link,
2260         .put_link       = shmem_put_link,
2261 #ifdef CONFIG_TMPFS_XATTR
2262         .setxattr       = shmem_setxattr,
2263         .getxattr       = shmem_getxattr,
2264         .listxattr      = shmem_listxattr,
2265         .removexattr    = shmem_removexattr,
2266 #endif
2267 };
2268
2269 static struct dentry *shmem_get_parent(struct dentry *child)
2270 {
2271         return ERR_PTR(-ESTALE);
2272 }
2273
2274 static int shmem_match(struct inode *ino, void *vfh)
2275 {
2276         __u32 *fh = vfh;
2277         __u64 inum = fh[2];
2278         inum = (inum << 32) | fh[1];
2279         return ino->i_ino == inum && fh[0] == ino->i_generation;
2280 }
2281
2282 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2283                 struct fid *fid, int fh_len, int fh_type)
2284 {
2285         struct inode *inode;
2286         struct dentry *dentry = NULL;
2287         u64 inum;
2288
2289         if (fh_len < 3)
2290                 return NULL;
2291
2292         inum = fid->raw[2];
2293         inum = (inum << 32) | fid->raw[1];
2294
2295         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2296                         shmem_match, fid->raw);
2297         if (inode) {
2298                 dentry = d_find_alias(inode);
2299                 iput(inode);
2300         }
2301
2302         return dentry;
2303 }
2304
2305 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2306                                 struct inode *parent)
2307 {
2308         if (*len < 3) {
2309                 *len = 3;
2310                 return FILEID_INVALID;
2311         }
2312
2313         if (inode_unhashed(inode)) {
2314                 /* Unfortunately insert_inode_hash is not idempotent,
2315                  * so as we hash inodes here rather than at creation
2316                  * time, we need a lock to ensure we only try
2317                  * to do it once
2318                  */
2319                 static DEFINE_SPINLOCK(lock);
2320                 spin_lock(&lock);
2321                 if (inode_unhashed(inode))
2322                         __insert_inode_hash(inode,
2323                                             inode->i_ino + inode->i_generation);
2324                 spin_unlock(&lock);
2325         }
2326
2327         fh[0] = inode->i_generation;
2328         fh[1] = inode->i_ino;
2329         fh[2] = ((__u64)inode->i_ino) >> 32;
2330
2331         *len = 3;
2332         return 1;
2333 }
2334
2335 static const struct export_operations shmem_export_ops = {
2336         .get_parent     = shmem_get_parent,
2337         .encode_fh      = shmem_encode_fh,
2338         .fh_to_dentry   = shmem_fh_to_dentry,
2339 };
2340
2341 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2342                                bool remount)
2343 {
2344         char *this_char, *value, *rest;
2345         struct mempolicy *mpol = NULL;
2346         uid_t uid;
2347         gid_t gid;
2348
2349         while (options != NULL) {
2350                 this_char = options;
2351                 for (;;) {
2352                         /*
2353                          * NUL-terminate this option: unfortunately,
2354                          * mount options form a comma-separated list,
2355                          * but mpol's nodelist may also contain commas.
2356                          */
2357                         options = strchr(options, ',');
2358                         if (options == NULL)
2359                                 break;
2360                         options++;
2361                         if (!isdigit(*options)) {
2362                                 options[-1] = '\0';
2363                                 break;
2364                         }
2365                 }
2366                 if (!*this_char)
2367                         continue;
2368                 if ((value = strchr(this_char,'=')) != NULL) {
2369                         *value++ = 0;
2370                 } else {
2371                         printk(KERN_ERR
2372                             "tmpfs: No value for mount option '%s'\n",
2373                             this_char);
2374                         goto error;
2375                 }
2376
2377                 if (!strcmp(this_char,"size")) {
2378                         unsigned long long size;
2379                         size = memparse(value,&rest);
2380                         if (*rest == '%') {
2381                                 size <<= PAGE_SHIFT;
2382                                 size *= totalram_pages;
2383                                 do_div(size, 100);
2384                                 rest++;
2385                         }
2386                         if (*rest)
2387                                 goto bad_val;
2388                         sbinfo->max_blocks =
2389                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2390                 } else if (!strcmp(this_char,"nr_blocks")) {
2391                         sbinfo->max_blocks = memparse(value, &rest);
2392                         if (*rest)
2393                                 goto bad_val;
2394                 } else if (!strcmp(this_char,"nr_inodes")) {
2395                         sbinfo->max_inodes = memparse(value, &rest);
2396                         if (*rest)
2397                                 goto bad_val;
2398                 } else if (!strcmp(this_char,"mode")) {
2399                         if (remount)
2400                                 continue;
2401                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2402                         if (*rest)
2403                                 goto bad_val;
2404                 } else if (!strcmp(this_char,"uid")) {
2405                         if (remount)
2406                                 continue;
2407                         uid = simple_strtoul(value, &rest, 0);
2408                         if (*rest)
2409                                 goto bad_val;
2410                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2411                         if (!uid_valid(sbinfo->uid))
2412                                 goto bad_val;
2413                 } else if (!strcmp(this_char,"gid")) {
2414                         if (remount)
2415                                 continue;
2416                         gid = simple_strtoul(value, &rest, 0);
2417                         if (*rest)
2418                                 goto bad_val;
2419                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2420                         if (!gid_valid(sbinfo->gid))
2421                                 goto bad_val;
2422                 } else if (!strcmp(this_char,"mpol")) {
2423                         mpol_put(mpol);
2424                         mpol = NULL;
2425                         if (mpol_parse_str(value, &mpol))
2426                                 goto bad_val;
2427                 } else {
2428                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2429                                this_char);
2430                         goto error;
2431                 }
2432         }
2433         sbinfo->mpol = mpol;
2434         return 0;
2435
2436 bad_val:
2437         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2438                value, this_char);
2439 error:
2440         mpol_put(mpol);
2441         return 1;
2442
2443 }
2444
2445 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2446 {
2447         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2448         struct shmem_sb_info config = *sbinfo;
2449         unsigned long inodes;
2450         int error = -EINVAL;
2451
2452         config.mpol = NULL;
2453         if (shmem_parse_options(data, &config, true))
2454                 return error;
2455
2456         spin_lock(&sbinfo->stat_lock);
2457         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2458         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2459                 goto out;
2460         if (config.max_inodes < inodes)
2461                 goto out;
2462         /*
2463          * Those tests disallow limited->unlimited while any are in use;
2464          * but we must separately disallow unlimited->limited, because
2465          * in that case we have no record of how much is already in use.
2466          */
2467         if (config.max_blocks && !sbinfo->max_blocks)
2468                 goto out;
2469         if (config.max_inodes && !sbinfo->max_inodes)
2470                 goto out;
2471
2472         error = 0;
2473         sbinfo->max_blocks  = config.max_blocks;
2474         sbinfo->max_inodes  = config.max_inodes;
2475         sbinfo->free_inodes = config.max_inodes - inodes;
2476
2477         /*
2478          * Preserve previous mempolicy unless mpol remount option was specified.
2479          */
2480         if (config.mpol) {
2481                 mpol_put(sbinfo->mpol);
2482                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2483         }
2484 out:
2485         spin_unlock(&sbinfo->stat_lock);
2486         return error;
2487 }
2488
2489 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2490 {
2491         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2492
2493         if (sbinfo->max_blocks != shmem_default_max_blocks())
2494                 seq_printf(seq, ",size=%luk",
2495                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2496         if (sbinfo->max_inodes != shmem_default_max_inodes())
2497                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2498         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2499                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2500         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2501                 seq_printf(seq, ",uid=%u",
2502                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2503         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2504                 seq_printf(seq, ",gid=%u",
2505                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2506         shmem_show_mpol(seq, sbinfo->mpol);
2507         return 0;
2508 }
2509 #endif /* CONFIG_TMPFS */
2510
2511 static void shmem_put_super(struct super_block *sb)
2512 {
2513         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2514
2515         percpu_counter_destroy(&sbinfo->used_blocks);
2516         mpol_put(sbinfo->mpol);
2517         kfree(sbinfo);
2518         sb->s_fs_info = NULL;
2519 }
2520
2521 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2522 {
2523         struct inode *inode;
2524         struct shmem_sb_info *sbinfo;
2525         int err = -ENOMEM;
2526
2527         /* Round up to L1_CACHE_BYTES to resist false sharing */
2528         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2529                                 L1_CACHE_BYTES), GFP_KERNEL);
2530         if (!sbinfo)
2531                 return -ENOMEM;
2532
2533         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2534         sbinfo->uid = current_fsuid();
2535         sbinfo->gid = current_fsgid();
2536         sb->s_fs_info = sbinfo;
2537
2538 #ifdef CONFIG_TMPFS
2539         /*
2540          * Per default we only allow half of the physical ram per
2541          * tmpfs instance, limiting inodes to one per page of lowmem;
2542          * but the internal instance is left unlimited.
2543          */
2544         if (!(sb->s_flags & MS_KERNMOUNT)) {
2545                 sbinfo->max_blocks = shmem_default_max_blocks();
2546                 sbinfo->max_inodes = shmem_default_max_inodes();
2547                 if (shmem_parse_options(data, sbinfo, false)) {
2548                         err = -EINVAL;
2549                         goto failed;
2550                 }
2551         } else {
2552                 sb->s_flags |= MS_NOUSER;
2553         }
2554         sb->s_export_op = &shmem_export_ops;
2555         sb->s_flags |= MS_NOSEC;
2556 #else
2557         sb->s_flags |= MS_NOUSER;
2558 #endif
2559
2560         spin_lock_init(&sbinfo->stat_lock);
2561         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2562                 goto failed;
2563         sbinfo->free_inodes = sbinfo->max_inodes;
2564
2565         sb->s_maxbytes = MAX_LFS_FILESIZE;
2566         sb->s_blocksize = PAGE_CACHE_SIZE;
2567         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2568         sb->s_magic = TMPFS_MAGIC;
2569         sb->s_op = &shmem_ops;
2570         sb->s_time_gran = 1;
2571 #ifdef CONFIG_TMPFS_XATTR
2572         sb->s_xattr = shmem_xattr_handlers;
2573 #endif
2574 #ifdef CONFIG_TMPFS_POSIX_ACL
2575         sb->s_flags |= MS_POSIXACL;
2576 #endif
2577
2578         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2579         if (!inode)
2580                 goto failed;
2581         inode->i_uid = sbinfo->uid;
2582         inode->i_gid = sbinfo->gid;
2583         sb->s_root = d_make_root(inode);
2584         if (!sb->s_root)
2585                 goto failed;
2586         return 0;
2587
2588 failed:
2589         shmem_put_super(sb);
2590         return err;
2591 }
2592
2593 static struct kmem_cache *shmem_inode_cachep;
2594
2595 static struct inode *shmem_alloc_inode(struct super_block *sb)
2596 {
2597         struct shmem_inode_info *info;
2598         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2599         if (!info)
2600                 return NULL;
2601         return &info->vfs_inode;
2602 }
2603
2604 static void shmem_destroy_callback(struct rcu_head *head)
2605 {
2606         struct inode *inode = container_of(head, struct inode, i_rcu);
2607         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2608 }
2609
2610 static void shmem_destroy_inode(struct inode *inode)
2611 {
2612         if (S_ISREG(inode->i_mode))
2613                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2614         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2615 }
2616
2617 static void shmem_init_inode(void *foo)
2618 {
2619         struct shmem_inode_info *info = foo;
2620         inode_init_once(&info->vfs_inode);
2621 }
2622
2623 static int shmem_init_inodecache(void)
2624 {
2625         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2626                                 sizeof(struct shmem_inode_info),
2627                                 0, SLAB_PANIC, shmem_init_inode);
2628         return 0;
2629 }
2630
2631 static void shmem_destroy_inodecache(void)
2632 {
2633         kmem_cache_destroy(shmem_inode_cachep);
2634 }
2635
2636 static const struct address_space_operations shmem_aops = {
2637         .writepage      = shmem_writepage,
2638         .set_page_dirty = __set_page_dirty_no_writeback,
2639 #ifdef CONFIG_TMPFS
2640         .write_begin    = shmem_write_begin,
2641         .write_end      = shmem_write_end,
2642 #endif
2643         .migratepage    = migrate_page,
2644         .error_remove_page = generic_error_remove_page,
2645 };
2646
2647 static const struct file_operations shmem_file_operations = {
2648         .mmap           = shmem_mmap,
2649 #ifdef CONFIG_TMPFS
2650         .llseek         = shmem_file_llseek,
2651         .read           = do_sync_read,
2652         .write          = do_sync_write,
2653         .aio_read       = shmem_file_aio_read,
2654         .aio_write      = generic_file_aio_write,
2655         .fsync          = noop_fsync,
2656         .splice_read    = shmem_file_splice_read,
2657         .splice_write   = generic_file_splice_write,
2658         .fallocate      = shmem_fallocate,
2659 #endif
2660 };
2661
2662 static const struct inode_operations shmem_inode_operations = {
2663         .setattr        = shmem_setattr,
2664 #ifdef CONFIG_TMPFS_XATTR
2665         .setxattr       = shmem_setxattr,
2666         .getxattr       = shmem_getxattr,
2667         .listxattr      = shmem_listxattr,
2668         .removexattr    = shmem_removexattr,
2669         .set_acl        = simple_set_acl,
2670 #endif
2671 };
2672
2673 static const struct inode_operations shmem_dir_inode_operations = {
2674 #ifdef CONFIG_TMPFS
2675         .create         = shmem_create,
2676         .lookup         = simple_lookup,
2677         .link           = shmem_link,
2678         .unlink         = shmem_unlink,
2679         .symlink        = shmem_symlink,
2680         .mkdir          = shmem_mkdir,
2681         .rmdir          = shmem_rmdir,
2682         .mknod          = shmem_mknod,
2683         .rename         = shmem_rename,
2684         .tmpfile        = shmem_tmpfile,
2685 #endif
2686 #ifdef CONFIG_TMPFS_XATTR
2687         .setxattr       = shmem_setxattr,
2688         .getxattr       = shmem_getxattr,
2689         .listxattr      = shmem_listxattr,
2690         .removexattr    = shmem_removexattr,
2691 #endif
2692 #ifdef CONFIG_TMPFS_POSIX_ACL
2693         .setattr        = shmem_setattr,
2694         .set_acl        = simple_set_acl,
2695 #endif
2696 };
2697
2698 static const struct inode_operations shmem_special_inode_operations = {
2699 #ifdef CONFIG_TMPFS_XATTR
2700         .setxattr       = shmem_setxattr,
2701         .getxattr       = shmem_getxattr,
2702         .listxattr      = shmem_listxattr,
2703         .removexattr    = shmem_removexattr,
2704 #endif
2705 #ifdef CONFIG_TMPFS_POSIX_ACL
2706         .setattr        = shmem_setattr,
2707         .set_acl        = simple_set_acl,
2708 #endif
2709 };
2710
2711 static const struct super_operations shmem_ops = {
2712         .alloc_inode    = shmem_alloc_inode,
2713         .destroy_inode  = shmem_destroy_inode,
2714 #ifdef CONFIG_TMPFS
2715         .statfs         = shmem_statfs,
2716         .remount_fs     = shmem_remount_fs,
2717         .show_options   = shmem_show_options,
2718 #endif
2719         .evict_inode    = shmem_evict_inode,
2720         .drop_inode     = generic_delete_inode,
2721         .put_super      = shmem_put_super,
2722 };
2723
2724 static const struct vm_operations_struct shmem_vm_ops = {
2725         .fault          = shmem_fault,
2726         .map_pages      = filemap_map_pages,
2727 #ifdef CONFIG_NUMA
2728         .set_policy     = shmem_set_policy,
2729         .get_policy     = shmem_get_policy,
2730 #endif
2731         .remap_pages    = generic_file_remap_pages,
2732 };
2733
2734 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2735         int flags, const char *dev_name, void *data)
2736 {
2737         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2738 }
2739
2740 static struct file_system_type shmem_fs_type = {
2741         .owner          = THIS_MODULE,
2742         .name           = "tmpfs",
2743         .mount          = shmem_mount,
2744         .kill_sb        = kill_litter_super,
2745         .fs_flags       = FS_USERNS_MOUNT,
2746 };
2747
2748 int __init shmem_init(void)
2749 {
2750         int error;
2751
2752         /* If rootfs called this, don't re-init */
2753         if (shmem_inode_cachep)
2754                 return 0;
2755
2756         error = bdi_init(&shmem_backing_dev_info);
2757         if (error)
2758                 goto out4;
2759
2760         error = shmem_init_inodecache();
2761         if (error)
2762                 goto out3;
2763
2764         error = register_filesystem(&shmem_fs_type);
2765         if (error) {
2766                 printk(KERN_ERR "Could not register tmpfs\n");
2767                 goto out2;
2768         }
2769
2770         shm_mnt = kern_mount(&shmem_fs_type);
2771         if (IS_ERR(shm_mnt)) {
2772                 error = PTR_ERR(shm_mnt);
2773                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2774                 goto out1;
2775         }
2776         return 0;
2777
2778 out1:
2779         unregister_filesystem(&shmem_fs_type);
2780 out2:
2781         shmem_destroy_inodecache();
2782 out3:
2783         bdi_destroy(&shmem_backing_dev_info);
2784 out4:
2785         shm_mnt = ERR_PTR(error);
2786         return error;
2787 }
2788
2789 #else /* !CONFIG_SHMEM */
2790
2791 /*
2792  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2793  *
2794  * This is intended for small system where the benefits of the full
2795  * shmem code (swap-backed and resource-limited) are outweighed by
2796  * their complexity. On systems without swap this code should be
2797  * effectively equivalent, but much lighter weight.
2798  */
2799
2800 static struct file_system_type shmem_fs_type = {
2801         .name           = "tmpfs",
2802         .mount          = ramfs_mount,
2803         .kill_sb        = kill_litter_super,
2804         .fs_flags       = FS_USERNS_MOUNT,
2805 };
2806
2807 int __init shmem_init(void)
2808 {
2809         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2810
2811         shm_mnt = kern_mount(&shmem_fs_type);
2812         BUG_ON(IS_ERR(shm_mnt));
2813
2814         return 0;
2815 }
2816
2817 int shmem_unuse(swp_entry_t swap, struct page *page)
2818 {
2819         return 0;
2820 }
2821
2822 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2823 {
2824         return 0;
2825 }
2826
2827 void shmem_unlock_mapping(struct address_space *mapping)
2828 {
2829 }
2830
2831 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2832 {
2833         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2834 }
2835 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2836
2837 #define shmem_vm_ops                            generic_file_vm_ops
2838 #define shmem_file_operations                   ramfs_file_operations
2839 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2840 #define shmem_acct_size(flags, size)            0
2841 #define shmem_unacct_size(flags, size)          do {} while (0)
2842
2843 #endif /* CONFIG_SHMEM */
2844
2845 /* common code */
2846
2847 static struct dentry_operations anon_ops = {
2848         .d_dname = simple_dname
2849 };
2850
2851 static struct file *__shmem_file_setup(const char *name, loff_t size,
2852                                        unsigned long flags, unsigned int i_flags)
2853 {
2854         struct file *res;
2855         struct inode *inode;
2856         struct path path;
2857         struct super_block *sb;
2858         struct qstr this;
2859
2860         if (IS_ERR(shm_mnt))
2861                 return ERR_CAST(shm_mnt);
2862
2863         if (size < 0 || size > MAX_LFS_FILESIZE)
2864                 return ERR_PTR(-EINVAL);
2865
2866         if (shmem_acct_size(flags, size))
2867                 return ERR_PTR(-ENOMEM);
2868
2869         res = ERR_PTR(-ENOMEM);
2870         this.name = name;
2871         this.len = strlen(name);
2872         this.hash = 0; /* will go */
2873         sb = shm_mnt->mnt_sb;
2874         path.dentry = d_alloc_pseudo(sb, &this);
2875         if (!path.dentry)
2876                 goto put_memory;
2877         d_set_d_op(path.dentry, &anon_ops);
2878         path.mnt = mntget(shm_mnt);
2879
2880         res = ERR_PTR(-ENOSPC);
2881         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2882         if (!inode)
2883                 goto put_dentry;
2884
2885         inode->i_flags |= i_flags;
2886         d_instantiate(path.dentry, inode);
2887         inode->i_size = size;
2888         clear_nlink(inode);     /* It is unlinked */
2889         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2890         if (IS_ERR(res))
2891                 goto put_dentry;
2892
2893         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2894                   &shmem_file_operations);
2895         if (IS_ERR(res))
2896                 goto put_dentry;
2897
2898         return res;
2899
2900 put_dentry:
2901         path_put(&path);
2902 put_memory:
2903         shmem_unacct_size(flags, size);
2904         return res;
2905 }
2906
2907 /**
2908  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2909  *      kernel internal.  There will be NO LSM permission checks against the
2910  *      underlying inode.  So users of this interface must do LSM checks at a
2911  *      higher layer.  The one user is the big_key implementation.  LSM checks
2912  *      are provided at the key level rather than the inode level.
2913  * @name: name for dentry (to be seen in /proc/<pid>/maps
2914  * @size: size to be set for the file
2915  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2916  */
2917 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2918 {
2919         return __shmem_file_setup(name, size, flags, S_PRIVATE);
2920 }
2921
2922 /**
2923  * shmem_file_setup - get an unlinked file living in tmpfs
2924  * @name: name for dentry (to be seen in /proc/<pid>/maps
2925  * @size: size to be set for the file
2926  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2927  */
2928 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2929 {
2930         return __shmem_file_setup(name, size, flags, 0);
2931 }
2932 EXPORT_SYMBOL_GPL(shmem_file_setup);
2933
2934 /**
2935  * shmem_zero_setup - setup a shared anonymous mapping
2936  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2937  */
2938 int shmem_zero_setup(struct vm_area_struct *vma)
2939 {
2940         struct file *file;
2941         loff_t size = vma->vm_end - vma->vm_start;
2942
2943         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2944         if (IS_ERR(file))
2945                 return PTR_ERR(file);
2946
2947         if (vma->vm_file)
2948                 fput(vma->vm_file);
2949         vma->vm_file = file;
2950         vma->vm_ops = &shmem_vm_ops;
2951         return 0;
2952 }
2953
2954 /**
2955  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2956  * @mapping:    the page's address_space
2957  * @index:      the page index
2958  * @gfp:        the page allocator flags to use if allocating
2959  *
2960  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2961  * with any new page allocations done using the specified allocation flags.
2962  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2963  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2964  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2965  *
2966  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2967  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2968  */
2969 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2970                                          pgoff_t index, gfp_t gfp)
2971 {
2972 #ifdef CONFIG_SHMEM
2973         struct inode *inode = mapping->host;
2974         struct page *page;
2975         int error;
2976
2977         BUG_ON(mapping->a_ops != &shmem_aops);
2978         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2979         if (error)
2980                 page = ERR_PTR(error);
2981         else
2982                 unlock_page(page);
2983         return page;
2984 #else
2985         /*
2986          * The tiny !SHMEM case uses ramfs without swap
2987          */
2988         return read_cache_page_gfp(mapping, index, gfp);
2989 #endif
2990 }
2991 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);