kmod: introduce call_modprobe() helper
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
209                 return 0;
210
211         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
212         if (!batch)
213                 return 0;
214
215         tlb->batch_count++;
216         batch->next = NULL;
217         batch->nr   = 0;
218         batch->max  = MAX_GATHER_BATCH;
219
220         tlb->active->next = batch;
221         tlb->active = batch;
222
223         return 1;
224 }
225
226 /* tlb_gather_mmu
227  *      Called to initialize an (on-stack) mmu_gather structure for page-table
228  *      tear-down from @mm. The @fullmm argument is used when @mm is without
229  *      users and we're going to destroy the full address space (exit/execve).
230  */
231 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
232 {
233         tlb->mm = mm;
234
235         tlb->fullmm     = fullmm;
236         tlb->need_flush = 0;
237         tlb->fast_mode  = (num_possible_cpus() == 1);
238         tlb->local.next = NULL;
239         tlb->local.nr   = 0;
240         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
241         tlb->active     = &tlb->local;
242         tlb->batch_count = 0;
243
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb->batch = NULL;
246 #endif
247 }
248
249 void tlb_flush_mmu(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         if (!tlb->need_flush)
254                 return;
255         tlb->need_flush = 0;
256         tlb_flush(tlb);
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260
261         if (tlb_fast_mode(tlb))
262                 return;
263
264         for (batch = &tlb->local; batch; batch = batch->next) {
265                 free_pages_and_swap_cache(batch->pages, batch->nr);
266                 batch->nr = 0;
267         }
268         tlb->active = &tlb->local;
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  */
297 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
298 {
299         struct mmu_gather_batch *batch;
300
301         tlb->need_flush = 1;
302
303         if (tlb_fast_mode(tlb)) {
304                 free_page_and_swap_cache(page);
305                 return 1; /* avoid calling tlb_flush_mmu() */
306         }
307
308         batch = tlb->active;
309         batch->pages[batch->nr++] = page;
310         if (batch->nr == batch->max) {
311                 if (!tlb_next_batch(tlb))
312                         return 0;
313                 batch = tlb->active;
314         }
315         VM_BUG_ON(batch->nr > batch->max);
316
317         return batch->max - batch->nr;
318 }
319
320 #endif /* HAVE_GENERIC_MMU_GATHER */
321
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
323
324 /*
325  * See the comment near struct mmu_table_batch.
326  */
327
328 static void tlb_remove_table_smp_sync(void *arg)
329 {
330         /* Simply deliver the interrupt */
331 }
332
333 static void tlb_remove_table_one(void *table)
334 {
335         /*
336          * This isn't an RCU grace period and hence the page-tables cannot be
337          * assumed to be actually RCU-freed.
338          *
339          * It is however sufficient for software page-table walkers that rely on
340          * IRQ disabling. See the comment near struct mmu_table_batch.
341          */
342         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343         __tlb_remove_table(table);
344 }
345
346 static void tlb_remove_table_rcu(struct rcu_head *head)
347 {
348         struct mmu_table_batch *batch;
349         int i;
350
351         batch = container_of(head, struct mmu_table_batch, rcu);
352
353         for (i = 0; i < batch->nr; i++)
354                 __tlb_remove_table(batch->tables[i]);
355
356         free_page((unsigned long)batch);
357 }
358
359 void tlb_table_flush(struct mmu_gather *tlb)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         if (*batch) {
364                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
365                 *batch = NULL;
366         }
367 }
368
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         tlb->need_flush = 1;
374
375         /*
376          * When there's less then two users of this mm there cannot be a
377          * concurrent page-table walk.
378          */
379         if (atomic_read(&tlb->mm->mm_users) < 2) {
380                 __tlb_remove_table(table);
381                 return;
382         }
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_remove_table_one(table);
388                         return;
389                 }
390                 (*batch)->nr = 0;
391         }
392         (*batch)->tables[(*batch)->nr++] = table;
393         if ((*batch)->nr == MAX_TABLE_BATCH)
394                 tlb_table_flush(tlb);
395 }
396
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398
399 /*
400  * If a p?d_bad entry is found while walking page tables, report
401  * the error, before resetting entry to p?d_none.  Usually (but
402  * very seldom) called out from the p?d_none_or_clear_bad macros.
403  */
404
405 void pgd_clear_bad(pgd_t *pgd)
406 {
407         pgd_ERROR(*pgd);
408         pgd_clear(pgd);
409 }
410
411 void pud_clear_bad(pud_t *pud)
412 {
413         pud_ERROR(*pud);
414         pud_clear(pud);
415 }
416
417 void pmd_clear_bad(pmd_t *pmd)
418 {
419         pmd_ERROR(*pmd);
420         pmd_clear(pmd);
421 }
422
423 /*
424  * Note: this doesn't free the actual pages themselves. That
425  * has been handled earlier when unmapping all the memory regions.
426  */
427 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
428                            unsigned long addr)
429 {
430         pgtable_t token = pmd_pgtable(*pmd);
431         pmd_clear(pmd);
432         pte_free_tlb(tlb, token, addr);
433         tlb->mm->nr_ptes--;
434 }
435
436 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pmd_t *pmd;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pmd = pmd_offset(pud, addr);
446         do {
447                 next = pmd_addr_end(addr, end);
448                 if (pmd_none_or_clear_bad(pmd))
449                         continue;
450                 free_pte_range(tlb, pmd, addr);
451         } while (pmd++, addr = next, addr != end);
452
453         start &= PUD_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PUD_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pmd = pmd_offset(pud, start);
465         pud_clear(pud);
466         pmd_free_tlb(tlb, pmd, start);
467 }
468
469 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
470                                 unsigned long addr, unsigned long end,
471                                 unsigned long floor, unsigned long ceiling)
472 {
473         pud_t *pud;
474         unsigned long next;
475         unsigned long start;
476
477         start = addr;
478         pud = pud_offset(pgd, addr);
479         do {
480                 next = pud_addr_end(addr, end);
481                 if (pud_none_or_clear_bad(pud))
482                         continue;
483                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
484         } while (pud++, addr = next, addr != end);
485
486         start &= PGDIR_MASK;
487         if (start < floor)
488                 return;
489         if (ceiling) {
490                 ceiling &= PGDIR_MASK;
491                 if (!ceiling)
492                         return;
493         }
494         if (end - 1 > ceiling - 1)
495                 return;
496
497         pud = pud_offset(pgd, start);
498         pgd_clear(pgd);
499         pud_free_tlb(tlb, pud, start);
500 }
501
502 /*
503  * This function frees user-level page tables of a process.
504  *
505  * Must be called with pagetable lock held.
506  */
507 void free_pgd_range(struct mmu_gather *tlb,
508                         unsigned long addr, unsigned long end,
509                         unsigned long floor, unsigned long ceiling)
510 {
511         pgd_t *pgd;
512         unsigned long next;
513
514         /*
515          * The next few lines have given us lots of grief...
516          *
517          * Why are we testing PMD* at this top level?  Because often
518          * there will be no work to do at all, and we'd prefer not to
519          * go all the way down to the bottom just to discover that.
520          *
521          * Why all these "- 1"s?  Because 0 represents both the bottom
522          * of the address space and the top of it (using -1 for the
523          * top wouldn't help much: the masks would do the wrong thing).
524          * The rule is that addr 0 and floor 0 refer to the bottom of
525          * the address space, but end 0 and ceiling 0 refer to the top
526          * Comparisons need to use "end - 1" and "ceiling - 1" (though
527          * that end 0 case should be mythical).
528          *
529          * Wherever addr is brought up or ceiling brought down, we must
530          * be careful to reject "the opposite 0" before it confuses the
531          * subsequent tests.  But what about where end is brought down
532          * by PMD_SIZE below? no, end can't go down to 0 there.
533          *
534          * Whereas we round start (addr) and ceiling down, by different
535          * masks at different levels, in order to test whether a table
536          * now has no other vmas using it, so can be freed, we don't
537          * bother to round floor or end up - the tests don't need that.
538          */
539
540         addr &= PMD_MASK;
541         if (addr < floor) {
542                 addr += PMD_SIZE;
543                 if (!addr)
544                         return;
545         }
546         if (ceiling) {
547                 ceiling &= PMD_MASK;
548                 if (!ceiling)
549                         return;
550         }
551         if (end - 1 > ceiling - 1)
552                 end -= PMD_SIZE;
553         if (addr > end - 1)
554                 return;
555
556         pgd = pgd_offset(tlb->mm, addr);
557         do {
558                 next = pgd_addr_end(addr, end);
559                 if (pgd_none_or_clear_bad(pgd))
560                         continue;
561                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
562         } while (pgd++, addr = next, addr != end);
563 }
564
565 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
566                 unsigned long floor, unsigned long ceiling)
567 {
568         while (vma) {
569                 struct vm_area_struct *next = vma->vm_next;
570                 unsigned long addr = vma->vm_start;
571
572                 /*
573                  * Hide vma from rmap and truncate_pagecache before freeing
574                  * pgtables
575                  */
576                 unlink_anon_vmas(vma);
577                 unlink_file_vma(vma);
578
579                 if (is_vm_hugetlb_page(vma)) {
580                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
581                                 floor, next? next->vm_start: ceiling);
582                 } else {
583                         /*
584                          * Optimization: gather nearby vmas into one call down
585                          */
586                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
587                                && !is_vm_hugetlb_page(next)) {
588                                 vma = next;
589                                 next = vma->vm_next;
590                                 unlink_anon_vmas(vma);
591                                 unlink_file_vma(vma);
592                         }
593                         free_pgd_range(tlb, addr, vma->vm_end,
594                                 floor, next? next->vm_start: ceiling);
595                 }
596                 vma = next;
597         }
598 }
599
600 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
601                 pmd_t *pmd, unsigned long address)
602 {
603         pgtable_t new = pte_alloc_one(mm, address);
604         int wait_split_huge_page;
605         if (!new)
606                 return -ENOMEM;
607
608         /*
609          * Ensure all pte setup (eg. pte page lock and page clearing) are
610          * visible before the pte is made visible to other CPUs by being
611          * put into page tables.
612          *
613          * The other side of the story is the pointer chasing in the page
614          * table walking code (when walking the page table without locking;
615          * ie. most of the time). Fortunately, these data accesses consist
616          * of a chain of data-dependent loads, meaning most CPUs (alpha
617          * being the notable exception) will already guarantee loads are
618          * seen in-order. See the alpha page table accessors for the
619          * smp_read_barrier_depends() barriers in page table walking code.
620          */
621         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
622
623         spin_lock(&mm->page_table_lock);
624         wait_split_huge_page = 0;
625         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
626                 mm->nr_ptes++;
627                 pmd_populate(mm, pmd, new);
628                 new = NULL;
629         } else if (unlikely(pmd_trans_splitting(*pmd)))
630                 wait_split_huge_page = 1;
631         spin_unlock(&mm->page_table_lock);
632         if (new)
633                 pte_free(mm, new);
634         if (wait_split_huge_page)
635                 wait_split_huge_page(vma->anon_vma, pmd);
636         return 0;
637 }
638
639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
640 {
641         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
642         if (!new)
643                 return -ENOMEM;
644
645         smp_wmb(); /* See comment in __pte_alloc */
646
647         spin_lock(&init_mm.page_table_lock);
648         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
649                 pmd_populate_kernel(&init_mm, pmd, new);
650                 new = NULL;
651         } else
652                 VM_BUG_ON(pmd_trans_splitting(*pmd));
653         spin_unlock(&init_mm.page_table_lock);
654         if (new)
655                 pte_free_kernel(&init_mm, new);
656         return 0;
657 }
658
659 static inline void init_rss_vec(int *rss)
660 {
661         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
662 }
663
664 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
665 {
666         int i;
667
668         if (current->mm == mm)
669                 sync_mm_rss(current, mm);
670         for (i = 0; i < NR_MM_COUNTERS; i++)
671                 if (rss[i])
672                         add_mm_counter(mm, i, rss[i]);
673 }
674
675 /*
676  * This function is called to print an error when a bad pte
677  * is found. For example, we might have a PFN-mapped pte in
678  * a region that doesn't allow it.
679  *
680  * The calling function must still handle the error.
681  */
682 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
683                           pte_t pte, struct page *page)
684 {
685         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
686         pud_t *pud = pud_offset(pgd, addr);
687         pmd_t *pmd = pmd_offset(pud, addr);
688         struct address_space *mapping;
689         pgoff_t index;
690         static unsigned long resume;
691         static unsigned long nr_shown;
692         static unsigned long nr_unshown;
693
694         /*
695          * Allow a burst of 60 reports, then keep quiet for that minute;
696          * or allow a steady drip of one report per second.
697          */
698         if (nr_shown == 60) {
699                 if (time_before(jiffies, resume)) {
700                         nr_unshown++;
701                         return;
702                 }
703                 if (nr_unshown) {
704                         printk(KERN_ALERT
705                                 "BUG: Bad page map: %lu messages suppressed\n",
706                                 nr_unshown);
707                         nr_unshown = 0;
708                 }
709                 nr_shown = 0;
710         }
711         if (nr_shown++ == 0)
712                 resume = jiffies + 60 * HZ;
713
714         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
715         index = linear_page_index(vma, addr);
716
717         printk(KERN_ALERT
718                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
719                 current->comm,
720                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
721         if (page)
722                 dump_page(page);
723         printk(KERN_ALERT
724                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
726         /*
727          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
728          */
729         if (vma->vm_ops)
730                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
731                                 (unsigned long)vma->vm_ops->fault);
732         if (vma->vm_file && vma->vm_file->f_op)
733                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
734                                 (unsigned long)vma->vm_file->f_op->mmap);
735         dump_stack();
736         add_taint(TAINT_BAD_PAGE);
737 }
738
739 static inline int is_cow_mapping(vm_flags_t flags)
740 {
741         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
742 }
743
744 #ifndef is_zero_pfn
745 static inline int is_zero_pfn(unsigned long pfn)
746 {
747         return pfn == zero_pfn;
748 }
749 #endif
750
751 #ifndef my_zero_pfn
752 static inline unsigned long my_zero_pfn(unsigned long addr)
753 {
754         return zero_pfn;
755 }
756 #endif
757
758 /*
759  * vm_normal_page -- This function gets the "struct page" associated with a pte.
760  *
761  * "Special" mappings do not wish to be associated with a "struct page" (either
762  * it doesn't exist, or it exists but they don't want to touch it). In this
763  * case, NULL is returned here. "Normal" mappings do have a struct page.
764  *
765  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766  * pte bit, in which case this function is trivial. Secondly, an architecture
767  * may not have a spare pte bit, which requires a more complicated scheme,
768  * described below.
769  *
770  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771  * special mapping (even if there are underlying and valid "struct pages").
772  * COWed pages of a VM_PFNMAP are always normal.
773  *
774  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777  * mapping will always honor the rule
778  *
779  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
780  *
781  * And for normal mappings this is false.
782  *
783  * This restricts such mappings to be a linear translation from virtual address
784  * to pfn. To get around this restriction, we allow arbitrary mappings so long
785  * as the vma is not a COW mapping; in that case, we know that all ptes are
786  * special (because none can have been COWed).
787  *
788  *
789  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
790  *
791  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792  * page" backing, however the difference is that _all_ pages with a struct
793  * page (that is, those where pfn_valid is true) are refcounted and considered
794  * normal pages by the VM. The disadvantage is that pages are refcounted
795  * (which can be slower and simply not an option for some PFNMAP users). The
796  * advantage is that we don't have to follow the strict linearity rule of
797  * PFNMAP mappings in order to support COWable mappings.
798  *
799  */
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
802 #else
803 # define HAVE_PTE_SPECIAL 0
804 #endif
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
806                                 pte_t pte)
807 {
808         unsigned long pfn = pte_pfn(pte);
809
810         if (HAVE_PTE_SPECIAL) {
811                 if (likely(!pte_special(pte)))
812                         goto check_pfn;
813                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
814                         return NULL;
815                 if (!is_zero_pfn(pfn))
816                         print_bad_pte(vma, addr, pte, NULL);
817                 return NULL;
818         }
819
820         /* !HAVE_PTE_SPECIAL case follows: */
821
822         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
823                 if (vma->vm_flags & VM_MIXEDMAP) {
824                         if (!pfn_valid(pfn))
825                                 return NULL;
826                         goto out;
827                 } else {
828                         unsigned long off;
829                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
830                         if (pfn == vma->vm_pgoff + off)
831                                 return NULL;
832                         if (!is_cow_mapping(vma->vm_flags))
833                                 return NULL;
834                 }
835         }
836
837         if (is_zero_pfn(pfn))
838                 return NULL;
839 check_pfn:
840         if (unlikely(pfn > highest_memmap_pfn)) {
841                 print_bad_pte(vma, addr, pte, NULL);
842                 return NULL;
843         }
844
845         /*
846          * NOTE! We still have PageReserved() pages in the page tables.
847          * eg. VDSO mappings can cause them to exist.
848          */
849 out:
850         return pfn_to_page(pfn);
851 }
852
853 /*
854  * copy one vm_area from one task to the other. Assumes the page tables
855  * already present in the new task to be cleared in the whole range
856  * covered by this vma.
857  */
858
859 static inline unsigned long
860 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
862                 unsigned long addr, int *rss)
863 {
864         unsigned long vm_flags = vma->vm_flags;
865         pte_t pte = *src_pte;
866         struct page *page;
867
868         /* pte contains position in swap or file, so copy. */
869         if (unlikely(!pte_present(pte))) {
870                 if (!pte_file(pte)) {
871                         swp_entry_t entry = pte_to_swp_entry(pte);
872
873                         if (swap_duplicate(entry) < 0)
874                                 return entry.val;
875
876                         /* make sure dst_mm is on swapoff's mmlist. */
877                         if (unlikely(list_empty(&dst_mm->mmlist))) {
878                                 spin_lock(&mmlist_lock);
879                                 if (list_empty(&dst_mm->mmlist))
880                                         list_add(&dst_mm->mmlist,
881                                                  &src_mm->mmlist);
882                                 spin_unlock(&mmlist_lock);
883                         }
884                         if (likely(!non_swap_entry(entry)))
885                                 rss[MM_SWAPENTS]++;
886                         else if (is_write_migration_entry(entry) &&
887                                         is_cow_mapping(vm_flags)) {
888                                 /*
889                                  * COW mappings require pages in both parent
890                                  * and child to be set to read.
891                                  */
892                                 make_migration_entry_read(&entry);
893                                 pte = swp_entry_to_pte(entry);
894                                 set_pte_at(src_mm, addr, src_pte, pte);
895                         }
896                 }
897                 goto out_set_pte;
898         }
899
900         /*
901          * If it's a COW mapping, write protect it both
902          * in the parent and the child
903          */
904         if (is_cow_mapping(vm_flags)) {
905                 ptep_set_wrprotect(src_mm, addr, src_pte);
906                 pte = pte_wrprotect(pte);
907         }
908
909         /*
910          * If it's a shared mapping, mark it clean in
911          * the child
912          */
913         if (vm_flags & VM_SHARED)
914                 pte = pte_mkclean(pte);
915         pte = pte_mkold(pte);
916
917         page = vm_normal_page(vma, addr, pte);
918         if (page) {
919                 get_page(page);
920                 page_dup_rmap(page);
921                 if (PageAnon(page))
922                         rss[MM_ANONPAGES]++;
923                 else
924                         rss[MM_FILEPAGES]++;
925         }
926
927 out_set_pte:
928         set_pte_at(dst_mm, addr, dst_pte, pte);
929         return 0;
930 }
931
932 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
933                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
934                    unsigned long addr, unsigned long end)
935 {
936         pte_t *orig_src_pte, *orig_dst_pte;
937         pte_t *src_pte, *dst_pte;
938         spinlock_t *src_ptl, *dst_ptl;
939         int progress = 0;
940         int rss[NR_MM_COUNTERS];
941         swp_entry_t entry = (swp_entry_t){0};
942
943 again:
944         init_rss_vec(rss);
945
946         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947         if (!dst_pte)
948                 return -ENOMEM;
949         src_pte = pte_offset_map(src_pmd, addr);
950         src_ptl = pte_lockptr(src_mm, src_pmd);
951         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952         orig_src_pte = src_pte;
953         orig_dst_pte = dst_pte;
954         arch_enter_lazy_mmu_mode();
955
956         do {
957                 /*
958                  * We are holding two locks at this point - either of them
959                  * could generate latencies in another task on another CPU.
960                  */
961                 if (progress >= 32) {
962                         progress = 0;
963                         if (need_resched() ||
964                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965                                 break;
966                 }
967                 if (pte_none(*src_pte)) {
968                         progress++;
969                         continue;
970                 }
971                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
972                                                         vma, addr, rss);
973                 if (entry.val)
974                         break;
975                 progress += 8;
976         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
977
978         arch_leave_lazy_mmu_mode();
979         spin_unlock(src_ptl);
980         pte_unmap(orig_src_pte);
981         add_mm_rss_vec(dst_mm, rss);
982         pte_unmap_unlock(orig_dst_pte, dst_ptl);
983         cond_resched();
984
985         if (entry.val) {
986                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
987                         return -ENOMEM;
988                 progress = 0;
989         }
990         if (addr != end)
991                 goto again;
992         return 0;
993 }
994
995 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
997                 unsigned long addr, unsigned long end)
998 {
999         pmd_t *src_pmd, *dst_pmd;
1000         unsigned long next;
1001
1002         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1003         if (!dst_pmd)
1004                 return -ENOMEM;
1005         src_pmd = pmd_offset(src_pud, addr);
1006         do {
1007                 next = pmd_addr_end(addr, end);
1008                 if (pmd_trans_huge(*src_pmd)) {
1009                         int err;
1010                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1011                         err = copy_huge_pmd(dst_mm, src_mm,
1012                                             dst_pmd, src_pmd, addr, vma);
1013                         if (err == -ENOMEM)
1014                                 return -ENOMEM;
1015                         if (!err)
1016                                 continue;
1017                         /* fall through */
1018                 }
1019                 if (pmd_none_or_clear_bad(src_pmd))
1020                         continue;
1021                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1022                                                 vma, addr, next))
1023                         return -ENOMEM;
1024         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1025         return 0;
1026 }
1027
1028 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1030                 unsigned long addr, unsigned long end)
1031 {
1032         pud_t *src_pud, *dst_pud;
1033         unsigned long next;
1034
1035         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1036         if (!dst_pud)
1037                 return -ENOMEM;
1038         src_pud = pud_offset(src_pgd, addr);
1039         do {
1040                 next = pud_addr_end(addr, end);
1041                 if (pud_none_or_clear_bad(src_pud))
1042                         continue;
1043                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1044                                                 vma, addr, next))
1045                         return -ENOMEM;
1046         } while (dst_pud++, src_pud++, addr = next, addr != end);
1047         return 0;
1048 }
1049
1050 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1051                 struct vm_area_struct *vma)
1052 {
1053         pgd_t *src_pgd, *dst_pgd;
1054         unsigned long next;
1055         unsigned long addr = vma->vm_start;
1056         unsigned long end = vma->vm_end;
1057         int ret;
1058
1059         /*
1060          * Don't copy ptes where a page fault will fill them correctly.
1061          * Fork becomes much lighter when there are big shared or private
1062          * readonly mappings. The tradeoff is that copy_page_range is more
1063          * efficient than faulting.
1064          */
1065         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1066                 if (!vma->anon_vma)
1067                         return 0;
1068         }
1069
1070         if (is_vm_hugetlb_page(vma))
1071                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1072
1073         if (unlikely(is_pfn_mapping(vma))) {
1074                 /*
1075                  * We do not free on error cases below as remove_vma
1076                  * gets called on error from higher level routine
1077                  */
1078                 ret = track_pfn_vma_copy(vma);
1079                 if (ret)
1080                         return ret;
1081         }
1082
1083         /*
1084          * We need to invalidate the secondary MMU mappings only when
1085          * there could be a permission downgrade on the ptes of the
1086          * parent mm. And a permission downgrade will only happen if
1087          * is_cow_mapping() returns true.
1088          */
1089         if (is_cow_mapping(vma->vm_flags))
1090                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow_mapping(vma->vm_flags))
1107                 mmu_notifier_invalidate_range_end(src_mm,
1108                                                   vma->vm_start, end);
1109         return ret;
1110 }
1111
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113                                 struct vm_area_struct *vma, pmd_t *pmd,
1114                                 unsigned long addr, unsigned long end,
1115                                 struct zap_details *details)
1116 {
1117         struct mm_struct *mm = tlb->mm;
1118         int force_flush = 0;
1119         int rss[NR_MM_COUNTERS];
1120         spinlock_t *ptl;
1121         pte_t *start_pte;
1122         pte_t *pte;
1123
1124 again:
1125         init_rss_vec(rss);
1126         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127         pte = start_pte;
1128         arch_enter_lazy_mmu_mode();
1129         do {
1130                 pte_t ptent = *pte;
1131                 if (pte_none(ptent)) {
1132                         continue;
1133                 }
1134
1135                 if (pte_present(ptent)) {
1136                         struct page *page;
1137
1138                         page = vm_normal_page(vma, addr, ptent);
1139                         if (unlikely(details) && page) {
1140                                 /*
1141                                  * unmap_shared_mapping_pages() wants to
1142                                  * invalidate cache without truncating:
1143                                  * unmap shared but keep private pages.
1144                                  */
1145                                 if (details->check_mapping &&
1146                                     details->check_mapping != page->mapping)
1147                                         continue;
1148                                 /*
1149                                  * Each page->index must be checked when
1150                                  * invalidating or truncating nonlinear.
1151                                  */
1152                                 if (details->nonlinear_vma &&
1153                                     (page->index < details->first_index ||
1154                                      page->index > details->last_index))
1155                                         continue;
1156                         }
1157                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1158                                                         tlb->fullmm);
1159                         tlb_remove_tlb_entry(tlb, pte, addr);
1160                         if (unlikely(!page))
1161                                 continue;
1162                         if (unlikely(details) && details->nonlinear_vma
1163                             && linear_page_index(details->nonlinear_vma,
1164                                                 addr) != page->index)
1165                                 set_pte_at(mm, addr, pte,
1166                                            pgoff_to_pte(page->index));
1167                         if (PageAnon(page))
1168                                 rss[MM_ANONPAGES]--;
1169                         else {
1170                                 if (pte_dirty(ptent))
1171                                         set_page_dirty(page);
1172                                 if (pte_young(ptent) &&
1173                                     likely(!VM_SequentialReadHint(vma)))
1174                                         mark_page_accessed(page);
1175                                 rss[MM_FILEPAGES]--;
1176                         }
1177                         page_remove_rmap(page);
1178                         if (unlikely(page_mapcount(page) < 0))
1179                                 print_bad_pte(vma, addr, ptent, page);
1180                         force_flush = !__tlb_remove_page(tlb, page);
1181                         if (force_flush)
1182                                 break;
1183                         continue;
1184                 }
1185                 /*
1186                  * If details->check_mapping, we leave swap entries;
1187                  * if details->nonlinear_vma, we leave file entries.
1188                  */
1189                 if (unlikely(details))
1190                         continue;
1191                 if (pte_file(ptent)) {
1192                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1193                                 print_bad_pte(vma, addr, ptent, NULL);
1194                 } else {
1195                         swp_entry_t entry = pte_to_swp_entry(ptent);
1196
1197                         if (!non_swap_entry(entry))
1198                                 rss[MM_SWAPENTS]--;
1199                         if (unlikely(!free_swap_and_cache(entry)))
1200                                 print_bad_pte(vma, addr, ptent, NULL);
1201                 }
1202                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1203         } while (pte++, addr += PAGE_SIZE, addr != end);
1204
1205         add_mm_rss_vec(mm, rss);
1206         arch_leave_lazy_mmu_mode();
1207         pte_unmap_unlock(start_pte, ptl);
1208
1209         /*
1210          * mmu_gather ran out of room to batch pages, we break out of
1211          * the PTE lock to avoid doing the potential expensive TLB invalidate
1212          * and page-free while holding it.
1213          */
1214         if (force_flush) {
1215                 force_flush = 0;
1216                 tlb_flush_mmu(tlb);
1217                 if (addr != end)
1218                         goto again;
1219         }
1220
1221         return addr;
1222 }
1223
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225                                 struct vm_area_struct *vma, pud_t *pud,
1226                                 unsigned long addr, unsigned long end,
1227                                 struct zap_details *details)
1228 {
1229         pmd_t *pmd;
1230         unsigned long next;
1231
1232         pmd = pmd_offset(pud, addr);
1233         do {
1234                 next = pmd_addr_end(addr, end);
1235                 if (pmd_trans_huge(*pmd)) {
1236                         if (next - addr != HPAGE_PMD_SIZE) {
1237                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1238                                 split_huge_page_pmd(vma->vm_mm, pmd);
1239                         } else if (zap_huge_pmd(tlb, vma, pmd))
1240                                 goto next;
1241                         /* fall through */
1242                 }
1243                 /*
1244                  * Here there can be other concurrent MADV_DONTNEED or
1245                  * trans huge page faults running, and if the pmd is
1246                  * none or trans huge it can change under us. This is
1247                  * because MADV_DONTNEED holds the mmap_sem in read
1248                  * mode.
1249                  */
1250                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1251                         goto next;
1252                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1253 next:
1254                 cond_resched();
1255         } while (pmd++, addr = next, addr != end);
1256
1257         return addr;
1258 }
1259
1260 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1261                                 struct vm_area_struct *vma, pgd_t *pgd,
1262                                 unsigned long addr, unsigned long end,
1263                                 struct zap_details *details)
1264 {
1265         pud_t *pud;
1266         unsigned long next;
1267
1268         pud = pud_offset(pgd, addr);
1269         do {
1270                 next = pud_addr_end(addr, end);
1271                 if (pud_none_or_clear_bad(pud))
1272                         continue;
1273                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1274         } while (pud++, addr = next, addr != end);
1275
1276         return addr;
1277 }
1278
1279 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1280                                 struct vm_area_struct *vma,
1281                                 unsigned long addr, unsigned long end,
1282                                 struct zap_details *details)
1283 {
1284         pgd_t *pgd;
1285         unsigned long next;
1286
1287         if (details && !details->check_mapping && !details->nonlinear_vma)
1288                 details = NULL;
1289
1290         BUG_ON(addr >= end);
1291         mem_cgroup_uncharge_start();
1292         tlb_start_vma(tlb, vma);
1293         pgd = pgd_offset(vma->vm_mm, addr);
1294         do {
1295                 next = pgd_addr_end(addr, end);
1296                 if (pgd_none_or_clear_bad(pgd))
1297                         continue;
1298                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299         } while (pgd++, addr = next, addr != end);
1300         tlb_end_vma(tlb, vma);
1301         mem_cgroup_uncharge_end();
1302
1303         return addr;
1304 }
1305
1306 /**
1307  * unmap_vmas - unmap a range of memory covered by a list of vma's
1308  * @tlb: address of the caller's struct mmu_gather
1309  * @vma: the starting vma
1310  * @start_addr: virtual address at which to start unmapping
1311  * @end_addr: virtual address at which to end unmapping
1312  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1313  * @details: details of nonlinear truncation or shared cache invalidation
1314  *
1315  * Returns the end address of the unmapping (restart addr if interrupted).
1316  *
1317  * Unmap all pages in the vma list.
1318  *
1319  * Only addresses between `start' and `end' will be unmapped.
1320  *
1321  * The VMA list must be sorted in ascending virtual address order.
1322  *
1323  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1324  * range after unmap_vmas() returns.  So the only responsibility here is to
1325  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1326  * drops the lock and schedules.
1327  */
1328 unsigned long unmap_vmas(struct mmu_gather *tlb,
1329                 struct vm_area_struct *vma, unsigned long start_addr,
1330                 unsigned long end_addr, unsigned long *nr_accounted,
1331                 struct zap_details *details)
1332 {
1333         unsigned long start = start_addr;
1334         struct mm_struct *mm = vma->vm_mm;
1335
1336         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1337         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1338                 unsigned long end;
1339
1340                 start = max(vma->vm_start, start_addr);
1341                 if (start >= vma->vm_end)
1342                         continue;
1343                 end = min(vma->vm_end, end_addr);
1344                 if (end <= vma->vm_start)
1345                         continue;
1346
1347                 if (vma->vm_flags & VM_ACCOUNT)
1348                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1349
1350                 if (unlikely(is_pfn_mapping(vma)))
1351                         untrack_pfn_vma(vma, 0, 0);
1352
1353                 while (start != end) {
1354                         if (unlikely(is_vm_hugetlb_page(vma))) {
1355                                 /*
1356                                  * It is undesirable to test vma->vm_file as it
1357                                  * should be non-null for valid hugetlb area.
1358                                  * However, vm_file will be NULL in the error
1359                                  * cleanup path of do_mmap_pgoff. When
1360                                  * hugetlbfs ->mmap method fails,
1361                                  * do_mmap_pgoff() nullifies vma->vm_file
1362                                  * before calling this function to clean up.
1363                                  * Since no pte has actually been setup, it is
1364                                  * safe to do nothing in this case.
1365                                  */
1366                                 if (vma->vm_file) {
1367                                         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1368                                         __unmap_hugepage_range_final(vma, start, end, NULL);
1369                                         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1370                                 }
1371
1372                                 start = end;
1373                         } else
1374                                 start = unmap_page_range(tlb, vma, start, end, details);
1375                 }
1376         }
1377
1378         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379         return start;   /* which is now the end (or restart) address */
1380 }
1381
1382 /**
1383  * zap_page_range - remove user pages in a given range
1384  * @vma: vm_area_struct holding the applicable pages
1385  * @address: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  * @details: details of nonlinear truncation or shared cache invalidation
1388  */
1389 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1390                 unsigned long size, struct zap_details *details)
1391 {
1392         struct mm_struct *mm = vma->vm_mm;
1393         struct mmu_gather tlb;
1394         unsigned long end = address + size;
1395         unsigned long nr_accounted = 0;
1396
1397         lru_add_drain();
1398         tlb_gather_mmu(&tlb, mm, 0);
1399         update_hiwater_rss(mm);
1400         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1401         tlb_finish_mmu(&tlb, address, end);
1402         return end;
1403 }
1404
1405 /**
1406  * zap_vma_ptes - remove ptes mapping the vma
1407  * @vma: vm_area_struct holding ptes to be zapped
1408  * @address: starting address of pages to zap
1409  * @size: number of bytes to zap
1410  *
1411  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1412  *
1413  * The entire address range must be fully contained within the vma.
1414  *
1415  * Returns 0 if successful.
1416  */
1417 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1418                 unsigned long size)
1419 {
1420         if (address < vma->vm_start || address + size > vma->vm_end ||
1421                         !(vma->vm_flags & VM_PFNMAP))
1422                 return -1;
1423         zap_page_range(vma, address, size, NULL);
1424         return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1427
1428 /**
1429  * follow_page - look up a page descriptor from a user-virtual address
1430  * @vma: vm_area_struct mapping @address
1431  * @address: virtual address to look up
1432  * @flags: flags modifying lookup behaviour
1433  *
1434  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1435  *
1436  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1437  * an error pointer if there is a mapping to something not represented
1438  * by a page descriptor (see also vm_normal_page()).
1439  */
1440 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1441                         unsigned int flags)
1442 {
1443         pgd_t *pgd;
1444         pud_t *pud;
1445         pmd_t *pmd;
1446         pte_t *ptep, pte;
1447         spinlock_t *ptl;
1448         struct page *page;
1449         struct mm_struct *mm = vma->vm_mm;
1450
1451         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1452         if (!IS_ERR(page)) {
1453                 BUG_ON(flags & FOLL_GET);
1454                 goto out;
1455         }
1456
1457         page = NULL;
1458         pgd = pgd_offset(mm, address);
1459         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1460                 goto no_page_table;
1461
1462         pud = pud_offset(pgd, address);
1463         if (pud_none(*pud))
1464                 goto no_page_table;
1465         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1466                 BUG_ON(flags & FOLL_GET);
1467                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1468                 goto out;
1469         }
1470         if (unlikely(pud_bad(*pud)))
1471                 goto no_page_table;
1472
1473         pmd = pmd_offset(pud, address);
1474         if (pmd_none(*pmd))
1475                 goto no_page_table;
1476         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1477                 BUG_ON(flags & FOLL_GET);
1478                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1479                 goto out;
1480         }
1481         if (pmd_trans_huge(*pmd)) {
1482                 if (flags & FOLL_SPLIT) {
1483                         split_huge_page_pmd(mm, pmd);
1484                         goto split_fallthrough;
1485                 }
1486                 spin_lock(&mm->page_table_lock);
1487                 if (likely(pmd_trans_huge(*pmd))) {
1488                         if (unlikely(pmd_trans_splitting(*pmd))) {
1489                                 spin_unlock(&mm->page_table_lock);
1490                                 wait_split_huge_page(vma->anon_vma, pmd);
1491                         } else {
1492                                 page = follow_trans_huge_pmd(mm, address,
1493                                                              pmd, flags);
1494                                 spin_unlock(&mm->page_table_lock);
1495                                 goto out;
1496                         }
1497                 } else
1498                         spin_unlock(&mm->page_table_lock);
1499                 /* fall through */
1500         }
1501 split_fallthrough:
1502         if (unlikely(pmd_bad(*pmd)))
1503                 goto no_page_table;
1504
1505         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1506
1507         pte = *ptep;
1508         if (!pte_present(pte))
1509                 goto no_page;
1510         if ((flags & FOLL_WRITE) && !pte_write(pte))
1511                 goto unlock;
1512
1513         page = vm_normal_page(vma, address, pte);
1514         if (unlikely(!page)) {
1515                 if ((flags & FOLL_DUMP) ||
1516                     !is_zero_pfn(pte_pfn(pte)))
1517                         goto bad_page;
1518                 page = pte_page(pte);
1519         }
1520
1521         if (flags & FOLL_GET)
1522                 get_page_foll(page);
1523         if (flags & FOLL_TOUCH) {
1524                 if ((flags & FOLL_WRITE) &&
1525                     !pte_dirty(pte) && !PageDirty(page))
1526                         set_page_dirty(page);
1527                 /*
1528                  * pte_mkyoung() would be more correct here, but atomic care
1529                  * is needed to avoid losing the dirty bit: it is easier to use
1530                  * mark_page_accessed().
1531                  */
1532                 mark_page_accessed(page);
1533         }
1534         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1535                 /*
1536                  * The preliminary mapping check is mainly to avoid the
1537                  * pointless overhead of lock_page on the ZERO_PAGE
1538                  * which might bounce very badly if there is contention.
1539                  *
1540                  * If the page is already locked, we don't need to
1541                  * handle it now - vmscan will handle it later if and
1542                  * when it attempts to reclaim the page.
1543                  */
1544                 if (page->mapping && trylock_page(page)) {
1545                         lru_add_drain();  /* push cached pages to LRU */
1546                         /*
1547                          * Because we lock page here and migration is
1548                          * blocked by the pte's page reference, we need
1549                          * only check for file-cache page truncation.
1550                          */
1551                         if (page->mapping)
1552                                 mlock_vma_page(page);
1553                         unlock_page(page);
1554                 }
1555         }
1556 unlock:
1557         pte_unmap_unlock(ptep, ptl);
1558 out:
1559         return page;
1560
1561 bad_page:
1562         pte_unmap_unlock(ptep, ptl);
1563         return ERR_PTR(-EFAULT);
1564
1565 no_page:
1566         pte_unmap_unlock(ptep, ptl);
1567         if (!pte_none(pte))
1568                 return page;
1569
1570 no_page_table:
1571         /*
1572          * When core dumping an enormous anonymous area that nobody
1573          * has touched so far, we don't want to allocate unnecessary pages or
1574          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1575          * then get_dump_page() will return NULL to leave a hole in the dump.
1576          * But we can only make this optimization where a hole would surely
1577          * be zero-filled if handle_mm_fault() actually did handle it.
1578          */
1579         if ((flags & FOLL_DUMP) &&
1580             (!vma->vm_ops || !vma->vm_ops->fault))
1581                 return ERR_PTR(-EFAULT);
1582         return page;
1583 }
1584
1585 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1586 {
1587         return stack_guard_page_start(vma, addr) ||
1588                stack_guard_page_end(vma, addr+PAGE_SIZE);
1589 }
1590
1591 /**
1592  * __get_user_pages() - pin user pages in memory
1593  * @tsk:        task_struct of target task
1594  * @mm:         mm_struct of target mm
1595  * @start:      starting user address
1596  * @nr_pages:   number of pages from start to pin
1597  * @gup_flags:  flags modifying pin behaviour
1598  * @pages:      array that receives pointers to the pages pinned.
1599  *              Should be at least nr_pages long. Or NULL, if caller
1600  *              only intends to ensure the pages are faulted in.
1601  * @vmas:       array of pointers to vmas corresponding to each page.
1602  *              Or NULL if the caller does not require them.
1603  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1604  *
1605  * Returns number of pages pinned. This may be fewer than the number
1606  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1607  * were pinned, returns -errno. Each page returned must be released
1608  * with a put_page() call when it is finished with. vmas will only
1609  * remain valid while mmap_sem is held.
1610  *
1611  * Must be called with mmap_sem held for read or write.
1612  *
1613  * __get_user_pages walks a process's page tables and takes a reference to
1614  * each struct page that each user address corresponds to at a given
1615  * instant. That is, it takes the page that would be accessed if a user
1616  * thread accesses the given user virtual address at that instant.
1617  *
1618  * This does not guarantee that the page exists in the user mappings when
1619  * __get_user_pages returns, and there may even be a completely different
1620  * page there in some cases (eg. if mmapped pagecache has been invalidated
1621  * and subsequently re faulted). However it does guarantee that the page
1622  * won't be freed completely. And mostly callers simply care that the page
1623  * contains data that was valid *at some point in time*. Typically, an IO
1624  * or similar operation cannot guarantee anything stronger anyway because
1625  * locks can't be held over the syscall boundary.
1626  *
1627  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1628  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1629  * appropriate) must be called after the page is finished with, and
1630  * before put_page is called.
1631  *
1632  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1633  * or mmap_sem contention, and if waiting is needed to pin all pages,
1634  * *@nonblocking will be set to 0.
1635  *
1636  * In most cases, get_user_pages or get_user_pages_fast should be used
1637  * instead of __get_user_pages. __get_user_pages should be used only if
1638  * you need some special @gup_flags.
1639  */
1640 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1641                      unsigned long start, int nr_pages, unsigned int gup_flags,
1642                      struct page **pages, struct vm_area_struct **vmas,
1643                      int *nonblocking)
1644 {
1645         int i;
1646         unsigned long vm_flags;
1647
1648         if (nr_pages <= 0)
1649                 return 0;
1650
1651         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1652
1653         /* 
1654          * Require read or write permissions.
1655          * If FOLL_FORCE is set, we only require the "MAY" flags.
1656          */
1657         vm_flags  = (gup_flags & FOLL_WRITE) ?
1658                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1659         vm_flags &= (gup_flags & FOLL_FORCE) ?
1660                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1661         i = 0;
1662
1663         do {
1664                 struct vm_area_struct *vma;
1665
1666                 vma = find_extend_vma(mm, start);
1667                 if (!vma && in_gate_area(mm, start)) {
1668                         unsigned long pg = start & PAGE_MASK;
1669                         pgd_t *pgd;
1670                         pud_t *pud;
1671                         pmd_t *pmd;
1672                         pte_t *pte;
1673
1674                         /* user gate pages are read-only */
1675                         if (gup_flags & FOLL_WRITE)
1676                                 return i ? : -EFAULT;
1677                         if (pg > TASK_SIZE)
1678                                 pgd = pgd_offset_k(pg);
1679                         else
1680                                 pgd = pgd_offset_gate(mm, pg);
1681                         BUG_ON(pgd_none(*pgd));
1682                         pud = pud_offset(pgd, pg);
1683                         BUG_ON(pud_none(*pud));
1684                         pmd = pmd_offset(pud, pg);
1685                         if (pmd_none(*pmd))
1686                                 return i ? : -EFAULT;
1687                         VM_BUG_ON(pmd_trans_huge(*pmd));
1688                         pte = pte_offset_map(pmd, pg);
1689                         if (pte_none(*pte)) {
1690                                 pte_unmap(pte);
1691                                 return i ? : -EFAULT;
1692                         }
1693                         vma = get_gate_vma(mm);
1694                         if (pages) {
1695                                 struct page *page;
1696
1697                                 page = vm_normal_page(vma, start, *pte);
1698                                 if (!page) {
1699                                         if (!(gup_flags & FOLL_DUMP) &&
1700                                              is_zero_pfn(pte_pfn(*pte)))
1701                                                 page = pte_page(*pte);
1702                                         else {
1703                                                 pte_unmap(pte);
1704                                                 return i ? : -EFAULT;
1705                                         }
1706                                 }
1707                                 pages[i] = page;
1708                                 get_page(page);
1709                         }
1710                         pte_unmap(pte);
1711                         goto next_page;
1712                 }
1713
1714                 if (!vma ||
1715                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1716                     !(vm_flags & vma->vm_flags))
1717                         return i ? : -EFAULT;
1718
1719                 if (is_vm_hugetlb_page(vma)) {
1720                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1721                                         &start, &nr_pages, i, gup_flags);
1722                         continue;
1723                 }
1724
1725                 do {
1726                         struct page *page;
1727                         unsigned int foll_flags = gup_flags;
1728
1729                         /*
1730                          * If we have a pending SIGKILL, don't keep faulting
1731                          * pages and potentially allocating memory.
1732                          */
1733                         if (unlikely(fatal_signal_pending(current)))
1734                                 return i ? i : -ERESTARTSYS;
1735
1736                         cond_resched();
1737                         while (!(page = follow_page(vma, start, foll_flags))) {
1738                                 int ret;
1739                                 unsigned int fault_flags = 0;
1740
1741                                 /* For mlock, just skip the stack guard page. */
1742                                 if (foll_flags & FOLL_MLOCK) {
1743                                         if (stack_guard_page(vma, start))
1744                                                 goto next_page;
1745                                 }
1746                                 if (foll_flags & FOLL_WRITE)
1747                                         fault_flags |= FAULT_FLAG_WRITE;
1748                                 if (nonblocking)
1749                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1750                                 if (foll_flags & FOLL_NOWAIT)
1751                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1752
1753                                 ret = handle_mm_fault(mm, vma, start,
1754                                                         fault_flags);
1755
1756                                 if (ret & VM_FAULT_ERROR) {
1757                                         if (ret & VM_FAULT_OOM)
1758                                                 return i ? i : -ENOMEM;
1759                                         if (ret & (VM_FAULT_HWPOISON |
1760                                                    VM_FAULT_HWPOISON_LARGE)) {
1761                                                 if (i)
1762                                                         return i;
1763                                                 else if (gup_flags & FOLL_HWPOISON)
1764                                                         return -EHWPOISON;
1765                                                 else
1766                                                         return -EFAULT;
1767                                         }
1768                                         if (ret & VM_FAULT_SIGBUS)
1769                                                 return i ? i : -EFAULT;
1770                                         BUG();
1771                                 }
1772
1773                                 if (tsk) {
1774                                         if (ret & VM_FAULT_MAJOR)
1775                                                 tsk->maj_flt++;
1776                                         else
1777                                                 tsk->min_flt++;
1778                                 }
1779
1780                                 if (ret & VM_FAULT_RETRY) {
1781                                         if (nonblocking)
1782                                                 *nonblocking = 0;
1783                                         return i;
1784                                 }
1785
1786                                 /*
1787                                  * The VM_FAULT_WRITE bit tells us that
1788                                  * do_wp_page has broken COW when necessary,
1789                                  * even if maybe_mkwrite decided not to set
1790                                  * pte_write. We can thus safely do subsequent
1791                                  * page lookups as if they were reads. But only
1792                                  * do so when looping for pte_write is futile:
1793                                  * in some cases userspace may also be wanting
1794                                  * to write to the gotten user page, which a
1795                                  * read fault here might prevent (a readonly
1796                                  * page might get reCOWed by userspace write).
1797                                  */
1798                                 if ((ret & VM_FAULT_WRITE) &&
1799                                     !(vma->vm_flags & VM_WRITE))
1800                                         foll_flags &= ~FOLL_WRITE;
1801
1802                                 cond_resched();
1803                         }
1804                         if (IS_ERR(page))
1805                                 return i ? i : PTR_ERR(page);
1806                         if (pages) {
1807                                 pages[i] = page;
1808
1809                                 flush_anon_page(vma, page, start);
1810                                 flush_dcache_page(page);
1811                         }
1812 next_page:
1813                         if (vmas)
1814                                 vmas[i] = vma;
1815                         i++;
1816                         start += PAGE_SIZE;
1817                         nr_pages--;
1818                 } while (nr_pages && start < vma->vm_end);
1819         } while (nr_pages);
1820         return i;
1821 }
1822 EXPORT_SYMBOL(__get_user_pages);
1823
1824 /*
1825  * fixup_user_fault() - manually resolve a user page fault
1826  * @tsk:        the task_struct to use for page fault accounting, or
1827  *              NULL if faults are not to be recorded.
1828  * @mm:         mm_struct of target mm
1829  * @address:    user address
1830  * @fault_flags:flags to pass down to handle_mm_fault()
1831  *
1832  * This is meant to be called in the specific scenario where for locking reasons
1833  * we try to access user memory in atomic context (within a pagefault_disable()
1834  * section), this returns -EFAULT, and we want to resolve the user fault before
1835  * trying again.
1836  *
1837  * Typically this is meant to be used by the futex code.
1838  *
1839  * The main difference with get_user_pages() is that this function will
1840  * unconditionally call handle_mm_fault() which will in turn perform all the
1841  * necessary SW fixup of the dirty and young bits in the PTE, while
1842  * handle_mm_fault() only guarantees to update these in the struct page.
1843  *
1844  * This is important for some architectures where those bits also gate the
1845  * access permission to the page because they are maintained in software.  On
1846  * such architectures, gup() will not be enough to make a subsequent access
1847  * succeed.
1848  *
1849  * This should be called with the mm_sem held for read.
1850  */
1851 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1852                      unsigned long address, unsigned int fault_flags)
1853 {
1854         struct vm_area_struct *vma;
1855         int ret;
1856
1857         vma = find_extend_vma(mm, address);
1858         if (!vma || address < vma->vm_start)
1859                 return -EFAULT;
1860
1861         ret = handle_mm_fault(mm, vma, address, fault_flags);
1862         if (ret & VM_FAULT_ERROR) {
1863                 if (ret & VM_FAULT_OOM)
1864                         return -ENOMEM;
1865                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1866                         return -EHWPOISON;
1867                 if (ret & VM_FAULT_SIGBUS)
1868                         return -EFAULT;
1869                 BUG();
1870         }
1871         if (tsk) {
1872                 if (ret & VM_FAULT_MAJOR)
1873                         tsk->maj_flt++;
1874                 else
1875                         tsk->min_flt++;
1876         }
1877         return 0;
1878 }
1879
1880 /*
1881  * get_user_pages() - pin user pages in memory
1882  * @tsk:        the task_struct to use for page fault accounting, or
1883  *              NULL if faults are not to be recorded.
1884  * @mm:         mm_struct of target mm
1885  * @start:      starting user address
1886  * @nr_pages:   number of pages from start to pin
1887  * @write:      whether pages will be written to by the caller
1888  * @force:      whether to force write access even if user mapping is
1889  *              readonly. This will result in the page being COWed even
1890  *              in MAP_SHARED mappings. You do not want this.
1891  * @pages:      array that receives pointers to the pages pinned.
1892  *              Should be at least nr_pages long. Or NULL, if caller
1893  *              only intends to ensure the pages are faulted in.
1894  * @vmas:       array of pointers to vmas corresponding to each page.
1895  *              Or NULL if the caller does not require them.
1896  *
1897  * Returns number of pages pinned. This may be fewer than the number
1898  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1899  * were pinned, returns -errno. Each page returned must be released
1900  * with a put_page() call when it is finished with. vmas will only
1901  * remain valid while mmap_sem is held.
1902  *
1903  * Must be called with mmap_sem held for read or write.
1904  *
1905  * get_user_pages walks a process's page tables and takes a reference to
1906  * each struct page that each user address corresponds to at a given
1907  * instant. That is, it takes the page that would be accessed if a user
1908  * thread accesses the given user virtual address at that instant.
1909  *
1910  * This does not guarantee that the page exists in the user mappings when
1911  * get_user_pages returns, and there may even be a completely different
1912  * page there in some cases (eg. if mmapped pagecache has been invalidated
1913  * and subsequently re faulted). However it does guarantee that the page
1914  * won't be freed completely. And mostly callers simply care that the page
1915  * contains data that was valid *at some point in time*. Typically, an IO
1916  * or similar operation cannot guarantee anything stronger anyway because
1917  * locks can't be held over the syscall boundary.
1918  *
1919  * If write=0, the page must not be written to. If the page is written to,
1920  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1921  * after the page is finished with, and before put_page is called.
1922  *
1923  * get_user_pages is typically used for fewer-copy IO operations, to get a
1924  * handle on the memory by some means other than accesses via the user virtual
1925  * addresses. The pages may be submitted for DMA to devices or accessed via
1926  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1927  * use the correct cache flushing APIs.
1928  *
1929  * See also get_user_pages_fast, for performance critical applications.
1930  */
1931 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1932                 unsigned long start, int nr_pages, int write, int force,
1933                 struct page **pages, struct vm_area_struct **vmas)
1934 {
1935         int flags = FOLL_TOUCH;
1936
1937         if (pages)
1938                 flags |= FOLL_GET;
1939         if (write)
1940                 flags |= FOLL_WRITE;
1941         if (force)
1942                 flags |= FOLL_FORCE;
1943
1944         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1945                                 NULL);
1946 }
1947 EXPORT_SYMBOL(get_user_pages);
1948
1949 /**
1950  * get_dump_page() - pin user page in memory while writing it to core dump
1951  * @addr: user address
1952  *
1953  * Returns struct page pointer of user page pinned for dump,
1954  * to be freed afterwards by page_cache_release() or put_page().
1955  *
1956  * Returns NULL on any kind of failure - a hole must then be inserted into
1957  * the corefile, to preserve alignment with its headers; and also returns
1958  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1959  * allowing a hole to be left in the corefile to save diskspace.
1960  *
1961  * Called without mmap_sem, but after all other threads have been killed.
1962  */
1963 #ifdef CONFIG_ELF_CORE
1964 struct page *get_dump_page(unsigned long addr)
1965 {
1966         struct vm_area_struct *vma;
1967         struct page *page;
1968
1969         if (__get_user_pages(current, current->mm, addr, 1,
1970                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1971                              NULL) < 1)
1972                 return NULL;
1973         flush_cache_page(vma, addr, page_to_pfn(page));
1974         return page;
1975 }
1976 #endif /* CONFIG_ELF_CORE */
1977
1978 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1979                         spinlock_t **ptl)
1980 {
1981         pgd_t * pgd = pgd_offset(mm, addr);
1982         pud_t * pud = pud_alloc(mm, pgd, addr);
1983         if (pud) {
1984                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1985                 if (pmd) {
1986                         VM_BUG_ON(pmd_trans_huge(*pmd));
1987                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1988                 }
1989         }
1990         return NULL;
1991 }
1992
1993 /*
1994  * This is the old fallback for page remapping.
1995  *
1996  * For historical reasons, it only allows reserved pages. Only
1997  * old drivers should use this, and they needed to mark their
1998  * pages reserved for the old functions anyway.
1999  */
2000 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2001                         struct page *page, pgprot_t prot)
2002 {
2003         struct mm_struct *mm = vma->vm_mm;
2004         int retval;
2005         pte_t *pte;
2006         spinlock_t *ptl;
2007
2008         retval = -EINVAL;
2009         if (PageAnon(page))
2010                 goto out;
2011         retval = -ENOMEM;
2012         flush_dcache_page(page);
2013         pte = get_locked_pte(mm, addr, &ptl);
2014         if (!pte)
2015                 goto out;
2016         retval = -EBUSY;
2017         if (!pte_none(*pte))
2018                 goto out_unlock;
2019
2020         /* Ok, finally just insert the thing.. */
2021         get_page(page);
2022         inc_mm_counter_fast(mm, MM_FILEPAGES);
2023         page_add_file_rmap(page);
2024         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2025
2026         retval = 0;
2027         pte_unmap_unlock(pte, ptl);
2028         return retval;
2029 out_unlock:
2030         pte_unmap_unlock(pte, ptl);
2031 out:
2032         return retval;
2033 }
2034
2035 /**
2036  * vm_insert_page - insert single page into user vma
2037  * @vma: user vma to map to
2038  * @addr: target user address of this page
2039  * @page: source kernel page
2040  *
2041  * This allows drivers to insert individual pages they've allocated
2042  * into a user vma.
2043  *
2044  * The page has to be a nice clean _individual_ kernel allocation.
2045  * If you allocate a compound page, you need to have marked it as
2046  * such (__GFP_COMP), or manually just split the page up yourself
2047  * (see split_page()).
2048  *
2049  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2050  * took an arbitrary page protection parameter. This doesn't allow
2051  * that. Your vma protection will have to be set up correctly, which
2052  * means that if you want a shared writable mapping, you'd better
2053  * ask for a shared writable mapping!
2054  *
2055  * The page does not need to be reserved.
2056  */
2057 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2058                         struct page *page)
2059 {
2060         if (addr < vma->vm_start || addr >= vma->vm_end)
2061                 return -EFAULT;
2062         if (!page_count(page))
2063                 return -EINVAL;
2064         vma->vm_flags |= VM_INSERTPAGE;
2065         return insert_page(vma, addr, page, vma->vm_page_prot);
2066 }
2067 EXPORT_SYMBOL(vm_insert_page);
2068
2069 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2070                         unsigned long pfn, pgprot_t prot)
2071 {
2072         struct mm_struct *mm = vma->vm_mm;
2073         int retval;
2074         pte_t *pte, entry;
2075         spinlock_t *ptl;
2076
2077         retval = -ENOMEM;
2078         pte = get_locked_pte(mm, addr, &ptl);
2079         if (!pte)
2080                 goto out;
2081         retval = -EBUSY;
2082         if (!pte_none(*pte))
2083                 goto out_unlock;
2084
2085         /* Ok, finally just insert the thing.. */
2086         entry = pte_mkspecial(pfn_pte(pfn, prot));
2087         set_pte_at(mm, addr, pte, entry);
2088         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2089
2090         retval = 0;
2091 out_unlock:
2092         pte_unmap_unlock(pte, ptl);
2093 out:
2094         return retval;
2095 }
2096
2097 /**
2098  * vm_insert_pfn - insert single pfn into user vma
2099  * @vma: user vma to map to
2100  * @addr: target user address of this page
2101  * @pfn: source kernel pfn
2102  *
2103  * Similar to vm_inert_page, this allows drivers to insert individual pages
2104  * they've allocated into a user vma. Same comments apply.
2105  *
2106  * This function should only be called from a vm_ops->fault handler, and
2107  * in that case the handler should return NULL.
2108  *
2109  * vma cannot be a COW mapping.
2110  *
2111  * As this is called only for pages that do not currently exist, we
2112  * do not need to flush old virtual caches or the TLB.
2113  */
2114 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115                         unsigned long pfn)
2116 {
2117         int ret;
2118         pgprot_t pgprot = vma->vm_page_prot;
2119         /*
2120          * Technically, architectures with pte_special can avoid all these
2121          * restrictions (same for remap_pfn_range).  However we would like
2122          * consistency in testing and feature parity among all, so we should
2123          * try to keep these invariants in place for everybody.
2124          */
2125         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2126         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2127                                                 (VM_PFNMAP|VM_MIXEDMAP));
2128         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2129         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2130
2131         if (addr < vma->vm_start || addr >= vma->vm_end)
2132                 return -EFAULT;
2133         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2134                 return -EINVAL;
2135
2136         ret = insert_pfn(vma, addr, pfn, pgprot);
2137
2138         if (ret)
2139                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2140
2141         return ret;
2142 }
2143 EXPORT_SYMBOL(vm_insert_pfn);
2144
2145 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2146                         unsigned long pfn)
2147 {
2148         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2149
2150         if (addr < vma->vm_start || addr >= vma->vm_end)
2151                 return -EFAULT;
2152
2153         /*
2154          * If we don't have pte special, then we have to use the pfn_valid()
2155          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2156          * refcount the page if pfn_valid is true (hence insert_page rather
2157          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2158          * without pte special, it would there be refcounted as a normal page.
2159          */
2160         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2161                 struct page *page;
2162
2163                 page = pfn_to_page(pfn);
2164                 return insert_page(vma, addr, page, vma->vm_page_prot);
2165         }
2166         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2167 }
2168 EXPORT_SYMBOL(vm_insert_mixed);
2169
2170 /*
2171  * maps a range of physical memory into the requested pages. the old
2172  * mappings are removed. any references to nonexistent pages results
2173  * in null mappings (currently treated as "copy-on-access")
2174  */
2175 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2176                         unsigned long addr, unsigned long end,
2177                         unsigned long pfn, pgprot_t prot)
2178 {
2179         pte_t *pte;
2180         spinlock_t *ptl;
2181
2182         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2183         if (!pte)
2184                 return -ENOMEM;
2185         arch_enter_lazy_mmu_mode();
2186         do {
2187                 BUG_ON(!pte_none(*pte));
2188                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2189                 pfn++;
2190         } while (pte++, addr += PAGE_SIZE, addr != end);
2191         arch_leave_lazy_mmu_mode();
2192         pte_unmap_unlock(pte - 1, ptl);
2193         return 0;
2194 }
2195
2196 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197                         unsigned long addr, unsigned long end,
2198                         unsigned long pfn, pgprot_t prot)
2199 {
2200         pmd_t *pmd;
2201         unsigned long next;
2202
2203         pfn -= addr >> PAGE_SHIFT;
2204         pmd = pmd_alloc(mm, pud, addr);
2205         if (!pmd)
2206                 return -ENOMEM;
2207         VM_BUG_ON(pmd_trans_huge(*pmd));
2208         do {
2209                 next = pmd_addr_end(addr, end);
2210                 if (remap_pte_range(mm, pmd, addr, next,
2211                                 pfn + (addr >> PAGE_SHIFT), prot))
2212                         return -ENOMEM;
2213         } while (pmd++, addr = next, addr != end);
2214         return 0;
2215 }
2216
2217 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2218                         unsigned long addr, unsigned long end,
2219                         unsigned long pfn, pgprot_t prot)
2220 {
2221         pud_t *pud;
2222         unsigned long next;
2223
2224         pfn -= addr >> PAGE_SHIFT;
2225         pud = pud_alloc(mm, pgd, addr);
2226         if (!pud)
2227                 return -ENOMEM;
2228         do {
2229                 next = pud_addr_end(addr, end);
2230                 if (remap_pmd_range(mm, pud, addr, next,
2231                                 pfn + (addr >> PAGE_SHIFT), prot))
2232                         return -ENOMEM;
2233         } while (pud++, addr = next, addr != end);
2234         return 0;
2235 }
2236
2237 /**
2238  * remap_pfn_range - remap kernel memory to userspace
2239  * @vma: user vma to map to
2240  * @addr: target user address to start at
2241  * @pfn: physical address of kernel memory
2242  * @size: size of map area
2243  * @prot: page protection flags for this mapping
2244  *
2245  *  Note: this is only safe if the mm semaphore is held when called.
2246  */
2247 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2248                     unsigned long pfn, unsigned long size, pgprot_t prot)
2249 {
2250         pgd_t *pgd;
2251         unsigned long next;
2252         unsigned long end = addr + PAGE_ALIGN(size);
2253         struct mm_struct *mm = vma->vm_mm;
2254         int err;
2255
2256         /*
2257          * Physically remapped pages are special. Tell the
2258          * rest of the world about it:
2259          *   VM_IO tells people not to look at these pages
2260          *      (accesses can have side effects).
2261          *   VM_RESERVED is specified all over the place, because
2262          *      in 2.4 it kept swapout's vma scan off this vma; but
2263          *      in 2.6 the LRU scan won't even find its pages, so this
2264          *      flag means no more than count its pages in reserved_vm,
2265          *      and omit it from core dump, even when VM_IO turned off.
2266          *   VM_PFNMAP tells the core MM that the base pages are just
2267          *      raw PFN mappings, and do not have a "struct page" associated
2268          *      with them.
2269          *
2270          * There's a horrible special case to handle copy-on-write
2271          * behaviour that some programs depend on. We mark the "original"
2272          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2273          */
2274         if (addr == vma->vm_start && end == vma->vm_end) {
2275                 vma->vm_pgoff = pfn;
2276                 vma->vm_flags |= VM_PFN_AT_MMAP;
2277         } else if (is_cow_mapping(vma->vm_flags))
2278                 return -EINVAL;
2279
2280         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2281
2282         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2283         if (err) {
2284                 /*
2285                  * To indicate that track_pfn related cleanup is not
2286                  * needed from higher level routine calling unmap_vmas
2287                  */
2288                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2289                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2290                 return -EINVAL;
2291         }
2292
2293         BUG_ON(addr >= end);
2294         pfn -= addr >> PAGE_SHIFT;
2295         pgd = pgd_offset(mm, addr);
2296         flush_cache_range(vma, addr, end);
2297         do {
2298                 next = pgd_addr_end(addr, end);
2299                 err = remap_pud_range(mm, pgd, addr, next,
2300                                 pfn + (addr >> PAGE_SHIFT), prot);
2301                 if (err)
2302                         break;
2303         } while (pgd++, addr = next, addr != end);
2304
2305         if (err)
2306                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2307
2308         return err;
2309 }
2310 EXPORT_SYMBOL(remap_pfn_range);
2311
2312 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2313                                      unsigned long addr, unsigned long end,
2314                                      pte_fn_t fn, void *data)
2315 {
2316         pte_t *pte;
2317         int err;
2318         pgtable_t token;
2319         spinlock_t *uninitialized_var(ptl);
2320
2321         pte = (mm == &init_mm) ?
2322                 pte_alloc_kernel(pmd, addr) :
2323                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2324         if (!pte)
2325                 return -ENOMEM;
2326
2327         BUG_ON(pmd_huge(*pmd));
2328
2329         arch_enter_lazy_mmu_mode();
2330
2331         token = pmd_pgtable(*pmd);
2332
2333         do {
2334                 err = fn(pte++, token, addr, data);
2335                 if (err)
2336                         break;
2337         } while (addr += PAGE_SIZE, addr != end);
2338
2339         arch_leave_lazy_mmu_mode();
2340
2341         if (mm != &init_mm)
2342                 pte_unmap_unlock(pte-1, ptl);
2343         return err;
2344 }
2345
2346 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2347                                      unsigned long addr, unsigned long end,
2348                                      pte_fn_t fn, void *data)
2349 {
2350         pmd_t *pmd;
2351         unsigned long next;
2352         int err;
2353
2354         BUG_ON(pud_huge(*pud));
2355
2356         pmd = pmd_alloc(mm, pud, addr);
2357         if (!pmd)
2358                 return -ENOMEM;
2359         do {
2360                 next = pmd_addr_end(addr, end);
2361                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2362                 if (err)
2363                         break;
2364         } while (pmd++, addr = next, addr != end);
2365         return err;
2366 }
2367
2368 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2369                                      unsigned long addr, unsigned long end,
2370                                      pte_fn_t fn, void *data)
2371 {
2372         pud_t *pud;
2373         unsigned long next;
2374         int err;
2375
2376         pud = pud_alloc(mm, pgd, addr);
2377         if (!pud)
2378                 return -ENOMEM;
2379         do {
2380                 next = pud_addr_end(addr, end);
2381                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2382                 if (err)
2383                         break;
2384         } while (pud++, addr = next, addr != end);
2385         return err;
2386 }
2387
2388 /*
2389  * Scan a region of virtual memory, filling in page tables as necessary
2390  * and calling a provided function on each leaf page table.
2391  */
2392 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2393                         unsigned long size, pte_fn_t fn, void *data)
2394 {
2395         pgd_t *pgd;
2396         unsigned long next;
2397         unsigned long end = addr + size;
2398         int err;
2399
2400         BUG_ON(addr >= end);
2401         pgd = pgd_offset(mm, addr);
2402         do {
2403                 next = pgd_addr_end(addr, end);
2404                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2405                 if (err)
2406                         break;
2407         } while (pgd++, addr = next, addr != end);
2408
2409         return err;
2410 }
2411 EXPORT_SYMBOL_GPL(apply_to_page_range);
2412
2413 /*
2414  * handle_pte_fault chooses page fault handler according to an entry
2415  * which was read non-atomically.  Before making any commitment, on
2416  * those architectures or configurations (e.g. i386 with PAE) which
2417  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2418  * must check under lock before unmapping the pte and proceeding
2419  * (but do_wp_page is only called after already making such a check;
2420  * and do_anonymous_page can safely check later on).
2421  */
2422 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2423                                 pte_t *page_table, pte_t orig_pte)
2424 {
2425         int same = 1;
2426 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2427         if (sizeof(pte_t) > sizeof(unsigned long)) {
2428                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2429                 spin_lock(ptl);
2430                 same = pte_same(*page_table, orig_pte);
2431                 spin_unlock(ptl);
2432         }
2433 #endif
2434         pte_unmap(page_table);
2435         return same;
2436 }
2437
2438 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2439 {
2440         /*
2441          * If the source page was a PFN mapping, we don't have
2442          * a "struct page" for it. We do a best-effort copy by
2443          * just copying from the original user address. If that
2444          * fails, we just zero-fill it. Live with it.
2445          */
2446         if (unlikely(!src)) {
2447                 void *kaddr = kmap_atomic(dst, KM_USER0);
2448                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2449
2450                 /*
2451                  * This really shouldn't fail, because the page is there
2452                  * in the page tables. But it might just be unreadable,
2453                  * in which case we just give up and fill the result with
2454                  * zeroes.
2455                  */
2456                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2457                         clear_page(kaddr);
2458                 kunmap_atomic(kaddr, KM_USER0);
2459                 flush_dcache_page(dst);
2460         } else
2461                 copy_user_highpage(dst, src, va, vma);
2462 }
2463
2464 /*
2465  * This routine handles present pages, when users try to write
2466  * to a shared page. It is done by copying the page to a new address
2467  * and decrementing the shared-page counter for the old page.
2468  *
2469  * Note that this routine assumes that the protection checks have been
2470  * done by the caller (the low-level page fault routine in most cases).
2471  * Thus we can safely just mark it writable once we've done any necessary
2472  * COW.
2473  *
2474  * We also mark the page dirty at this point even though the page will
2475  * change only once the write actually happens. This avoids a few races,
2476  * and potentially makes it more efficient.
2477  *
2478  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2479  * but allow concurrent faults), with pte both mapped and locked.
2480  * We return with mmap_sem still held, but pte unmapped and unlocked.
2481  */
2482 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2483                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2484                 spinlock_t *ptl, pte_t orig_pte)
2485         __releases(ptl)
2486 {
2487         struct page *old_page, *new_page;
2488         pte_t entry;
2489         int ret = 0;
2490         int page_mkwrite = 0;
2491         struct page *dirty_page = NULL;
2492
2493         old_page = vm_normal_page(vma, address, orig_pte);
2494         if (!old_page) {
2495                 /*
2496                  * VM_MIXEDMAP !pfn_valid() case
2497                  *
2498                  * We should not cow pages in a shared writeable mapping.
2499                  * Just mark the pages writable as we can't do any dirty
2500                  * accounting on raw pfn maps.
2501                  */
2502                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2503                                      (VM_WRITE|VM_SHARED))
2504                         goto reuse;
2505                 goto gotten;
2506         }
2507
2508         /*
2509          * Take out anonymous pages first, anonymous shared vmas are
2510          * not dirty accountable.
2511          */
2512         if (PageAnon(old_page) && !PageKsm(old_page)) {
2513                 if (!trylock_page(old_page)) {
2514                         page_cache_get(old_page);
2515                         pte_unmap_unlock(page_table, ptl);
2516                         lock_page(old_page);
2517                         page_table = pte_offset_map_lock(mm, pmd, address,
2518                                                          &ptl);
2519                         if (!pte_same(*page_table, orig_pte)) {
2520                                 unlock_page(old_page);
2521                                 goto unlock;
2522                         }
2523                         page_cache_release(old_page);
2524                 }
2525                 if (reuse_swap_page(old_page)) {
2526                         /*
2527                          * The page is all ours.  Move it to our anon_vma so
2528                          * the rmap code will not search our parent or siblings.
2529                          * Protected against the rmap code by the page lock.
2530                          */
2531                         page_move_anon_rmap(old_page, vma, address);
2532                         unlock_page(old_page);
2533                         goto reuse;
2534                 }
2535                 unlock_page(old_page);
2536         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2537                                         (VM_WRITE|VM_SHARED))) {
2538                 /*
2539                  * Only catch write-faults on shared writable pages,
2540                  * read-only shared pages can get COWed by
2541                  * get_user_pages(.write=1, .force=1).
2542                  */
2543                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2544                         struct vm_fault vmf;
2545                         int tmp;
2546
2547                         vmf.virtual_address = (void __user *)(address &
2548                                                                 PAGE_MASK);
2549                         vmf.pgoff = old_page->index;
2550                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2551                         vmf.page = old_page;
2552
2553                         /*
2554                          * Notify the address space that the page is about to
2555                          * become writable so that it can prohibit this or wait
2556                          * for the page to get into an appropriate state.
2557                          *
2558                          * We do this without the lock held, so that it can
2559                          * sleep if it needs to.
2560                          */
2561                         page_cache_get(old_page);
2562                         pte_unmap_unlock(page_table, ptl);
2563
2564                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2565                         if (unlikely(tmp &
2566                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2567                                 ret = tmp;
2568                                 goto unwritable_page;
2569                         }
2570                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2571                                 lock_page(old_page);
2572                                 if (!old_page->mapping) {
2573                                         ret = 0; /* retry the fault */
2574                                         unlock_page(old_page);
2575                                         goto unwritable_page;
2576                                 }
2577                         } else
2578                                 VM_BUG_ON(!PageLocked(old_page));
2579
2580                         /*
2581                          * Since we dropped the lock we need to revalidate
2582                          * the PTE as someone else may have changed it.  If
2583                          * they did, we just return, as we can count on the
2584                          * MMU to tell us if they didn't also make it writable.
2585                          */
2586                         page_table = pte_offset_map_lock(mm, pmd, address,
2587                                                          &ptl);
2588                         if (!pte_same(*page_table, orig_pte)) {
2589                                 unlock_page(old_page);
2590                                 goto unlock;
2591                         }
2592
2593                         page_mkwrite = 1;
2594                 }
2595                 dirty_page = old_page;
2596                 get_page(dirty_page);
2597
2598 reuse:
2599                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2600                 entry = pte_mkyoung(orig_pte);
2601                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2602                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2603                         update_mmu_cache(vma, address, page_table);
2604                 pte_unmap_unlock(page_table, ptl);
2605                 ret |= VM_FAULT_WRITE;
2606
2607                 if (!dirty_page)
2608                         return ret;
2609
2610                 /*
2611                  * Yes, Virginia, this is actually required to prevent a race
2612                  * with clear_page_dirty_for_io() from clearing the page dirty
2613                  * bit after it clear all dirty ptes, but before a racing
2614                  * do_wp_page installs a dirty pte.
2615                  *
2616                  * __do_fault is protected similarly.
2617                  */
2618                 if (!page_mkwrite) {
2619                         wait_on_page_locked(dirty_page);
2620                         set_page_dirty_balance(dirty_page, page_mkwrite);
2621                 }
2622                 put_page(dirty_page);
2623                 if (page_mkwrite) {
2624                         struct address_space *mapping = dirty_page->mapping;
2625
2626                         set_page_dirty(dirty_page);
2627                         unlock_page(dirty_page);
2628                         page_cache_release(dirty_page);
2629                         if (mapping)    {
2630                                 /*
2631                                  * Some device drivers do not set page.mapping
2632                                  * but still dirty their pages
2633                                  */
2634                                 balance_dirty_pages_ratelimited(mapping);
2635                         }
2636                 }
2637
2638                 /* file_update_time outside page_lock */
2639                 if (vma->vm_file)
2640                         file_update_time(vma->vm_file);
2641
2642                 return ret;
2643         }
2644
2645         /*
2646          * Ok, we need to copy. Oh, well..
2647          */
2648         page_cache_get(old_page);
2649 gotten:
2650         pte_unmap_unlock(page_table, ptl);
2651
2652         if (unlikely(anon_vma_prepare(vma)))
2653                 goto oom;
2654
2655         if (is_zero_pfn(pte_pfn(orig_pte))) {
2656                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2657                 if (!new_page)
2658                         goto oom;
2659         } else {
2660                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2661                 if (!new_page)
2662                         goto oom;
2663                 cow_user_page(new_page, old_page, address, vma);
2664         }
2665         __SetPageUptodate(new_page);
2666
2667         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2668                 goto oom_free_new;
2669
2670         /*
2671          * Re-check the pte - we dropped the lock
2672          */
2673         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2674         if (likely(pte_same(*page_table, orig_pte))) {
2675                 if (old_page) {
2676                         if (!PageAnon(old_page)) {
2677                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2678                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2679                         }
2680                 } else
2681                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2682                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2683                 entry = mk_pte(new_page, vma->vm_page_prot);
2684                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2685                 /*
2686                  * Clear the pte entry and flush it first, before updating the
2687                  * pte with the new entry. This will avoid a race condition
2688                  * seen in the presence of one thread doing SMC and another
2689                  * thread doing COW.
2690                  */
2691                 ptep_clear_flush(vma, address, page_table);
2692                 page_add_new_anon_rmap(new_page, vma, address);
2693                 /*
2694                  * We call the notify macro here because, when using secondary
2695                  * mmu page tables (such as kvm shadow page tables), we want the
2696                  * new page to be mapped directly into the secondary page table.
2697                  */
2698                 set_pte_at_notify(mm, address, page_table, entry);
2699                 update_mmu_cache(vma, address, page_table);
2700                 if (old_page) {
2701                         /*
2702                          * Only after switching the pte to the new page may
2703                          * we remove the mapcount here. Otherwise another
2704                          * process may come and find the rmap count decremented
2705                          * before the pte is switched to the new page, and
2706                          * "reuse" the old page writing into it while our pte
2707                          * here still points into it and can be read by other
2708                          * threads.
2709                          *
2710                          * The critical issue is to order this
2711                          * page_remove_rmap with the ptp_clear_flush above.
2712                          * Those stores are ordered by (if nothing else,)
2713                          * the barrier present in the atomic_add_negative
2714                          * in page_remove_rmap.
2715                          *
2716                          * Then the TLB flush in ptep_clear_flush ensures that
2717                          * no process can access the old page before the
2718                          * decremented mapcount is visible. And the old page
2719                          * cannot be reused until after the decremented
2720                          * mapcount is visible. So transitively, TLBs to
2721                          * old page will be flushed before it can be reused.
2722                          */
2723                         page_remove_rmap(old_page);
2724                 }
2725
2726                 /* Free the old page.. */
2727                 new_page = old_page;
2728                 ret |= VM_FAULT_WRITE;
2729         } else
2730                 mem_cgroup_uncharge_page(new_page);
2731
2732         if (new_page)
2733                 page_cache_release(new_page);
2734 unlock:
2735         pte_unmap_unlock(page_table, ptl);
2736         if (old_page) {
2737                 /*
2738                  * Don't let another task, with possibly unlocked vma,
2739                  * keep the mlocked page.
2740                  */
2741                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2742                         lock_page(old_page);    /* LRU manipulation */
2743                         munlock_vma_page(old_page);
2744                         unlock_page(old_page);
2745                 }
2746                 page_cache_release(old_page);
2747         }
2748         return ret;
2749 oom_free_new:
2750         page_cache_release(new_page);
2751 oom:
2752         if (old_page) {
2753                 if (page_mkwrite) {
2754                         unlock_page(old_page);
2755                         page_cache_release(old_page);
2756                 }
2757                 page_cache_release(old_page);
2758         }
2759         return VM_FAULT_OOM;
2760
2761 unwritable_page:
2762         page_cache_release(old_page);
2763         return ret;
2764 }
2765
2766 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2767                 unsigned long start_addr, unsigned long end_addr,
2768                 struct zap_details *details)
2769 {
2770         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2771 }
2772
2773 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2774                                             struct zap_details *details)
2775 {
2776         struct vm_area_struct *vma;
2777         struct prio_tree_iter iter;
2778         pgoff_t vba, vea, zba, zea;
2779
2780         vma_prio_tree_foreach(vma, &iter, root,
2781                         details->first_index, details->last_index) {
2782
2783                 vba = vma->vm_pgoff;
2784                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2785                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2786                 zba = details->first_index;
2787                 if (zba < vba)
2788                         zba = vba;
2789                 zea = details->last_index;
2790                 if (zea > vea)
2791                         zea = vea;
2792
2793                 unmap_mapping_range_vma(vma,
2794                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2795                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2796                                 details);
2797         }
2798 }
2799
2800 static inline void unmap_mapping_range_list(struct list_head *head,
2801                                             struct zap_details *details)
2802 {
2803         struct vm_area_struct *vma;
2804
2805         /*
2806          * In nonlinear VMAs there is no correspondence between virtual address
2807          * offset and file offset.  So we must perform an exhaustive search
2808          * across *all* the pages in each nonlinear VMA, not just the pages
2809          * whose virtual address lies outside the file truncation point.
2810          */
2811         list_for_each_entry(vma, head, shared.vm_set.list) {
2812                 details->nonlinear_vma = vma;
2813                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2814         }
2815 }
2816
2817 /**
2818  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2819  * @mapping: the address space containing mmaps to be unmapped.
2820  * @holebegin: byte in first page to unmap, relative to the start of
2821  * the underlying file.  This will be rounded down to a PAGE_SIZE
2822  * boundary.  Note that this is different from truncate_pagecache(), which
2823  * must keep the partial page.  In contrast, we must get rid of
2824  * partial pages.
2825  * @holelen: size of prospective hole in bytes.  This will be rounded
2826  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2827  * end of the file.
2828  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2829  * but 0 when invalidating pagecache, don't throw away private data.
2830  */
2831 void unmap_mapping_range(struct address_space *mapping,
2832                 loff_t const holebegin, loff_t const holelen, int even_cows)
2833 {
2834         struct zap_details details;
2835         pgoff_t hba = holebegin >> PAGE_SHIFT;
2836         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2837
2838         /* Check for overflow. */
2839         if (sizeof(holelen) > sizeof(hlen)) {
2840                 long long holeend =
2841                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2842                 if (holeend & ~(long long)ULONG_MAX)
2843                         hlen = ULONG_MAX - hba + 1;
2844         }
2845
2846         details.check_mapping = even_cows? NULL: mapping;
2847         details.nonlinear_vma = NULL;
2848         details.first_index = hba;
2849         details.last_index = hba + hlen - 1;
2850         if (details.last_index < details.first_index)
2851                 details.last_index = ULONG_MAX;
2852
2853
2854         mutex_lock(&mapping->i_mmap_mutex);
2855         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2856                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2857         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2858                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2859         mutex_unlock(&mapping->i_mmap_mutex);
2860 }
2861 EXPORT_SYMBOL(unmap_mapping_range);
2862
2863 /*
2864  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2865  * but allow concurrent faults), and pte mapped but not yet locked.
2866  * We return with mmap_sem still held, but pte unmapped and unlocked.
2867  */
2868 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2869                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2870                 unsigned int flags, pte_t orig_pte)
2871 {
2872         spinlock_t *ptl;
2873         struct page *page, *swapcache = NULL;
2874         swp_entry_t entry;
2875         pte_t pte;
2876         int locked;
2877         struct mem_cgroup *ptr;
2878         int exclusive = 0;
2879         int ret = 0;
2880
2881         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2882                 goto out;
2883
2884         entry = pte_to_swp_entry(orig_pte);
2885         if (unlikely(non_swap_entry(entry))) {
2886                 if (is_migration_entry(entry)) {
2887                         migration_entry_wait(mm, pmd, address);
2888                 } else if (is_hwpoison_entry(entry)) {
2889                         ret = VM_FAULT_HWPOISON;
2890                 } else {
2891                         print_bad_pte(vma, address, orig_pte, NULL);
2892                         ret = VM_FAULT_SIGBUS;
2893                 }
2894                 goto out;
2895         }
2896         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2897         page = lookup_swap_cache(entry);
2898         if (!page) {
2899                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2900                 page = swapin_readahead(entry,
2901                                         GFP_HIGHUSER_MOVABLE, vma, address);
2902                 if (!page) {
2903                         /*
2904                          * Back out if somebody else faulted in this pte
2905                          * while we released the pte lock.
2906                          */
2907                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2908                         if (likely(pte_same(*page_table, orig_pte)))
2909                                 ret = VM_FAULT_OOM;
2910                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2911                         goto unlock;
2912                 }
2913
2914                 /* Had to read the page from swap area: Major fault */
2915                 ret = VM_FAULT_MAJOR;
2916                 count_vm_event(PGMAJFAULT);
2917                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2918         } else if (PageHWPoison(page)) {
2919                 /*
2920                  * hwpoisoned dirty swapcache pages are kept for killing
2921                  * owner processes (which may be unknown at hwpoison time)
2922                  */
2923                 ret = VM_FAULT_HWPOISON;
2924                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2925                 goto out_release;
2926         }
2927
2928         locked = lock_page_or_retry(page, mm, flags);
2929         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2930         if (!locked) {
2931                 ret |= VM_FAULT_RETRY;
2932                 goto out_release;
2933         }
2934
2935         /*
2936          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2937          * release the swapcache from under us.  The page pin, and pte_same
2938          * test below, are not enough to exclude that.  Even if it is still
2939          * swapcache, we need to check that the page's swap has not changed.
2940          */
2941         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2942                 goto out_page;
2943
2944         if (ksm_might_need_to_copy(page, vma, address)) {
2945                 swapcache = page;
2946                 page = ksm_does_need_to_copy(page, vma, address);
2947
2948                 if (unlikely(!page)) {
2949                         ret = VM_FAULT_OOM;
2950                         page = swapcache;
2951                         swapcache = NULL;
2952                         goto out_page;
2953                 }
2954         }
2955
2956         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2957                 ret = VM_FAULT_OOM;
2958                 goto out_page;
2959         }
2960
2961         /*
2962          * Back out if somebody else already faulted in this pte.
2963          */
2964         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2965         if (unlikely(!pte_same(*page_table, orig_pte)))
2966                 goto out_nomap;
2967
2968         if (unlikely(!PageUptodate(page))) {
2969                 ret = VM_FAULT_SIGBUS;
2970                 goto out_nomap;
2971         }
2972
2973         /*
2974          * The page isn't present yet, go ahead with the fault.
2975          *
2976          * Be careful about the sequence of operations here.
2977          * To get its accounting right, reuse_swap_page() must be called
2978          * while the page is counted on swap but not yet in mapcount i.e.
2979          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2980          * must be called after the swap_free(), or it will never succeed.
2981          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2982          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2983          * in page->private. In this case, a record in swap_cgroup  is silently
2984          * discarded at swap_free().
2985          */
2986
2987         inc_mm_counter_fast(mm, MM_ANONPAGES);
2988         dec_mm_counter_fast(mm, MM_SWAPENTS);
2989         pte = mk_pte(page, vma->vm_page_prot);
2990         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2991                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2992                 flags &= ~FAULT_FLAG_WRITE;
2993                 ret |= VM_FAULT_WRITE;
2994                 exclusive = 1;
2995         }
2996         flush_icache_page(vma, page);
2997         set_pte_at(mm, address, page_table, pte);
2998         do_page_add_anon_rmap(page, vma, address, exclusive);
2999         /* It's better to call commit-charge after rmap is established */
3000         mem_cgroup_commit_charge_swapin(page, ptr);
3001
3002         swap_free(entry);
3003         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3004                 try_to_free_swap(page);
3005         unlock_page(page);
3006         if (swapcache) {
3007                 /*
3008                  * Hold the lock to avoid the swap entry to be reused
3009                  * until we take the PT lock for the pte_same() check
3010                  * (to avoid false positives from pte_same). For
3011                  * further safety release the lock after the swap_free
3012                  * so that the swap count won't change under a
3013                  * parallel locked swapcache.
3014                  */
3015                 unlock_page(swapcache);
3016                 page_cache_release(swapcache);
3017         }
3018
3019         if (flags & FAULT_FLAG_WRITE) {
3020                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3021                 if (ret & VM_FAULT_ERROR)
3022                         ret &= VM_FAULT_ERROR;
3023                 goto out;
3024         }
3025
3026         /* No need to invalidate - it was non-present before */
3027         update_mmu_cache(vma, address, page_table);
3028 unlock:
3029         pte_unmap_unlock(page_table, ptl);
3030 out:
3031         return ret;
3032 out_nomap:
3033         mem_cgroup_cancel_charge_swapin(ptr);
3034         pte_unmap_unlock(page_table, ptl);
3035 out_page:
3036         unlock_page(page);
3037 out_release:
3038         page_cache_release(page);
3039         if (swapcache) {
3040                 unlock_page(swapcache);
3041                 page_cache_release(swapcache);
3042         }
3043         return ret;
3044 }
3045
3046 /*
3047  * This is like a special single-page "expand_{down|up}wards()",
3048  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3049  * doesn't hit another vma.
3050  */
3051 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3052 {
3053         address &= PAGE_MASK;
3054         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3055                 struct vm_area_struct *prev = vma->vm_prev;
3056
3057                 /*
3058                  * Is there a mapping abutting this one below?
3059                  *
3060                  * That's only ok if it's the same stack mapping
3061                  * that has gotten split..
3062                  */
3063                 if (prev && prev->vm_end == address)
3064                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3065
3066                 expand_downwards(vma, address - PAGE_SIZE);
3067         }
3068         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3069                 struct vm_area_struct *next = vma->vm_next;
3070
3071                 /* As VM_GROWSDOWN but s/below/above/ */
3072                 if (next && next->vm_start == address + PAGE_SIZE)
3073                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3074
3075                 expand_upwards(vma, address + PAGE_SIZE);
3076         }
3077         return 0;
3078 }
3079
3080 /*
3081  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3082  * but allow concurrent faults), and pte mapped but not yet locked.
3083  * We return with mmap_sem still held, but pte unmapped and unlocked.
3084  */
3085 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3086                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3087                 unsigned int flags)
3088 {
3089         struct page *page;
3090         spinlock_t *ptl;
3091         pte_t entry;
3092
3093         pte_unmap(page_table);
3094
3095         /* Check if we need to add a guard page to the stack */
3096         if (check_stack_guard_page(vma, address) < 0)
3097                 return VM_FAULT_SIGBUS;
3098
3099         /* Use the zero-page for reads */
3100         if (!(flags & FAULT_FLAG_WRITE)) {
3101                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3102                                                 vma->vm_page_prot));
3103                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3104                 if (!pte_none(*page_table))
3105                         goto unlock;
3106                 goto setpte;
3107         }
3108
3109         /* Allocate our own private page. */
3110         if (unlikely(anon_vma_prepare(vma)))
3111                 goto oom;
3112         page = alloc_zeroed_user_highpage_movable(vma, address);
3113         if (!page)
3114                 goto oom;
3115         __SetPageUptodate(page);
3116
3117         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3118                 goto oom_free_page;
3119
3120         entry = mk_pte(page, vma->vm_page_prot);
3121         if (vma->vm_flags & VM_WRITE)
3122                 entry = pte_mkwrite(pte_mkdirty(entry));
3123
3124         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3125         if (!pte_none(*page_table))
3126                 goto release;
3127
3128         inc_mm_counter_fast(mm, MM_ANONPAGES);
3129         page_add_new_anon_rmap(page, vma, address);
3130 setpte:
3131         set_pte_at(mm, address, page_table, entry);
3132
3133         /* No need to invalidate - it was non-present before */
3134         update_mmu_cache(vma, address, page_table);
3135 unlock:
3136         pte_unmap_unlock(page_table, ptl);
3137         return 0;
3138 release:
3139         mem_cgroup_uncharge_page(page);
3140         page_cache_release(page);
3141         goto unlock;
3142 oom_free_page:
3143         page_cache_release(page);
3144 oom:
3145         return VM_FAULT_OOM;
3146 }
3147
3148 /*
3149  * __do_fault() tries to create a new page mapping. It aggressively
3150  * tries to share with existing pages, but makes a separate copy if
3151  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3152  * the next page fault.
3153  *
3154  * As this is called only for pages that do not currently exist, we
3155  * do not need to flush old virtual caches or the TLB.
3156  *
3157  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3158  * but allow concurrent faults), and pte neither mapped nor locked.
3159  * We return with mmap_sem still held, but pte unmapped and unlocked.
3160  */
3161 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3162                 unsigned long address, pmd_t *pmd,
3163                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3164 {
3165         pte_t *page_table;
3166         spinlock_t *ptl;
3167         struct page *page;
3168         struct page *cow_page;
3169         pte_t entry;
3170         int anon = 0;
3171         struct page *dirty_page = NULL;
3172         struct vm_fault vmf;
3173         int ret;
3174         int page_mkwrite = 0;
3175
3176         /*
3177          * If we do COW later, allocate page befor taking lock_page()
3178          * on the file cache page. This will reduce lock holding time.
3179          */
3180         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3181
3182                 if (unlikely(anon_vma_prepare(vma)))
3183                         return VM_FAULT_OOM;
3184
3185                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3186                 if (!cow_page)
3187                         return VM_FAULT_OOM;
3188
3189                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3190                         page_cache_release(cow_page);
3191                         return VM_FAULT_OOM;
3192                 }
3193         } else
3194                 cow_page = NULL;
3195
3196         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3197         vmf.pgoff = pgoff;
3198         vmf.flags = flags;
3199         vmf.page = NULL;
3200
3201         ret = vma->vm_ops->fault(vma, &vmf);
3202         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3203                             VM_FAULT_RETRY)))
3204                 goto uncharge_out;
3205
3206         if (unlikely(PageHWPoison(vmf.page))) {
3207                 if (ret & VM_FAULT_LOCKED)
3208                         unlock_page(vmf.page);
3209                 ret = VM_FAULT_HWPOISON;
3210                 goto uncharge_out;
3211         }
3212
3213         /*
3214          * For consistency in subsequent calls, make the faulted page always
3215          * locked.
3216          */
3217         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3218                 lock_page(vmf.page);
3219         else
3220                 VM_BUG_ON(!PageLocked(vmf.page));
3221
3222         /*
3223          * Should we do an early C-O-W break?
3224          */
3225         page = vmf.page;
3226         if (flags & FAULT_FLAG_WRITE) {
3227                 if (!(vma->vm_flags & VM_SHARED)) {
3228                         page = cow_page;
3229                         anon = 1;
3230                         copy_user_highpage(page, vmf.page, address, vma);
3231                         __SetPageUptodate(page);
3232                 } else {
3233                         /*
3234                          * If the page will be shareable, see if the backing
3235                          * address space wants to know that the page is about
3236                          * to become writable
3237                          */
3238                         if (vma->vm_ops->page_mkwrite) {
3239                                 int tmp;
3240
3241                                 unlock_page(page);
3242                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3243                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3244                                 if (unlikely(tmp &
3245                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3246                                         ret = tmp;
3247                                         goto unwritable_page;
3248                                 }
3249                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3250                                         lock_page(page);
3251                                         if (!page->mapping) {
3252                                                 ret = 0; /* retry the fault */
3253                                                 unlock_page(page);
3254                                                 goto unwritable_page;
3255                                         }
3256                                 } else
3257                                         VM_BUG_ON(!PageLocked(page));
3258                                 page_mkwrite = 1;
3259                         }
3260                 }
3261
3262         }
3263
3264         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3265
3266         /*
3267          * This silly early PAGE_DIRTY setting removes a race
3268          * due to the bad i386 page protection. But it's valid
3269          * for other architectures too.
3270          *
3271          * Note that if FAULT_FLAG_WRITE is set, we either now have
3272          * an exclusive copy of the page, or this is a shared mapping,
3273          * so we can make it writable and dirty to avoid having to
3274          * handle that later.
3275          */
3276         /* Only go through if we didn't race with anybody else... */
3277         if (likely(pte_same(*page_table, orig_pte))) {
3278                 flush_icache_page(vma, page);
3279                 entry = mk_pte(page, vma->vm_page_prot);
3280                 if (flags & FAULT_FLAG_WRITE)
3281                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3282                 if (anon) {
3283                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3284                         page_add_new_anon_rmap(page, vma, address);
3285                 } else {
3286                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3287                         page_add_file_rmap(page);
3288                         if (flags & FAULT_FLAG_WRITE) {
3289                                 dirty_page = page;
3290                                 get_page(dirty_page);
3291                         }
3292                 }
3293                 set_pte_at(mm, address, page_table, entry);
3294
3295                 /* no need to invalidate: a not-present page won't be cached */
3296                 update_mmu_cache(vma, address, page_table);
3297         } else {
3298                 if (cow_page)
3299                         mem_cgroup_uncharge_page(cow_page);
3300                 if (anon)
3301                         page_cache_release(page);
3302                 else
3303                         anon = 1; /* no anon but release faulted_page */
3304         }
3305
3306         pte_unmap_unlock(page_table, ptl);
3307
3308         if (dirty_page) {
3309                 struct address_space *mapping = page->mapping;
3310
3311                 if (set_page_dirty(dirty_page))
3312                         page_mkwrite = 1;
3313                 unlock_page(dirty_page);
3314                 put_page(dirty_page);
3315                 if (page_mkwrite && mapping) {
3316                         /*
3317                          * Some device drivers do not set page.mapping but still
3318                          * dirty their pages
3319                          */
3320                         balance_dirty_pages_ratelimited(mapping);
3321                 }
3322
3323                 /* file_update_time outside page_lock */
3324                 if (vma->vm_file)
3325                         file_update_time(vma->vm_file);
3326         } else {
3327                 unlock_page(vmf.page);
3328                 if (anon)
3329                         page_cache_release(vmf.page);
3330         }
3331
3332         return ret;
3333
3334 unwritable_page:
3335         page_cache_release(page);
3336         return ret;
3337 uncharge_out:
3338         /* fs's fault handler get error */
3339         if (cow_page) {
3340                 mem_cgroup_uncharge_page(cow_page);
3341                 page_cache_release(cow_page);
3342         }
3343         return ret;
3344 }
3345
3346 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3347                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3348                 unsigned int flags, pte_t orig_pte)
3349 {
3350         pgoff_t pgoff = (((address & PAGE_MASK)
3351                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3352
3353         pte_unmap(page_table);
3354         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3355 }
3356
3357 /*
3358  * Fault of a previously existing named mapping. Repopulate the pte
3359  * from the encoded file_pte if possible. This enables swappable
3360  * nonlinear vmas.
3361  *
3362  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3363  * but allow concurrent faults), and pte mapped but not yet locked.
3364  * We return with mmap_sem still held, but pte unmapped and unlocked.
3365  */
3366 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3367                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3368                 unsigned int flags, pte_t orig_pte)
3369 {
3370         pgoff_t pgoff;
3371
3372         flags |= FAULT_FLAG_NONLINEAR;
3373
3374         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3375                 return 0;
3376
3377         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3378                 /*
3379                  * Page table corrupted: show pte and kill process.
3380                  */
3381                 print_bad_pte(vma, address, orig_pte, NULL);
3382                 return VM_FAULT_SIGBUS;
3383         }
3384
3385         pgoff = pte_to_pgoff(orig_pte);
3386         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3387 }
3388
3389 /*
3390  * These routines also need to handle stuff like marking pages dirty
3391  * and/or accessed for architectures that don't do it in hardware (most
3392  * RISC architectures).  The early dirtying is also good on the i386.
3393  *
3394  * There is also a hook called "update_mmu_cache()" that architectures
3395  * with external mmu caches can use to update those (ie the Sparc or
3396  * PowerPC hashed page tables that act as extended TLBs).
3397  *
3398  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3399  * but allow concurrent faults), and pte mapped but not yet locked.
3400  * We return with mmap_sem still held, but pte unmapped and unlocked.
3401  */
3402 int handle_pte_fault(struct mm_struct *mm,
3403                      struct vm_area_struct *vma, unsigned long address,
3404                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3405 {
3406         pte_t entry;
3407         spinlock_t *ptl;
3408
3409         entry = *pte;
3410         if (!pte_present(entry)) {
3411                 if (pte_none(entry)) {
3412                         if (vma->vm_ops) {
3413                                 if (likely(vma->vm_ops->fault))
3414                                         return do_linear_fault(mm, vma, address,
3415                                                 pte, pmd, flags, entry);
3416                         }
3417                         return do_anonymous_page(mm, vma, address,
3418                                                  pte, pmd, flags);
3419                 }
3420                 if (pte_file(entry))
3421                         return do_nonlinear_fault(mm, vma, address,
3422                                         pte, pmd, flags, entry);
3423                 return do_swap_page(mm, vma, address,
3424                                         pte, pmd, flags, entry);
3425         }
3426
3427         ptl = pte_lockptr(mm, pmd);
3428         spin_lock(ptl);
3429         if (unlikely(!pte_same(*pte, entry)))
3430                 goto unlock;
3431         if (flags & FAULT_FLAG_WRITE) {
3432                 if (!pte_write(entry))
3433                         return do_wp_page(mm, vma, address,
3434                                         pte, pmd, ptl, entry);
3435                 entry = pte_mkdirty(entry);
3436         }
3437         entry = pte_mkyoung(entry);
3438         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3439                 update_mmu_cache(vma, address, pte);
3440         } else {
3441                 /*
3442                  * This is needed only for protection faults but the arch code
3443                  * is not yet telling us if this is a protection fault or not.
3444                  * This still avoids useless tlb flushes for .text page faults
3445                  * with threads.
3446                  */
3447                 if (flags & FAULT_FLAG_WRITE)
3448                         flush_tlb_fix_spurious_fault(vma, address);
3449         }
3450 unlock:
3451         pte_unmap_unlock(pte, ptl);
3452         return 0;
3453 }
3454
3455 /*
3456  * By the time we get here, we already hold the mm semaphore
3457  */
3458 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3459                 unsigned long address, unsigned int flags)
3460 {
3461         pgd_t *pgd;
3462         pud_t *pud;
3463         pmd_t *pmd;
3464         pte_t *pte;
3465
3466         __set_current_state(TASK_RUNNING);
3467
3468         count_vm_event(PGFAULT);
3469         mem_cgroup_count_vm_event(mm, PGFAULT);
3470
3471         /* do counter updates before entering really critical section. */
3472         check_sync_rss_stat(current);
3473
3474         if (unlikely(is_vm_hugetlb_page(vma)))
3475                 return hugetlb_fault(mm, vma, address, flags);
3476
3477 retry:
3478         pgd = pgd_offset(mm, address);
3479         pud = pud_alloc(mm, pgd, address);
3480         if (!pud)
3481                 return VM_FAULT_OOM;
3482         pmd = pmd_alloc(mm, pud, address);
3483         if (!pmd)
3484                 return VM_FAULT_OOM;
3485         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3486                 if (!vma->vm_ops)
3487                         return do_huge_pmd_anonymous_page(mm, vma, address,
3488                                                           pmd, flags);
3489         } else {
3490                 pmd_t orig_pmd = *pmd;
3491                 int ret;
3492
3493                 barrier();
3494                 if (pmd_trans_huge(orig_pmd)) {
3495                         if (flags & FAULT_FLAG_WRITE &&
3496                             !pmd_write(orig_pmd) &&
3497                             !pmd_trans_splitting(orig_pmd)) {
3498                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3499                                                           orig_pmd);
3500                                 /*
3501                                  * If COW results in an oom, the huge pmd will
3502                                  * have been split, so retry the fault on the
3503                                  * pte for a smaller charge.
3504                                  */
3505                                 if (unlikely(ret & VM_FAULT_OOM))
3506                                         goto retry;
3507                                 return ret;
3508                         }
3509                         return 0;
3510                 }
3511         }
3512
3513         /*
3514          * Use __pte_alloc instead of pte_alloc_map, because we can't
3515          * run pte_offset_map on the pmd, if an huge pmd could
3516          * materialize from under us from a different thread.
3517          */
3518         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3519                 return VM_FAULT_OOM;
3520         /* if an huge pmd materialized from under us just retry later */
3521         if (unlikely(pmd_trans_huge(*pmd)))
3522                 return 0;
3523         /*
3524          * A regular pmd is established and it can't morph into a huge pmd
3525          * from under us anymore at this point because we hold the mmap_sem
3526          * read mode and khugepaged takes it in write mode. So now it's
3527          * safe to run pte_offset_map().
3528          */
3529         pte = pte_offset_map(pmd, address);
3530
3531         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3532 }
3533
3534 #ifndef __PAGETABLE_PUD_FOLDED
3535 /*
3536  * Allocate page upper directory.
3537  * We've already handled the fast-path in-line.
3538  */
3539 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3540 {
3541         pud_t *new = pud_alloc_one(mm, address);
3542         if (!new)
3543                 return -ENOMEM;
3544
3545         smp_wmb(); /* See comment in __pte_alloc */
3546
3547         spin_lock(&mm->page_table_lock);
3548         if (pgd_present(*pgd))          /* Another has populated it */
3549                 pud_free(mm, new);
3550         else
3551                 pgd_populate(mm, pgd, new);
3552         spin_unlock(&mm->page_table_lock);
3553         return 0;
3554 }
3555 #endif /* __PAGETABLE_PUD_FOLDED */
3556
3557 #ifndef __PAGETABLE_PMD_FOLDED
3558 /*
3559  * Allocate page middle directory.
3560  * We've already handled the fast-path in-line.
3561  */
3562 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3563 {
3564         pmd_t *new = pmd_alloc_one(mm, address);
3565         if (!new)
3566                 return -ENOMEM;
3567
3568         smp_wmb(); /* See comment in __pte_alloc */
3569
3570         spin_lock(&mm->page_table_lock);
3571 #ifndef __ARCH_HAS_4LEVEL_HACK
3572         if (pud_present(*pud))          /* Another has populated it */
3573                 pmd_free(mm, new);
3574         else
3575                 pud_populate(mm, pud, new);
3576 #else
3577         if (pgd_present(*pud))          /* Another has populated it */
3578                 pmd_free(mm, new);
3579         else
3580                 pgd_populate(mm, pud, new);
3581 #endif /* __ARCH_HAS_4LEVEL_HACK */
3582         spin_unlock(&mm->page_table_lock);
3583         return 0;
3584 }
3585 #endif /* __PAGETABLE_PMD_FOLDED */
3586
3587 int make_pages_present(unsigned long addr, unsigned long end)
3588 {
3589         int ret, len, write;
3590         struct vm_area_struct * vma;
3591
3592         vma = find_vma(current->mm, addr);
3593         if (!vma)
3594                 return -ENOMEM;
3595         /*
3596          * We want to touch writable mappings with a write fault in order
3597          * to break COW, except for shared mappings because these don't COW
3598          * and we would not want to dirty them for nothing.
3599          */
3600         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3601         BUG_ON(addr >= end);
3602         BUG_ON(end > vma->vm_end);
3603         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3604         ret = get_user_pages(current, current->mm, addr,
3605                         len, write, 0, NULL, NULL);
3606         if (ret < 0)
3607                 return ret;
3608         return ret == len ? 0 : -EFAULT;
3609 }
3610
3611 #if !defined(__HAVE_ARCH_GATE_AREA)
3612
3613 #if defined(AT_SYSINFO_EHDR)
3614 static struct vm_area_struct gate_vma;
3615
3616 static int __init gate_vma_init(void)
3617 {
3618         gate_vma.vm_mm = NULL;
3619         gate_vma.vm_start = FIXADDR_USER_START;
3620         gate_vma.vm_end = FIXADDR_USER_END;
3621         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3622         gate_vma.vm_page_prot = __P101;
3623         /*
3624          * Make sure the vDSO gets into every core dump.
3625          * Dumping its contents makes post-mortem fully interpretable later
3626          * without matching up the same kernel and hardware config to see
3627          * what PC values meant.
3628          */
3629         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3630         return 0;
3631 }
3632 __initcall(gate_vma_init);
3633 #endif
3634
3635 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3636 {
3637 #ifdef AT_SYSINFO_EHDR
3638         return &gate_vma;
3639 #else
3640         return NULL;
3641 #endif
3642 }
3643
3644 int in_gate_area_no_mm(unsigned long addr)
3645 {
3646 #ifdef AT_SYSINFO_EHDR
3647         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3648                 return 1;
3649 #endif
3650         return 0;
3651 }
3652
3653 #endif  /* __HAVE_ARCH_GATE_AREA */
3654
3655 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3656                 pte_t **ptepp, spinlock_t **ptlp)
3657 {
3658         pgd_t *pgd;
3659         pud_t *pud;
3660         pmd_t *pmd;
3661         pte_t *ptep;
3662
3663         pgd = pgd_offset(mm, address);
3664         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3665                 goto out;
3666
3667         pud = pud_offset(pgd, address);
3668         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3669                 goto out;
3670
3671         pmd = pmd_offset(pud, address);
3672         VM_BUG_ON(pmd_trans_huge(*pmd));
3673         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3674                 goto out;
3675
3676         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3677         if (pmd_huge(*pmd))
3678                 goto out;
3679
3680         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3681         if (!ptep)
3682                 goto out;
3683         if (!pte_present(*ptep))
3684                 goto unlock;
3685         *ptepp = ptep;
3686         return 0;
3687 unlock:
3688         pte_unmap_unlock(ptep, *ptlp);
3689 out:
3690         return -EINVAL;
3691 }
3692
3693 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3694                              pte_t **ptepp, spinlock_t **ptlp)
3695 {
3696         int res;
3697
3698         /* (void) is needed to make gcc happy */
3699         (void) __cond_lock(*ptlp,
3700                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3701         return res;
3702 }
3703
3704 /**
3705  * follow_pfn - look up PFN at a user virtual address
3706  * @vma: memory mapping
3707  * @address: user virtual address
3708  * @pfn: location to store found PFN
3709  *
3710  * Only IO mappings and raw PFN mappings are allowed.
3711  *
3712  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3713  */
3714 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3715         unsigned long *pfn)
3716 {
3717         int ret = -EINVAL;
3718         spinlock_t *ptl;
3719         pte_t *ptep;
3720
3721         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3722                 return ret;
3723
3724         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3725         if (ret)
3726                 return ret;
3727         *pfn = pte_pfn(*ptep);
3728         pte_unmap_unlock(ptep, ptl);
3729         return 0;
3730 }
3731 EXPORT_SYMBOL(follow_pfn);
3732
3733 #ifdef CONFIG_HAVE_IOREMAP_PROT
3734 int follow_phys(struct vm_area_struct *vma,
3735                 unsigned long address, unsigned int flags,
3736                 unsigned long *prot, resource_size_t *phys)
3737 {
3738         int ret = -EINVAL;
3739         pte_t *ptep, pte;
3740         spinlock_t *ptl;
3741
3742         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3743                 goto out;
3744
3745         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3746                 goto out;
3747         pte = *ptep;
3748
3749         if ((flags & FOLL_WRITE) && !pte_write(pte))
3750                 goto unlock;
3751
3752         *prot = pgprot_val(pte_pgprot(pte));
3753         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3754
3755         ret = 0;
3756 unlock:
3757         pte_unmap_unlock(ptep, ptl);
3758 out:
3759         return ret;
3760 }
3761
3762 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3763                         void *buf, int len, int write)
3764 {
3765         resource_size_t phys_addr;
3766         unsigned long prot = 0;
3767         void __iomem *maddr;
3768         int offset = addr & (PAGE_SIZE-1);
3769
3770         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3771                 return -EINVAL;
3772
3773         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3774         if (write)
3775                 memcpy_toio(maddr + offset, buf, len);
3776         else
3777                 memcpy_fromio(buf, maddr + offset, len);
3778         iounmap(maddr);
3779
3780         return len;
3781 }
3782 #endif
3783
3784 /*
3785  * Access another process' address space as given in mm.  If non-NULL, use the
3786  * given task for page fault accounting.
3787  */
3788 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3789                 unsigned long addr, void *buf, int len, int write)
3790 {
3791         struct vm_area_struct *vma;
3792         void *old_buf = buf;
3793
3794         down_read(&mm->mmap_sem);
3795         /* ignore errors, just check how much was successfully transferred */
3796         while (len) {
3797                 int bytes, ret, offset;
3798                 void *maddr;
3799                 struct page *page = NULL;
3800
3801                 ret = get_user_pages(tsk, mm, addr, 1,
3802                                 write, 1, &page, &vma);
3803                 if (ret <= 0) {
3804                         /*
3805                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3806                          * we can access using slightly different code.
3807                          */
3808 #ifdef CONFIG_HAVE_IOREMAP_PROT
3809                         vma = find_vma(mm, addr);
3810                         if (!vma || vma->vm_start > addr)
3811                                 break;
3812                         if (vma->vm_ops && vma->vm_ops->access)
3813                                 ret = vma->vm_ops->access(vma, addr, buf,
3814                                                           len, write);
3815                         if (ret <= 0)
3816 #endif
3817                                 break;
3818                         bytes = ret;
3819                 } else {
3820                         bytes = len;
3821                         offset = addr & (PAGE_SIZE-1);
3822                         if (bytes > PAGE_SIZE-offset)
3823                                 bytes = PAGE_SIZE-offset;
3824
3825                         maddr = kmap(page);
3826                         if (write) {
3827                                 copy_to_user_page(vma, page, addr,
3828                                                   maddr + offset, buf, bytes);
3829                                 set_page_dirty_lock(page);
3830                         } else {
3831                                 copy_from_user_page(vma, page, addr,
3832                                                     buf, maddr + offset, bytes);
3833                         }
3834                         kunmap(page);
3835                         page_cache_release(page);
3836                 }
3837                 len -= bytes;
3838                 buf += bytes;
3839                 addr += bytes;
3840         }
3841         up_read(&mm->mmap_sem);
3842
3843         return buf - old_buf;
3844 }
3845
3846 /**
3847  * access_remote_vm - access another process' address space
3848  * @mm:         the mm_struct of the target address space
3849  * @addr:       start address to access
3850  * @buf:        source or destination buffer
3851  * @len:        number of bytes to transfer
3852  * @write:      whether the access is a write
3853  *
3854  * The caller must hold a reference on @mm.
3855  */
3856 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3857                 void *buf, int len, int write)
3858 {
3859         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3860 }
3861
3862 /*
3863  * Access another process' address space.
3864  * Source/target buffer must be kernel space,
3865  * Do not walk the page table directly, use get_user_pages
3866  */
3867 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3868                 void *buf, int len, int write)
3869 {
3870         struct mm_struct *mm;
3871         int ret;
3872
3873         mm = get_task_mm(tsk);
3874         if (!mm)
3875                 return 0;
3876
3877         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3878         mmput(mm);
3879
3880         return ret;
3881 }
3882
3883 /*
3884  * Print the name of a VMA.
3885  */
3886 void print_vma_addr(char *prefix, unsigned long ip)
3887 {
3888         struct mm_struct *mm = current->mm;
3889         struct vm_area_struct *vma;
3890
3891         /*
3892          * Do not print if we are in atomic
3893          * contexts (in exception stacks, etc.):
3894          */
3895         if (preempt_count())
3896                 return;
3897
3898         down_read(&mm->mmap_sem);
3899         vma = find_vma(mm, ip);
3900         if (vma && vma->vm_file) {
3901                 struct file *f = vma->vm_file;
3902                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3903                 if (buf) {
3904                         char *p, *s;
3905
3906                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3907                         if (IS_ERR(p))
3908                                 p = "?";
3909                         s = strrchr(p, '/');
3910                         if (s)
3911                                 p = s+1;
3912                         printk("%s%s[%lx+%lx]", prefix, p,
3913                                         vma->vm_start,
3914                                         vma->vm_end - vma->vm_start);
3915                         free_page((unsigned long)buf);
3916                 }
3917         }
3918         up_read(&current->mm->mmap_sem);
3919 }
3920
3921 #ifdef CONFIG_PROVE_LOCKING
3922 void might_fault(void)
3923 {
3924         /*
3925          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3926          * holding the mmap_sem, this is safe because kernel memory doesn't
3927          * get paged out, therefore we'll never actually fault, and the
3928          * below annotations will generate false positives.
3929          */
3930         if (segment_eq(get_fs(), KERNEL_DS))
3931                 return;
3932
3933         might_sleep();
3934         /*
3935          * it would be nicer only to annotate paths which are not under
3936          * pagefault_disable, however that requires a larger audit and
3937          * providing helpers like get_user_atomic.
3938          */
3939         if (!in_atomic() && current->mm)
3940                 might_lock_read(&current->mm->mmap_sem);
3941 }
3942 EXPORT_SYMBOL(might_fault);
3943 #endif
3944
3945 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3946 static void clear_gigantic_page(struct page *page,
3947                                 unsigned long addr,
3948                                 unsigned int pages_per_huge_page)
3949 {
3950         int i;
3951         struct page *p = page;
3952
3953         might_sleep();
3954         for (i = 0; i < pages_per_huge_page;
3955              i++, p = mem_map_next(p, page, i)) {
3956                 cond_resched();
3957                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3958         }
3959 }
3960 void clear_huge_page(struct page *page,
3961                      unsigned long addr, unsigned int pages_per_huge_page)
3962 {
3963         int i;
3964
3965         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3966                 clear_gigantic_page(page, addr, pages_per_huge_page);
3967                 return;
3968         }
3969
3970         might_sleep();
3971         for (i = 0; i < pages_per_huge_page; i++) {
3972                 cond_resched();
3973                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3974         }
3975 }
3976
3977 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3978                                     unsigned long addr,
3979                                     struct vm_area_struct *vma,
3980                                     unsigned int pages_per_huge_page)
3981 {
3982         int i;
3983         struct page *dst_base = dst;
3984         struct page *src_base = src;
3985
3986         for (i = 0; i < pages_per_huge_page; ) {
3987                 cond_resched();
3988                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3989
3990                 i++;
3991                 dst = mem_map_next(dst, dst_base, i);
3992                 src = mem_map_next(src, src_base, i);
3993         }
3994 }
3995
3996 void copy_user_huge_page(struct page *dst, struct page *src,
3997                          unsigned long addr, struct vm_area_struct *vma,
3998                          unsigned int pages_per_huge_page)
3999 {
4000         int i;
4001
4002         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4003                 copy_user_gigantic_page(dst, src, addr, vma,
4004                                         pages_per_huge_page);
4005                 return;
4006         }
4007
4008         might_sleep();
4009         for (i = 0; i < pages_per_huge_page; i++) {
4010                 cond_resched();
4011                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4012         }
4013 }
4014 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */