thp, memcg: split hugepage for memcg oom on cow
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209         if (!batch)
210                 return 0;
211
212         batch->next = NULL;
213         batch->nr   = 0;
214         batch->max  = MAX_GATHER_BATCH;
215
216         tlb->active->next = batch;
217         tlb->active = batch;
218
219         return 1;
220 }
221
222 /* tlb_gather_mmu
223  *      Called to initialize an (on-stack) mmu_gather structure for page-table
224  *      tear-down from @mm. The @fullmm argument is used when @mm is without
225  *      users and we're going to destroy the full address space (exit/execve).
226  */
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228 {
229         tlb->mm = mm;
230
231         tlb->fullmm     = fullmm;
232         tlb->need_flush = 0;
233         tlb->fast_mode  = (num_possible_cpus() == 1);
234         tlb->local.next = NULL;
235         tlb->local.nr   = 0;
236         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
237         tlb->active     = &tlb->local;
238
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240         tlb->batch = NULL;
241 #endif
242 }
243
244 void tlb_flush_mmu(struct mmu_gather *tlb)
245 {
246         struct mmu_gather_batch *batch;
247
248         if (!tlb->need_flush)
249                 return;
250         tlb->need_flush = 0;
251         tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253         tlb_table_flush(tlb);
254 #endif
255
256         if (tlb_fast_mode(tlb))
257                 return;
258
259         for (batch = &tlb->local; batch; batch = batch->next) {
260                 free_pages_and_swap_cache(batch->pages, batch->nr);
261                 batch->nr = 0;
262         }
263         tlb->active = &tlb->local;
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         tlb->need_flush = 1;
297
298         if (tlb_fast_mode(tlb)) {
299                 free_page_and_swap_cache(page);
300                 return 1; /* avoid calling tlb_flush_mmu() */
301         }
302
303         batch = tlb->active;
304         batch->pages[batch->nr++] = page;
305         if (batch->nr == batch->max) {
306                 if (!tlb_next_batch(tlb))
307                         return 0;
308                 batch = tlb->active;
309         }
310         VM_BUG_ON(batch->nr > batch->max);
311
312         return batch->max - batch->nr;
313 }
314
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322
323 static void tlb_remove_table_smp_sync(void *arg)
324 {
325         /* Simply deliver the interrupt */
326 }
327
328 static void tlb_remove_table_one(void *table)
329 {
330         /*
331          * This isn't an RCU grace period and hence the page-tables cannot be
332          * assumed to be actually RCU-freed.
333          *
334          * It is however sufficient for software page-table walkers that rely on
335          * IRQ disabling. See the comment near struct mmu_table_batch.
336          */
337         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338         __tlb_remove_table(table);
339 }
340
341 static void tlb_remove_table_rcu(struct rcu_head *head)
342 {
343         struct mmu_table_batch *batch;
344         int i;
345
346         batch = container_of(head, struct mmu_table_batch, rcu);
347
348         for (i = 0; i < batch->nr; i++)
349                 __tlb_remove_table(batch->tables[i]);
350
351         free_page((unsigned long)batch);
352 }
353
354 void tlb_table_flush(struct mmu_gather *tlb)
355 {
356         struct mmu_table_batch **batch = &tlb->batch;
357
358         if (*batch) {
359                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360                 *batch = NULL;
361         }
362 }
363
364 void tlb_remove_table(struct mmu_gather *tlb, void *table)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         tlb->need_flush = 1;
369
370         /*
371          * When there's less then two users of this mm there cannot be a
372          * concurrent page-table walk.
373          */
374         if (atomic_read(&tlb->mm->mm_users) < 2) {
375                 __tlb_remove_table(table);
376                 return;
377         }
378
379         if (*batch == NULL) {
380                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381                 if (*batch == NULL) {
382                         tlb_remove_table_one(table);
383                         return;
384                 }
385                 (*batch)->nr = 0;
386         }
387         (*batch)->tables[(*batch)->nr++] = table;
388         if ((*batch)->nr == MAX_TABLE_BATCH)
389                 tlb_table_flush(tlb);
390 }
391
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393
394 /*
395  * If a p?d_bad entry is found while walking page tables, report
396  * the error, before resetting entry to p?d_none.  Usually (but
397  * very seldom) called out from the p?d_none_or_clear_bad macros.
398  */
399
400 void pgd_clear_bad(pgd_t *pgd)
401 {
402         pgd_ERROR(*pgd);
403         pgd_clear(pgd);
404 }
405
406 void pud_clear_bad(pud_t *pud)
407 {
408         pud_ERROR(*pud);
409         pud_clear(pud);
410 }
411
412 void pmd_clear_bad(pmd_t *pmd)
413 {
414         pmd_ERROR(*pmd);
415         pmd_clear(pmd);
416 }
417
418 /*
419  * Note: this doesn't free the actual pages themselves. That
420  * has been handled earlier when unmapping all the memory regions.
421  */
422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423                            unsigned long addr)
424 {
425         pgtable_t token = pmd_pgtable(*pmd);
426         pmd_clear(pmd);
427         pte_free_tlb(tlb, token, addr);
428         tlb->mm->nr_ptes--;
429 }
430
431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432                                 unsigned long addr, unsigned long end,
433                                 unsigned long floor, unsigned long ceiling)
434 {
435         pmd_t *pmd;
436         unsigned long next;
437         unsigned long start;
438
439         start = addr;
440         pmd = pmd_offset(pud, addr);
441         do {
442                 next = pmd_addr_end(addr, end);
443                 if (pmd_none_or_clear_bad(pmd))
444                         continue;
445                 free_pte_range(tlb, pmd, addr);
446         } while (pmd++, addr = next, addr != end);
447
448         start &= PUD_MASK;
449         if (start < floor)
450                 return;
451         if (ceiling) {
452                 ceiling &= PUD_MASK;
453                 if (!ceiling)
454                         return;
455         }
456         if (end - 1 > ceiling - 1)
457                 return;
458
459         pmd = pmd_offset(pud, start);
460         pud_clear(pud);
461         pmd_free_tlb(tlb, pmd, start);
462 }
463
464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465                                 unsigned long addr, unsigned long end,
466                                 unsigned long floor, unsigned long ceiling)
467 {
468         pud_t *pud;
469         unsigned long next;
470         unsigned long start;
471
472         start = addr;
473         pud = pud_offset(pgd, addr);
474         do {
475                 next = pud_addr_end(addr, end);
476                 if (pud_none_or_clear_bad(pud))
477                         continue;
478                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479         } while (pud++, addr = next, addr != end);
480
481         start &= PGDIR_MASK;
482         if (start < floor)
483                 return;
484         if (ceiling) {
485                 ceiling &= PGDIR_MASK;
486                 if (!ceiling)
487                         return;
488         }
489         if (end - 1 > ceiling - 1)
490                 return;
491
492         pud = pud_offset(pgd, start);
493         pgd_clear(pgd);
494         pud_free_tlb(tlb, pud, start);
495 }
496
497 /*
498  * This function frees user-level page tables of a process.
499  *
500  * Must be called with pagetable lock held.
501  */
502 void free_pgd_range(struct mmu_gather *tlb,
503                         unsigned long addr, unsigned long end,
504                         unsigned long floor, unsigned long ceiling)
505 {
506         pgd_t *pgd;
507         unsigned long next;
508
509         /*
510          * The next few lines have given us lots of grief...
511          *
512          * Why are we testing PMD* at this top level?  Because often
513          * there will be no work to do at all, and we'd prefer not to
514          * go all the way down to the bottom just to discover that.
515          *
516          * Why all these "- 1"s?  Because 0 represents both the bottom
517          * of the address space and the top of it (using -1 for the
518          * top wouldn't help much: the masks would do the wrong thing).
519          * The rule is that addr 0 and floor 0 refer to the bottom of
520          * the address space, but end 0 and ceiling 0 refer to the top
521          * Comparisons need to use "end - 1" and "ceiling - 1" (though
522          * that end 0 case should be mythical).
523          *
524          * Wherever addr is brought up or ceiling brought down, we must
525          * be careful to reject "the opposite 0" before it confuses the
526          * subsequent tests.  But what about where end is brought down
527          * by PMD_SIZE below? no, end can't go down to 0 there.
528          *
529          * Whereas we round start (addr) and ceiling down, by different
530          * masks at different levels, in order to test whether a table
531          * now has no other vmas using it, so can be freed, we don't
532          * bother to round floor or end up - the tests don't need that.
533          */
534
535         addr &= PMD_MASK;
536         if (addr < floor) {
537                 addr += PMD_SIZE;
538                 if (!addr)
539                         return;
540         }
541         if (ceiling) {
542                 ceiling &= PMD_MASK;
543                 if (!ceiling)
544                         return;
545         }
546         if (end - 1 > ceiling - 1)
547                 end -= PMD_SIZE;
548         if (addr > end - 1)
549                 return;
550
551         pgd = pgd_offset(tlb->mm, addr);
552         do {
553                 next = pgd_addr_end(addr, end);
554                 if (pgd_none_or_clear_bad(pgd))
555                         continue;
556                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557         } while (pgd++, addr = next, addr != end);
558 }
559
560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561                 unsigned long floor, unsigned long ceiling)
562 {
563         while (vma) {
564                 struct vm_area_struct *next = vma->vm_next;
565                 unsigned long addr = vma->vm_start;
566
567                 /*
568                  * Hide vma from rmap and truncate_pagecache before freeing
569                  * pgtables
570                  */
571                 unlink_anon_vmas(vma);
572                 unlink_file_vma(vma);
573
574                 if (is_vm_hugetlb_page(vma)) {
575                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576                                 floor, next? next->vm_start: ceiling);
577                 } else {
578                         /*
579                          * Optimization: gather nearby vmas into one call down
580                          */
581                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582                                && !is_vm_hugetlb_page(next)) {
583                                 vma = next;
584                                 next = vma->vm_next;
585                                 unlink_anon_vmas(vma);
586                                 unlink_file_vma(vma);
587                         }
588                         free_pgd_range(tlb, addr, vma->vm_end,
589                                 floor, next? next->vm_start: ceiling);
590                 }
591                 vma = next;
592         }
593 }
594
595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596                 pmd_t *pmd, unsigned long address)
597 {
598         pgtable_t new = pte_alloc_one(mm, address);
599         int wait_split_huge_page;
600         if (!new)
601                 return -ENOMEM;
602
603         /*
604          * Ensure all pte setup (eg. pte page lock and page clearing) are
605          * visible before the pte is made visible to other CPUs by being
606          * put into page tables.
607          *
608          * The other side of the story is the pointer chasing in the page
609          * table walking code (when walking the page table without locking;
610          * ie. most of the time). Fortunately, these data accesses consist
611          * of a chain of data-dependent loads, meaning most CPUs (alpha
612          * being the notable exception) will already guarantee loads are
613          * seen in-order. See the alpha page table accessors for the
614          * smp_read_barrier_depends() barriers in page table walking code.
615          */
616         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
618         spin_lock(&mm->page_table_lock);
619         wait_split_huge_page = 0;
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 mm->nr_ptes++;
622                 pmd_populate(mm, pmd, new);
623                 new = NULL;
624         } else if (unlikely(pmd_trans_splitting(*pmd)))
625                 wait_split_huge_page = 1;
626         spin_unlock(&mm->page_table_lock);
627         if (new)
628                 pte_free(mm, new);
629         if (wait_split_huge_page)
630                 wait_split_huge_page(vma->anon_vma, pmd);
631         return 0;
632 }
633
634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635 {
636         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637         if (!new)
638                 return -ENOMEM;
639
640         smp_wmb(); /* See comment in __pte_alloc */
641
642         spin_lock(&init_mm.page_table_lock);
643         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
644                 pmd_populate_kernel(&init_mm, pmd, new);
645                 new = NULL;
646         } else
647                 VM_BUG_ON(pmd_trans_splitting(*pmd));
648         spin_unlock(&init_mm.page_table_lock);
649         if (new)
650                 pte_free_kernel(&init_mm, new);
651         return 0;
652 }
653
654 static inline void init_rss_vec(int *rss)
655 {
656         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657 }
658
659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660 {
661         int i;
662
663         if (current->mm == mm)
664                 sync_mm_rss(current, mm);
665         for (i = 0; i < NR_MM_COUNTERS; i++)
666                 if (rss[i])
667                         add_mm_counter(mm, i, rss[i]);
668 }
669
670 /*
671  * This function is called to print an error when a bad pte
672  * is found. For example, we might have a PFN-mapped pte in
673  * a region that doesn't allow it.
674  *
675  * The calling function must still handle the error.
676  */
677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678                           pte_t pte, struct page *page)
679 {
680         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681         pud_t *pud = pud_offset(pgd, addr);
682         pmd_t *pmd = pmd_offset(pud, addr);
683         struct address_space *mapping;
684         pgoff_t index;
685         static unsigned long resume;
686         static unsigned long nr_shown;
687         static unsigned long nr_unshown;
688
689         /*
690          * Allow a burst of 60 reports, then keep quiet for that minute;
691          * or allow a steady drip of one report per second.
692          */
693         if (nr_shown == 60) {
694                 if (time_before(jiffies, resume)) {
695                         nr_unshown++;
696                         return;
697                 }
698                 if (nr_unshown) {
699                         printk(KERN_ALERT
700                                 "BUG: Bad page map: %lu messages suppressed\n",
701                                 nr_unshown);
702                         nr_unshown = 0;
703                 }
704                 nr_shown = 0;
705         }
706         if (nr_shown++ == 0)
707                 resume = jiffies + 60 * HZ;
708
709         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710         index = linear_page_index(vma, addr);
711
712         printk(KERN_ALERT
713                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
714                 current->comm,
715                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
716         if (page)
717                 dump_page(page);
718         printk(KERN_ALERT
719                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721         /*
722          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723          */
724         if (vma->vm_ops)
725                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726                                 (unsigned long)vma->vm_ops->fault);
727         if (vma->vm_file && vma->vm_file->f_op)
728                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729                                 (unsigned long)vma->vm_file->f_op->mmap);
730         dump_stack();
731         add_taint(TAINT_BAD_PAGE);
732 }
733
734 static inline int is_cow_mapping(vm_flags_t flags)
735 {
736         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737 }
738
739 #ifndef is_zero_pfn
740 static inline int is_zero_pfn(unsigned long pfn)
741 {
742         return pfn == zero_pfn;
743 }
744 #endif
745
746 #ifndef my_zero_pfn
747 static inline unsigned long my_zero_pfn(unsigned long addr)
748 {
749         return zero_pfn;
750 }
751 #endif
752
753 /*
754  * vm_normal_page -- This function gets the "struct page" associated with a pte.
755  *
756  * "Special" mappings do not wish to be associated with a "struct page" (either
757  * it doesn't exist, or it exists but they don't want to touch it). In this
758  * case, NULL is returned here. "Normal" mappings do have a struct page.
759  *
760  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761  * pte bit, in which case this function is trivial. Secondly, an architecture
762  * may not have a spare pte bit, which requires a more complicated scheme,
763  * described below.
764  *
765  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766  * special mapping (even if there are underlying and valid "struct pages").
767  * COWed pages of a VM_PFNMAP are always normal.
768  *
769  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772  * mapping will always honor the rule
773  *
774  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775  *
776  * And for normal mappings this is false.
777  *
778  * This restricts such mappings to be a linear translation from virtual address
779  * to pfn. To get around this restriction, we allow arbitrary mappings so long
780  * as the vma is not a COW mapping; in that case, we know that all ptes are
781  * special (because none can have been COWed).
782  *
783  *
784  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785  *
786  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787  * page" backing, however the difference is that _all_ pages with a struct
788  * page (that is, those where pfn_valid is true) are refcounted and considered
789  * normal pages by the VM. The disadvantage is that pages are refcounted
790  * (which can be slower and simply not an option for some PFNMAP users). The
791  * advantage is that we don't have to follow the strict linearity rule of
792  * PFNMAP mappings in order to support COWable mappings.
793  *
794  */
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
797 #else
798 # define HAVE_PTE_SPECIAL 0
799 #endif
800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801                                 pte_t pte)
802 {
803         unsigned long pfn = pte_pfn(pte);
804
805         if (HAVE_PTE_SPECIAL) {
806                 if (likely(!pte_special(pte)))
807                         goto check_pfn;
808                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809                         return NULL;
810                 if (!is_zero_pfn(pfn))
811                         print_bad_pte(vma, addr, pte, NULL);
812                 return NULL;
813         }
814
815         /* !HAVE_PTE_SPECIAL case follows: */
816
817         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818                 if (vma->vm_flags & VM_MIXEDMAP) {
819                         if (!pfn_valid(pfn))
820                                 return NULL;
821                         goto out;
822                 } else {
823                         unsigned long off;
824                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
825                         if (pfn == vma->vm_pgoff + off)
826                                 return NULL;
827                         if (!is_cow_mapping(vma->vm_flags))
828                                 return NULL;
829                 }
830         }
831
832         if (is_zero_pfn(pfn))
833                 return NULL;
834 check_pfn:
835         if (unlikely(pfn > highest_memmap_pfn)) {
836                 print_bad_pte(vma, addr, pte, NULL);
837                 return NULL;
838         }
839
840         /*
841          * NOTE! We still have PageReserved() pages in the page tables.
842          * eg. VDSO mappings can cause them to exist.
843          */
844 out:
845         return pfn_to_page(pfn);
846 }
847
848 /*
849  * copy one vm_area from one task to the other. Assumes the page tables
850  * already present in the new task to be cleared in the whole range
851  * covered by this vma.
852  */
853
854 static inline unsigned long
855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857                 unsigned long addr, int *rss)
858 {
859         unsigned long vm_flags = vma->vm_flags;
860         pte_t pte = *src_pte;
861         struct page *page;
862
863         /* pte contains position in swap or file, so copy. */
864         if (unlikely(!pte_present(pte))) {
865                 if (!pte_file(pte)) {
866                         swp_entry_t entry = pte_to_swp_entry(pte);
867
868                         if (swap_duplicate(entry) < 0)
869                                 return entry.val;
870
871                         /* make sure dst_mm is on swapoff's mmlist. */
872                         if (unlikely(list_empty(&dst_mm->mmlist))) {
873                                 spin_lock(&mmlist_lock);
874                                 if (list_empty(&dst_mm->mmlist))
875                                         list_add(&dst_mm->mmlist,
876                                                  &src_mm->mmlist);
877                                 spin_unlock(&mmlist_lock);
878                         }
879                         if (likely(!non_swap_entry(entry)))
880                                 rss[MM_SWAPENTS]++;
881                         else if (is_write_migration_entry(entry) &&
882                                         is_cow_mapping(vm_flags)) {
883                                 /*
884                                  * COW mappings require pages in both parent
885                                  * and child to be set to read.
886                                  */
887                                 make_migration_entry_read(&entry);
888                                 pte = swp_entry_to_pte(entry);
889                                 set_pte_at(src_mm, addr, src_pte, pte);
890                         }
891                 }
892                 goto out_set_pte;
893         }
894
895         /*
896          * If it's a COW mapping, write protect it both
897          * in the parent and the child
898          */
899         if (is_cow_mapping(vm_flags)) {
900                 ptep_set_wrprotect(src_mm, addr, src_pte);
901                 pte = pte_wrprotect(pte);
902         }
903
904         /*
905          * If it's a shared mapping, mark it clean in
906          * the child
907          */
908         if (vm_flags & VM_SHARED)
909                 pte = pte_mkclean(pte);
910         pte = pte_mkold(pte);
911
912         page = vm_normal_page(vma, addr, pte);
913         if (page) {
914                 get_page(page);
915                 page_dup_rmap(page);
916                 if (PageAnon(page))
917                         rss[MM_ANONPAGES]++;
918                 else
919                         rss[MM_FILEPAGES]++;
920         }
921
922 out_set_pte:
923         set_pte_at(dst_mm, addr, dst_pte, pte);
924         return 0;
925 }
926
927 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929                    unsigned long addr, unsigned long end)
930 {
931         pte_t *orig_src_pte, *orig_dst_pte;
932         pte_t *src_pte, *dst_pte;
933         spinlock_t *src_ptl, *dst_ptl;
934         int progress = 0;
935         int rss[NR_MM_COUNTERS];
936         swp_entry_t entry = (swp_entry_t){0};
937
938 again:
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte)
943                 return -ENOMEM;
944         src_pte = pte_offset_map(src_pmd, addr);
945         src_ptl = pte_lockptr(src_mm, src_pmd);
946         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947         orig_src_pte = src_pte;
948         orig_dst_pte = dst_pte;
949         arch_enter_lazy_mmu_mode();
950
951         do {
952                 /*
953                  * We are holding two locks at this point - either of them
954                  * could generate latencies in another task on another CPU.
955                  */
956                 if (progress >= 32) {
957                         progress = 0;
958                         if (need_resched() ||
959                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960                                 break;
961                 }
962                 if (pte_none(*src_pte)) {
963                         progress++;
964                         continue;
965                 }
966                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967                                                         vma, addr, rss);
968                 if (entry.val)
969                         break;
970                 progress += 8;
971         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972
973         arch_leave_lazy_mmu_mode();
974         spin_unlock(src_ptl);
975         pte_unmap(orig_src_pte);
976         add_mm_rss_vec(dst_mm, rss);
977         pte_unmap_unlock(orig_dst_pte, dst_ptl);
978         cond_resched();
979
980         if (entry.val) {
981                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982                         return -ENOMEM;
983                 progress = 0;
984         }
985         if (addr != end)
986                 goto again;
987         return 0;
988 }
989
990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992                 unsigned long addr, unsigned long end)
993 {
994         pmd_t *src_pmd, *dst_pmd;
995         unsigned long next;
996
997         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998         if (!dst_pmd)
999                 return -ENOMEM;
1000         src_pmd = pmd_offset(src_pud, addr);
1001         do {
1002                 next = pmd_addr_end(addr, end);
1003                 if (pmd_trans_huge(*src_pmd)) {
1004                         int err;
1005                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006                         err = copy_huge_pmd(dst_mm, src_mm,
1007                                             dst_pmd, src_pmd, addr, vma);
1008                         if (err == -ENOMEM)
1009                                 return -ENOMEM;
1010                         if (!err)
1011                                 continue;
1012                         /* fall through */
1013                 }
1014                 if (pmd_none_or_clear_bad(src_pmd))
1015                         continue;
1016                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017                                                 vma, addr, next))
1018                         return -ENOMEM;
1019         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020         return 0;
1021 }
1022
1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025                 unsigned long addr, unsigned long end)
1026 {
1027         pud_t *src_pud, *dst_pud;
1028         unsigned long next;
1029
1030         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031         if (!dst_pud)
1032                 return -ENOMEM;
1033         src_pud = pud_offset(src_pgd, addr);
1034         do {
1035                 next = pud_addr_end(addr, end);
1036                 if (pud_none_or_clear_bad(src_pud))
1037                         continue;
1038                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039                                                 vma, addr, next))
1040                         return -ENOMEM;
1041         } while (dst_pud++, src_pud++, addr = next, addr != end);
1042         return 0;
1043 }
1044
1045 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046                 struct vm_area_struct *vma)
1047 {
1048         pgd_t *src_pgd, *dst_pgd;
1049         unsigned long next;
1050         unsigned long addr = vma->vm_start;
1051         unsigned long end = vma->vm_end;
1052         int ret;
1053
1054         /*
1055          * Don't copy ptes where a page fault will fill them correctly.
1056          * Fork becomes much lighter when there are big shared or private
1057          * readonly mappings. The tradeoff is that copy_page_range is more
1058          * efficient than faulting.
1059          */
1060         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061                 if (!vma->anon_vma)
1062                         return 0;
1063         }
1064
1065         if (is_vm_hugetlb_page(vma))
1066                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068         if (unlikely(is_pfn_mapping(vma))) {
1069                 /*
1070                  * We do not free on error cases below as remove_vma
1071                  * gets called on error from higher level routine
1072                  */
1073                 ret = track_pfn_vma_copy(vma);
1074                 if (ret)
1075                         return ret;
1076         }
1077
1078         /*
1079          * We need to invalidate the secondary MMU mappings only when
1080          * there could be a permission downgrade on the ptes of the
1081          * parent mm. And a permission downgrade will only happen if
1082          * is_cow_mapping() returns true.
1083          */
1084         if (is_cow_mapping(vma->vm_flags))
1085                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086
1087         ret = 0;
1088         dst_pgd = pgd_offset(dst_mm, addr);
1089         src_pgd = pgd_offset(src_mm, addr);
1090         do {
1091                 next = pgd_addr_end(addr, end);
1092                 if (pgd_none_or_clear_bad(src_pgd))
1093                         continue;
1094                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095                                             vma, addr, next))) {
1096                         ret = -ENOMEM;
1097                         break;
1098                 }
1099         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101         if (is_cow_mapping(vma->vm_flags))
1102                 mmu_notifier_invalidate_range_end(src_mm,
1103                                                   vma->vm_start, end);
1104         return ret;
1105 }
1106
1107 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108                                 struct vm_area_struct *vma, pmd_t *pmd,
1109                                 unsigned long addr, unsigned long end,
1110                                 struct zap_details *details)
1111 {
1112         struct mm_struct *mm = tlb->mm;
1113         int force_flush = 0;
1114         int rss[NR_MM_COUNTERS];
1115         spinlock_t *ptl;
1116         pte_t *start_pte;
1117         pte_t *pte;
1118
1119 again:
1120         init_rss_vec(rss);
1121         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122         pte = start_pte;
1123         arch_enter_lazy_mmu_mode();
1124         do {
1125                 pte_t ptent = *pte;
1126                 if (pte_none(ptent)) {
1127                         continue;
1128                 }
1129
1130                 if (pte_present(ptent)) {
1131                         struct page *page;
1132
1133                         page = vm_normal_page(vma, addr, ptent);
1134                         if (unlikely(details) && page) {
1135                                 /*
1136                                  * unmap_shared_mapping_pages() wants to
1137                                  * invalidate cache without truncating:
1138                                  * unmap shared but keep private pages.
1139                                  */
1140                                 if (details->check_mapping &&
1141                                     details->check_mapping != page->mapping)
1142                                         continue;
1143                                 /*
1144                                  * Each page->index must be checked when
1145                                  * invalidating or truncating nonlinear.
1146                                  */
1147                                 if (details->nonlinear_vma &&
1148                                     (page->index < details->first_index ||
1149                                      page->index > details->last_index))
1150                                         continue;
1151                         }
1152                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1153                                                         tlb->fullmm);
1154                         tlb_remove_tlb_entry(tlb, pte, addr);
1155                         if (unlikely(!page))
1156                                 continue;
1157                         if (unlikely(details) && details->nonlinear_vma
1158                             && linear_page_index(details->nonlinear_vma,
1159                                                 addr) != page->index)
1160                                 set_pte_at(mm, addr, pte,
1161                                            pgoff_to_pte(page->index));
1162                         if (PageAnon(page))
1163                                 rss[MM_ANONPAGES]--;
1164                         else {
1165                                 if (pte_dirty(ptent))
1166                                         set_page_dirty(page);
1167                                 if (pte_young(ptent) &&
1168                                     likely(!VM_SequentialReadHint(vma)))
1169                                         mark_page_accessed(page);
1170                                 rss[MM_FILEPAGES]--;
1171                         }
1172                         page_remove_rmap(page);
1173                         if (unlikely(page_mapcount(page) < 0))
1174                                 print_bad_pte(vma, addr, ptent, page);
1175                         force_flush = !__tlb_remove_page(tlb, page);
1176                         if (force_flush)
1177                                 break;
1178                         continue;
1179                 }
1180                 /*
1181                  * If details->check_mapping, we leave swap entries;
1182                  * if details->nonlinear_vma, we leave file entries.
1183                  */
1184                 if (unlikely(details))
1185                         continue;
1186                 if (pte_file(ptent)) {
1187                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188                                 print_bad_pte(vma, addr, ptent, NULL);
1189                 } else {
1190                         swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192                         if (!non_swap_entry(entry))
1193                                 rss[MM_SWAPENTS]--;
1194                         if (unlikely(!free_swap_and_cache(entry)))
1195                                 print_bad_pte(vma, addr, ptent, NULL);
1196                 }
1197                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198         } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200         add_mm_rss_vec(mm, rss);
1201         arch_leave_lazy_mmu_mode();
1202         pte_unmap_unlock(start_pte, ptl);
1203
1204         /*
1205          * mmu_gather ran out of room to batch pages, we break out of
1206          * the PTE lock to avoid doing the potential expensive TLB invalidate
1207          * and page-free while holding it.
1208          */
1209         if (force_flush) {
1210                 force_flush = 0;
1211                 tlb_flush_mmu(tlb);
1212                 if (addr != end)
1213                         goto again;
1214         }
1215
1216         return addr;
1217 }
1218
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220                                 struct vm_area_struct *vma, pud_t *pud,
1221                                 unsigned long addr, unsigned long end,
1222                                 struct zap_details *details)
1223 {
1224         pmd_t *pmd;
1225         unsigned long next;
1226
1227         pmd = pmd_offset(pud, addr);
1228         do {
1229                 next = pmd_addr_end(addr, end);
1230                 if (pmd_trans_huge(*pmd)) {
1231                         if (next - addr != HPAGE_PMD_SIZE) {
1232                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233                                 split_huge_page_pmd(vma->vm_mm, pmd);
1234                         } else if (zap_huge_pmd(tlb, vma, pmd))
1235                                 goto next;
1236                         /* fall through */
1237                 }
1238                 /*
1239                  * Here there can be other concurrent MADV_DONTNEED or
1240                  * trans huge page faults running, and if the pmd is
1241                  * none or trans huge it can change under us. This is
1242                  * because MADV_DONTNEED holds the mmap_sem in read
1243                  * mode.
1244                  */
1245                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1246                         goto next;
1247                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1248 next:
1249                 cond_resched();
1250         } while (pmd++, addr = next, addr != end);
1251
1252         return addr;
1253 }
1254
1255 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1256                                 struct vm_area_struct *vma, pgd_t *pgd,
1257                                 unsigned long addr, unsigned long end,
1258                                 struct zap_details *details)
1259 {
1260         pud_t *pud;
1261         unsigned long next;
1262
1263         pud = pud_offset(pgd, addr);
1264         do {
1265                 next = pud_addr_end(addr, end);
1266                 if (pud_none_or_clear_bad(pud))
1267                         continue;
1268                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1269         } while (pud++, addr = next, addr != end);
1270
1271         return addr;
1272 }
1273
1274 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1275                                 struct vm_area_struct *vma,
1276                                 unsigned long addr, unsigned long end,
1277                                 struct zap_details *details)
1278 {
1279         pgd_t *pgd;
1280         unsigned long next;
1281
1282         if (details && !details->check_mapping && !details->nonlinear_vma)
1283                 details = NULL;
1284
1285         BUG_ON(addr >= end);
1286         mem_cgroup_uncharge_start();
1287         tlb_start_vma(tlb, vma);
1288         pgd = pgd_offset(vma->vm_mm, addr);
1289         do {
1290                 next = pgd_addr_end(addr, end);
1291                 if (pgd_none_or_clear_bad(pgd))
1292                         continue;
1293                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1294         } while (pgd++, addr = next, addr != end);
1295         tlb_end_vma(tlb, vma);
1296         mem_cgroup_uncharge_end();
1297
1298         return addr;
1299 }
1300
1301 /**
1302  * unmap_vmas - unmap a range of memory covered by a list of vma's
1303  * @tlb: address of the caller's struct mmu_gather
1304  * @vma: the starting vma
1305  * @start_addr: virtual address at which to start unmapping
1306  * @end_addr: virtual address at which to end unmapping
1307  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1308  * @details: details of nonlinear truncation or shared cache invalidation
1309  *
1310  * Returns the end address of the unmapping (restart addr if interrupted).
1311  *
1312  * Unmap all pages in the vma list.
1313  *
1314  * Only addresses between `start' and `end' will be unmapped.
1315  *
1316  * The VMA list must be sorted in ascending virtual address order.
1317  *
1318  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1319  * range after unmap_vmas() returns.  So the only responsibility here is to
1320  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1321  * drops the lock and schedules.
1322  */
1323 unsigned long unmap_vmas(struct mmu_gather *tlb,
1324                 struct vm_area_struct *vma, unsigned long start_addr,
1325                 unsigned long end_addr, unsigned long *nr_accounted,
1326                 struct zap_details *details)
1327 {
1328         unsigned long start = start_addr;
1329         struct mm_struct *mm = vma->vm_mm;
1330
1331         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1332         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1333                 unsigned long end;
1334
1335                 start = max(vma->vm_start, start_addr);
1336                 if (start >= vma->vm_end)
1337                         continue;
1338                 end = min(vma->vm_end, end_addr);
1339                 if (end <= vma->vm_start)
1340                         continue;
1341
1342                 if (vma->vm_flags & VM_ACCOUNT)
1343                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1344
1345                 if (unlikely(is_pfn_mapping(vma)))
1346                         untrack_pfn_vma(vma, 0, 0);
1347
1348                 while (start != end) {
1349                         if (unlikely(is_vm_hugetlb_page(vma))) {
1350                                 /*
1351                                  * It is undesirable to test vma->vm_file as it
1352                                  * should be non-null for valid hugetlb area.
1353                                  * However, vm_file will be NULL in the error
1354                                  * cleanup path of do_mmap_pgoff. When
1355                                  * hugetlbfs ->mmap method fails,
1356                                  * do_mmap_pgoff() nullifies vma->vm_file
1357                                  * before calling this function to clean up.
1358                                  * Since no pte has actually been setup, it is
1359                                  * safe to do nothing in this case.
1360                                  */
1361                                 if (vma->vm_file) {
1362                                         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1363                                         __unmap_hugepage_range_final(vma, start, end, NULL);
1364                                         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1365                                 }
1366
1367                                 start = end;
1368                         } else
1369                                 start = unmap_page_range(tlb, vma, start, end, details);
1370                 }
1371         }
1372
1373         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1374         return start;   /* which is now the end (or restart) address */
1375 }
1376
1377 /**
1378  * zap_page_range - remove user pages in a given range
1379  * @vma: vm_area_struct holding the applicable pages
1380  * @address: starting address of pages to zap
1381  * @size: number of bytes to zap
1382  * @details: details of nonlinear truncation or shared cache invalidation
1383  */
1384 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1385                 unsigned long size, struct zap_details *details)
1386 {
1387         struct mm_struct *mm = vma->vm_mm;
1388         struct mmu_gather tlb;
1389         unsigned long end = address + size;
1390         unsigned long nr_accounted = 0;
1391
1392         lru_add_drain();
1393         tlb_gather_mmu(&tlb, mm, 0);
1394         update_hiwater_rss(mm);
1395         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1396         tlb_finish_mmu(&tlb, address, end);
1397         return end;
1398 }
1399
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  * Returns 0 if successful.
1411  */
1412 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413                 unsigned long size)
1414 {
1415         if (address < vma->vm_start || address + size > vma->vm_end ||
1416                         !(vma->vm_flags & VM_PFNMAP))
1417                 return -1;
1418         zap_page_range(vma, address, size, NULL);
1419         return 0;
1420 }
1421 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422
1423 /**
1424  * follow_page - look up a page descriptor from a user-virtual address
1425  * @vma: vm_area_struct mapping @address
1426  * @address: virtual address to look up
1427  * @flags: flags modifying lookup behaviour
1428  *
1429  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1430  *
1431  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1432  * an error pointer if there is a mapping to something not represented
1433  * by a page descriptor (see also vm_normal_page()).
1434  */
1435 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1436                         unsigned int flags)
1437 {
1438         pgd_t *pgd;
1439         pud_t *pud;
1440         pmd_t *pmd;
1441         pte_t *ptep, pte;
1442         spinlock_t *ptl;
1443         struct page *page;
1444         struct mm_struct *mm = vma->vm_mm;
1445
1446         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1447         if (!IS_ERR(page)) {
1448                 BUG_ON(flags & FOLL_GET);
1449                 goto out;
1450         }
1451
1452         page = NULL;
1453         pgd = pgd_offset(mm, address);
1454         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1455                 goto no_page_table;
1456
1457         pud = pud_offset(pgd, address);
1458         if (pud_none(*pud))
1459                 goto no_page_table;
1460         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1461                 BUG_ON(flags & FOLL_GET);
1462                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1463                 goto out;
1464         }
1465         if (unlikely(pud_bad(*pud)))
1466                 goto no_page_table;
1467
1468         pmd = pmd_offset(pud, address);
1469         if (pmd_none(*pmd))
1470                 goto no_page_table;
1471         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1472                 BUG_ON(flags & FOLL_GET);
1473                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1474                 goto out;
1475         }
1476         if (pmd_trans_huge(*pmd)) {
1477                 if (flags & FOLL_SPLIT) {
1478                         split_huge_page_pmd(mm, pmd);
1479                         goto split_fallthrough;
1480                 }
1481                 spin_lock(&mm->page_table_lock);
1482                 if (likely(pmd_trans_huge(*pmd))) {
1483                         if (unlikely(pmd_trans_splitting(*pmd))) {
1484                                 spin_unlock(&mm->page_table_lock);
1485                                 wait_split_huge_page(vma->anon_vma, pmd);
1486                         } else {
1487                                 page = follow_trans_huge_pmd(mm, address,
1488                                                              pmd, flags);
1489                                 spin_unlock(&mm->page_table_lock);
1490                                 goto out;
1491                         }
1492                 } else
1493                         spin_unlock(&mm->page_table_lock);
1494                 /* fall through */
1495         }
1496 split_fallthrough:
1497         if (unlikely(pmd_bad(*pmd)))
1498                 goto no_page_table;
1499
1500         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1501
1502         pte = *ptep;
1503         if (!pte_present(pte))
1504                 goto no_page;
1505         if ((flags & FOLL_WRITE) && !pte_write(pte))
1506                 goto unlock;
1507
1508         page = vm_normal_page(vma, address, pte);
1509         if (unlikely(!page)) {
1510                 if ((flags & FOLL_DUMP) ||
1511                     !is_zero_pfn(pte_pfn(pte)))
1512                         goto bad_page;
1513                 page = pte_page(pte);
1514         }
1515
1516         if (flags & FOLL_GET)
1517                 get_page_foll(page);
1518         if (flags & FOLL_TOUCH) {
1519                 if ((flags & FOLL_WRITE) &&
1520                     !pte_dirty(pte) && !PageDirty(page))
1521                         set_page_dirty(page);
1522                 /*
1523                  * pte_mkyoung() would be more correct here, but atomic care
1524                  * is needed to avoid losing the dirty bit: it is easier to use
1525                  * mark_page_accessed().
1526                  */
1527                 mark_page_accessed(page);
1528         }
1529         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1530                 /*
1531                  * The preliminary mapping check is mainly to avoid the
1532                  * pointless overhead of lock_page on the ZERO_PAGE
1533                  * which might bounce very badly if there is contention.
1534                  *
1535                  * If the page is already locked, we don't need to
1536                  * handle it now - vmscan will handle it later if and
1537                  * when it attempts to reclaim the page.
1538                  */
1539                 if (page->mapping && trylock_page(page)) {
1540                         lru_add_drain();  /* push cached pages to LRU */
1541                         /*
1542                          * Because we lock page here and migration is
1543                          * blocked by the pte's page reference, we need
1544                          * only check for file-cache page truncation.
1545                          */
1546                         if (page->mapping)
1547                                 mlock_vma_page(page);
1548                         unlock_page(page);
1549                 }
1550         }
1551 unlock:
1552         pte_unmap_unlock(ptep, ptl);
1553 out:
1554         return page;
1555
1556 bad_page:
1557         pte_unmap_unlock(ptep, ptl);
1558         return ERR_PTR(-EFAULT);
1559
1560 no_page:
1561         pte_unmap_unlock(ptep, ptl);
1562         if (!pte_none(pte))
1563                 return page;
1564
1565 no_page_table:
1566         /*
1567          * When core dumping an enormous anonymous area that nobody
1568          * has touched so far, we don't want to allocate unnecessary pages or
1569          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1570          * then get_dump_page() will return NULL to leave a hole in the dump.
1571          * But we can only make this optimization where a hole would surely
1572          * be zero-filled if handle_mm_fault() actually did handle it.
1573          */
1574         if ((flags & FOLL_DUMP) &&
1575             (!vma->vm_ops || !vma->vm_ops->fault))
1576                 return ERR_PTR(-EFAULT);
1577         return page;
1578 }
1579
1580 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1581 {
1582         return stack_guard_page_start(vma, addr) ||
1583                stack_guard_page_end(vma, addr+PAGE_SIZE);
1584 }
1585
1586 /**
1587  * __get_user_pages() - pin user pages in memory
1588  * @tsk:        task_struct of target task
1589  * @mm:         mm_struct of target mm
1590  * @start:      starting user address
1591  * @nr_pages:   number of pages from start to pin
1592  * @gup_flags:  flags modifying pin behaviour
1593  * @pages:      array that receives pointers to the pages pinned.
1594  *              Should be at least nr_pages long. Or NULL, if caller
1595  *              only intends to ensure the pages are faulted in.
1596  * @vmas:       array of pointers to vmas corresponding to each page.
1597  *              Or NULL if the caller does not require them.
1598  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1599  *
1600  * Returns number of pages pinned. This may be fewer than the number
1601  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1602  * were pinned, returns -errno. Each page returned must be released
1603  * with a put_page() call when it is finished with. vmas will only
1604  * remain valid while mmap_sem is held.
1605  *
1606  * Must be called with mmap_sem held for read or write.
1607  *
1608  * __get_user_pages walks a process's page tables and takes a reference to
1609  * each struct page that each user address corresponds to at a given
1610  * instant. That is, it takes the page that would be accessed if a user
1611  * thread accesses the given user virtual address at that instant.
1612  *
1613  * This does not guarantee that the page exists in the user mappings when
1614  * __get_user_pages returns, and there may even be a completely different
1615  * page there in some cases (eg. if mmapped pagecache has been invalidated
1616  * and subsequently re faulted). However it does guarantee that the page
1617  * won't be freed completely. And mostly callers simply care that the page
1618  * contains data that was valid *at some point in time*. Typically, an IO
1619  * or similar operation cannot guarantee anything stronger anyway because
1620  * locks can't be held over the syscall boundary.
1621  *
1622  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1623  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1624  * appropriate) must be called after the page is finished with, and
1625  * before put_page is called.
1626  *
1627  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1628  * or mmap_sem contention, and if waiting is needed to pin all pages,
1629  * *@nonblocking will be set to 0.
1630  *
1631  * In most cases, get_user_pages or get_user_pages_fast should be used
1632  * instead of __get_user_pages. __get_user_pages should be used only if
1633  * you need some special @gup_flags.
1634  */
1635 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1636                      unsigned long start, int nr_pages, unsigned int gup_flags,
1637                      struct page **pages, struct vm_area_struct **vmas,
1638                      int *nonblocking)
1639 {
1640         int i;
1641         unsigned long vm_flags;
1642
1643         if (nr_pages <= 0)
1644                 return 0;
1645
1646         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1647
1648         /* 
1649          * Require read or write permissions.
1650          * If FOLL_FORCE is set, we only require the "MAY" flags.
1651          */
1652         vm_flags  = (gup_flags & FOLL_WRITE) ?
1653                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1654         vm_flags &= (gup_flags & FOLL_FORCE) ?
1655                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1656         i = 0;
1657
1658         do {
1659                 struct vm_area_struct *vma;
1660
1661                 vma = find_extend_vma(mm, start);
1662                 if (!vma && in_gate_area(mm, start)) {
1663                         unsigned long pg = start & PAGE_MASK;
1664                         pgd_t *pgd;
1665                         pud_t *pud;
1666                         pmd_t *pmd;
1667                         pte_t *pte;
1668
1669                         /* user gate pages are read-only */
1670                         if (gup_flags & FOLL_WRITE)
1671                                 return i ? : -EFAULT;
1672                         if (pg > TASK_SIZE)
1673                                 pgd = pgd_offset_k(pg);
1674                         else
1675                                 pgd = pgd_offset_gate(mm, pg);
1676                         BUG_ON(pgd_none(*pgd));
1677                         pud = pud_offset(pgd, pg);
1678                         BUG_ON(pud_none(*pud));
1679                         pmd = pmd_offset(pud, pg);
1680                         if (pmd_none(*pmd))
1681                                 return i ? : -EFAULT;
1682                         VM_BUG_ON(pmd_trans_huge(*pmd));
1683                         pte = pte_offset_map(pmd, pg);
1684                         if (pte_none(*pte)) {
1685                                 pte_unmap(pte);
1686                                 return i ? : -EFAULT;
1687                         }
1688                         vma = get_gate_vma(mm);
1689                         if (pages) {
1690                                 struct page *page;
1691
1692                                 page = vm_normal_page(vma, start, *pte);
1693                                 if (!page) {
1694                                         if (!(gup_flags & FOLL_DUMP) &&
1695                                              is_zero_pfn(pte_pfn(*pte)))
1696                                                 page = pte_page(*pte);
1697                                         else {
1698                                                 pte_unmap(pte);
1699                                                 return i ? : -EFAULT;
1700                                         }
1701                                 }
1702                                 pages[i] = page;
1703                                 get_page(page);
1704                         }
1705                         pte_unmap(pte);
1706                         goto next_page;
1707                 }
1708
1709                 if (!vma ||
1710                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1711                     !(vm_flags & vma->vm_flags))
1712                         return i ? : -EFAULT;
1713
1714                 if (is_vm_hugetlb_page(vma)) {
1715                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1716                                         &start, &nr_pages, i, gup_flags);
1717                         continue;
1718                 }
1719
1720                 do {
1721                         struct page *page;
1722                         unsigned int foll_flags = gup_flags;
1723
1724                         /*
1725                          * If we have a pending SIGKILL, don't keep faulting
1726                          * pages and potentially allocating memory.
1727                          */
1728                         if (unlikely(fatal_signal_pending(current)))
1729                                 return i ? i : -ERESTARTSYS;
1730
1731                         cond_resched();
1732                         while (!(page = follow_page(vma, start, foll_flags))) {
1733                                 int ret;
1734                                 unsigned int fault_flags = 0;
1735
1736                                 /* For mlock, just skip the stack guard page. */
1737                                 if (foll_flags & FOLL_MLOCK) {
1738                                         if (stack_guard_page(vma, start))
1739                                                 goto next_page;
1740                                 }
1741                                 if (foll_flags & FOLL_WRITE)
1742                                         fault_flags |= FAULT_FLAG_WRITE;
1743                                 if (nonblocking)
1744                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1745                                 if (foll_flags & FOLL_NOWAIT)
1746                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1747
1748                                 ret = handle_mm_fault(mm, vma, start,
1749                                                         fault_flags);
1750
1751                                 if (ret & VM_FAULT_ERROR) {
1752                                         if (ret & VM_FAULT_OOM)
1753                                                 return i ? i : -ENOMEM;
1754                                         if (ret & (VM_FAULT_HWPOISON |
1755                                                    VM_FAULT_HWPOISON_LARGE)) {
1756                                                 if (i)
1757                                                         return i;
1758                                                 else if (gup_flags & FOLL_HWPOISON)
1759                                                         return -EHWPOISON;
1760                                                 else
1761                                                         return -EFAULT;
1762                                         }
1763                                         if (ret & VM_FAULT_SIGBUS)
1764                                                 return i ? i : -EFAULT;
1765                                         BUG();
1766                                 }
1767
1768                                 if (tsk) {
1769                                         if (ret & VM_FAULT_MAJOR)
1770                                                 tsk->maj_flt++;
1771                                         else
1772                                                 tsk->min_flt++;
1773                                 }
1774
1775                                 if (ret & VM_FAULT_RETRY) {
1776                                         if (nonblocking)
1777                                                 *nonblocking = 0;
1778                                         return i;
1779                                 }
1780
1781                                 /*
1782                                  * The VM_FAULT_WRITE bit tells us that
1783                                  * do_wp_page has broken COW when necessary,
1784                                  * even if maybe_mkwrite decided not to set
1785                                  * pte_write. We can thus safely do subsequent
1786                                  * page lookups as if they were reads. But only
1787                                  * do so when looping for pte_write is futile:
1788                                  * in some cases userspace may also be wanting
1789                                  * to write to the gotten user page, which a
1790                                  * read fault here might prevent (a readonly
1791                                  * page might get reCOWed by userspace write).
1792                                  */
1793                                 if ((ret & VM_FAULT_WRITE) &&
1794                                     !(vma->vm_flags & VM_WRITE))
1795                                         foll_flags &= ~FOLL_WRITE;
1796
1797                                 cond_resched();
1798                         }
1799                         if (IS_ERR(page))
1800                                 return i ? i : PTR_ERR(page);
1801                         if (pages) {
1802                                 pages[i] = page;
1803
1804                                 flush_anon_page(vma, page, start);
1805                                 flush_dcache_page(page);
1806                         }
1807 next_page:
1808                         if (vmas)
1809                                 vmas[i] = vma;
1810                         i++;
1811                         start += PAGE_SIZE;
1812                         nr_pages--;
1813                 } while (nr_pages && start < vma->vm_end);
1814         } while (nr_pages);
1815         return i;
1816 }
1817 EXPORT_SYMBOL(__get_user_pages);
1818
1819 /*
1820  * fixup_user_fault() - manually resolve a user page fault
1821  * @tsk:        the task_struct to use for page fault accounting, or
1822  *              NULL if faults are not to be recorded.
1823  * @mm:         mm_struct of target mm
1824  * @address:    user address
1825  * @fault_flags:flags to pass down to handle_mm_fault()
1826  *
1827  * This is meant to be called in the specific scenario where for locking reasons
1828  * we try to access user memory in atomic context (within a pagefault_disable()
1829  * section), this returns -EFAULT, and we want to resolve the user fault before
1830  * trying again.
1831  *
1832  * Typically this is meant to be used by the futex code.
1833  *
1834  * The main difference with get_user_pages() is that this function will
1835  * unconditionally call handle_mm_fault() which will in turn perform all the
1836  * necessary SW fixup of the dirty and young bits in the PTE, while
1837  * handle_mm_fault() only guarantees to update these in the struct page.
1838  *
1839  * This is important for some architectures where those bits also gate the
1840  * access permission to the page because they are maintained in software.  On
1841  * such architectures, gup() will not be enough to make a subsequent access
1842  * succeed.
1843  *
1844  * This should be called with the mm_sem held for read.
1845  */
1846 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1847                      unsigned long address, unsigned int fault_flags)
1848 {
1849         struct vm_area_struct *vma;
1850         int ret;
1851
1852         vma = find_extend_vma(mm, address);
1853         if (!vma || address < vma->vm_start)
1854                 return -EFAULT;
1855
1856         ret = handle_mm_fault(mm, vma, address, fault_flags);
1857         if (ret & VM_FAULT_ERROR) {
1858                 if (ret & VM_FAULT_OOM)
1859                         return -ENOMEM;
1860                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1861                         return -EHWPOISON;
1862                 if (ret & VM_FAULT_SIGBUS)
1863                         return -EFAULT;
1864                 BUG();
1865         }
1866         if (tsk) {
1867                 if (ret & VM_FAULT_MAJOR)
1868                         tsk->maj_flt++;
1869                 else
1870                         tsk->min_flt++;
1871         }
1872         return 0;
1873 }
1874
1875 /*
1876  * get_user_pages() - pin user pages in memory
1877  * @tsk:        the task_struct to use for page fault accounting, or
1878  *              NULL if faults are not to be recorded.
1879  * @mm:         mm_struct of target mm
1880  * @start:      starting user address
1881  * @nr_pages:   number of pages from start to pin
1882  * @write:      whether pages will be written to by the caller
1883  * @force:      whether to force write access even if user mapping is
1884  *              readonly. This will result in the page being COWed even
1885  *              in MAP_SHARED mappings. You do not want this.
1886  * @pages:      array that receives pointers to the pages pinned.
1887  *              Should be at least nr_pages long. Or NULL, if caller
1888  *              only intends to ensure the pages are faulted in.
1889  * @vmas:       array of pointers to vmas corresponding to each page.
1890  *              Or NULL if the caller does not require them.
1891  *
1892  * Returns number of pages pinned. This may be fewer than the number
1893  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1894  * were pinned, returns -errno. Each page returned must be released
1895  * with a put_page() call when it is finished with. vmas will only
1896  * remain valid while mmap_sem is held.
1897  *
1898  * Must be called with mmap_sem held for read or write.
1899  *
1900  * get_user_pages walks a process's page tables and takes a reference to
1901  * each struct page that each user address corresponds to at a given
1902  * instant. That is, it takes the page that would be accessed if a user
1903  * thread accesses the given user virtual address at that instant.
1904  *
1905  * This does not guarantee that the page exists in the user mappings when
1906  * get_user_pages returns, and there may even be a completely different
1907  * page there in some cases (eg. if mmapped pagecache has been invalidated
1908  * and subsequently re faulted). However it does guarantee that the page
1909  * won't be freed completely. And mostly callers simply care that the page
1910  * contains data that was valid *at some point in time*. Typically, an IO
1911  * or similar operation cannot guarantee anything stronger anyway because
1912  * locks can't be held over the syscall boundary.
1913  *
1914  * If write=0, the page must not be written to. If the page is written to,
1915  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1916  * after the page is finished with, and before put_page is called.
1917  *
1918  * get_user_pages is typically used for fewer-copy IO operations, to get a
1919  * handle on the memory by some means other than accesses via the user virtual
1920  * addresses. The pages may be submitted for DMA to devices or accessed via
1921  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1922  * use the correct cache flushing APIs.
1923  *
1924  * See also get_user_pages_fast, for performance critical applications.
1925  */
1926 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1927                 unsigned long start, int nr_pages, int write, int force,
1928                 struct page **pages, struct vm_area_struct **vmas)
1929 {
1930         int flags = FOLL_TOUCH;
1931
1932         if (pages)
1933                 flags |= FOLL_GET;
1934         if (write)
1935                 flags |= FOLL_WRITE;
1936         if (force)
1937                 flags |= FOLL_FORCE;
1938
1939         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1940                                 NULL);
1941 }
1942 EXPORT_SYMBOL(get_user_pages);
1943
1944 /**
1945  * get_dump_page() - pin user page in memory while writing it to core dump
1946  * @addr: user address
1947  *
1948  * Returns struct page pointer of user page pinned for dump,
1949  * to be freed afterwards by page_cache_release() or put_page().
1950  *
1951  * Returns NULL on any kind of failure - a hole must then be inserted into
1952  * the corefile, to preserve alignment with its headers; and also returns
1953  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1954  * allowing a hole to be left in the corefile to save diskspace.
1955  *
1956  * Called without mmap_sem, but after all other threads have been killed.
1957  */
1958 #ifdef CONFIG_ELF_CORE
1959 struct page *get_dump_page(unsigned long addr)
1960 {
1961         struct vm_area_struct *vma;
1962         struct page *page;
1963
1964         if (__get_user_pages(current, current->mm, addr, 1,
1965                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1966                              NULL) < 1)
1967                 return NULL;
1968         flush_cache_page(vma, addr, page_to_pfn(page));
1969         return page;
1970 }
1971 #endif /* CONFIG_ELF_CORE */
1972
1973 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1974                         spinlock_t **ptl)
1975 {
1976         pgd_t * pgd = pgd_offset(mm, addr);
1977         pud_t * pud = pud_alloc(mm, pgd, addr);
1978         if (pud) {
1979                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1980                 if (pmd) {
1981                         VM_BUG_ON(pmd_trans_huge(*pmd));
1982                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1983                 }
1984         }
1985         return NULL;
1986 }
1987
1988 /*
1989  * This is the old fallback for page remapping.
1990  *
1991  * For historical reasons, it only allows reserved pages. Only
1992  * old drivers should use this, and they needed to mark their
1993  * pages reserved for the old functions anyway.
1994  */
1995 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1996                         struct page *page, pgprot_t prot)
1997 {
1998         struct mm_struct *mm = vma->vm_mm;
1999         int retval;
2000         pte_t *pte;
2001         spinlock_t *ptl;
2002
2003         retval = -EINVAL;
2004         if (PageAnon(page))
2005                 goto out;
2006         retval = -ENOMEM;
2007         flush_dcache_page(page);
2008         pte = get_locked_pte(mm, addr, &ptl);
2009         if (!pte)
2010                 goto out;
2011         retval = -EBUSY;
2012         if (!pte_none(*pte))
2013                 goto out_unlock;
2014
2015         /* Ok, finally just insert the thing.. */
2016         get_page(page);
2017         inc_mm_counter_fast(mm, MM_FILEPAGES);
2018         page_add_file_rmap(page);
2019         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2020
2021         retval = 0;
2022         pte_unmap_unlock(pte, ptl);
2023         return retval;
2024 out_unlock:
2025         pte_unmap_unlock(pte, ptl);
2026 out:
2027         return retval;
2028 }
2029
2030 /**
2031  * vm_insert_page - insert single page into user vma
2032  * @vma: user vma to map to
2033  * @addr: target user address of this page
2034  * @page: source kernel page
2035  *
2036  * This allows drivers to insert individual pages they've allocated
2037  * into a user vma.
2038  *
2039  * The page has to be a nice clean _individual_ kernel allocation.
2040  * If you allocate a compound page, you need to have marked it as
2041  * such (__GFP_COMP), or manually just split the page up yourself
2042  * (see split_page()).
2043  *
2044  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2045  * took an arbitrary page protection parameter. This doesn't allow
2046  * that. Your vma protection will have to be set up correctly, which
2047  * means that if you want a shared writable mapping, you'd better
2048  * ask for a shared writable mapping!
2049  *
2050  * The page does not need to be reserved.
2051  */
2052 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2053                         struct page *page)
2054 {
2055         if (addr < vma->vm_start || addr >= vma->vm_end)
2056                 return -EFAULT;
2057         if (!page_count(page))
2058                 return -EINVAL;
2059         vma->vm_flags |= VM_INSERTPAGE;
2060         return insert_page(vma, addr, page, vma->vm_page_prot);
2061 }
2062 EXPORT_SYMBOL(vm_insert_page);
2063
2064 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2065                         unsigned long pfn, pgprot_t prot)
2066 {
2067         struct mm_struct *mm = vma->vm_mm;
2068         int retval;
2069         pte_t *pte, entry;
2070         spinlock_t *ptl;
2071
2072         retval = -ENOMEM;
2073         pte = get_locked_pte(mm, addr, &ptl);
2074         if (!pte)
2075                 goto out;
2076         retval = -EBUSY;
2077         if (!pte_none(*pte))
2078                 goto out_unlock;
2079
2080         /* Ok, finally just insert the thing.. */
2081         entry = pte_mkspecial(pfn_pte(pfn, prot));
2082         set_pte_at(mm, addr, pte, entry);
2083         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2084
2085         retval = 0;
2086 out_unlock:
2087         pte_unmap_unlock(pte, ptl);
2088 out:
2089         return retval;
2090 }
2091
2092 /**
2093  * vm_insert_pfn - insert single pfn into user vma
2094  * @vma: user vma to map to
2095  * @addr: target user address of this page
2096  * @pfn: source kernel pfn
2097  *
2098  * Similar to vm_inert_page, this allows drivers to insert individual pages
2099  * they've allocated into a user vma. Same comments apply.
2100  *
2101  * This function should only be called from a vm_ops->fault handler, and
2102  * in that case the handler should return NULL.
2103  *
2104  * vma cannot be a COW mapping.
2105  *
2106  * As this is called only for pages that do not currently exist, we
2107  * do not need to flush old virtual caches or the TLB.
2108  */
2109 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2110                         unsigned long pfn)
2111 {
2112         int ret;
2113         pgprot_t pgprot = vma->vm_page_prot;
2114         /*
2115          * Technically, architectures with pte_special can avoid all these
2116          * restrictions (same for remap_pfn_range).  However we would like
2117          * consistency in testing and feature parity among all, so we should
2118          * try to keep these invariants in place for everybody.
2119          */
2120         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2121         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2122                                                 (VM_PFNMAP|VM_MIXEDMAP));
2123         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2124         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2125
2126         if (addr < vma->vm_start || addr >= vma->vm_end)
2127                 return -EFAULT;
2128         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2129                 return -EINVAL;
2130
2131         ret = insert_pfn(vma, addr, pfn, pgprot);
2132
2133         if (ret)
2134                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2135
2136         return ret;
2137 }
2138 EXPORT_SYMBOL(vm_insert_pfn);
2139
2140 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141                         unsigned long pfn)
2142 {
2143         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2144
2145         if (addr < vma->vm_start || addr >= vma->vm_end)
2146                 return -EFAULT;
2147
2148         /*
2149          * If we don't have pte special, then we have to use the pfn_valid()
2150          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2151          * refcount the page if pfn_valid is true (hence insert_page rather
2152          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2153          * without pte special, it would there be refcounted as a normal page.
2154          */
2155         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2156                 struct page *page;
2157
2158                 page = pfn_to_page(pfn);
2159                 return insert_page(vma, addr, page, vma->vm_page_prot);
2160         }
2161         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2162 }
2163 EXPORT_SYMBOL(vm_insert_mixed);
2164
2165 /*
2166  * maps a range of physical memory into the requested pages. the old
2167  * mappings are removed. any references to nonexistent pages results
2168  * in null mappings (currently treated as "copy-on-access")
2169  */
2170 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171                         unsigned long addr, unsigned long end,
2172                         unsigned long pfn, pgprot_t prot)
2173 {
2174         pte_t *pte;
2175         spinlock_t *ptl;
2176
2177         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2178         if (!pte)
2179                 return -ENOMEM;
2180         arch_enter_lazy_mmu_mode();
2181         do {
2182                 BUG_ON(!pte_none(*pte));
2183                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2184                 pfn++;
2185         } while (pte++, addr += PAGE_SIZE, addr != end);
2186         arch_leave_lazy_mmu_mode();
2187         pte_unmap_unlock(pte - 1, ptl);
2188         return 0;
2189 }
2190
2191 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2192                         unsigned long addr, unsigned long end,
2193                         unsigned long pfn, pgprot_t prot)
2194 {
2195         pmd_t *pmd;
2196         unsigned long next;
2197
2198         pfn -= addr >> PAGE_SHIFT;
2199         pmd = pmd_alloc(mm, pud, addr);
2200         if (!pmd)
2201                 return -ENOMEM;
2202         VM_BUG_ON(pmd_trans_huge(*pmd));
2203         do {
2204                 next = pmd_addr_end(addr, end);
2205                 if (remap_pte_range(mm, pmd, addr, next,
2206                                 pfn + (addr >> PAGE_SHIFT), prot))
2207                         return -ENOMEM;
2208         } while (pmd++, addr = next, addr != end);
2209         return 0;
2210 }
2211
2212 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2213                         unsigned long addr, unsigned long end,
2214                         unsigned long pfn, pgprot_t prot)
2215 {
2216         pud_t *pud;
2217         unsigned long next;
2218
2219         pfn -= addr >> PAGE_SHIFT;
2220         pud = pud_alloc(mm, pgd, addr);
2221         if (!pud)
2222                 return -ENOMEM;
2223         do {
2224                 next = pud_addr_end(addr, end);
2225                 if (remap_pmd_range(mm, pud, addr, next,
2226                                 pfn + (addr >> PAGE_SHIFT), prot))
2227                         return -ENOMEM;
2228         } while (pud++, addr = next, addr != end);
2229         return 0;
2230 }
2231
2232 /**
2233  * remap_pfn_range - remap kernel memory to userspace
2234  * @vma: user vma to map to
2235  * @addr: target user address to start at
2236  * @pfn: physical address of kernel memory
2237  * @size: size of map area
2238  * @prot: page protection flags for this mapping
2239  *
2240  *  Note: this is only safe if the mm semaphore is held when called.
2241  */
2242 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2243                     unsigned long pfn, unsigned long size, pgprot_t prot)
2244 {
2245         pgd_t *pgd;
2246         unsigned long next;
2247         unsigned long end = addr + PAGE_ALIGN(size);
2248         struct mm_struct *mm = vma->vm_mm;
2249         int err;
2250
2251         /*
2252          * Physically remapped pages are special. Tell the
2253          * rest of the world about it:
2254          *   VM_IO tells people not to look at these pages
2255          *      (accesses can have side effects).
2256          *   VM_RESERVED is specified all over the place, because
2257          *      in 2.4 it kept swapout's vma scan off this vma; but
2258          *      in 2.6 the LRU scan won't even find its pages, so this
2259          *      flag means no more than count its pages in reserved_vm,
2260          *      and omit it from core dump, even when VM_IO turned off.
2261          *   VM_PFNMAP tells the core MM that the base pages are just
2262          *      raw PFN mappings, and do not have a "struct page" associated
2263          *      with them.
2264          *
2265          * There's a horrible special case to handle copy-on-write
2266          * behaviour that some programs depend on. We mark the "original"
2267          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2268          */
2269         if (addr == vma->vm_start && end == vma->vm_end) {
2270                 vma->vm_pgoff = pfn;
2271                 vma->vm_flags |= VM_PFN_AT_MMAP;
2272         } else if (is_cow_mapping(vma->vm_flags))
2273                 return -EINVAL;
2274
2275         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2276
2277         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2278         if (err) {
2279                 /*
2280                  * To indicate that track_pfn related cleanup is not
2281                  * needed from higher level routine calling unmap_vmas
2282                  */
2283                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2284                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2285                 return -EINVAL;
2286         }
2287
2288         BUG_ON(addr >= end);
2289         pfn -= addr >> PAGE_SHIFT;
2290         pgd = pgd_offset(mm, addr);
2291         flush_cache_range(vma, addr, end);
2292         do {
2293                 next = pgd_addr_end(addr, end);
2294                 err = remap_pud_range(mm, pgd, addr, next,
2295                                 pfn + (addr >> PAGE_SHIFT), prot);
2296                 if (err)
2297                         break;
2298         } while (pgd++, addr = next, addr != end);
2299
2300         if (err)
2301                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2302
2303         return err;
2304 }
2305 EXPORT_SYMBOL(remap_pfn_range);
2306
2307 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2308                                      unsigned long addr, unsigned long end,
2309                                      pte_fn_t fn, void *data)
2310 {
2311         pte_t *pte;
2312         int err;
2313         pgtable_t token;
2314         spinlock_t *uninitialized_var(ptl);
2315
2316         pte = (mm == &init_mm) ?
2317                 pte_alloc_kernel(pmd, addr) :
2318                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2319         if (!pte)
2320                 return -ENOMEM;
2321
2322         BUG_ON(pmd_huge(*pmd));
2323
2324         arch_enter_lazy_mmu_mode();
2325
2326         token = pmd_pgtable(*pmd);
2327
2328         do {
2329                 err = fn(pte++, token, addr, data);
2330                 if (err)
2331                         break;
2332         } while (addr += PAGE_SIZE, addr != end);
2333
2334         arch_leave_lazy_mmu_mode();
2335
2336         if (mm != &init_mm)
2337                 pte_unmap_unlock(pte-1, ptl);
2338         return err;
2339 }
2340
2341 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2342                                      unsigned long addr, unsigned long end,
2343                                      pte_fn_t fn, void *data)
2344 {
2345         pmd_t *pmd;
2346         unsigned long next;
2347         int err;
2348
2349         BUG_ON(pud_huge(*pud));
2350
2351         pmd = pmd_alloc(mm, pud, addr);
2352         if (!pmd)
2353                 return -ENOMEM;
2354         do {
2355                 next = pmd_addr_end(addr, end);
2356                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2357                 if (err)
2358                         break;
2359         } while (pmd++, addr = next, addr != end);
2360         return err;
2361 }
2362
2363 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2364                                      unsigned long addr, unsigned long end,
2365                                      pte_fn_t fn, void *data)
2366 {
2367         pud_t *pud;
2368         unsigned long next;
2369         int err;
2370
2371         pud = pud_alloc(mm, pgd, addr);
2372         if (!pud)
2373                 return -ENOMEM;
2374         do {
2375                 next = pud_addr_end(addr, end);
2376                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2377                 if (err)
2378                         break;
2379         } while (pud++, addr = next, addr != end);
2380         return err;
2381 }
2382
2383 /*
2384  * Scan a region of virtual memory, filling in page tables as necessary
2385  * and calling a provided function on each leaf page table.
2386  */
2387 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2388                         unsigned long size, pte_fn_t fn, void *data)
2389 {
2390         pgd_t *pgd;
2391         unsigned long next;
2392         unsigned long end = addr + size;
2393         int err;
2394
2395         BUG_ON(addr >= end);
2396         pgd = pgd_offset(mm, addr);
2397         do {
2398                 next = pgd_addr_end(addr, end);
2399                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2400                 if (err)
2401                         break;
2402         } while (pgd++, addr = next, addr != end);
2403
2404         return err;
2405 }
2406 EXPORT_SYMBOL_GPL(apply_to_page_range);
2407
2408 /*
2409  * handle_pte_fault chooses page fault handler according to an entry
2410  * which was read non-atomically.  Before making any commitment, on
2411  * those architectures or configurations (e.g. i386 with PAE) which
2412  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2413  * must check under lock before unmapping the pte and proceeding
2414  * (but do_wp_page is only called after already making such a check;
2415  * and do_anonymous_page can safely check later on).
2416  */
2417 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2418                                 pte_t *page_table, pte_t orig_pte)
2419 {
2420         int same = 1;
2421 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2422         if (sizeof(pte_t) > sizeof(unsigned long)) {
2423                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2424                 spin_lock(ptl);
2425                 same = pte_same(*page_table, orig_pte);
2426                 spin_unlock(ptl);
2427         }
2428 #endif
2429         pte_unmap(page_table);
2430         return same;
2431 }
2432
2433 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2434 {
2435         /*
2436          * If the source page was a PFN mapping, we don't have
2437          * a "struct page" for it. We do a best-effort copy by
2438          * just copying from the original user address. If that
2439          * fails, we just zero-fill it. Live with it.
2440          */
2441         if (unlikely(!src)) {
2442                 void *kaddr = kmap_atomic(dst, KM_USER0);
2443                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2444
2445                 /*
2446                  * This really shouldn't fail, because the page is there
2447                  * in the page tables. But it might just be unreadable,
2448                  * in which case we just give up and fill the result with
2449                  * zeroes.
2450                  */
2451                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2452                         clear_page(kaddr);
2453                 kunmap_atomic(kaddr, KM_USER0);
2454                 flush_dcache_page(dst);
2455         } else
2456                 copy_user_highpage(dst, src, va, vma);
2457 }
2458
2459 /*
2460  * This routine handles present pages, when users try to write
2461  * to a shared page. It is done by copying the page to a new address
2462  * and decrementing the shared-page counter for the old page.
2463  *
2464  * Note that this routine assumes that the protection checks have been
2465  * done by the caller (the low-level page fault routine in most cases).
2466  * Thus we can safely just mark it writable once we've done any necessary
2467  * COW.
2468  *
2469  * We also mark the page dirty at this point even though the page will
2470  * change only once the write actually happens. This avoids a few races,
2471  * and potentially makes it more efficient.
2472  *
2473  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2474  * but allow concurrent faults), with pte both mapped and locked.
2475  * We return with mmap_sem still held, but pte unmapped and unlocked.
2476  */
2477 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2478                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2479                 spinlock_t *ptl, pte_t orig_pte)
2480         __releases(ptl)
2481 {
2482         struct page *old_page, *new_page;
2483         pte_t entry;
2484         int ret = 0;
2485         int page_mkwrite = 0;
2486         struct page *dirty_page = NULL;
2487
2488         old_page = vm_normal_page(vma, address, orig_pte);
2489         if (!old_page) {
2490                 /*
2491                  * VM_MIXEDMAP !pfn_valid() case
2492                  *
2493                  * We should not cow pages in a shared writeable mapping.
2494                  * Just mark the pages writable as we can't do any dirty
2495                  * accounting on raw pfn maps.
2496                  */
2497                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2498                                      (VM_WRITE|VM_SHARED))
2499                         goto reuse;
2500                 goto gotten;
2501         }
2502
2503         /*
2504          * Take out anonymous pages first, anonymous shared vmas are
2505          * not dirty accountable.
2506          */
2507         if (PageAnon(old_page) && !PageKsm(old_page)) {
2508                 if (!trylock_page(old_page)) {
2509                         page_cache_get(old_page);
2510                         pte_unmap_unlock(page_table, ptl);
2511                         lock_page(old_page);
2512                         page_table = pte_offset_map_lock(mm, pmd, address,
2513                                                          &ptl);
2514                         if (!pte_same(*page_table, orig_pte)) {
2515                                 unlock_page(old_page);
2516                                 goto unlock;
2517                         }
2518                         page_cache_release(old_page);
2519                 }
2520                 if (reuse_swap_page(old_page)) {
2521                         /*
2522                          * The page is all ours.  Move it to our anon_vma so
2523                          * the rmap code will not search our parent or siblings.
2524                          * Protected against the rmap code by the page lock.
2525                          */
2526                         page_move_anon_rmap(old_page, vma, address);
2527                         unlock_page(old_page);
2528                         goto reuse;
2529                 }
2530                 unlock_page(old_page);
2531         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2532                                         (VM_WRITE|VM_SHARED))) {
2533                 /*
2534                  * Only catch write-faults on shared writable pages,
2535                  * read-only shared pages can get COWed by
2536                  * get_user_pages(.write=1, .force=1).
2537                  */
2538                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2539                         struct vm_fault vmf;
2540                         int tmp;
2541
2542                         vmf.virtual_address = (void __user *)(address &
2543                                                                 PAGE_MASK);
2544                         vmf.pgoff = old_page->index;
2545                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2546                         vmf.page = old_page;
2547
2548                         /*
2549                          * Notify the address space that the page is about to
2550                          * become writable so that it can prohibit this or wait
2551                          * for the page to get into an appropriate state.
2552                          *
2553                          * We do this without the lock held, so that it can
2554                          * sleep if it needs to.
2555                          */
2556                         page_cache_get(old_page);
2557                         pte_unmap_unlock(page_table, ptl);
2558
2559                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2560                         if (unlikely(tmp &
2561                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2562                                 ret = tmp;
2563                                 goto unwritable_page;
2564                         }
2565                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2566                                 lock_page(old_page);
2567                                 if (!old_page->mapping) {
2568                                         ret = 0; /* retry the fault */
2569                                         unlock_page(old_page);
2570                                         goto unwritable_page;
2571                                 }
2572                         } else
2573                                 VM_BUG_ON(!PageLocked(old_page));
2574
2575                         /*
2576                          * Since we dropped the lock we need to revalidate
2577                          * the PTE as someone else may have changed it.  If
2578                          * they did, we just return, as we can count on the
2579                          * MMU to tell us if they didn't also make it writable.
2580                          */
2581                         page_table = pte_offset_map_lock(mm, pmd, address,
2582                                                          &ptl);
2583                         if (!pte_same(*page_table, orig_pte)) {
2584                                 unlock_page(old_page);
2585                                 goto unlock;
2586                         }
2587
2588                         page_mkwrite = 1;
2589                 }
2590                 dirty_page = old_page;
2591                 get_page(dirty_page);
2592
2593 reuse:
2594                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2595                 entry = pte_mkyoung(orig_pte);
2596                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2597                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2598                         update_mmu_cache(vma, address, page_table);
2599                 pte_unmap_unlock(page_table, ptl);
2600                 ret |= VM_FAULT_WRITE;
2601
2602                 if (!dirty_page)
2603                         return ret;
2604
2605                 /*
2606                  * Yes, Virginia, this is actually required to prevent a race
2607                  * with clear_page_dirty_for_io() from clearing the page dirty
2608                  * bit after it clear all dirty ptes, but before a racing
2609                  * do_wp_page installs a dirty pte.
2610                  *
2611                  * __do_fault is protected similarly.
2612                  */
2613                 if (!page_mkwrite) {
2614                         wait_on_page_locked(dirty_page);
2615                         set_page_dirty_balance(dirty_page, page_mkwrite);
2616                 }
2617                 put_page(dirty_page);
2618                 if (page_mkwrite) {
2619                         struct address_space *mapping = dirty_page->mapping;
2620
2621                         set_page_dirty(dirty_page);
2622                         unlock_page(dirty_page);
2623                         page_cache_release(dirty_page);
2624                         if (mapping)    {
2625                                 /*
2626                                  * Some device drivers do not set page.mapping
2627                                  * but still dirty their pages
2628                                  */
2629                                 balance_dirty_pages_ratelimited(mapping);
2630                         }
2631                 }
2632
2633                 /* file_update_time outside page_lock */
2634                 if (vma->vm_file)
2635                         file_update_time(vma->vm_file);
2636
2637                 return ret;
2638         }
2639
2640         /*
2641          * Ok, we need to copy. Oh, well..
2642          */
2643         page_cache_get(old_page);
2644 gotten:
2645         pte_unmap_unlock(page_table, ptl);
2646
2647         if (unlikely(anon_vma_prepare(vma)))
2648                 goto oom;
2649
2650         if (is_zero_pfn(pte_pfn(orig_pte))) {
2651                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2652                 if (!new_page)
2653                         goto oom;
2654         } else {
2655                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2656                 if (!new_page)
2657                         goto oom;
2658                 cow_user_page(new_page, old_page, address, vma);
2659         }
2660         __SetPageUptodate(new_page);
2661
2662         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2663                 goto oom_free_new;
2664
2665         /*
2666          * Re-check the pte - we dropped the lock
2667          */
2668         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2669         if (likely(pte_same(*page_table, orig_pte))) {
2670                 if (old_page) {
2671                         if (!PageAnon(old_page)) {
2672                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2673                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2674                         }
2675                 } else
2676                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2677                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2678                 entry = mk_pte(new_page, vma->vm_page_prot);
2679                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2680                 /*
2681                  * Clear the pte entry and flush it first, before updating the
2682                  * pte with the new entry. This will avoid a race condition
2683                  * seen in the presence of one thread doing SMC and another
2684                  * thread doing COW.
2685                  */
2686                 ptep_clear_flush(vma, address, page_table);
2687                 page_add_new_anon_rmap(new_page, vma, address);
2688                 /*
2689                  * We call the notify macro here because, when using secondary
2690                  * mmu page tables (such as kvm shadow page tables), we want the
2691                  * new page to be mapped directly into the secondary page table.
2692                  */
2693                 set_pte_at_notify(mm, address, page_table, entry);
2694                 update_mmu_cache(vma, address, page_table);
2695                 if (old_page) {
2696                         /*
2697                          * Only after switching the pte to the new page may
2698                          * we remove the mapcount here. Otherwise another
2699                          * process may come and find the rmap count decremented
2700                          * before the pte is switched to the new page, and
2701                          * "reuse" the old page writing into it while our pte
2702                          * here still points into it and can be read by other
2703                          * threads.
2704                          *
2705                          * The critical issue is to order this
2706                          * page_remove_rmap with the ptp_clear_flush above.
2707                          * Those stores are ordered by (if nothing else,)
2708                          * the barrier present in the atomic_add_negative
2709                          * in page_remove_rmap.
2710                          *
2711                          * Then the TLB flush in ptep_clear_flush ensures that
2712                          * no process can access the old page before the
2713                          * decremented mapcount is visible. And the old page
2714                          * cannot be reused until after the decremented
2715                          * mapcount is visible. So transitively, TLBs to
2716                          * old page will be flushed before it can be reused.
2717                          */
2718                         page_remove_rmap(old_page);
2719                 }
2720
2721                 /* Free the old page.. */
2722                 new_page = old_page;
2723                 ret |= VM_FAULT_WRITE;
2724         } else
2725                 mem_cgroup_uncharge_page(new_page);
2726
2727         if (new_page)
2728                 page_cache_release(new_page);
2729 unlock:
2730         pte_unmap_unlock(page_table, ptl);
2731         if (old_page) {
2732                 /*
2733                  * Don't let another task, with possibly unlocked vma,
2734                  * keep the mlocked page.
2735                  */
2736                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2737                         lock_page(old_page);    /* LRU manipulation */
2738                         munlock_vma_page(old_page);
2739                         unlock_page(old_page);
2740                 }
2741                 page_cache_release(old_page);
2742         }
2743         return ret;
2744 oom_free_new:
2745         page_cache_release(new_page);
2746 oom:
2747         if (old_page) {
2748                 if (page_mkwrite) {
2749                         unlock_page(old_page);
2750                         page_cache_release(old_page);
2751                 }
2752                 page_cache_release(old_page);
2753         }
2754         return VM_FAULT_OOM;
2755
2756 unwritable_page:
2757         page_cache_release(old_page);
2758         return ret;
2759 }
2760
2761 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2762                 unsigned long start_addr, unsigned long end_addr,
2763                 struct zap_details *details)
2764 {
2765         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2766 }
2767
2768 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2769                                             struct zap_details *details)
2770 {
2771         struct vm_area_struct *vma;
2772         struct prio_tree_iter iter;
2773         pgoff_t vba, vea, zba, zea;
2774
2775         vma_prio_tree_foreach(vma, &iter, root,
2776                         details->first_index, details->last_index) {
2777
2778                 vba = vma->vm_pgoff;
2779                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2780                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2781                 zba = details->first_index;
2782                 if (zba < vba)
2783                         zba = vba;
2784                 zea = details->last_index;
2785                 if (zea > vea)
2786                         zea = vea;
2787
2788                 unmap_mapping_range_vma(vma,
2789                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2790                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2791                                 details);
2792         }
2793 }
2794
2795 static inline void unmap_mapping_range_list(struct list_head *head,
2796                                             struct zap_details *details)
2797 {
2798         struct vm_area_struct *vma;
2799
2800         /*
2801          * In nonlinear VMAs there is no correspondence between virtual address
2802          * offset and file offset.  So we must perform an exhaustive search
2803          * across *all* the pages in each nonlinear VMA, not just the pages
2804          * whose virtual address lies outside the file truncation point.
2805          */
2806         list_for_each_entry(vma, head, shared.vm_set.list) {
2807                 details->nonlinear_vma = vma;
2808                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2809         }
2810 }
2811
2812 /**
2813  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2814  * @mapping: the address space containing mmaps to be unmapped.
2815  * @holebegin: byte in first page to unmap, relative to the start of
2816  * the underlying file.  This will be rounded down to a PAGE_SIZE
2817  * boundary.  Note that this is different from truncate_pagecache(), which
2818  * must keep the partial page.  In contrast, we must get rid of
2819  * partial pages.
2820  * @holelen: size of prospective hole in bytes.  This will be rounded
2821  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2822  * end of the file.
2823  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2824  * but 0 when invalidating pagecache, don't throw away private data.
2825  */
2826 void unmap_mapping_range(struct address_space *mapping,
2827                 loff_t const holebegin, loff_t const holelen, int even_cows)
2828 {
2829         struct zap_details details;
2830         pgoff_t hba = holebegin >> PAGE_SHIFT;
2831         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2832
2833         /* Check for overflow. */
2834         if (sizeof(holelen) > sizeof(hlen)) {
2835                 long long holeend =
2836                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2837                 if (holeend & ~(long long)ULONG_MAX)
2838                         hlen = ULONG_MAX - hba + 1;
2839         }
2840
2841         details.check_mapping = even_cows? NULL: mapping;
2842         details.nonlinear_vma = NULL;
2843         details.first_index = hba;
2844         details.last_index = hba + hlen - 1;
2845         if (details.last_index < details.first_index)
2846                 details.last_index = ULONG_MAX;
2847
2848
2849         mutex_lock(&mapping->i_mmap_mutex);
2850         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2851                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2852         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2853                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2854         mutex_unlock(&mapping->i_mmap_mutex);
2855 }
2856 EXPORT_SYMBOL(unmap_mapping_range);
2857
2858 /*
2859  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2860  * but allow concurrent faults), and pte mapped but not yet locked.
2861  * We return with mmap_sem still held, but pte unmapped and unlocked.
2862  */
2863 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2864                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2865                 unsigned int flags, pte_t orig_pte)
2866 {
2867         spinlock_t *ptl;
2868         struct page *page, *swapcache = NULL;
2869         swp_entry_t entry;
2870         pte_t pte;
2871         int locked;
2872         struct mem_cgroup *ptr;
2873         int exclusive = 0;
2874         int ret = 0;
2875
2876         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2877                 goto out;
2878
2879         entry = pte_to_swp_entry(orig_pte);
2880         if (unlikely(non_swap_entry(entry))) {
2881                 if (is_migration_entry(entry)) {
2882                         migration_entry_wait(mm, pmd, address);
2883                 } else if (is_hwpoison_entry(entry)) {
2884                         ret = VM_FAULT_HWPOISON;
2885                 } else {
2886                         print_bad_pte(vma, address, orig_pte, NULL);
2887                         ret = VM_FAULT_SIGBUS;
2888                 }
2889                 goto out;
2890         }
2891         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2892         page = lookup_swap_cache(entry);
2893         if (!page) {
2894                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2895                 page = swapin_readahead(entry,
2896                                         GFP_HIGHUSER_MOVABLE, vma, address);
2897                 if (!page) {
2898                         /*
2899                          * Back out if somebody else faulted in this pte
2900                          * while we released the pte lock.
2901                          */
2902                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2903                         if (likely(pte_same(*page_table, orig_pte)))
2904                                 ret = VM_FAULT_OOM;
2905                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2906                         goto unlock;
2907                 }
2908
2909                 /* Had to read the page from swap area: Major fault */
2910                 ret = VM_FAULT_MAJOR;
2911                 count_vm_event(PGMAJFAULT);
2912                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2913         } else if (PageHWPoison(page)) {
2914                 /*
2915                  * hwpoisoned dirty swapcache pages are kept for killing
2916                  * owner processes (which may be unknown at hwpoison time)
2917                  */
2918                 ret = VM_FAULT_HWPOISON;
2919                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2920                 goto out_release;
2921         }
2922
2923         locked = lock_page_or_retry(page, mm, flags);
2924         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2925         if (!locked) {
2926                 ret |= VM_FAULT_RETRY;
2927                 goto out_release;
2928         }
2929
2930         /*
2931          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2932          * release the swapcache from under us.  The page pin, and pte_same
2933          * test below, are not enough to exclude that.  Even if it is still
2934          * swapcache, we need to check that the page's swap has not changed.
2935          */
2936         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2937                 goto out_page;
2938
2939         if (ksm_might_need_to_copy(page, vma, address)) {
2940                 swapcache = page;
2941                 page = ksm_does_need_to_copy(page, vma, address);
2942
2943                 if (unlikely(!page)) {
2944                         ret = VM_FAULT_OOM;
2945                         page = swapcache;
2946                         swapcache = NULL;
2947                         goto out_page;
2948                 }
2949         }
2950
2951         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2952                 ret = VM_FAULT_OOM;
2953                 goto out_page;
2954         }
2955
2956         /*
2957          * Back out if somebody else already faulted in this pte.
2958          */
2959         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2960         if (unlikely(!pte_same(*page_table, orig_pte)))
2961                 goto out_nomap;
2962
2963         if (unlikely(!PageUptodate(page))) {
2964                 ret = VM_FAULT_SIGBUS;
2965                 goto out_nomap;
2966         }
2967
2968         /*
2969          * The page isn't present yet, go ahead with the fault.
2970          *
2971          * Be careful about the sequence of operations here.
2972          * To get its accounting right, reuse_swap_page() must be called
2973          * while the page is counted on swap but not yet in mapcount i.e.
2974          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2975          * must be called after the swap_free(), or it will never succeed.
2976          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2977          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2978          * in page->private. In this case, a record in swap_cgroup  is silently
2979          * discarded at swap_free().
2980          */
2981
2982         inc_mm_counter_fast(mm, MM_ANONPAGES);
2983         dec_mm_counter_fast(mm, MM_SWAPENTS);
2984         pte = mk_pte(page, vma->vm_page_prot);
2985         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2986                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2987                 flags &= ~FAULT_FLAG_WRITE;
2988                 ret |= VM_FAULT_WRITE;
2989                 exclusive = 1;
2990         }
2991         flush_icache_page(vma, page);
2992         set_pte_at(mm, address, page_table, pte);
2993         do_page_add_anon_rmap(page, vma, address, exclusive);
2994         /* It's better to call commit-charge after rmap is established */
2995         mem_cgroup_commit_charge_swapin(page, ptr);
2996
2997         swap_free(entry);
2998         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2999                 try_to_free_swap(page);
3000         unlock_page(page);
3001         if (swapcache) {
3002                 /*
3003                  * Hold the lock to avoid the swap entry to be reused
3004                  * until we take the PT lock for the pte_same() check
3005                  * (to avoid false positives from pte_same). For
3006                  * further safety release the lock after the swap_free
3007                  * so that the swap count won't change under a
3008                  * parallel locked swapcache.
3009                  */
3010                 unlock_page(swapcache);
3011                 page_cache_release(swapcache);
3012         }
3013
3014         if (flags & FAULT_FLAG_WRITE) {
3015                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3016                 if (ret & VM_FAULT_ERROR)
3017                         ret &= VM_FAULT_ERROR;
3018                 goto out;
3019         }
3020
3021         /* No need to invalidate - it was non-present before */
3022         update_mmu_cache(vma, address, page_table);
3023 unlock:
3024         pte_unmap_unlock(page_table, ptl);
3025 out:
3026         return ret;
3027 out_nomap:
3028         mem_cgroup_cancel_charge_swapin(ptr);
3029         pte_unmap_unlock(page_table, ptl);
3030 out_page:
3031         unlock_page(page);
3032 out_release:
3033         page_cache_release(page);
3034         if (swapcache) {
3035                 unlock_page(swapcache);
3036                 page_cache_release(swapcache);
3037         }
3038         return ret;
3039 }
3040
3041 /*
3042  * This is like a special single-page "expand_{down|up}wards()",
3043  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3044  * doesn't hit another vma.
3045  */
3046 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3047 {
3048         address &= PAGE_MASK;
3049         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3050                 struct vm_area_struct *prev = vma->vm_prev;
3051
3052                 /*
3053                  * Is there a mapping abutting this one below?
3054                  *
3055                  * That's only ok if it's the same stack mapping
3056                  * that has gotten split..
3057                  */
3058                 if (prev && prev->vm_end == address)
3059                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3060
3061                 expand_downwards(vma, address - PAGE_SIZE);
3062         }
3063         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3064                 struct vm_area_struct *next = vma->vm_next;
3065
3066                 /* As VM_GROWSDOWN but s/below/above/ */
3067                 if (next && next->vm_start == address + PAGE_SIZE)
3068                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3069
3070                 expand_upwards(vma, address + PAGE_SIZE);
3071         }
3072         return 0;
3073 }
3074
3075 /*
3076  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3077  * but allow concurrent faults), and pte mapped but not yet locked.
3078  * We return with mmap_sem still held, but pte unmapped and unlocked.
3079  */
3080 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3081                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3082                 unsigned int flags)
3083 {
3084         struct page *page;
3085         spinlock_t *ptl;
3086         pte_t entry;
3087
3088         pte_unmap(page_table);
3089
3090         /* Check if we need to add a guard page to the stack */
3091         if (check_stack_guard_page(vma, address) < 0)
3092                 return VM_FAULT_SIGBUS;
3093
3094         /* Use the zero-page for reads */
3095         if (!(flags & FAULT_FLAG_WRITE)) {
3096                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3097                                                 vma->vm_page_prot));
3098                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3099                 if (!pte_none(*page_table))
3100                         goto unlock;
3101                 goto setpte;
3102         }
3103
3104         /* Allocate our own private page. */
3105         if (unlikely(anon_vma_prepare(vma)))
3106                 goto oom;
3107         page = alloc_zeroed_user_highpage_movable(vma, address);
3108         if (!page)
3109                 goto oom;
3110         __SetPageUptodate(page);
3111
3112         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3113                 goto oom_free_page;
3114
3115         entry = mk_pte(page, vma->vm_page_prot);
3116         if (vma->vm_flags & VM_WRITE)
3117                 entry = pte_mkwrite(pte_mkdirty(entry));
3118
3119         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3120         if (!pte_none(*page_table))
3121                 goto release;
3122
3123         inc_mm_counter_fast(mm, MM_ANONPAGES);
3124         page_add_new_anon_rmap(page, vma, address);
3125 setpte:
3126         set_pte_at(mm, address, page_table, entry);
3127
3128         /* No need to invalidate - it was non-present before */
3129         update_mmu_cache(vma, address, page_table);
3130 unlock:
3131         pte_unmap_unlock(page_table, ptl);
3132         return 0;
3133 release:
3134         mem_cgroup_uncharge_page(page);
3135         page_cache_release(page);
3136         goto unlock;
3137 oom_free_page:
3138         page_cache_release(page);
3139 oom:
3140         return VM_FAULT_OOM;
3141 }
3142
3143 /*
3144  * __do_fault() tries to create a new page mapping. It aggressively
3145  * tries to share with existing pages, but makes a separate copy if
3146  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3147  * the next page fault.
3148  *
3149  * As this is called only for pages that do not currently exist, we
3150  * do not need to flush old virtual caches or the TLB.
3151  *
3152  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3153  * but allow concurrent faults), and pte neither mapped nor locked.
3154  * We return with mmap_sem still held, but pte unmapped and unlocked.
3155  */
3156 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3157                 unsigned long address, pmd_t *pmd,
3158                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3159 {
3160         pte_t *page_table;
3161         spinlock_t *ptl;
3162         struct page *page;
3163         struct page *cow_page;
3164         pte_t entry;
3165         int anon = 0;
3166         struct page *dirty_page = NULL;
3167         struct vm_fault vmf;
3168         int ret;
3169         int page_mkwrite = 0;
3170
3171         /*
3172          * If we do COW later, allocate page befor taking lock_page()
3173          * on the file cache page. This will reduce lock holding time.
3174          */
3175         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3176
3177                 if (unlikely(anon_vma_prepare(vma)))
3178                         return VM_FAULT_OOM;
3179
3180                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3181                 if (!cow_page)
3182                         return VM_FAULT_OOM;
3183
3184                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3185                         page_cache_release(cow_page);
3186                         return VM_FAULT_OOM;
3187                 }
3188         } else
3189                 cow_page = NULL;
3190
3191         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3192         vmf.pgoff = pgoff;
3193         vmf.flags = flags;
3194         vmf.page = NULL;
3195
3196         ret = vma->vm_ops->fault(vma, &vmf);
3197         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3198                             VM_FAULT_RETRY)))
3199                 goto uncharge_out;
3200
3201         if (unlikely(PageHWPoison(vmf.page))) {
3202                 if (ret & VM_FAULT_LOCKED)
3203                         unlock_page(vmf.page);
3204                 ret = VM_FAULT_HWPOISON;
3205                 goto uncharge_out;
3206         }
3207
3208         /*
3209          * For consistency in subsequent calls, make the faulted page always
3210          * locked.
3211          */
3212         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3213                 lock_page(vmf.page);
3214         else
3215                 VM_BUG_ON(!PageLocked(vmf.page));
3216
3217         /*
3218          * Should we do an early C-O-W break?
3219          */
3220         page = vmf.page;
3221         if (flags & FAULT_FLAG_WRITE) {
3222                 if (!(vma->vm_flags & VM_SHARED)) {
3223                         page = cow_page;
3224                         anon = 1;
3225                         copy_user_highpage(page, vmf.page, address, vma);
3226                         __SetPageUptodate(page);
3227                 } else {
3228                         /*
3229                          * If the page will be shareable, see if the backing
3230                          * address space wants to know that the page is about
3231                          * to become writable
3232                          */
3233                         if (vma->vm_ops->page_mkwrite) {
3234                                 int tmp;
3235
3236                                 unlock_page(page);
3237                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3238                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3239                                 if (unlikely(tmp &
3240                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3241                                         ret = tmp;
3242                                         goto unwritable_page;
3243                                 }
3244                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3245                                         lock_page(page);
3246                                         if (!page->mapping) {
3247                                                 ret = 0; /* retry the fault */
3248                                                 unlock_page(page);
3249                                                 goto unwritable_page;
3250                                         }
3251                                 } else
3252                                         VM_BUG_ON(!PageLocked(page));
3253                                 page_mkwrite = 1;
3254                         }
3255                 }
3256
3257         }
3258
3259         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3260
3261         /*
3262          * This silly early PAGE_DIRTY setting removes a race
3263          * due to the bad i386 page protection. But it's valid
3264          * for other architectures too.
3265          *
3266          * Note that if FAULT_FLAG_WRITE is set, we either now have
3267          * an exclusive copy of the page, or this is a shared mapping,
3268          * so we can make it writable and dirty to avoid having to
3269          * handle that later.
3270          */
3271         /* Only go through if we didn't race with anybody else... */
3272         if (likely(pte_same(*page_table, orig_pte))) {
3273                 flush_icache_page(vma, page);
3274                 entry = mk_pte(page, vma->vm_page_prot);
3275                 if (flags & FAULT_FLAG_WRITE)
3276                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3277                 if (anon) {
3278                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3279                         page_add_new_anon_rmap(page, vma, address);
3280                 } else {
3281                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3282                         page_add_file_rmap(page);
3283                         if (flags & FAULT_FLAG_WRITE) {
3284                                 dirty_page = page;
3285                                 get_page(dirty_page);
3286                         }
3287                 }
3288                 set_pte_at(mm, address, page_table, entry);
3289
3290                 /* no need to invalidate: a not-present page won't be cached */
3291                 update_mmu_cache(vma, address, page_table);
3292         } else {
3293                 if (cow_page)
3294                         mem_cgroup_uncharge_page(cow_page);
3295                 if (anon)
3296                         page_cache_release(page);
3297                 else
3298                         anon = 1; /* no anon but release faulted_page */
3299         }
3300
3301         pte_unmap_unlock(page_table, ptl);
3302
3303         if (dirty_page) {
3304                 struct address_space *mapping = page->mapping;
3305
3306                 if (set_page_dirty(dirty_page))
3307                         page_mkwrite = 1;
3308                 unlock_page(dirty_page);
3309                 put_page(dirty_page);
3310                 if (page_mkwrite && mapping) {
3311                         /*
3312                          * Some device drivers do not set page.mapping but still
3313                          * dirty their pages
3314                          */
3315                         balance_dirty_pages_ratelimited(mapping);
3316                 }
3317
3318                 /* file_update_time outside page_lock */
3319                 if (vma->vm_file)
3320                         file_update_time(vma->vm_file);
3321         } else {
3322                 unlock_page(vmf.page);
3323                 if (anon)
3324                         page_cache_release(vmf.page);
3325         }
3326
3327         return ret;
3328
3329 unwritable_page:
3330         page_cache_release(page);
3331         return ret;
3332 uncharge_out:
3333         /* fs's fault handler get error */
3334         if (cow_page) {
3335                 mem_cgroup_uncharge_page(cow_page);
3336                 page_cache_release(cow_page);
3337         }
3338         return ret;
3339 }
3340
3341 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3342                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3343                 unsigned int flags, pte_t orig_pte)
3344 {
3345         pgoff_t pgoff = (((address & PAGE_MASK)
3346                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3347
3348         pte_unmap(page_table);
3349         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3350 }
3351
3352 /*
3353  * Fault of a previously existing named mapping. Repopulate the pte
3354  * from the encoded file_pte if possible. This enables swappable
3355  * nonlinear vmas.
3356  *
3357  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3358  * but allow concurrent faults), and pte mapped but not yet locked.
3359  * We return with mmap_sem still held, but pte unmapped and unlocked.
3360  */
3361 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3362                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3363                 unsigned int flags, pte_t orig_pte)
3364 {
3365         pgoff_t pgoff;
3366
3367         flags |= FAULT_FLAG_NONLINEAR;
3368
3369         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3370                 return 0;
3371
3372         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3373                 /*
3374                  * Page table corrupted: show pte and kill process.
3375                  */
3376                 print_bad_pte(vma, address, orig_pte, NULL);
3377                 return VM_FAULT_SIGBUS;
3378         }
3379
3380         pgoff = pte_to_pgoff(orig_pte);
3381         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3382 }
3383
3384 /*
3385  * These routines also need to handle stuff like marking pages dirty
3386  * and/or accessed for architectures that don't do it in hardware (most
3387  * RISC architectures).  The early dirtying is also good on the i386.
3388  *
3389  * There is also a hook called "update_mmu_cache()" that architectures
3390  * with external mmu caches can use to update those (ie the Sparc or
3391  * PowerPC hashed page tables that act as extended TLBs).
3392  *
3393  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3394  * but allow concurrent faults), and pte mapped but not yet locked.
3395  * We return with mmap_sem still held, but pte unmapped and unlocked.
3396  */
3397 int handle_pte_fault(struct mm_struct *mm,
3398                      struct vm_area_struct *vma, unsigned long address,
3399                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3400 {
3401         pte_t entry;
3402         spinlock_t *ptl;
3403
3404         entry = *pte;
3405         if (!pte_present(entry)) {
3406                 if (pte_none(entry)) {
3407                         if (vma->vm_ops) {
3408                                 if (likely(vma->vm_ops->fault))
3409                                         return do_linear_fault(mm, vma, address,
3410                                                 pte, pmd, flags, entry);
3411                         }
3412                         return do_anonymous_page(mm, vma, address,
3413                                                  pte, pmd, flags);
3414                 }
3415                 if (pte_file(entry))
3416                         return do_nonlinear_fault(mm, vma, address,
3417                                         pte, pmd, flags, entry);
3418                 return do_swap_page(mm, vma, address,
3419                                         pte, pmd, flags, entry);
3420         }
3421
3422         ptl = pte_lockptr(mm, pmd);
3423         spin_lock(ptl);
3424         if (unlikely(!pte_same(*pte, entry)))
3425                 goto unlock;
3426         if (flags & FAULT_FLAG_WRITE) {
3427                 if (!pte_write(entry))
3428                         return do_wp_page(mm, vma, address,
3429                                         pte, pmd, ptl, entry);
3430                 entry = pte_mkdirty(entry);
3431         }
3432         entry = pte_mkyoung(entry);
3433         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3434                 update_mmu_cache(vma, address, pte);
3435         } else {
3436                 /*
3437                  * This is needed only for protection faults but the arch code
3438                  * is not yet telling us if this is a protection fault or not.
3439                  * This still avoids useless tlb flushes for .text page faults
3440                  * with threads.
3441                  */
3442                 if (flags & FAULT_FLAG_WRITE)
3443                         flush_tlb_fix_spurious_fault(vma, address);
3444         }
3445 unlock:
3446         pte_unmap_unlock(pte, ptl);
3447         return 0;
3448 }
3449
3450 /*
3451  * By the time we get here, we already hold the mm semaphore
3452  */
3453 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3454                 unsigned long address, unsigned int flags)
3455 {
3456         pgd_t *pgd;
3457         pud_t *pud;
3458         pmd_t *pmd;
3459         pte_t *pte;
3460
3461         __set_current_state(TASK_RUNNING);
3462
3463         count_vm_event(PGFAULT);
3464         mem_cgroup_count_vm_event(mm, PGFAULT);
3465
3466         /* do counter updates before entering really critical section. */
3467         check_sync_rss_stat(current);
3468
3469         if (unlikely(is_vm_hugetlb_page(vma)))
3470                 return hugetlb_fault(mm, vma, address, flags);
3471
3472 retry:
3473         pgd = pgd_offset(mm, address);
3474         pud = pud_alloc(mm, pgd, address);
3475         if (!pud)
3476                 return VM_FAULT_OOM;
3477         pmd = pmd_alloc(mm, pud, address);
3478         if (!pmd)
3479                 return VM_FAULT_OOM;
3480         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3481                 if (!vma->vm_ops)
3482                         return do_huge_pmd_anonymous_page(mm, vma, address,
3483                                                           pmd, flags);
3484         } else {
3485                 pmd_t orig_pmd = *pmd;
3486                 int ret;
3487
3488                 barrier();
3489                 if (pmd_trans_huge(orig_pmd)) {
3490                         if (flags & FAULT_FLAG_WRITE &&
3491                             !pmd_write(orig_pmd) &&
3492                             !pmd_trans_splitting(orig_pmd)) {
3493                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3494                                                           orig_pmd);
3495                                 /*
3496                                  * If COW results in an oom, the huge pmd will
3497                                  * have been split, so retry the fault on the
3498                                  * pte for a smaller charge.
3499                                  */
3500                                 if (unlikely(ret & VM_FAULT_OOM))
3501                                         goto retry;
3502                                 return ret;
3503                         }
3504                         return 0;
3505                 }
3506         }
3507
3508         /*
3509          * Use __pte_alloc instead of pte_alloc_map, because we can't
3510          * run pte_offset_map on the pmd, if an huge pmd could
3511          * materialize from under us from a different thread.
3512          */
3513         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3514                 return VM_FAULT_OOM;
3515         /* if an huge pmd materialized from under us just retry later */
3516         if (unlikely(pmd_trans_huge(*pmd)))
3517                 return 0;
3518         /*
3519          * A regular pmd is established and it can't morph into a huge pmd
3520          * from under us anymore at this point because we hold the mmap_sem
3521          * read mode and khugepaged takes it in write mode. So now it's
3522          * safe to run pte_offset_map().
3523          */
3524         pte = pte_offset_map(pmd, address);
3525
3526         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3527 }
3528
3529 #ifndef __PAGETABLE_PUD_FOLDED
3530 /*
3531  * Allocate page upper directory.
3532  * We've already handled the fast-path in-line.
3533  */
3534 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3535 {
3536         pud_t *new = pud_alloc_one(mm, address);
3537         if (!new)
3538                 return -ENOMEM;
3539
3540         smp_wmb(); /* See comment in __pte_alloc */
3541
3542         spin_lock(&mm->page_table_lock);
3543         if (pgd_present(*pgd))          /* Another has populated it */
3544                 pud_free(mm, new);
3545         else
3546                 pgd_populate(mm, pgd, new);
3547         spin_unlock(&mm->page_table_lock);
3548         return 0;
3549 }
3550 #endif /* __PAGETABLE_PUD_FOLDED */
3551
3552 #ifndef __PAGETABLE_PMD_FOLDED
3553 /*
3554  * Allocate page middle directory.
3555  * We've already handled the fast-path in-line.
3556  */
3557 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3558 {
3559         pmd_t *new = pmd_alloc_one(mm, address);
3560         if (!new)
3561                 return -ENOMEM;
3562
3563         smp_wmb(); /* See comment in __pte_alloc */
3564
3565         spin_lock(&mm->page_table_lock);
3566 #ifndef __ARCH_HAS_4LEVEL_HACK
3567         if (pud_present(*pud))          /* Another has populated it */
3568                 pmd_free(mm, new);
3569         else
3570                 pud_populate(mm, pud, new);
3571 #else
3572         if (pgd_present(*pud))          /* Another has populated it */
3573                 pmd_free(mm, new);
3574         else
3575                 pgd_populate(mm, pud, new);
3576 #endif /* __ARCH_HAS_4LEVEL_HACK */
3577         spin_unlock(&mm->page_table_lock);
3578         return 0;
3579 }
3580 #endif /* __PAGETABLE_PMD_FOLDED */
3581
3582 int make_pages_present(unsigned long addr, unsigned long end)
3583 {
3584         int ret, len, write;
3585         struct vm_area_struct * vma;
3586
3587         vma = find_vma(current->mm, addr);
3588         if (!vma)
3589                 return -ENOMEM;
3590         /*
3591          * We want to touch writable mappings with a write fault in order
3592          * to break COW, except for shared mappings because these don't COW
3593          * and we would not want to dirty them for nothing.
3594          */
3595         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3596         BUG_ON(addr >= end);
3597         BUG_ON(end > vma->vm_end);
3598         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3599         ret = get_user_pages(current, current->mm, addr,
3600                         len, write, 0, NULL, NULL);
3601         if (ret < 0)
3602                 return ret;
3603         return ret == len ? 0 : -EFAULT;
3604 }
3605
3606 #if !defined(__HAVE_ARCH_GATE_AREA)
3607
3608 #if defined(AT_SYSINFO_EHDR)
3609 static struct vm_area_struct gate_vma;
3610
3611 static int __init gate_vma_init(void)
3612 {
3613         gate_vma.vm_mm = NULL;
3614         gate_vma.vm_start = FIXADDR_USER_START;
3615         gate_vma.vm_end = FIXADDR_USER_END;
3616         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3617         gate_vma.vm_page_prot = __P101;
3618         /*
3619          * Make sure the vDSO gets into every core dump.
3620          * Dumping its contents makes post-mortem fully interpretable later
3621          * without matching up the same kernel and hardware config to see
3622          * what PC values meant.
3623          */
3624         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3625         return 0;
3626 }
3627 __initcall(gate_vma_init);
3628 #endif
3629
3630 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3631 {
3632 #ifdef AT_SYSINFO_EHDR
3633         return &gate_vma;
3634 #else
3635         return NULL;
3636 #endif
3637 }
3638
3639 int in_gate_area_no_mm(unsigned long addr)
3640 {
3641 #ifdef AT_SYSINFO_EHDR
3642         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3643                 return 1;
3644 #endif
3645         return 0;
3646 }
3647
3648 #endif  /* __HAVE_ARCH_GATE_AREA */
3649
3650 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3651                 pte_t **ptepp, spinlock_t **ptlp)
3652 {
3653         pgd_t *pgd;
3654         pud_t *pud;
3655         pmd_t *pmd;
3656         pte_t *ptep;
3657
3658         pgd = pgd_offset(mm, address);
3659         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3660                 goto out;
3661
3662         pud = pud_offset(pgd, address);
3663         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3664                 goto out;
3665
3666         pmd = pmd_offset(pud, address);
3667         VM_BUG_ON(pmd_trans_huge(*pmd));
3668         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3669                 goto out;
3670
3671         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3672         if (pmd_huge(*pmd))
3673                 goto out;
3674
3675         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3676         if (!ptep)
3677                 goto out;
3678         if (!pte_present(*ptep))
3679                 goto unlock;
3680         *ptepp = ptep;
3681         return 0;
3682 unlock:
3683         pte_unmap_unlock(ptep, *ptlp);
3684 out:
3685         return -EINVAL;
3686 }
3687
3688 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3689                              pte_t **ptepp, spinlock_t **ptlp)
3690 {
3691         int res;
3692
3693         /* (void) is needed to make gcc happy */
3694         (void) __cond_lock(*ptlp,
3695                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3696         return res;
3697 }
3698
3699 /**
3700  * follow_pfn - look up PFN at a user virtual address
3701  * @vma: memory mapping
3702  * @address: user virtual address
3703  * @pfn: location to store found PFN
3704  *
3705  * Only IO mappings and raw PFN mappings are allowed.
3706  *
3707  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3708  */
3709 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3710         unsigned long *pfn)
3711 {
3712         int ret = -EINVAL;
3713         spinlock_t *ptl;
3714         pte_t *ptep;
3715
3716         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3717                 return ret;
3718
3719         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3720         if (ret)
3721                 return ret;
3722         *pfn = pte_pfn(*ptep);
3723         pte_unmap_unlock(ptep, ptl);
3724         return 0;
3725 }
3726 EXPORT_SYMBOL(follow_pfn);
3727
3728 #ifdef CONFIG_HAVE_IOREMAP_PROT
3729 int follow_phys(struct vm_area_struct *vma,
3730                 unsigned long address, unsigned int flags,
3731                 unsigned long *prot, resource_size_t *phys)
3732 {
3733         int ret = -EINVAL;
3734         pte_t *ptep, pte;
3735         spinlock_t *ptl;
3736
3737         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3738                 goto out;
3739
3740         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3741                 goto out;
3742         pte = *ptep;
3743
3744         if ((flags & FOLL_WRITE) && !pte_write(pte))
3745                 goto unlock;
3746
3747         *prot = pgprot_val(pte_pgprot(pte));
3748         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3749
3750         ret = 0;
3751 unlock:
3752         pte_unmap_unlock(ptep, ptl);
3753 out:
3754         return ret;
3755 }
3756
3757 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3758                         void *buf, int len, int write)
3759 {
3760         resource_size_t phys_addr;
3761         unsigned long prot = 0;
3762         void __iomem *maddr;
3763         int offset = addr & (PAGE_SIZE-1);
3764
3765         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3766                 return -EINVAL;
3767
3768         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3769         if (write)
3770                 memcpy_toio(maddr + offset, buf, len);
3771         else
3772                 memcpy_fromio(buf, maddr + offset, len);
3773         iounmap(maddr);
3774
3775         return len;
3776 }
3777 #endif
3778
3779 /*
3780  * Access another process' address space as given in mm.  If non-NULL, use the
3781  * given task for page fault accounting.
3782  */
3783 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3784                 unsigned long addr, void *buf, int len, int write)
3785 {
3786         struct vm_area_struct *vma;
3787         void *old_buf = buf;
3788
3789         down_read(&mm->mmap_sem);
3790         /* ignore errors, just check how much was successfully transferred */
3791         while (len) {
3792                 int bytes, ret, offset;
3793                 void *maddr;
3794                 struct page *page = NULL;
3795
3796                 ret = get_user_pages(tsk, mm, addr, 1,
3797                                 write, 1, &page, &vma);
3798                 if (ret <= 0) {
3799                         /*
3800                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3801                          * we can access using slightly different code.
3802                          */
3803 #ifdef CONFIG_HAVE_IOREMAP_PROT
3804                         vma = find_vma(mm, addr);
3805                         if (!vma || vma->vm_start > addr)
3806                                 break;
3807                         if (vma->vm_ops && vma->vm_ops->access)
3808                                 ret = vma->vm_ops->access(vma, addr, buf,
3809                                                           len, write);
3810                         if (ret <= 0)
3811 #endif
3812                                 break;
3813                         bytes = ret;
3814                 } else {
3815                         bytes = len;
3816                         offset = addr & (PAGE_SIZE-1);
3817                         if (bytes > PAGE_SIZE-offset)
3818                                 bytes = PAGE_SIZE-offset;
3819
3820                         maddr = kmap(page);
3821                         if (write) {
3822                                 copy_to_user_page(vma, page, addr,
3823                                                   maddr + offset, buf, bytes);
3824                                 set_page_dirty_lock(page);
3825                         } else {
3826                                 copy_from_user_page(vma, page, addr,
3827                                                     buf, maddr + offset, bytes);
3828                         }
3829                         kunmap(page);
3830                         page_cache_release(page);
3831                 }
3832                 len -= bytes;
3833                 buf += bytes;
3834                 addr += bytes;
3835         }
3836         up_read(&mm->mmap_sem);
3837
3838         return buf - old_buf;
3839 }
3840
3841 /**
3842  * access_remote_vm - access another process' address space
3843  * @mm:         the mm_struct of the target address space
3844  * @addr:       start address to access
3845  * @buf:        source or destination buffer
3846  * @len:        number of bytes to transfer
3847  * @write:      whether the access is a write
3848  *
3849  * The caller must hold a reference on @mm.
3850  */
3851 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3852                 void *buf, int len, int write)
3853 {
3854         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3855 }
3856
3857 /*
3858  * Access another process' address space.
3859  * Source/target buffer must be kernel space,
3860  * Do not walk the page table directly, use get_user_pages
3861  */
3862 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3863                 void *buf, int len, int write)
3864 {
3865         struct mm_struct *mm;
3866         int ret;
3867
3868         mm = get_task_mm(tsk);
3869         if (!mm)
3870                 return 0;
3871
3872         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3873         mmput(mm);
3874
3875         return ret;
3876 }
3877
3878 /*
3879  * Print the name of a VMA.
3880  */
3881 void print_vma_addr(char *prefix, unsigned long ip)
3882 {
3883         struct mm_struct *mm = current->mm;
3884         struct vm_area_struct *vma;
3885
3886         /*
3887          * Do not print if we are in atomic
3888          * contexts (in exception stacks, etc.):
3889          */
3890         if (preempt_count())
3891                 return;
3892
3893         down_read(&mm->mmap_sem);
3894         vma = find_vma(mm, ip);
3895         if (vma && vma->vm_file) {
3896                 struct file *f = vma->vm_file;
3897                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3898                 if (buf) {
3899                         char *p, *s;
3900
3901                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3902                         if (IS_ERR(p))
3903                                 p = "?";
3904                         s = strrchr(p, '/');
3905                         if (s)
3906                                 p = s+1;
3907                         printk("%s%s[%lx+%lx]", prefix, p,
3908                                         vma->vm_start,
3909                                         vma->vm_end - vma->vm_start);
3910                         free_page((unsigned long)buf);
3911                 }
3912         }
3913         up_read(&current->mm->mmap_sem);
3914 }
3915
3916 #ifdef CONFIG_PROVE_LOCKING
3917 void might_fault(void)
3918 {
3919         /*
3920          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3921          * holding the mmap_sem, this is safe because kernel memory doesn't
3922          * get paged out, therefore we'll never actually fault, and the
3923          * below annotations will generate false positives.
3924          */
3925         if (segment_eq(get_fs(), KERNEL_DS))
3926                 return;
3927
3928         might_sleep();
3929         /*
3930          * it would be nicer only to annotate paths which are not under
3931          * pagefault_disable, however that requires a larger audit and
3932          * providing helpers like get_user_atomic.
3933          */
3934         if (!in_atomic() && current->mm)
3935                 might_lock_read(&current->mm->mmap_sem);
3936 }
3937 EXPORT_SYMBOL(might_fault);
3938 #endif
3939
3940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3941 static void clear_gigantic_page(struct page *page,
3942                                 unsigned long addr,
3943                                 unsigned int pages_per_huge_page)
3944 {
3945         int i;
3946         struct page *p = page;
3947
3948         might_sleep();
3949         for (i = 0; i < pages_per_huge_page;
3950              i++, p = mem_map_next(p, page, i)) {
3951                 cond_resched();
3952                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3953         }
3954 }
3955 void clear_huge_page(struct page *page,
3956                      unsigned long addr, unsigned int pages_per_huge_page)
3957 {
3958         int i;
3959
3960         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3961                 clear_gigantic_page(page, addr, pages_per_huge_page);
3962                 return;
3963         }
3964
3965         might_sleep();
3966         for (i = 0; i < pages_per_huge_page; i++) {
3967                 cond_resched();
3968                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3969         }
3970 }
3971
3972 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3973                                     unsigned long addr,
3974                                     struct vm_area_struct *vma,
3975                                     unsigned int pages_per_huge_page)
3976 {
3977         int i;
3978         struct page *dst_base = dst;
3979         struct page *src_base = src;
3980
3981         for (i = 0; i < pages_per_huge_page; ) {
3982                 cond_resched();
3983                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3984
3985                 i++;
3986                 dst = mem_map_next(dst, dst_base, i);
3987                 src = mem_map_next(src, src_base, i);
3988         }
3989 }
3990
3991 void copy_user_huge_page(struct page *dst, struct page *src,
3992                          unsigned long addr, struct vm_area_struct *vma,
3993                          unsigned int pages_per_huge_page)
3994 {
3995         int i;
3996
3997         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3998                 copy_user_gigantic_page(dst, src, addr, vma,
3999                                         pages_per_huge_page);
4000                 return;
4001         }
4002
4003         might_sleep();
4004         for (i = 0; i < pages_per_huge_page; i++) {
4005                 cond_resched();
4006                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4007         }
4008 }
4009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */