mm: protect set_page_dirty() from ongoing truncation
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
209                 return 0;
210
211         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
212         if (!batch)
213                 return 0;
214
215         tlb->batch_count++;
216         batch->next = NULL;
217         batch->nr   = 0;
218         batch->max  = MAX_GATHER_BATCH;
219
220         tlb->active->next = batch;
221         tlb->active = batch;
222
223         return 1;
224 }
225
226 /* tlb_gather_mmu
227  *      Called to initialize an (on-stack) mmu_gather structure for page-table
228  *      tear-down from @mm. The @fullmm argument is used when @mm is without
229  *      users and we're going to destroy the full address space (exit/execve).
230  */
231 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
232 {
233         tlb->mm = mm;
234
235         tlb->fullmm     = fullmm;
236         tlb->need_flush = 0;
237         tlb->fast_mode  = (num_possible_cpus() == 1);
238         tlb->local.next = NULL;
239         tlb->local.nr   = 0;
240         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
241         tlb->active     = &tlb->local;
242         tlb->batch_count = 0;
243
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb->batch = NULL;
246 #endif
247 }
248
249 void tlb_flush_mmu(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         if (!tlb->need_flush)
254                 return;
255         tlb->need_flush = 0;
256         tlb_flush(tlb);
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260
261         if (tlb_fast_mode(tlb))
262                 return;
263
264         for (batch = &tlb->local; batch; batch = batch->next) {
265                 free_pages_and_swap_cache(batch->pages, batch->nr);
266                 batch->nr = 0;
267         }
268         tlb->active = &tlb->local;
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  */
297 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
298 {
299         struct mmu_gather_batch *batch;
300
301         tlb->need_flush = 1;
302
303         if (tlb_fast_mode(tlb)) {
304                 free_page_and_swap_cache(page);
305                 return 1; /* avoid calling tlb_flush_mmu() */
306         }
307
308         batch = tlb->active;
309         batch->pages[batch->nr++] = page;
310         if (batch->nr == batch->max) {
311                 if (!tlb_next_batch(tlb))
312                         return 0;
313                 batch = tlb->active;
314         }
315         VM_BUG_ON(batch->nr > batch->max);
316
317         return batch->max - batch->nr;
318 }
319
320 #endif /* HAVE_GENERIC_MMU_GATHER */
321
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
323
324 /*
325  * See the comment near struct mmu_table_batch.
326  */
327
328 static void tlb_remove_table_smp_sync(void *arg)
329 {
330         /* Simply deliver the interrupt */
331 }
332
333 static void tlb_remove_table_one(void *table)
334 {
335         /*
336          * This isn't an RCU grace period and hence the page-tables cannot be
337          * assumed to be actually RCU-freed.
338          *
339          * It is however sufficient for software page-table walkers that rely on
340          * IRQ disabling. See the comment near struct mmu_table_batch.
341          */
342         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343         __tlb_remove_table(table);
344 }
345
346 static void tlb_remove_table_rcu(struct rcu_head *head)
347 {
348         struct mmu_table_batch *batch;
349         int i;
350
351         batch = container_of(head, struct mmu_table_batch, rcu);
352
353         for (i = 0; i < batch->nr; i++)
354                 __tlb_remove_table(batch->tables[i]);
355
356         free_page((unsigned long)batch);
357 }
358
359 void tlb_table_flush(struct mmu_gather *tlb)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         if (*batch) {
364                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
365                 *batch = NULL;
366         }
367 }
368
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         tlb->need_flush = 1;
374
375         /*
376          * When there's less then two users of this mm there cannot be a
377          * concurrent page-table walk.
378          */
379         if (atomic_read(&tlb->mm->mm_users) < 2) {
380                 __tlb_remove_table(table);
381                 return;
382         }
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_remove_table_one(table);
388                         return;
389                 }
390                 (*batch)->nr = 0;
391         }
392         (*batch)->tables[(*batch)->nr++] = table;
393         if ((*batch)->nr == MAX_TABLE_BATCH)
394                 tlb_table_flush(tlb);
395 }
396
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398
399 /*
400  * If a p?d_bad entry is found while walking page tables, report
401  * the error, before resetting entry to p?d_none.  Usually (but
402  * very seldom) called out from the p?d_none_or_clear_bad macros.
403  */
404
405 void pgd_clear_bad(pgd_t *pgd)
406 {
407         pgd_ERROR(*pgd);
408         pgd_clear(pgd);
409 }
410
411 void pud_clear_bad(pud_t *pud)
412 {
413         pud_ERROR(*pud);
414         pud_clear(pud);
415 }
416
417 void pmd_clear_bad(pmd_t *pmd)
418 {
419         pmd_ERROR(*pmd);
420         pmd_clear(pmd);
421 }
422
423 /*
424  * Note: this doesn't free the actual pages themselves. That
425  * has been handled earlier when unmapping all the memory regions.
426  */
427 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
428                            unsigned long addr)
429 {
430         pgtable_t token = pmd_pgtable(*pmd);
431         pmd_clear(pmd);
432         pte_free_tlb(tlb, token, addr);
433         tlb->mm->nr_ptes--;
434 }
435
436 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pmd_t *pmd;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pmd = pmd_offset(pud, addr);
446         do {
447                 next = pmd_addr_end(addr, end);
448                 if (pmd_none_or_clear_bad(pmd))
449                         continue;
450                 free_pte_range(tlb, pmd, addr);
451         } while (pmd++, addr = next, addr != end);
452
453         start &= PUD_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PUD_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pmd = pmd_offset(pud, start);
465         pud_clear(pud);
466         pmd_free_tlb(tlb, pmd, start);
467 }
468
469 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
470                                 unsigned long addr, unsigned long end,
471                                 unsigned long floor, unsigned long ceiling)
472 {
473         pud_t *pud;
474         unsigned long next;
475         unsigned long start;
476
477         start = addr;
478         pud = pud_offset(pgd, addr);
479         do {
480                 next = pud_addr_end(addr, end);
481                 if (pud_none_or_clear_bad(pud))
482                         continue;
483                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
484         } while (pud++, addr = next, addr != end);
485
486         start &= PGDIR_MASK;
487         if (start < floor)
488                 return;
489         if (ceiling) {
490                 ceiling &= PGDIR_MASK;
491                 if (!ceiling)
492                         return;
493         }
494         if (end - 1 > ceiling - 1)
495                 return;
496
497         pud = pud_offset(pgd, start);
498         pgd_clear(pgd);
499         pud_free_tlb(tlb, pud, start);
500 }
501
502 /*
503  * This function frees user-level page tables of a process.
504  *
505  * Must be called with pagetable lock held.
506  */
507 void free_pgd_range(struct mmu_gather *tlb,
508                         unsigned long addr, unsigned long end,
509                         unsigned long floor, unsigned long ceiling)
510 {
511         pgd_t *pgd;
512         unsigned long next;
513
514         /*
515          * The next few lines have given us lots of grief...
516          *
517          * Why are we testing PMD* at this top level?  Because often
518          * there will be no work to do at all, and we'd prefer not to
519          * go all the way down to the bottom just to discover that.
520          *
521          * Why all these "- 1"s?  Because 0 represents both the bottom
522          * of the address space and the top of it (using -1 for the
523          * top wouldn't help much: the masks would do the wrong thing).
524          * The rule is that addr 0 and floor 0 refer to the bottom of
525          * the address space, but end 0 and ceiling 0 refer to the top
526          * Comparisons need to use "end - 1" and "ceiling - 1" (though
527          * that end 0 case should be mythical).
528          *
529          * Wherever addr is brought up or ceiling brought down, we must
530          * be careful to reject "the opposite 0" before it confuses the
531          * subsequent tests.  But what about where end is brought down
532          * by PMD_SIZE below? no, end can't go down to 0 there.
533          *
534          * Whereas we round start (addr) and ceiling down, by different
535          * masks at different levels, in order to test whether a table
536          * now has no other vmas using it, so can be freed, we don't
537          * bother to round floor or end up - the tests don't need that.
538          */
539
540         addr &= PMD_MASK;
541         if (addr < floor) {
542                 addr += PMD_SIZE;
543                 if (!addr)
544                         return;
545         }
546         if (ceiling) {
547                 ceiling &= PMD_MASK;
548                 if (!ceiling)
549                         return;
550         }
551         if (end - 1 > ceiling - 1)
552                 end -= PMD_SIZE;
553         if (addr > end - 1)
554                 return;
555
556         pgd = pgd_offset(tlb->mm, addr);
557         do {
558                 next = pgd_addr_end(addr, end);
559                 if (pgd_none_or_clear_bad(pgd))
560                         continue;
561                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
562         } while (pgd++, addr = next, addr != end);
563 }
564
565 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
566                 unsigned long floor, unsigned long ceiling)
567 {
568         while (vma) {
569                 struct vm_area_struct *next = vma->vm_next;
570                 unsigned long addr = vma->vm_start;
571
572                 /*
573                  * Hide vma from rmap and truncate_pagecache before freeing
574                  * pgtables
575                  */
576                 unlink_anon_vmas(vma);
577                 unlink_file_vma(vma);
578
579                 if (is_vm_hugetlb_page(vma)) {
580                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
581                                 floor, next? next->vm_start: ceiling);
582                 } else {
583                         /*
584                          * Optimization: gather nearby vmas into one call down
585                          */
586                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
587                                && !is_vm_hugetlb_page(next)) {
588                                 vma = next;
589                                 next = vma->vm_next;
590                                 unlink_anon_vmas(vma);
591                                 unlink_file_vma(vma);
592                         }
593                         free_pgd_range(tlb, addr, vma->vm_end,
594                                 floor, next? next->vm_start: ceiling);
595                 }
596                 vma = next;
597         }
598 }
599
600 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
601                 pmd_t *pmd, unsigned long address)
602 {
603         pgtable_t new = pte_alloc_one(mm, address);
604         int wait_split_huge_page;
605         if (!new)
606                 return -ENOMEM;
607
608         /*
609          * Ensure all pte setup (eg. pte page lock and page clearing) are
610          * visible before the pte is made visible to other CPUs by being
611          * put into page tables.
612          *
613          * The other side of the story is the pointer chasing in the page
614          * table walking code (when walking the page table without locking;
615          * ie. most of the time). Fortunately, these data accesses consist
616          * of a chain of data-dependent loads, meaning most CPUs (alpha
617          * being the notable exception) will already guarantee loads are
618          * seen in-order. See the alpha page table accessors for the
619          * smp_read_barrier_depends() barriers in page table walking code.
620          */
621         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
622
623         spin_lock(&mm->page_table_lock);
624         wait_split_huge_page = 0;
625         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
626                 mm->nr_ptes++;
627                 pmd_populate(mm, pmd, new);
628                 new = NULL;
629         } else if (unlikely(pmd_trans_splitting(*pmd)))
630                 wait_split_huge_page = 1;
631         spin_unlock(&mm->page_table_lock);
632         if (new)
633                 pte_free(mm, new);
634         if (wait_split_huge_page)
635                 wait_split_huge_page(vma->anon_vma, pmd);
636         return 0;
637 }
638
639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
640 {
641         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
642         if (!new)
643                 return -ENOMEM;
644
645         smp_wmb(); /* See comment in __pte_alloc */
646
647         spin_lock(&init_mm.page_table_lock);
648         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
649                 pmd_populate_kernel(&init_mm, pmd, new);
650                 new = NULL;
651         } else
652                 VM_BUG_ON(pmd_trans_splitting(*pmd));
653         spin_unlock(&init_mm.page_table_lock);
654         if (new)
655                 pte_free_kernel(&init_mm, new);
656         return 0;
657 }
658
659 static inline void init_rss_vec(int *rss)
660 {
661         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
662 }
663
664 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
665 {
666         int i;
667
668         if (current->mm == mm)
669                 sync_mm_rss(current, mm);
670         for (i = 0; i < NR_MM_COUNTERS; i++)
671                 if (rss[i])
672                         add_mm_counter(mm, i, rss[i]);
673 }
674
675 /*
676  * This function is called to print an error when a bad pte
677  * is found. For example, we might have a PFN-mapped pte in
678  * a region that doesn't allow it.
679  *
680  * The calling function must still handle the error.
681  */
682 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
683                           pte_t pte, struct page *page)
684 {
685         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
686         pud_t *pud = pud_offset(pgd, addr);
687         pmd_t *pmd = pmd_offset(pud, addr);
688         struct address_space *mapping;
689         pgoff_t index;
690         static unsigned long resume;
691         static unsigned long nr_shown;
692         static unsigned long nr_unshown;
693
694         /*
695          * Allow a burst of 60 reports, then keep quiet for that minute;
696          * or allow a steady drip of one report per second.
697          */
698         if (nr_shown == 60) {
699                 if (time_before(jiffies, resume)) {
700                         nr_unshown++;
701                         return;
702                 }
703                 if (nr_unshown) {
704                         printk(KERN_ALERT
705                                 "BUG: Bad page map: %lu messages suppressed\n",
706                                 nr_unshown);
707                         nr_unshown = 0;
708                 }
709                 nr_shown = 0;
710         }
711         if (nr_shown++ == 0)
712                 resume = jiffies + 60 * HZ;
713
714         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
715         index = linear_page_index(vma, addr);
716
717         printk(KERN_ALERT
718                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
719                 current->comm,
720                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
721         if (page)
722                 dump_page(page);
723         printk(KERN_ALERT
724                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
726         /*
727          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
728          */
729         if (vma->vm_ops)
730                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
731                                 (unsigned long)vma->vm_ops->fault);
732         if (vma->vm_file && vma->vm_file->f_op)
733                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
734                                 (unsigned long)vma->vm_file->f_op->mmap);
735         dump_stack();
736         add_taint(TAINT_BAD_PAGE);
737 }
738
739 static inline int is_cow_mapping(vm_flags_t flags)
740 {
741         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
742 }
743
744 #ifndef is_zero_pfn
745 static inline int is_zero_pfn(unsigned long pfn)
746 {
747         return pfn == zero_pfn;
748 }
749 #endif
750
751 #ifndef my_zero_pfn
752 static inline unsigned long my_zero_pfn(unsigned long addr)
753 {
754         return zero_pfn;
755 }
756 #endif
757
758 /*
759  * vm_normal_page -- This function gets the "struct page" associated with a pte.
760  *
761  * "Special" mappings do not wish to be associated with a "struct page" (either
762  * it doesn't exist, or it exists but they don't want to touch it). In this
763  * case, NULL is returned here. "Normal" mappings do have a struct page.
764  *
765  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766  * pte bit, in which case this function is trivial. Secondly, an architecture
767  * may not have a spare pte bit, which requires a more complicated scheme,
768  * described below.
769  *
770  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771  * special mapping (even if there are underlying and valid "struct pages").
772  * COWed pages of a VM_PFNMAP are always normal.
773  *
774  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777  * mapping will always honor the rule
778  *
779  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
780  *
781  * And for normal mappings this is false.
782  *
783  * This restricts such mappings to be a linear translation from virtual address
784  * to pfn. To get around this restriction, we allow arbitrary mappings so long
785  * as the vma is not a COW mapping; in that case, we know that all ptes are
786  * special (because none can have been COWed).
787  *
788  *
789  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
790  *
791  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792  * page" backing, however the difference is that _all_ pages with a struct
793  * page (that is, those where pfn_valid is true) are refcounted and considered
794  * normal pages by the VM. The disadvantage is that pages are refcounted
795  * (which can be slower and simply not an option for some PFNMAP users). The
796  * advantage is that we don't have to follow the strict linearity rule of
797  * PFNMAP mappings in order to support COWable mappings.
798  *
799  */
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
802 #else
803 # define HAVE_PTE_SPECIAL 0
804 #endif
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
806                                 pte_t pte)
807 {
808         unsigned long pfn = pte_pfn(pte);
809
810         if (HAVE_PTE_SPECIAL) {
811                 if (likely(!pte_special(pte)))
812                         goto check_pfn;
813                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
814                         return NULL;
815                 if (!is_zero_pfn(pfn))
816                         print_bad_pte(vma, addr, pte, NULL);
817                 return NULL;
818         }
819
820         /* !HAVE_PTE_SPECIAL case follows: */
821
822         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
823                 if (vma->vm_flags & VM_MIXEDMAP) {
824                         if (!pfn_valid(pfn))
825                                 return NULL;
826                         goto out;
827                 } else {
828                         unsigned long off;
829                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
830                         if (pfn == vma->vm_pgoff + off)
831                                 return NULL;
832                         if (!is_cow_mapping(vma->vm_flags))
833                                 return NULL;
834                 }
835         }
836
837         if (is_zero_pfn(pfn))
838                 return NULL;
839 check_pfn:
840         if (unlikely(pfn > highest_memmap_pfn)) {
841                 print_bad_pte(vma, addr, pte, NULL);
842                 return NULL;
843         }
844
845         /*
846          * NOTE! We still have PageReserved() pages in the page tables.
847          * eg. VDSO mappings can cause them to exist.
848          */
849 out:
850         return pfn_to_page(pfn);
851 }
852
853 /*
854  * copy one vm_area from one task to the other. Assumes the page tables
855  * already present in the new task to be cleared in the whole range
856  * covered by this vma.
857  */
858
859 static inline unsigned long
860 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
862                 unsigned long addr, int *rss)
863 {
864         unsigned long vm_flags = vma->vm_flags;
865         pte_t pte = *src_pte;
866         struct page *page;
867
868         /* pte contains position in swap or file, so copy. */
869         if (unlikely(!pte_present(pte))) {
870                 if (!pte_file(pte)) {
871                         swp_entry_t entry = pte_to_swp_entry(pte);
872
873                         if (likely(!non_swap_entry(entry))) {
874                                 if (swap_duplicate(entry) < 0)
875                                         return entry.val;
876
877                                 /* make sure dst_mm is on swapoff's mmlist. */
878                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
879                                         spin_lock(&mmlist_lock);
880                                         if (list_empty(&dst_mm->mmlist))
881                                                 list_add(&dst_mm->mmlist,
882                                                          &src_mm->mmlist);
883                                         spin_unlock(&mmlist_lock);
884                                 }
885                                 rss[MM_SWAPENTS]++;
886                         } else if (is_write_migration_entry(entry) &&
887                                         is_cow_mapping(vm_flags)) {
888                                 /*
889                                  * COW mappings require pages in both parent
890                                  * and child to be set to read.
891                                  */
892                                 make_migration_entry_read(&entry);
893                                 pte = swp_entry_to_pte(entry);
894                                 set_pte_at(src_mm, addr, src_pte, pte);
895                         }
896                 }
897                 goto out_set_pte;
898         }
899
900         /*
901          * If it's a COW mapping, write protect it both
902          * in the parent and the child
903          */
904         if (is_cow_mapping(vm_flags)) {
905                 ptep_set_wrprotect(src_mm, addr, src_pte);
906                 pte = pte_wrprotect(pte);
907         }
908
909         /*
910          * If it's a shared mapping, mark it clean in
911          * the child
912          */
913         if (vm_flags & VM_SHARED)
914                 pte = pte_mkclean(pte);
915         pte = pte_mkold(pte);
916
917         page = vm_normal_page(vma, addr, pte);
918         if (page) {
919                 get_page(page);
920                 page_dup_rmap(page);
921                 if (PageAnon(page))
922                         rss[MM_ANONPAGES]++;
923                 else
924                         rss[MM_FILEPAGES]++;
925         }
926
927 out_set_pte:
928         set_pte_at(dst_mm, addr, dst_pte, pte);
929         return 0;
930 }
931
932 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
933                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
934                    unsigned long addr, unsigned long end)
935 {
936         pte_t *orig_src_pte, *orig_dst_pte;
937         pte_t *src_pte, *dst_pte;
938         spinlock_t *src_ptl, *dst_ptl;
939         int progress = 0;
940         int rss[NR_MM_COUNTERS];
941         swp_entry_t entry = (swp_entry_t){0};
942
943 again:
944         init_rss_vec(rss);
945
946         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947         if (!dst_pte)
948                 return -ENOMEM;
949         src_pte = pte_offset_map(src_pmd, addr);
950         src_ptl = pte_lockptr(src_mm, src_pmd);
951         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952         orig_src_pte = src_pte;
953         orig_dst_pte = dst_pte;
954         arch_enter_lazy_mmu_mode();
955
956         do {
957                 /*
958                  * We are holding two locks at this point - either of them
959                  * could generate latencies in another task on another CPU.
960                  */
961                 if (progress >= 32) {
962                         progress = 0;
963                         if (need_resched() ||
964                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965                                 break;
966                 }
967                 if (pte_none(*src_pte)) {
968                         progress++;
969                         continue;
970                 }
971                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
972                                                         vma, addr, rss);
973                 if (entry.val)
974                         break;
975                 progress += 8;
976         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
977
978         arch_leave_lazy_mmu_mode();
979         spin_unlock(src_ptl);
980         pte_unmap(orig_src_pte);
981         add_mm_rss_vec(dst_mm, rss);
982         pte_unmap_unlock(orig_dst_pte, dst_ptl);
983         cond_resched();
984
985         if (entry.val) {
986                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
987                         return -ENOMEM;
988                 progress = 0;
989         }
990         if (addr != end)
991                 goto again;
992         return 0;
993 }
994
995 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
997                 unsigned long addr, unsigned long end)
998 {
999         pmd_t *src_pmd, *dst_pmd;
1000         unsigned long next;
1001
1002         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1003         if (!dst_pmd)
1004                 return -ENOMEM;
1005         src_pmd = pmd_offset(src_pud, addr);
1006         do {
1007                 next = pmd_addr_end(addr, end);
1008                 if (pmd_trans_huge(*src_pmd)) {
1009                         int err;
1010                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1011                         err = copy_huge_pmd(dst_mm, src_mm,
1012                                             dst_pmd, src_pmd, addr, vma);
1013                         if (err == -ENOMEM)
1014                                 return -ENOMEM;
1015                         if (!err)
1016                                 continue;
1017                         /* fall through */
1018                 }
1019                 if (pmd_none_or_clear_bad(src_pmd))
1020                         continue;
1021                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1022                                                 vma, addr, next))
1023                         return -ENOMEM;
1024         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1025         return 0;
1026 }
1027
1028 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1030                 unsigned long addr, unsigned long end)
1031 {
1032         pud_t *src_pud, *dst_pud;
1033         unsigned long next;
1034
1035         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1036         if (!dst_pud)
1037                 return -ENOMEM;
1038         src_pud = pud_offset(src_pgd, addr);
1039         do {
1040                 next = pud_addr_end(addr, end);
1041                 if (pud_none_or_clear_bad(src_pud))
1042                         continue;
1043                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1044                                                 vma, addr, next))
1045                         return -ENOMEM;
1046         } while (dst_pud++, src_pud++, addr = next, addr != end);
1047         return 0;
1048 }
1049
1050 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1051                 struct vm_area_struct *vma)
1052 {
1053         pgd_t *src_pgd, *dst_pgd;
1054         unsigned long next;
1055         unsigned long addr = vma->vm_start;
1056         unsigned long end = vma->vm_end;
1057         int ret;
1058
1059         /*
1060          * Don't copy ptes where a page fault will fill them correctly.
1061          * Fork becomes much lighter when there are big shared or private
1062          * readonly mappings. The tradeoff is that copy_page_range is more
1063          * efficient than faulting.
1064          */
1065         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1066                 if (!vma->anon_vma)
1067                         return 0;
1068         }
1069
1070         if (is_vm_hugetlb_page(vma))
1071                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1072
1073         if (unlikely(is_pfn_mapping(vma))) {
1074                 /*
1075                  * We do not free on error cases below as remove_vma
1076                  * gets called on error from higher level routine
1077                  */
1078                 ret = track_pfn_vma_copy(vma);
1079                 if (ret)
1080                         return ret;
1081         }
1082
1083         /*
1084          * We need to invalidate the secondary MMU mappings only when
1085          * there could be a permission downgrade on the ptes of the
1086          * parent mm. And a permission downgrade will only happen if
1087          * is_cow_mapping() returns true.
1088          */
1089         if (is_cow_mapping(vma->vm_flags))
1090                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow_mapping(vma->vm_flags))
1107                 mmu_notifier_invalidate_range_end(src_mm,
1108                                                   vma->vm_start, end);
1109         return ret;
1110 }
1111
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113                                 struct vm_area_struct *vma, pmd_t *pmd,
1114                                 unsigned long addr, unsigned long end,
1115                                 struct zap_details *details)
1116 {
1117         struct mm_struct *mm = tlb->mm;
1118         int force_flush = 0;
1119         int rss[NR_MM_COUNTERS];
1120         spinlock_t *ptl;
1121         pte_t *start_pte;
1122         pte_t *pte;
1123
1124 again:
1125         init_rss_vec(rss);
1126         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127         pte = start_pte;
1128         arch_enter_lazy_mmu_mode();
1129         do {
1130                 pte_t ptent = *pte;
1131                 if (pte_none(ptent)) {
1132                         continue;
1133                 }
1134
1135                 if (pte_present(ptent)) {
1136                         struct page *page;
1137
1138                         page = vm_normal_page(vma, addr, ptent);
1139                         if (unlikely(details) && page) {
1140                                 /*
1141                                  * unmap_shared_mapping_pages() wants to
1142                                  * invalidate cache without truncating:
1143                                  * unmap shared but keep private pages.
1144                                  */
1145                                 if (details->check_mapping &&
1146                                     details->check_mapping != page->mapping)
1147                                         continue;
1148                                 /*
1149                                  * Each page->index must be checked when
1150                                  * invalidating or truncating nonlinear.
1151                                  */
1152                                 if (details->nonlinear_vma &&
1153                                     (page->index < details->first_index ||
1154                                      page->index > details->last_index))
1155                                         continue;
1156                         }
1157                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1158                                                         tlb->fullmm);
1159                         tlb_remove_tlb_entry(tlb, pte, addr);
1160                         if (unlikely(!page))
1161                                 continue;
1162                         if (unlikely(details) && details->nonlinear_vma
1163                             && linear_page_index(details->nonlinear_vma,
1164                                                 addr) != page->index)
1165                                 set_pte_at(mm, addr, pte,
1166                                            pgoff_to_pte(page->index));
1167                         if (PageAnon(page))
1168                                 rss[MM_ANONPAGES]--;
1169                         else {
1170                                 if (pte_dirty(ptent))
1171                                         set_page_dirty(page);
1172                                 if (pte_young(ptent) &&
1173                                     likely(!VM_SequentialReadHint(vma)))
1174                                         mark_page_accessed(page);
1175                                 rss[MM_FILEPAGES]--;
1176                         }
1177                         page_remove_rmap(page);
1178                         if (unlikely(page_mapcount(page) < 0))
1179                                 print_bad_pte(vma, addr, ptent, page);
1180                         force_flush = !__tlb_remove_page(tlb, page);
1181                         if (force_flush) {
1182                                 addr += PAGE_SIZE;
1183                                 break;
1184                         }
1185                         continue;
1186                 }
1187                 /*
1188                  * If details->check_mapping, we leave swap entries;
1189                  * if details->nonlinear_vma, we leave file entries.
1190                  */
1191                 if (unlikely(details))
1192                         continue;
1193                 if (pte_file(ptent)) {
1194                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1195                                 print_bad_pte(vma, addr, ptent, NULL);
1196                 } else {
1197                         swp_entry_t entry = pte_to_swp_entry(ptent);
1198
1199                         if (!non_swap_entry(entry))
1200                                 rss[MM_SWAPENTS]--;
1201                         if (unlikely(!free_swap_and_cache(entry)))
1202                                 print_bad_pte(vma, addr, ptent, NULL);
1203                 }
1204                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205         } while (pte++, addr += PAGE_SIZE, addr != end);
1206
1207         add_mm_rss_vec(mm, rss);
1208         arch_leave_lazy_mmu_mode();
1209         pte_unmap_unlock(start_pte, ptl);
1210
1211         /*
1212          * mmu_gather ran out of room to batch pages, we break out of
1213          * the PTE lock to avoid doing the potential expensive TLB invalidate
1214          * and page-free while holding it.
1215          */
1216         if (force_flush) {
1217                 force_flush = 0;
1218                 tlb_flush_mmu(tlb);
1219                 if (addr != end)
1220                         goto again;
1221         }
1222
1223         return addr;
1224 }
1225
1226 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1227                                 struct vm_area_struct *vma, pud_t *pud,
1228                                 unsigned long addr, unsigned long end,
1229                                 struct zap_details *details)
1230 {
1231         pmd_t *pmd;
1232         unsigned long next;
1233
1234         pmd = pmd_offset(pud, addr);
1235         do {
1236                 next = pmd_addr_end(addr, end);
1237                 if (pmd_trans_huge(*pmd)) {
1238                         if (next - addr != HPAGE_PMD_SIZE) {
1239                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1240                                 split_huge_page_pmd(vma->vm_mm, pmd);
1241                         } else if (zap_huge_pmd(tlb, vma, pmd))
1242                                 goto next;
1243                         /* fall through */
1244                 }
1245                 /*
1246                  * Here there can be other concurrent MADV_DONTNEED or
1247                  * trans huge page faults running, and if the pmd is
1248                  * none or trans huge it can change under us. This is
1249                  * because MADV_DONTNEED holds the mmap_sem in read
1250                  * mode.
1251                  */
1252                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1253                         goto next;
1254                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1255 next:
1256                 cond_resched();
1257         } while (pmd++, addr = next, addr != end);
1258
1259         return addr;
1260 }
1261
1262 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1263                                 struct vm_area_struct *vma, pgd_t *pgd,
1264                                 unsigned long addr, unsigned long end,
1265                                 struct zap_details *details)
1266 {
1267         pud_t *pud;
1268         unsigned long next;
1269
1270         pud = pud_offset(pgd, addr);
1271         do {
1272                 next = pud_addr_end(addr, end);
1273                 if (pud_none_or_clear_bad(pud))
1274                         continue;
1275                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1276         } while (pud++, addr = next, addr != end);
1277
1278         return addr;
1279 }
1280
1281 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1282                                 struct vm_area_struct *vma,
1283                                 unsigned long addr, unsigned long end,
1284                                 struct zap_details *details)
1285 {
1286         pgd_t *pgd;
1287         unsigned long next;
1288
1289         if (details && !details->check_mapping && !details->nonlinear_vma)
1290                 details = NULL;
1291
1292         BUG_ON(addr >= end);
1293         mem_cgroup_uncharge_start();
1294         tlb_start_vma(tlb, vma);
1295         pgd = pgd_offset(vma->vm_mm, addr);
1296         do {
1297                 next = pgd_addr_end(addr, end);
1298                 if (pgd_none_or_clear_bad(pgd))
1299                         continue;
1300                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301         } while (pgd++, addr = next, addr != end);
1302         tlb_end_vma(tlb, vma);
1303         mem_cgroup_uncharge_end();
1304
1305         return addr;
1306 }
1307
1308 /**
1309  * unmap_vmas - unmap a range of memory covered by a list of vma's
1310  * @tlb: address of the caller's struct mmu_gather
1311  * @vma: the starting vma
1312  * @start_addr: virtual address at which to start unmapping
1313  * @end_addr: virtual address at which to end unmapping
1314  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1315  * @details: details of nonlinear truncation or shared cache invalidation
1316  *
1317  * Returns the end address of the unmapping (restart addr if interrupted).
1318  *
1319  * Unmap all pages in the vma list.
1320  *
1321  * Only addresses between `start' and `end' will be unmapped.
1322  *
1323  * The VMA list must be sorted in ascending virtual address order.
1324  *
1325  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326  * range after unmap_vmas() returns.  So the only responsibility here is to
1327  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328  * drops the lock and schedules.
1329  */
1330 unsigned long unmap_vmas(struct mmu_gather *tlb,
1331                 struct vm_area_struct *vma, unsigned long start_addr,
1332                 unsigned long end_addr, unsigned long *nr_accounted,
1333                 struct zap_details *details)
1334 {
1335         unsigned long start = start_addr;
1336         struct mm_struct *mm = vma->vm_mm;
1337
1338         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1340                 unsigned long end;
1341
1342                 start = max(vma->vm_start, start_addr);
1343                 if (start >= vma->vm_end)
1344                         continue;
1345                 end = min(vma->vm_end, end_addr);
1346                 if (end <= vma->vm_start)
1347                         continue;
1348
1349                 if (vma->vm_flags & VM_ACCOUNT)
1350                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1351
1352                 if (unlikely(is_pfn_mapping(vma)))
1353                         untrack_pfn_vma(vma, 0, 0);
1354
1355                 while (start != end) {
1356                         if (unlikely(is_vm_hugetlb_page(vma))) {
1357                                 /*
1358                                  * It is undesirable to test vma->vm_file as it
1359                                  * should be non-null for valid hugetlb area.
1360                                  * However, vm_file will be NULL in the error
1361                                  * cleanup path of do_mmap_pgoff. When
1362                                  * hugetlbfs ->mmap method fails,
1363                                  * do_mmap_pgoff() nullifies vma->vm_file
1364                                  * before calling this function to clean up.
1365                                  * Since no pte has actually been setup, it is
1366                                  * safe to do nothing in this case.
1367                                  */
1368                                 if (vma->vm_file) {
1369                                         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1370                                         __unmap_hugepage_range_final(vma, start, end, NULL);
1371                                         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1372                                 }
1373
1374                                 start = end;
1375                         } else
1376                                 start = unmap_page_range(tlb, vma, start, end, details);
1377                 }
1378         }
1379
1380         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381         return start;   /* which is now the end (or restart) address */
1382 }
1383
1384 /**
1385  * zap_page_range - remove user pages in a given range
1386  * @vma: vm_area_struct holding the applicable pages
1387  * @address: starting address of pages to zap
1388  * @size: number of bytes to zap
1389  * @details: details of nonlinear truncation or shared cache invalidation
1390  */
1391 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1392                 unsigned long size, struct zap_details *details)
1393 {
1394         struct mm_struct *mm = vma->vm_mm;
1395         struct mmu_gather tlb;
1396         unsigned long end = address + size;
1397         unsigned long nr_accounted = 0;
1398
1399         lru_add_drain();
1400         tlb_gather_mmu(&tlb, mm, 0);
1401         update_hiwater_rss(mm);
1402         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1403         tlb_finish_mmu(&tlb, address, end);
1404         return end;
1405 }
1406
1407 /**
1408  * zap_vma_ptes - remove ptes mapping the vma
1409  * @vma: vm_area_struct holding ptes to be zapped
1410  * @address: starting address of pages to zap
1411  * @size: number of bytes to zap
1412  *
1413  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1414  *
1415  * The entire address range must be fully contained within the vma.
1416  *
1417  * Returns 0 if successful.
1418  */
1419 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1420                 unsigned long size)
1421 {
1422         if (address < vma->vm_start || address + size > vma->vm_end ||
1423                         !(vma->vm_flags & VM_PFNMAP))
1424                 return -1;
1425         zap_page_range(vma, address, size, NULL);
1426         return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1429
1430 /**
1431  * follow_page - look up a page descriptor from a user-virtual address
1432  * @vma: vm_area_struct mapping @address
1433  * @address: virtual address to look up
1434  * @flags: flags modifying lookup behaviour
1435  *
1436  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1437  *
1438  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1439  * an error pointer if there is a mapping to something not represented
1440  * by a page descriptor (see also vm_normal_page()).
1441  */
1442 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1443                         unsigned int flags)
1444 {
1445         pgd_t *pgd;
1446         pud_t *pud;
1447         pmd_t *pmd;
1448         pte_t *ptep, pte;
1449         spinlock_t *ptl;
1450         struct page *page;
1451         struct mm_struct *mm = vma->vm_mm;
1452
1453         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1454         if (!IS_ERR(page)) {
1455                 BUG_ON(flags & FOLL_GET);
1456                 goto out;
1457         }
1458
1459         page = NULL;
1460         pgd = pgd_offset(mm, address);
1461         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1462                 goto no_page_table;
1463
1464         pud = pud_offset(pgd, address);
1465         if (pud_none(*pud))
1466                 goto no_page_table;
1467         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1468                 BUG_ON(flags & FOLL_GET);
1469                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1470                 goto out;
1471         }
1472         if (unlikely(pud_bad(*pud)))
1473                 goto no_page_table;
1474
1475         pmd = pmd_offset(pud, address);
1476         if (pmd_none(*pmd))
1477                 goto no_page_table;
1478         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1479                 BUG_ON(flags & FOLL_GET);
1480                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1481                 goto out;
1482         }
1483         if (pmd_trans_huge(*pmd)) {
1484                 if (flags & FOLL_SPLIT) {
1485                         split_huge_page_pmd(mm, pmd);
1486                         goto split_fallthrough;
1487                 }
1488                 spin_lock(&mm->page_table_lock);
1489                 if (likely(pmd_trans_huge(*pmd))) {
1490                         if (unlikely(pmd_trans_splitting(*pmd))) {
1491                                 spin_unlock(&mm->page_table_lock);
1492                                 wait_split_huge_page(vma->anon_vma, pmd);
1493                         } else {
1494                                 page = follow_trans_huge_pmd(mm, address,
1495                                                              pmd, flags);
1496                                 spin_unlock(&mm->page_table_lock);
1497                                 goto out;
1498                         }
1499                 } else
1500                         spin_unlock(&mm->page_table_lock);
1501                 /* fall through */
1502         }
1503 split_fallthrough:
1504         if (unlikely(pmd_bad(*pmd)))
1505                 goto no_page_table;
1506
1507         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1508
1509         pte = *ptep;
1510         if (!pte_present(pte))
1511                 goto no_page;
1512         if ((flags & FOLL_WRITE) && !pte_write(pte))
1513                 goto unlock;
1514
1515         page = vm_normal_page(vma, address, pte);
1516         if (unlikely(!page)) {
1517                 if ((flags & FOLL_DUMP) ||
1518                     !is_zero_pfn(pte_pfn(pte)))
1519                         goto bad_page;
1520                 page = pte_page(pte);
1521         }
1522
1523         if (flags & FOLL_GET)
1524                 get_page_foll(page);
1525         if (flags & FOLL_TOUCH) {
1526                 if ((flags & FOLL_WRITE) &&
1527                     !pte_dirty(pte) && !PageDirty(page))
1528                         set_page_dirty(page);
1529                 /*
1530                  * pte_mkyoung() would be more correct here, but atomic care
1531                  * is needed to avoid losing the dirty bit: it is easier to use
1532                  * mark_page_accessed().
1533                  */
1534                 mark_page_accessed(page);
1535         }
1536         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1537                 /*
1538                  * The preliminary mapping check is mainly to avoid the
1539                  * pointless overhead of lock_page on the ZERO_PAGE
1540                  * which might bounce very badly if there is contention.
1541                  *
1542                  * If the page is already locked, we don't need to
1543                  * handle it now - vmscan will handle it later if and
1544                  * when it attempts to reclaim the page.
1545                  */
1546                 if (page->mapping && trylock_page(page)) {
1547                         lru_add_drain();  /* push cached pages to LRU */
1548                         /*
1549                          * Because we lock page here and migration is
1550                          * blocked by the pte's page reference, we need
1551                          * only check for file-cache page truncation.
1552                          */
1553                         if (page->mapping)
1554                                 mlock_vma_page(page);
1555                         unlock_page(page);
1556                 }
1557         }
1558 unlock:
1559         pte_unmap_unlock(ptep, ptl);
1560 out:
1561         return page;
1562
1563 bad_page:
1564         pte_unmap_unlock(ptep, ptl);
1565         return ERR_PTR(-EFAULT);
1566
1567 no_page:
1568         pte_unmap_unlock(ptep, ptl);
1569         if (!pte_none(pte))
1570                 return page;
1571
1572 no_page_table:
1573         /*
1574          * When core dumping an enormous anonymous area that nobody
1575          * has touched so far, we don't want to allocate unnecessary pages or
1576          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1577          * then get_dump_page() will return NULL to leave a hole in the dump.
1578          * But we can only make this optimization where a hole would surely
1579          * be zero-filled if handle_mm_fault() actually did handle it.
1580          */
1581         if ((flags & FOLL_DUMP) &&
1582             (!vma->vm_ops || !vma->vm_ops->fault))
1583                 return ERR_PTR(-EFAULT);
1584         return page;
1585 }
1586
1587 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1588 {
1589         return stack_guard_page_start(vma, addr) ||
1590                stack_guard_page_end(vma, addr+PAGE_SIZE);
1591 }
1592
1593 /**
1594  * __get_user_pages() - pin user pages in memory
1595  * @tsk:        task_struct of target task
1596  * @mm:         mm_struct of target mm
1597  * @start:      starting user address
1598  * @nr_pages:   number of pages from start to pin
1599  * @gup_flags:  flags modifying pin behaviour
1600  * @pages:      array that receives pointers to the pages pinned.
1601  *              Should be at least nr_pages long. Or NULL, if caller
1602  *              only intends to ensure the pages are faulted in.
1603  * @vmas:       array of pointers to vmas corresponding to each page.
1604  *              Or NULL if the caller does not require them.
1605  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1606  *
1607  * Returns number of pages pinned. This may be fewer than the number
1608  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1609  * were pinned, returns -errno. Each page returned must be released
1610  * with a put_page() call when it is finished with. vmas will only
1611  * remain valid while mmap_sem is held.
1612  *
1613  * Must be called with mmap_sem held for read or write.
1614  *
1615  * __get_user_pages walks a process's page tables and takes a reference to
1616  * each struct page that each user address corresponds to at a given
1617  * instant. That is, it takes the page that would be accessed if a user
1618  * thread accesses the given user virtual address at that instant.
1619  *
1620  * This does not guarantee that the page exists in the user mappings when
1621  * __get_user_pages returns, and there may even be a completely different
1622  * page there in some cases (eg. if mmapped pagecache has been invalidated
1623  * and subsequently re faulted). However it does guarantee that the page
1624  * won't be freed completely. And mostly callers simply care that the page
1625  * contains data that was valid *at some point in time*. Typically, an IO
1626  * or similar operation cannot guarantee anything stronger anyway because
1627  * locks can't be held over the syscall boundary.
1628  *
1629  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1630  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1631  * appropriate) must be called after the page is finished with, and
1632  * before put_page is called.
1633  *
1634  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1635  * or mmap_sem contention, and if waiting is needed to pin all pages,
1636  * *@nonblocking will be set to 0.
1637  *
1638  * In most cases, get_user_pages or get_user_pages_fast should be used
1639  * instead of __get_user_pages. __get_user_pages should be used only if
1640  * you need some special @gup_flags.
1641  */
1642 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1643                      unsigned long start, int nr_pages, unsigned int gup_flags,
1644                      struct page **pages, struct vm_area_struct **vmas,
1645                      int *nonblocking)
1646 {
1647         int i;
1648         unsigned long vm_flags;
1649
1650         if (nr_pages <= 0)
1651                 return 0;
1652
1653         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1654
1655         /* 
1656          * Require read or write permissions.
1657          * If FOLL_FORCE is set, we only require the "MAY" flags.
1658          */
1659         vm_flags  = (gup_flags & FOLL_WRITE) ?
1660                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661         vm_flags &= (gup_flags & FOLL_FORCE) ?
1662                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1663         i = 0;
1664
1665         do {
1666                 struct vm_area_struct *vma;
1667
1668                 vma = find_extend_vma(mm, start);
1669                 if (!vma && in_gate_area(mm, start)) {
1670                         unsigned long pg = start & PAGE_MASK;
1671                         pgd_t *pgd;
1672                         pud_t *pud;
1673                         pmd_t *pmd;
1674                         pte_t *pte;
1675
1676                         /* user gate pages are read-only */
1677                         if (gup_flags & FOLL_WRITE)
1678                                 return i ? : -EFAULT;
1679                         if (pg > TASK_SIZE)
1680                                 pgd = pgd_offset_k(pg);
1681                         else
1682                                 pgd = pgd_offset_gate(mm, pg);
1683                         BUG_ON(pgd_none(*pgd));
1684                         pud = pud_offset(pgd, pg);
1685                         BUG_ON(pud_none(*pud));
1686                         pmd = pmd_offset(pud, pg);
1687                         if (pmd_none(*pmd))
1688                                 return i ? : -EFAULT;
1689                         VM_BUG_ON(pmd_trans_huge(*pmd));
1690                         pte = pte_offset_map(pmd, pg);
1691                         if (pte_none(*pte)) {
1692                                 pte_unmap(pte);
1693                                 return i ? : -EFAULT;
1694                         }
1695                         vma = get_gate_vma(mm);
1696                         if (pages) {
1697                                 struct page *page;
1698
1699                                 page = vm_normal_page(vma, start, *pte);
1700                                 if (!page) {
1701                                         if (!(gup_flags & FOLL_DUMP) &&
1702                                              is_zero_pfn(pte_pfn(*pte)))
1703                                                 page = pte_page(*pte);
1704                                         else {
1705                                                 pte_unmap(pte);
1706                                                 return i ? : -EFAULT;
1707                                         }
1708                                 }
1709                                 pages[i] = page;
1710                                 get_page(page);
1711                         }
1712                         pte_unmap(pte);
1713                         goto next_page;
1714                 }
1715
1716                 if (!vma ||
1717                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1718                     !(vm_flags & vma->vm_flags))
1719                         return i ? : -EFAULT;
1720
1721                 if (is_vm_hugetlb_page(vma)) {
1722                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1723                                         &start, &nr_pages, i, gup_flags);
1724                         continue;
1725                 }
1726
1727                 do {
1728                         struct page *page;
1729                         unsigned int foll_flags = gup_flags;
1730
1731                         /*
1732                          * If we have a pending SIGKILL, don't keep faulting
1733                          * pages and potentially allocating memory.
1734                          */
1735                         if (unlikely(fatal_signal_pending(current)))
1736                                 return i ? i : -ERESTARTSYS;
1737
1738                         cond_resched();
1739                         while (!(page = follow_page(vma, start, foll_flags))) {
1740                                 int ret;
1741                                 unsigned int fault_flags = 0;
1742
1743                                 /* For mlock, just skip the stack guard page. */
1744                                 if (foll_flags & FOLL_MLOCK) {
1745                                         if (stack_guard_page(vma, start))
1746                                                 goto next_page;
1747                                 }
1748                                 if (foll_flags & FOLL_WRITE)
1749                                         fault_flags |= FAULT_FLAG_WRITE;
1750                                 if (nonblocking)
1751                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1752                                 if (foll_flags & FOLL_NOWAIT)
1753                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1754
1755                                 ret = handle_mm_fault(mm, vma, start,
1756                                                         fault_flags);
1757
1758                                 if (ret & VM_FAULT_ERROR) {
1759                                         if (ret & VM_FAULT_OOM)
1760                                                 return i ? i : -ENOMEM;
1761                                         if (ret & (VM_FAULT_HWPOISON |
1762                                                    VM_FAULT_HWPOISON_LARGE)) {
1763                                                 if (i)
1764                                                         return i;
1765                                                 else if (gup_flags & FOLL_HWPOISON)
1766                                                         return -EHWPOISON;
1767                                                 else
1768                                                         return -EFAULT;
1769                                         }
1770                                         if (ret & VM_FAULT_SIGBUS)
1771                                                 return i ? i : -EFAULT;
1772                                         BUG();
1773                                 }
1774
1775                                 if (tsk) {
1776                                         if (ret & VM_FAULT_MAJOR)
1777                                                 tsk->maj_flt++;
1778                                         else
1779                                                 tsk->min_flt++;
1780                                 }
1781
1782                                 if (ret & VM_FAULT_RETRY) {
1783                                         if (nonblocking)
1784                                                 *nonblocking = 0;
1785                                         return i;
1786                                 }
1787
1788                                 /*
1789                                  * The VM_FAULT_WRITE bit tells us that
1790                                  * do_wp_page has broken COW when necessary,
1791                                  * even if maybe_mkwrite decided not to set
1792                                  * pte_write. We can thus safely do subsequent
1793                                  * page lookups as if they were reads. But only
1794                                  * do so when looping for pte_write is futile:
1795                                  * in some cases userspace may also be wanting
1796                                  * to write to the gotten user page, which a
1797                                  * read fault here might prevent (a readonly
1798                                  * page might get reCOWed by userspace write).
1799                                  */
1800                                 if ((ret & VM_FAULT_WRITE) &&
1801                                     !(vma->vm_flags & VM_WRITE))
1802                                         foll_flags &= ~FOLL_WRITE;
1803
1804                                 cond_resched();
1805                         }
1806                         if (IS_ERR(page))
1807                                 return i ? i : PTR_ERR(page);
1808                         if (pages) {
1809                                 pages[i] = page;
1810
1811                                 flush_anon_page(vma, page, start);
1812                                 flush_dcache_page(page);
1813                         }
1814 next_page:
1815                         if (vmas)
1816                                 vmas[i] = vma;
1817                         i++;
1818                         start += PAGE_SIZE;
1819                         nr_pages--;
1820                 } while (nr_pages && start < vma->vm_end);
1821         } while (nr_pages);
1822         return i;
1823 }
1824 EXPORT_SYMBOL(__get_user_pages);
1825
1826 /*
1827  * fixup_user_fault() - manually resolve a user page fault
1828  * @tsk:        the task_struct to use for page fault accounting, or
1829  *              NULL if faults are not to be recorded.
1830  * @mm:         mm_struct of target mm
1831  * @address:    user address
1832  * @fault_flags:flags to pass down to handle_mm_fault()
1833  *
1834  * This is meant to be called in the specific scenario where for locking reasons
1835  * we try to access user memory in atomic context (within a pagefault_disable()
1836  * section), this returns -EFAULT, and we want to resolve the user fault before
1837  * trying again.
1838  *
1839  * Typically this is meant to be used by the futex code.
1840  *
1841  * The main difference with get_user_pages() is that this function will
1842  * unconditionally call handle_mm_fault() which will in turn perform all the
1843  * necessary SW fixup of the dirty and young bits in the PTE, while
1844  * handle_mm_fault() only guarantees to update these in the struct page.
1845  *
1846  * This is important for some architectures where those bits also gate the
1847  * access permission to the page because they are maintained in software.  On
1848  * such architectures, gup() will not be enough to make a subsequent access
1849  * succeed.
1850  *
1851  * This should be called with the mm_sem held for read.
1852  */
1853 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1854                      unsigned long address, unsigned int fault_flags)
1855 {
1856         struct vm_area_struct *vma;
1857         vm_flags_t vm_flags;
1858         int ret;
1859
1860         vma = find_extend_vma(mm, address);
1861         if (!vma || address < vma->vm_start)
1862                 return -EFAULT;
1863
1864         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1865         if (!(vm_flags & vma->vm_flags))
1866                 return -EFAULT;
1867
1868         ret = handle_mm_fault(mm, vma, address, fault_flags);
1869         if (ret & VM_FAULT_ERROR) {
1870                 if (ret & VM_FAULT_OOM)
1871                         return -ENOMEM;
1872                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1873                         return -EHWPOISON;
1874                 if (ret & VM_FAULT_SIGBUS)
1875                         return -EFAULT;
1876                 BUG();
1877         }
1878         if (tsk) {
1879                 if (ret & VM_FAULT_MAJOR)
1880                         tsk->maj_flt++;
1881                 else
1882                         tsk->min_flt++;
1883         }
1884         return 0;
1885 }
1886
1887 /*
1888  * get_user_pages() - pin user pages in memory
1889  * @tsk:        the task_struct to use for page fault accounting, or
1890  *              NULL if faults are not to be recorded.
1891  * @mm:         mm_struct of target mm
1892  * @start:      starting user address
1893  * @nr_pages:   number of pages from start to pin
1894  * @write:      whether pages will be written to by the caller
1895  * @force:      whether to force write access even if user mapping is
1896  *              readonly. This will result in the page being COWed even
1897  *              in MAP_SHARED mappings. You do not want this.
1898  * @pages:      array that receives pointers to the pages pinned.
1899  *              Should be at least nr_pages long. Or NULL, if caller
1900  *              only intends to ensure the pages are faulted in.
1901  * @vmas:       array of pointers to vmas corresponding to each page.
1902  *              Or NULL if the caller does not require them.
1903  *
1904  * Returns number of pages pinned. This may be fewer than the number
1905  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1906  * were pinned, returns -errno. Each page returned must be released
1907  * with a put_page() call when it is finished with. vmas will only
1908  * remain valid while mmap_sem is held.
1909  *
1910  * Must be called with mmap_sem held for read or write.
1911  *
1912  * get_user_pages walks a process's page tables and takes a reference to
1913  * each struct page that each user address corresponds to at a given
1914  * instant. That is, it takes the page that would be accessed if a user
1915  * thread accesses the given user virtual address at that instant.
1916  *
1917  * This does not guarantee that the page exists in the user mappings when
1918  * get_user_pages returns, and there may even be a completely different
1919  * page there in some cases (eg. if mmapped pagecache has been invalidated
1920  * and subsequently re faulted). However it does guarantee that the page
1921  * won't be freed completely. And mostly callers simply care that the page
1922  * contains data that was valid *at some point in time*. Typically, an IO
1923  * or similar operation cannot guarantee anything stronger anyway because
1924  * locks can't be held over the syscall boundary.
1925  *
1926  * If write=0, the page must not be written to. If the page is written to,
1927  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1928  * after the page is finished with, and before put_page is called.
1929  *
1930  * get_user_pages is typically used for fewer-copy IO operations, to get a
1931  * handle on the memory by some means other than accesses via the user virtual
1932  * addresses. The pages may be submitted for DMA to devices or accessed via
1933  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1934  * use the correct cache flushing APIs.
1935  *
1936  * See also get_user_pages_fast, for performance critical applications.
1937  */
1938 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1939                 unsigned long start, int nr_pages, int write, int force,
1940                 struct page **pages, struct vm_area_struct **vmas)
1941 {
1942         int flags = FOLL_TOUCH;
1943
1944         if (pages)
1945                 flags |= FOLL_GET;
1946         if (write)
1947                 flags |= FOLL_WRITE;
1948         if (force)
1949                 flags |= FOLL_FORCE;
1950
1951         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1952                                 NULL);
1953 }
1954 EXPORT_SYMBOL(get_user_pages);
1955
1956 /**
1957  * get_dump_page() - pin user page in memory while writing it to core dump
1958  * @addr: user address
1959  *
1960  * Returns struct page pointer of user page pinned for dump,
1961  * to be freed afterwards by page_cache_release() or put_page().
1962  *
1963  * Returns NULL on any kind of failure - a hole must then be inserted into
1964  * the corefile, to preserve alignment with its headers; and also returns
1965  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1966  * allowing a hole to be left in the corefile to save diskspace.
1967  *
1968  * Called without mmap_sem, but after all other threads have been killed.
1969  */
1970 #ifdef CONFIG_ELF_CORE
1971 struct page *get_dump_page(unsigned long addr)
1972 {
1973         struct vm_area_struct *vma;
1974         struct page *page;
1975
1976         if (__get_user_pages(current, current->mm, addr, 1,
1977                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1978                              NULL) < 1)
1979                 return NULL;
1980         flush_cache_page(vma, addr, page_to_pfn(page));
1981         return page;
1982 }
1983 #endif /* CONFIG_ELF_CORE */
1984
1985 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1986                         spinlock_t **ptl)
1987 {
1988         pgd_t * pgd = pgd_offset(mm, addr);
1989         pud_t * pud = pud_alloc(mm, pgd, addr);
1990         if (pud) {
1991                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1992                 if (pmd) {
1993                         VM_BUG_ON(pmd_trans_huge(*pmd));
1994                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1995                 }
1996         }
1997         return NULL;
1998 }
1999
2000 /*
2001  * This is the old fallback for page remapping.
2002  *
2003  * For historical reasons, it only allows reserved pages. Only
2004  * old drivers should use this, and they needed to mark their
2005  * pages reserved for the old functions anyway.
2006  */
2007 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2008                         struct page *page, pgprot_t prot)
2009 {
2010         struct mm_struct *mm = vma->vm_mm;
2011         int retval;
2012         pte_t *pte;
2013         spinlock_t *ptl;
2014
2015         retval = -EINVAL;
2016         if (PageAnon(page))
2017                 goto out;
2018         retval = -ENOMEM;
2019         flush_dcache_page(page);
2020         pte = get_locked_pte(mm, addr, &ptl);
2021         if (!pte)
2022                 goto out;
2023         retval = -EBUSY;
2024         if (!pte_none(*pte))
2025                 goto out_unlock;
2026
2027         /* Ok, finally just insert the thing.. */
2028         get_page(page);
2029         inc_mm_counter_fast(mm, MM_FILEPAGES);
2030         page_add_file_rmap(page);
2031         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2032
2033         retval = 0;
2034         pte_unmap_unlock(pte, ptl);
2035         return retval;
2036 out_unlock:
2037         pte_unmap_unlock(pte, ptl);
2038 out:
2039         return retval;
2040 }
2041
2042 /**
2043  * vm_insert_page - insert single page into user vma
2044  * @vma: user vma to map to
2045  * @addr: target user address of this page
2046  * @page: source kernel page
2047  *
2048  * This allows drivers to insert individual pages they've allocated
2049  * into a user vma.
2050  *
2051  * The page has to be a nice clean _individual_ kernel allocation.
2052  * If you allocate a compound page, you need to have marked it as
2053  * such (__GFP_COMP), or manually just split the page up yourself
2054  * (see split_page()).
2055  *
2056  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2057  * took an arbitrary page protection parameter. This doesn't allow
2058  * that. Your vma protection will have to be set up correctly, which
2059  * means that if you want a shared writable mapping, you'd better
2060  * ask for a shared writable mapping!
2061  *
2062  * The page does not need to be reserved.
2063  */
2064 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2065                         struct page *page)
2066 {
2067         if (addr < vma->vm_start || addr >= vma->vm_end)
2068                 return -EFAULT;
2069         if (!page_count(page))
2070                 return -EINVAL;
2071         vma->vm_flags |= VM_INSERTPAGE;
2072         return insert_page(vma, addr, page, vma->vm_page_prot);
2073 }
2074 EXPORT_SYMBOL(vm_insert_page);
2075
2076 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2077                         unsigned long pfn, pgprot_t prot)
2078 {
2079         struct mm_struct *mm = vma->vm_mm;
2080         int retval;
2081         pte_t *pte, entry;
2082         spinlock_t *ptl;
2083
2084         retval = -ENOMEM;
2085         pte = get_locked_pte(mm, addr, &ptl);
2086         if (!pte)
2087                 goto out;
2088         retval = -EBUSY;
2089         if (!pte_none(*pte))
2090                 goto out_unlock;
2091
2092         /* Ok, finally just insert the thing.. */
2093         entry = pte_mkspecial(pfn_pte(pfn, prot));
2094         set_pte_at(mm, addr, pte, entry);
2095         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2096
2097         retval = 0;
2098 out_unlock:
2099         pte_unmap_unlock(pte, ptl);
2100 out:
2101         return retval;
2102 }
2103
2104 /**
2105  * vm_insert_pfn - insert single pfn into user vma
2106  * @vma: user vma to map to
2107  * @addr: target user address of this page
2108  * @pfn: source kernel pfn
2109  *
2110  * Similar to vm_inert_page, this allows drivers to insert individual pages
2111  * they've allocated into a user vma. Same comments apply.
2112  *
2113  * This function should only be called from a vm_ops->fault handler, and
2114  * in that case the handler should return NULL.
2115  *
2116  * vma cannot be a COW mapping.
2117  *
2118  * As this is called only for pages that do not currently exist, we
2119  * do not need to flush old virtual caches or the TLB.
2120  */
2121 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2122                         unsigned long pfn)
2123 {
2124         int ret;
2125         pgprot_t pgprot = vma->vm_page_prot;
2126         /*
2127          * Technically, architectures with pte_special can avoid all these
2128          * restrictions (same for remap_pfn_range).  However we would like
2129          * consistency in testing and feature parity among all, so we should
2130          * try to keep these invariants in place for everybody.
2131          */
2132         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2133         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2134                                                 (VM_PFNMAP|VM_MIXEDMAP));
2135         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2136         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2137
2138         if (addr < vma->vm_start || addr >= vma->vm_end)
2139                 return -EFAULT;
2140         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2141                 return -EINVAL;
2142
2143         ret = insert_pfn(vma, addr, pfn, pgprot);
2144
2145         if (ret)
2146                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2147
2148         return ret;
2149 }
2150 EXPORT_SYMBOL(vm_insert_pfn);
2151
2152 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153                         unsigned long pfn)
2154 {
2155         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2156
2157         if (addr < vma->vm_start || addr >= vma->vm_end)
2158                 return -EFAULT;
2159
2160         /*
2161          * If we don't have pte special, then we have to use the pfn_valid()
2162          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2163          * refcount the page if pfn_valid is true (hence insert_page rather
2164          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2165          * without pte special, it would there be refcounted as a normal page.
2166          */
2167         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2168                 struct page *page;
2169
2170                 page = pfn_to_page(pfn);
2171                 return insert_page(vma, addr, page, vma->vm_page_prot);
2172         }
2173         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2174 }
2175 EXPORT_SYMBOL(vm_insert_mixed);
2176
2177 /*
2178  * maps a range of physical memory into the requested pages. the old
2179  * mappings are removed. any references to nonexistent pages results
2180  * in null mappings (currently treated as "copy-on-access")
2181  */
2182 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2183                         unsigned long addr, unsigned long end,
2184                         unsigned long pfn, pgprot_t prot)
2185 {
2186         pte_t *pte;
2187         spinlock_t *ptl;
2188
2189         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2190         if (!pte)
2191                 return -ENOMEM;
2192         arch_enter_lazy_mmu_mode();
2193         do {
2194                 BUG_ON(!pte_none(*pte));
2195                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2196                 pfn++;
2197         } while (pte++, addr += PAGE_SIZE, addr != end);
2198         arch_leave_lazy_mmu_mode();
2199         pte_unmap_unlock(pte - 1, ptl);
2200         return 0;
2201 }
2202
2203 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2204                         unsigned long addr, unsigned long end,
2205                         unsigned long pfn, pgprot_t prot)
2206 {
2207         pmd_t *pmd;
2208         unsigned long next;
2209
2210         pfn -= addr >> PAGE_SHIFT;
2211         pmd = pmd_alloc(mm, pud, addr);
2212         if (!pmd)
2213                 return -ENOMEM;
2214         VM_BUG_ON(pmd_trans_huge(*pmd));
2215         do {
2216                 next = pmd_addr_end(addr, end);
2217                 if (remap_pte_range(mm, pmd, addr, next,
2218                                 pfn + (addr >> PAGE_SHIFT), prot))
2219                         return -ENOMEM;
2220         } while (pmd++, addr = next, addr != end);
2221         return 0;
2222 }
2223
2224 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2225                         unsigned long addr, unsigned long end,
2226                         unsigned long pfn, pgprot_t prot)
2227 {
2228         pud_t *pud;
2229         unsigned long next;
2230
2231         pfn -= addr >> PAGE_SHIFT;
2232         pud = pud_alloc(mm, pgd, addr);
2233         if (!pud)
2234                 return -ENOMEM;
2235         do {
2236                 next = pud_addr_end(addr, end);
2237                 if (remap_pmd_range(mm, pud, addr, next,
2238                                 pfn + (addr >> PAGE_SHIFT), prot))
2239                         return -ENOMEM;
2240         } while (pud++, addr = next, addr != end);
2241         return 0;
2242 }
2243
2244 /**
2245  * remap_pfn_range - remap kernel memory to userspace
2246  * @vma: user vma to map to
2247  * @addr: target user address to start at
2248  * @pfn: physical address of kernel memory
2249  * @size: size of map area
2250  * @prot: page protection flags for this mapping
2251  *
2252  *  Note: this is only safe if the mm semaphore is held when called.
2253  */
2254 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2255                     unsigned long pfn, unsigned long size, pgprot_t prot)
2256 {
2257         pgd_t *pgd;
2258         unsigned long next;
2259         unsigned long end = addr + PAGE_ALIGN(size);
2260         struct mm_struct *mm = vma->vm_mm;
2261         int err;
2262
2263         /*
2264          * Physically remapped pages are special. Tell the
2265          * rest of the world about it:
2266          *   VM_IO tells people not to look at these pages
2267          *      (accesses can have side effects).
2268          *   VM_RESERVED is specified all over the place, because
2269          *      in 2.4 it kept swapout's vma scan off this vma; but
2270          *      in 2.6 the LRU scan won't even find its pages, so this
2271          *      flag means no more than count its pages in reserved_vm,
2272          *      and omit it from core dump, even when VM_IO turned off.
2273          *   VM_PFNMAP tells the core MM that the base pages are just
2274          *      raw PFN mappings, and do not have a "struct page" associated
2275          *      with them.
2276          *
2277          * There's a horrible special case to handle copy-on-write
2278          * behaviour that some programs depend on. We mark the "original"
2279          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2280          */
2281         if (addr == vma->vm_start && end == vma->vm_end) {
2282                 vma->vm_pgoff = pfn;
2283                 vma->vm_flags |= VM_PFN_AT_MMAP;
2284         } else if (is_cow_mapping(vma->vm_flags))
2285                 return -EINVAL;
2286
2287         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2288
2289         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2290         if (err) {
2291                 /*
2292                  * To indicate that track_pfn related cleanup is not
2293                  * needed from higher level routine calling unmap_vmas
2294                  */
2295                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2296                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2297                 return -EINVAL;
2298         }
2299
2300         BUG_ON(addr >= end);
2301         pfn -= addr >> PAGE_SHIFT;
2302         pgd = pgd_offset(mm, addr);
2303         flush_cache_range(vma, addr, end);
2304         do {
2305                 next = pgd_addr_end(addr, end);
2306                 err = remap_pud_range(mm, pgd, addr, next,
2307                                 pfn + (addr >> PAGE_SHIFT), prot);
2308                 if (err)
2309                         break;
2310         } while (pgd++, addr = next, addr != end);
2311
2312         if (err)
2313                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2314
2315         return err;
2316 }
2317 EXPORT_SYMBOL(remap_pfn_range);
2318
2319 /**
2320  * vm_iomap_memory - remap memory to userspace
2321  * @vma: user vma to map to
2322  * @start: start of area
2323  * @len: size of area
2324  *
2325  * This is a simplified io_remap_pfn_range() for common driver use. The
2326  * driver just needs to give us the physical memory range to be mapped,
2327  * we'll figure out the rest from the vma information.
2328  *
2329  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2330  * whatever write-combining details or similar.
2331  */
2332 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2333 {
2334         unsigned long vm_len, pfn, pages;
2335
2336         /* Check that the physical memory area passed in looks valid */
2337         if (start + len < start)
2338                 return -EINVAL;
2339         /*
2340          * You *really* shouldn't map things that aren't page-aligned,
2341          * but we've historically allowed it because IO memory might
2342          * just have smaller alignment.
2343          */
2344         len += start & ~PAGE_MASK;
2345         pfn = start >> PAGE_SHIFT;
2346         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2347         if (pfn + pages < pfn)
2348                 return -EINVAL;
2349
2350         /* We start the mapping 'vm_pgoff' pages into the area */
2351         if (vma->vm_pgoff > pages)
2352                 return -EINVAL;
2353         pfn += vma->vm_pgoff;
2354         pages -= vma->vm_pgoff;
2355
2356         /* Can we fit all of the mapping? */
2357         vm_len = vma->vm_end - vma->vm_start;
2358         if (vm_len >> PAGE_SHIFT > pages)
2359                 return -EINVAL;
2360
2361         /* Ok, let it rip */
2362         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2363 }
2364 EXPORT_SYMBOL(vm_iomap_memory);
2365
2366 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2367                                      unsigned long addr, unsigned long end,
2368                                      pte_fn_t fn, void *data)
2369 {
2370         pte_t *pte;
2371         int err;
2372         pgtable_t token;
2373         spinlock_t *uninitialized_var(ptl);
2374
2375         pte = (mm == &init_mm) ?
2376                 pte_alloc_kernel(pmd, addr) :
2377                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2378         if (!pte)
2379                 return -ENOMEM;
2380
2381         BUG_ON(pmd_huge(*pmd));
2382
2383         arch_enter_lazy_mmu_mode();
2384
2385         token = pmd_pgtable(*pmd);
2386
2387         do {
2388                 err = fn(pte++, token, addr, data);
2389                 if (err)
2390                         break;
2391         } while (addr += PAGE_SIZE, addr != end);
2392
2393         arch_leave_lazy_mmu_mode();
2394
2395         if (mm != &init_mm)
2396                 pte_unmap_unlock(pte-1, ptl);
2397         return err;
2398 }
2399
2400 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2401                                      unsigned long addr, unsigned long end,
2402                                      pte_fn_t fn, void *data)
2403 {
2404         pmd_t *pmd;
2405         unsigned long next;
2406         int err;
2407
2408         BUG_ON(pud_huge(*pud));
2409
2410         pmd = pmd_alloc(mm, pud, addr);
2411         if (!pmd)
2412                 return -ENOMEM;
2413         do {
2414                 next = pmd_addr_end(addr, end);
2415                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2416                 if (err)
2417                         break;
2418         } while (pmd++, addr = next, addr != end);
2419         return err;
2420 }
2421
2422 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2423                                      unsigned long addr, unsigned long end,
2424                                      pte_fn_t fn, void *data)
2425 {
2426         pud_t *pud;
2427         unsigned long next;
2428         int err;
2429
2430         pud = pud_alloc(mm, pgd, addr);
2431         if (!pud)
2432                 return -ENOMEM;
2433         do {
2434                 next = pud_addr_end(addr, end);
2435                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2436                 if (err)
2437                         break;
2438         } while (pud++, addr = next, addr != end);
2439         return err;
2440 }
2441
2442 /*
2443  * Scan a region of virtual memory, filling in page tables as necessary
2444  * and calling a provided function on each leaf page table.
2445  */
2446 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2447                         unsigned long size, pte_fn_t fn, void *data)
2448 {
2449         pgd_t *pgd;
2450         unsigned long next;
2451         unsigned long end = addr + size;
2452         int err;
2453
2454         BUG_ON(addr >= end);
2455         pgd = pgd_offset(mm, addr);
2456         do {
2457                 next = pgd_addr_end(addr, end);
2458                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2459                 if (err)
2460                         break;
2461         } while (pgd++, addr = next, addr != end);
2462
2463         return err;
2464 }
2465 EXPORT_SYMBOL_GPL(apply_to_page_range);
2466
2467 /*
2468  * handle_pte_fault chooses page fault handler according to an entry
2469  * which was read non-atomically.  Before making any commitment, on
2470  * those architectures or configurations (e.g. i386 with PAE) which
2471  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2472  * must check under lock before unmapping the pte and proceeding
2473  * (but do_wp_page is only called after already making such a check;
2474  * and do_anonymous_page can safely check later on).
2475  */
2476 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2477                                 pte_t *page_table, pte_t orig_pte)
2478 {
2479         int same = 1;
2480 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2481         if (sizeof(pte_t) > sizeof(unsigned long)) {
2482                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2483                 spin_lock(ptl);
2484                 same = pte_same(*page_table, orig_pte);
2485                 spin_unlock(ptl);
2486         }
2487 #endif
2488         pte_unmap(page_table);
2489         return same;
2490 }
2491
2492 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2493 {
2494         /*
2495          * If the source page was a PFN mapping, we don't have
2496          * a "struct page" for it. We do a best-effort copy by
2497          * just copying from the original user address. If that
2498          * fails, we just zero-fill it. Live with it.
2499          */
2500         if (unlikely(!src)) {
2501                 void *kaddr = kmap_atomic(dst, KM_USER0);
2502                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2503
2504                 /*
2505                  * This really shouldn't fail, because the page is there
2506                  * in the page tables. But it might just be unreadable,
2507                  * in which case we just give up and fill the result with
2508                  * zeroes.
2509                  */
2510                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2511                         clear_page(kaddr);
2512                 kunmap_atomic(kaddr, KM_USER0);
2513                 flush_dcache_page(dst);
2514         } else
2515                 copy_user_highpage(dst, src, va, vma);
2516 }
2517
2518 /*
2519  * This routine handles present pages, when users try to write
2520  * to a shared page. It is done by copying the page to a new address
2521  * and decrementing the shared-page counter for the old page.
2522  *
2523  * Note that this routine assumes that the protection checks have been
2524  * done by the caller (the low-level page fault routine in most cases).
2525  * Thus we can safely just mark it writable once we've done any necessary
2526  * COW.
2527  *
2528  * We also mark the page dirty at this point even though the page will
2529  * change only once the write actually happens. This avoids a few races,
2530  * and potentially makes it more efficient.
2531  *
2532  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2533  * but allow concurrent faults), with pte both mapped and locked.
2534  * We return with mmap_sem still held, but pte unmapped and unlocked.
2535  */
2536 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2537                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2538                 spinlock_t *ptl, pte_t orig_pte)
2539         __releases(ptl)
2540 {
2541         struct page *old_page, *new_page;
2542         pte_t entry;
2543         int ret = 0;
2544         int page_mkwrite = 0;
2545         struct page *dirty_page = NULL;
2546
2547         old_page = vm_normal_page(vma, address, orig_pte);
2548         if (!old_page) {
2549                 /*
2550                  * VM_MIXEDMAP !pfn_valid() case
2551                  *
2552                  * We should not cow pages in a shared writeable mapping.
2553                  * Just mark the pages writable as we can't do any dirty
2554                  * accounting on raw pfn maps.
2555                  */
2556                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557                                      (VM_WRITE|VM_SHARED))
2558                         goto reuse;
2559                 goto gotten;
2560         }
2561
2562         /*
2563          * Take out anonymous pages first, anonymous shared vmas are
2564          * not dirty accountable.
2565          */
2566         if (PageAnon(old_page) && !PageKsm(old_page)) {
2567                 if (!trylock_page(old_page)) {
2568                         page_cache_get(old_page);
2569                         pte_unmap_unlock(page_table, ptl);
2570                         lock_page(old_page);
2571                         page_table = pte_offset_map_lock(mm, pmd, address,
2572                                                          &ptl);
2573                         if (!pte_same(*page_table, orig_pte)) {
2574                                 unlock_page(old_page);
2575                                 goto unlock;
2576                         }
2577                         page_cache_release(old_page);
2578                 }
2579                 if (reuse_swap_page(old_page)) {
2580                         /*
2581                          * The page is all ours.  Move it to our anon_vma so
2582                          * the rmap code will not search our parent or siblings.
2583                          * Protected against the rmap code by the page lock.
2584                          */
2585                         page_move_anon_rmap(old_page, vma, address);
2586                         unlock_page(old_page);
2587                         goto reuse;
2588                 }
2589                 unlock_page(old_page);
2590         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2591                                         (VM_WRITE|VM_SHARED))) {
2592                 /*
2593                  * Only catch write-faults on shared writable pages,
2594                  * read-only shared pages can get COWed by
2595                  * get_user_pages(.write=1, .force=1).
2596                  */
2597                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2598                         struct vm_fault vmf;
2599                         int tmp;
2600
2601                         vmf.virtual_address = (void __user *)(address &
2602                                                                 PAGE_MASK);
2603                         vmf.pgoff = old_page->index;
2604                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2605                         vmf.page = old_page;
2606
2607                         /*
2608                          * Notify the address space that the page is about to
2609                          * become writable so that it can prohibit this or wait
2610                          * for the page to get into an appropriate state.
2611                          *
2612                          * We do this without the lock held, so that it can
2613                          * sleep if it needs to.
2614                          */
2615                         page_cache_get(old_page);
2616                         pte_unmap_unlock(page_table, ptl);
2617
2618                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2619                         if (unlikely(tmp &
2620                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2621                                 ret = tmp;
2622                                 goto unwritable_page;
2623                         }
2624                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2625                                 lock_page(old_page);
2626                                 if (!old_page->mapping) {
2627                                         ret = 0; /* retry the fault */
2628                                         unlock_page(old_page);
2629                                         goto unwritable_page;
2630                                 }
2631                         } else
2632                                 VM_BUG_ON(!PageLocked(old_page));
2633
2634                         /*
2635                          * Since we dropped the lock we need to revalidate
2636                          * the PTE as someone else may have changed it.  If
2637                          * they did, we just return, as we can count on the
2638                          * MMU to tell us if they didn't also make it writable.
2639                          */
2640                         page_table = pte_offset_map_lock(mm, pmd, address,
2641                                                          &ptl);
2642                         if (!pte_same(*page_table, orig_pte)) {
2643                                 unlock_page(old_page);
2644                                 goto unlock;
2645                         }
2646
2647                         page_mkwrite = 1;
2648                 }
2649                 dirty_page = old_page;
2650                 get_page(dirty_page);
2651
2652 reuse:
2653                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2654                 entry = pte_mkyoung(orig_pte);
2655                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2656                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2657                         update_mmu_cache(vma, address, page_table);
2658                 pte_unmap_unlock(page_table, ptl);
2659                 ret |= VM_FAULT_WRITE;
2660
2661                 if (!dirty_page)
2662                         return ret;
2663
2664                 if (!page_mkwrite) {
2665                         struct address_space *mapping;
2666                         int dirtied;
2667
2668                         lock_page(dirty_page);
2669                         dirtied = set_page_dirty(dirty_page);
2670                         VM_BUG_ON(PageAnon(dirty_page));
2671                         mapping = dirty_page->mapping;
2672                         unlock_page(dirty_page);
2673
2674                         if (dirtied && mapping) {
2675                                 /*
2676                                  * Some device drivers do not set page.mapping
2677                                  * but still dirty their pages
2678                                  */
2679                                 balance_dirty_pages_ratelimited(mapping);
2680                         }
2681
2682                 }
2683                 put_page(dirty_page);
2684                 if (page_mkwrite) {
2685                         struct address_space *mapping = dirty_page->mapping;
2686
2687                         set_page_dirty(dirty_page);
2688                         unlock_page(dirty_page);
2689                         page_cache_release(dirty_page);
2690                         if (mapping)    {
2691                                 /*
2692                                  * Some device drivers do not set page.mapping
2693                                  * but still dirty their pages
2694                                  */
2695                                 balance_dirty_pages_ratelimited(mapping);
2696                         }
2697                 }
2698
2699                 /* file_update_time outside page_lock */
2700                 if (vma->vm_file)
2701                         file_update_time(vma->vm_file);
2702
2703                 return ret;
2704         }
2705
2706         /*
2707          * Ok, we need to copy. Oh, well..
2708          */
2709         page_cache_get(old_page);
2710 gotten:
2711         pte_unmap_unlock(page_table, ptl);
2712
2713         if (unlikely(anon_vma_prepare(vma)))
2714                 goto oom;
2715
2716         if (is_zero_pfn(pte_pfn(orig_pte))) {
2717                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2718                 if (!new_page)
2719                         goto oom;
2720         } else {
2721                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2722                 if (!new_page)
2723                         goto oom;
2724                 cow_user_page(new_page, old_page, address, vma);
2725         }
2726         __SetPageUptodate(new_page);
2727
2728         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2729                 goto oom_free_new;
2730
2731         /*
2732          * Re-check the pte - we dropped the lock
2733          */
2734         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2735         if (likely(pte_same(*page_table, orig_pte))) {
2736                 if (old_page) {
2737                         if (!PageAnon(old_page)) {
2738                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2739                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2740                         }
2741                 } else
2742                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2743                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2744                 entry = mk_pte(new_page, vma->vm_page_prot);
2745                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2746                 /*
2747                  * Clear the pte entry and flush it first, before updating the
2748                  * pte with the new entry. This will avoid a race condition
2749                  * seen in the presence of one thread doing SMC and another
2750                  * thread doing COW.
2751                  */
2752                 ptep_clear_flush(vma, address, page_table);
2753                 page_add_new_anon_rmap(new_page, vma, address);
2754                 /*
2755                  * We call the notify macro here because, when using secondary
2756                  * mmu page tables (such as kvm shadow page tables), we want the
2757                  * new page to be mapped directly into the secondary page table.
2758                  */
2759                 set_pte_at_notify(mm, address, page_table, entry);
2760                 update_mmu_cache(vma, address, page_table);
2761                 if (old_page) {
2762                         /*
2763                          * Only after switching the pte to the new page may
2764                          * we remove the mapcount here. Otherwise another
2765                          * process may come and find the rmap count decremented
2766                          * before the pte is switched to the new page, and
2767                          * "reuse" the old page writing into it while our pte
2768                          * here still points into it and can be read by other
2769                          * threads.
2770                          *
2771                          * The critical issue is to order this
2772                          * page_remove_rmap with the ptp_clear_flush above.
2773                          * Those stores are ordered by (if nothing else,)
2774                          * the barrier present in the atomic_add_negative
2775                          * in page_remove_rmap.
2776                          *
2777                          * Then the TLB flush in ptep_clear_flush ensures that
2778                          * no process can access the old page before the
2779                          * decremented mapcount is visible. And the old page
2780                          * cannot be reused until after the decremented
2781                          * mapcount is visible. So transitively, TLBs to
2782                          * old page will be flushed before it can be reused.
2783                          */
2784                         page_remove_rmap(old_page);
2785                 }
2786
2787                 /* Free the old page.. */
2788                 new_page = old_page;
2789                 ret |= VM_FAULT_WRITE;
2790         } else
2791                 mem_cgroup_uncharge_page(new_page);
2792
2793         if (new_page)
2794                 page_cache_release(new_page);
2795 unlock:
2796         pte_unmap_unlock(page_table, ptl);
2797         if (old_page) {
2798                 /*
2799                  * Don't let another task, with possibly unlocked vma,
2800                  * keep the mlocked page.
2801                  */
2802                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2803                         lock_page(old_page);    /* LRU manipulation */
2804                         munlock_vma_page(old_page);
2805                         unlock_page(old_page);
2806                 }
2807                 page_cache_release(old_page);
2808         }
2809         return ret;
2810 oom_free_new:
2811         page_cache_release(new_page);
2812 oom:
2813         if (old_page) {
2814                 if (page_mkwrite) {
2815                         unlock_page(old_page);
2816                         page_cache_release(old_page);
2817                 }
2818                 page_cache_release(old_page);
2819         }
2820         return VM_FAULT_OOM;
2821
2822 unwritable_page:
2823         page_cache_release(old_page);
2824         return ret;
2825 }
2826
2827 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2828                 unsigned long start_addr, unsigned long end_addr,
2829                 struct zap_details *details)
2830 {
2831         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2832 }
2833
2834 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2835                                             struct zap_details *details)
2836 {
2837         struct vm_area_struct *vma;
2838         struct prio_tree_iter iter;
2839         pgoff_t vba, vea, zba, zea;
2840
2841         vma_prio_tree_foreach(vma, &iter, root,
2842                         details->first_index, details->last_index) {
2843
2844                 vba = vma->vm_pgoff;
2845                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2846                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2847                 zba = details->first_index;
2848                 if (zba < vba)
2849                         zba = vba;
2850                 zea = details->last_index;
2851                 if (zea > vea)
2852                         zea = vea;
2853
2854                 unmap_mapping_range_vma(vma,
2855                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2856                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2857                                 details);
2858         }
2859 }
2860
2861 static inline void unmap_mapping_range_list(struct list_head *head,
2862                                             struct zap_details *details)
2863 {
2864         struct vm_area_struct *vma;
2865
2866         /*
2867          * In nonlinear VMAs there is no correspondence between virtual address
2868          * offset and file offset.  So we must perform an exhaustive search
2869          * across *all* the pages in each nonlinear VMA, not just the pages
2870          * whose virtual address lies outside the file truncation point.
2871          */
2872         list_for_each_entry(vma, head, shared.vm_set.list) {
2873                 details->nonlinear_vma = vma;
2874                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2875         }
2876 }
2877
2878 /**
2879  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2880  * @mapping: the address space containing mmaps to be unmapped.
2881  * @holebegin: byte in first page to unmap, relative to the start of
2882  * the underlying file.  This will be rounded down to a PAGE_SIZE
2883  * boundary.  Note that this is different from truncate_pagecache(), which
2884  * must keep the partial page.  In contrast, we must get rid of
2885  * partial pages.
2886  * @holelen: size of prospective hole in bytes.  This will be rounded
2887  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2888  * end of the file.
2889  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2890  * but 0 when invalidating pagecache, don't throw away private data.
2891  */
2892 void unmap_mapping_range(struct address_space *mapping,
2893                 loff_t const holebegin, loff_t const holelen, int even_cows)
2894 {
2895         struct zap_details details;
2896         pgoff_t hba = holebegin >> PAGE_SHIFT;
2897         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898
2899         /* Check for overflow. */
2900         if (sizeof(holelen) > sizeof(hlen)) {
2901                 long long holeend =
2902                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903                 if (holeend & ~(long long)ULONG_MAX)
2904                         hlen = ULONG_MAX - hba + 1;
2905         }
2906
2907         details.check_mapping = even_cows? NULL: mapping;
2908         details.nonlinear_vma = NULL;
2909         details.first_index = hba;
2910         details.last_index = hba + hlen - 1;
2911         if (details.last_index < details.first_index)
2912                 details.last_index = ULONG_MAX;
2913
2914
2915         mutex_lock(&mapping->i_mmap_mutex);
2916         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2917                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2918         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2919                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2920         mutex_unlock(&mapping->i_mmap_mutex);
2921 }
2922 EXPORT_SYMBOL(unmap_mapping_range);
2923
2924 /*
2925  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2926  * but allow concurrent faults), and pte mapped but not yet locked.
2927  * We return with mmap_sem still held, but pte unmapped and unlocked.
2928  */
2929 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2931                 unsigned int flags, pte_t orig_pte)
2932 {
2933         spinlock_t *ptl;
2934         struct page *page, *swapcache = NULL;
2935         swp_entry_t entry;
2936         pte_t pte;
2937         int locked;
2938         struct mem_cgroup *ptr;
2939         int exclusive = 0;
2940         int ret = 0;
2941
2942         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2943                 goto out;
2944
2945         entry = pte_to_swp_entry(orig_pte);
2946         if (unlikely(non_swap_entry(entry))) {
2947                 if (is_migration_entry(entry)) {
2948                         migration_entry_wait(mm, pmd, address);
2949                 } else if (is_hwpoison_entry(entry)) {
2950                         ret = VM_FAULT_HWPOISON;
2951                 } else {
2952                         print_bad_pte(vma, address, orig_pte, NULL);
2953                         ret = VM_FAULT_SIGBUS;
2954                 }
2955                 goto out;
2956         }
2957         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2958         page = lookup_swap_cache(entry);
2959         if (!page) {
2960                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2961                 page = swapin_readahead(entry,
2962                                         GFP_HIGHUSER_MOVABLE, vma, address);
2963                 if (!page) {
2964                         /*
2965                          * Back out if somebody else faulted in this pte
2966                          * while we released the pte lock.
2967                          */
2968                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2969                         if (likely(pte_same(*page_table, orig_pte)))
2970                                 ret = VM_FAULT_OOM;
2971                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972                         goto unlock;
2973                 }
2974
2975                 /* Had to read the page from swap area: Major fault */
2976                 ret = VM_FAULT_MAJOR;
2977                 count_vm_event(PGMAJFAULT);
2978                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2979         } else if (PageHWPoison(page)) {
2980                 /*
2981                  * hwpoisoned dirty swapcache pages are kept for killing
2982                  * owner processes (which may be unknown at hwpoison time)
2983                  */
2984                 ret = VM_FAULT_HWPOISON;
2985                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986                 goto out_release;
2987         }
2988
2989         locked = lock_page_or_retry(page, mm, flags);
2990         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2991         if (!locked) {
2992                 ret |= VM_FAULT_RETRY;
2993                 goto out_release;
2994         }
2995
2996         /*
2997          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2998          * release the swapcache from under us.  The page pin, and pte_same
2999          * test below, are not enough to exclude that.  Even if it is still
3000          * swapcache, we need to check that the page's swap has not changed.
3001          */
3002         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3003                 goto out_page;
3004
3005         if (ksm_might_need_to_copy(page, vma, address)) {
3006                 swapcache = page;
3007                 page = ksm_does_need_to_copy(page, vma, address);
3008
3009                 if (unlikely(!page)) {
3010                         ret = VM_FAULT_OOM;
3011                         page = swapcache;
3012                         swapcache = NULL;
3013                         goto out_page;
3014                 }
3015         }
3016
3017         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3018                 ret = VM_FAULT_OOM;
3019                 goto out_page;
3020         }
3021
3022         /*
3023          * Back out if somebody else already faulted in this pte.
3024          */
3025         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3026         if (unlikely(!pte_same(*page_table, orig_pte)))
3027                 goto out_nomap;
3028
3029         if (unlikely(!PageUptodate(page))) {
3030                 ret = VM_FAULT_SIGBUS;
3031                 goto out_nomap;
3032         }
3033
3034         /*
3035          * The page isn't present yet, go ahead with the fault.
3036          *
3037          * Be careful about the sequence of operations here.
3038          * To get its accounting right, reuse_swap_page() must be called
3039          * while the page is counted on swap but not yet in mapcount i.e.
3040          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3041          * must be called after the swap_free(), or it will never succeed.
3042          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3043          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3044          * in page->private. In this case, a record in swap_cgroup  is silently
3045          * discarded at swap_free().
3046          */
3047
3048         inc_mm_counter_fast(mm, MM_ANONPAGES);
3049         dec_mm_counter_fast(mm, MM_SWAPENTS);
3050         pte = mk_pte(page, vma->vm_page_prot);
3051         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3052                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3053                 flags &= ~FAULT_FLAG_WRITE;
3054                 ret |= VM_FAULT_WRITE;
3055                 exclusive = 1;
3056         }
3057         flush_icache_page(vma, page);
3058         set_pte_at(mm, address, page_table, pte);
3059         do_page_add_anon_rmap(page, vma, address, exclusive);
3060         /* It's better to call commit-charge after rmap is established */
3061         mem_cgroup_commit_charge_swapin(page, ptr);
3062
3063         swap_free(entry);
3064         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3065                 try_to_free_swap(page);
3066         unlock_page(page);
3067         if (swapcache) {
3068                 /*
3069                  * Hold the lock to avoid the swap entry to be reused
3070                  * until we take the PT lock for the pte_same() check
3071                  * (to avoid false positives from pte_same). For
3072                  * further safety release the lock after the swap_free
3073                  * so that the swap count won't change under a
3074                  * parallel locked swapcache.
3075                  */
3076                 unlock_page(swapcache);
3077                 page_cache_release(swapcache);
3078         }
3079
3080         if (flags & FAULT_FLAG_WRITE) {
3081                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3082                 if (ret & VM_FAULT_ERROR)
3083                         ret &= VM_FAULT_ERROR;
3084                 goto out;
3085         }
3086
3087         /* No need to invalidate - it was non-present before */
3088         update_mmu_cache(vma, address, page_table);
3089 unlock:
3090         pte_unmap_unlock(page_table, ptl);
3091 out:
3092         return ret;
3093 out_nomap:
3094         mem_cgroup_cancel_charge_swapin(ptr);
3095         pte_unmap_unlock(page_table, ptl);
3096 out_page:
3097         unlock_page(page);
3098 out_release:
3099         page_cache_release(page);
3100         if (swapcache) {
3101                 unlock_page(swapcache);
3102                 page_cache_release(swapcache);
3103         }
3104         return ret;
3105 }
3106
3107 /*
3108  * This is like a special single-page "expand_{down|up}wards()",
3109  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3110  * doesn't hit another vma.
3111  */
3112 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3113 {
3114         address &= PAGE_MASK;
3115         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3116                 struct vm_area_struct *prev = vma->vm_prev;
3117
3118                 /*
3119                  * Is there a mapping abutting this one below?
3120                  *
3121                  * That's only ok if it's the same stack mapping
3122                  * that has gotten split..
3123                  */
3124                 if (prev && prev->vm_end == address)
3125                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3126
3127                 return expand_downwards(vma, address - PAGE_SIZE);
3128         }
3129         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3130                 struct vm_area_struct *next = vma->vm_next;
3131
3132                 /* As VM_GROWSDOWN but s/below/above/ */
3133                 if (next && next->vm_start == address + PAGE_SIZE)
3134                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3135
3136                 return expand_upwards(vma, address + PAGE_SIZE);
3137         }
3138         return 0;
3139 }
3140
3141 /*
3142  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3143  * but allow concurrent faults), and pte mapped but not yet locked.
3144  * We return with mmap_sem still held, but pte unmapped and unlocked.
3145  */
3146 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3147                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3148                 unsigned int flags)
3149 {
3150         struct page *page;
3151         spinlock_t *ptl;
3152         pte_t entry;
3153
3154         pte_unmap(page_table);
3155
3156         /* Check if we need to add a guard page to the stack */
3157         if (check_stack_guard_page(vma, address) < 0)
3158                 return VM_FAULT_SIGBUS;
3159
3160         /* Use the zero-page for reads */
3161         if (!(flags & FAULT_FLAG_WRITE)) {
3162                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3163                                                 vma->vm_page_prot));
3164                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3165                 if (!pte_none(*page_table))
3166                         goto unlock;
3167                 goto setpte;
3168         }
3169
3170         /* Allocate our own private page. */
3171         if (unlikely(anon_vma_prepare(vma)))
3172                 goto oom;
3173         page = alloc_zeroed_user_highpage_movable(vma, address);
3174         if (!page)
3175                 goto oom;
3176         __SetPageUptodate(page);
3177
3178         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3179                 goto oom_free_page;
3180
3181         entry = mk_pte(page, vma->vm_page_prot);
3182         if (vma->vm_flags & VM_WRITE)
3183                 entry = pte_mkwrite(pte_mkdirty(entry));
3184
3185         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3186         if (!pte_none(*page_table))
3187                 goto release;
3188
3189         inc_mm_counter_fast(mm, MM_ANONPAGES);
3190         page_add_new_anon_rmap(page, vma, address);
3191 setpte:
3192         set_pte_at(mm, address, page_table, entry);
3193
3194         /* No need to invalidate - it was non-present before */
3195         update_mmu_cache(vma, address, page_table);
3196 unlock:
3197         pte_unmap_unlock(page_table, ptl);
3198         return 0;
3199 release:
3200         mem_cgroup_uncharge_page(page);
3201         page_cache_release(page);
3202         goto unlock;
3203 oom_free_page:
3204         page_cache_release(page);
3205 oom:
3206         return VM_FAULT_OOM;
3207 }
3208
3209 /*
3210  * __do_fault() tries to create a new page mapping. It aggressively
3211  * tries to share with existing pages, but makes a separate copy if
3212  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3213  * the next page fault.
3214  *
3215  * As this is called only for pages that do not currently exist, we
3216  * do not need to flush old virtual caches or the TLB.
3217  *
3218  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3219  * but allow concurrent faults), and pte neither mapped nor locked.
3220  * We return with mmap_sem still held, but pte unmapped and unlocked.
3221  */
3222 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3223                 unsigned long address, pmd_t *pmd,
3224                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3225 {
3226         pte_t *page_table;
3227         spinlock_t *ptl;
3228         struct page *page;
3229         struct page *cow_page;
3230         pte_t entry;
3231         int anon = 0;
3232         struct page *dirty_page = NULL;
3233         struct vm_fault vmf;
3234         int ret;
3235         int page_mkwrite = 0;
3236
3237         /*
3238          * If we do COW later, allocate page befor taking lock_page()
3239          * on the file cache page. This will reduce lock holding time.
3240          */
3241         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3242
3243                 if (unlikely(anon_vma_prepare(vma)))
3244                         return VM_FAULT_OOM;
3245
3246                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3247                 if (!cow_page)
3248                         return VM_FAULT_OOM;
3249
3250                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3251                         page_cache_release(cow_page);
3252                         return VM_FAULT_OOM;
3253                 }
3254         } else
3255                 cow_page = NULL;
3256
3257         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3258         vmf.pgoff = pgoff;
3259         vmf.flags = flags;
3260         vmf.page = NULL;
3261
3262         ret = vma->vm_ops->fault(vma, &vmf);
3263         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3264                             VM_FAULT_RETRY)))
3265                 goto uncharge_out;
3266
3267         if (unlikely(PageHWPoison(vmf.page))) {
3268                 if (ret & VM_FAULT_LOCKED)
3269                         unlock_page(vmf.page);
3270                 ret = VM_FAULT_HWPOISON;
3271                 goto uncharge_out;
3272         }
3273
3274         /*
3275          * For consistency in subsequent calls, make the faulted page always
3276          * locked.
3277          */
3278         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3279                 lock_page(vmf.page);
3280         else
3281                 VM_BUG_ON(!PageLocked(vmf.page));
3282
3283         /*
3284          * Should we do an early C-O-W break?
3285          */
3286         page = vmf.page;
3287         if (flags & FAULT_FLAG_WRITE) {
3288                 if (!(vma->vm_flags & VM_SHARED)) {
3289                         page = cow_page;
3290                         anon = 1;
3291                         copy_user_highpage(page, vmf.page, address, vma);
3292                         __SetPageUptodate(page);
3293                 } else {
3294                         /*
3295                          * If the page will be shareable, see if the backing
3296                          * address space wants to know that the page is about
3297                          * to become writable
3298                          */
3299                         if (vma->vm_ops->page_mkwrite) {
3300                                 int tmp;
3301
3302                                 unlock_page(page);
3303                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3304                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3305                                 if (unlikely(tmp &
3306                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3307                                         ret = tmp;
3308                                         goto unwritable_page;
3309                                 }
3310                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3311                                         lock_page(page);
3312                                         if (!page->mapping) {
3313                                                 ret = 0; /* retry the fault */
3314                                                 unlock_page(page);
3315                                                 goto unwritable_page;
3316                                         }
3317                                 } else
3318                                         VM_BUG_ON(!PageLocked(page));
3319                                 page_mkwrite = 1;
3320                         }
3321                 }
3322
3323         }
3324
3325         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3326
3327         /*
3328          * This silly early PAGE_DIRTY setting removes a race
3329          * due to the bad i386 page protection. But it's valid
3330          * for other architectures too.
3331          *
3332          * Note that if FAULT_FLAG_WRITE is set, we either now have
3333          * an exclusive copy of the page, or this is a shared mapping,
3334          * so we can make it writable and dirty to avoid having to
3335          * handle that later.
3336          */
3337         /* Only go through if we didn't race with anybody else... */
3338         if (likely(pte_same(*page_table, orig_pte))) {
3339                 flush_icache_page(vma, page);
3340                 entry = mk_pte(page, vma->vm_page_prot);
3341                 if (flags & FAULT_FLAG_WRITE)
3342                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3343                 if (anon) {
3344                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3345                         page_add_new_anon_rmap(page, vma, address);
3346                 } else {
3347                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3348                         page_add_file_rmap(page);
3349                         if (flags & FAULT_FLAG_WRITE) {
3350                                 dirty_page = page;
3351                                 get_page(dirty_page);
3352                         }
3353                 }
3354                 set_pte_at(mm, address, page_table, entry);
3355
3356                 /* no need to invalidate: a not-present page won't be cached */
3357                 update_mmu_cache(vma, address, page_table);
3358         } else {
3359                 if (cow_page)
3360                         mem_cgroup_uncharge_page(cow_page);
3361                 if (anon)
3362                         page_cache_release(page);
3363                 else
3364                         anon = 1; /* no anon but release faulted_page */
3365         }
3366
3367         pte_unmap_unlock(page_table, ptl);
3368
3369         if (dirty_page) {
3370                 struct address_space *mapping = page->mapping;
3371
3372                 if (set_page_dirty(dirty_page))
3373                         page_mkwrite = 1;
3374                 unlock_page(dirty_page);
3375                 put_page(dirty_page);
3376                 if (page_mkwrite && mapping) {
3377                         /*
3378                          * Some device drivers do not set page.mapping but still
3379                          * dirty their pages
3380                          */
3381                         balance_dirty_pages_ratelimited(mapping);
3382                 }
3383
3384                 /* file_update_time outside page_lock */
3385                 if (vma->vm_file)
3386                         file_update_time(vma->vm_file);
3387         } else {
3388                 unlock_page(vmf.page);
3389                 if (anon)
3390                         page_cache_release(vmf.page);
3391         }
3392
3393         return ret;
3394
3395 unwritable_page:
3396         page_cache_release(page);
3397         return ret;
3398 uncharge_out:
3399         /* fs's fault handler get error */
3400         if (cow_page) {
3401                 mem_cgroup_uncharge_page(cow_page);
3402                 page_cache_release(cow_page);
3403         }
3404         return ret;
3405 }
3406
3407 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3408                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3409                 unsigned int flags, pte_t orig_pte)
3410 {
3411         pgoff_t pgoff = (((address & PAGE_MASK)
3412                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3413
3414         pte_unmap(page_table);
3415         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3416 }
3417
3418 /*
3419  * Fault of a previously existing named mapping. Repopulate the pte
3420  * from the encoded file_pte if possible. This enables swappable
3421  * nonlinear vmas.
3422  *
3423  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3424  * but allow concurrent faults), and pte mapped but not yet locked.
3425  * We return with mmap_sem still held, but pte unmapped and unlocked.
3426  */
3427 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3428                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3429                 unsigned int flags, pte_t orig_pte)
3430 {
3431         pgoff_t pgoff;
3432
3433         flags |= FAULT_FLAG_NONLINEAR;
3434
3435         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3436                 return 0;
3437
3438         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3439                 /*
3440                  * Page table corrupted: show pte and kill process.
3441                  */
3442                 print_bad_pte(vma, address, orig_pte, NULL);
3443                 return VM_FAULT_SIGBUS;
3444         }
3445
3446         pgoff = pte_to_pgoff(orig_pte);
3447         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3448 }
3449
3450 /*
3451  * These routines also need to handle stuff like marking pages dirty
3452  * and/or accessed for architectures that don't do it in hardware (most
3453  * RISC architectures).  The early dirtying is also good on the i386.
3454  *
3455  * There is also a hook called "update_mmu_cache()" that architectures
3456  * with external mmu caches can use to update those (ie the Sparc or
3457  * PowerPC hashed page tables that act as extended TLBs).
3458  *
3459  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3460  * but allow concurrent faults), and pte mapped but not yet locked.
3461  * We return with mmap_sem still held, but pte unmapped and unlocked.
3462  */
3463 int handle_pte_fault(struct mm_struct *mm,
3464                      struct vm_area_struct *vma, unsigned long address,
3465                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3466 {
3467         pte_t entry;
3468         spinlock_t *ptl;
3469
3470         entry = *pte;
3471         if (!pte_present(entry)) {
3472                 if (pte_none(entry)) {
3473                         if (vma->vm_ops) {
3474                                 if (likely(vma->vm_ops->fault))
3475                                         return do_linear_fault(mm, vma, address,
3476                                                 pte, pmd, flags, entry);
3477                         }
3478                         return do_anonymous_page(mm, vma, address,
3479                                                  pte, pmd, flags);
3480                 }
3481                 if (pte_file(entry))
3482                         return do_nonlinear_fault(mm, vma, address,
3483                                         pte, pmd, flags, entry);
3484                 return do_swap_page(mm, vma, address,
3485                                         pte, pmd, flags, entry);
3486         }
3487
3488         ptl = pte_lockptr(mm, pmd);
3489         spin_lock(ptl);
3490         if (unlikely(!pte_same(*pte, entry)))
3491                 goto unlock;
3492         if (flags & FAULT_FLAG_WRITE) {
3493                 if (!pte_write(entry))
3494                         return do_wp_page(mm, vma, address,
3495                                         pte, pmd, ptl, entry);
3496                 entry = pte_mkdirty(entry);
3497         }
3498         entry = pte_mkyoung(entry);
3499         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3500                 update_mmu_cache(vma, address, pte);
3501         } else {
3502                 /*
3503                  * This is needed only for protection faults but the arch code
3504                  * is not yet telling us if this is a protection fault or not.
3505                  * This still avoids useless tlb flushes for .text page faults
3506                  * with threads.
3507                  */
3508                 if (flags & FAULT_FLAG_WRITE)
3509                         flush_tlb_fix_spurious_fault(vma, address);
3510         }
3511 unlock:
3512         pte_unmap_unlock(pte, ptl);
3513         return 0;
3514 }
3515
3516 /*
3517  * By the time we get here, we already hold the mm semaphore
3518  */
3519 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3520                 unsigned long address, unsigned int flags)
3521 {
3522         pgd_t *pgd;
3523         pud_t *pud;
3524         pmd_t *pmd;
3525         pte_t *pte;
3526
3527         __set_current_state(TASK_RUNNING);
3528
3529         count_vm_event(PGFAULT);
3530         mem_cgroup_count_vm_event(mm, PGFAULT);
3531
3532         /* do counter updates before entering really critical section. */
3533         check_sync_rss_stat(current);
3534
3535         if (unlikely(is_vm_hugetlb_page(vma)))
3536                 return hugetlb_fault(mm, vma, address, flags);
3537
3538 retry:
3539         pgd = pgd_offset(mm, address);
3540         pud = pud_alloc(mm, pgd, address);
3541         if (!pud)
3542                 return VM_FAULT_OOM;
3543         pmd = pmd_alloc(mm, pud, address);
3544         if (!pmd)
3545                 return VM_FAULT_OOM;
3546         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3547                 if (!vma->vm_ops)
3548                         return do_huge_pmd_anonymous_page(mm, vma, address,
3549                                                           pmd, flags);
3550         } else {
3551                 pmd_t orig_pmd = *pmd;
3552                 int ret;
3553
3554                 barrier();
3555                 if (pmd_trans_huge(orig_pmd)) {
3556                         if (flags & FAULT_FLAG_WRITE &&
3557                             !pmd_write(orig_pmd) &&
3558                             !pmd_trans_splitting(orig_pmd)) {
3559                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3560                                                           orig_pmd);
3561                                 /*
3562                                  * If COW results in an oom, the huge pmd will
3563                                  * have been split, so retry the fault on the
3564                                  * pte for a smaller charge.
3565                                  */
3566                                 if (unlikely(ret & VM_FAULT_OOM))
3567                                         goto retry;
3568                                 return ret;
3569                         }
3570                         return 0;
3571                 }
3572         }
3573
3574         /*
3575          * Use __pte_alloc instead of pte_alloc_map, because we can't
3576          * run pte_offset_map on the pmd, if an huge pmd could
3577          * materialize from under us from a different thread.
3578          */
3579         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3580                 return VM_FAULT_OOM;
3581         /* if an huge pmd materialized from under us just retry later */
3582         if (unlikely(pmd_trans_huge(*pmd)))
3583                 return 0;
3584         /*
3585          * A regular pmd is established and it can't morph into a huge pmd
3586          * from under us anymore at this point because we hold the mmap_sem
3587          * read mode and khugepaged takes it in write mode. So now it's
3588          * safe to run pte_offset_map().
3589          */
3590         pte = pte_offset_map(pmd, address);
3591
3592         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3593 }
3594
3595 #ifndef __PAGETABLE_PUD_FOLDED
3596 /*
3597  * Allocate page upper directory.
3598  * We've already handled the fast-path in-line.
3599  */
3600 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3601 {
3602         pud_t *new = pud_alloc_one(mm, address);
3603         if (!new)
3604                 return -ENOMEM;
3605
3606         smp_wmb(); /* See comment in __pte_alloc */
3607
3608         spin_lock(&mm->page_table_lock);
3609         if (pgd_present(*pgd))          /* Another has populated it */
3610                 pud_free(mm, new);
3611         else
3612                 pgd_populate(mm, pgd, new);
3613         spin_unlock(&mm->page_table_lock);
3614         return 0;
3615 }
3616 #endif /* __PAGETABLE_PUD_FOLDED */
3617
3618 #ifndef __PAGETABLE_PMD_FOLDED
3619 /*
3620  * Allocate page middle directory.
3621  * We've already handled the fast-path in-line.
3622  */
3623 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3624 {
3625         pmd_t *new = pmd_alloc_one(mm, address);
3626         if (!new)
3627                 return -ENOMEM;
3628
3629         smp_wmb(); /* See comment in __pte_alloc */
3630
3631         spin_lock(&mm->page_table_lock);
3632 #ifndef __ARCH_HAS_4LEVEL_HACK
3633         if (pud_present(*pud))          /* Another has populated it */
3634                 pmd_free(mm, new);
3635         else
3636                 pud_populate(mm, pud, new);
3637 #else
3638         if (pgd_present(*pud))          /* Another has populated it */
3639                 pmd_free(mm, new);
3640         else
3641                 pgd_populate(mm, pud, new);
3642 #endif /* __ARCH_HAS_4LEVEL_HACK */
3643         spin_unlock(&mm->page_table_lock);
3644         return 0;
3645 }
3646 #endif /* __PAGETABLE_PMD_FOLDED */
3647
3648 int make_pages_present(unsigned long addr, unsigned long end)
3649 {
3650         int ret, len, write;
3651         struct vm_area_struct * vma;
3652
3653         vma = find_vma(current->mm, addr);
3654         if (!vma)
3655                 return -ENOMEM;
3656         /*
3657          * We want to touch writable mappings with a write fault in order
3658          * to break COW, except for shared mappings because these don't COW
3659          * and we would not want to dirty them for nothing.
3660          */
3661         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3662         BUG_ON(addr >= end);
3663         BUG_ON(end > vma->vm_end);
3664         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3665         ret = get_user_pages(current, current->mm, addr,
3666                         len, write, 0, NULL, NULL);
3667         if (ret < 0)
3668                 return ret;
3669         return ret == len ? 0 : -EFAULT;
3670 }
3671
3672 #if !defined(__HAVE_ARCH_GATE_AREA)
3673
3674 #if defined(AT_SYSINFO_EHDR)
3675 static struct vm_area_struct gate_vma;
3676
3677 static int __init gate_vma_init(void)
3678 {
3679         gate_vma.vm_mm = NULL;
3680         gate_vma.vm_start = FIXADDR_USER_START;
3681         gate_vma.vm_end = FIXADDR_USER_END;
3682         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3683         gate_vma.vm_page_prot = __P101;
3684         /*
3685          * Make sure the vDSO gets into every core dump.
3686          * Dumping its contents makes post-mortem fully interpretable later
3687          * without matching up the same kernel and hardware config to see
3688          * what PC values meant.
3689          */
3690         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3691         return 0;
3692 }
3693 __initcall(gate_vma_init);
3694 #endif
3695
3696 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3697 {
3698 #ifdef AT_SYSINFO_EHDR
3699         return &gate_vma;
3700 #else
3701         return NULL;
3702 #endif
3703 }
3704
3705 int in_gate_area_no_mm(unsigned long addr)
3706 {
3707 #ifdef AT_SYSINFO_EHDR
3708         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3709                 return 1;
3710 #endif
3711         return 0;
3712 }
3713
3714 #endif  /* __HAVE_ARCH_GATE_AREA */
3715
3716 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3717                 pte_t **ptepp, spinlock_t **ptlp)
3718 {
3719         pgd_t *pgd;
3720         pud_t *pud;
3721         pmd_t *pmd;
3722         pte_t *ptep;
3723
3724         pgd = pgd_offset(mm, address);
3725         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3726                 goto out;
3727
3728         pud = pud_offset(pgd, address);
3729         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3730                 goto out;
3731
3732         pmd = pmd_offset(pud, address);
3733         VM_BUG_ON(pmd_trans_huge(*pmd));
3734         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3735                 goto out;
3736
3737         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3738         if (pmd_huge(*pmd))
3739                 goto out;
3740
3741         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3742         if (!ptep)
3743                 goto out;
3744         if (!pte_present(*ptep))
3745                 goto unlock;
3746         *ptepp = ptep;
3747         return 0;
3748 unlock:
3749         pte_unmap_unlock(ptep, *ptlp);
3750 out:
3751         return -EINVAL;
3752 }
3753
3754 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3755                              pte_t **ptepp, spinlock_t **ptlp)
3756 {
3757         int res;
3758
3759         /* (void) is needed to make gcc happy */
3760         (void) __cond_lock(*ptlp,
3761                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3762         return res;
3763 }
3764
3765 /**
3766  * follow_pfn - look up PFN at a user virtual address
3767  * @vma: memory mapping
3768  * @address: user virtual address
3769  * @pfn: location to store found PFN
3770  *
3771  * Only IO mappings and raw PFN mappings are allowed.
3772  *
3773  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3774  */
3775 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3776         unsigned long *pfn)
3777 {
3778         int ret = -EINVAL;
3779         spinlock_t *ptl;
3780         pte_t *ptep;
3781
3782         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3783                 return ret;
3784
3785         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3786         if (ret)
3787                 return ret;
3788         *pfn = pte_pfn(*ptep);
3789         pte_unmap_unlock(ptep, ptl);
3790         return 0;
3791 }
3792 EXPORT_SYMBOL(follow_pfn);
3793
3794 #ifdef CONFIG_HAVE_IOREMAP_PROT
3795 int follow_phys(struct vm_area_struct *vma,
3796                 unsigned long address, unsigned int flags,
3797                 unsigned long *prot, resource_size_t *phys)
3798 {
3799         int ret = -EINVAL;
3800         pte_t *ptep, pte;
3801         spinlock_t *ptl;
3802
3803         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3804                 goto out;
3805
3806         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3807                 goto out;
3808         pte = *ptep;
3809
3810         if ((flags & FOLL_WRITE) && !pte_write(pte))
3811                 goto unlock;
3812
3813         *prot = pgprot_val(pte_pgprot(pte));
3814         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3815
3816         ret = 0;
3817 unlock:
3818         pte_unmap_unlock(ptep, ptl);
3819 out:
3820         return ret;
3821 }
3822
3823 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3824                         void *buf, int len, int write)
3825 {
3826         resource_size_t phys_addr;
3827         unsigned long prot = 0;
3828         void __iomem *maddr;
3829         int offset = addr & (PAGE_SIZE-1);
3830
3831         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3832                 return -EINVAL;
3833
3834         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3835         if (write)
3836                 memcpy_toio(maddr + offset, buf, len);
3837         else
3838                 memcpy_fromio(buf, maddr + offset, len);
3839         iounmap(maddr);
3840
3841         return len;
3842 }
3843 #endif
3844
3845 /*
3846  * Access another process' address space as given in mm.  If non-NULL, use the
3847  * given task for page fault accounting.
3848  */
3849 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3850                 unsigned long addr, void *buf, int len, int write)
3851 {
3852         struct vm_area_struct *vma;
3853         void *old_buf = buf;
3854
3855         down_read(&mm->mmap_sem);
3856         /* ignore errors, just check how much was successfully transferred */
3857         while (len) {
3858                 int bytes, ret, offset;
3859                 void *maddr;
3860                 struct page *page = NULL;
3861
3862                 ret = get_user_pages(tsk, mm, addr, 1,
3863                                 write, 1, &page, &vma);
3864                 if (ret <= 0) {
3865                         /*
3866                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3867                          * we can access using slightly different code.
3868                          */
3869 #ifdef CONFIG_HAVE_IOREMAP_PROT
3870                         vma = find_vma(mm, addr);
3871                         if (!vma || vma->vm_start > addr)
3872                                 break;
3873                         if (vma->vm_ops && vma->vm_ops->access)
3874                                 ret = vma->vm_ops->access(vma, addr, buf,
3875                                                           len, write);
3876                         if (ret <= 0)
3877 #endif
3878                                 break;
3879                         bytes = ret;
3880                 } else {
3881                         bytes = len;
3882                         offset = addr & (PAGE_SIZE-1);
3883                         if (bytes > PAGE_SIZE-offset)
3884                                 bytes = PAGE_SIZE-offset;
3885
3886                         maddr = kmap(page);
3887                         if (write) {
3888                                 copy_to_user_page(vma, page, addr,
3889                                                   maddr + offset, buf, bytes);
3890                                 set_page_dirty_lock(page);
3891                         } else {
3892                                 copy_from_user_page(vma, page, addr,
3893                                                     buf, maddr + offset, bytes);
3894                         }
3895                         kunmap(page);
3896                         page_cache_release(page);
3897                 }
3898                 len -= bytes;
3899                 buf += bytes;
3900                 addr += bytes;
3901         }
3902         up_read(&mm->mmap_sem);
3903
3904         return buf - old_buf;
3905 }
3906
3907 /**
3908  * access_remote_vm - access another process' address space
3909  * @mm:         the mm_struct of the target address space
3910  * @addr:       start address to access
3911  * @buf:        source or destination buffer
3912  * @len:        number of bytes to transfer
3913  * @write:      whether the access is a write
3914  *
3915  * The caller must hold a reference on @mm.
3916  */
3917 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3918                 void *buf, int len, int write)
3919 {
3920         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3921 }
3922
3923 /*
3924  * Access another process' address space.
3925  * Source/target buffer must be kernel space,
3926  * Do not walk the page table directly, use get_user_pages
3927  */
3928 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3929                 void *buf, int len, int write)
3930 {
3931         struct mm_struct *mm;
3932         int ret;
3933
3934         mm = get_task_mm(tsk);
3935         if (!mm)
3936                 return 0;
3937
3938         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3939         mmput(mm);
3940
3941         return ret;
3942 }
3943
3944 /*
3945  * Print the name of a VMA.
3946  */
3947 void print_vma_addr(char *prefix, unsigned long ip)
3948 {
3949         struct mm_struct *mm = current->mm;
3950         struct vm_area_struct *vma;
3951
3952         /*
3953          * Do not print if we are in atomic
3954          * contexts (in exception stacks, etc.):
3955          */
3956         if (preempt_count())
3957                 return;
3958
3959         down_read(&mm->mmap_sem);
3960         vma = find_vma(mm, ip);
3961         if (vma && vma->vm_file) {
3962                 struct file *f = vma->vm_file;
3963                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3964                 if (buf) {
3965                         char *p, *s;
3966
3967                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3968                         if (IS_ERR(p))
3969                                 p = "?";
3970                         s = strrchr(p, '/');
3971                         if (s)
3972                                 p = s+1;
3973                         printk("%s%s[%lx+%lx]", prefix, p,
3974                                         vma->vm_start,
3975                                         vma->vm_end - vma->vm_start);
3976                         free_page((unsigned long)buf);
3977                 }
3978         }
3979         up_read(&current->mm->mmap_sem);
3980 }
3981
3982 #ifdef CONFIG_PROVE_LOCKING
3983 void might_fault(void)
3984 {
3985         /*
3986          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3987          * holding the mmap_sem, this is safe because kernel memory doesn't
3988          * get paged out, therefore we'll never actually fault, and the
3989          * below annotations will generate false positives.
3990          */
3991         if (segment_eq(get_fs(), KERNEL_DS))
3992                 return;
3993
3994         might_sleep();
3995         /*
3996          * it would be nicer only to annotate paths which are not under
3997          * pagefault_disable, however that requires a larger audit and
3998          * providing helpers like get_user_atomic.
3999          */
4000         if (!in_atomic() && current->mm)
4001                 might_lock_read(&current->mm->mmap_sem);
4002 }
4003 EXPORT_SYMBOL(might_fault);
4004 #endif
4005
4006 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4007 static void clear_gigantic_page(struct page *page,
4008                                 unsigned long addr,
4009                                 unsigned int pages_per_huge_page)
4010 {
4011         int i;
4012         struct page *p = page;
4013
4014         might_sleep();
4015         for (i = 0; i < pages_per_huge_page;
4016              i++, p = mem_map_next(p, page, i)) {
4017                 cond_resched();
4018                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4019         }
4020 }
4021 void clear_huge_page(struct page *page,
4022                      unsigned long addr, unsigned int pages_per_huge_page)
4023 {
4024         int i;
4025
4026         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4027                 clear_gigantic_page(page, addr, pages_per_huge_page);
4028                 return;
4029         }
4030
4031         might_sleep();
4032         for (i = 0; i < pages_per_huge_page; i++) {
4033                 cond_resched();
4034                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4035         }
4036 }
4037
4038 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4039                                     unsigned long addr,
4040                                     struct vm_area_struct *vma,
4041                                     unsigned int pages_per_huge_page)
4042 {
4043         int i;
4044         struct page *dst_base = dst;
4045         struct page *src_base = src;
4046
4047         for (i = 0; i < pages_per_huge_page; ) {
4048                 cond_resched();
4049                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4050
4051                 i++;
4052                 dst = mem_map_next(dst, dst_base, i);
4053                 src = mem_map_next(src, src_base, i);
4054         }
4055 }
4056
4057 void copy_user_huge_page(struct page *dst, struct page *src,
4058                          unsigned long addr, struct vm_area_struct *vma,
4059                          unsigned int pages_per_huge_page)
4060 {
4061         int i;
4062
4063         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4064                 copy_user_gigantic_page(dst, src, addr, vma,
4065                                         pages_per_huge_page);
4066                 return;
4067         }
4068
4069         might_sleep();
4070         for (i = 0; i < pages_per_huge_page; i++) {
4071                 cond_resched();
4072                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4073         }
4074 }
4075 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */