Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif /* SPLIT_RSS_COUNTING */
195
196 #ifdef HAVE_GENERIC_MMU_GATHER
197
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200         struct mmu_gather_batch *batch;
201
202         batch = tlb->active;
203         if (batch->next) {
204                 tlb->active = batch->next;
205                 return 1;
206         }
207
208         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
209                 return 0;
210
211         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
212         if (!batch)
213                 return 0;
214
215         tlb->batch_count++;
216         batch->next = NULL;
217         batch->nr   = 0;
218         batch->max  = MAX_GATHER_BATCH;
219
220         tlb->active->next = batch;
221         tlb->active = batch;
222
223         return 1;
224 }
225
226 /* tlb_gather_mmu
227  *      Called to initialize an (on-stack) mmu_gather structure for page-table
228  *      tear-down from @mm. The @fullmm argument is used when @mm is without
229  *      users and we're going to destroy the full address space (exit/execve).
230  */
231 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
232 {
233         tlb->mm = mm;
234
235         tlb->fullmm     = fullmm;
236         tlb->need_flush = 0;
237         tlb->fast_mode  = (num_possible_cpus() == 1);
238         tlb->local.next = NULL;
239         tlb->local.nr   = 0;
240         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
241         tlb->active     = &tlb->local;
242         tlb->batch_count = 0;
243
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb->batch = NULL;
246 #endif
247 }
248
249 void tlb_flush_mmu(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         if (!tlb->need_flush)
254                 return;
255         tlb->need_flush = 0;
256         tlb_flush(tlb);
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258         tlb_table_flush(tlb);
259 #endif
260
261         if (tlb_fast_mode(tlb))
262                 return;
263
264         for (batch = &tlb->local; batch; batch = batch->next) {
265                 free_pages_and_swap_cache(batch->pages, batch->nr);
266                 batch->nr = 0;
267         }
268         tlb->active = &tlb->local;
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  */
297 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
298 {
299         struct mmu_gather_batch *batch;
300
301         tlb->need_flush = 1;
302
303         if (tlb_fast_mode(tlb)) {
304                 free_page_and_swap_cache(page);
305                 return 1; /* avoid calling tlb_flush_mmu() */
306         }
307
308         batch = tlb->active;
309         batch->pages[batch->nr++] = page;
310         if (batch->nr == batch->max) {
311                 if (!tlb_next_batch(tlb))
312                         return 0;
313                 batch = tlb->active;
314         }
315         VM_BUG_ON(batch->nr > batch->max);
316
317         return batch->max - batch->nr;
318 }
319
320 #endif /* HAVE_GENERIC_MMU_GATHER */
321
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
323
324 /*
325  * See the comment near struct mmu_table_batch.
326  */
327
328 static void tlb_remove_table_smp_sync(void *arg)
329 {
330         /* Simply deliver the interrupt */
331 }
332
333 static void tlb_remove_table_one(void *table)
334 {
335         /*
336          * This isn't an RCU grace period and hence the page-tables cannot be
337          * assumed to be actually RCU-freed.
338          *
339          * It is however sufficient for software page-table walkers that rely on
340          * IRQ disabling. See the comment near struct mmu_table_batch.
341          */
342         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343         __tlb_remove_table(table);
344 }
345
346 static void tlb_remove_table_rcu(struct rcu_head *head)
347 {
348         struct mmu_table_batch *batch;
349         int i;
350
351         batch = container_of(head, struct mmu_table_batch, rcu);
352
353         for (i = 0; i < batch->nr; i++)
354                 __tlb_remove_table(batch->tables[i]);
355
356         free_page((unsigned long)batch);
357 }
358
359 void tlb_table_flush(struct mmu_gather *tlb)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         if (*batch) {
364                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
365                 *batch = NULL;
366         }
367 }
368
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         tlb->need_flush = 1;
374
375         /*
376          * When there's less then two users of this mm there cannot be a
377          * concurrent page-table walk.
378          */
379         if (atomic_read(&tlb->mm->mm_users) < 2) {
380                 __tlb_remove_table(table);
381                 return;
382         }
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_remove_table_one(table);
388                         return;
389                 }
390                 (*batch)->nr = 0;
391         }
392         (*batch)->tables[(*batch)->nr++] = table;
393         if ((*batch)->nr == MAX_TABLE_BATCH)
394                 tlb_table_flush(tlb);
395 }
396
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398
399 /*
400  * If a p?d_bad entry is found while walking page tables, report
401  * the error, before resetting entry to p?d_none.  Usually (but
402  * very seldom) called out from the p?d_none_or_clear_bad macros.
403  */
404
405 void pgd_clear_bad(pgd_t *pgd)
406 {
407         pgd_ERROR(*pgd);
408         pgd_clear(pgd);
409 }
410
411 void pud_clear_bad(pud_t *pud)
412 {
413         pud_ERROR(*pud);
414         pud_clear(pud);
415 }
416
417 void pmd_clear_bad(pmd_t *pmd)
418 {
419         pmd_ERROR(*pmd);
420         pmd_clear(pmd);
421 }
422
423 /*
424  * Note: this doesn't free the actual pages themselves. That
425  * has been handled earlier when unmapping all the memory regions.
426  */
427 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
428                            unsigned long addr)
429 {
430         pgtable_t token = pmd_pgtable(*pmd);
431         pmd_clear(pmd);
432         pte_free_tlb(tlb, token, addr);
433         tlb->mm->nr_ptes--;
434 }
435
436 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pmd_t *pmd;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pmd = pmd_offset(pud, addr);
446         do {
447                 next = pmd_addr_end(addr, end);
448                 if (pmd_none_or_clear_bad(pmd))
449                         continue;
450                 free_pte_range(tlb, pmd, addr);
451         } while (pmd++, addr = next, addr != end);
452
453         start &= PUD_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PUD_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pmd = pmd_offset(pud, start);
465         pud_clear(pud);
466         pmd_free_tlb(tlb, pmd, start);
467 }
468
469 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
470                                 unsigned long addr, unsigned long end,
471                                 unsigned long floor, unsigned long ceiling)
472 {
473         pud_t *pud;
474         unsigned long next;
475         unsigned long start;
476
477         start = addr;
478         pud = pud_offset(pgd, addr);
479         do {
480                 next = pud_addr_end(addr, end);
481                 if (pud_none_or_clear_bad(pud))
482                         continue;
483                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
484         } while (pud++, addr = next, addr != end);
485
486         start &= PGDIR_MASK;
487         if (start < floor)
488                 return;
489         if (ceiling) {
490                 ceiling &= PGDIR_MASK;
491                 if (!ceiling)
492                         return;
493         }
494         if (end - 1 > ceiling - 1)
495                 return;
496
497         pud = pud_offset(pgd, start);
498         pgd_clear(pgd);
499         pud_free_tlb(tlb, pud, start);
500 }
501
502 /*
503  * This function frees user-level page tables of a process.
504  *
505  * Must be called with pagetable lock held.
506  */
507 void free_pgd_range(struct mmu_gather *tlb,
508                         unsigned long addr, unsigned long end,
509                         unsigned long floor, unsigned long ceiling)
510 {
511         pgd_t *pgd;
512         unsigned long next;
513
514         /*
515          * The next few lines have given us lots of grief...
516          *
517          * Why are we testing PMD* at this top level?  Because often
518          * there will be no work to do at all, and we'd prefer not to
519          * go all the way down to the bottom just to discover that.
520          *
521          * Why all these "- 1"s?  Because 0 represents both the bottom
522          * of the address space and the top of it (using -1 for the
523          * top wouldn't help much: the masks would do the wrong thing).
524          * The rule is that addr 0 and floor 0 refer to the bottom of
525          * the address space, but end 0 and ceiling 0 refer to the top
526          * Comparisons need to use "end - 1" and "ceiling - 1" (though
527          * that end 0 case should be mythical).
528          *
529          * Wherever addr is brought up or ceiling brought down, we must
530          * be careful to reject "the opposite 0" before it confuses the
531          * subsequent tests.  But what about where end is brought down
532          * by PMD_SIZE below? no, end can't go down to 0 there.
533          *
534          * Whereas we round start (addr) and ceiling down, by different
535          * masks at different levels, in order to test whether a table
536          * now has no other vmas using it, so can be freed, we don't
537          * bother to round floor or end up - the tests don't need that.
538          */
539
540         addr &= PMD_MASK;
541         if (addr < floor) {
542                 addr += PMD_SIZE;
543                 if (!addr)
544                         return;
545         }
546         if (ceiling) {
547                 ceiling &= PMD_MASK;
548                 if (!ceiling)
549                         return;
550         }
551         if (end - 1 > ceiling - 1)
552                 end -= PMD_SIZE;
553         if (addr > end - 1)
554                 return;
555
556         pgd = pgd_offset(tlb->mm, addr);
557         do {
558                 next = pgd_addr_end(addr, end);
559                 if (pgd_none_or_clear_bad(pgd))
560                         continue;
561                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
562         } while (pgd++, addr = next, addr != end);
563 }
564
565 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
566                 unsigned long floor, unsigned long ceiling)
567 {
568         while (vma) {
569                 struct vm_area_struct *next = vma->vm_next;
570                 unsigned long addr = vma->vm_start;
571
572                 /*
573                  * Hide vma from rmap and truncate_pagecache before freeing
574                  * pgtables
575                  */
576                 unlink_anon_vmas(vma);
577                 unlink_file_vma(vma);
578
579                 if (is_vm_hugetlb_page(vma)) {
580                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
581                                 floor, next? next->vm_start: ceiling);
582                 } else {
583                         /*
584                          * Optimization: gather nearby vmas into one call down
585                          */
586                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
587                                && !is_vm_hugetlb_page(next)) {
588                                 vma = next;
589                                 next = vma->vm_next;
590                                 unlink_anon_vmas(vma);
591                                 unlink_file_vma(vma);
592                         }
593                         free_pgd_range(tlb, addr, vma->vm_end,
594                                 floor, next? next->vm_start: ceiling);
595                 }
596                 vma = next;
597         }
598 }
599
600 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
601                 pmd_t *pmd, unsigned long address)
602 {
603         pgtable_t new = pte_alloc_one(mm, address);
604         int wait_split_huge_page;
605         if (!new)
606                 return -ENOMEM;
607
608         /*
609          * Ensure all pte setup (eg. pte page lock and page clearing) are
610          * visible before the pte is made visible to other CPUs by being
611          * put into page tables.
612          *
613          * The other side of the story is the pointer chasing in the page
614          * table walking code (when walking the page table without locking;
615          * ie. most of the time). Fortunately, these data accesses consist
616          * of a chain of data-dependent loads, meaning most CPUs (alpha
617          * being the notable exception) will already guarantee loads are
618          * seen in-order. See the alpha page table accessors for the
619          * smp_read_barrier_depends() barriers in page table walking code.
620          */
621         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
622
623         spin_lock(&mm->page_table_lock);
624         wait_split_huge_page = 0;
625         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
626                 mm->nr_ptes++;
627                 pmd_populate(mm, pmd, new);
628                 new = NULL;
629         } else if (unlikely(pmd_trans_splitting(*pmd)))
630                 wait_split_huge_page = 1;
631         spin_unlock(&mm->page_table_lock);
632         if (new)
633                 pte_free(mm, new);
634         if (wait_split_huge_page)
635                 wait_split_huge_page(vma->anon_vma, pmd);
636         return 0;
637 }
638
639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
640 {
641         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
642         if (!new)
643                 return -ENOMEM;
644
645         smp_wmb(); /* See comment in __pte_alloc */
646
647         spin_lock(&init_mm.page_table_lock);
648         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
649                 pmd_populate_kernel(&init_mm, pmd, new);
650                 new = NULL;
651         } else
652                 VM_BUG_ON(pmd_trans_splitting(*pmd));
653         spin_unlock(&init_mm.page_table_lock);
654         if (new)
655                 pte_free_kernel(&init_mm, new);
656         return 0;
657 }
658
659 static inline void init_rss_vec(int *rss)
660 {
661         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
662 }
663
664 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
665 {
666         int i;
667
668         if (current->mm == mm)
669                 sync_mm_rss(current, mm);
670         for (i = 0; i < NR_MM_COUNTERS; i++)
671                 if (rss[i])
672                         add_mm_counter(mm, i, rss[i]);
673 }
674
675 /*
676  * This function is called to print an error when a bad pte
677  * is found. For example, we might have a PFN-mapped pte in
678  * a region that doesn't allow it.
679  *
680  * The calling function must still handle the error.
681  */
682 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
683                           pte_t pte, struct page *page)
684 {
685         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
686         pud_t *pud = pud_offset(pgd, addr);
687         pmd_t *pmd = pmd_offset(pud, addr);
688         struct address_space *mapping;
689         pgoff_t index;
690         static unsigned long resume;
691         static unsigned long nr_shown;
692         static unsigned long nr_unshown;
693
694         /*
695          * Allow a burst of 60 reports, then keep quiet for that minute;
696          * or allow a steady drip of one report per second.
697          */
698         if (nr_shown == 60) {
699                 if (time_before(jiffies, resume)) {
700                         nr_unshown++;
701                         return;
702                 }
703                 if (nr_unshown) {
704                         printk(KERN_ALERT
705                                 "BUG: Bad page map: %lu messages suppressed\n",
706                                 nr_unshown);
707                         nr_unshown = 0;
708                 }
709                 nr_shown = 0;
710         }
711         if (nr_shown++ == 0)
712                 resume = jiffies + 60 * HZ;
713
714         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
715         index = linear_page_index(vma, addr);
716
717         printk(KERN_ALERT
718                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
719                 current->comm,
720                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
721         if (page)
722                 dump_page(page);
723         printk(KERN_ALERT
724                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
726         /*
727          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
728          */
729         if (vma->vm_ops)
730                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
731                                 (unsigned long)vma->vm_ops->fault);
732         if (vma->vm_file && vma->vm_file->f_op)
733                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
734                                 (unsigned long)vma->vm_file->f_op->mmap);
735         dump_stack();
736         add_taint(TAINT_BAD_PAGE);
737 }
738
739 static inline int is_cow_mapping(vm_flags_t flags)
740 {
741         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
742 }
743
744 #ifndef is_zero_pfn
745 static inline int is_zero_pfn(unsigned long pfn)
746 {
747         return pfn == zero_pfn;
748 }
749 #endif
750
751 #ifndef my_zero_pfn
752 static inline unsigned long my_zero_pfn(unsigned long addr)
753 {
754         return zero_pfn;
755 }
756 #endif
757
758 /*
759  * vm_normal_page -- This function gets the "struct page" associated with a pte.
760  *
761  * "Special" mappings do not wish to be associated with a "struct page" (either
762  * it doesn't exist, or it exists but they don't want to touch it). In this
763  * case, NULL is returned here. "Normal" mappings do have a struct page.
764  *
765  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766  * pte bit, in which case this function is trivial. Secondly, an architecture
767  * may not have a spare pte bit, which requires a more complicated scheme,
768  * described below.
769  *
770  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771  * special mapping (even if there are underlying and valid "struct pages").
772  * COWed pages of a VM_PFNMAP are always normal.
773  *
774  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777  * mapping will always honor the rule
778  *
779  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
780  *
781  * And for normal mappings this is false.
782  *
783  * This restricts such mappings to be a linear translation from virtual address
784  * to pfn. To get around this restriction, we allow arbitrary mappings so long
785  * as the vma is not a COW mapping; in that case, we know that all ptes are
786  * special (because none can have been COWed).
787  *
788  *
789  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
790  *
791  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792  * page" backing, however the difference is that _all_ pages with a struct
793  * page (that is, those where pfn_valid is true) are refcounted and considered
794  * normal pages by the VM. The disadvantage is that pages are refcounted
795  * (which can be slower and simply not an option for some PFNMAP users). The
796  * advantage is that we don't have to follow the strict linearity rule of
797  * PFNMAP mappings in order to support COWable mappings.
798  *
799  */
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
802 #else
803 # define HAVE_PTE_SPECIAL 0
804 #endif
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
806                                 pte_t pte)
807 {
808         unsigned long pfn = pte_pfn(pte);
809
810         if (HAVE_PTE_SPECIAL) {
811                 if (likely(!pte_special(pte)))
812                         goto check_pfn;
813                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
814                         return NULL;
815                 if (!is_zero_pfn(pfn))
816                         print_bad_pte(vma, addr, pte, NULL);
817                 return NULL;
818         }
819
820         /* !HAVE_PTE_SPECIAL case follows: */
821
822         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
823                 if (vma->vm_flags & VM_MIXEDMAP) {
824                         if (!pfn_valid(pfn))
825                                 return NULL;
826                         goto out;
827                 } else {
828                         unsigned long off;
829                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
830                         if (pfn == vma->vm_pgoff + off)
831                                 return NULL;
832                         if (!is_cow_mapping(vma->vm_flags))
833                                 return NULL;
834                 }
835         }
836
837         if (is_zero_pfn(pfn))
838                 return NULL;
839 check_pfn:
840         if (unlikely(pfn > highest_memmap_pfn)) {
841                 print_bad_pte(vma, addr, pte, NULL);
842                 return NULL;
843         }
844
845         /*
846          * NOTE! We still have PageReserved() pages in the page tables.
847          * eg. VDSO mappings can cause them to exist.
848          */
849 out:
850         return pfn_to_page(pfn);
851 }
852
853 /*
854  * copy one vm_area from one task to the other. Assumes the page tables
855  * already present in the new task to be cleared in the whole range
856  * covered by this vma.
857  */
858
859 static inline unsigned long
860 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
862                 unsigned long addr, int *rss)
863 {
864         unsigned long vm_flags = vma->vm_flags;
865         pte_t pte = *src_pte;
866         struct page *page;
867
868         /* pte contains position in swap or file, so copy. */
869         if (unlikely(!pte_present(pte))) {
870                 if (!pte_file(pte)) {
871                         swp_entry_t entry = pte_to_swp_entry(pte);
872
873                         if (likely(!non_swap_entry(entry))) {
874                                 if (swap_duplicate(entry) < 0)
875                                         return entry.val;
876
877                                 /* make sure dst_mm is on swapoff's mmlist. */
878                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
879                                         spin_lock(&mmlist_lock);
880                                         if (list_empty(&dst_mm->mmlist))
881                                                 list_add(&dst_mm->mmlist,
882                                                          &src_mm->mmlist);
883                                         spin_unlock(&mmlist_lock);
884                                 }
885                                 rss[MM_SWAPENTS]++;
886                         } else if (is_write_migration_entry(entry) &&
887                                         is_cow_mapping(vm_flags)) {
888                                 /*
889                                  * COW mappings require pages in both parent
890                                  * and child to be set to read.
891                                  */
892                                 make_migration_entry_read(&entry);
893                                 pte = swp_entry_to_pte(entry);
894                                 set_pte_at(src_mm, addr, src_pte, pte);
895                         }
896                 }
897                 goto out_set_pte;
898         }
899
900         /*
901          * If it's a COW mapping, write protect it both
902          * in the parent and the child
903          */
904         if (is_cow_mapping(vm_flags)) {
905                 ptep_set_wrprotect(src_mm, addr, src_pte);
906                 pte = pte_wrprotect(pte);
907         }
908
909         /*
910          * If it's a shared mapping, mark it clean in
911          * the child
912          */
913         if (vm_flags & VM_SHARED)
914                 pte = pte_mkclean(pte);
915         pte = pte_mkold(pte);
916
917         page = vm_normal_page(vma, addr, pte);
918         if (page) {
919                 get_page(page);
920                 page_dup_rmap(page);
921                 if (PageAnon(page))
922                         rss[MM_ANONPAGES]++;
923                 else
924                         rss[MM_FILEPAGES]++;
925         }
926
927 out_set_pte:
928         set_pte_at(dst_mm, addr, dst_pte, pte);
929         return 0;
930 }
931
932 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
933                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
934                    unsigned long addr, unsigned long end)
935 {
936         pte_t *orig_src_pte, *orig_dst_pte;
937         pte_t *src_pte, *dst_pte;
938         spinlock_t *src_ptl, *dst_ptl;
939         int progress = 0;
940         int rss[NR_MM_COUNTERS];
941         swp_entry_t entry = (swp_entry_t){0};
942
943 again:
944         init_rss_vec(rss);
945
946         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947         if (!dst_pte)
948                 return -ENOMEM;
949         src_pte = pte_offset_map(src_pmd, addr);
950         src_ptl = pte_lockptr(src_mm, src_pmd);
951         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952         orig_src_pte = src_pte;
953         orig_dst_pte = dst_pte;
954         arch_enter_lazy_mmu_mode();
955
956         do {
957                 /*
958                  * We are holding two locks at this point - either of them
959                  * could generate latencies in another task on another CPU.
960                  */
961                 if (progress >= 32) {
962                         progress = 0;
963                         if (need_resched() ||
964                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965                                 break;
966                 }
967                 if (pte_none(*src_pte)) {
968                         progress++;
969                         continue;
970                 }
971                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
972                                                         vma, addr, rss);
973                 if (entry.val)
974                         break;
975                 progress += 8;
976         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
977
978         arch_leave_lazy_mmu_mode();
979         spin_unlock(src_ptl);
980         pte_unmap(orig_src_pte);
981         add_mm_rss_vec(dst_mm, rss);
982         pte_unmap_unlock(orig_dst_pte, dst_ptl);
983         cond_resched();
984
985         if (entry.val) {
986                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
987                         return -ENOMEM;
988                 progress = 0;
989         }
990         if (addr != end)
991                 goto again;
992         return 0;
993 }
994
995 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
997                 unsigned long addr, unsigned long end)
998 {
999         pmd_t *src_pmd, *dst_pmd;
1000         unsigned long next;
1001
1002         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1003         if (!dst_pmd)
1004                 return -ENOMEM;
1005         src_pmd = pmd_offset(src_pud, addr);
1006         do {
1007                 next = pmd_addr_end(addr, end);
1008                 if (pmd_trans_huge(*src_pmd)) {
1009                         int err;
1010                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1011                         err = copy_huge_pmd(dst_mm, src_mm,
1012                                             dst_pmd, src_pmd, addr, vma);
1013                         if (err == -ENOMEM)
1014                                 return -ENOMEM;
1015                         if (!err)
1016                                 continue;
1017                         /* fall through */
1018                 }
1019                 if (pmd_none_or_clear_bad(src_pmd))
1020                         continue;
1021                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1022                                                 vma, addr, next))
1023                         return -ENOMEM;
1024         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1025         return 0;
1026 }
1027
1028 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1030                 unsigned long addr, unsigned long end)
1031 {
1032         pud_t *src_pud, *dst_pud;
1033         unsigned long next;
1034
1035         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1036         if (!dst_pud)
1037                 return -ENOMEM;
1038         src_pud = pud_offset(src_pgd, addr);
1039         do {
1040                 next = pud_addr_end(addr, end);
1041                 if (pud_none_or_clear_bad(src_pud))
1042                         continue;
1043                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1044                                                 vma, addr, next))
1045                         return -ENOMEM;
1046         } while (dst_pud++, src_pud++, addr = next, addr != end);
1047         return 0;
1048 }
1049
1050 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1051                 struct vm_area_struct *vma)
1052 {
1053         pgd_t *src_pgd, *dst_pgd;
1054         unsigned long next;
1055         unsigned long addr = vma->vm_start;
1056         unsigned long end = vma->vm_end;
1057         int ret;
1058
1059         /*
1060          * Don't copy ptes where a page fault will fill them correctly.
1061          * Fork becomes much lighter when there are big shared or private
1062          * readonly mappings. The tradeoff is that copy_page_range is more
1063          * efficient than faulting.
1064          */
1065         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1066                 if (!vma->anon_vma)
1067                         return 0;
1068         }
1069
1070         if (is_vm_hugetlb_page(vma))
1071                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1072
1073         if (unlikely(is_pfn_mapping(vma))) {
1074                 /*
1075                  * We do not free on error cases below as remove_vma
1076                  * gets called on error from higher level routine
1077                  */
1078                 ret = track_pfn_vma_copy(vma);
1079                 if (ret)
1080                         return ret;
1081         }
1082
1083         /*
1084          * We need to invalidate the secondary MMU mappings only when
1085          * there could be a permission downgrade on the ptes of the
1086          * parent mm. And a permission downgrade will only happen if
1087          * is_cow_mapping() returns true.
1088          */
1089         if (is_cow_mapping(vma->vm_flags))
1090                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow_mapping(vma->vm_flags))
1107                 mmu_notifier_invalidate_range_end(src_mm,
1108                                                   vma->vm_start, end);
1109         return ret;
1110 }
1111
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113                                 struct vm_area_struct *vma, pmd_t *pmd,
1114                                 unsigned long addr, unsigned long end,
1115                                 struct zap_details *details)
1116 {
1117         struct mm_struct *mm = tlb->mm;
1118         int force_flush = 0;
1119         int rss[NR_MM_COUNTERS];
1120         spinlock_t *ptl;
1121         pte_t *start_pte;
1122         pte_t *pte;
1123
1124 again:
1125         init_rss_vec(rss);
1126         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127         pte = start_pte;
1128         arch_enter_lazy_mmu_mode();
1129         do {
1130                 pte_t ptent = *pte;
1131                 if (pte_none(ptent)) {
1132                         continue;
1133                 }
1134
1135                 if (pte_present(ptent)) {
1136                         struct page *page;
1137
1138                         page = vm_normal_page(vma, addr, ptent);
1139                         if (unlikely(details) && page) {
1140                                 /*
1141                                  * unmap_shared_mapping_pages() wants to
1142                                  * invalidate cache without truncating:
1143                                  * unmap shared but keep private pages.
1144                                  */
1145                                 if (details->check_mapping &&
1146                                     details->check_mapping != page->mapping)
1147                                         continue;
1148                                 /*
1149                                  * Each page->index must be checked when
1150                                  * invalidating or truncating nonlinear.
1151                                  */
1152                                 if (details->nonlinear_vma &&
1153                                     (page->index < details->first_index ||
1154                                      page->index > details->last_index))
1155                                         continue;
1156                         }
1157                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1158                                                         tlb->fullmm);
1159                         tlb_remove_tlb_entry(tlb, pte, addr);
1160                         if (unlikely(!page))
1161                                 continue;
1162                         if (unlikely(details) && details->nonlinear_vma
1163                             && linear_page_index(details->nonlinear_vma,
1164                                                 addr) != page->index)
1165                                 set_pte_at(mm, addr, pte,
1166                                            pgoff_to_pte(page->index));
1167                         if (PageAnon(page))
1168                                 rss[MM_ANONPAGES]--;
1169                         else {
1170                                 if (pte_dirty(ptent))
1171                                         set_page_dirty(page);
1172                                 if (pte_young(ptent) &&
1173                                     likely(!VM_SequentialReadHint(vma)))
1174                                         mark_page_accessed(page);
1175                                 rss[MM_FILEPAGES]--;
1176                         }
1177                         page_remove_rmap(page);
1178                         if (unlikely(page_mapcount(page) < 0))
1179                                 print_bad_pte(vma, addr, ptent, page);
1180                         force_flush = !__tlb_remove_page(tlb, page);
1181                         if (force_flush) {
1182                                 addr += PAGE_SIZE;
1183                                 break;
1184                         }
1185                         continue;
1186                 }
1187                 /*
1188                  * If details->check_mapping, we leave swap entries;
1189                  * if details->nonlinear_vma, we leave file entries.
1190                  */
1191                 if (unlikely(details))
1192                         continue;
1193                 if (pte_file(ptent)) {
1194                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1195                                 print_bad_pte(vma, addr, ptent, NULL);
1196                 } else {
1197                         swp_entry_t entry = pte_to_swp_entry(ptent);
1198
1199                         if (!non_swap_entry(entry))
1200                                 rss[MM_SWAPENTS]--;
1201                         if (unlikely(!free_swap_and_cache(entry)))
1202                                 print_bad_pte(vma, addr, ptent, NULL);
1203                 }
1204                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205         } while (pte++, addr += PAGE_SIZE, addr != end);
1206
1207         add_mm_rss_vec(mm, rss);
1208         arch_leave_lazy_mmu_mode();
1209         pte_unmap_unlock(start_pte, ptl);
1210
1211         /*
1212          * mmu_gather ran out of room to batch pages, we break out of
1213          * the PTE lock to avoid doing the potential expensive TLB invalidate
1214          * and page-free while holding it.
1215          */
1216         if (force_flush) {
1217                 force_flush = 0;
1218                 tlb_flush_mmu(tlb);
1219                 if (addr != end)
1220                         goto again;
1221         }
1222
1223         return addr;
1224 }
1225
1226 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1227                                 struct vm_area_struct *vma, pud_t *pud,
1228                                 unsigned long addr, unsigned long end,
1229                                 struct zap_details *details)
1230 {
1231         pmd_t *pmd;
1232         unsigned long next;
1233
1234         pmd = pmd_offset(pud, addr);
1235         do {
1236                 next = pmd_addr_end(addr, end);
1237                 if (pmd_trans_huge(*pmd)) {
1238                         if (next - addr != HPAGE_PMD_SIZE) {
1239                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1240                                 split_huge_page_pmd(vma->vm_mm, pmd);
1241                         } else if (zap_huge_pmd(tlb, vma, pmd))
1242                                 goto next;
1243                         /* fall through */
1244                 }
1245                 /*
1246                  * Here there can be other concurrent MADV_DONTNEED or
1247                  * trans huge page faults running, and if the pmd is
1248                  * none or trans huge it can change under us. This is
1249                  * because MADV_DONTNEED holds the mmap_sem in read
1250                  * mode.
1251                  */
1252                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1253                         goto next;
1254                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1255 next:
1256                 cond_resched();
1257         } while (pmd++, addr = next, addr != end);
1258
1259         return addr;
1260 }
1261
1262 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1263                                 struct vm_area_struct *vma, pgd_t *pgd,
1264                                 unsigned long addr, unsigned long end,
1265                                 struct zap_details *details)
1266 {
1267         pud_t *pud;
1268         unsigned long next;
1269
1270         pud = pud_offset(pgd, addr);
1271         do {
1272                 next = pud_addr_end(addr, end);
1273                 if (pud_none_or_clear_bad(pud))
1274                         continue;
1275                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1276         } while (pud++, addr = next, addr != end);
1277
1278         return addr;
1279 }
1280
1281 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1282                                 struct vm_area_struct *vma,
1283                                 unsigned long addr, unsigned long end,
1284                                 struct zap_details *details)
1285 {
1286         pgd_t *pgd;
1287         unsigned long next;
1288
1289         if (details && !details->check_mapping && !details->nonlinear_vma)
1290                 details = NULL;
1291
1292         BUG_ON(addr >= end);
1293         mem_cgroup_uncharge_start();
1294         tlb_start_vma(tlb, vma);
1295         pgd = pgd_offset(vma->vm_mm, addr);
1296         do {
1297                 next = pgd_addr_end(addr, end);
1298                 if (pgd_none_or_clear_bad(pgd))
1299                         continue;
1300                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301         } while (pgd++, addr = next, addr != end);
1302         tlb_end_vma(tlb, vma);
1303         mem_cgroup_uncharge_end();
1304
1305         return addr;
1306 }
1307
1308 /**
1309  * unmap_vmas - unmap a range of memory covered by a list of vma's
1310  * @tlb: address of the caller's struct mmu_gather
1311  * @vma: the starting vma
1312  * @start_addr: virtual address at which to start unmapping
1313  * @end_addr: virtual address at which to end unmapping
1314  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1315  * @details: details of nonlinear truncation or shared cache invalidation
1316  *
1317  * Returns the end address of the unmapping (restart addr if interrupted).
1318  *
1319  * Unmap all pages in the vma list.
1320  *
1321  * Only addresses between `start' and `end' will be unmapped.
1322  *
1323  * The VMA list must be sorted in ascending virtual address order.
1324  *
1325  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326  * range after unmap_vmas() returns.  So the only responsibility here is to
1327  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328  * drops the lock and schedules.
1329  */
1330 unsigned long unmap_vmas(struct mmu_gather *tlb,
1331                 struct vm_area_struct *vma, unsigned long start_addr,
1332                 unsigned long end_addr, unsigned long *nr_accounted,
1333                 struct zap_details *details)
1334 {
1335         unsigned long start = start_addr;
1336         struct mm_struct *mm = vma->vm_mm;
1337
1338         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1340                 unsigned long end;
1341
1342                 start = max(vma->vm_start, start_addr);
1343                 if (start >= vma->vm_end)
1344                         continue;
1345                 end = min(vma->vm_end, end_addr);
1346                 if (end <= vma->vm_start)
1347                         continue;
1348
1349                 if (vma->vm_flags & VM_ACCOUNT)
1350                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1351
1352                 if (unlikely(is_pfn_mapping(vma)))
1353                         untrack_pfn_vma(vma, 0, 0);
1354
1355                 while (start != end) {
1356                         if (unlikely(is_vm_hugetlb_page(vma))) {
1357                                 /*
1358                                  * It is undesirable to test vma->vm_file as it
1359                                  * should be non-null for valid hugetlb area.
1360                                  * However, vm_file will be NULL in the error
1361                                  * cleanup path of do_mmap_pgoff. When
1362                                  * hugetlbfs ->mmap method fails,
1363                                  * do_mmap_pgoff() nullifies vma->vm_file
1364                                  * before calling this function to clean up.
1365                                  * Since no pte has actually been setup, it is
1366                                  * safe to do nothing in this case.
1367                                  */
1368                                 if (vma->vm_file) {
1369                                         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1370                                         __unmap_hugepage_range_final(vma, start, end, NULL);
1371                                         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1372                                 }
1373
1374                                 start = end;
1375                         } else
1376                                 start = unmap_page_range(tlb, vma, start, end, details);
1377                 }
1378         }
1379
1380         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381         return start;   /* which is now the end (or restart) address */
1382 }
1383
1384 /**
1385  * zap_page_range - remove user pages in a given range
1386  * @vma: vm_area_struct holding the applicable pages
1387  * @address: starting address of pages to zap
1388  * @size: number of bytes to zap
1389  * @details: details of nonlinear truncation or shared cache invalidation
1390  */
1391 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1392                 unsigned long size, struct zap_details *details)
1393 {
1394         struct mm_struct *mm = vma->vm_mm;
1395         struct mmu_gather tlb;
1396         unsigned long end = address + size;
1397         unsigned long nr_accounted = 0;
1398
1399         lru_add_drain();
1400         tlb_gather_mmu(&tlb, mm, 0);
1401         update_hiwater_rss(mm);
1402         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1403         tlb_finish_mmu(&tlb, address, end);
1404         return end;
1405 }
1406 EXPORT_SYMBOL_GPL(zap_page_range);
1407
1408 /**
1409  * zap_vma_ptes - remove ptes mapping the vma
1410  * @vma: vm_area_struct holding ptes to be zapped
1411  * @address: starting address of pages to zap
1412  * @size: number of bytes to zap
1413  *
1414  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1415  *
1416  * The entire address range must be fully contained within the vma.
1417  *
1418  * Returns 0 if successful.
1419  */
1420 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1421                 unsigned long size)
1422 {
1423         if (address < vma->vm_start || address + size > vma->vm_end ||
1424                         !(vma->vm_flags & VM_PFNMAP))
1425                 return -1;
1426         zap_page_range(vma, address, size, NULL);
1427         return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1430
1431 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
1432                                         unsigned int flags)
1433 {
1434         if (pte_write(pte))
1435                 return true;
1436
1437         /*
1438          * Make sure that we are really following CoWed page. We do not really
1439          * have to care about exclusiveness of the page because we only want
1440          * to ensure that once COWed page hasn't disappeared in the meantime
1441          * or it hasn't been merged to a KSM page.
1442          */
1443         if ((flags & FOLL_FORCE) && (flags & FOLL_COW))
1444                 return page && PageAnon(page) && !PageKsm(page);
1445
1446         return false;
1447 }
1448
1449 /**
1450  * follow_page - look up a page descriptor from a user-virtual address
1451  * @vma: vm_area_struct mapping @address
1452  * @address: virtual address to look up
1453  * @flags: flags modifying lookup behaviour
1454  *
1455  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1456  *
1457  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1458  * an error pointer if there is a mapping to something not represented
1459  * by a page descriptor (see also vm_normal_page()).
1460  */
1461 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1462                         unsigned int flags)
1463 {
1464         pgd_t *pgd;
1465         pud_t *pud;
1466         pmd_t *pmd;
1467         pte_t *ptep, pte;
1468         spinlock_t *ptl;
1469         struct page *page;
1470         struct mm_struct *mm = vma->vm_mm;
1471
1472         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1473         if (!IS_ERR(page)) {
1474                 BUG_ON(flags & FOLL_GET);
1475                 goto out;
1476         }
1477
1478         page = NULL;
1479         pgd = pgd_offset(mm, address);
1480         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1481                 goto no_page_table;
1482
1483         pud = pud_offset(pgd, address);
1484         if (pud_none(*pud))
1485                 goto no_page_table;
1486         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1487                 BUG_ON(flags & FOLL_GET);
1488                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489                 goto out;
1490         }
1491         if (unlikely(pud_bad(*pud)))
1492                 goto no_page_table;
1493
1494         pmd = pmd_offset(pud, address);
1495         if (pmd_none(*pmd))
1496                 goto no_page_table;
1497         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498                 BUG_ON(flags & FOLL_GET);
1499                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1500                 goto out;
1501         }
1502         if (pmd_trans_huge(*pmd)) {
1503                 if (flags & FOLL_SPLIT) {
1504                         split_huge_page_pmd(mm, pmd);
1505                         goto split_fallthrough;
1506                 }
1507                 spin_lock(&mm->page_table_lock);
1508                 if (likely(pmd_trans_huge(*pmd))) {
1509                         if (unlikely(pmd_trans_splitting(*pmd))) {
1510                                 spin_unlock(&mm->page_table_lock);
1511                                 wait_split_huge_page(vma->anon_vma, pmd);
1512                         } else {
1513                                 page = follow_trans_huge_pmd(mm, address,
1514                                                              pmd, flags);
1515                                 spin_unlock(&mm->page_table_lock);
1516                                 goto out;
1517                         }
1518                 } else
1519                         spin_unlock(&mm->page_table_lock);
1520                 /* fall through */
1521         }
1522 split_fallthrough:
1523         if (unlikely(pmd_bad(*pmd)))
1524                 goto no_page_table;
1525
1526         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1527
1528         pte = *ptep;
1529         if (!pte_present(pte))
1530                 goto no_page;
1531
1532         page = vm_normal_page(vma, address, pte);
1533         if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, page, flags)) {
1534                 pte_unmap_unlock(ptep, ptl);
1535                 return NULL;
1536         }
1537
1538         if (unlikely(!page)) {
1539                 if ((flags & FOLL_DUMP) ||
1540                     !is_zero_pfn(pte_pfn(pte)))
1541                         goto bad_page;
1542                 page = pte_page(pte);
1543         }
1544
1545         if (flags & FOLL_GET)
1546                 get_page_foll(page);
1547         if (flags & FOLL_TOUCH) {
1548                 if ((flags & FOLL_WRITE) &&
1549                     !pte_dirty(pte) && !PageDirty(page))
1550                         set_page_dirty(page);
1551                 /*
1552                  * pte_mkyoung() would be more correct here, but atomic care
1553                  * is needed to avoid losing the dirty bit: it is easier to use
1554                  * mark_page_accessed().
1555                  */
1556                 mark_page_accessed(page);
1557         }
1558         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1559                 /*
1560                  * The preliminary mapping check is mainly to avoid the
1561                  * pointless overhead of lock_page on the ZERO_PAGE
1562                  * which might bounce very badly if there is contention.
1563                  *
1564                  * If the page is already locked, we don't need to
1565                  * handle it now - vmscan will handle it later if and
1566                  * when it attempts to reclaim the page.
1567                  */
1568                 if (page->mapping && trylock_page(page)) {
1569                         lru_add_drain();  /* push cached pages to LRU */
1570                         /*
1571                          * Because we lock page here and migration is
1572                          * blocked by the pte's page reference, we need
1573                          * only check for file-cache page truncation.
1574                          */
1575                         if (page->mapping)
1576                                 mlock_vma_page(page);
1577                         unlock_page(page);
1578                 }
1579         }
1580
1581         pte_unmap_unlock(ptep, ptl);
1582 out:
1583         return page;
1584
1585 bad_page:
1586         pte_unmap_unlock(ptep, ptl);
1587         return ERR_PTR(-EFAULT);
1588
1589 no_page:
1590         pte_unmap_unlock(ptep, ptl);
1591         if (!pte_none(pte))
1592                 return page;
1593
1594 no_page_table:
1595         /*
1596          * When core dumping an enormous anonymous area that nobody
1597          * has touched so far, we don't want to allocate unnecessary pages or
1598          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1599          * then get_dump_page() will return NULL to leave a hole in the dump.
1600          * But we can only make this optimization where a hole would surely
1601          * be zero-filled if handle_mm_fault() actually did handle it.
1602          */
1603         if ((flags & FOLL_DUMP) &&
1604             (!vma->vm_ops || !vma->vm_ops->fault))
1605                 return ERR_PTR(-EFAULT);
1606         return page;
1607 }
1608
1609 /**
1610  * __get_user_pages() - pin user pages in memory
1611  * @tsk:        task_struct of target task
1612  * @mm:         mm_struct of target mm
1613  * @start:      starting user address
1614  * @nr_pages:   number of pages from start to pin
1615  * @gup_flags:  flags modifying pin behaviour
1616  * @pages:      array that receives pointers to the pages pinned.
1617  *              Should be at least nr_pages long. Or NULL, if caller
1618  *              only intends to ensure the pages are faulted in.
1619  * @vmas:       array of pointers to vmas corresponding to each page.
1620  *              Or NULL if the caller does not require them.
1621  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1622  *
1623  * Returns number of pages pinned. This may be fewer than the number
1624  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1625  * were pinned, returns -errno. Each page returned must be released
1626  * with a put_page() call when it is finished with. vmas will only
1627  * remain valid while mmap_sem is held.
1628  *
1629  * Must be called with mmap_sem held for read or write.
1630  *
1631  * __get_user_pages walks a process's page tables and takes a reference to
1632  * each struct page that each user address corresponds to at a given
1633  * instant. That is, it takes the page that would be accessed if a user
1634  * thread accesses the given user virtual address at that instant.
1635  *
1636  * This does not guarantee that the page exists in the user mappings when
1637  * __get_user_pages returns, and there may even be a completely different
1638  * page there in some cases (eg. if mmapped pagecache has been invalidated
1639  * and subsequently re faulted). However it does guarantee that the page
1640  * won't be freed completely. And mostly callers simply care that the page
1641  * contains data that was valid *at some point in time*. Typically, an IO
1642  * or similar operation cannot guarantee anything stronger anyway because
1643  * locks can't be held over the syscall boundary.
1644  *
1645  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1646  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1647  * appropriate) must be called after the page is finished with, and
1648  * before put_page is called.
1649  *
1650  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1651  * or mmap_sem contention, and if waiting is needed to pin all pages,
1652  * *@nonblocking will be set to 0.
1653  *
1654  * In most cases, get_user_pages or get_user_pages_fast should be used
1655  * instead of __get_user_pages. __get_user_pages should be used only if
1656  * you need some special @gup_flags.
1657  */
1658 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1659                      unsigned long start, int nr_pages, unsigned int gup_flags,
1660                      struct page **pages, struct vm_area_struct **vmas,
1661                      int *nonblocking)
1662 {
1663         int i;
1664         unsigned long vm_flags;
1665
1666         if (nr_pages <= 0)
1667                 return 0;
1668
1669         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1670
1671         /* 
1672          * Require read or write permissions.
1673          * If FOLL_FORCE is set, we only require the "MAY" flags.
1674          */
1675         vm_flags  = (gup_flags & FOLL_WRITE) ?
1676                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1677         vm_flags &= (gup_flags & FOLL_FORCE) ?
1678                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1679         i = 0;
1680
1681         do {
1682                 struct vm_area_struct *vma;
1683
1684                 vma = find_extend_vma(mm, start);
1685                 if (!vma && in_gate_area(mm, start)) {
1686                         unsigned long pg = start & PAGE_MASK;
1687                         pgd_t *pgd;
1688                         pud_t *pud;
1689                         pmd_t *pmd;
1690                         pte_t *pte;
1691
1692                         /* user gate pages are read-only */
1693                         if (gup_flags & FOLL_WRITE)
1694                                 return i ? : -EFAULT;
1695                         if (pg > TASK_SIZE)
1696                                 pgd = pgd_offset_k(pg);
1697                         else
1698                                 pgd = pgd_offset_gate(mm, pg);
1699                         BUG_ON(pgd_none(*pgd));
1700                         pud = pud_offset(pgd, pg);
1701                         BUG_ON(pud_none(*pud));
1702                         pmd = pmd_offset(pud, pg);
1703                         if (pmd_none(*pmd))
1704                                 return i ? : -EFAULT;
1705                         VM_BUG_ON(pmd_trans_huge(*pmd));
1706                         pte = pte_offset_map(pmd, pg);
1707                         if (pte_none(*pte)) {
1708                                 pte_unmap(pte);
1709                                 return i ? : -EFAULT;
1710                         }
1711                         vma = get_gate_vma(mm);
1712                         if (pages) {
1713                                 struct page *page;
1714
1715                                 page = vm_normal_page(vma, start, *pte);
1716                                 if (!page) {
1717                                         if (!(gup_flags & FOLL_DUMP) &&
1718                                              is_zero_pfn(pte_pfn(*pte)))
1719                                                 page = pte_page(*pte);
1720                                         else {
1721                                                 pte_unmap(pte);
1722                                                 return i ? : -EFAULT;
1723                                         }
1724                                 }
1725                                 pages[i] = page;
1726                                 get_page(page);
1727                         }
1728                         pte_unmap(pte);
1729                         goto next_page;
1730                 }
1731
1732                 if (!vma ||
1733                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1734                     !(vm_flags & vma->vm_flags))
1735                         return i ? : -EFAULT;
1736
1737                 if (is_vm_hugetlb_page(vma)) {
1738                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1739                                         &start, &nr_pages, i, gup_flags);
1740                         continue;
1741                 }
1742
1743                 do {
1744                         struct page *page;
1745                         unsigned int foll_flags = gup_flags;
1746
1747                         /*
1748                          * If we have a pending SIGKILL, don't keep faulting
1749                          * pages and potentially allocating memory.
1750                          */
1751                         if (unlikely(fatal_signal_pending(current)))
1752                                 return i ? i : -ERESTARTSYS;
1753
1754                         cond_resched();
1755                         while (!(page = follow_page(vma, start, foll_flags))) {
1756                                 int ret;
1757                                 unsigned int fault_flags = 0;
1758
1759                                 if (foll_flags & FOLL_WRITE)
1760                                         fault_flags |= FAULT_FLAG_WRITE;
1761                                 if (nonblocking)
1762                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1763                                 if (foll_flags & FOLL_NOWAIT)
1764                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1765
1766                                 ret = handle_mm_fault(mm, vma, start,
1767                                                         fault_flags);
1768
1769                                 if (ret & VM_FAULT_ERROR) {
1770                                         if (ret & VM_FAULT_OOM)
1771                                                 return i ? i : -ENOMEM;
1772                                         if (ret & (VM_FAULT_HWPOISON |
1773                                                    VM_FAULT_HWPOISON_LARGE)) {
1774                                                 if (i)
1775                                                         return i;
1776                                                 else if (gup_flags & FOLL_HWPOISON)
1777                                                         return -EHWPOISON;
1778                                                 else
1779                                                         return -EFAULT;
1780                                         }
1781                                         if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1782                                                 return i ? i : -EFAULT;
1783                                         BUG();
1784                                 }
1785
1786                                 if (tsk) {
1787                                         if (ret & VM_FAULT_MAJOR)
1788                                                 tsk->maj_flt++;
1789                                         else
1790                                                 tsk->min_flt++;
1791                                 }
1792
1793                                 if (ret & VM_FAULT_RETRY) {
1794                                         if (nonblocking)
1795                                                 *nonblocking = 0;
1796                                         return i;
1797                                 }
1798
1799                                 /*
1800                                  * The VM_FAULT_WRITE bit tells us that
1801                                  * do_wp_page has broken COW when necessary,
1802                                  * even if maybe_mkwrite decided not to set
1803                                  * pte_write. We cannot simply drop FOLL_WRITE
1804                                  * here because the COWed page might be gone by
1805                                  * the time we do the subsequent page lookups.
1806                                  */
1807                                 if ((ret & VM_FAULT_WRITE) &&
1808                                     !(vma->vm_flags & VM_WRITE))
1809                                         foll_flags |= FOLL_COW;
1810
1811                                 cond_resched();
1812                         }
1813                         if (IS_ERR(page))
1814                                 return i ? i : PTR_ERR(page);
1815                         if (pages) {
1816                                 pages[i] = page;
1817
1818                                 flush_anon_page(vma, page, start);
1819                                 flush_dcache_page(page);
1820                         }
1821 next_page:
1822                         if (vmas)
1823                                 vmas[i] = vma;
1824                         i++;
1825                         start += PAGE_SIZE;
1826                         nr_pages--;
1827                 } while (nr_pages && start < vma->vm_end);
1828         } while (nr_pages);
1829         return i;
1830 }
1831 EXPORT_SYMBOL(__get_user_pages);
1832
1833 /*
1834  * fixup_user_fault() - manually resolve a user page fault
1835  * @tsk:        the task_struct to use for page fault accounting, or
1836  *              NULL if faults are not to be recorded.
1837  * @mm:         mm_struct of target mm
1838  * @address:    user address
1839  * @fault_flags:flags to pass down to handle_mm_fault()
1840  *
1841  * This is meant to be called in the specific scenario where for locking reasons
1842  * we try to access user memory in atomic context (within a pagefault_disable()
1843  * section), this returns -EFAULT, and we want to resolve the user fault before
1844  * trying again.
1845  *
1846  * Typically this is meant to be used by the futex code.
1847  *
1848  * The main difference with get_user_pages() is that this function will
1849  * unconditionally call handle_mm_fault() which will in turn perform all the
1850  * necessary SW fixup of the dirty and young bits in the PTE, while
1851  * handle_mm_fault() only guarantees to update these in the struct page.
1852  *
1853  * This is important for some architectures where those bits also gate the
1854  * access permission to the page because they are maintained in software.  On
1855  * such architectures, gup() will not be enough to make a subsequent access
1856  * succeed.
1857  *
1858  * This should be called with the mm_sem held for read.
1859  */
1860 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1861                      unsigned long address, unsigned int fault_flags)
1862 {
1863         struct vm_area_struct *vma;
1864         vm_flags_t vm_flags;
1865         int ret;
1866
1867         vma = find_extend_vma(mm, address);
1868         if (!vma || address < vma->vm_start)
1869                 return -EFAULT;
1870
1871         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1872         if (!(vm_flags & vma->vm_flags))
1873                 return -EFAULT;
1874
1875         ret = handle_mm_fault(mm, vma, address, fault_flags);
1876         if (ret & VM_FAULT_ERROR) {
1877                 if (ret & VM_FAULT_OOM)
1878                         return -ENOMEM;
1879                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1880                         return -EHWPOISON;
1881                 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1882                         return -EFAULT;
1883                 BUG();
1884         }
1885         if (tsk) {
1886                 if (ret & VM_FAULT_MAJOR)
1887                         tsk->maj_flt++;
1888                 else
1889                         tsk->min_flt++;
1890         }
1891         return 0;
1892 }
1893
1894 /*
1895  * get_user_pages() - pin user pages in memory
1896  * @tsk:        the task_struct to use for page fault accounting, or
1897  *              NULL if faults are not to be recorded.
1898  * @mm:         mm_struct of target mm
1899  * @start:      starting user address
1900  * @nr_pages:   number of pages from start to pin
1901  * @write:      whether pages will be written to by the caller
1902  * @force:      whether to force write access even if user mapping is
1903  *              readonly. This will result in the page being COWed even
1904  *              in MAP_SHARED mappings. You do not want this.
1905  * @pages:      array that receives pointers to the pages pinned.
1906  *              Should be at least nr_pages long. Or NULL, if caller
1907  *              only intends to ensure the pages are faulted in.
1908  * @vmas:       array of pointers to vmas corresponding to each page.
1909  *              Or NULL if the caller does not require them.
1910  *
1911  * Returns number of pages pinned. This may be fewer than the number
1912  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1913  * were pinned, returns -errno. Each page returned must be released
1914  * with a put_page() call when it is finished with. vmas will only
1915  * remain valid while mmap_sem is held.
1916  *
1917  * Must be called with mmap_sem held for read or write.
1918  *
1919  * get_user_pages walks a process's page tables and takes a reference to
1920  * each struct page that each user address corresponds to at a given
1921  * instant. That is, it takes the page that would be accessed if a user
1922  * thread accesses the given user virtual address at that instant.
1923  *
1924  * This does not guarantee that the page exists in the user mappings when
1925  * get_user_pages returns, and there may even be a completely different
1926  * page there in some cases (eg. if mmapped pagecache has been invalidated
1927  * and subsequently re faulted). However it does guarantee that the page
1928  * won't be freed completely. And mostly callers simply care that the page
1929  * contains data that was valid *at some point in time*. Typically, an IO
1930  * or similar operation cannot guarantee anything stronger anyway because
1931  * locks can't be held over the syscall boundary.
1932  *
1933  * If write=0, the page must not be written to. If the page is written to,
1934  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1935  * after the page is finished with, and before put_page is called.
1936  *
1937  * get_user_pages is typically used for fewer-copy IO operations, to get a
1938  * handle on the memory by some means other than accesses via the user virtual
1939  * addresses. The pages may be submitted for DMA to devices or accessed via
1940  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1941  * use the correct cache flushing APIs.
1942  *
1943  * See also get_user_pages_fast, for performance critical applications.
1944  */
1945 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1946                 unsigned long start, int nr_pages, int write, int force,
1947                 struct page **pages, struct vm_area_struct **vmas)
1948 {
1949         int flags = FOLL_TOUCH;
1950
1951         if (pages)
1952                 flags |= FOLL_GET;
1953         if (write)
1954                 flags |= FOLL_WRITE;
1955         if (force)
1956                 flags |= FOLL_FORCE;
1957
1958         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1959                                 NULL);
1960 }
1961 EXPORT_SYMBOL(get_user_pages);
1962
1963 /**
1964  * get_dump_page() - pin user page in memory while writing it to core dump
1965  * @addr: user address
1966  *
1967  * Returns struct page pointer of user page pinned for dump,
1968  * to be freed afterwards by page_cache_release() or put_page().
1969  *
1970  * Returns NULL on any kind of failure - a hole must then be inserted into
1971  * the corefile, to preserve alignment with its headers; and also returns
1972  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1973  * allowing a hole to be left in the corefile to save diskspace.
1974  *
1975  * Called without mmap_sem, but after all other threads have been killed.
1976  */
1977 #ifdef CONFIG_ELF_CORE
1978 struct page *get_dump_page(unsigned long addr)
1979 {
1980         struct vm_area_struct *vma;
1981         struct page *page;
1982
1983         if (__get_user_pages(current, current->mm, addr, 1,
1984                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1985                              NULL) < 1)
1986                 return NULL;
1987         flush_cache_page(vma, addr, page_to_pfn(page));
1988         return page;
1989 }
1990 #endif /* CONFIG_ELF_CORE */
1991
1992 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1993                         spinlock_t **ptl)
1994 {
1995         pgd_t * pgd = pgd_offset(mm, addr);
1996         pud_t * pud = pud_alloc(mm, pgd, addr);
1997         if (pud) {
1998                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1999                 if (pmd) {
2000                         VM_BUG_ON(pmd_trans_huge(*pmd));
2001                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2002                 }
2003         }
2004         return NULL;
2005 }
2006
2007 /*
2008  * This is the old fallback for page remapping.
2009  *
2010  * For historical reasons, it only allows reserved pages. Only
2011  * old drivers should use this, and they needed to mark their
2012  * pages reserved for the old functions anyway.
2013  */
2014 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2015                         struct page *page, pgprot_t prot)
2016 {
2017         struct mm_struct *mm = vma->vm_mm;
2018         int retval;
2019         pte_t *pte;
2020         spinlock_t *ptl;
2021
2022         retval = -EINVAL;
2023         if (PageAnon(page))
2024                 goto out;
2025         retval = -ENOMEM;
2026         flush_dcache_page(page);
2027         pte = get_locked_pte(mm, addr, &ptl);
2028         if (!pte)
2029                 goto out;
2030         retval = -EBUSY;
2031         if (!pte_none(*pte))
2032                 goto out_unlock;
2033
2034         /* Ok, finally just insert the thing.. */
2035         get_page(page);
2036         inc_mm_counter_fast(mm, MM_FILEPAGES);
2037         page_add_file_rmap(page);
2038         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2039
2040         retval = 0;
2041         pte_unmap_unlock(pte, ptl);
2042         return retval;
2043 out_unlock:
2044         pte_unmap_unlock(pte, ptl);
2045 out:
2046         return retval;
2047 }
2048
2049 /**
2050  * vm_insert_page - insert single page into user vma
2051  * @vma: user vma to map to
2052  * @addr: target user address of this page
2053  * @page: source kernel page
2054  *
2055  * This allows drivers to insert individual pages they've allocated
2056  * into a user vma.
2057  *
2058  * The page has to be a nice clean _individual_ kernel allocation.
2059  * If you allocate a compound page, you need to have marked it as
2060  * such (__GFP_COMP), or manually just split the page up yourself
2061  * (see split_page()).
2062  *
2063  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2064  * took an arbitrary page protection parameter. This doesn't allow
2065  * that. Your vma protection will have to be set up correctly, which
2066  * means that if you want a shared writable mapping, you'd better
2067  * ask for a shared writable mapping!
2068  *
2069  * The page does not need to be reserved.
2070  */
2071 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2072                         struct page *page)
2073 {
2074         if (addr < vma->vm_start || addr >= vma->vm_end)
2075                 return -EFAULT;
2076         if (!page_count(page))
2077                 return -EINVAL;
2078         vma->vm_flags |= VM_INSERTPAGE;
2079         return insert_page(vma, addr, page, vma->vm_page_prot);
2080 }
2081 EXPORT_SYMBOL(vm_insert_page);
2082
2083 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2084                         unsigned long pfn, pgprot_t prot)
2085 {
2086         struct mm_struct *mm = vma->vm_mm;
2087         int retval;
2088         pte_t *pte, entry;
2089         spinlock_t *ptl;
2090
2091         retval = -ENOMEM;
2092         pte = get_locked_pte(mm, addr, &ptl);
2093         if (!pte)
2094                 goto out;
2095         retval = -EBUSY;
2096         if (!pte_none(*pte))
2097                 goto out_unlock;
2098
2099         /* Ok, finally just insert the thing.. */
2100         entry = pte_mkspecial(pfn_pte(pfn, prot));
2101         set_pte_at(mm, addr, pte, entry);
2102         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2103
2104         retval = 0;
2105 out_unlock:
2106         pte_unmap_unlock(pte, ptl);
2107 out:
2108         return retval;
2109 }
2110
2111 /**
2112  * vm_insert_pfn - insert single pfn into user vma
2113  * @vma: user vma to map to
2114  * @addr: target user address of this page
2115  * @pfn: source kernel pfn
2116  *
2117  * Similar to vm_inert_page, this allows drivers to insert individual pages
2118  * they've allocated into a user vma. Same comments apply.
2119  *
2120  * This function should only be called from a vm_ops->fault handler, and
2121  * in that case the handler should return NULL.
2122  *
2123  * vma cannot be a COW mapping.
2124  *
2125  * As this is called only for pages that do not currently exist, we
2126  * do not need to flush old virtual caches or the TLB.
2127  */
2128 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2129                         unsigned long pfn)
2130 {
2131         int ret;
2132         pgprot_t pgprot = vma->vm_page_prot;
2133         /*
2134          * Technically, architectures with pte_special can avoid all these
2135          * restrictions (same for remap_pfn_range).  However we would like
2136          * consistency in testing and feature parity among all, so we should
2137          * try to keep these invariants in place for everybody.
2138          */
2139         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2140         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2141                                                 (VM_PFNMAP|VM_MIXEDMAP));
2142         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2143         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2144
2145         if (addr < vma->vm_start || addr >= vma->vm_end)
2146                 return -EFAULT;
2147         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2148                 return -EINVAL;
2149
2150         ret = insert_pfn(vma, addr, pfn, pgprot);
2151
2152         if (ret)
2153                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2154
2155         return ret;
2156 }
2157 EXPORT_SYMBOL(vm_insert_pfn);
2158
2159 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2160                         unsigned long pfn)
2161 {
2162         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2163
2164         if (addr < vma->vm_start || addr >= vma->vm_end)
2165                 return -EFAULT;
2166
2167         /*
2168          * If we don't have pte special, then we have to use the pfn_valid()
2169          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2170          * refcount the page if pfn_valid is true (hence insert_page rather
2171          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2172          * without pte special, it would there be refcounted as a normal page.
2173          */
2174         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2175                 struct page *page;
2176
2177                 page = pfn_to_page(pfn);
2178                 return insert_page(vma, addr, page, vma->vm_page_prot);
2179         }
2180         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2181 }
2182 EXPORT_SYMBOL(vm_insert_mixed);
2183
2184 /*
2185  * maps a range of physical memory into the requested pages. the old
2186  * mappings are removed. any references to nonexistent pages results
2187  * in null mappings (currently treated as "copy-on-access")
2188  */
2189 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2190                         unsigned long addr, unsigned long end,
2191                         unsigned long pfn, pgprot_t prot)
2192 {
2193         pte_t *pte;
2194         spinlock_t *ptl;
2195
2196         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2197         if (!pte)
2198                 return -ENOMEM;
2199         arch_enter_lazy_mmu_mode();
2200         do {
2201                 BUG_ON(!pte_none(*pte));
2202                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2203                 pfn++;
2204         } while (pte++, addr += PAGE_SIZE, addr != end);
2205         arch_leave_lazy_mmu_mode();
2206         pte_unmap_unlock(pte - 1, ptl);
2207         return 0;
2208 }
2209
2210 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2211                         unsigned long addr, unsigned long end,
2212                         unsigned long pfn, pgprot_t prot)
2213 {
2214         pmd_t *pmd;
2215         unsigned long next;
2216
2217         pfn -= addr >> PAGE_SHIFT;
2218         pmd = pmd_alloc(mm, pud, addr);
2219         if (!pmd)
2220                 return -ENOMEM;
2221         VM_BUG_ON(pmd_trans_huge(*pmd));
2222         do {
2223                 next = pmd_addr_end(addr, end);
2224                 if (remap_pte_range(mm, pmd, addr, next,
2225                                 pfn + (addr >> PAGE_SHIFT), prot))
2226                         return -ENOMEM;
2227         } while (pmd++, addr = next, addr != end);
2228         return 0;
2229 }
2230
2231 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2232                         unsigned long addr, unsigned long end,
2233                         unsigned long pfn, pgprot_t prot)
2234 {
2235         pud_t *pud;
2236         unsigned long next;
2237
2238         pfn -= addr >> PAGE_SHIFT;
2239         pud = pud_alloc(mm, pgd, addr);
2240         if (!pud)
2241                 return -ENOMEM;
2242         do {
2243                 next = pud_addr_end(addr, end);
2244                 if (remap_pmd_range(mm, pud, addr, next,
2245                                 pfn + (addr >> PAGE_SHIFT), prot))
2246                         return -ENOMEM;
2247         } while (pud++, addr = next, addr != end);
2248         return 0;
2249 }
2250
2251 /**
2252  * remap_pfn_range - remap kernel memory to userspace
2253  * @vma: user vma to map to
2254  * @addr: target user address to start at
2255  * @pfn: physical address of kernel memory
2256  * @size: size of map area
2257  * @prot: page protection flags for this mapping
2258  *
2259  *  Note: this is only safe if the mm semaphore is held when called.
2260  */
2261 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2262                     unsigned long pfn, unsigned long size, pgprot_t prot)
2263 {
2264         pgd_t *pgd;
2265         unsigned long next;
2266         unsigned long end = addr + PAGE_ALIGN(size);
2267         struct mm_struct *mm = vma->vm_mm;
2268         int err;
2269
2270         /*
2271          * Physically remapped pages are special. Tell the
2272          * rest of the world about it:
2273          *   VM_IO tells people not to look at these pages
2274          *      (accesses can have side effects).
2275          *   VM_RESERVED is specified all over the place, because
2276          *      in 2.4 it kept swapout's vma scan off this vma; but
2277          *      in 2.6 the LRU scan won't even find its pages, so this
2278          *      flag means no more than count its pages in reserved_vm,
2279          *      and omit it from core dump, even when VM_IO turned off.
2280          *   VM_PFNMAP tells the core MM that the base pages are just
2281          *      raw PFN mappings, and do not have a "struct page" associated
2282          *      with them.
2283          *
2284          * There's a horrible special case to handle copy-on-write
2285          * behaviour that some programs depend on. We mark the "original"
2286          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2287          */
2288         if (addr == vma->vm_start && end == vma->vm_end) {
2289                 vma->vm_pgoff = pfn;
2290                 vma->vm_flags |= VM_PFN_AT_MMAP;
2291         } else if (is_cow_mapping(vma->vm_flags))
2292                 return -EINVAL;
2293
2294         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2295
2296         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2297         if (err) {
2298                 /*
2299                  * To indicate that track_pfn related cleanup is not
2300                  * needed from higher level routine calling unmap_vmas
2301                  */
2302                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2303                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2304                 return -EINVAL;
2305         }
2306
2307         BUG_ON(addr >= end);
2308         pfn -= addr >> PAGE_SHIFT;
2309         pgd = pgd_offset(mm, addr);
2310         flush_cache_range(vma, addr, end);
2311         do {
2312                 next = pgd_addr_end(addr, end);
2313                 err = remap_pud_range(mm, pgd, addr, next,
2314                                 pfn + (addr >> PAGE_SHIFT), prot);
2315                 if (err)
2316                         break;
2317         } while (pgd++, addr = next, addr != end);
2318
2319         if (err)
2320                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2321
2322         return err;
2323 }
2324 EXPORT_SYMBOL(remap_pfn_range);
2325
2326 /**
2327  * vm_iomap_memory - remap memory to userspace
2328  * @vma: user vma to map to
2329  * @start: start of area
2330  * @len: size of area
2331  *
2332  * This is a simplified io_remap_pfn_range() for common driver use. The
2333  * driver just needs to give us the physical memory range to be mapped,
2334  * we'll figure out the rest from the vma information.
2335  *
2336  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2337  * whatever write-combining details or similar.
2338  */
2339 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2340 {
2341         unsigned long vm_len, pfn, pages;
2342
2343         /* Check that the physical memory area passed in looks valid */
2344         if (start + len < start)
2345                 return -EINVAL;
2346         /*
2347          * You *really* shouldn't map things that aren't page-aligned,
2348          * but we've historically allowed it because IO memory might
2349          * just have smaller alignment.
2350          */
2351         len += start & ~PAGE_MASK;
2352         pfn = start >> PAGE_SHIFT;
2353         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2354         if (pfn + pages < pfn)
2355                 return -EINVAL;
2356
2357         /* We start the mapping 'vm_pgoff' pages into the area */
2358         if (vma->vm_pgoff > pages)
2359                 return -EINVAL;
2360         pfn += vma->vm_pgoff;
2361         pages -= vma->vm_pgoff;
2362
2363         /* Can we fit all of the mapping? */
2364         vm_len = vma->vm_end - vma->vm_start;
2365         if (vm_len >> PAGE_SHIFT > pages)
2366                 return -EINVAL;
2367
2368         /* Ok, let it rip */
2369         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2370 }
2371 EXPORT_SYMBOL(vm_iomap_memory);
2372
2373 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2374                                      unsigned long addr, unsigned long end,
2375                                      pte_fn_t fn, void *data)
2376 {
2377         pte_t *pte;
2378         int err;
2379         pgtable_t token;
2380         spinlock_t *uninitialized_var(ptl);
2381
2382         pte = (mm == &init_mm) ?
2383                 pte_alloc_kernel(pmd, addr) :
2384                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2385         if (!pte)
2386                 return -ENOMEM;
2387
2388         BUG_ON(pmd_huge(*pmd));
2389
2390         arch_enter_lazy_mmu_mode();
2391
2392         token = pmd_pgtable(*pmd);
2393
2394         do {
2395                 err = fn(pte++, token, addr, data);
2396                 if (err)
2397                         break;
2398         } while (addr += PAGE_SIZE, addr != end);
2399
2400         arch_leave_lazy_mmu_mode();
2401
2402         if (mm != &init_mm)
2403                 pte_unmap_unlock(pte-1, ptl);
2404         return err;
2405 }
2406
2407 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2408                                      unsigned long addr, unsigned long end,
2409                                      pte_fn_t fn, void *data)
2410 {
2411         pmd_t *pmd;
2412         unsigned long next;
2413         int err;
2414
2415         BUG_ON(pud_huge(*pud));
2416
2417         pmd = pmd_alloc(mm, pud, addr);
2418         if (!pmd)
2419                 return -ENOMEM;
2420         do {
2421                 next = pmd_addr_end(addr, end);
2422                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2423                 if (err)
2424                         break;
2425         } while (pmd++, addr = next, addr != end);
2426         return err;
2427 }
2428
2429 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2430                                      unsigned long addr, unsigned long end,
2431                                      pte_fn_t fn, void *data)
2432 {
2433         pud_t *pud;
2434         unsigned long next;
2435         int err;
2436
2437         pud = pud_alloc(mm, pgd, addr);
2438         if (!pud)
2439                 return -ENOMEM;
2440         do {
2441                 next = pud_addr_end(addr, end);
2442                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2443                 if (err)
2444                         break;
2445         } while (pud++, addr = next, addr != end);
2446         return err;
2447 }
2448
2449 /*
2450  * Scan a region of virtual memory, filling in page tables as necessary
2451  * and calling a provided function on each leaf page table.
2452  */
2453 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2454                         unsigned long size, pte_fn_t fn, void *data)
2455 {
2456         pgd_t *pgd;
2457         unsigned long next;
2458         unsigned long end = addr + size;
2459         int err;
2460
2461         BUG_ON(addr >= end);
2462         pgd = pgd_offset(mm, addr);
2463         do {
2464                 next = pgd_addr_end(addr, end);
2465                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2466                 if (err)
2467                         break;
2468         } while (pgd++, addr = next, addr != end);
2469
2470         return err;
2471 }
2472 EXPORT_SYMBOL_GPL(apply_to_page_range);
2473
2474 /*
2475  * handle_pte_fault chooses page fault handler according to an entry
2476  * which was read non-atomically.  Before making any commitment, on
2477  * those architectures or configurations (e.g. i386 with PAE) which
2478  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2479  * must check under lock before unmapping the pte and proceeding
2480  * (but do_wp_page is only called after already making such a check;
2481  * and do_anonymous_page can safely check later on).
2482  */
2483 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2484                                 pte_t *page_table, pte_t orig_pte)
2485 {
2486         int same = 1;
2487 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2488         if (sizeof(pte_t) > sizeof(unsigned long)) {
2489                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2490                 spin_lock(ptl);
2491                 same = pte_same(*page_table, orig_pte);
2492                 spin_unlock(ptl);
2493         }
2494 #endif
2495         pte_unmap(page_table);
2496         return same;
2497 }
2498
2499 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2500 {
2501         /*
2502          * If the source page was a PFN mapping, we don't have
2503          * a "struct page" for it. We do a best-effort copy by
2504          * just copying from the original user address. If that
2505          * fails, we just zero-fill it. Live with it.
2506          */
2507         if (unlikely(!src)) {
2508                 void *kaddr = kmap_atomic(dst, KM_USER0);
2509                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2510
2511                 /*
2512                  * This really shouldn't fail, because the page is there
2513                  * in the page tables. But it might just be unreadable,
2514                  * in which case we just give up and fill the result with
2515                  * zeroes.
2516                  */
2517                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2518                         clear_page(kaddr);
2519                 kunmap_atomic(kaddr, KM_USER0);
2520                 flush_dcache_page(dst);
2521         } else
2522                 copy_user_highpage(dst, src, va, vma);
2523 }
2524
2525 /*
2526  * This routine handles present pages, when users try to write
2527  * to a shared page. It is done by copying the page to a new address
2528  * and decrementing the shared-page counter for the old page.
2529  *
2530  * Note that this routine assumes that the protection checks have been
2531  * done by the caller (the low-level page fault routine in most cases).
2532  * Thus we can safely just mark it writable once we've done any necessary
2533  * COW.
2534  *
2535  * We also mark the page dirty at this point even though the page will
2536  * change only once the write actually happens. This avoids a few races,
2537  * and potentially makes it more efficient.
2538  *
2539  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2540  * but allow concurrent faults), with pte both mapped and locked.
2541  * We return with mmap_sem still held, but pte unmapped and unlocked.
2542  */
2543 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2544                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2545                 spinlock_t *ptl, pte_t orig_pte)
2546         __releases(ptl)
2547 {
2548         struct page *old_page, *new_page;
2549         pte_t entry;
2550         int ret = 0;
2551         int page_mkwrite = 0;
2552         struct page *dirty_page = NULL;
2553
2554         old_page = vm_normal_page(vma, address, orig_pte);
2555         if (!old_page) {
2556                 /*
2557                  * VM_MIXEDMAP !pfn_valid() case
2558                  *
2559                  * We should not cow pages in a shared writeable mapping.
2560                  * Just mark the pages writable as we can't do any dirty
2561                  * accounting on raw pfn maps.
2562                  */
2563                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2564                                      (VM_WRITE|VM_SHARED))
2565                         goto reuse;
2566                 goto gotten;
2567         }
2568
2569         /*
2570          * Take out anonymous pages first, anonymous shared vmas are
2571          * not dirty accountable.
2572          */
2573         if (PageAnon(old_page) && !PageKsm(old_page)) {
2574                 if (!trylock_page(old_page)) {
2575                         page_cache_get(old_page);
2576                         pte_unmap_unlock(page_table, ptl);
2577                         lock_page(old_page);
2578                         page_table = pte_offset_map_lock(mm, pmd, address,
2579                                                          &ptl);
2580                         if (!pte_same(*page_table, orig_pte)) {
2581                                 unlock_page(old_page);
2582                                 goto unlock;
2583                         }
2584                         page_cache_release(old_page);
2585                 }
2586                 if (reuse_swap_page(old_page)) {
2587                         /*
2588                          * The page is all ours.  Move it to our anon_vma so
2589                          * the rmap code will not search our parent or siblings.
2590                          * Protected against the rmap code by the page lock.
2591                          */
2592                         page_move_anon_rmap(old_page, vma, address);
2593                         unlock_page(old_page);
2594                         goto reuse;
2595                 }
2596                 unlock_page(old_page);
2597         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2598                                         (VM_WRITE|VM_SHARED))) {
2599                 /*
2600                  * Only catch write-faults on shared writable pages,
2601                  * read-only shared pages can get COWed by
2602                  * get_user_pages(.write=1, .force=1).
2603                  */
2604                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2605                         struct vm_fault vmf;
2606                         int tmp;
2607
2608                         vmf.virtual_address = (void __user *)(address &
2609                                                                 PAGE_MASK);
2610                         vmf.pgoff = old_page->index;
2611                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2612                         vmf.page = old_page;
2613
2614                         /*
2615                          * Notify the address space that the page is about to
2616                          * become writable so that it can prohibit this or wait
2617                          * for the page to get into an appropriate state.
2618                          *
2619                          * We do this without the lock held, so that it can
2620                          * sleep if it needs to.
2621                          */
2622                         page_cache_get(old_page);
2623                         pte_unmap_unlock(page_table, ptl);
2624
2625                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2626                         if (unlikely(tmp &
2627                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2628                                 ret = tmp;
2629                                 goto unwritable_page;
2630                         }
2631                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2632                                 lock_page(old_page);
2633                                 if (!old_page->mapping) {
2634                                         ret = 0; /* retry the fault */
2635                                         unlock_page(old_page);
2636                                         goto unwritable_page;
2637                                 }
2638                         } else
2639                                 VM_BUG_ON(!PageLocked(old_page));
2640
2641                         /*
2642                          * Since we dropped the lock we need to revalidate
2643                          * the PTE as someone else may have changed it.  If
2644                          * they did, we just return, as we can count on the
2645                          * MMU to tell us if they didn't also make it writable.
2646                          */
2647                         page_table = pte_offset_map_lock(mm, pmd, address,
2648                                                          &ptl);
2649                         if (!pte_same(*page_table, orig_pte)) {
2650                                 unlock_page(old_page);
2651                                 goto unlock;
2652                         }
2653
2654                         page_mkwrite = 1;
2655                 }
2656                 dirty_page = old_page;
2657                 get_page(dirty_page);
2658
2659 reuse:
2660                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2661                 entry = pte_mkyoung(orig_pte);
2662                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2663                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2664                         update_mmu_cache(vma, address, page_table);
2665                 pte_unmap_unlock(page_table, ptl);
2666                 ret |= VM_FAULT_WRITE;
2667
2668                 if (!dirty_page)
2669                         return ret;
2670
2671                 if (!page_mkwrite) {
2672                         struct address_space *mapping;
2673                         int dirtied;
2674
2675                         lock_page(dirty_page);
2676                         dirtied = set_page_dirty(dirty_page);
2677                         VM_BUG_ON(PageAnon(dirty_page));
2678                         mapping = dirty_page->mapping;
2679                         unlock_page(dirty_page);
2680
2681                         if (dirtied && mapping) {
2682                                 /*
2683                                  * Some device drivers do not set page.mapping
2684                                  * but still dirty their pages
2685                                  */
2686                                 balance_dirty_pages_ratelimited(mapping);
2687                         }
2688
2689                 }
2690                 put_page(dirty_page);
2691                 if (page_mkwrite) {
2692                         struct address_space *mapping = dirty_page->mapping;
2693
2694                         set_page_dirty(dirty_page);
2695                         unlock_page(dirty_page);
2696                         page_cache_release(dirty_page);
2697                         if (mapping)    {
2698                                 /*
2699                                  * Some device drivers do not set page.mapping
2700                                  * but still dirty their pages
2701                                  */
2702                                 balance_dirty_pages_ratelimited(mapping);
2703                         }
2704                 }
2705
2706                 /* file_update_time outside page_lock */
2707                 if (vma->vm_file)
2708                         file_update_time(vma->vm_file);
2709
2710                 return ret;
2711         }
2712
2713         /*
2714          * Ok, we need to copy. Oh, well..
2715          */
2716         page_cache_get(old_page);
2717 gotten:
2718         pte_unmap_unlock(page_table, ptl);
2719
2720         if (unlikely(anon_vma_prepare(vma)))
2721                 goto oom;
2722
2723         if (is_zero_pfn(pte_pfn(orig_pte))) {
2724                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2725                 if (!new_page)
2726                         goto oom;
2727         } else {
2728                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2729                 if (!new_page)
2730                         goto oom;
2731                 cow_user_page(new_page, old_page, address, vma);
2732         }
2733         __SetPageUptodate(new_page);
2734
2735         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2736                 goto oom_free_new;
2737
2738         /*
2739          * Re-check the pte - we dropped the lock
2740          */
2741         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2742         if (likely(pte_same(*page_table, orig_pte))) {
2743                 if (old_page) {
2744                         if (!PageAnon(old_page)) {
2745                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2746                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2747                         }
2748                 } else
2749                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2750                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2751                 entry = mk_pte(new_page, vma->vm_page_prot);
2752                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2753                 /*
2754                  * Clear the pte entry and flush it first, before updating the
2755                  * pte with the new entry. This will avoid a race condition
2756                  * seen in the presence of one thread doing SMC and another
2757                  * thread doing COW.
2758                  */
2759                 ptep_clear_flush(vma, address, page_table);
2760                 page_add_new_anon_rmap(new_page, vma, address);
2761                 /*
2762                  * We call the notify macro here because, when using secondary
2763                  * mmu page tables (such as kvm shadow page tables), we want the
2764                  * new page to be mapped directly into the secondary page table.
2765                  */
2766                 set_pte_at_notify(mm, address, page_table, entry);
2767                 update_mmu_cache(vma, address, page_table);
2768                 if (old_page) {
2769                         /*
2770                          * Only after switching the pte to the new page may
2771                          * we remove the mapcount here. Otherwise another
2772                          * process may come and find the rmap count decremented
2773                          * before the pte is switched to the new page, and
2774                          * "reuse" the old page writing into it while our pte
2775                          * here still points into it and can be read by other
2776                          * threads.
2777                          *
2778                          * The critical issue is to order this
2779                          * page_remove_rmap with the ptp_clear_flush above.
2780                          * Those stores are ordered by (if nothing else,)
2781                          * the barrier present in the atomic_add_negative
2782                          * in page_remove_rmap.
2783                          *
2784                          * Then the TLB flush in ptep_clear_flush ensures that
2785                          * no process can access the old page before the
2786                          * decremented mapcount is visible. And the old page
2787                          * cannot be reused until after the decremented
2788                          * mapcount is visible. So transitively, TLBs to
2789                          * old page will be flushed before it can be reused.
2790                          */
2791                         page_remove_rmap(old_page);
2792                 }
2793
2794                 /* Free the old page.. */
2795                 new_page = old_page;
2796                 ret |= VM_FAULT_WRITE;
2797         } else
2798                 mem_cgroup_uncharge_page(new_page);
2799
2800         if (new_page)
2801                 page_cache_release(new_page);
2802 unlock:
2803         pte_unmap_unlock(page_table, ptl);
2804         if (old_page) {
2805                 /*
2806                  * Don't let another task, with possibly unlocked vma,
2807                  * keep the mlocked page.
2808                  */
2809                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2810                         lock_page(old_page);    /* LRU manipulation */
2811                         munlock_vma_page(old_page);
2812                         unlock_page(old_page);
2813                 }
2814                 page_cache_release(old_page);
2815         }
2816         return ret;
2817 oom_free_new:
2818         page_cache_release(new_page);
2819 oom:
2820         if (old_page) {
2821                 if (page_mkwrite) {
2822                         unlock_page(old_page);
2823                         page_cache_release(old_page);
2824                 }
2825                 page_cache_release(old_page);
2826         }
2827         return VM_FAULT_OOM;
2828
2829 unwritable_page:
2830         page_cache_release(old_page);
2831         return ret;
2832 }
2833
2834 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2835                 unsigned long start_addr, unsigned long end_addr,
2836                 struct zap_details *details)
2837 {
2838         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2839 }
2840
2841 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2842                                             struct zap_details *details)
2843 {
2844         struct vm_area_struct *vma;
2845         struct prio_tree_iter iter;
2846         pgoff_t vba, vea, zba, zea;
2847
2848         vma_prio_tree_foreach(vma, &iter, root,
2849                         details->first_index, details->last_index) {
2850
2851                 vba = vma->vm_pgoff;
2852                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2853                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2854                 zba = details->first_index;
2855                 if (zba < vba)
2856                         zba = vba;
2857                 zea = details->last_index;
2858                 if (zea > vea)
2859                         zea = vea;
2860
2861                 unmap_mapping_range_vma(vma,
2862                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2863                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2864                                 details);
2865         }
2866 }
2867
2868 static inline void unmap_mapping_range_list(struct list_head *head,
2869                                             struct zap_details *details)
2870 {
2871         struct vm_area_struct *vma;
2872
2873         /*
2874          * In nonlinear VMAs there is no correspondence between virtual address
2875          * offset and file offset.  So we must perform an exhaustive search
2876          * across *all* the pages in each nonlinear VMA, not just the pages
2877          * whose virtual address lies outside the file truncation point.
2878          */
2879         list_for_each_entry(vma, head, shared.vm_set.list) {
2880                 details->nonlinear_vma = vma;
2881                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2882         }
2883 }
2884
2885 /**
2886  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2887  * @mapping: the address space containing mmaps to be unmapped.
2888  * @holebegin: byte in first page to unmap, relative to the start of
2889  * the underlying file.  This will be rounded down to a PAGE_SIZE
2890  * boundary.  Note that this is different from truncate_pagecache(), which
2891  * must keep the partial page.  In contrast, we must get rid of
2892  * partial pages.
2893  * @holelen: size of prospective hole in bytes.  This will be rounded
2894  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2895  * end of the file.
2896  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2897  * but 0 when invalidating pagecache, don't throw away private data.
2898  */
2899 void unmap_mapping_range(struct address_space *mapping,
2900                 loff_t const holebegin, loff_t const holelen, int even_cows)
2901 {
2902         struct zap_details details;
2903         pgoff_t hba = holebegin >> PAGE_SHIFT;
2904         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2905
2906         /* Check for overflow. */
2907         if (sizeof(holelen) > sizeof(hlen)) {
2908                 long long holeend =
2909                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2910                 if (holeend & ~(long long)ULONG_MAX)
2911                         hlen = ULONG_MAX - hba + 1;
2912         }
2913
2914         details.check_mapping = even_cows? NULL: mapping;
2915         details.nonlinear_vma = NULL;
2916         details.first_index = hba;
2917         details.last_index = hba + hlen - 1;
2918         if (details.last_index < details.first_index)
2919                 details.last_index = ULONG_MAX;
2920
2921
2922         mutex_lock(&mapping->i_mmap_mutex);
2923         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2924                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2925         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2926                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2927         mutex_unlock(&mapping->i_mmap_mutex);
2928 }
2929 EXPORT_SYMBOL(unmap_mapping_range);
2930
2931 /*
2932  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2933  * but allow concurrent faults), and pte mapped but not yet locked.
2934  * We return with mmap_sem still held, but pte unmapped and unlocked.
2935  */
2936 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2937                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2938                 unsigned int flags, pte_t orig_pte)
2939 {
2940         spinlock_t *ptl;
2941         struct page *page, *swapcache = NULL;
2942         swp_entry_t entry;
2943         pte_t pte;
2944         int locked;
2945         struct mem_cgroup *ptr;
2946         int exclusive = 0;
2947         int ret = 0;
2948
2949         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2950                 goto out;
2951
2952         entry = pte_to_swp_entry(orig_pte);
2953         if (unlikely(non_swap_entry(entry))) {
2954                 if (is_migration_entry(entry)) {
2955                         migration_entry_wait(mm, pmd, address);
2956                 } else if (is_hwpoison_entry(entry)) {
2957                         ret = VM_FAULT_HWPOISON;
2958                 } else {
2959                         print_bad_pte(vma, address, orig_pte, NULL);
2960                         ret = VM_FAULT_SIGBUS;
2961                 }
2962                 goto out;
2963         }
2964         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2965         page = lookup_swap_cache(entry);
2966         if (!page) {
2967                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2968                 page = swapin_readahead(entry,
2969                                         GFP_HIGHUSER_MOVABLE, vma, address);
2970                 if (!page) {
2971                         /*
2972                          * Back out if somebody else faulted in this pte
2973                          * while we released the pte lock.
2974                          */
2975                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2976                         if (likely(pte_same(*page_table, orig_pte)))
2977                                 ret = VM_FAULT_OOM;
2978                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979                         goto unlock;
2980                 }
2981
2982                 /* Had to read the page from swap area: Major fault */
2983                 ret = VM_FAULT_MAJOR;
2984                 count_vm_event(PGMAJFAULT);
2985                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2986         } else if (PageHWPoison(page)) {
2987                 /*
2988                  * hwpoisoned dirty swapcache pages are kept for killing
2989                  * owner processes (which may be unknown at hwpoison time)
2990                  */
2991                 ret = VM_FAULT_HWPOISON;
2992                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2993                 goto out_release;
2994         }
2995
2996         locked = lock_page_or_retry(page, mm, flags);
2997         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2998         if (!locked) {
2999                 ret |= VM_FAULT_RETRY;
3000                 goto out_release;
3001         }
3002
3003         /*
3004          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3005          * release the swapcache from under us.  The page pin, and pte_same
3006          * test below, are not enough to exclude that.  Even if it is still
3007          * swapcache, we need to check that the page's swap has not changed.
3008          */
3009         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3010                 goto out_page;
3011
3012         if (ksm_might_need_to_copy(page, vma, address)) {
3013                 swapcache = page;
3014                 page = ksm_does_need_to_copy(page, vma, address);
3015
3016                 if (unlikely(!page)) {
3017                         ret = VM_FAULT_OOM;
3018                         page = swapcache;
3019                         swapcache = NULL;
3020                         goto out_page;
3021                 }
3022         }
3023
3024         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3025                 ret = VM_FAULT_OOM;
3026                 goto out_page;
3027         }
3028
3029         /*
3030          * Back out if somebody else already faulted in this pte.
3031          */
3032         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3033         if (unlikely(!pte_same(*page_table, orig_pte)))
3034                 goto out_nomap;
3035
3036         if (unlikely(!PageUptodate(page))) {
3037                 ret = VM_FAULT_SIGBUS;
3038                 goto out_nomap;
3039         }
3040
3041         /*
3042          * The page isn't present yet, go ahead with the fault.
3043          *
3044          * Be careful about the sequence of operations here.
3045          * To get its accounting right, reuse_swap_page() must be called
3046          * while the page is counted on swap but not yet in mapcount i.e.
3047          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3048          * must be called after the swap_free(), or it will never succeed.
3049          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3050          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3051          * in page->private. In this case, a record in swap_cgroup  is silently
3052          * discarded at swap_free().
3053          */
3054
3055         inc_mm_counter_fast(mm, MM_ANONPAGES);
3056         dec_mm_counter_fast(mm, MM_SWAPENTS);
3057         pte = mk_pte(page, vma->vm_page_prot);
3058         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3059                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3060                 flags &= ~FAULT_FLAG_WRITE;
3061                 ret |= VM_FAULT_WRITE;
3062                 exclusive = 1;
3063         }
3064         flush_icache_page(vma, page);
3065         set_pte_at(mm, address, page_table, pte);
3066         do_page_add_anon_rmap(page, vma, address, exclusive);
3067         /* It's better to call commit-charge after rmap is established */
3068         mem_cgroup_commit_charge_swapin(page, ptr);
3069
3070         swap_free(entry);
3071         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3072                 try_to_free_swap(page);
3073         unlock_page(page);
3074         if (swapcache) {
3075                 /*
3076                  * Hold the lock to avoid the swap entry to be reused
3077                  * until we take the PT lock for the pte_same() check
3078                  * (to avoid false positives from pte_same). For
3079                  * further safety release the lock after the swap_free
3080                  * so that the swap count won't change under a
3081                  * parallel locked swapcache.
3082                  */
3083                 unlock_page(swapcache);
3084                 page_cache_release(swapcache);
3085         }
3086
3087         if (flags & FAULT_FLAG_WRITE) {
3088                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3089                 if (ret & VM_FAULT_ERROR)
3090                         ret &= VM_FAULT_ERROR;
3091                 goto out;
3092         }
3093
3094         /* No need to invalidate - it was non-present before */
3095         update_mmu_cache(vma, address, page_table);
3096 unlock:
3097         pte_unmap_unlock(page_table, ptl);
3098 out:
3099         return ret;
3100 out_nomap:
3101         mem_cgroup_cancel_charge_swapin(ptr);
3102         pte_unmap_unlock(page_table, ptl);
3103 out_page:
3104         unlock_page(page);
3105 out_release:
3106         page_cache_release(page);
3107         if (swapcache) {
3108                 unlock_page(swapcache);
3109                 page_cache_release(swapcache);
3110         }
3111         return ret;
3112 }
3113
3114 /*
3115  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3116  * but allow concurrent faults), and pte mapped but not yet locked.
3117  * We return with mmap_sem still held, but pte unmapped and unlocked.
3118  */
3119 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3120                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3121                 unsigned int flags)
3122 {
3123         struct page *page;
3124         spinlock_t *ptl;
3125         pte_t entry;
3126
3127         pte_unmap(page_table);
3128
3129         /* File mapping without ->vm_ops ? */
3130         if (vma->vm_flags & VM_SHARED)
3131                 return VM_FAULT_SIGBUS;
3132
3133         /* Use the zero-page for reads */
3134         if (!(flags & FAULT_FLAG_WRITE)) {
3135                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3136                                                 vma->vm_page_prot));
3137                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3138                 if (!pte_none(*page_table))
3139                         goto unlock;
3140                 goto setpte;
3141         }
3142
3143         /* Allocate our own private page. */
3144         if (unlikely(anon_vma_prepare(vma)))
3145                 goto oom;
3146         page = alloc_zeroed_user_highpage_movable(vma, address);
3147         if (!page)
3148                 goto oom;
3149         __SetPageUptodate(page);
3150
3151         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3152                 goto oom_free_page;
3153
3154         entry = mk_pte(page, vma->vm_page_prot);
3155         if (vma->vm_flags & VM_WRITE)
3156                 entry = pte_mkwrite(pte_mkdirty(entry));
3157
3158         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3159         if (!pte_none(*page_table))
3160                 goto release;
3161
3162         inc_mm_counter_fast(mm, MM_ANONPAGES);
3163         page_add_new_anon_rmap(page, vma, address);
3164 setpte:
3165         set_pte_at(mm, address, page_table, entry);
3166
3167         /* No need to invalidate - it was non-present before */
3168         update_mmu_cache(vma, address, page_table);
3169 unlock:
3170         pte_unmap_unlock(page_table, ptl);
3171         return 0;
3172 release:
3173         mem_cgroup_uncharge_page(page);
3174         page_cache_release(page);
3175         goto unlock;
3176 oom_free_page:
3177         page_cache_release(page);
3178 oom:
3179         return VM_FAULT_OOM;
3180 }
3181
3182 /*
3183  * __do_fault() tries to create a new page mapping. It aggressively
3184  * tries to share with existing pages, but makes a separate copy if
3185  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3186  * the next page fault.
3187  *
3188  * As this is called only for pages that do not currently exist, we
3189  * do not need to flush old virtual caches or the TLB.
3190  *
3191  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3192  * but allow concurrent faults), and pte neither mapped nor locked.
3193  * We return with mmap_sem still held, but pte unmapped and unlocked.
3194  */
3195 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3196                 unsigned long address, pmd_t *pmd,
3197                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3198 {
3199         pte_t *page_table;
3200         spinlock_t *ptl;
3201         struct page *page;
3202         struct page *cow_page;
3203         pte_t entry;
3204         int anon = 0;
3205         struct page *dirty_page = NULL;
3206         struct vm_fault vmf;
3207         int ret;
3208         int page_mkwrite = 0;
3209
3210         /*
3211          * If we do COW later, allocate page befor taking lock_page()
3212          * on the file cache page. This will reduce lock holding time.
3213          */
3214         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3215
3216                 if (unlikely(anon_vma_prepare(vma)))
3217                         return VM_FAULT_OOM;
3218
3219                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3220                 if (!cow_page)
3221                         return VM_FAULT_OOM;
3222
3223                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3224                         page_cache_release(cow_page);
3225                         return VM_FAULT_OOM;
3226                 }
3227         } else
3228                 cow_page = NULL;
3229
3230         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3231         vmf.pgoff = pgoff;
3232         vmf.flags = flags;
3233         vmf.page = NULL;
3234
3235         ret = vma->vm_ops->fault(vma, &vmf);
3236         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3237                             VM_FAULT_RETRY)))
3238                 goto uncharge_out;
3239
3240         if (unlikely(PageHWPoison(vmf.page))) {
3241                 if (ret & VM_FAULT_LOCKED)
3242                         unlock_page(vmf.page);
3243                 ret = VM_FAULT_HWPOISON;
3244                 goto uncharge_out;
3245         }
3246
3247         /*
3248          * For consistency in subsequent calls, make the faulted page always
3249          * locked.
3250          */
3251         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3252                 lock_page(vmf.page);
3253         else
3254                 VM_BUG_ON(!PageLocked(vmf.page));
3255
3256         /*
3257          * Should we do an early C-O-W break?
3258          */
3259         page = vmf.page;
3260         if (flags & FAULT_FLAG_WRITE) {
3261                 if (!(vma->vm_flags & VM_SHARED)) {
3262                         page = cow_page;
3263                         anon = 1;
3264                         copy_user_highpage(page, vmf.page, address, vma);
3265                         __SetPageUptodate(page);
3266                 } else {
3267                         /*
3268                          * If the page will be shareable, see if the backing
3269                          * address space wants to know that the page is about
3270                          * to become writable
3271                          */
3272                         if (vma->vm_ops->page_mkwrite) {
3273                                 int tmp;
3274
3275                                 unlock_page(page);
3276                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3277                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3278                                 if (unlikely(tmp &
3279                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3280                                         ret = tmp;
3281                                         goto unwritable_page;
3282                                 }
3283                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3284                                         lock_page(page);
3285                                         if (!page->mapping) {
3286                                                 ret = 0; /* retry the fault */
3287                                                 unlock_page(page);
3288                                                 goto unwritable_page;
3289                                         }
3290                                 } else
3291                                         VM_BUG_ON(!PageLocked(page));
3292                                 page_mkwrite = 1;
3293                         }
3294                 }
3295
3296         }
3297
3298         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3299
3300         /*
3301          * This silly early PAGE_DIRTY setting removes a race
3302          * due to the bad i386 page protection. But it's valid
3303          * for other architectures too.
3304          *
3305          * Note that if FAULT_FLAG_WRITE is set, we either now have
3306          * an exclusive copy of the page, or this is a shared mapping,
3307          * so we can make it writable and dirty to avoid having to
3308          * handle that later.
3309          */
3310         /* Only go through if we didn't race with anybody else... */
3311         if (likely(pte_same(*page_table, orig_pte))) {
3312                 flush_icache_page(vma, page);
3313                 entry = mk_pte(page, vma->vm_page_prot);
3314                 if (flags & FAULT_FLAG_WRITE)
3315                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3316                 if (anon) {
3317                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3318                         page_add_new_anon_rmap(page, vma, address);
3319                 } else {
3320                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3321                         page_add_file_rmap(page);
3322                         if (flags & FAULT_FLAG_WRITE) {
3323                                 dirty_page = page;
3324                                 get_page(dirty_page);
3325                         }
3326                 }
3327                 set_pte_at(mm, address, page_table, entry);
3328
3329                 /* no need to invalidate: a not-present page won't be cached */
3330                 update_mmu_cache(vma, address, page_table);
3331         } else {
3332                 if (cow_page)
3333                         mem_cgroup_uncharge_page(cow_page);
3334                 if (anon)
3335                         page_cache_release(page);
3336                 else
3337                         anon = 1; /* no anon but release faulted_page */
3338         }
3339
3340         pte_unmap_unlock(page_table, ptl);
3341
3342         if (dirty_page) {
3343                 struct address_space *mapping = page->mapping;
3344
3345                 if (set_page_dirty(dirty_page))
3346                         page_mkwrite = 1;
3347                 unlock_page(dirty_page);
3348                 put_page(dirty_page);
3349                 if (page_mkwrite && mapping) {
3350                         /*
3351                          * Some device drivers do not set page.mapping but still
3352                          * dirty their pages
3353                          */
3354                         balance_dirty_pages_ratelimited(mapping);
3355                 }
3356
3357                 /* file_update_time outside page_lock */
3358                 if (vma->vm_file)
3359                         file_update_time(vma->vm_file);
3360         } else {
3361                 unlock_page(vmf.page);
3362                 if (anon)
3363                         page_cache_release(vmf.page);
3364         }
3365
3366         return ret;
3367
3368 unwritable_page:
3369         page_cache_release(page);
3370         return ret;
3371 uncharge_out:
3372         /* fs's fault handler get error */
3373         if (cow_page) {
3374                 mem_cgroup_uncharge_page(cow_page);
3375                 page_cache_release(cow_page);
3376         }
3377         return ret;
3378 }
3379
3380 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3381                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3382                 unsigned int flags, pte_t orig_pte)
3383 {
3384         pgoff_t pgoff = (((address & PAGE_MASK)
3385                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3386
3387         pte_unmap(page_table);
3388         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3389         if (!vma->vm_ops->fault)
3390                 return VM_FAULT_SIGBUS;
3391         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3392 }
3393
3394 /*
3395  * Fault of a previously existing named mapping. Repopulate the pte
3396  * from the encoded file_pte if possible. This enables swappable
3397  * nonlinear vmas.
3398  *
3399  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3400  * but allow concurrent faults), and pte mapped but not yet locked.
3401  * We return with mmap_sem still held, but pte unmapped and unlocked.
3402  */
3403 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3404                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3405                 unsigned int flags, pte_t orig_pte)
3406 {
3407         pgoff_t pgoff;
3408
3409         flags |= FAULT_FLAG_NONLINEAR;
3410
3411         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3412                 return 0;
3413
3414         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3415                 /*
3416                  * Page table corrupted: show pte and kill process.
3417                  */
3418                 print_bad_pte(vma, address, orig_pte, NULL);
3419                 return VM_FAULT_SIGBUS;
3420         }
3421
3422         pgoff = pte_to_pgoff(orig_pte);
3423         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3424 }
3425
3426 /*
3427  * These routines also need to handle stuff like marking pages dirty
3428  * and/or accessed for architectures that don't do it in hardware (most
3429  * RISC architectures).  The early dirtying is also good on the i386.
3430  *
3431  * There is also a hook called "update_mmu_cache()" that architectures
3432  * with external mmu caches can use to update those (ie the Sparc or
3433  * PowerPC hashed page tables that act as extended TLBs).
3434  *
3435  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3436  * but allow concurrent faults), and pte mapped but not yet locked.
3437  * We return with mmap_sem still held, but pte unmapped and unlocked.
3438  */
3439 int handle_pte_fault(struct mm_struct *mm,
3440                      struct vm_area_struct *vma, unsigned long address,
3441                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3442 {
3443         pte_t entry;
3444         spinlock_t *ptl;
3445
3446         entry = *pte;
3447         if (!pte_present(entry)) {
3448                 if (pte_none(entry)) {
3449                         if (vma->vm_ops)
3450                                 return do_linear_fault(mm, vma, address,
3451                                                 pte, pmd, flags, entry);
3452                         return do_anonymous_page(mm, vma, address,
3453                                                  pte, pmd, flags);
3454                 }
3455                 if (pte_file(entry))
3456                         return do_nonlinear_fault(mm, vma, address,
3457                                         pte, pmd, flags, entry);
3458                 return do_swap_page(mm, vma, address,
3459                                         pte, pmd, flags, entry);
3460         }
3461
3462         ptl = pte_lockptr(mm, pmd);
3463         spin_lock(ptl);
3464         if (unlikely(!pte_same(*pte, entry)))
3465                 goto unlock;
3466         if (flags & FAULT_FLAG_WRITE) {
3467                 if (!pte_write(entry))
3468                         return do_wp_page(mm, vma, address,
3469                                         pte, pmd, ptl, entry);
3470                 entry = pte_mkdirty(entry);
3471         }
3472         entry = pte_mkyoung(entry);
3473         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3474                 update_mmu_cache(vma, address, pte);
3475         } else {
3476                 /*
3477                  * This is needed only for protection faults but the arch code
3478                  * is not yet telling us if this is a protection fault or not.
3479                  * This still avoids useless tlb flushes for .text page faults
3480                  * with threads.
3481                  */
3482                 if (flags & FAULT_FLAG_WRITE)
3483                         flush_tlb_fix_spurious_fault(vma, address);
3484         }
3485 unlock:
3486         pte_unmap_unlock(pte, ptl);
3487         return 0;
3488 }
3489
3490 /*
3491  * By the time we get here, we already hold the mm semaphore
3492  */
3493 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3494                 unsigned long address, unsigned int flags)
3495 {
3496         pgd_t *pgd;
3497         pud_t *pud;
3498         pmd_t *pmd;
3499         pte_t *pte;
3500
3501         __set_current_state(TASK_RUNNING);
3502
3503         count_vm_event(PGFAULT);
3504         mem_cgroup_count_vm_event(mm, PGFAULT);
3505
3506         /* do counter updates before entering really critical section. */
3507         check_sync_rss_stat(current);
3508
3509         if (unlikely(is_vm_hugetlb_page(vma)))
3510                 return hugetlb_fault(mm, vma, address, flags);
3511
3512 retry:
3513         pgd = pgd_offset(mm, address);
3514         pud = pud_alloc(mm, pgd, address);
3515         if (!pud)
3516                 return VM_FAULT_OOM;
3517         pmd = pmd_alloc(mm, pud, address);
3518         if (!pmd)
3519                 return VM_FAULT_OOM;
3520         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3521                 if (!vma->vm_ops)
3522                         return do_huge_pmd_anonymous_page(mm, vma, address,
3523                                                           pmd, flags);
3524         } else {
3525                 pmd_t orig_pmd = *pmd;
3526                 int ret;
3527
3528                 barrier();
3529                 if (pmd_trans_huge(orig_pmd)) {
3530                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3531
3532                         if (dirty && !pmd_write(orig_pmd) &&
3533                             !pmd_trans_splitting(orig_pmd)) {
3534                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3535                                                           orig_pmd);
3536                                 /*
3537                                  * If COW results in an oom, the huge pmd will
3538                                  * have been split, so retry the fault on the
3539                                  * pte for a smaller charge.
3540                                  */
3541                                 if (unlikely(ret & VM_FAULT_OOM))
3542                                         goto retry;
3543                                 return ret;
3544                         } else {
3545                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3546                                                       orig_pmd, dirty);
3547                         }
3548                         return 0;
3549                 }
3550         }
3551
3552         /*
3553          * Use __pte_alloc instead of pte_alloc_map, because we can't
3554          * run pte_offset_map on the pmd, if an huge pmd could
3555          * materialize from under us from a different thread.
3556          */
3557         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3558                 return VM_FAULT_OOM;
3559         /*
3560          * If a huge pmd materialized under us just retry later.  Use
3561          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3562          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3563          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3564          * in a different thread of this mm, in turn leading to a misleading
3565          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3566          * regular pmd that we can walk with pte_offset_map() and we can do that
3567          * through an atomic read in C, which is what pmd_trans_unstable()
3568          * provides.
3569          */
3570         if (unlikely(pmd_trans_unstable(pmd)))
3571                 return 0;
3572         /*
3573          * A regular pmd is established and it can't morph into a huge pmd
3574          * from under us anymore at this point because we hold the mmap_sem
3575          * read mode and khugepaged takes it in write mode. So now it's
3576          * safe to run pte_offset_map().
3577          */
3578         pte = pte_offset_map(pmd, address);
3579
3580         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3581 }
3582
3583 #ifndef __PAGETABLE_PUD_FOLDED
3584 /*
3585  * Allocate page upper directory.
3586  * We've already handled the fast-path in-line.
3587  */
3588 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3589 {
3590         pud_t *new = pud_alloc_one(mm, address);
3591         if (!new)
3592                 return -ENOMEM;
3593
3594         smp_wmb(); /* See comment in __pte_alloc */
3595
3596         spin_lock(&mm->page_table_lock);
3597         if (pgd_present(*pgd))          /* Another has populated it */
3598                 pud_free(mm, new);
3599         else
3600                 pgd_populate(mm, pgd, new);
3601         spin_unlock(&mm->page_table_lock);
3602         return 0;
3603 }
3604 #endif /* __PAGETABLE_PUD_FOLDED */
3605
3606 #ifndef __PAGETABLE_PMD_FOLDED
3607 /*
3608  * Allocate page middle directory.
3609  * We've already handled the fast-path in-line.
3610  */
3611 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3612 {
3613         pmd_t *new = pmd_alloc_one(mm, address);
3614         if (!new)
3615                 return -ENOMEM;
3616
3617         smp_wmb(); /* See comment in __pte_alloc */
3618
3619         spin_lock(&mm->page_table_lock);
3620 #ifndef __ARCH_HAS_4LEVEL_HACK
3621         if (pud_present(*pud))          /* Another has populated it */
3622                 pmd_free(mm, new);
3623         else
3624                 pud_populate(mm, pud, new);
3625 #else
3626         if (pgd_present(*pud))          /* Another has populated it */
3627                 pmd_free(mm, new);
3628         else
3629                 pgd_populate(mm, pud, new);
3630 #endif /* __ARCH_HAS_4LEVEL_HACK */
3631         spin_unlock(&mm->page_table_lock);
3632         return 0;
3633 }
3634 #endif /* __PAGETABLE_PMD_FOLDED */
3635
3636 int make_pages_present(unsigned long addr, unsigned long end)
3637 {
3638         int ret, len, write;
3639         struct vm_area_struct * vma;
3640
3641         vma = find_vma(current->mm, addr);
3642         if (!vma)
3643                 return -ENOMEM;
3644         /*
3645          * We want to touch writable mappings with a write fault in order
3646          * to break COW, except for shared mappings because these don't COW
3647          * and we would not want to dirty them for nothing.
3648          */
3649         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3650         BUG_ON(addr >= end);
3651         BUG_ON(end > vma->vm_end);
3652         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3653         ret = get_user_pages(current, current->mm, addr,
3654                         len, write, 0, NULL, NULL);
3655         if (ret < 0)
3656                 return ret;
3657         return ret == len ? 0 : -EFAULT;
3658 }
3659
3660 #if !defined(__HAVE_ARCH_GATE_AREA)
3661
3662 #if defined(AT_SYSINFO_EHDR)
3663 static struct vm_area_struct gate_vma;
3664
3665 static int __init gate_vma_init(void)
3666 {
3667         gate_vma.vm_mm = NULL;
3668         gate_vma.vm_start = FIXADDR_USER_START;
3669         gate_vma.vm_end = FIXADDR_USER_END;
3670         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3671         gate_vma.vm_page_prot = __P101;
3672         /*
3673          * Make sure the vDSO gets into every core dump.
3674          * Dumping its contents makes post-mortem fully interpretable later
3675          * without matching up the same kernel and hardware config to see
3676          * what PC values meant.
3677          */
3678         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3679         return 0;
3680 }
3681 __initcall(gate_vma_init);
3682 #endif
3683
3684 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3685 {
3686 #ifdef AT_SYSINFO_EHDR
3687         return &gate_vma;
3688 #else
3689         return NULL;
3690 #endif
3691 }
3692
3693 int in_gate_area_no_mm(unsigned long addr)
3694 {
3695 #ifdef AT_SYSINFO_EHDR
3696         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3697                 return 1;
3698 #endif
3699         return 0;
3700 }
3701
3702 #endif  /* __HAVE_ARCH_GATE_AREA */
3703
3704 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3705                 pte_t **ptepp, spinlock_t **ptlp)
3706 {
3707         pgd_t *pgd;
3708         pud_t *pud;
3709         pmd_t *pmd;
3710         pte_t *ptep;
3711
3712         pgd = pgd_offset(mm, address);
3713         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3714                 goto out;
3715
3716         pud = pud_offset(pgd, address);
3717         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3718                 goto out;
3719
3720         pmd = pmd_offset(pud, address);
3721         VM_BUG_ON(pmd_trans_huge(*pmd));
3722         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3723                 goto out;
3724
3725         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3726         if (pmd_huge(*pmd))
3727                 goto out;
3728
3729         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3730         if (!ptep)
3731                 goto out;
3732         if (!pte_present(*ptep))
3733                 goto unlock;
3734         *ptepp = ptep;
3735         return 0;
3736 unlock:
3737         pte_unmap_unlock(ptep, *ptlp);
3738 out:
3739         return -EINVAL;
3740 }
3741
3742 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3743                              pte_t **ptepp, spinlock_t **ptlp)
3744 {
3745         int res;
3746
3747         /* (void) is needed to make gcc happy */
3748         (void) __cond_lock(*ptlp,
3749                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3750         return res;
3751 }
3752
3753 /**
3754  * follow_pfn - look up PFN at a user virtual address
3755  * @vma: memory mapping
3756  * @address: user virtual address
3757  * @pfn: location to store found PFN
3758  *
3759  * Only IO mappings and raw PFN mappings are allowed.
3760  *
3761  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3762  */
3763 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3764         unsigned long *pfn)
3765 {
3766         int ret = -EINVAL;
3767         spinlock_t *ptl;
3768         pte_t *ptep;
3769
3770         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3771                 return ret;
3772
3773         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3774         if (ret)
3775                 return ret;
3776         *pfn = pte_pfn(*ptep);
3777         pte_unmap_unlock(ptep, ptl);
3778         return 0;
3779 }
3780 EXPORT_SYMBOL(follow_pfn);
3781
3782 #ifdef CONFIG_HAVE_IOREMAP_PROT
3783 int follow_phys(struct vm_area_struct *vma,
3784                 unsigned long address, unsigned int flags,
3785                 unsigned long *prot, resource_size_t *phys)
3786 {
3787         int ret = -EINVAL;
3788         pte_t *ptep, pte;
3789         spinlock_t *ptl;
3790
3791         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3792                 goto out;
3793
3794         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3795                 goto out;
3796         pte = *ptep;
3797
3798         if ((flags & FOLL_WRITE) && !pte_write(pte))
3799                 goto unlock;
3800
3801         *prot = pgprot_val(pte_pgprot(pte));
3802         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3803
3804         ret = 0;
3805 unlock:
3806         pte_unmap_unlock(ptep, ptl);
3807 out:
3808         return ret;
3809 }
3810
3811 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3812                         void *buf, int len, int write)
3813 {
3814         resource_size_t phys_addr;
3815         unsigned long prot = 0;
3816         void __iomem *maddr;
3817         int offset = addr & (PAGE_SIZE-1);
3818
3819         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3820                 return -EINVAL;
3821
3822         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3823         if (write)
3824                 memcpy_toio(maddr + offset, buf, len);
3825         else
3826                 memcpy_fromio(buf, maddr + offset, len);
3827         iounmap(maddr);
3828
3829         return len;
3830 }
3831 #endif
3832
3833 /*
3834  * Access another process' address space as given in mm.  If non-NULL, use the
3835  * given task for page fault accounting.
3836  */
3837 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3838                 unsigned long addr, void *buf, int len, int write)
3839 {
3840         struct vm_area_struct *vma;
3841         void *old_buf = buf;
3842
3843         down_read(&mm->mmap_sem);
3844         /* ignore errors, just check how much was successfully transferred */
3845         while (len) {
3846                 int bytes, ret, offset;
3847                 void *maddr;
3848                 struct page *page = NULL;
3849
3850                 ret = get_user_pages(tsk, mm, addr, 1,
3851                                 write, 1, &page, &vma);
3852                 if (ret <= 0) {
3853                         /*
3854                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3855                          * we can access using slightly different code.
3856                          */
3857 #ifdef CONFIG_HAVE_IOREMAP_PROT
3858                         vma = find_vma(mm, addr);
3859                         if (!vma || vma->vm_start > addr)
3860                                 break;
3861                         if ((vma->vm_flags & VM_PFNMAP) &&
3862                             !(vma->vm_flags & VM_IO))
3863                                 ret = generic_access_phys(vma, addr, buf,
3864                                                           len, write);
3865                         if (ret <= 0 && vma->vm_ops && vma->vm_ops->access)
3866                                 ret = vma->vm_ops->access(vma, addr, buf,
3867                                                           len, write);
3868                         if (ret <= 0)
3869 #endif
3870                                 break;
3871                         bytes = ret;
3872                 } else {
3873                         bytes = len;
3874                         offset = addr & (PAGE_SIZE-1);
3875                         if (bytes > PAGE_SIZE-offset)
3876                                 bytes = PAGE_SIZE-offset;
3877
3878                         maddr = kmap(page);
3879                         if (write) {
3880                                 copy_to_user_page(vma, page, addr,
3881                                                   maddr + offset, buf, bytes);
3882                                 set_page_dirty_lock(page);
3883                         } else {
3884                                 copy_from_user_page(vma, page, addr,
3885                                                     buf, maddr + offset, bytes);
3886                         }
3887                         kunmap(page);
3888                         page_cache_release(page);
3889                 }
3890                 len -= bytes;
3891                 buf += bytes;
3892                 addr += bytes;
3893         }
3894         up_read(&mm->mmap_sem);
3895
3896         return buf - old_buf;
3897 }
3898
3899 /**
3900  * access_remote_vm - access another process' address space
3901  * @mm:         the mm_struct of the target address space
3902  * @addr:       start address to access
3903  * @buf:        source or destination buffer
3904  * @len:        number of bytes to transfer
3905  * @write:      whether the access is a write
3906  *
3907  * The caller must hold a reference on @mm.
3908  */
3909 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3910                 void *buf, int len, int write)
3911 {
3912         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3913 }
3914
3915 /*
3916  * Access another process' address space.
3917  * Source/target buffer must be kernel space,
3918  * Do not walk the page table directly, use get_user_pages
3919  */
3920 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3921                 void *buf, int len, int write)
3922 {
3923         struct mm_struct *mm;
3924         int ret;
3925
3926         mm = get_task_mm(tsk);
3927         if (!mm)
3928                 return 0;
3929
3930         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3931         mmput(mm);
3932
3933         return ret;
3934 }
3935
3936 /*
3937  * Print the name of a VMA.
3938  */
3939 void print_vma_addr(char *prefix, unsigned long ip)
3940 {
3941         struct mm_struct *mm = current->mm;
3942         struct vm_area_struct *vma;
3943
3944         /*
3945          * Do not print if we are in atomic
3946          * contexts (in exception stacks, etc.):
3947          */
3948         if (preempt_count())
3949                 return;
3950
3951         down_read(&mm->mmap_sem);
3952         vma = find_vma(mm, ip);
3953         if (vma && vma->vm_file) {
3954                 struct file *f = vma->vm_file;
3955                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3956                 if (buf) {
3957                         char *p, *s;
3958
3959                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3960                         if (IS_ERR(p))
3961                                 p = "?";
3962                         s = strrchr(p, '/');
3963                         if (s)
3964                                 p = s+1;
3965                         printk("%s%s[%lx+%lx]", prefix, p,
3966                                         vma->vm_start,
3967                                         vma->vm_end - vma->vm_start);
3968                         free_page((unsigned long)buf);
3969                 }
3970         }
3971         up_read(&current->mm->mmap_sem);
3972 }
3973
3974 #ifdef CONFIG_PROVE_LOCKING
3975 void might_fault(void)
3976 {
3977         /*
3978          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3979          * holding the mmap_sem, this is safe because kernel memory doesn't
3980          * get paged out, therefore we'll never actually fault, and the
3981          * below annotations will generate false positives.
3982          */
3983         if (segment_eq(get_fs(), KERNEL_DS))
3984                 return;
3985
3986         might_sleep();
3987         /*
3988          * it would be nicer only to annotate paths which are not under
3989          * pagefault_disable, however that requires a larger audit and
3990          * providing helpers like get_user_atomic.
3991          */
3992         if (!in_atomic() && current->mm)
3993                 might_lock_read(&current->mm->mmap_sem);
3994 }
3995 EXPORT_SYMBOL(might_fault);
3996 #endif
3997
3998 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3999 static void clear_gigantic_page(struct page *page,
4000                                 unsigned long addr,
4001                                 unsigned int pages_per_huge_page)
4002 {
4003         int i;
4004         struct page *p = page;
4005
4006         might_sleep();
4007         for (i = 0; i < pages_per_huge_page;
4008              i++, p = mem_map_next(p, page, i)) {
4009                 cond_resched();
4010                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4011         }
4012 }
4013 void clear_huge_page(struct page *page,
4014                      unsigned long addr, unsigned int pages_per_huge_page)
4015 {
4016         int i;
4017
4018         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4019                 clear_gigantic_page(page, addr, pages_per_huge_page);
4020                 return;
4021         }
4022
4023         might_sleep();
4024         for (i = 0; i < pages_per_huge_page; i++) {
4025                 cond_resched();
4026                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4027         }
4028 }
4029
4030 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4031                                     unsigned long addr,
4032                                     struct vm_area_struct *vma,
4033                                     unsigned int pages_per_huge_page)
4034 {
4035         int i;
4036         struct page *dst_base = dst;
4037         struct page *src_base = src;
4038
4039         for (i = 0; i < pages_per_huge_page; ) {
4040                 cond_resched();
4041                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4042
4043                 i++;
4044                 dst = mem_map_next(dst, dst_base, i);
4045                 src = mem_map_next(src, src_base, i);
4046         }
4047 }
4048
4049 void copy_user_huge_page(struct page *dst, struct page *src,
4050                          unsigned long addr, struct vm_area_struct *vma,
4051                          unsigned int pages_per_huge_page)
4052 {
4053         int i;
4054
4055         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4056                 copy_user_gigantic_page(dst, src, addr, vma,
4057                                         pages_per_huge_page);
4058                 return;
4059         }
4060
4061         might_sleep();
4062         for (i = 0; i < pages_per_huge_page; i++) {
4063                 cond_resched();
4064                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4065         }
4066 }
4067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */