Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-2.6
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72
73 unsigned long num_physpages;
74 /*
75  * A number of key systems in x86 including ioremap() rely on the assumption
76  * that high_memory defines the upper bound on direct map memory, then end
77  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79  * and ZONE_HIGHMEM.
80  */
81 void * high_memory;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85
86 /*
87  * Randomize the address space (stacks, mmaps, brk, etc.).
88  *
89  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90  *   as ancient (libc5 based) binaries can segfault. )
91  */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94                                         1;
95 #else
96                                         2;
97 #endif
98
99 static int __init disable_randmaps(char *s)
100 {
101         randomize_va_space = 0;
102         return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105
106
107 /*
108  * If a p?d_bad entry is found while walking page tables, report
109  * the error, before resetting entry to p?d_none.  Usually (but
110  * very seldom) called out from the p?d_none_or_clear_bad macros.
111  */
112
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115         pgd_ERROR(*pgd);
116         pgd_clear(pgd);
117 }
118
119 void pud_clear_bad(pud_t *pud)
120 {
121         pud_ERROR(*pud);
122         pud_clear(pud);
123 }
124
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127         pmd_ERROR(*pmd);
128         pmd_clear(pmd);
129 }
130
131 /*
132  * Note: this doesn't free the actual pages themselves. That
133  * has been handled earlier when unmapping all the memory regions.
134  */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137         pgtable_t token = pmd_pgtable(*pmd);
138         pmd_clear(pmd);
139         pte_free_tlb(tlb, token);
140         tlb->mm->nr_ptes--;
141 }
142
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144                                 unsigned long addr, unsigned long end,
145                                 unsigned long floor, unsigned long ceiling)
146 {
147         pmd_t *pmd;
148         unsigned long next;
149         unsigned long start;
150
151         start = addr;
152         pmd = pmd_offset(pud, addr);
153         do {
154                 next = pmd_addr_end(addr, end);
155                 if (pmd_none_or_clear_bad(pmd))
156                         continue;
157                 free_pte_range(tlb, pmd);
158         } while (pmd++, addr = next, addr != end);
159
160         start &= PUD_MASK;
161         if (start < floor)
162                 return;
163         if (ceiling) {
164                 ceiling &= PUD_MASK;
165                 if (!ceiling)
166                         return;
167         }
168         if (end - 1 > ceiling - 1)
169                 return;
170
171         pmd = pmd_offset(pud, start);
172         pud_clear(pud);
173         pmd_free_tlb(tlb, pmd);
174 }
175
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177                                 unsigned long addr, unsigned long end,
178                                 unsigned long floor, unsigned long ceiling)
179 {
180         pud_t *pud;
181         unsigned long next;
182         unsigned long start;
183
184         start = addr;
185         pud = pud_offset(pgd, addr);
186         do {
187                 next = pud_addr_end(addr, end);
188                 if (pud_none_or_clear_bad(pud))
189                         continue;
190                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191         } while (pud++, addr = next, addr != end);
192
193         start &= PGDIR_MASK;
194         if (start < floor)
195                 return;
196         if (ceiling) {
197                 ceiling &= PGDIR_MASK;
198                 if (!ceiling)
199                         return;
200         }
201         if (end - 1 > ceiling - 1)
202                 return;
203
204         pud = pud_offset(pgd, start);
205         pgd_clear(pgd);
206         pud_free_tlb(tlb, pud);
207 }
208
209 /*
210  * This function frees user-level page tables of a process.
211  *
212  * Must be called with pagetable lock held.
213  */
214 void free_pgd_range(struct mmu_gather **tlb,
215                         unsigned long addr, unsigned long end,
216                         unsigned long floor, unsigned long ceiling)
217 {
218         pgd_t *pgd;
219         unsigned long next;
220         unsigned long start;
221
222         /*
223          * The next few lines have given us lots of grief...
224          *
225          * Why are we testing PMD* at this top level?  Because often
226          * there will be no work to do at all, and we'd prefer not to
227          * go all the way down to the bottom just to discover that.
228          *
229          * Why all these "- 1"s?  Because 0 represents both the bottom
230          * of the address space and the top of it (using -1 for the
231          * top wouldn't help much: the masks would do the wrong thing).
232          * The rule is that addr 0 and floor 0 refer to the bottom of
233          * the address space, but end 0 and ceiling 0 refer to the top
234          * Comparisons need to use "end - 1" and "ceiling - 1" (though
235          * that end 0 case should be mythical).
236          *
237          * Wherever addr is brought up or ceiling brought down, we must
238          * be careful to reject "the opposite 0" before it confuses the
239          * subsequent tests.  But what about where end is brought down
240          * by PMD_SIZE below? no, end can't go down to 0 there.
241          *
242          * Whereas we round start (addr) and ceiling down, by different
243          * masks at different levels, in order to test whether a table
244          * now has no other vmas using it, so can be freed, we don't
245          * bother to round floor or end up - the tests don't need that.
246          */
247
248         addr &= PMD_MASK;
249         if (addr < floor) {
250                 addr += PMD_SIZE;
251                 if (!addr)
252                         return;
253         }
254         if (ceiling) {
255                 ceiling &= PMD_MASK;
256                 if (!ceiling)
257                         return;
258         }
259         if (end - 1 > ceiling - 1)
260                 end -= PMD_SIZE;
261         if (addr > end - 1)
262                 return;
263
264         start = addr;
265         pgd = pgd_offset((*tlb)->mm, addr);
266         do {
267                 next = pgd_addr_end(addr, end);
268                 if (pgd_none_or_clear_bad(pgd))
269                         continue;
270                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271         } while (pgd++, addr = next, addr != end);
272 }
273
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275                 unsigned long floor, unsigned long ceiling)
276 {
277         while (vma) {
278                 struct vm_area_struct *next = vma->vm_next;
279                 unsigned long addr = vma->vm_start;
280
281                 /*
282                  * Hide vma from rmap and vmtruncate before freeing pgtables
283                  */
284                 anon_vma_unlink(vma);
285                 unlink_file_vma(vma);
286
287                 if (is_vm_hugetlb_page(vma)) {
288                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289                                 floor, next? next->vm_start: ceiling);
290                 } else {
291                         /*
292                          * Optimization: gather nearby vmas into one call down
293                          */
294                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295                                && !is_vm_hugetlb_page(next)) {
296                                 vma = next;
297                                 next = vma->vm_next;
298                                 anon_vma_unlink(vma);
299                                 unlink_file_vma(vma);
300                         }
301                         free_pgd_range(tlb, addr, vma->vm_end,
302                                 floor, next? next->vm_start: ceiling);
303                 }
304                 vma = next;
305         }
306 }
307
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310         pgtable_t new = pte_alloc_one(mm, address);
311         if (!new)
312                 return -ENOMEM;
313
314         /*
315          * Ensure all pte setup (eg. pte page lock and page clearing) are
316          * visible before the pte is made visible to other CPUs by being
317          * put into page tables.
318          *
319          * The other side of the story is the pointer chasing in the page
320          * table walking code (when walking the page table without locking;
321          * ie. most of the time). Fortunately, these data accesses consist
322          * of a chain of data-dependent loads, meaning most CPUs (alpha
323          * being the notable exception) will already guarantee loads are
324          * seen in-order. See the alpha page table accessors for the
325          * smp_read_barrier_depends() barriers in page table walking code.
326          */
327         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
328
329         spin_lock(&mm->page_table_lock);
330         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
331                 mm->nr_ptes++;
332                 pmd_populate(mm, pmd, new);
333                 new = NULL;
334         }
335         spin_unlock(&mm->page_table_lock);
336         if (new)
337                 pte_free(mm, new);
338         return 0;
339 }
340
341 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
342 {
343         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
344         if (!new)
345                 return -ENOMEM;
346
347         smp_wmb(); /* See comment in __pte_alloc */
348
349         spin_lock(&init_mm.page_table_lock);
350         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
351                 pmd_populate_kernel(&init_mm, pmd, new);
352                 new = NULL;
353         }
354         spin_unlock(&init_mm.page_table_lock);
355         if (new)
356                 pte_free_kernel(&init_mm, new);
357         return 0;
358 }
359
360 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
361 {
362         if (file_rss)
363                 add_mm_counter(mm, file_rss, file_rss);
364         if (anon_rss)
365                 add_mm_counter(mm, anon_rss, anon_rss);
366 }
367
368 /*
369  * This function is called to print an error when a bad pte
370  * is found. For example, we might have a PFN-mapped pte in
371  * a region that doesn't allow it.
372  *
373  * The calling function must still handle the error.
374  */
375 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
376 {
377         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378                         "vm_flags = %lx, vaddr = %lx\n",
379                 (long long)pte_val(pte),
380                 (vma->vm_mm == current->mm ? current->comm : "???"),
381                 vma->vm_flags, vaddr);
382         dump_stack();
383 }
384
385 static inline int is_cow_mapping(unsigned int flags)
386 {
387         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
388 }
389
390 /*
391  * vm_normal_page -- This function gets the "struct page" associated with a pte.
392  *
393  * "Special" mappings do not wish to be associated with a "struct page" (either
394  * it doesn't exist, or it exists but they don't want to touch it). In this
395  * case, NULL is returned here. "Normal" mappings do have a struct page.
396  *
397  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398  * pte bit, in which case this function is trivial. Secondly, an architecture
399  * may not have a spare pte bit, which requires a more complicated scheme,
400  * described below.
401  *
402  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403  * special mapping (even if there are underlying and valid "struct pages").
404  * COWed pages of a VM_PFNMAP are always normal.
405  *
406  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409  * mapping will always honor the rule
410  *
411  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
412  *
413  * And for normal mappings this is false.
414  *
415  * This restricts such mappings to be a linear translation from virtual address
416  * to pfn. To get around this restriction, we allow arbitrary mappings so long
417  * as the vma is not a COW mapping; in that case, we know that all ptes are
418  * special (because none can have been COWed).
419  *
420  *
421  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
422  *
423  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424  * page" backing, however the difference is that _all_ pages with a struct
425  * page (that is, those where pfn_valid is true) are refcounted and considered
426  * normal pages by the VM. The disadvantage is that pages are refcounted
427  * (which can be slower and simply not an option for some PFNMAP users). The
428  * advantage is that we don't have to follow the strict linearity rule of
429  * PFNMAP mappings in order to support COWable mappings.
430  *
431  */
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
434 #else
435 # define HAVE_PTE_SPECIAL 0
436 #endif
437 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
438                                 pte_t pte)
439 {
440         unsigned long pfn;
441
442         if (HAVE_PTE_SPECIAL) {
443                 if (likely(!pte_special(pte))) {
444                         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445                         return pte_page(pte);
446                 }
447                 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
448                 return NULL;
449         }
450
451         /* !HAVE_PTE_SPECIAL case follows: */
452
453         pfn = pte_pfn(pte);
454
455         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456                 if (vma->vm_flags & VM_MIXEDMAP) {
457                         if (!pfn_valid(pfn))
458                                 return NULL;
459                         goto out;
460                 } else {
461                         unsigned long off;
462                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
463                         if (pfn == vma->vm_pgoff + off)
464                                 return NULL;
465                         if (!is_cow_mapping(vma->vm_flags))
466                                 return NULL;
467                 }
468         }
469
470         VM_BUG_ON(!pfn_valid(pfn));
471
472         /*
473          * NOTE! We still have PageReserved() pages in the page tables.
474          *
475          * eg. VDSO mappings can cause them to exist.
476          */
477 out:
478         return pfn_to_page(pfn);
479 }
480
481 /*
482  * copy one vm_area from one task to the other. Assumes the page tables
483  * already present in the new task to be cleared in the whole range
484  * covered by this vma.
485  */
486
487 static inline void
488 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
489                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
490                 unsigned long addr, int *rss)
491 {
492         unsigned long vm_flags = vma->vm_flags;
493         pte_t pte = *src_pte;
494         struct page *page;
495
496         /* pte contains position in swap or file, so copy. */
497         if (unlikely(!pte_present(pte))) {
498                 if (!pte_file(pte)) {
499                         swp_entry_t entry = pte_to_swp_entry(pte);
500
501                         swap_duplicate(entry);
502                         /* make sure dst_mm is on swapoff's mmlist. */
503                         if (unlikely(list_empty(&dst_mm->mmlist))) {
504                                 spin_lock(&mmlist_lock);
505                                 if (list_empty(&dst_mm->mmlist))
506                                         list_add(&dst_mm->mmlist,
507                                                  &src_mm->mmlist);
508                                 spin_unlock(&mmlist_lock);
509                         }
510                         if (is_write_migration_entry(entry) &&
511                                         is_cow_mapping(vm_flags)) {
512                                 /*
513                                  * COW mappings require pages in both parent
514                                  * and child to be set to read.
515                                  */
516                                 make_migration_entry_read(&entry);
517                                 pte = swp_entry_to_pte(entry);
518                                 set_pte_at(src_mm, addr, src_pte, pte);
519                         }
520                 }
521                 goto out_set_pte;
522         }
523
524         /*
525          * If it's a COW mapping, write protect it both
526          * in the parent and the child
527          */
528         if (is_cow_mapping(vm_flags)) {
529                 ptep_set_wrprotect(src_mm, addr, src_pte);
530                 pte = pte_wrprotect(pte);
531         }
532
533         /*
534          * If it's a shared mapping, mark it clean in
535          * the child
536          */
537         if (vm_flags & VM_SHARED)
538                 pte = pte_mkclean(pte);
539         pte = pte_mkold(pte);
540
541         page = vm_normal_page(vma, addr, pte);
542         if (page) {
543                 get_page(page);
544                 page_dup_rmap(page, vma, addr);
545                 rss[!!PageAnon(page)]++;
546         }
547
548 out_set_pte:
549         set_pte_at(dst_mm, addr, dst_pte, pte);
550 }
551
552 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554                 unsigned long addr, unsigned long end)
555 {
556         pte_t *src_pte, *dst_pte;
557         spinlock_t *src_ptl, *dst_ptl;
558         int progress = 0;
559         int rss[2];
560
561 again:
562         rss[1] = rss[0] = 0;
563         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
564         if (!dst_pte)
565                 return -ENOMEM;
566         src_pte = pte_offset_map_nested(src_pmd, addr);
567         src_ptl = pte_lockptr(src_mm, src_pmd);
568         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
569         arch_enter_lazy_mmu_mode();
570
571         do {
572                 /*
573                  * We are holding two locks at this point - either of them
574                  * could generate latencies in another task on another CPU.
575                  */
576                 if (progress >= 32) {
577                         progress = 0;
578                         if (need_resched() ||
579                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
580                                 break;
581                 }
582                 if (pte_none(*src_pte)) {
583                         progress++;
584                         continue;
585                 }
586                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
587                 progress += 8;
588         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
589
590         arch_leave_lazy_mmu_mode();
591         spin_unlock(src_ptl);
592         pte_unmap_nested(src_pte - 1);
593         add_mm_rss(dst_mm, rss[0], rss[1]);
594         pte_unmap_unlock(dst_pte - 1, dst_ptl);
595         cond_resched();
596         if (addr != end)
597                 goto again;
598         return 0;
599 }
600
601 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603                 unsigned long addr, unsigned long end)
604 {
605         pmd_t *src_pmd, *dst_pmd;
606         unsigned long next;
607
608         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
609         if (!dst_pmd)
610                 return -ENOMEM;
611         src_pmd = pmd_offset(src_pud, addr);
612         do {
613                 next = pmd_addr_end(addr, end);
614                 if (pmd_none_or_clear_bad(src_pmd))
615                         continue;
616                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
617                                                 vma, addr, next))
618                         return -ENOMEM;
619         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
620         return 0;
621 }
622
623 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625                 unsigned long addr, unsigned long end)
626 {
627         pud_t *src_pud, *dst_pud;
628         unsigned long next;
629
630         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
631         if (!dst_pud)
632                 return -ENOMEM;
633         src_pud = pud_offset(src_pgd, addr);
634         do {
635                 next = pud_addr_end(addr, end);
636                 if (pud_none_or_clear_bad(src_pud))
637                         continue;
638                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
639                                                 vma, addr, next))
640                         return -ENOMEM;
641         } while (dst_pud++, src_pud++, addr = next, addr != end);
642         return 0;
643 }
644
645 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646                 struct vm_area_struct *vma)
647 {
648         pgd_t *src_pgd, *dst_pgd;
649         unsigned long next;
650         unsigned long addr = vma->vm_start;
651         unsigned long end = vma->vm_end;
652
653         /*
654          * Don't copy ptes where a page fault will fill them correctly.
655          * Fork becomes much lighter when there are big shared or private
656          * readonly mappings. The tradeoff is that copy_page_range is more
657          * efficient than faulting.
658          */
659         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
660                 if (!vma->anon_vma)
661                         return 0;
662         }
663
664         if (is_vm_hugetlb_page(vma))
665                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
666
667         dst_pgd = pgd_offset(dst_mm, addr);
668         src_pgd = pgd_offset(src_mm, addr);
669         do {
670                 next = pgd_addr_end(addr, end);
671                 if (pgd_none_or_clear_bad(src_pgd))
672                         continue;
673                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
674                                                 vma, addr, next))
675                         return -ENOMEM;
676         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
677         return 0;
678 }
679
680 static unsigned long zap_pte_range(struct mmu_gather *tlb,
681                                 struct vm_area_struct *vma, pmd_t *pmd,
682                                 unsigned long addr, unsigned long end,
683                                 long *zap_work, struct zap_details *details)
684 {
685         struct mm_struct *mm = tlb->mm;
686         pte_t *pte;
687         spinlock_t *ptl;
688         int file_rss = 0;
689         int anon_rss = 0;
690
691         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
692         arch_enter_lazy_mmu_mode();
693         do {
694                 pte_t ptent = *pte;
695                 if (pte_none(ptent)) {
696                         (*zap_work)--;
697                         continue;
698                 }
699
700                 (*zap_work) -= PAGE_SIZE;
701
702                 if (pte_present(ptent)) {
703                         struct page *page;
704
705                         page = vm_normal_page(vma, addr, ptent);
706                         if (unlikely(details) && page) {
707                                 /*
708                                  * unmap_shared_mapping_pages() wants to
709                                  * invalidate cache without truncating:
710                                  * unmap shared but keep private pages.
711                                  */
712                                 if (details->check_mapping &&
713                                     details->check_mapping != page->mapping)
714                                         continue;
715                                 /*
716                                  * Each page->index must be checked when
717                                  * invalidating or truncating nonlinear.
718                                  */
719                                 if (details->nonlinear_vma &&
720                                     (page->index < details->first_index ||
721                                      page->index > details->last_index))
722                                         continue;
723                         }
724                         ptent = ptep_get_and_clear_full(mm, addr, pte,
725                                                         tlb->fullmm);
726                         tlb_remove_tlb_entry(tlb, pte, addr);
727                         if (unlikely(!page))
728                                 continue;
729                         if (unlikely(details) && details->nonlinear_vma
730                             && linear_page_index(details->nonlinear_vma,
731                                                 addr) != page->index)
732                                 set_pte_at(mm, addr, pte,
733                                            pgoff_to_pte(page->index));
734                         if (PageAnon(page))
735                                 anon_rss--;
736                         else {
737                                 if (pte_dirty(ptent))
738                                         set_page_dirty(page);
739                                 if (pte_young(ptent))
740                                         SetPageReferenced(page);
741                                 file_rss--;
742                         }
743                         page_remove_rmap(page, vma);
744                         tlb_remove_page(tlb, page);
745                         continue;
746                 }
747                 /*
748                  * If details->check_mapping, we leave swap entries;
749                  * if details->nonlinear_vma, we leave file entries.
750                  */
751                 if (unlikely(details))
752                         continue;
753                 if (!pte_file(ptent))
754                         free_swap_and_cache(pte_to_swp_entry(ptent));
755                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
756         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
757
758         add_mm_rss(mm, file_rss, anon_rss);
759         arch_leave_lazy_mmu_mode();
760         pte_unmap_unlock(pte - 1, ptl);
761
762         return addr;
763 }
764
765 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
766                                 struct vm_area_struct *vma, pud_t *pud,
767                                 unsigned long addr, unsigned long end,
768                                 long *zap_work, struct zap_details *details)
769 {
770         pmd_t *pmd;
771         unsigned long next;
772
773         pmd = pmd_offset(pud, addr);
774         do {
775                 next = pmd_addr_end(addr, end);
776                 if (pmd_none_or_clear_bad(pmd)) {
777                         (*zap_work)--;
778                         continue;
779                 }
780                 next = zap_pte_range(tlb, vma, pmd, addr, next,
781                                                 zap_work, details);
782         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
783
784         return addr;
785 }
786
787 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
788                                 struct vm_area_struct *vma, pgd_t *pgd,
789                                 unsigned long addr, unsigned long end,
790                                 long *zap_work, struct zap_details *details)
791 {
792         pud_t *pud;
793         unsigned long next;
794
795         pud = pud_offset(pgd, addr);
796         do {
797                 next = pud_addr_end(addr, end);
798                 if (pud_none_or_clear_bad(pud)) {
799                         (*zap_work)--;
800                         continue;
801                 }
802                 next = zap_pmd_range(tlb, vma, pud, addr, next,
803                                                 zap_work, details);
804         } while (pud++, addr = next, (addr != end && *zap_work > 0));
805
806         return addr;
807 }
808
809 static unsigned long unmap_page_range(struct mmu_gather *tlb,
810                                 struct vm_area_struct *vma,
811                                 unsigned long addr, unsigned long end,
812                                 long *zap_work, struct zap_details *details)
813 {
814         pgd_t *pgd;
815         unsigned long next;
816
817         if (details && !details->check_mapping && !details->nonlinear_vma)
818                 details = NULL;
819
820         BUG_ON(addr >= end);
821         tlb_start_vma(tlb, vma);
822         pgd = pgd_offset(vma->vm_mm, addr);
823         do {
824                 next = pgd_addr_end(addr, end);
825                 if (pgd_none_or_clear_bad(pgd)) {
826                         (*zap_work)--;
827                         continue;
828                 }
829                 next = zap_pud_range(tlb, vma, pgd, addr, next,
830                                                 zap_work, details);
831         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
832         tlb_end_vma(tlb, vma);
833
834         return addr;
835 }
836
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
839 #else
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
842 #endif
843
844 /**
845  * unmap_vmas - unmap a range of memory covered by a list of vma's
846  * @tlbp: address of the caller's struct mmu_gather
847  * @vma: the starting vma
848  * @start_addr: virtual address at which to start unmapping
849  * @end_addr: virtual address at which to end unmapping
850  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851  * @details: details of nonlinear truncation or shared cache invalidation
852  *
853  * Returns the end address of the unmapping (restart addr if interrupted).
854  *
855  * Unmap all pages in the vma list.
856  *
857  * We aim to not hold locks for too long (for scheduling latency reasons).
858  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
859  * return the ending mmu_gather to the caller.
860  *
861  * Only addresses between `start' and `end' will be unmapped.
862  *
863  * The VMA list must be sorted in ascending virtual address order.
864  *
865  * unmap_vmas() assumes that the caller will flush the whole unmapped address
866  * range after unmap_vmas() returns.  So the only responsibility here is to
867  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868  * drops the lock and schedules.
869  */
870 unsigned long unmap_vmas(struct mmu_gather **tlbp,
871                 struct vm_area_struct *vma, unsigned long start_addr,
872                 unsigned long end_addr, unsigned long *nr_accounted,
873                 struct zap_details *details)
874 {
875         long zap_work = ZAP_BLOCK_SIZE;
876         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
877         int tlb_start_valid = 0;
878         unsigned long start = start_addr;
879         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
880         int fullmm = (*tlbp)->fullmm;
881
882         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
883                 unsigned long end;
884
885                 start = max(vma->vm_start, start_addr);
886                 if (start >= vma->vm_end)
887                         continue;
888                 end = min(vma->vm_end, end_addr);
889                 if (end <= vma->vm_start)
890                         continue;
891
892                 if (vma->vm_flags & VM_ACCOUNT)
893                         *nr_accounted += (end - start) >> PAGE_SHIFT;
894
895                 while (start != end) {
896                         if (!tlb_start_valid) {
897                                 tlb_start = start;
898                                 tlb_start_valid = 1;
899                         }
900
901                         if (unlikely(is_vm_hugetlb_page(vma))) {
902                                 unmap_hugepage_range(vma, start, end);
903                                 zap_work -= (end - start) /
904                                                 (HPAGE_SIZE / PAGE_SIZE);
905                                 start = end;
906                         } else
907                                 start = unmap_page_range(*tlbp, vma,
908                                                 start, end, &zap_work, details);
909
910                         if (zap_work > 0) {
911                                 BUG_ON(start != end);
912                                 break;
913                         }
914
915                         tlb_finish_mmu(*tlbp, tlb_start, start);
916
917                         if (need_resched() ||
918                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
919                                 if (i_mmap_lock) {
920                                         *tlbp = NULL;
921                                         goto out;
922                                 }
923                                 cond_resched();
924                         }
925
926                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
927                         tlb_start_valid = 0;
928                         zap_work = ZAP_BLOCK_SIZE;
929                 }
930         }
931 out:
932         return start;   /* which is now the end (or restart) address */
933 }
934
935 /**
936  * zap_page_range - remove user pages in a given range
937  * @vma: vm_area_struct holding the applicable pages
938  * @address: starting address of pages to zap
939  * @size: number of bytes to zap
940  * @details: details of nonlinear truncation or shared cache invalidation
941  */
942 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
943                 unsigned long size, struct zap_details *details)
944 {
945         struct mm_struct *mm = vma->vm_mm;
946         struct mmu_gather *tlb;
947         unsigned long end = address + size;
948         unsigned long nr_accounted = 0;
949
950         lru_add_drain();
951         tlb = tlb_gather_mmu(mm, 0);
952         update_hiwater_rss(mm);
953         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
954         if (tlb)
955                 tlb_finish_mmu(tlb, address, end);
956         return end;
957 }
958
959 /*
960  * Do a quick page-table lookup for a single page.
961  */
962 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
963                         unsigned int flags)
964 {
965         pgd_t *pgd;
966         pud_t *pud;
967         pmd_t *pmd;
968         pte_t *ptep, pte;
969         spinlock_t *ptl;
970         struct page *page;
971         struct mm_struct *mm = vma->vm_mm;
972
973         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
974         if (!IS_ERR(page)) {
975                 BUG_ON(flags & FOLL_GET);
976                 goto out;
977         }
978
979         page = NULL;
980         pgd = pgd_offset(mm, address);
981         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
982                 goto no_page_table;
983
984         pud = pud_offset(pgd, address);
985         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
986                 goto no_page_table;
987         
988         pmd = pmd_offset(pud, address);
989         if (pmd_none(*pmd))
990                 goto no_page_table;
991
992         if (pmd_huge(*pmd)) {
993                 BUG_ON(flags & FOLL_GET);
994                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
995                 goto out;
996         }
997
998         if (unlikely(pmd_bad(*pmd)))
999                 goto no_page_table;
1000
1001         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1002         if (!ptep)
1003                 goto out;
1004
1005         pte = *ptep;
1006         if (!pte_present(pte))
1007                 goto unlock;
1008         if ((flags & FOLL_WRITE) && !pte_write(pte))
1009                 goto unlock;
1010         page = vm_normal_page(vma, address, pte);
1011         if (unlikely(!page))
1012                 goto unlock;
1013
1014         if (flags & FOLL_GET)
1015                 get_page(page);
1016         if (flags & FOLL_TOUCH) {
1017                 if ((flags & FOLL_WRITE) &&
1018                     !pte_dirty(pte) && !PageDirty(page))
1019                         set_page_dirty(page);
1020                 mark_page_accessed(page);
1021         }
1022 unlock:
1023         pte_unmap_unlock(ptep, ptl);
1024 out:
1025         return page;
1026
1027 no_page_table:
1028         /*
1029          * When core dumping an enormous anonymous area that nobody
1030          * has touched so far, we don't want to allocate page tables.
1031          */
1032         if (flags & FOLL_ANON) {
1033                 page = ZERO_PAGE(0);
1034                 if (flags & FOLL_GET)
1035                         get_page(page);
1036                 BUG_ON(flags & FOLL_WRITE);
1037         }
1038         return page;
1039 }
1040
1041 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1042                 unsigned long start, int len, int write, int force,
1043                 struct page **pages, struct vm_area_struct **vmas)
1044 {
1045         int i;
1046         unsigned int vm_flags;
1047
1048         if (len <= 0)
1049                 return 0;
1050         /* 
1051          * Require read or write permissions.
1052          * If 'force' is set, we only require the "MAY" flags.
1053          */
1054         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1055         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1056         i = 0;
1057
1058         do {
1059                 struct vm_area_struct *vma;
1060                 unsigned int foll_flags;
1061
1062                 vma = find_extend_vma(mm, start);
1063                 if (!vma && in_gate_area(tsk, start)) {
1064                         unsigned long pg = start & PAGE_MASK;
1065                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1066                         pgd_t *pgd;
1067                         pud_t *pud;
1068                         pmd_t *pmd;
1069                         pte_t *pte;
1070                         if (write) /* user gate pages are read-only */
1071                                 return i ? : -EFAULT;
1072                         if (pg > TASK_SIZE)
1073                                 pgd = pgd_offset_k(pg);
1074                         else
1075                                 pgd = pgd_offset_gate(mm, pg);
1076                         BUG_ON(pgd_none(*pgd));
1077                         pud = pud_offset(pgd, pg);
1078                         BUG_ON(pud_none(*pud));
1079                         pmd = pmd_offset(pud, pg);
1080                         if (pmd_none(*pmd))
1081                                 return i ? : -EFAULT;
1082                         pte = pte_offset_map(pmd, pg);
1083                         if (pte_none(*pte)) {
1084                                 pte_unmap(pte);
1085                                 return i ? : -EFAULT;
1086                         }
1087                         if (pages) {
1088                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1089                                 pages[i] = page;
1090                                 if (page)
1091                                         get_page(page);
1092                         }
1093                         pte_unmap(pte);
1094                         if (vmas)
1095                                 vmas[i] = gate_vma;
1096                         i++;
1097                         start += PAGE_SIZE;
1098                         len--;
1099                         continue;
1100                 }
1101
1102                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1103                                 || !(vm_flags & vma->vm_flags))
1104                         return i ? : -EFAULT;
1105
1106                 if (is_vm_hugetlb_page(vma)) {
1107                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1108                                                 &start, &len, i, write);
1109                         continue;
1110                 }
1111
1112                 foll_flags = FOLL_TOUCH;
1113                 if (pages)
1114                         foll_flags |= FOLL_GET;
1115                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1116                     (!vma->vm_ops || !vma->vm_ops->fault))
1117                         foll_flags |= FOLL_ANON;
1118
1119                 do {
1120                         struct page *page;
1121
1122                         /*
1123                          * If tsk is ooming, cut off its access to large memory
1124                          * allocations. It has a pending SIGKILL, but it can't
1125                          * be processed until returning to user space.
1126                          */
1127                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1128                                 return -ENOMEM;
1129
1130                         if (write)
1131                                 foll_flags |= FOLL_WRITE;
1132
1133                         cond_resched();
1134                         while (!(page = follow_page(vma, start, foll_flags))) {
1135                                 int ret;
1136                                 ret = handle_mm_fault(mm, vma, start,
1137                                                 foll_flags & FOLL_WRITE);
1138                                 if (ret & VM_FAULT_ERROR) {
1139                                         if (ret & VM_FAULT_OOM)
1140                                                 return i ? i : -ENOMEM;
1141                                         else if (ret & VM_FAULT_SIGBUS)
1142                                                 return i ? i : -EFAULT;
1143                                         BUG();
1144                                 }
1145                                 if (ret & VM_FAULT_MAJOR)
1146                                         tsk->maj_flt++;
1147                                 else
1148                                         tsk->min_flt++;
1149
1150                                 /*
1151                                  * The VM_FAULT_WRITE bit tells us that
1152                                  * do_wp_page has broken COW when necessary,
1153                                  * even if maybe_mkwrite decided not to set
1154                                  * pte_write. We can thus safely do subsequent
1155                                  * page lookups as if they were reads.
1156                                  */
1157                                 if (ret & VM_FAULT_WRITE)
1158                                         foll_flags &= ~FOLL_WRITE;
1159
1160                                 cond_resched();
1161                         }
1162                         if (pages) {
1163                                 pages[i] = page;
1164
1165                                 flush_anon_page(vma, page, start);
1166                                 flush_dcache_page(page);
1167                         }
1168                         if (vmas)
1169                                 vmas[i] = vma;
1170                         i++;
1171                         start += PAGE_SIZE;
1172                         len--;
1173                 } while (len && start < vma->vm_end);
1174         } while (len);
1175         return i;
1176 }
1177 EXPORT_SYMBOL(get_user_pages);
1178
1179 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180                         spinlock_t **ptl)
1181 {
1182         pgd_t * pgd = pgd_offset(mm, addr);
1183         pud_t * pud = pud_alloc(mm, pgd, addr);
1184         if (pud) {
1185                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1186                 if (pmd)
1187                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1188         }
1189         return NULL;
1190 }
1191
1192 /*
1193  * This is the old fallback for page remapping.
1194  *
1195  * For historical reasons, it only allows reserved pages. Only
1196  * old drivers should use this, and they needed to mark their
1197  * pages reserved for the old functions anyway.
1198  */
1199 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1200                         struct page *page, pgprot_t prot)
1201 {
1202         struct mm_struct *mm = vma->vm_mm;
1203         int retval;
1204         pte_t *pte;
1205         spinlock_t *ptl;
1206
1207         retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1208         if (retval)
1209                 goto out;
1210
1211         retval = -EINVAL;
1212         if (PageAnon(page))
1213                 goto out_uncharge;
1214         retval = -ENOMEM;
1215         flush_dcache_page(page);
1216         pte = get_locked_pte(mm, addr, &ptl);
1217         if (!pte)
1218                 goto out_uncharge;
1219         retval = -EBUSY;
1220         if (!pte_none(*pte))
1221                 goto out_unlock;
1222
1223         /* Ok, finally just insert the thing.. */
1224         get_page(page);
1225         inc_mm_counter(mm, file_rss);
1226         page_add_file_rmap(page);
1227         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1228
1229         retval = 0;
1230         pte_unmap_unlock(pte, ptl);
1231         return retval;
1232 out_unlock:
1233         pte_unmap_unlock(pte, ptl);
1234 out_uncharge:
1235         mem_cgroup_uncharge_page(page);
1236 out:
1237         return retval;
1238 }
1239
1240 /**
1241  * vm_insert_page - insert single page into user vma
1242  * @vma: user vma to map to
1243  * @addr: target user address of this page
1244  * @page: source kernel page
1245  *
1246  * This allows drivers to insert individual pages they've allocated
1247  * into a user vma.
1248  *
1249  * The page has to be a nice clean _individual_ kernel allocation.
1250  * If you allocate a compound page, you need to have marked it as
1251  * such (__GFP_COMP), or manually just split the page up yourself
1252  * (see split_page()).
1253  *
1254  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1255  * took an arbitrary page protection parameter. This doesn't allow
1256  * that. Your vma protection will have to be set up correctly, which
1257  * means that if you want a shared writable mapping, you'd better
1258  * ask for a shared writable mapping!
1259  *
1260  * The page does not need to be reserved.
1261  */
1262 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1263                         struct page *page)
1264 {
1265         if (addr < vma->vm_start || addr >= vma->vm_end)
1266                 return -EFAULT;
1267         if (!page_count(page))
1268                 return -EINVAL;
1269         vma->vm_flags |= VM_INSERTPAGE;
1270         return insert_page(vma, addr, page, vma->vm_page_prot);
1271 }
1272 EXPORT_SYMBOL(vm_insert_page);
1273
1274 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1275                         unsigned long pfn, pgprot_t prot)
1276 {
1277         struct mm_struct *mm = vma->vm_mm;
1278         int retval;
1279         pte_t *pte, entry;
1280         spinlock_t *ptl;
1281
1282         retval = -ENOMEM;
1283         pte = get_locked_pte(mm, addr, &ptl);
1284         if (!pte)
1285                 goto out;
1286         retval = -EBUSY;
1287         if (!pte_none(*pte))
1288                 goto out_unlock;
1289
1290         /* Ok, finally just insert the thing.. */
1291         entry = pte_mkspecial(pfn_pte(pfn, prot));
1292         set_pte_at(mm, addr, pte, entry);
1293         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1294
1295         retval = 0;
1296 out_unlock:
1297         pte_unmap_unlock(pte, ptl);
1298 out:
1299         return retval;
1300 }
1301
1302 /**
1303  * vm_insert_pfn - insert single pfn into user vma
1304  * @vma: user vma to map to
1305  * @addr: target user address of this page
1306  * @pfn: source kernel pfn
1307  *
1308  * Similar to vm_inert_page, this allows drivers to insert individual pages
1309  * they've allocated into a user vma. Same comments apply.
1310  *
1311  * This function should only be called from a vm_ops->fault handler, and
1312  * in that case the handler should return NULL.
1313  */
1314 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1315                         unsigned long pfn)
1316 {
1317         /*
1318          * Technically, architectures with pte_special can avoid all these
1319          * restrictions (same for remap_pfn_range).  However we would like
1320          * consistency in testing and feature parity among all, so we should
1321          * try to keep these invariants in place for everybody.
1322          */
1323         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1324         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1325                                                 (VM_PFNMAP|VM_MIXEDMAP));
1326         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1327         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1328
1329         if (addr < vma->vm_start || addr >= vma->vm_end)
1330                 return -EFAULT;
1331         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1332 }
1333 EXPORT_SYMBOL(vm_insert_pfn);
1334
1335 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1336                         unsigned long pfn)
1337 {
1338         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1339
1340         if (addr < vma->vm_start || addr >= vma->vm_end)
1341                 return -EFAULT;
1342
1343         /*
1344          * If we don't have pte special, then we have to use the pfn_valid()
1345          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1346          * refcount the page if pfn_valid is true (hence insert_page rather
1347          * than insert_pfn).
1348          */
1349         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1350                 struct page *page;
1351
1352                 page = pfn_to_page(pfn);
1353                 return insert_page(vma, addr, page, vma->vm_page_prot);
1354         }
1355         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1356 }
1357 EXPORT_SYMBOL(vm_insert_mixed);
1358
1359 /*
1360  * maps a range of physical memory into the requested pages. the old
1361  * mappings are removed. any references to nonexistent pages results
1362  * in null mappings (currently treated as "copy-on-access")
1363  */
1364 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1365                         unsigned long addr, unsigned long end,
1366                         unsigned long pfn, pgprot_t prot)
1367 {
1368         pte_t *pte;
1369         spinlock_t *ptl;
1370
1371         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1372         if (!pte)
1373                 return -ENOMEM;
1374         arch_enter_lazy_mmu_mode();
1375         do {
1376                 BUG_ON(!pte_none(*pte));
1377                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1378                 pfn++;
1379         } while (pte++, addr += PAGE_SIZE, addr != end);
1380         arch_leave_lazy_mmu_mode();
1381         pte_unmap_unlock(pte - 1, ptl);
1382         return 0;
1383 }
1384
1385 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1386                         unsigned long addr, unsigned long end,
1387                         unsigned long pfn, pgprot_t prot)
1388 {
1389         pmd_t *pmd;
1390         unsigned long next;
1391
1392         pfn -= addr >> PAGE_SHIFT;
1393         pmd = pmd_alloc(mm, pud, addr);
1394         if (!pmd)
1395                 return -ENOMEM;
1396         do {
1397                 next = pmd_addr_end(addr, end);
1398                 if (remap_pte_range(mm, pmd, addr, next,
1399                                 pfn + (addr >> PAGE_SHIFT), prot))
1400                         return -ENOMEM;
1401         } while (pmd++, addr = next, addr != end);
1402         return 0;
1403 }
1404
1405 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1406                         unsigned long addr, unsigned long end,
1407                         unsigned long pfn, pgprot_t prot)
1408 {
1409         pud_t *pud;
1410         unsigned long next;
1411
1412         pfn -= addr >> PAGE_SHIFT;
1413         pud = pud_alloc(mm, pgd, addr);
1414         if (!pud)
1415                 return -ENOMEM;
1416         do {
1417                 next = pud_addr_end(addr, end);
1418                 if (remap_pmd_range(mm, pud, addr, next,
1419                                 pfn + (addr >> PAGE_SHIFT), prot))
1420                         return -ENOMEM;
1421         } while (pud++, addr = next, addr != end);
1422         return 0;
1423 }
1424
1425 /**
1426  * remap_pfn_range - remap kernel memory to userspace
1427  * @vma: user vma to map to
1428  * @addr: target user address to start at
1429  * @pfn: physical address of kernel memory
1430  * @size: size of map area
1431  * @prot: page protection flags for this mapping
1432  *
1433  *  Note: this is only safe if the mm semaphore is held when called.
1434  */
1435 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1436                     unsigned long pfn, unsigned long size, pgprot_t prot)
1437 {
1438         pgd_t *pgd;
1439         unsigned long next;
1440         unsigned long end = addr + PAGE_ALIGN(size);
1441         struct mm_struct *mm = vma->vm_mm;
1442         int err;
1443
1444         /*
1445          * Physically remapped pages are special. Tell the
1446          * rest of the world about it:
1447          *   VM_IO tells people not to look at these pages
1448          *      (accesses can have side effects).
1449          *   VM_RESERVED is specified all over the place, because
1450          *      in 2.4 it kept swapout's vma scan off this vma; but
1451          *      in 2.6 the LRU scan won't even find its pages, so this
1452          *      flag means no more than count its pages in reserved_vm,
1453          *      and omit it from core dump, even when VM_IO turned off.
1454          *   VM_PFNMAP tells the core MM that the base pages are just
1455          *      raw PFN mappings, and do not have a "struct page" associated
1456          *      with them.
1457          *
1458          * There's a horrible special case to handle copy-on-write
1459          * behaviour that some programs depend on. We mark the "original"
1460          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1461          */
1462         if (is_cow_mapping(vma->vm_flags)) {
1463                 if (addr != vma->vm_start || end != vma->vm_end)
1464                         return -EINVAL;
1465                 vma->vm_pgoff = pfn;
1466         }
1467
1468         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1469
1470         BUG_ON(addr >= end);
1471         pfn -= addr >> PAGE_SHIFT;
1472         pgd = pgd_offset(mm, addr);
1473         flush_cache_range(vma, addr, end);
1474         do {
1475                 next = pgd_addr_end(addr, end);
1476                 err = remap_pud_range(mm, pgd, addr, next,
1477                                 pfn + (addr >> PAGE_SHIFT), prot);
1478                 if (err)
1479                         break;
1480         } while (pgd++, addr = next, addr != end);
1481         return err;
1482 }
1483 EXPORT_SYMBOL(remap_pfn_range);
1484
1485 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1486                                      unsigned long addr, unsigned long end,
1487                                      pte_fn_t fn, void *data)
1488 {
1489         pte_t *pte;
1490         int err;
1491         pgtable_t token;
1492         spinlock_t *uninitialized_var(ptl);
1493
1494         pte = (mm == &init_mm) ?
1495                 pte_alloc_kernel(pmd, addr) :
1496                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1497         if (!pte)
1498                 return -ENOMEM;
1499
1500         BUG_ON(pmd_huge(*pmd));
1501
1502         token = pmd_pgtable(*pmd);
1503
1504         do {
1505                 err = fn(pte, token, addr, data);
1506                 if (err)
1507                         break;
1508         } while (pte++, addr += PAGE_SIZE, addr != end);
1509
1510         if (mm != &init_mm)
1511                 pte_unmap_unlock(pte-1, ptl);
1512         return err;
1513 }
1514
1515 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1516                                      unsigned long addr, unsigned long end,
1517                                      pte_fn_t fn, void *data)
1518 {
1519         pmd_t *pmd;
1520         unsigned long next;
1521         int err;
1522
1523         pmd = pmd_alloc(mm, pud, addr);
1524         if (!pmd)
1525                 return -ENOMEM;
1526         do {
1527                 next = pmd_addr_end(addr, end);
1528                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1529                 if (err)
1530                         break;
1531         } while (pmd++, addr = next, addr != end);
1532         return err;
1533 }
1534
1535 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1536                                      unsigned long addr, unsigned long end,
1537                                      pte_fn_t fn, void *data)
1538 {
1539         pud_t *pud;
1540         unsigned long next;
1541         int err;
1542
1543         pud = pud_alloc(mm, pgd, addr);
1544         if (!pud)
1545                 return -ENOMEM;
1546         do {
1547                 next = pud_addr_end(addr, end);
1548                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1549                 if (err)
1550                         break;
1551         } while (pud++, addr = next, addr != end);
1552         return err;
1553 }
1554
1555 /*
1556  * Scan a region of virtual memory, filling in page tables as necessary
1557  * and calling a provided function on each leaf page table.
1558  */
1559 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1560                         unsigned long size, pte_fn_t fn, void *data)
1561 {
1562         pgd_t *pgd;
1563         unsigned long next;
1564         unsigned long end = addr + size;
1565         int err;
1566
1567         BUG_ON(addr >= end);
1568         pgd = pgd_offset(mm, addr);
1569         do {
1570                 next = pgd_addr_end(addr, end);
1571                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1572                 if (err)
1573                         break;
1574         } while (pgd++, addr = next, addr != end);
1575         return err;
1576 }
1577 EXPORT_SYMBOL_GPL(apply_to_page_range);
1578
1579 /*
1580  * handle_pte_fault chooses page fault handler according to an entry
1581  * which was read non-atomically.  Before making any commitment, on
1582  * those architectures or configurations (e.g. i386 with PAE) which
1583  * might give a mix of unmatched parts, do_swap_page and do_file_page
1584  * must check under lock before unmapping the pte and proceeding
1585  * (but do_wp_page is only called after already making such a check;
1586  * and do_anonymous_page and do_no_page can safely check later on).
1587  */
1588 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1589                                 pte_t *page_table, pte_t orig_pte)
1590 {
1591         int same = 1;
1592 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1593         if (sizeof(pte_t) > sizeof(unsigned long)) {
1594                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1595                 spin_lock(ptl);
1596                 same = pte_same(*page_table, orig_pte);
1597                 spin_unlock(ptl);
1598         }
1599 #endif
1600         pte_unmap(page_table);
1601         return same;
1602 }
1603
1604 /*
1605  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1606  * servicing faults for write access.  In the normal case, do always want
1607  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1608  * that do not have writing enabled, when used by access_process_vm.
1609  */
1610 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1611 {
1612         if (likely(vma->vm_flags & VM_WRITE))
1613                 pte = pte_mkwrite(pte);
1614         return pte;
1615 }
1616
1617 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1618 {
1619         /*
1620          * If the source page was a PFN mapping, we don't have
1621          * a "struct page" for it. We do a best-effort copy by
1622          * just copying from the original user address. If that
1623          * fails, we just zero-fill it. Live with it.
1624          */
1625         if (unlikely(!src)) {
1626                 void *kaddr = kmap_atomic(dst, KM_USER0);
1627                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1628
1629                 /*
1630                  * This really shouldn't fail, because the page is there
1631                  * in the page tables. But it might just be unreadable,
1632                  * in which case we just give up and fill the result with
1633                  * zeroes.
1634                  */
1635                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1636                         memset(kaddr, 0, PAGE_SIZE);
1637                 kunmap_atomic(kaddr, KM_USER0);
1638                 flush_dcache_page(dst);
1639         } else
1640                 copy_user_highpage(dst, src, va, vma);
1641 }
1642
1643 /*
1644  * This routine handles present pages, when users try to write
1645  * to a shared page. It is done by copying the page to a new address
1646  * and decrementing the shared-page counter for the old page.
1647  *
1648  * Note that this routine assumes that the protection checks have been
1649  * done by the caller (the low-level page fault routine in most cases).
1650  * Thus we can safely just mark it writable once we've done any necessary
1651  * COW.
1652  *
1653  * We also mark the page dirty at this point even though the page will
1654  * change only once the write actually happens. This avoids a few races,
1655  * and potentially makes it more efficient.
1656  *
1657  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1658  * but allow concurrent faults), with pte both mapped and locked.
1659  * We return with mmap_sem still held, but pte unmapped and unlocked.
1660  */
1661 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1662                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1663                 spinlock_t *ptl, pte_t orig_pte)
1664 {
1665         struct page *old_page, *new_page;
1666         pte_t entry;
1667         int reuse = 0, ret = 0;
1668         int page_mkwrite = 0;
1669         struct page *dirty_page = NULL;
1670
1671         old_page = vm_normal_page(vma, address, orig_pte);
1672         if (!old_page)
1673                 goto gotten;
1674
1675         /*
1676          * Take out anonymous pages first, anonymous shared vmas are
1677          * not dirty accountable.
1678          */
1679         if (PageAnon(old_page)) {
1680                 if (!TestSetPageLocked(old_page)) {
1681                         reuse = can_share_swap_page(old_page);
1682                         unlock_page(old_page);
1683                 }
1684         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1685                                         (VM_WRITE|VM_SHARED))) {
1686                 /*
1687                  * Only catch write-faults on shared writable pages,
1688                  * read-only shared pages can get COWed by
1689                  * get_user_pages(.write=1, .force=1).
1690                  */
1691                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1692                         /*
1693                          * Notify the address space that the page is about to
1694                          * become writable so that it can prohibit this or wait
1695                          * for the page to get into an appropriate state.
1696                          *
1697                          * We do this without the lock held, so that it can
1698                          * sleep if it needs to.
1699                          */
1700                         page_cache_get(old_page);
1701                         pte_unmap_unlock(page_table, ptl);
1702
1703                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1704                                 goto unwritable_page;
1705
1706                         /*
1707                          * Since we dropped the lock we need to revalidate
1708                          * the PTE as someone else may have changed it.  If
1709                          * they did, we just return, as we can count on the
1710                          * MMU to tell us if they didn't also make it writable.
1711                          */
1712                         page_table = pte_offset_map_lock(mm, pmd, address,
1713                                                          &ptl);
1714                         page_cache_release(old_page);
1715                         if (!pte_same(*page_table, orig_pte))
1716                                 goto unlock;
1717
1718                         page_mkwrite = 1;
1719                 }
1720                 dirty_page = old_page;
1721                 get_page(dirty_page);
1722                 reuse = 1;
1723         }
1724
1725         if (reuse) {
1726                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1727                 entry = pte_mkyoung(orig_pte);
1728                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1729                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1730                         update_mmu_cache(vma, address, entry);
1731                 ret |= VM_FAULT_WRITE;
1732                 goto unlock;
1733         }
1734
1735         /*
1736          * Ok, we need to copy. Oh, well..
1737          */
1738         page_cache_get(old_page);
1739 gotten:
1740         pte_unmap_unlock(page_table, ptl);
1741
1742         if (unlikely(anon_vma_prepare(vma)))
1743                 goto oom;
1744         VM_BUG_ON(old_page == ZERO_PAGE(0));
1745         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1746         if (!new_page)
1747                 goto oom;
1748         cow_user_page(new_page, old_page, address, vma);
1749         __SetPageUptodate(new_page);
1750
1751         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1752                 goto oom_free_new;
1753
1754         /*
1755          * Re-check the pte - we dropped the lock
1756          */
1757         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1758         if (likely(pte_same(*page_table, orig_pte))) {
1759                 if (old_page) {
1760                         page_remove_rmap(old_page, vma);
1761                         if (!PageAnon(old_page)) {
1762                                 dec_mm_counter(mm, file_rss);
1763                                 inc_mm_counter(mm, anon_rss);
1764                         }
1765                 } else
1766                         inc_mm_counter(mm, anon_rss);
1767                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1768                 entry = mk_pte(new_page, vma->vm_page_prot);
1769                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1770                 /*
1771                  * Clear the pte entry and flush it first, before updating the
1772                  * pte with the new entry. This will avoid a race condition
1773                  * seen in the presence of one thread doing SMC and another
1774                  * thread doing COW.
1775                  */
1776                 ptep_clear_flush(vma, address, page_table);
1777                 set_pte_at(mm, address, page_table, entry);
1778                 update_mmu_cache(vma, address, entry);
1779                 lru_cache_add_active(new_page);
1780                 page_add_new_anon_rmap(new_page, vma, address);
1781
1782                 /* Free the old page.. */
1783                 new_page = old_page;
1784                 ret |= VM_FAULT_WRITE;
1785         } else
1786                 mem_cgroup_uncharge_page(new_page);
1787
1788         if (new_page)
1789                 page_cache_release(new_page);
1790         if (old_page)
1791                 page_cache_release(old_page);
1792 unlock:
1793         pte_unmap_unlock(page_table, ptl);
1794         if (dirty_page) {
1795                 if (vma->vm_file)
1796                         file_update_time(vma->vm_file);
1797
1798                 /*
1799                  * Yes, Virginia, this is actually required to prevent a race
1800                  * with clear_page_dirty_for_io() from clearing the page dirty
1801                  * bit after it clear all dirty ptes, but before a racing
1802                  * do_wp_page installs a dirty pte.
1803                  *
1804                  * do_no_page is protected similarly.
1805                  */
1806                 wait_on_page_locked(dirty_page);
1807                 set_page_dirty_balance(dirty_page, page_mkwrite);
1808                 put_page(dirty_page);
1809         }
1810         return ret;
1811 oom_free_new:
1812         page_cache_release(new_page);
1813 oom:
1814         if (old_page)
1815                 page_cache_release(old_page);
1816         return VM_FAULT_OOM;
1817
1818 unwritable_page:
1819         page_cache_release(old_page);
1820         return VM_FAULT_SIGBUS;
1821 }
1822
1823 /*
1824  * Helper functions for unmap_mapping_range().
1825  *
1826  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1827  *
1828  * We have to restart searching the prio_tree whenever we drop the lock,
1829  * since the iterator is only valid while the lock is held, and anyway
1830  * a later vma might be split and reinserted earlier while lock dropped.
1831  *
1832  * The list of nonlinear vmas could be handled more efficiently, using
1833  * a placeholder, but handle it in the same way until a need is shown.
1834  * It is important to search the prio_tree before nonlinear list: a vma
1835  * may become nonlinear and be shifted from prio_tree to nonlinear list
1836  * while the lock is dropped; but never shifted from list to prio_tree.
1837  *
1838  * In order to make forward progress despite restarting the search,
1839  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1840  * quickly skip it next time around.  Since the prio_tree search only
1841  * shows us those vmas affected by unmapping the range in question, we
1842  * can't efficiently keep all vmas in step with mapping->truncate_count:
1843  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1844  * mapping->truncate_count and vma->vm_truncate_count are protected by
1845  * i_mmap_lock.
1846  *
1847  * In order to make forward progress despite repeatedly restarting some
1848  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1849  * and restart from that address when we reach that vma again.  It might
1850  * have been split or merged, shrunk or extended, but never shifted: so
1851  * restart_addr remains valid so long as it remains in the vma's range.
1852  * unmap_mapping_range forces truncate_count to leap over page-aligned
1853  * values so we can save vma's restart_addr in its truncate_count field.
1854  */
1855 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1856
1857 static void reset_vma_truncate_counts(struct address_space *mapping)
1858 {
1859         struct vm_area_struct *vma;
1860         struct prio_tree_iter iter;
1861
1862         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1863                 vma->vm_truncate_count = 0;
1864         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1865                 vma->vm_truncate_count = 0;
1866 }
1867
1868 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1869                 unsigned long start_addr, unsigned long end_addr,
1870                 struct zap_details *details)
1871 {
1872         unsigned long restart_addr;
1873         int need_break;
1874
1875         /*
1876          * files that support invalidating or truncating portions of the
1877          * file from under mmaped areas must have their ->fault function
1878          * return a locked page (and set VM_FAULT_LOCKED in the return).
1879          * This provides synchronisation against concurrent unmapping here.
1880          */
1881
1882 again:
1883         restart_addr = vma->vm_truncate_count;
1884         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1885                 start_addr = restart_addr;
1886                 if (start_addr >= end_addr) {
1887                         /* Top of vma has been split off since last time */
1888                         vma->vm_truncate_count = details->truncate_count;
1889                         return 0;
1890                 }
1891         }
1892
1893         restart_addr = zap_page_range(vma, start_addr,
1894                                         end_addr - start_addr, details);
1895         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1896
1897         if (restart_addr >= end_addr) {
1898                 /* We have now completed this vma: mark it so */
1899                 vma->vm_truncate_count = details->truncate_count;
1900                 if (!need_break)
1901                         return 0;
1902         } else {
1903                 /* Note restart_addr in vma's truncate_count field */
1904                 vma->vm_truncate_count = restart_addr;
1905                 if (!need_break)
1906                         goto again;
1907         }
1908
1909         spin_unlock(details->i_mmap_lock);
1910         cond_resched();
1911         spin_lock(details->i_mmap_lock);
1912         return -EINTR;
1913 }
1914
1915 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1916                                             struct zap_details *details)
1917 {
1918         struct vm_area_struct *vma;
1919         struct prio_tree_iter iter;
1920         pgoff_t vba, vea, zba, zea;
1921
1922 restart:
1923         vma_prio_tree_foreach(vma, &iter, root,
1924                         details->first_index, details->last_index) {
1925                 /* Skip quickly over those we have already dealt with */
1926                 if (vma->vm_truncate_count == details->truncate_count)
1927                         continue;
1928
1929                 vba = vma->vm_pgoff;
1930                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1931                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1932                 zba = details->first_index;
1933                 if (zba < vba)
1934                         zba = vba;
1935                 zea = details->last_index;
1936                 if (zea > vea)
1937                         zea = vea;
1938
1939                 if (unmap_mapping_range_vma(vma,
1940                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1941                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1942                                 details) < 0)
1943                         goto restart;
1944         }
1945 }
1946
1947 static inline void unmap_mapping_range_list(struct list_head *head,
1948                                             struct zap_details *details)
1949 {
1950         struct vm_area_struct *vma;
1951
1952         /*
1953          * In nonlinear VMAs there is no correspondence between virtual address
1954          * offset and file offset.  So we must perform an exhaustive search
1955          * across *all* the pages in each nonlinear VMA, not just the pages
1956          * whose virtual address lies outside the file truncation point.
1957          */
1958 restart:
1959         list_for_each_entry(vma, head, shared.vm_set.list) {
1960                 /* Skip quickly over those we have already dealt with */
1961                 if (vma->vm_truncate_count == details->truncate_count)
1962                         continue;
1963                 details->nonlinear_vma = vma;
1964                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1965                                         vma->vm_end, details) < 0)
1966                         goto restart;
1967         }
1968 }
1969
1970 /**
1971  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1972  * @mapping: the address space containing mmaps to be unmapped.
1973  * @holebegin: byte in first page to unmap, relative to the start of
1974  * the underlying file.  This will be rounded down to a PAGE_SIZE
1975  * boundary.  Note that this is different from vmtruncate(), which
1976  * must keep the partial page.  In contrast, we must get rid of
1977  * partial pages.
1978  * @holelen: size of prospective hole in bytes.  This will be rounded
1979  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1980  * end of the file.
1981  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1982  * but 0 when invalidating pagecache, don't throw away private data.
1983  */
1984 void unmap_mapping_range(struct address_space *mapping,
1985                 loff_t const holebegin, loff_t const holelen, int even_cows)
1986 {
1987         struct zap_details details;
1988         pgoff_t hba = holebegin >> PAGE_SHIFT;
1989         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1990
1991         /* Check for overflow. */
1992         if (sizeof(holelen) > sizeof(hlen)) {
1993                 long long holeend =
1994                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1995                 if (holeend & ~(long long)ULONG_MAX)
1996                         hlen = ULONG_MAX - hba + 1;
1997         }
1998
1999         details.check_mapping = even_cows? NULL: mapping;
2000         details.nonlinear_vma = NULL;
2001         details.first_index = hba;
2002         details.last_index = hba + hlen - 1;
2003         if (details.last_index < details.first_index)
2004                 details.last_index = ULONG_MAX;
2005         details.i_mmap_lock = &mapping->i_mmap_lock;
2006
2007         spin_lock(&mapping->i_mmap_lock);
2008
2009         /* Protect against endless unmapping loops */
2010         mapping->truncate_count++;
2011         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2012                 if (mapping->truncate_count == 0)
2013                         reset_vma_truncate_counts(mapping);
2014                 mapping->truncate_count++;
2015         }
2016         details.truncate_count = mapping->truncate_count;
2017
2018         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2019                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2020         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2021                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2022         spin_unlock(&mapping->i_mmap_lock);
2023 }
2024 EXPORT_SYMBOL(unmap_mapping_range);
2025
2026 /**
2027  * vmtruncate - unmap mappings "freed" by truncate() syscall
2028  * @inode: inode of the file used
2029  * @offset: file offset to start truncating
2030  *
2031  * NOTE! We have to be ready to update the memory sharing
2032  * between the file and the memory map for a potential last
2033  * incomplete page.  Ugly, but necessary.
2034  */
2035 int vmtruncate(struct inode * inode, loff_t offset)
2036 {
2037         if (inode->i_size < offset) {
2038                 unsigned long limit;
2039
2040                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2041                 if (limit != RLIM_INFINITY && offset > limit)
2042                         goto out_sig;
2043                 if (offset > inode->i_sb->s_maxbytes)
2044                         goto out_big;
2045                 i_size_write(inode, offset);
2046         } else {
2047                 struct address_space *mapping = inode->i_mapping;
2048
2049                 /*
2050                  * truncation of in-use swapfiles is disallowed - it would
2051                  * cause subsequent swapout to scribble on the now-freed
2052                  * blocks.
2053                  */
2054                 if (IS_SWAPFILE(inode))
2055                         return -ETXTBSY;
2056                 i_size_write(inode, offset);
2057
2058                 /*
2059                  * unmap_mapping_range is called twice, first simply for
2060                  * efficiency so that truncate_inode_pages does fewer
2061                  * single-page unmaps.  However after this first call, and
2062                  * before truncate_inode_pages finishes, it is possible for
2063                  * private pages to be COWed, which remain after
2064                  * truncate_inode_pages finishes, hence the second
2065                  * unmap_mapping_range call must be made for correctness.
2066                  */
2067                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2068                 truncate_inode_pages(mapping, offset);
2069                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2070         }
2071
2072         if (inode->i_op && inode->i_op->truncate)
2073                 inode->i_op->truncate(inode);
2074         return 0;
2075
2076 out_sig:
2077         send_sig(SIGXFSZ, current, 0);
2078 out_big:
2079         return -EFBIG;
2080 }
2081 EXPORT_SYMBOL(vmtruncate);
2082
2083 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2084 {
2085         struct address_space *mapping = inode->i_mapping;
2086
2087         /*
2088          * If the underlying filesystem is not going to provide
2089          * a way to truncate a range of blocks (punch a hole) -
2090          * we should return failure right now.
2091          */
2092         if (!inode->i_op || !inode->i_op->truncate_range)
2093                 return -ENOSYS;
2094
2095         mutex_lock(&inode->i_mutex);
2096         down_write(&inode->i_alloc_sem);
2097         unmap_mapping_range(mapping, offset, (end - offset), 1);
2098         truncate_inode_pages_range(mapping, offset, end);
2099         unmap_mapping_range(mapping, offset, (end - offset), 1);
2100         inode->i_op->truncate_range(inode, offset, end);
2101         up_write(&inode->i_alloc_sem);
2102         mutex_unlock(&inode->i_mutex);
2103
2104         return 0;
2105 }
2106
2107 /*
2108  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2109  * but allow concurrent faults), and pte mapped but not yet locked.
2110  * We return with mmap_sem still held, but pte unmapped and unlocked.
2111  */
2112 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2113                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2114                 int write_access, pte_t orig_pte)
2115 {
2116         spinlock_t *ptl;
2117         struct page *page;
2118         swp_entry_t entry;
2119         pte_t pte;
2120         int ret = 0;
2121
2122         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2123                 goto out;
2124
2125         entry = pte_to_swp_entry(orig_pte);
2126         if (is_migration_entry(entry)) {
2127                 migration_entry_wait(mm, pmd, address);
2128                 goto out;
2129         }
2130         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2131         page = lookup_swap_cache(entry);
2132         if (!page) {
2133                 grab_swap_token(); /* Contend for token _before_ read-in */
2134                 page = swapin_readahead(entry,
2135                                         GFP_HIGHUSER_MOVABLE, vma, address);
2136                 if (!page) {
2137                         /*
2138                          * Back out if somebody else faulted in this pte
2139                          * while we released the pte lock.
2140                          */
2141                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2142                         if (likely(pte_same(*page_table, orig_pte)))
2143                                 ret = VM_FAULT_OOM;
2144                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2145                         goto unlock;
2146                 }
2147
2148                 /* Had to read the page from swap area: Major fault */
2149                 ret = VM_FAULT_MAJOR;
2150                 count_vm_event(PGMAJFAULT);
2151         }
2152
2153         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2154                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2155                 ret = VM_FAULT_OOM;
2156                 goto out;
2157         }
2158
2159         mark_page_accessed(page);
2160         lock_page(page);
2161         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2162
2163         /*
2164          * Back out if somebody else already faulted in this pte.
2165          */
2166         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2167         if (unlikely(!pte_same(*page_table, orig_pte)))
2168                 goto out_nomap;
2169
2170         if (unlikely(!PageUptodate(page))) {
2171                 ret = VM_FAULT_SIGBUS;
2172                 goto out_nomap;
2173         }
2174
2175         /* The page isn't present yet, go ahead with the fault. */
2176
2177         inc_mm_counter(mm, anon_rss);
2178         pte = mk_pte(page, vma->vm_page_prot);
2179         if (write_access && can_share_swap_page(page)) {
2180                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2181                 write_access = 0;
2182         }
2183
2184         flush_icache_page(vma, page);
2185         set_pte_at(mm, address, page_table, pte);
2186         page_add_anon_rmap(page, vma, address);
2187
2188         swap_free(entry);
2189         if (vm_swap_full())
2190                 remove_exclusive_swap_page(page);
2191         unlock_page(page);
2192
2193         if (write_access) {
2194                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2195                 if (ret & VM_FAULT_ERROR)
2196                         ret &= VM_FAULT_ERROR;
2197                 goto out;
2198         }
2199
2200         /* No need to invalidate - it was non-present before */
2201         update_mmu_cache(vma, address, pte);
2202 unlock:
2203         pte_unmap_unlock(page_table, ptl);
2204 out:
2205         return ret;
2206 out_nomap:
2207         mem_cgroup_uncharge_page(page);
2208         pte_unmap_unlock(page_table, ptl);
2209         unlock_page(page);
2210         page_cache_release(page);
2211         return ret;
2212 }
2213
2214 /*
2215  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2216  * but allow concurrent faults), and pte mapped but not yet locked.
2217  * We return with mmap_sem still held, but pte unmapped and unlocked.
2218  */
2219 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2220                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2221                 int write_access)
2222 {
2223         struct page *page;
2224         spinlock_t *ptl;
2225         pte_t entry;
2226
2227         /* Allocate our own private page. */
2228         pte_unmap(page_table);
2229
2230         if (unlikely(anon_vma_prepare(vma)))
2231                 goto oom;
2232         page = alloc_zeroed_user_highpage_movable(vma, address);
2233         if (!page)
2234                 goto oom;
2235         __SetPageUptodate(page);
2236
2237         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2238                 goto oom_free_page;
2239
2240         entry = mk_pte(page, vma->vm_page_prot);
2241         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2242
2243         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2244         if (!pte_none(*page_table))
2245                 goto release;
2246         inc_mm_counter(mm, anon_rss);
2247         lru_cache_add_active(page);
2248         page_add_new_anon_rmap(page, vma, address);
2249         set_pte_at(mm, address, page_table, entry);
2250
2251         /* No need to invalidate - it was non-present before */
2252         update_mmu_cache(vma, address, entry);
2253 unlock:
2254         pte_unmap_unlock(page_table, ptl);
2255         return 0;
2256 release:
2257         mem_cgroup_uncharge_page(page);
2258         page_cache_release(page);
2259         goto unlock;
2260 oom_free_page:
2261         page_cache_release(page);
2262 oom:
2263         return VM_FAULT_OOM;
2264 }
2265
2266 /*
2267  * __do_fault() tries to create a new page mapping. It aggressively
2268  * tries to share with existing pages, but makes a separate copy if
2269  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2270  * the next page fault.
2271  *
2272  * As this is called only for pages that do not currently exist, we
2273  * do not need to flush old virtual caches or the TLB.
2274  *
2275  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2276  * but allow concurrent faults), and pte neither mapped nor locked.
2277  * We return with mmap_sem still held, but pte unmapped and unlocked.
2278  */
2279 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2280                 unsigned long address, pmd_t *pmd,
2281                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2282 {
2283         pte_t *page_table;
2284         spinlock_t *ptl;
2285         struct page *page;
2286         pte_t entry;
2287         int anon = 0;
2288         struct page *dirty_page = NULL;
2289         struct vm_fault vmf;
2290         int ret;
2291         int page_mkwrite = 0;
2292
2293         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2294         vmf.pgoff = pgoff;
2295         vmf.flags = flags;
2296         vmf.page = NULL;
2297
2298         BUG_ON(vma->vm_flags & VM_PFNMAP);
2299
2300         ret = vma->vm_ops->fault(vma, &vmf);
2301         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2302                 return ret;
2303
2304         /*
2305          * For consistency in subsequent calls, make the faulted page always
2306          * locked.
2307          */
2308         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2309                 lock_page(vmf.page);
2310         else
2311                 VM_BUG_ON(!PageLocked(vmf.page));
2312
2313         /*
2314          * Should we do an early C-O-W break?
2315          */
2316         page = vmf.page;
2317         if (flags & FAULT_FLAG_WRITE) {
2318                 if (!(vma->vm_flags & VM_SHARED)) {
2319                         anon = 1;
2320                         if (unlikely(anon_vma_prepare(vma))) {
2321                                 ret = VM_FAULT_OOM;
2322                                 goto out;
2323                         }
2324                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2325                                                 vma, address);
2326                         if (!page) {
2327                                 ret = VM_FAULT_OOM;
2328                                 goto out;
2329                         }
2330                         copy_user_highpage(page, vmf.page, address, vma);
2331                         __SetPageUptodate(page);
2332                 } else {
2333                         /*
2334                          * If the page will be shareable, see if the backing
2335                          * address space wants to know that the page is about
2336                          * to become writable
2337                          */
2338                         if (vma->vm_ops->page_mkwrite) {
2339                                 unlock_page(page);
2340                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2341                                         ret = VM_FAULT_SIGBUS;
2342                                         anon = 1; /* no anon but release vmf.page */
2343                                         goto out_unlocked;
2344                                 }
2345                                 lock_page(page);
2346                                 /*
2347                                  * XXX: this is not quite right (racy vs
2348                                  * invalidate) to unlock and relock the page
2349                                  * like this, however a better fix requires
2350                                  * reworking page_mkwrite locking API, which
2351                                  * is better done later.
2352                                  */
2353                                 if (!page->mapping) {
2354                                         ret = 0;
2355                                         anon = 1; /* no anon but release vmf.page */
2356                                         goto out;
2357                                 }
2358                                 page_mkwrite = 1;
2359                         }
2360                 }
2361
2362         }
2363
2364         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2365                 ret = VM_FAULT_OOM;
2366                 goto out;
2367         }
2368
2369         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2370
2371         /*
2372          * This silly early PAGE_DIRTY setting removes a race
2373          * due to the bad i386 page protection. But it's valid
2374          * for other architectures too.
2375          *
2376          * Note that if write_access is true, we either now have
2377          * an exclusive copy of the page, or this is a shared mapping,
2378          * so we can make it writable and dirty to avoid having to
2379          * handle that later.
2380          */
2381         /* Only go through if we didn't race with anybody else... */
2382         if (likely(pte_same(*page_table, orig_pte))) {
2383                 flush_icache_page(vma, page);
2384                 entry = mk_pte(page, vma->vm_page_prot);
2385                 if (flags & FAULT_FLAG_WRITE)
2386                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2387                 set_pte_at(mm, address, page_table, entry);
2388                 if (anon) {
2389                         inc_mm_counter(mm, anon_rss);
2390                         lru_cache_add_active(page);
2391                         page_add_new_anon_rmap(page, vma, address);
2392                 } else {
2393                         inc_mm_counter(mm, file_rss);
2394                         page_add_file_rmap(page);
2395                         if (flags & FAULT_FLAG_WRITE) {
2396                                 dirty_page = page;
2397                                 get_page(dirty_page);
2398                         }
2399                 }
2400
2401                 /* no need to invalidate: a not-present page won't be cached */
2402                 update_mmu_cache(vma, address, entry);
2403         } else {
2404                 mem_cgroup_uncharge_page(page);
2405                 if (anon)
2406                         page_cache_release(page);
2407                 else
2408                         anon = 1; /* no anon but release faulted_page */
2409         }
2410
2411         pte_unmap_unlock(page_table, ptl);
2412
2413 out:
2414         unlock_page(vmf.page);
2415 out_unlocked:
2416         if (anon)
2417                 page_cache_release(vmf.page);
2418         else if (dirty_page) {
2419                 if (vma->vm_file)
2420                         file_update_time(vma->vm_file);
2421
2422                 set_page_dirty_balance(dirty_page, page_mkwrite);
2423                 put_page(dirty_page);
2424         }
2425
2426         return ret;
2427 }
2428
2429 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2430                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2431                 int write_access, pte_t orig_pte)
2432 {
2433         pgoff_t pgoff = (((address & PAGE_MASK)
2434                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2435         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2436
2437         pte_unmap(page_table);
2438         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2439 }
2440
2441
2442 /*
2443  * do_no_pfn() tries to create a new page mapping for a page without
2444  * a struct_page backing it
2445  *
2446  * As this is called only for pages that do not currently exist, we
2447  * do not need to flush old virtual caches or the TLB.
2448  *
2449  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2450  * but allow concurrent faults), and pte mapped but not yet locked.
2451  * We return with mmap_sem still held, but pte unmapped and unlocked.
2452  *
2453  * It is expected that the ->nopfn handler always returns the same pfn
2454  * for a given virtual mapping.
2455  *
2456  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2457  */
2458 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2459                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2460                      int write_access)
2461 {
2462         spinlock_t *ptl;
2463         pte_t entry;
2464         unsigned long pfn;
2465
2466         pte_unmap(page_table);
2467         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2468         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2469
2470         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2471
2472         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2473
2474         if (unlikely(pfn == NOPFN_OOM))
2475                 return VM_FAULT_OOM;
2476         else if (unlikely(pfn == NOPFN_SIGBUS))
2477                 return VM_FAULT_SIGBUS;
2478         else if (unlikely(pfn == NOPFN_REFAULT))
2479                 return 0;
2480
2481         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2482
2483         /* Only go through if we didn't race with anybody else... */
2484         if (pte_none(*page_table)) {
2485                 entry = pfn_pte(pfn, vma->vm_page_prot);
2486                 if (write_access)
2487                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2488                 set_pte_at(mm, address, page_table, entry);
2489         }
2490         pte_unmap_unlock(page_table, ptl);
2491         return 0;
2492 }
2493
2494 /*
2495  * Fault of a previously existing named mapping. Repopulate the pte
2496  * from the encoded file_pte if possible. This enables swappable
2497  * nonlinear vmas.
2498  *
2499  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2500  * but allow concurrent faults), and pte mapped but not yet locked.
2501  * We return with mmap_sem still held, but pte unmapped and unlocked.
2502  */
2503 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2504                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2505                 int write_access, pte_t orig_pte)
2506 {
2507         unsigned int flags = FAULT_FLAG_NONLINEAR |
2508                                 (write_access ? FAULT_FLAG_WRITE : 0);
2509         pgoff_t pgoff;
2510
2511         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2512                 return 0;
2513
2514         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2515                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2516                 /*
2517                  * Page table corrupted: show pte and kill process.
2518                  */
2519                 print_bad_pte(vma, orig_pte, address);
2520                 return VM_FAULT_OOM;
2521         }
2522
2523         pgoff = pte_to_pgoff(orig_pte);
2524         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2525 }
2526
2527 /*
2528  * These routines also need to handle stuff like marking pages dirty
2529  * and/or accessed for architectures that don't do it in hardware (most
2530  * RISC architectures).  The early dirtying is also good on the i386.
2531  *
2532  * There is also a hook called "update_mmu_cache()" that architectures
2533  * with external mmu caches can use to update those (ie the Sparc or
2534  * PowerPC hashed page tables that act as extended TLBs).
2535  *
2536  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2537  * but allow concurrent faults), and pte mapped but not yet locked.
2538  * We return with mmap_sem still held, but pte unmapped and unlocked.
2539  */
2540 static inline int handle_pte_fault(struct mm_struct *mm,
2541                 struct vm_area_struct *vma, unsigned long address,
2542                 pte_t *pte, pmd_t *pmd, int write_access)
2543 {
2544         pte_t entry;
2545         spinlock_t *ptl;
2546
2547         entry = *pte;
2548         if (!pte_present(entry)) {
2549                 if (pte_none(entry)) {
2550                         if (vma->vm_ops) {
2551                                 if (likely(vma->vm_ops->fault))
2552                                         return do_linear_fault(mm, vma, address,
2553                                                 pte, pmd, write_access, entry);
2554                                 if (unlikely(vma->vm_ops->nopfn))
2555                                         return do_no_pfn(mm, vma, address, pte,
2556                                                          pmd, write_access);
2557                         }
2558                         return do_anonymous_page(mm, vma, address,
2559                                                  pte, pmd, write_access);
2560                 }
2561                 if (pte_file(entry))
2562                         return do_nonlinear_fault(mm, vma, address,
2563                                         pte, pmd, write_access, entry);
2564                 return do_swap_page(mm, vma, address,
2565                                         pte, pmd, write_access, entry);
2566         }
2567
2568         ptl = pte_lockptr(mm, pmd);
2569         spin_lock(ptl);
2570         if (unlikely(!pte_same(*pte, entry)))
2571                 goto unlock;
2572         if (write_access) {
2573                 if (!pte_write(entry))
2574                         return do_wp_page(mm, vma, address,
2575                                         pte, pmd, ptl, entry);
2576                 entry = pte_mkdirty(entry);
2577         }
2578         entry = pte_mkyoung(entry);
2579         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2580                 update_mmu_cache(vma, address, entry);
2581         } else {
2582                 /*
2583                  * This is needed only for protection faults but the arch code
2584                  * is not yet telling us if this is a protection fault or not.
2585                  * This still avoids useless tlb flushes for .text page faults
2586                  * with threads.
2587                  */
2588                 if (write_access)
2589                         flush_tlb_page(vma, address);
2590         }
2591 unlock:
2592         pte_unmap_unlock(pte, ptl);
2593         return 0;
2594 }
2595
2596 /*
2597  * By the time we get here, we already hold the mm semaphore
2598  */
2599 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2600                 unsigned long address, int write_access)
2601 {
2602         pgd_t *pgd;
2603         pud_t *pud;
2604         pmd_t *pmd;
2605         pte_t *pte;
2606
2607         __set_current_state(TASK_RUNNING);
2608
2609         count_vm_event(PGFAULT);
2610
2611         if (unlikely(is_vm_hugetlb_page(vma)))
2612                 return hugetlb_fault(mm, vma, address, write_access);
2613
2614         pgd = pgd_offset(mm, address);
2615         pud = pud_alloc(mm, pgd, address);
2616         if (!pud)
2617                 return VM_FAULT_OOM;
2618         pmd = pmd_alloc(mm, pud, address);
2619         if (!pmd)
2620                 return VM_FAULT_OOM;
2621         pte = pte_alloc_map(mm, pmd, address);
2622         if (!pte)
2623                 return VM_FAULT_OOM;
2624
2625         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2626 }
2627
2628 #ifndef __PAGETABLE_PUD_FOLDED
2629 /*
2630  * Allocate page upper directory.
2631  * We've already handled the fast-path in-line.
2632  */
2633 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2634 {
2635         pud_t *new = pud_alloc_one(mm, address);
2636         if (!new)
2637                 return -ENOMEM;
2638
2639         smp_wmb(); /* See comment in __pte_alloc */
2640
2641         spin_lock(&mm->page_table_lock);
2642         if (pgd_present(*pgd))          /* Another has populated it */
2643                 pud_free(mm, new);
2644         else
2645                 pgd_populate(mm, pgd, new);
2646         spin_unlock(&mm->page_table_lock);
2647         return 0;
2648 }
2649 #endif /* __PAGETABLE_PUD_FOLDED */
2650
2651 #ifndef __PAGETABLE_PMD_FOLDED
2652 /*
2653  * Allocate page middle directory.
2654  * We've already handled the fast-path in-line.
2655  */
2656 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2657 {
2658         pmd_t *new = pmd_alloc_one(mm, address);
2659         if (!new)
2660                 return -ENOMEM;
2661
2662         smp_wmb(); /* See comment in __pte_alloc */
2663
2664         spin_lock(&mm->page_table_lock);
2665 #ifndef __ARCH_HAS_4LEVEL_HACK
2666         if (pud_present(*pud))          /* Another has populated it */
2667                 pmd_free(mm, new);
2668         else
2669                 pud_populate(mm, pud, new);
2670 #else
2671         if (pgd_present(*pud))          /* Another has populated it */
2672                 pmd_free(mm, new);
2673         else
2674                 pgd_populate(mm, pud, new);
2675 #endif /* __ARCH_HAS_4LEVEL_HACK */
2676         spin_unlock(&mm->page_table_lock);
2677         return 0;
2678 }
2679 #endif /* __PAGETABLE_PMD_FOLDED */
2680
2681 int make_pages_present(unsigned long addr, unsigned long end)
2682 {
2683         int ret, len, write;
2684         struct vm_area_struct * vma;
2685
2686         vma = find_vma(current->mm, addr);
2687         if (!vma)
2688                 return -1;
2689         write = (vma->vm_flags & VM_WRITE) != 0;
2690         BUG_ON(addr >= end);
2691         BUG_ON(end > vma->vm_end);
2692         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2693         ret = get_user_pages(current, current->mm, addr,
2694                         len, write, 0, NULL, NULL);
2695         if (ret < 0)
2696                 return ret;
2697         return ret == len ? 0 : -1;
2698 }
2699
2700 #if !defined(__HAVE_ARCH_GATE_AREA)
2701
2702 #if defined(AT_SYSINFO_EHDR)
2703 static struct vm_area_struct gate_vma;
2704
2705 static int __init gate_vma_init(void)
2706 {
2707         gate_vma.vm_mm = NULL;
2708         gate_vma.vm_start = FIXADDR_USER_START;
2709         gate_vma.vm_end = FIXADDR_USER_END;
2710         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2711         gate_vma.vm_page_prot = __P101;
2712         /*
2713          * Make sure the vDSO gets into every core dump.
2714          * Dumping its contents makes post-mortem fully interpretable later
2715          * without matching up the same kernel and hardware config to see
2716          * what PC values meant.
2717          */
2718         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2719         return 0;
2720 }
2721 __initcall(gate_vma_init);
2722 #endif
2723
2724 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2725 {
2726 #ifdef AT_SYSINFO_EHDR
2727         return &gate_vma;
2728 #else
2729         return NULL;
2730 #endif
2731 }
2732
2733 int in_gate_area_no_task(unsigned long addr)
2734 {
2735 #ifdef AT_SYSINFO_EHDR
2736         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2737                 return 1;
2738 #endif
2739         return 0;
2740 }
2741
2742 #endif  /* __HAVE_ARCH_GATE_AREA */
2743
2744 /*
2745  * Access another process' address space.
2746  * Source/target buffer must be kernel space,
2747  * Do not walk the page table directly, use get_user_pages
2748  */
2749 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2750 {
2751         struct mm_struct *mm;
2752         struct vm_area_struct *vma;
2753         struct page *page;
2754         void *old_buf = buf;
2755
2756         mm = get_task_mm(tsk);
2757         if (!mm)
2758                 return 0;
2759
2760         down_read(&mm->mmap_sem);
2761         /* ignore errors, just check how much was successfully transferred */
2762         while (len) {
2763                 int bytes, ret, offset;
2764                 void *maddr;
2765
2766                 ret = get_user_pages(tsk, mm, addr, 1,
2767                                 write, 1, &page, &vma);
2768                 if (ret <= 0)
2769                         break;
2770
2771                 bytes = len;
2772                 offset = addr & (PAGE_SIZE-1);
2773                 if (bytes > PAGE_SIZE-offset)
2774                         bytes = PAGE_SIZE-offset;
2775
2776                 maddr = kmap(page);
2777                 if (write) {
2778                         copy_to_user_page(vma, page, addr,
2779                                           maddr + offset, buf, bytes);
2780                         set_page_dirty_lock(page);
2781                 } else {
2782                         copy_from_user_page(vma, page, addr,
2783                                             buf, maddr + offset, bytes);
2784                 }
2785                 kunmap(page);
2786                 page_cache_release(page);
2787                 len -= bytes;
2788                 buf += bytes;
2789                 addr += bytes;
2790         }
2791         up_read(&mm->mmap_sem);
2792         mmput(mm);
2793
2794         return buf - old_buf;
2795 }
2796
2797 /*
2798  * Print the name of a VMA.
2799  */
2800 void print_vma_addr(char *prefix, unsigned long ip)
2801 {
2802         struct mm_struct *mm = current->mm;
2803         struct vm_area_struct *vma;
2804
2805         /*
2806          * Do not print if we are in atomic
2807          * contexts (in exception stacks, etc.):
2808          */
2809         if (preempt_count())
2810                 return;
2811
2812         down_read(&mm->mmap_sem);
2813         vma = find_vma(mm, ip);
2814         if (vma && vma->vm_file) {
2815                 struct file *f = vma->vm_file;
2816                 char *buf = (char *)__get_free_page(GFP_KERNEL);
2817                 if (buf) {
2818                         char *p, *s;
2819
2820                         p = d_path(&f->f_path, buf, PAGE_SIZE);
2821                         if (IS_ERR(p))
2822                                 p = "?";
2823                         s = strrchr(p, '/');
2824                         if (s)
2825                                 p = s+1;
2826                         printk("%s%s[%lx+%lx]", prefix, p,
2827                                         vma->vm_start,
2828                                         vma->vm_end - vma->vm_start);
2829                         free_page((unsigned long)buf);
2830                 }
2831         }
2832         up_read(&current->mm->mmap_sem);
2833 }