memcg: move charges to root cgroup if use_hierarchy=0
[pandora-kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (current->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, current->rss_stat.count[i]);
135                         current->rss_stat.count[i] = 0;
136                 }
137         }
138         current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177         struct mmu_gather_batch *batch;
178
179         batch = tlb->active;
180         if (batch->next) {
181                 tlb->active = batch->next;
182                 return 1;
183         }
184
185         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186         if (!batch)
187                 return 0;
188
189         batch->next = NULL;
190         batch->nr   = 0;
191         batch->max  = MAX_GATHER_BATCH;
192
193         tlb->active->next = batch;
194         tlb->active = batch;
195
196         return 1;
197 }
198
199 /* tlb_gather_mmu
200  *      Called to initialize an (on-stack) mmu_gather structure for page-table
201  *      tear-down from @mm. The @fullmm argument is used when @mm is without
202  *      users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206         tlb->mm = mm;
207
208         tlb->fullmm     = fullmm;
209         tlb->need_flush = 0;
210         tlb->fast_mode  = (num_possible_cpus() == 1);
211         tlb->local.next = NULL;
212         tlb->local.nr   = 0;
213         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
214         tlb->active     = &tlb->local;
215
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217         tlb->batch = NULL;
218 #endif
219 }
220
221 void tlb_flush_mmu(struct mmu_gather *tlb)
222 {
223         struct mmu_gather_batch *batch;
224
225         if (!tlb->need_flush)
226                 return;
227         tlb->need_flush = 0;
228         tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb_table_flush(tlb);
231 #endif
232
233         if (tlb_fast_mode(tlb))
234                 return;
235
236         for (batch = &tlb->local; batch; batch = batch->next) {
237                 free_pages_and_swap_cache(batch->pages, batch->nr);
238                 batch->nr = 0;
239         }
240         tlb->active = &tlb->local;
241 }
242
243 /* tlb_finish_mmu
244  *      Called at the end of the shootdown operation to free up any resources
245  *      that were required.
246  */
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248 {
249         struct mmu_gather_batch *batch, *next;
250
251         tlb_flush_mmu(tlb);
252
253         /* keep the page table cache within bounds */
254         check_pgt_cache();
255
256         for (batch = tlb->local.next; batch; batch = next) {
257                 next = batch->next;
258                 free_pages((unsigned long)batch, 0);
259         }
260         tlb->local.next = NULL;
261 }
262
263 /* __tlb_remove_page
264  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265  *      handling the additional races in SMP caused by other CPUs caching valid
266  *      mappings in their TLBs. Returns the number of free page slots left.
267  *      When out of page slots we must call tlb_flush_mmu().
268  */
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270 {
271         struct mmu_gather_batch *batch;
272
273         VM_BUG_ON(!tlb->need_flush);
274
275         if (tlb_fast_mode(tlb)) {
276                 free_page_and_swap_cache(page);
277                 return 1; /* avoid calling tlb_flush_mmu() */
278         }
279
280         batch = tlb->active;
281         batch->pages[batch->nr++] = page;
282         if (batch->nr == batch->max) {
283                 if (!tlb_next_batch(tlb))
284                         return 0;
285                 batch = tlb->active;
286         }
287         VM_BUG_ON(batch->nr > batch->max);
288
289         return batch->max - batch->nr;
290 }
291
292 #endif /* HAVE_GENERIC_MMU_GATHER */
293
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296 /*
297  * See the comment near struct mmu_table_batch.
298  */
299
300 static void tlb_remove_table_smp_sync(void *arg)
301 {
302         /* Simply deliver the interrupt */
303 }
304
305 static void tlb_remove_table_one(void *table)
306 {
307         /*
308          * This isn't an RCU grace period and hence the page-tables cannot be
309          * assumed to be actually RCU-freed.
310          *
311          * It is however sufficient for software page-table walkers that rely on
312          * IRQ disabling. See the comment near struct mmu_table_batch.
313          */
314         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315         __tlb_remove_table(table);
316 }
317
318 static void tlb_remove_table_rcu(struct rcu_head *head)
319 {
320         struct mmu_table_batch *batch;
321         int i;
322
323         batch = container_of(head, struct mmu_table_batch, rcu);
324
325         for (i = 0; i < batch->nr; i++)
326                 __tlb_remove_table(batch->tables[i]);
327
328         free_page((unsigned long)batch);
329 }
330
331 void tlb_table_flush(struct mmu_gather *tlb)
332 {
333         struct mmu_table_batch **batch = &tlb->batch;
334
335         if (*batch) {
336                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337                 *batch = NULL;
338         }
339 }
340
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
342 {
343         struct mmu_table_batch **batch = &tlb->batch;
344
345         tlb->need_flush = 1;
346
347         /*
348          * When there's less then two users of this mm there cannot be a
349          * concurrent page-table walk.
350          */
351         if (atomic_read(&tlb->mm->mm_users) < 2) {
352                 __tlb_remove_table(table);
353                 return;
354         }
355
356         if (*batch == NULL) {
357                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358                 if (*batch == NULL) {
359                         tlb_remove_table_one(table);
360                         return;
361                 }
362                 (*batch)->nr = 0;
363         }
364         (*batch)->tables[(*batch)->nr++] = table;
365         if ((*batch)->nr == MAX_TABLE_BATCH)
366                 tlb_table_flush(tlb);
367 }
368
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370
371 /*
372  * If a p?d_bad entry is found while walking page tables, report
373  * the error, before resetting entry to p?d_none.  Usually (but
374  * very seldom) called out from the p?d_none_or_clear_bad macros.
375  */
376
377 void pgd_clear_bad(pgd_t *pgd)
378 {
379         pgd_ERROR(*pgd);
380         pgd_clear(pgd);
381 }
382
383 void pud_clear_bad(pud_t *pud)
384 {
385         pud_ERROR(*pud);
386         pud_clear(pud);
387 }
388
389 void pmd_clear_bad(pmd_t *pmd)
390 {
391         pmd_ERROR(*pmd);
392         pmd_clear(pmd);
393 }
394
395 /*
396  * Note: this doesn't free the actual pages themselves. That
397  * has been handled earlier when unmapping all the memory regions.
398  */
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400                            unsigned long addr)
401 {
402         pgtable_t token = pmd_pgtable(*pmd);
403         pmd_clear(pmd);
404         pte_free_tlb(tlb, token, addr);
405         tlb->mm->nr_ptes--;
406 }
407
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409                                 unsigned long addr, unsigned long end,
410                                 unsigned long floor, unsigned long ceiling)
411 {
412         pmd_t *pmd;
413         unsigned long next;
414         unsigned long start;
415
416         start = addr;
417         pmd = pmd_offset(pud, addr);
418         do {
419                 next = pmd_addr_end(addr, end);
420                 if (pmd_none_or_clear_bad(pmd))
421                         continue;
422                 free_pte_range(tlb, pmd, addr);
423         } while (pmd++, addr = next, addr != end);
424
425         start &= PUD_MASK;
426         if (start < floor)
427                 return;
428         if (ceiling) {
429                 ceiling &= PUD_MASK;
430                 if (!ceiling)
431                         return;
432         }
433         if (end - 1 > ceiling - 1)
434                 return;
435
436         pmd = pmd_offset(pud, start);
437         pud_clear(pud);
438         pmd_free_tlb(tlb, pmd, start);
439 }
440
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442                                 unsigned long addr, unsigned long end,
443                                 unsigned long floor, unsigned long ceiling)
444 {
445         pud_t *pud;
446         unsigned long next;
447         unsigned long start;
448
449         start = addr;
450         pud = pud_offset(pgd, addr);
451         do {
452                 next = pud_addr_end(addr, end);
453                 if (pud_none_or_clear_bad(pud))
454                         continue;
455                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456         } while (pud++, addr = next, addr != end);
457
458         start &= PGDIR_MASK;
459         if (start < floor)
460                 return;
461         if (ceiling) {
462                 ceiling &= PGDIR_MASK;
463                 if (!ceiling)
464                         return;
465         }
466         if (end - 1 > ceiling - 1)
467                 return;
468
469         pud = pud_offset(pgd, start);
470         pgd_clear(pgd);
471         pud_free_tlb(tlb, pud, start);
472 }
473
474 /*
475  * This function frees user-level page tables of a process.
476  *
477  * Must be called with pagetable lock held.
478  */
479 void free_pgd_range(struct mmu_gather *tlb,
480                         unsigned long addr, unsigned long end,
481                         unsigned long floor, unsigned long ceiling)
482 {
483         pgd_t *pgd;
484         unsigned long next;
485
486         /*
487          * The next few lines have given us lots of grief...
488          *
489          * Why are we testing PMD* at this top level?  Because often
490          * there will be no work to do at all, and we'd prefer not to
491          * go all the way down to the bottom just to discover that.
492          *
493          * Why all these "- 1"s?  Because 0 represents both the bottom
494          * of the address space and the top of it (using -1 for the
495          * top wouldn't help much: the masks would do the wrong thing).
496          * The rule is that addr 0 and floor 0 refer to the bottom of
497          * the address space, but end 0 and ceiling 0 refer to the top
498          * Comparisons need to use "end - 1" and "ceiling - 1" (though
499          * that end 0 case should be mythical).
500          *
501          * Wherever addr is brought up or ceiling brought down, we must
502          * be careful to reject "the opposite 0" before it confuses the
503          * subsequent tests.  But what about where end is brought down
504          * by PMD_SIZE below? no, end can't go down to 0 there.
505          *
506          * Whereas we round start (addr) and ceiling down, by different
507          * masks at different levels, in order to test whether a table
508          * now has no other vmas using it, so can be freed, we don't
509          * bother to round floor or end up - the tests don't need that.
510          */
511
512         addr &= PMD_MASK;
513         if (addr < floor) {
514                 addr += PMD_SIZE;
515                 if (!addr)
516                         return;
517         }
518         if (ceiling) {
519                 ceiling &= PMD_MASK;
520                 if (!ceiling)
521                         return;
522         }
523         if (end - 1 > ceiling - 1)
524                 end -= PMD_SIZE;
525         if (addr > end - 1)
526                 return;
527
528         pgd = pgd_offset(tlb->mm, addr);
529         do {
530                 next = pgd_addr_end(addr, end);
531                 if (pgd_none_or_clear_bad(pgd))
532                         continue;
533                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534         } while (pgd++, addr = next, addr != end);
535 }
536
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538                 unsigned long floor, unsigned long ceiling)
539 {
540         while (vma) {
541                 struct vm_area_struct *next = vma->vm_next;
542                 unsigned long addr = vma->vm_start;
543
544                 /*
545                  * Hide vma from rmap and truncate_pagecache before freeing
546                  * pgtables
547                  */
548                 unlink_anon_vmas(vma);
549                 unlink_file_vma(vma);
550
551                 if (is_vm_hugetlb_page(vma)) {
552                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553                                 floor, next? next->vm_start: ceiling);
554                 } else {
555                         /*
556                          * Optimization: gather nearby vmas into one call down
557                          */
558                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559                                && !is_vm_hugetlb_page(next)) {
560                                 vma = next;
561                                 next = vma->vm_next;
562                                 unlink_anon_vmas(vma);
563                                 unlink_file_vma(vma);
564                         }
565                         free_pgd_range(tlb, addr, vma->vm_end,
566                                 floor, next? next->vm_start: ceiling);
567                 }
568                 vma = next;
569         }
570 }
571
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573                 pmd_t *pmd, unsigned long address)
574 {
575         pgtable_t new = pte_alloc_one(mm, address);
576         int wait_split_huge_page;
577         if (!new)
578                 return -ENOMEM;
579
580         /*
581          * Ensure all pte setup (eg. pte page lock and page clearing) are
582          * visible before the pte is made visible to other CPUs by being
583          * put into page tables.
584          *
585          * The other side of the story is the pointer chasing in the page
586          * table walking code (when walking the page table without locking;
587          * ie. most of the time). Fortunately, these data accesses consist
588          * of a chain of data-dependent loads, meaning most CPUs (alpha
589          * being the notable exception) will already guarantee loads are
590          * seen in-order. See the alpha page table accessors for the
591          * smp_read_barrier_depends() barriers in page table walking code.
592          */
593         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
595         spin_lock(&mm->page_table_lock);
596         wait_split_huge_page = 0;
597         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
598                 mm->nr_ptes++;
599                 pmd_populate(mm, pmd, new);
600                 new = NULL;
601         } else if (unlikely(pmd_trans_splitting(*pmd)))
602                 wait_split_huge_page = 1;
603         spin_unlock(&mm->page_table_lock);
604         if (new)
605                 pte_free(mm, new);
606         if (wait_split_huge_page)
607                 wait_split_huge_page(vma->anon_vma, pmd);
608         return 0;
609 }
610
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614         if (!new)
615                 return -ENOMEM;
616
617         smp_wmb(); /* See comment in __pte_alloc */
618
619         spin_lock(&init_mm.page_table_lock);
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 pmd_populate_kernel(&init_mm, pmd, new);
622                 new = NULL;
623         } else
624                 VM_BUG_ON(pmd_trans_splitting(*pmd));
625         spin_unlock(&init_mm.page_table_lock);
626         if (new)
627                 pte_free_kernel(&init_mm, new);
628         return 0;
629 }
630
631 static inline void init_rss_vec(int *rss)
632 {
633         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638         int i;
639
640         if (current->mm == mm)
641                 sync_mm_rss(mm);
642         for (i = 0; i < NR_MM_COUNTERS; i++)
643                 if (rss[i])
644                         add_mm_counter(mm, i, rss[i]);
645 }
646
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655                           pte_t pte, struct page *page)
656 {
657         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658         pud_t *pud = pud_offset(pgd, addr);
659         pmd_t *pmd = pmd_offset(pud, addr);
660         struct address_space *mapping;
661         pgoff_t index;
662         static unsigned long resume;
663         static unsigned long nr_shown;
664         static unsigned long nr_unshown;
665
666         /*
667          * Allow a burst of 60 reports, then keep quiet for that minute;
668          * or allow a steady drip of one report per second.
669          */
670         if (nr_shown == 60) {
671                 if (time_before(jiffies, resume)) {
672                         nr_unshown++;
673                         return;
674                 }
675                 if (nr_unshown) {
676                         printk(KERN_ALERT
677                                 "BUG: Bad page map: %lu messages suppressed\n",
678                                 nr_unshown);
679                         nr_unshown = 0;
680                 }
681                 nr_shown = 0;
682         }
683         if (nr_shown++ == 0)
684                 resume = jiffies + 60 * HZ;
685
686         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687         index = linear_page_index(vma, addr);
688
689         printk(KERN_ALERT
690                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691                 current->comm,
692                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693         if (page)
694                 dump_page(page);
695         printk(KERN_ALERT
696                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698         /*
699          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700          */
701         if (vma->vm_ops)
702                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703                                 (unsigned long)vma->vm_ops->fault);
704         if (vma->vm_file && vma->vm_file->f_op)
705                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706                                 (unsigned long)vma->vm_file->f_op->mmap);
707         dump_stack();
708         add_taint(TAINT_BAD_PAGE);
709 }
710
711 static inline int is_cow_mapping(vm_flags_t flags)
712 {
713         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714 }
715
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
718 {
719         return pfn == zero_pfn;
720 }
721 #endif
722
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
725 {
726         return zero_pfn;
727 }
728 #endif
729
730 /*
731  * vm_normal_page -- This function gets the "struct page" associated with a pte.
732  *
733  * "Special" mappings do not wish to be associated with a "struct page" (either
734  * it doesn't exist, or it exists but they don't want to touch it). In this
735  * case, NULL is returned here. "Normal" mappings do have a struct page.
736  *
737  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738  * pte bit, in which case this function is trivial. Secondly, an architecture
739  * may not have a spare pte bit, which requires a more complicated scheme,
740  * described below.
741  *
742  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743  * special mapping (even if there are underlying and valid "struct pages").
744  * COWed pages of a VM_PFNMAP are always normal.
745  *
746  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749  * mapping will always honor the rule
750  *
751  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752  *
753  * And for normal mappings this is false.
754  *
755  * This restricts such mappings to be a linear translation from virtual address
756  * to pfn. To get around this restriction, we allow arbitrary mappings so long
757  * as the vma is not a COW mapping; in that case, we know that all ptes are
758  * special (because none can have been COWed).
759  *
760  *
761  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762  *
763  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764  * page" backing, however the difference is that _all_ pages with a struct
765  * page (that is, those where pfn_valid is true) are refcounted and considered
766  * normal pages by the VM. The disadvantage is that pages are refcounted
767  * (which can be slower and simply not an option for some PFNMAP users). The
768  * advantage is that we don't have to follow the strict linearity rule of
769  * PFNMAP mappings in order to support COWable mappings.
770  *
771  */
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778                                 pte_t pte)
779 {
780         unsigned long pfn = pte_pfn(pte);
781
782         if (HAVE_PTE_SPECIAL) {
783                 if (likely(!pte_special(pte)))
784                         goto check_pfn;
785                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786                         return NULL;
787                 if (!is_zero_pfn(pfn))
788                         print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /* !HAVE_PTE_SPECIAL case follows: */
793
794         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795                 if (vma->vm_flags & VM_MIXEDMAP) {
796                         if (!pfn_valid(pfn))
797                                 return NULL;
798                         goto out;
799                 } else {
800                         unsigned long off;
801                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
802                         if (pfn == vma->vm_pgoff + off)
803                                 return NULL;
804                         if (!is_cow_mapping(vma->vm_flags))
805                                 return NULL;
806                 }
807         }
808
809         if (is_zero_pfn(pfn))
810                 return NULL;
811 check_pfn:
812         if (unlikely(pfn > highest_memmap_pfn)) {
813                 print_bad_pte(vma, addr, pte, NULL);
814                 return NULL;
815         }
816
817         /*
818          * NOTE! We still have PageReserved() pages in the page tables.
819          * eg. VDSO mappings can cause them to exist.
820          */
821 out:
822         return pfn_to_page(pfn);
823 }
824
825 /*
826  * copy one vm_area from one task to the other. Assumes the page tables
827  * already present in the new task to be cleared in the whole range
828  * covered by this vma.
829  */
830
831 static inline unsigned long
832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834                 unsigned long addr, int *rss)
835 {
836         unsigned long vm_flags = vma->vm_flags;
837         pte_t pte = *src_pte;
838         struct page *page;
839
840         /* pte contains position in swap or file, so copy. */
841         if (unlikely(!pte_present(pte))) {
842                 if (!pte_file(pte)) {
843                         swp_entry_t entry = pte_to_swp_entry(pte);
844
845                         if (swap_duplicate(entry) < 0)
846                                 return entry.val;
847
848                         /* make sure dst_mm is on swapoff's mmlist. */
849                         if (unlikely(list_empty(&dst_mm->mmlist))) {
850                                 spin_lock(&mmlist_lock);
851                                 if (list_empty(&dst_mm->mmlist))
852                                         list_add(&dst_mm->mmlist,
853                                                  &src_mm->mmlist);
854                                 spin_unlock(&mmlist_lock);
855                         }
856                         if (likely(!non_swap_entry(entry)))
857                                 rss[MM_SWAPENTS]++;
858                         else if (is_migration_entry(entry)) {
859                                 page = migration_entry_to_page(entry);
860
861                                 if (PageAnon(page))
862                                         rss[MM_ANONPAGES]++;
863                                 else
864                                         rss[MM_FILEPAGES]++;
865
866                                 if (is_write_migration_entry(entry) &&
867                                     is_cow_mapping(vm_flags)) {
868                                         /*
869                                          * COW mappings require pages in both
870                                          * parent and child to be set to read.
871                                          */
872                                         make_migration_entry_read(&entry);
873                                         pte = swp_entry_to_pte(entry);
874                                         set_pte_at(src_mm, addr, src_pte, pte);
875                                 }
876                         }
877                 }
878                 goto out_set_pte;
879         }
880
881         /*
882          * If it's a COW mapping, write protect it both
883          * in the parent and the child
884          */
885         if (is_cow_mapping(vm_flags)) {
886                 ptep_set_wrprotect(src_mm, addr, src_pte);
887                 pte = pte_wrprotect(pte);
888         }
889
890         /*
891          * If it's a shared mapping, mark it clean in
892          * the child
893          */
894         if (vm_flags & VM_SHARED)
895                 pte = pte_mkclean(pte);
896         pte = pte_mkold(pte);
897
898         page = vm_normal_page(vma, addr, pte);
899         if (page) {
900                 get_page(page);
901                 page_dup_rmap(page);
902                 if (PageAnon(page))
903                         rss[MM_ANONPAGES]++;
904                 else
905                         rss[MM_FILEPAGES]++;
906         }
907
908 out_set_pte:
909         set_pte_at(dst_mm, addr, dst_pte, pte);
910         return 0;
911 }
912
913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915                    unsigned long addr, unsigned long end)
916 {
917         pte_t *orig_src_pte, *orig_dst_pte;
918         pte_t *src_pte, *dst_pte;
919         spinlock_t *src_ptl, *dst_ptl;
920         int progress = 0;
921         int rss[NR_MM_COUNTERS];
922         swp_entry_t entry = (swp_entry_t){0};
923
924 again:
925         init_rss_vec(rss);
926
927         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928         if (!dst_pte)
929                 return -ENOMEM;
930         src_pte = pte_offset_map(src_pmd, addr);
931         src_ptl = pte_lockptr(src_mm, src_pmd);
932         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933         orig_src_pte = src_pte;
934         orig_dst_pte = dst_pte;
935         arch_enter_lazy_mmu_mode();
936
937         do {
938                 /*
939                  * We are holding two locks at this point - either of them
940                  * could generate latencies in another task on another CPU.
941                  */
942                 if (progress >= 32) {
943                         progress = 0;
944                         if (need_resched() ||
945                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946                                 break;
947                 }
948                 if (pte_none(*src_pte)) {
949                         progress++;
950                         continue;
951                 }
952                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953                                                         vma, addr, rss);
954                 if (entry.val)
955                         break;
956                 progress += 8;
957         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
958
959         arch_leave_lazy_mmu_mode();
960         spin_unlock(src_ptl);
961         pte_unmap(orig_src_pte);
962         add_mm_rss_vec(dst_mm, rss);
963         pte_unmap_unlock(orig_dst_pte, dst_ptl);
964         cond_resched();
965
966         if (entry.val) {
967                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968                         return -ENOMEM;
969                 progress = 0;
970         }
971         if (addr != end)
972                 goto again;
973         return 0;
974 }
975
976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978                 unsigned long addr, unsigned long end)
979 {
980         pmd_t *src_pmd, *dst_pmd;
981         unsigned long next;
982
983         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984         if (!dst_pmd)
985                 return -ENOMEM;
986         src_pmd = pmd_offset(src_pud, addr);
987         do {
988                 next = pmd_addr_end(addr, end);
989                 if (pmd_trans_huge(*src_pmd)) {
990                         int err;
991                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992                         err = copy_huge_pmd(dst_mm, src_mm,
993                                             dst_pmd, src_pmd, addr, vma);
994                         if (err == -ENOMEM)
995                                 return -ENOMEM;
996                         if (!err)
997                                 continue;
998                         /* fall through */
999                 }
1000                 if (pmd_none_or_clear_bad(src_pmd))
1001                         continue;
1002                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003                                                 vma, addr, next))
1004                         return -ENOMEM;
1005         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006         return 0;
1007 }
1008
1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011                 unsigned long addr, unsigned long end)
1012 {
1013         pud_t *src_pud, *dst_pud;
1014         unsigned long next;
1015
1016         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017         if (!dst_pud)
1018                 return -ENOMEM;
1019         src_pud = pud_offset(src_pgd, addr);
1020         do {
1021                 next = pud_addr_end(addr, end);
1022                 if (pud_none_or_clear_bad(src_pud))
1023                         continue;
1024                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025                                                 vma, addr, next))
1026                         return -ENOMEM;
1027         } while (dst_pud++, src_pud++, addr = next, addr != end);
1028         return 0;
1029 }
1030
1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032                 struct vm_area_struct *vma)
1033 {
1034         pgd_t *src_pgd, *dst_pgd;
1035         unsigned long next;
1036         unsigned long addr = vma->vm_start;
1037         unsigned long end = vma->vm_end;
1038         int ret;
1039
1040         /*
1041          * Don't copy ptes where a page fault will fill them correctly.
1042          * Fork becomes much lighter when there are big shared or private
1043          * readonly mappings. The tradeoff is that copy_page_range is more
1044          * efficient than faulting.
1045          */
1046         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047                 if (!vma->anon_vma)
1048                         return 0;
1049         }
1050
1051         if (is_vm_hugetlb_page(vma))
1052                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054         if (unlikely(is_pfn_mapping(vma))) {
1055                 /*
1056                  * We do not free on error cases below as remove_vma
1057                  * gets called on error from higher level routine
1058                  */
1059                 ret = track_pfn_vma_copy(vma);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         /*
1065          * We need to invalidate the secondary MMU mappings only when
1066          * there could be a permission downgrade on the ptes of the
1067          * parent mm. And a permission downgrade will only happen if
1068          * is_cow_mapping() returns true.
1069          */
1070         if (is_cow_mapping(vma->vm_flags))
1071                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072
1073         ret = 0;
1074         dst_pgd = pgd_offset(dst_mm, addr);
1075         src_pgd = pgd_offset(src_mm, addr);
1076         do {
1077                 next = pgd_addr_end(addr, end);
1078                 if (pgd_none_or_clear_bad(src_pgd))
1079                         continue;
1080                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081                                             vma, addr, next))) {
1082                         ret = -ENOMEM;
1083                         break;
1084                 }
1085         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087         if (is_cow_mapping(vma->vm_flags))
1088                 mmu_notifier_invalidate_range_end(src_mm,
1089                                                   vma->vm_start, end);
1090         return ret;
1091 }
1092
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094                                 struct vm_area_struct *vma, pmd_t *pmd,
1095                                 unsigned long addr, unsigned long end,
1096                                 struct zap_details *details)
1097 {
1098         struct mm_struct *mm = tlb->mm;
1099         int force_flush = 0;
1100         int rss[NR_MM_COUNTERS];
1101         spinlock_t *ptl;
1102         pte_t *start_pte;
1103         pte_t *pte;
1104
1105 again:
1106         init_rss_vec(rss);
1107         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108         pte = start_pte;
1109         arch_enter_lazy_mmu_mode();
1110         do {
1111                 pte_t ptent = *pte;
1112                 if (pte_none(ptent)) {
1113                         continue;
1114                 }
1115
1116                 if (pte_present(ptent)) {
1117                         struct page *page;
1118
1119                         page = vm_normal_page(vma, addr, ptent);
1120                         if (unlikely(details) && page) {
1121                                 /*
1122                                  * unmap_shared_mapping_pages() wants to
1123                                  * invalidate cache without truncating:
1124                                  * unmap shared but keep private pages.
1125                                  */
1126                                 if (details->check_mapping &&
1127                                     details->check_mapping != page->mapping)
1128                                         continue;
1129                                 /*
1130                                  * Each page->index must be checked when
1131                                  * invalidating or truncating nonlinear.
1132                                  */
1133                                 if (details->nonlinear_vma &&
1134                                     (page->index < details->first_index ||
1135                                      page->index > details->last_index))
1136                                         continue;
1137                         }
1138                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1139                                                         tlb->fullmm);
1140                         tlb_remove_tlb_entry(tlb, pte, addr);
1141                         if (unlikely(!page))
1142                                 continue;
1143                         if (unlikely(details) && details->nonlinear_vma
1144                             && linear_page_index(details->nonlinear_vma,
1145                                                 addr) != page->index)
1146                                 set_pte_at(mm, addr, pte,
1147                                            pgoff_to_pte(page->index));
1148                         if (PageAnon(page))
1149                                 rss[MM_ANONPAGES]--;
1150                         else {
1151                                 if (pte_dirty(ptent))
1152                                         set_page_dirty(page);
1153                                 if (pte_young(ptent) &&
1154                                     likely(!VM_SequentialReadHint(vma)))
1155                                         mark_page_accessed(page);
1156                                 rss[MM_FILEPAGES]--;
1157                         }
1158                         page_remove_rmap(page);
1159                         if (unlikely(page_mapcount(page) < 0))
1160                                 print_bad_pte(vma, addr, ptent, page);
1161                         force_flush = !__tlb_remove_page(tlb, page);
1162                         if (force_flush)
1163                                 break;
1164                         continue;
1165                 }
1166                 /*
1167                  * If details->check_mapping, we leave swap entries;
1168                  * if details->nonlinear_vma, we leave file entries.
1169                  */
1170                 if (unlikely(details))
1171                         continue;
1172                 if (pte_file(ptent)) {
1173                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174                                 print_bad_pte(vma, addr, ptent, NULL);
1175                 } else {
1176                         swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178                         if (!non_swap_entry(entry))
1179                                 rss[MM_SWAPENTS]--;
1180                         else if (is_migration_entry(entry)) {
1181                                 struct page *page;
1182
1183                                 page = migration_entry_to_page(entry);
1184
1185                                 if (PageAnon(page))
1186                                         rss[MM_ANONPAGES]--;
1187                                 else
1188                                         rss[MM_FILEPAGES]--;
1189                         }
1190                         if (unlikely(!free_swap_and_cache(entry)))
1191                                 print_bad_pte(vma, addr, ptent, NULL);
1192                 }
1193                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194         } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196         add_mm_rss_vec(mm, rss);
1197         arch_leave_lazy_mmu_mode();
1198         pte_unmap_unlock(start_pte, ptl);
1199
1200         /*
1201          * mmu_gather ran out of room to batch pages, we break out of
1202          * the PTE lock to avoid doing the potential expensive TLB invalidate
1203          * and page-free while holding it.
1204          */
1205         if (force_flush) {
1206                 force_flush = 0;
1207                 tlb_flush_mmu(tlb);
1208                 if (addr != end)
1209                         goto again;
1210         }
1211
1212         return addr;
1213 }
1214
1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216                                 struct vm_area_struct *vma, pud_t *pud,
1217                                 unsigned long addr, unsigned long end,
1218                                 struct zap_details *details)
1219 {
1220         pmd_t *pmd;
1221         unsigned long next;
1222
1223         pmd = pmd_offset(pud, addr);
1224         do {
1225                 next = pmd_addr_end(addr, end);
1226                 if (pmd_trans_huge(*pmd)) {
1227                         if (next - addr != HPAGE_PMD_SIZE) {
1228                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1229                                 split_huge_page_pmd(vma->vm_mm, pmd);
1230                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231                                 goto next;
1232                         /* fall through */
1233                 }
1234                 /*
1235                  * Here there can be other concurrent MADV_DONTNEED or
1236                  * trans huge page faults running, and if the pmd is
1237                  * none or trans huge it can change under us. This is
1238                  * because MADV_DONTNEED holds the mmap_sem in read
1239                  * mode.
1240                  */
1241                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242                         goto next;
1243                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245                 cond_resched();
1246         } while (pmd++, addr = next, addr != end);
1247
1248         return addr;
1249 }
1250
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252                                 struct vm_area_struct *vma, pgd_t *pgd,
1253                                 unsigned long addr, unsigned long end,
1254                                 struct zap_details *details)
1255 {
1256         pud_t *pud;
1257         unsigned long next;
1258
1259         pud = pud_offset(pgd, addr);
1260         do {
1261                 next = pud_addr_end(addr, end);
1262                 if (pud_none_or_clear_bad(pud))
1263                         continue;
1264                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265         } while (pud++, addr = next, addr != end);
1266
1267         return addr;
1268 }
1269
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271                              struct vm_area_struct *vma,
1272                              unsigned long addr, unsigned long end,
1273                              struct zap_details *details)
1274 {
1275         pgd_t *pgd;
1276         unsigned long next;
1277
1278         if (details && !details->check_mapping && !details->nonlinear_vma)
1279                 details = NULL;
1280
1281         BUG_ON(addr >= end);
1282         mem_cgroup_uncharge_start();
1283         tlb_start_vma(tlb, vma);
1284         pgd = pgd_offset(vma->vm_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(pgd))
1288                         continue;
1289                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290         } while (pgd++, addr = next, addr != end);
1291         tlb_end_vma(tlb, vma);
1292         mem_cgroup_uncharge_end();
1293 }
1294
1295
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297                 struct vm_area_struct *vma, unsigned long start_addr,
1298                 unsigned long end_addr,
1299                 struct zap_details *details)
1300 {
1301         unsigned long start = max(vma->vm_start, start_addr);
1302         unsigned long end;
1303
1304         if (start >= vma->vm_end)
1305                 return;
1306         end = min(vma->vm_end, end_addr);
1307         if (end <= vma->vm_start)
1308                 return;
1309
1310         if (vma->vm_file)
1311                 uprobe_munmap(vma, start, end);
1312
1313         if (unlikely(is_pfn_mapping(vma)))
1314                 untrack_pfn_vma(vma, 0, 0);
1315
1316         if (start != end) {
1317                 if (unlikely(is_vm_hugetlb_page(vma))) {
1318                         /*
1319                          * It is undesirable to test vma->vm_file as it
1320                          * should be non-null for valid hugetlb area.
1321                          * However, vm_file will be NULL in the error
1322                          * cleanup path of do_mmap_pgoff. When
1323                          * hugetlbfs ->mmap method fails,
1324                          * do_mmap_pgoff() nullifies vma->vm_file
1325                          * before calling this function to clean up.
1326                          * Since no pte has actually been setup, it is
1327                          * safe to do nothing in this case.
1328                          */
1329                         if (vma->vm_file)
1330                                 unmap_hugepage_range(vma, start, end, NULL);
1331                 } else
1332                         unmap_page_range(tlb, vma, start, end, details);
1333         }
1334 }
1335
1336 /**
1337  * unmap_vmas - unmap a range of memory covered by a list of vma's
1338  * @tlb: address of the caller's struct mmu_gather
1339  * @vma: the starting vma
1340  * @start_addr: virtual address at which to start unmapping
1341  * @end_addr: virtual address at which to end unmapping
1342  *
1343  * Unmap all pages in the vma list.
1344  *
1345  * Only addresses between `start' and `end' will be unmapped.
1346  *
1347  * The VMA list must be sorted in ascending virtual address order.
1348  *
1349  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1350  * range after unmap_vmas() returns.  So the only responsibility here is to
1351  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1352  * drops the lock and schedules.
1353  */
1354 void unmap_vmas(struct mmu_gather *tlb,
1355                 struct vm_area_struct *vma, unsigned long start_addr,
1356                 unsigned long end_addr)
1357 {
1358         struct mm_struct *mm = vma->vm_mm;
1359
1360         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1361         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1362                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1363         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1364 }
1365
1366 /**
1367  * zap_page_range - remove user pages in a given range
1368  * @vma: vm_area_struct holding the applicable pages
1369  * @address: starting address of pages to zap
1370  * @size: number of bytes to zap
1371  * @details: details of nonlinear truncation or shared cache invalidation
1372  *
1373  * Caller must protect the VMA list
1374  */
1375 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1376                 unsigned long size, struct zap_details *details)
1377 {
1378         struct mm_struct *mm = vma->vm_mm;
1379         struct mmu_gather tlb;
1380         unsigned long end = start + size;
1381
1382         lru_add_drain();
1383         tlb_gather_mmu(&tlb, mm, 0);
1384         update_hiwater_rss(mm);
1385         mmu_notifier_invalidate_range_start(mm, start, end);
1386         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1387                 unmap_single_vma(&tlb, vma, start, end, details);
1388         mmu_notifier_invalidate_range_end(mm, start, end);
1389         tlb_finish_mmu(&tlb, start, end);
1390 }
1391
1392 /**
1393  * zap_page_range_single - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @address: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  * @details: details of nonlinear truncation or shared cache invalidation
1398  *
1399  * The range must fit into one VMA.
1400  */
1401 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1402                 unsigned long size, struct zap_details *details)
1403 {
1404         struct mm_struct *mm = vma->vm_mm;
1405         struct mmu_gather tlb;
1406         unsigned long end = address + size;
1407
1408         lru_add_drain();
1409         tlb_gather_mmu(&tlb, mm, 0);
1410         update_hiwater_rss(mm);
1411         mmu_notifier_invalidate_range_start(mm, address, end);
1412         unmap_single_vma(&tlb, vma, address, end, details);
1413         mmu_notifier_invalidate_range_end(mm, address, end);
1414         tlb_finish_mmu(&tlb, address, end);
1415 }
1416
1417 /**
1418  * zap_vma_ptes - remove ptes mapping the vma
1419  * @vma: vm_area_struct holding ptes to be zapped
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  *
1423  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1424  *
1425  * The entire address range must be fully contained within the vma.
1426  *
1427  * Returns 0 if successful.
1428  */
1429 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1430                 unsigned long size)
1431 {
1432         if (address < vma->vm_start || address + size > vma->vm_end ||
1433                         !(vma->vm_flags & VM_PFNMAP))
1434                 return -1;
1435         zap_page_range_single(vma, address, size, NULL);
1436         return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1439
1440 /**
1441  * follow_page - look up a page descriptor from a user-virtual address
1442  * @vma: vm_area_struct mapping @address
1443  * @address: virtual address to look up
1444  * @flags: flags modifying lookup behaviour
1445  *
1446  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1447  *
1448  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1449  * an error pointer if there is a mapping to something not represented
1450  * by a page descriptor (see also vm_normal_page()).
1451  */
1452 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1453                         unsigned int flags)
1454 {
1455         pgd_t *pgd;
1456         pud_t *pud;
1457         pmd_t *pmd;
1458         pte_t *ptep, pte;
1459         spinlock_t *ptl;
1460         struct page *page;
1461         struct mm_struct *mm = vma->vm_mm;
1462
1463         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1464         if (!IS_ERR(page)) {
1465                 BUG_ON(flags & FOLL_GET);
1466                 goto out;
1467         }
1468
1469         page = NULL;
1470         pgd = pgd_offset(mm, address);
1471         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1472                 goto no_page_table;
1473
1474         pud = pud_offset(pgd, address);
1475         if (pud_none(*pud))
1476                 goto no_page_table;
1477         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1478                 BUG_ON(flags & FOLL_GET);
1479                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1480                 goto out;
1481         }
1482         if (unlikely(pud_bad(*pud)))
1483                 goto no_page_table;
1484
1485         pmd = pmd_offset(pud, address);
1486         if (pmd_none(*pmd))
1487                 goto no_page_table;
1488         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1489                 BUG_ON(flags & FOLL_GET);
1490                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1491                 goto out;
1492         }
1493         if (pmd_trans_huge(*pmd)) {
1494                 if (flags & FOLL_SPLIT) {
1495                         split_huge_page_pmd(mm, pmd);
1496                         goto split_fallthrough;
1497                 }
1498                 spin_lock(&mm->page_table_lock);
1499                 if (likely(pmd_trans_huge(*pmd))) {
1500                         if (unlikely(pmd_trans_splitting(*pmd))) {
1501                                 spin_unlock(&mm->page_table_lock);
1502                                 wait_split_huge_page(vma->anon_vma, pmd);
1503                         } else {
1504                                 page = follow_trans_huge_pmd(mm, address,
1505                                                              pmd, flags);
1506                                 spin_unlock(&mm->page_table_lock);
1507                                 goto out;
1508                         }
1509                 } else
1510                         spin_unlock(&mm->page_table_lock);
1511                 /* fall through */
1512         }
1513 split_fallthrough:
1514         if (unlikely(pmd_bad(*pmd)))
1515                 goto no_page_table;
1516
1517         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1518
1519         pte = *ptep;
1520         if (!pte_present(pte))
1521                 goto no_page;
1522         if ((flags & FOLL_WRITE) && !pte_write(pte))
1523                 goto unlock;
1524
1525         page = vm_normal_page(vma, address, pte);
1526         if (unlikely(!page)) {
1527                 if ((flags & FOLL_DUMP) ||
1528                     !is_zero_pfn(pte_pfn(pte)))
1529                         goto bad_page;
1530                 page = pte_page(pte);
1531         }
1532
1533         if (flags & FOLL_GET)
1534                 get_page_foll(page);
1535         if (flags & FOLL_TOUCH) {
1536                 if ((flags & FOLL_WRITE) &&
1537                     !pte_dirty(pte) && !PageDirty(page))
1538                         set_page_dirty(page);
1539                 /*
1540                  * pte_mkyoung() would be more correct here, but atomic care
1541                  * is needed to avoid losing the dirty bit: it is easier to use
1542                  * mark_page_accessed().
1543                  */
1544                 mark_page_accessed(page);
1545         }
1546         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1547                 /*
1548                  * The preliminary mapping check is mainly to avoid the
1549                  * pointless overhead of lock_page on the ZERO_PAGE
1550                  * which might bounce very badly if there is contention.
1551                  *
1552                  * If the page is already locked, we don't need to
1553                  * handle it now - vmscan will handle it later if and
1554                  * when it attempts to reclaim the page.
1555                  */
1556                 if (page->mapping && trylock_page(page)) {
1557                         lru_add_drain();  /* push cached pages to LRU */
1558                         /*
1559                          * Because we lock page here and migration is
1560                          * blocked by the pte's page reference, we need
1561                          * only check for file-cache page truncation.
1562                          */
1563                         if (page->mapping)
1564                                 mlock_vma_page(page);
1565                         unlock_page(page);
1566                 }
1567         }
1568 unlock:
1569         pte_unmap_unlock(ptep, ptl);
1570 out:
1571         return page;
1572
1573 bad_page:
1574         pte_unmap_unlock(ptep, ptl);
1575         return ERR_PTR(-EFAULT);
1576
1577 no_page:
1578         pte_unmap_unlock(ptep, ptl);
1579         if (!pte_none(pte))
1580                 return page;
1581
1582 no_page_table:
1583         /*
1584          * When core dumping an enormous anonymous area that nobody
1585          * has touched so far, we don't want to allocate unnecessary pages or
1586          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1587          * then get_dump_page() will return NULL to leave a hole in the dump.
1588          * But we can only make this optimization where a hole would surely
1589          * be zero-filled if handle_mm_fault() actually did handle it.
1590          */
1591         if ((flags & FOLL_DUMP) &&
1592             (!vma->vm_ops || !vma->vm_ops->fault))
1593                 return ERR_PTR(-EFAULT);
1594         return page;
1595 }
1596
1597 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1598 {
1599         return stack_guard_page_start(vma, addr) ||
1600                stack_guard_page_end(vma, addr+PAGE_SIZE);
1601 }
1602
1603 /**
1604  * __get_user_pages() - pin user pages in memory
1605  * @tsk:        task_struct of target task
1606  * @mm:         mm_struct of target mm
1607  * @start:      starting user address
1608  * @nr_pages:   number of pages from start to pin
1609  * @gup_flags:  flags modifying pin behaviour
1610  * @pages:      array that receives pointers to the pages pinned.
1611  *              Should be at least nr_pages long. Or NULL, if caller
1612  *              only intends to ensure the pages are faulted in.
1613  * @vmas:       array of pointers to vmas corresponding to each page.
1614  *              Or NULL if the caller does not require them.
1615  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1616  *
1617  * Returns number of pages pinned. This may be fewer than the number
1618  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1619  * were pinned, returns -errno. Each page returned must be released
1620  * with a put_page() call when it is finished with. vmas will only
1621  * remain valid while mmap_sem is held.
1622  *
1623  * Must be called with mmap_sem held for read or write.
1624  *
1625  * __get_user_pages walks a process's page tables and takes a reference to
1626  * each struct page that each user address corresponds to at a given
1627  * instant. That is, it takes the page that would be accessed if a user
1628  * thread accesses the given user virtual address at that instant.
1629  *
1630  * This does not guarantee that the page exists in the user mappings when
1631  * __get_user_pages returns, and there may even be a completely different
1632  * page there in some cases (eg. if mmapped pagecache has been invalidated
1633  * and subsequently re faulted). However it does guarantee that the page
1634  * won't be freed completely. And mostly callers simply care that the page
1635  * contains data that was valid *at some point in time*. Typically, an IO
1636  * or similar operation cannot guarantee anything stronger anyway because
1637  * locks can't be held over the syscall boundary.
1638  *
1639  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1640  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1641  * appropriate) must be called after the page is finished with, and
1642  * before put_page is called.
1643  *
1644  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1645  * or mmap_sem contention, and if waiting is needed to pin all pages,
1646  * *@nonblocking will be set to 0.
1647  *
1648  * In most cases, get_user_pages or get_user_pages_fast should be used
1649  * instead of __get_user_pages. __get_user_pages should be used only if
1650  * you need some special @gup_flags.
1651  */
1652 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1653                      unsigned long start, int nr_pages, unsigned int gup_flags,
1654                      struct page **pages, struct vm_area_struct **vmas,
1655                      int *nonblocking)
1656 {
1657         int i;
1658         unsigned long vm_flags;
1659
1660         if (nr_pages <= 0)
1661                 return 0;
1662
1663         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1664
1665         /* 
1666          * Require read or write permissions.
1667          * If FOLL_FORCE is set, we only require the "MAY" flags.
1668          */
1669         vm_flags  = (gup_flags & FOLL_WRITE) ?
1670                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1671         vm_flags &= (gup_flags & FOLL_FORCE) ?
1672                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1673         i = 0;
1674
1675         do {
1676                 struct vm_area_struct *vma;
1677
1678                 vma = find_extend_vma(mm, start);
1679                 if (!vma && in_gate_area(mm, start)) {
1680                         unsigned long pg = start & PAGE_MASK;
1681                         pgd_t *pgd;
1682                         pud_t *pud;
1683                         pmd_t *pmd;
1684                         pte_t *pte;
1685
1686                         /* user gate pages are read-only */
1687                         if (gup_flags & FOLL_WRITE)
1688                                 return i ? : -EFAULT;
1689                         if (pg > TASK_SIZE)
1690                                 pgd = pgd_offset_k(pg);
1691                         else
1692                                 pgd = pgd_offset_gate(mm, pg);
1693                         BUG_ON(pgd_none(*pgd));
1694                         pud = pud_offset(pgd, pg);
1695                         BUG_ON(pud_none(*pud));
1696                         pmd = pmd_offset(pud, pg);
1697                         if (pmd_none(*pmd))
1698                                 return i ? : -EFAULT;
1699                         VM_BUG_ON(pmd_trans_huge(*pmd));
1700                         pte = pte_offset_map(pmd, pg);
1701                         if (pte_none(*pte)) {
1702                                 pte_unmap(pte);
1703                                 return i ? : -EFAULT;
1704                         }
1705                         vma = get_gate_vma(mm);
1706                         if (pages) {
1707                                 struct page *page;
1708
1709                                 page = vm_normal_page(vma, start, *pte);
1710                                 if (!page) {
1711                                         if (!(gup_flags & FOLL_DUMP) &&
1712                                              is_zero_pfn(pte_pfn(*pte)))
1713                                                 page = pte_page(*pte);
1714                                         else {
1715                                                 pte_unmap(pte);
1716                                                 return i ? : -EFAULT;
1717                                         }
1718                                 }
1719                                 pages[i] = page;
1720                                 get_page(page);
1721                         }
1722                         pte_unmap(pte);
1723                         goto next_page;
1724                 }
1725
1726                 if (!vma ||
1727                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1728                     !(vm_flags & vma->vm_flags))
1729                         return i ? : -EFAULT;
1730
1731                 if (is_vm_hugetlb_page(vma)) {
1732                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1733                                         &start, &nr_pages, i, gup_flags);
1734                         continue;
1735                 }
1736
1737                 do {
1738                         struct page *page;
1739                         unsigned int foll_flags = gup_flags;
1740
1741                         /*
1742                          * If we have a pending SIGKILL, don't keep faulting
1743                          * pages and potentially allocating memory.
1744                          */
1745                         if (unlikely(fatal_signal_pending(current)))
1746                                 return i ? i : -ERESTARTSYS;
1747
1748                         cond_resched();
1749                         while (!(page = follow_page(vma, start, foll_flags))) {
1750                                 int ret;
1751                                 unsigned int fault_flags = 0;
1752
1753                                 /* For mlock, just skip the stack guard page. */
1754                                 if (foll_flags & FOLL_MLOCK) {
1755                                         if (stack_guard_page(vma, start))
1756                                                 goto next_page;
1757                                 }
1758                                 if (foll_flags & FOLL_WRITE)
1759                                         fault_flags |= FAULT_FLAG_WRITE;
1760                                 if (nonblocking)
1761                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1762                                 if (foll_flags & FOLL_NOWAIT)
1763                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1764
1765                                 ret = handle_mm_fault(mm, vma, start,
1766                                                         fault_flags);
1767
1768                                 if (ret & VM_FAULT_ERROR) {
1769                                         if (ret & VM_FAULT_OOM)
1770                                                 return i ? i : -ENOMEM;
1771                                         if (ret & (VM_FAULT_HWPOISON |
1772                                                    VM_FAULT_HWPOISON_LARGE)) {
1773                                                 if (i)
1774                                                         return i;
1775                                                 else if (gup_flags & FOLL_HWPOISON)
1776                                                         return -EHWPOISON;
1777                                                 else
1778                                                         return -EFAULT;
1779                                         }
1780                                         if (ret & VM_FAULT_SIGBUS)
1781                                                 return i ? i : -EFAULT;
1782                                         BUG();
1783                                 }
1784
1785                                 if (tsk) {
1786                                         if (ret & VM_FAULT_MAJOR)
1787                                                 tsk->maj_flt++;
1788                                         else
1789                                                 tsk->min_flt++;
1790                                 }
1791
1792                                 if (ret & VM_FAULT_RETRY) {
1793                                         if (nonblocking)
1794                                                 *nonblocking = 0;
1795                                         return i;
1796                                 }
1797
1798                                 /*
1799                                  * The VM_FAULT_WRITE bit tells us that
1800                                  * do_wp_page has broken COW when necessary,
1801                                  * even if maybe_mkwrite decided not to set
1802                                  * pte_write. We can thus safely do subsequent
1803                                  * page lookups as if they were reads. But only
1804                                  * do so when looping for pte_write is futile:
1805                                  * in some cases userspace may also be wanting
1806                                  * to write to the gotten user page, which a
1807                                  * read fault here might prevent (a readonly
1808                                  * page might get reCOWed by userspace write).
1809                                  */
1810                                 if ((ret & VM_FAULT_WRITE) &&
1811                                     !(vma->vm_flags & VM_WRITE))
1812                                         foll_flags &= ~FOLL_WRITE;
1813
1814                                 cond_resched();
1815                         }
1816                         if (IS_ERR(page))
1817                                 return i ? i : PTR_ERR(page);
1818                         if (pages) {
1819                                 pages[i] = page;
1820
1821                                 flush_anon_page(vma, page, start);
1822                                 flush_dcache_page(page);
1823                         }
1824 next_page:
1825                         if (vmas)
1826                                 vmas[i] = vma;
1827                         i++;
1828                         start += PAGE_SIZE;
1829                         nr_pages--;
1830                 } while (nr_pages && start < vma->vm_end);
1831         } while (nr_pages);
1832         return i;
1833 }
1834 EXPORT_SYMBOL(__get_user_pages);
1835
1836 /*
1837  * fixup_user_fault() - manually resolve a user page fault
1838  * @tsk:        the task_struct to use for page fault accounting, or
1839  *              NULL if faults are not to be recorded.
1840  * @mm:         mm_struct of target mm
1841  * @address:    user address
1842  * @fault_flags:flags to pass down to handle_mm_fault()
1843  *
1844  * This is meant to be called in the specific scenario where for locking reasons
1845  * we try to access user memory in atomic context (within a pagefault_disable()
1846  * section), this returns -EFAULT, and we want to resolve the user fault before
1847  * trying again.
1848  *
1849  * Typically this is meant to be used by the futex code.
1850  *
1851  * The main difference with get_user_pages() is that this function will
1852  * unconditionally call handle_mm_fault() which will in turn perform all the
1853  * necessary SW fixup of the dirty and young bits in the PTE, while
1854  * handle_mm_fault() only guarantees to update these in the struct page.
1855  *
1856  * This is important for some architectures where those bits also gate the
1857  * access permission to the page because they are maintained in software.  On
1858  * such architectures, gup() will not be enough to make a subsequent access
1859  * succeed.
1860  *
1861  * This should be called with the mm_sem held for read.
1862  */
1863 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1864                      unsigned long address, unsigned int fault_flags)
1865 {
1866         struct vm_area_struct *vma;
1867         int ret;
1868
1869         vma = find_extend_vma(mm, address);
1870         if (!vma || address < vma->vm_start)
1871                 return -EFAULT;
1872
1873         ret = handle_mm_fault(mm, vma, address, fault_flags);
1874         if (ret & VM_FAULT_ERROR) {
1875                 if (ret & VM_FAULT_OOM)
1876                         return -ENOMEM;
1877                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1878                         return -EHWPOISON;
1879                 if (ret & VM_FAULT_SIGBUS)
1880                         return -EFAULT;
1881                 BUG();
1882         }
1883         if (tsk) {
1884                 if (ret & VM_FAULT_MAJOR)
1885                         tsk->maj_flt++;
1886                 else
1887                         tsk->min_flt++;
1888         }
1889         return 0;
1890 }
1891
1892 /*
1893  * get_user_pages() - pin user pages in memory
1894  * @tsk:        the task_struct to use for page fault accounting, or
1895  *              NULL if faults are not to be recorded.
1896  * @mm:         mm_struct of target mm
1897  * @start:      starting user address
1898  * @nr_pages:   number of pages from start to pin
1899  * @write:      whether pages will be written to by the caller
1900  * @force:      whether to force write access even if user mapping is
1901  *              readonly. This will result in the page being COWed even
1902  *              in MAP_SHARED mappings. You do not want this.
1903  * @pages:      array that receives pointers to the pages pinned.
1904  *              Should be at least nr_pages long. Or NULL, if caller
1905  *              only intends to ensure the pages are faulted in.
1906  * @vmas:       array of pointers to vmas corresponding to each page.
1907  *              Or NULL if the caller does not require them.
1908  *
1909  * Returns number of pages pinned. This may be fewer than the number
1910  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1911  * were pinned, returns -errno. Each page returned must be released
1912  * with a put_page() call when it is finished with. vmas will only
1913  * remain valid while mmap_sem is held.
1914  *
1915  * Must be called with mmap_sem held for read or write.
1916  *
1917  * get_user_pages walks a process's page tables and takes a reference to
1918  * each struct page that each user address corresponds to at a given
1919  * instant. That is, it takes the page that would be accessed if a user
1920  * thread accesses the given user virtual address at that instant.
1921  *
1922  * This does not guarantee that the page exists in the user mappings when
1923  * get_user_pages returns, and there may even be a completely different
1924  * page there in some cases (eg. if mmapped pagecache has been invalidated
1925  * and subsequently re faulted). However it does guarantee that the page
1926  * won't be freed completely. And mostly callers simply care that the page
1927  * contains data that was valid *at some point in time*. Typically, an IO
1928  * or similar operation cannot guarantee anything stronger anyway because
1929  * locks can't be held over the syscall boundary.
1930  *
1931  * If write=0, the page must not be written to. If the page is written to,
1932  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1933  * after the page is finished with, and before put_page is called.
1934  *
1935  * get_user_pages is typically used for fewer-copy IO operations, to get a
1936  * handle on the memory by some means other than accesses via the user virtual
1937  * addresses. The pages may be submitted for DMA to devices or accessed via
1938  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1939  * use the correct cache flushing APIs.
1940  *
1941  * See also get_user_pages_fast, for performance critical applications.
1942  */
1943 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1944                 unsigned long start, int nr_pages, int write, int force,
1945                 struct page **pages, struct vm_area_struct **vmas)
1946 {
1947         int flags = FOLL_TOUCH;
1948
1949         if (pages)
1950                 flags |= FOLL_GET;
1951         if (write)
1952                 flags |= FOLL_WRITE;
1953         if (force)
1954                 flags |= FOLL_FORCE;
1955
1956         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1957                                 NULL);
1958 }
1959 EXPORT_SYMBOL(get_user_pages);
1960
1961 /**
1962  * get_dump_page() - pin user page in memory while writing it to core dump
1963  * @addr: user address
1964  *
1965  * Returns struct page pointer of user page pinned for dump,
1966  * to be freed afterwards by page_cache_release() or put_page().
1967  *
1968  * Returns NULL on any kind of failure - a hole must then be inserted into
1969  * the corefile, to preserve alignment with its headers; and also returns
1970  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1971  * allowing a hole to be left in the corefile to save diskspace.
1972  *
1973  * Called without mmap_sem, but after all other threads have been killed.
1974  */
1975 #ifdef CONFIG_ELF_CORE
1976 struct page *get_dump_page(unsigned long addr)
1977 {
1978         struct vm_area_struct *vma;
1979         struct page *page;
1980
1981         if (__get_user_pages(current, current->mm, addr, 1,
1982                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1983                              NULL) < 1)
1984                 return NULL;
1985         flush_cache_page(vma, addr, page_to_pfn(page));
1986         return page;
1987 }
1988 #endif /* CONFIG_ELF_CORE */
1989
1990 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1991                         spinlock_t **ptl)
1992 {
1993         pgd_t * pgd = pgd_offset(mm, addr);
1994         pud_t * pud = pud_alloc(mm, pgd, addr);
1995         if (pud) {
1996                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1997                 if (pmd) {
1998                         VM_BUG_ON(pmd_trans_huge(*pmd));
1999                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2000                 }
2001         }
2002         return NULL;
2003 }
2004
2005 /*
2006  * This is the old fallback for page remapping.
2007  *
2008  * For historical reasons, it only allows reserved pages. Only
2009  * old drivers should use this, and they needed to mark their
2010  * pages reserved for the old functions anyway.
2011  */
2012 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2013                         struct page *page, pgprot_t prot)
2014 {
2015         struct mm_struct *mm = vma->vm_mm;
2016         int retval;
2017         pte_t *pte;
2018         spinlock_t *ptl;
2019
2020         retval = -EINVAL;
2021         if (PageAnon(page))
2022                 goto out;
2023         retval = -ENOMEM;
2024         flush_dcache_page(page);
2025         pte = get_locked_pte(mm, addr, &ptl);
2026         if (!pte)
2027                 goto out;
2028         retval = -EBUSY;
2029         if (!pte_none(*pte))
2030                 goto out_unlock;
2031
2032         /* Ok, finally just insert the thing.. */
2033         get_page(page);
2034         inc_mm_counter_fast(mm, MM_FILEPAGES);
2035         page_add_file_rmap(page);
2036         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2037
2038         retval = 0;
2039         pte_unmap_unlock(pte, ptl);
2040         return retval;
2041 out_unlock:
2042         pte_unmap_unlock(pte, ptl);
2043 out:
2044         return retval;
2045 }
2046
2047 /**
2048  * vm_insert_page - insert single page into user vma
2049  * @vma: user vma to map to
2050  * @addr: target user address of this page
2051  * @page: source kernel page
2052  *
2053  * This allows drivers to insert individual pages they've allocated
2054  * into a user vma.
2055  *
2056  * The page has to be a nice clean _individual_ kernel allocation.
2057  * If you allocate a compound page, you need to have marked it as
2058  * such (__GFP_COMP), or manually just split the page up yourself
2059  * (see split_page()).
2060  *
2061  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2062  * took an arbitrary page protection parameter. This doesn't allow
2063  * that. Your vma protection will have to be set up correctly, which
2064  * means that if you want a shared writable mapping, you'd better
2065  * ask for a shared writable mapping!
2066  *
2067  * The page does not need to be reserved.
2068  */
2069 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2070                         struct page *page)
2071 {
2072         if (addr < vma->vm_start || addr >= vma->vm_end)
2073                 return -EFAULT;
2074         if (!page_count(page))
2075                 return -EINVAL;
2076         vma->vm_flags |= VM_INSERTPAGE;
2077         return insert_page(vma, addr, page, vma->vm_page_prot);
2078 }
2079 EXPORT_SYMBOL(vm_insert_page);
2080
2081 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2082                         unsigned long pfn, pgprot_t prot)
2083 {
2084         struct mm_struct *mm = vma->vm_mm;
2085         int retval;
2086         pte_t *pte, entry;
2087         spinlock_t *ptl;
2088
2089         retval = -ENOMEM;
2090         pte = get_locked_pte(mm, addr, &ptl);
2091         if (!pte)
2092                 goto out;
2093         retval = -EBUSY;
2094         if (!pte_none(*pte))
2095                 goto out_unlock;
2096
2097         /* Ok, finally just insert the thing.. */
2098         entry = pte_mkspecial(pfn_pte(pfn, prot));
2099         set_pte_at(mm, addr, pte, entry);
2100         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2101
2102         retval = 0;
2103 out_unlock:
2104         pte_unmap_unlock(pte, ptl);
2105 out:
2106         return retval;
2107 }
2108
2109 /**
2110  * vm_insert_pfn - insert single pfn into user vma
2111  * @vma: user vma to map to
2112  * @addr: target user address of this page
2113  * @pfn: source kernel pfn
2114  *
2115  * Similar to vm_inert_page, this allows drivers to insert individual pages
2116  * they've allocated into a user vma. Same comments apply.
2117  *
2118  * This function should only be called from a vm_ops->fault handler, and
2119  * in that case the handler should return NULL.
2120  *
2121  * vma cannot be a COW mapping.
2122  *
2123  * As this is called only for pages that do not currently exist, we
2124  * do not need to flush old virtual caches or the TLB.
2125  */
2126 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2127                         unsigned long pfn)
2128 {
2129         int ret;
2130         pgprot_t pgprot = vma->vm_page_prot;
2131         /*
2132          * Technically, architectures with pte_special can avoid all these
2133          * restrictions (same for remap_pfn_range).  However we would like
2134          * consistency in testing and feature parity among all, so we should
2135          * try to keep these invariants in place for everybody.
2136          */
2137         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2138         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2139                                                 (VM_PFNMAP|VM_MIXEDMAP));
2140         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2141         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2142
2143         if (addr < vma->vm_start || addr >= vma->vm_end)
2144                 return -EFAULT;
2145         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2146                 return -EINVAL;
2147
2148         ret = insert_pfn(vma, addr, pfn, pgprot);
2149
2150         if (ret)
2151                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2152
2153         return ret;
2154 }
2155 EXPORT_SYMBOL(vm_insert_pfn);
2156
2157 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158                         unsigned long pfn)
2159 {
2160         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2161
2162         if (addr < vma->vm_start || addr >= vma->vm_end)
2163                 return -EFAULT;
2164
2165         /*
2166          * If we don't have pte special, then we have to use the pfn_valid()
2167          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2168          * refcount the page if pfn_valid is true (hence insert_page rather
2169          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2170          * without pte special, it would there be refcounted as a normal page.
2171          */
2172         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2173                 struct page *page;
2174
2175                 page = pfn_to_page(pfn);
2176                 return insert_page(vma, addr, page, vma->vm_page_prot);
2177         }
2178         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2179 }
2180 EXPORT_SYMBOL(vm_insert_mixed);
2181
2182 /*
2183  * maps a range of physical memory into the requested pages. the old
2184  * mappings are removed. any references to nonexistent pages results
2185  * in null mappings (currently treated as "copy-on-access")
2186  */
2187 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2188                         unsigned long addr, unsigned long end,
2189                         unsigned long pfn, pgprot_t prot)
2190 {
2191         pte_t *pte;
2192         spinlock_t *ptl;
2193
2194         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2195         if (!pte)
2196                 return -ENOMEM;
2197         arch_enter_lazy_mmu_mode();
2198         do {
2199                 BUG_ON(!pte_none(*pte));
2200                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2201                 pfn++;
2202         } while (pte++, addr += PAGE_SIZE, addr != end);
2203         arch_leave_lazy_mmu_mode();
2204         pte_unmap_unlock(pte - 1, ptl);
2205         return 0;
2206 }
2207
2208 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2209                         unsigned long addr, unsigned long end,
2210                         unsigned long pfn, pgprot_t prot)
2211 {
2212         pmd_t *pmd;
2213         unsigned long next;
2214
2215         pfn -= addr >> PAGE_SHIFT;
2216         pmd = pmd_alloc(mm, pud, addr);
2217         if (!pmd)
2218                 return -ENOMEM;
2219         VM_BUG_ON(pmd_trans_huge(*pmd));
2220         do {
2221                 next = pmd_addr_end(addr, end);
2222                 if (remap_pte_range(mm, pmd, addr, next,
2223                                 pfn + (addr >> PAGE_SHIFT), prot))
2224                         return -ENOMEM;
2225         } while (pmd++, addr = next, addr != end);
2226         return 0;
2227 }
2228
2229 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2230                         unsigned long addr, unsigned long end,
2231                         unsigned long pfn, pgprot_t prot)
2232 {
2233         pud_t *pud;
2234         unsigned long next;
2235
2236         pfn -= addr >> PAGE_SHIFT;
2237         pud = pud_alloc(mm, pgd, addr);
2238         if (!pud)
2239                 return -ENOMEM;
2240         do {
2241                 next = pud_addr_end(addr, end);
2242                 if (remap_pmd_range(mm, pud, addr, next,
2243                                 pfn + (addr >> PAGE_SHIFT), prot))
2244                         return -ENOMEM;
2245         } while (pud++, addr = next, addr != end);
2246         return 0;
2247 }
2248
2249 /**
2250  * remap_pfn_range - remap kernel memory to userspace
2251  * @vma: user vma to map to
2252  * @addr: target user address to start at
2253  * @pfn: physical address of kernel memory
2254  * @size: size of map area
2255  * @prot: page protection flags for this mapping
2256  *
2257  *  Note: this is only safe if the mm semaphore is held when called.
2258  */
2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2260                     unsigned long pfn, unsigned long size, pgprot_t prot)
2261 {
2262         pgd_t *pgd;
2263         unsigned long next;
2264         unsigned long end = addr + PAGE_ALIGN(size);
2265         struct mm_struct *mm = vma->vm_mm;
2266         int err;
2267
2268         /*
2269          * Physically remapped pages are special. Tell the
2270          * rest of the world about it:
2271          *   VM_IO tells people not to look at these pages
2272          *      (accesses can have side effects).
2273          *   VM_RESERVED is specified all over the place, because
2274          *      in 2.4 it kept swapout's vma scan off this vma; but
2275          *      in 2.6 the LRU scan won't even find its pages, so this
2276          *      flag means no more than count its pages in reserved_vm,
2277          *      and omit it from core dump, even when VM_IO turned off.
2278          *   VM_PFNMAP tells the core MM that the base pages are just
2279          *      raw PFN mappings, and do not have a "struct page" associated
2280          *      with them.
2281          *
2282          * There's a horrible special case to handle copy-on-write
2283          * behaviour that some programs depend on. We mark the "original"
2284          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2285          */
2286         if (addr == vma->vm_start && end == vma->vm_end) {
2287                 vma->vm_pgoff = pfn;
2288                 vma->vm_flags |= VM_PFN_AT_MMAP;
2289         } else if (is_cow_mapping(vma->vm_flags))
2290                 return -EINVAL;
2291
2292         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2293
2294         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2295         if (err) {
2296                 /*
2297                  * To indicate that track_pfn related cleanup is not
2298                  * needed from higher level routine calling unmap_vmas
2299                  */
2300                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2301                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2302                 return -EINVAL;
2303         }
2304
2305         BUG_ON(addr >= end);
2306         pfn -= addr >> PAGE_SHIFT;
2307         pgd = pgd_offset(mm, addr);
2308         flush_cache_range(vma, addr, end);
2309         do {
2310                 next = pgd_addr_end(addr, end);
2311                 err = remap_pud_range(mm, pgd, addr, next,
2312                                 pfn + (addr >> PAGE_SHIFT), prot);
2313                 if (err)
2314                         break;
2315         } while (pgd++, addr = next, addr != end);
2316
2317         if (err)
2318                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2319
2320         return err;
2321 }
2322 EXPORT_SYMBOL(remap_pfn_range);
2323
2324 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2325                                      unsigned long addr, unsigned long end,
2326                                      pte_fn_t fn, void *data)
2327 {
2328         pte_t *pte;
2329         int err;
2330         pgtable_t token;
2331         spinlock_t *uninitialized_var(ptl);
2332
2333         pte = (mm == &init_mm) ?
2334                 pte_alloc_kernel(pmd, addr) :
2335                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2336         if (!pte)
2337                 return -ENOMEM;
2338
2339         BUG_ON(pmd_huge(*pmd));
2340
2341         arch_enter_lazy_mmu_mode();
2342
2343         token = pmd_pgtable(*pmd);
2344
2345         do {
2346                 err = fn(pte++, token, addr, data);
2347                 if (err)
2348                         break;
2349         } while (addr += PAGE_SIZE, addr != end);
2350
2351         arch_leave_lazy_mmu_mode();
2352
2353         if (mm != &init_mm)
2354                 pte_unmap_unlock(pte-1, ptl);
2355         return err;
2356 }
2357
2358 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2359                                      unsigned long addr, unsigned long end,
2360                                      pte_fn_t fn, void *data)
2361 {
2362         pmd_t *pmd;
2363         unsigned long next;
2364         int err;
2365
2366         BUG_ON(pud_huge(*pud));
2367
2368         pmd = pmd_alloc(mm, pud, addr);
2369         if (!pmd)
2370                 return -ENOMEM;
2371         do {
2372                 next = pmd_addr_end(addr, end);
2373                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2374                 if (err)
2375                         break;
2376         } while (pmd++, addr = next, addr != end);
2377         return err;
2378 }
2379
2380 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2381                                      unsigned long addr, unsigned long end,
2382                                      pte_fn_t fn, void *data)
2383 {
2384         pud_t *pud;
2385         unsigned long next;
2386         int err;
2387
2388         pud = pud_alloc(mm, pgd, addr);
2389         if (!pud)
2390                 return -ENOMEM;
2391         do {
2392                 next = pud_addr_end(addr, end);
2393                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2394                 if (err)
2395                         break;
2396         } while (pud++, addr = next, addr != end);
2397         return err;
2398 }
2399
2400 /*
2401  * Scan a region of virtual memory, filling in page tables as necessary
2402  * and calling a provided function on each leaf page table.
2403  */
2404 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2405                         unsigned long size, pte_fn_t fn, void *data)
2406 {
2407         pgd_t *pgd;
2408         unsigned long next;
2409         unsigned long end = addr + size;
2410         int err;
2411
2412         BUG_ON(addr >= end);
2413         pgd = pgd_offset(mm, addr);
2414         do {
2415                 next = pgd_addr_end(addr, end);
2416                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2417                 if (err)
2418                         break;
2419         } while (pgd++, addr = next, addr != end);
2420
2421         return err;
2422 }
2423 EXPORT_SYMBOL_GPL(apply_to_page_range);
2424
2425 /*
2426  * handle_pte_fault chooses page fault handler according to an entry
2427  * which was read non-atomically.  Before making any commitment, on
2428  * those architectures or configurations (e.g. i386 with PAE) which
2429  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2430  * must check under lock before unmapping the pte and proceeding
2431  * (but do_wp_page is only called after already making such a check;
2432  * and do_anonymous_page can safely check later on).
2433  */
2434 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2435                                 pte_t *page_table, pte_t orig_pte)
2436 {
2437         int same = 1;
2438 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2439         if (sizeof(pte_t) > sizeof(unsigned long)) {
2440                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2441                 spin_lock(ptl);
2442                 same = pte_same(*page_table, orig_pte);
2443                 spin_unlock(ptl);
2444         }
2445 #endif
2446         pte_unmap(page_table);
2447         return same;
2448 }
2449
2450 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2451 {
2452         /*
2453          * If the source page was a PFN mapping, we don't have
2454          * a "struct page" for it. We do a best-effort copy by
2455          * just copying from the original user address. If that
2456          * fails, we just zero-fill it. Live with it.
2457          */
2458         if (unlikely(!src)) {
2459                 void *kaddr = kmap_atomic(dst);
2460                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2461
2462                 /*
2463                  * This really shouldn't fail, because the page is there
2464                  * in the page tables. But it might just be unreadable,
2465                  * in which case we just give up and fill the result with
2466                  * zeroes.
2467                  */
2468                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2469                         clear_page(kaddr);
2470                 kunmap_atomic(kaddr);
2471                 flush_dcache_page(dst);
2472         } else
2473                 copy_user_highpage(dst, src, va, vma);
2474 }
2475
2476 /*
2477  * This routine handles present pages, when users try to write
2478  * to a shared page. It is done by copying the page to a new address
2479  * and decrementing the shared-page counter for the old page.
2480  *
2481  * Note that this routine assumes that the protection checks have been
2482  * done by the caller (the low-level page fault routine in most cases).
2483  * Thus we can safely just mark it writable once we've done any necessary
2484  * COW.
2485  *
2486  * We also mark the page dirty at this point even though the page will
2487  * change only once the write actually happens. This avoids a few races,
2488  * and potentially makes it more efficient.
2489  *
2490  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2491  * but allow concurrent faults), with pte both mapped and locked.
2492  * We return with mmap_sem still held, but pte unmapped and unlocked.
2493  */
2494 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2495                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2496                 spinlock_t *ptl, pte_t orig_pte)
2497         __releases(ptl)
2498 {
2499         struct page *old_page, *new_page;
2500         pte_t entry;
2501         int ret = 0;
2502         int page_mkwrite = 0;
2503         struct page *dirty_page = NULL;
2504
2505         old_page = vm_normal_page(vma, address, orig_pte);
2506         if (!old_page) {
2507                 /*
2508                  * VM_MIXEDMAP !pfn_valid() case
2509                  *
2510                  * We should not cow pages in a shared writeable mapping.
2511                  * Just mark the pages writable as we can't do any dirty
2512                  * accounting on raw pfn maps.
2513                  */
2514                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2515                                      (VM_WRITE|VM_SHARED))
2516                         goto reuse;
2517                 goto gotten;
2518         }
2519
2520         /*
2521          * Take out anonymous pages first, anonymous shared vmas are
2522          * not dirty accountable.
2523          */
2524         if (PageAnon(old_page) && !PageKsm(old_page)) {
2525                 if (!trylock_page(old_page)) {
2526                         page_cache_get(old_page);
2527                         pte_unmap_unlock(page_table, ptl);
2528                         lock_page(old_page);
2529                         page_table = pte_offset_map_lock(mm, pmd, address,
2530                                                          &ptl);
2531                         if (!pte_same(*page_table, orig_pte)) {
2532                                 unlock_page(old_page);
2533                                 goto unlock;
2534                         }
2535                         page_cache_release(old_page);
2536                 }
2537                 if (reuse_swap_page(old_page)) {
2538                         /*
2539                          * The page is all ours.  Move it to our anon_vma so
2540                          * the rmap code will not search our parent or siblings.
2541                          * Protected against the rmap code by the page lock.
2542                          */
2543                         page_move_anon_rmap(old_page, vma, address);
2544                         unlock_page(old_page);
2545                         goto reuse;
2546                 }
2547                 unlock_page(old_page);
2548         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2549                                         (VM_WRITE|VM_SHARED))) {
2550                 /*
2551                  * Only catch write-faults on shared writable pages,
2552                  * read-only shared pages can get COWed by
2553                  * get_user_pages(.write=1, .force=1).
2554                  */
2555                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2556                         struct vm_fault vmf;
2557                         int tmp;
2558
2559                         vmf.virtual_address = (void __user *)(address &
2560                                                                 PAGE_MASK);
2561                         vmf.pgoff = old_page->index;
2562                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2563                         vmf.page = old_page;
2564
2565                         /*
2566                          * Notify the address space that the page is about to
2567                          * become writable so that it can prohibit this or wait
2568                          * for the page to get into an appropriate state.
2569                          *
2570                          * We do this without the lock held, so that it can
2571                          * sleep if it needs to.
2572                          */
2573                         page_cache_get(old_page);
2574                         pte_unmap_unlock(page_table, ptl);
2575
2576                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2577                         if (unlikely(tmp &
2578                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2579                                 ret = tmp;
2580                                 goto unwritable_page;
2581                         }
2582                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2583                                 lock_page(old_page);
2584                                 if (!old_page->mapping) {
2585                                         ret = 0; /* retry the fault */
2586                                         unlock_page(old_page);
2587                                         goto unwritable_page;
2588                                 }
2589                         } else
2590                                 VM_BUG_ON(!PageLocked(old_page));
2591
2592                         /*
2593                          * Since we dropped the lock we need to revalidate
2594                          * the PTE as someone else may have changed it.  If
2595                          * they did, we just return, as we can count on the
2596                          * MMU to tell us if they didn't also make it writable.
2597                          */
2598                         page_table = pte_offset_map_lock(mm, pmd, address,
2599                                                          &ptl);
2600                         if (!pte_same(*page_table, orig_pte)) {
2601                                 unlock_page(old_page);
2602                                 goto unlock;
2603                         }
2604
2605                         page_mkwrite = 1;
2606                 }
2607                 dirty_page = old_page;
2608                 get_page(dirty_page);
2609
2610 reuse:
2611                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2612                 entry = pte_mkyoung(orig_pte);
2613                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2614                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2615                         update_mmu_cache(vma, address, page_table);
2616                 pte_unmap_unlock(page_table, ptl);
2617                 ret |= VM_FAULT_WRITE;
2618
2619                 if (!dirty_page)
2620                         return ret;
2621
2622                 /*
2623                  * Yes, Virginia, this is actually required to prevent a race
2624                  * with clear_page_dirty_for_io() from clearing the page dirty
2625                  * bit after it clear all dirty ptes, but before a racing
2626                  * do_wp_page installs a dirty pte.
2627                  *
2628                  * __do_fault is protected similarly.
2629                  */
2630                 if (!page_mkwrite) {
2631                         wait_on_page_locked(dirty_page);
2632                         set_page_dirty_balance(dirty_page, page_mkwrite);
2633                 }
2634                 put_page(dirty_page);
2635                 if (page_mkwrite) {
2636                         struct address_space *mapping = dirty_page->mapping;
2637
2638                         set_page_dirty(dirty_page);
2639                         unlock_page(dirty_page);
2640                         page_cache_release(dirty_page);
2641                         if (mapping)    {
2642                                 /*
2643                                  * Some device drivers do not set page.mapping
2644                                  * but still dirty their pages
2645                                  */
2646                                 balance_dirty_pages_ratelimited(mapping);
2647                         }
2648                 }
2649
2650                 /* file_update_time outside page_lock */
2651                 if (vma->vm_file)
2652                         file_update_time(vma->vm_file);
2653
2654                 return ret;
2655         }
2656
2657         /*
2658          * Ok, we need to copy. Oh, well..
2659          */
2660         page_cache_get(old_page);
2661 gotten:
2662         pte_unmap_unlock(page_table, ptl);
2663
2664         if (unlikely(anon_vma_prepare(vma)))
2665                 goto oom;
2666
2667         if (is_zero_pfn(pte_pfn(orig_pte))) {
2668                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2669                 if (!new_page)
2670                         goto oom;
2671         } else {
2672                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2673                 if (!new_page)
2674                         goto oom;
2675                 cow_user_page(new_page, old_page, address, vma);
2676         }
2677         __SetPageUptodate(new_page);
2678
2679         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2680                 goto oom_free_new;
2681
2682         /*
2683          * Re-check the pte - we dropped the lock
2684          */
2685         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2686         if (likely(pte_same(*page_table, orig_pte))) {
2687                 if (old_page) {
2688                         if (!PageAnon(old_page)) {
2689                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2690                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2691                         }
2692                 } else
2693                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2694                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2695                 entry = mk_pte(new_page, vma->vm_page_prot);
2696                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2697                 /*
2698                  * Clear the pte entry and flush it first, before updating the
2699                  * pte with the new entry. This will avoid a race condition
2700                  * seen in the presence of one thread doing SMC and another
2701                  * thread doing COW.
2702                  */
2703                 ptep_clear_flush(vma, address, page_table);
2704                 page_add_new_anon_rmap(new_page, vma, address);
2705                 /*
2706                  * We call the notify macro here because, when using secondary
2707                  * mmu page tables (such as kvm shadow page tables), we want the
2708                  * new page to be mapped directly into the secondary page table.
2709                  */
2710                 set_pte_at_notify(mm, address, page_table, entry);
2711                 update_mmu_cache(vma, address, page_table);
2712                 if (old_page) {
2713                         /*
2714                          * Only after switching the pte to the new page may
2715                          * we remove the mapcount here. Otherwise another
2716                          * process may come and find the rmap count decremented
2717                          * before the pte is switched to the new page, and
2718                          * "reuse" the old page writing into it while our pte
2719                          * here still points into it and can be read by other
2720                          * threads.
2721                          *
2722                          * The critical issue is to order this
2723                          * page_remove_rmap with the ptp_clear_flush above.
2724                          * Those stores are ordered by (if nothing else,)
2725                          * the barrier present in the atomic_add_negative
2726                          * in page_remove_rmap.
2727                          *
2728                          * Then the TLB flush in ptep_clear_flush ensures that
2729                          * no process can access the old page before the
2730                          * decremented mapcount is visible. And the old page
2731                          * cannot be reused until after the decremented
2732                          * mapcount is visible. So transitively, TLBs to
2733                          * old page will be flushed before it can be reused.
2734                          */
2735                         page_remove_rmap(old_page);
2736                 }
2737
2738                 /* Free the old page.. */
2739                 new_page = old_page;
2740                 ret |= VM_FAULT_WRITE;
2741         } else
2742                 mem_cgroup_uncharge_page(new_page);
2743
2744         if (new_page)
2745                 page_cache_release(new_page);
2746 unlock:
2747         pte_unmap_unlock(page_table, ptl);
2748         if (old_page) {
2749                 /*
2750                  * Don't let another task, with possibly unlocked vma,
2751                  * keep the mlocked page.
2752                  */
2753                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2754                         lock_page(old_page);    /* LRU manipulation */
2755                         munlock_vma_page(old_page);
2756                         unlock_page(old_page);
2757                 }
2758                 page_cache_release(old_page);
2759         }
2760         return ret;
2761 oom_free_new:
2762         page_cache_release(new_page);
2763 oom:
2764         if (old_page) {
2765                 if (page_mkwrite) {
2766                         unlock_page(old_page);
2767                         page_cache_release(old_page);
2768                 }
2769                 page_cache_release(old_page);
2770         }
2771         return VM_FAULT_OOM;
2772
2773 unwritable_page:
2774         page_cache_release(old_page);
2775         return ret;
2776 }
2777
2778 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2779                 unsigned long start_addr, unsigned long end_addr,
2780                 struct zap_details *details)
2781 {
2782         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2783 }
2784
2785 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2786                                             struct zap_details *details)
2787 {
2788         struct vm_area_struct *vma;
2789         struct prio_tree_iter iter;
2790         pgoff_t vba, vea, zba, zea;
2791
2792         vma_prio_tree_foreach(vma, &iter, root,
2793                         details->first_index, details->last_index) {
2794
2795                 vba = vma->vm_pgoff;
2796                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2797                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2798                 zba = details->first_index;
2799                 if (zba < vba)
2800                         zba = vba;
2801                 zea = details->last_index;
2802                 if (zea > vea)
2803                         zea = vea;
2804
2805                 unmap_mapping_range_vma(vma,
2806                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2807                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2808                                 details);
2809         }
2810 }
2811
2812 static inline void unmap_mapping_range_list(struct list_head *head,
2813                                             struct zap_details *details)
2814 {
2815         struct vm_area_struct *vma;
2816
2817         /*
2818          * In nonlinear VMAs there is no correspondence between virtual address
2819          * offset and file offset.  So we must perform an exhaustive search
2820          * across *all* the pages in each nonlinear VMA, not just the pages
2821          * whose virtual address lies outside the file truncation point.
2822          */
2823         list_for_each_entry(vma, head, shared.vm_set.list) {
2824                 details->nonlinear_vma = vma;
2825                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2826         }
2827 }
2828
2829 /**
2830  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2831  * @mapping: the address space containing mmaps to be unmapped.
2832  * @holebegin: byte in first page to unmap, relative to the start of
2833  * the underlying file.  This will be rounded down to a PAGE_SIZE
2834  * boundary.  Note that this is different from truncate_pagecache(), which
2835  * must keep the partial page.  In contrast, we must get rid of
2836  * partial pages.
2837  * @holelen: size of prospective hole in bytes.  This will be rounded
2838  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2839  * end of the file.
2840  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2841  * but 0 when invalidating pagecache, don't throw away private data.
2842  */
2843 void unmap_mapping_range(struct address_space *mapping,
2844                 loff_t const holebegin, loff_t const holelen, int even_cows)
2845 {
2846         struct zap_details details;
2847         pgoff_t hba = holebegin >> PAGE_SHIFT;
2848         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2849
2850         /* Check for overflow. */
2851         if (sizeof(holelen) > sizeof(hlen)) {
2852                 long long holeend =
2853                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2854                 if (holeend & ~(long long)ULONG_MAX)
2855                         hlen = ULONG_MAX - hba + 1;
2856         }
2857
2858         details.check_mapping = even_cows? NULL: mapping;
2859         details.nonlinear_vma = NULL;
2860         details.first_index = hba;
2861         details.last_index = hba + hlen - 1;
2862         if (details.last_index < details.first_index)
2863                 details.last_index = ULONG_MAX;
2864
2865
2866         mutex_lock(&mapping->i_mmap_mutex);
2867         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2868                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2869         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2870                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2871         mutex_unlock(&mapping->i_mmap_mutex);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874
2875 /*
2876  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877  * but allow concurrent faults), and pte mapped but not yet locked.
2878  * We return with mmap_sem still held, but pte unmapped and unlocked.
2879  */
2880 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2881                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2882                 unsigned int flags, pte_t orig_pte)
2883 {
2884         spinlock_t *ptl;
2885         struct page *page, *swapcache = NULL;
2886         swp_entry_t entry;
2887         pte_t pte;
2888         int locked;
2889         struct mem_cgroup *ptr;
2890         int exclusive = 0;
2891         int ret = 0;
2892
2893         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2894                 goto out;
2895
2896         entry = pte_to_swp_entry(orig_pte);
2897         if (unlikely(non_swap_entry(entry))) {
2898                 if (is_migration_entry(entry)) {
2899                         migration_entry_wait(mm, pmd, address);
2900                 } else if (is_hwpoison_entry(entry)) {
2901                         ret = VM_FAULT_HWPOISON;
2902                 } else {
2903                         print_bad_pte(vma, address, orig_pte, NULL);
2904                         ret = VM_FAULT_SIGBUS;
2905                 }
2906                 goto out;
2907         }
2908         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2909         page = lookup_swap_cache(entry);
2910         if (!page) {
2911                 page = swapin_readahead(entry,
2912                                         GFP_HIGHUSER_MOVABLE, vma, address);
2913                 if (!page) {
2914                         /*
2915                          * Back out if somebody else faulted in this pte
2916                          * while we released the pte lock.
2917                          */
2918                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2919                         if (likely(pte_same(*page_table, orig_pte)))
2920                                 ret = VM_FAULT_OOM;
2921                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2922                         goto unlock;
2923                 }
2924
2925                 /* Had to read the page from swap area: Major fault */
2926                 ret = VM_FAULT_MAJOR;
2927                 count_vm_event(PGMAJFAULT);
2928                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2929         } else if (PageHWPoison(page)) {
2930                 /*
2931                  * hwpoisoned dirty swapcache pages are kept for killing
2932                  * owner processes (which may be unknown at hwpoison time)
2933                  */
2934                 ret = VM_FAULT_HWPOISON;
2935                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2936                 goto out_release;
2937         }
2938
2939         locked = lock_page_or_retry(page, mm, flags);
2940
2941         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2942         if (!locked) {
2943                 ret |= VM_FAULT_RETRY;
2944                 goto out_release;
2945         }
2946
2947         /*
2948          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2949          * release the swapcache from under us.  The page pin, and pte_same
2950          * test below, are not enough to exclude that.  Even if it is still
2951          * swapcache, we need to check that the page's swap has not changed.
2952          */
2953         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2954                 goto out_page;
2955
2956         if (ksm_might_need_to_copy(page, vma, address)) {
2957                 swapcache = page;
2958                 page = ksm_does_need_to_copy(page, vma, address);
2959
2960                 if (unlikely(!page)) {
2961                         ret = VM_FAULT_OOM;
2962                         page = swapcache;
2963                         swapcache = NULL;
2964                         goto out_page;
2965                 }
2966         }
2967
2968         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2969                 ret = VM_FAULT_OOM;
2970                 goto out_page;
2971         }
2972
2973         /*
2974          * Back out if somebody else already faulted in this pte.
2975          */
2976         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2977         if (unlikely(!pte_same(*page_table, orig_pte)))
2978                 goto out_nomap;
2979
2980         if (unlikely(!PageUptodate(page))) {
2981                 ret = VM_FAULT_SIGBUS;
2982                 goto out_nomap;
2983         }
2984
2985         /*
2986          * The page isn't present yet, go ahead with the fault.
2987          *
2988          * Be careful about the sequence of operations here.
2989          * To get its accounting right, reuse_swap_page() must be called
2990          * while the page is counted on swap but not yet in mapcount i.e.
2991          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2992          * must be called after the swap_free(), or it will never succeed.
2993          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2994          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2995          * in page->private. In this case, a record in swap_cgroup  is silently
2996          * discarded at swap_free().
2997          */
2998
2999         inc_mm_counter_fast(mm, MM_ANONPAGES);
3000         dec_mm_counter_fast(mm, MM_SWAPENTS);
3001         pte = mk_pte(page, vma->vm_page_prot);
3002         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3003                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3004                 flags &= ~FAULT_FLAG_WRITE;
3005                 ret |= VM_FAULT_WRITE;
3006                 exclusive = 1;
3007         }
3008         flush_icache_page(vma, page);
3009         set_pte_at(mm, address, page_table, pte);
3010         do_page_add_anon_rmap(page, vma, address, exclusive);
3011         /* It's better to call commit-charge after rmap is established */
3012         mem_cgroup_commit_charge_swapin(page, ptr);
3013
3014         swap_free(entry);
3015         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3016                 try_to_free_swap(page);
3017         unlock_page(page);
3018         if (swapcache) {
3019                 /*
3020                  * Hold the lock to avoid the swap entry to be reused
3021                  * until we take the PT lock for the pte_same() check
3022                  * (to avoid false positives from pte_same). For
3023                  * further safety release the lock after the swap_free
3024                  * so that the swap count won't change under a
3025                  * parallel locked swapcache.
3026                  */
3027                 unlock_page(swapcache);
3028                 page_cache_release(swapcache);
3029         }
3030
3031         if (flags & FAULT_FLAG_WRITE) {
3032                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3033                 if (ret & VM_FAULT_ERROR)
3034                         ret &= VM_FAULT_ERROR;
3035                 goto out;
3036         }
3037
3038         /* No need to invalidate - it was non-present before */
3039         update_mmu_cache(vma, address, page_table);
3040 unlock:
3041         pte_unmap_unlock(page_table, ptl);
3042 out:
3043         return ret;
3044 out_nomap:
3045         mem_cgroup_cancel_charge_swapin(ptr);
3046         pte_unmap_unlock(page_table, ptl);
3047 out_page:
3048         unlock_page(page);
3049 out_release:
3050         page_cache_release(page);
3051         if (swapcache) {
3052                 unlock_page(swapcache);
3053                 page_cache_release(swapcache);
3054         }
3055         return ret;
3056 }
3057
3058 /*
3059  * This is like a special single-page "expand_{down|up}wards()",
3060  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3061  * doesn't hit another vma.
3062  */
3063 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3064 {
3065         address &= PAGE_MASK;
3066         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3067                 struct vm_area_struct *prev = vma->vm_prev;
3068
3069                 /*
3070                  * Is there a mapping abutting this one below?
3071                  *
3072                  * That's only ok if it's the same stack mapping
3073                  * that has gotten split..
3074                  */
3075                 if (prev && prev->vm_end == address)
3076                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3077
3078                 expand_downwards(vma, address - PAGE_SIZE);
3079         }
3080         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3081                 struct vm_area_struct *next = vma->vm_next;
3082
3083                 /* As VM_GROWSDOWN but s/below/above/ */
3084                 if (next && next->vm_start == address + PAGE_SIZE)
3085                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3086
3087                 expand_upwards(vma, address + PAGE_SIZE);
3088         }
3089         return 0;
3090 }
3091
3092 /*
3093  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3094  * but allow concurrent faults), and pte mapped but not yet locked.
3095  * We return with mmap_sem still held, but pte unmapped and unlocked.
3096  */
3097 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3098                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3099                 unsigned int flags)
3100 {
3101         struct page *page;
3102         spinlock_t *ptl;
3103         pte_t entry;
3104
3105         pte_unmap(page_table);
3106
3107         /* Check if we need to add a guard page to the stack */
3108         if (check_stack_guard_page(vma, address) < 0)
3109                 return VM_FAULT_SIGBUS;
3110
3111         /* Use the zero-page for reads */
3112         if (!(flags & FAULT_FLAG_WRITE)) {
3113                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3114                                                 vma->vm_page_prot));
3115                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3116                 if (!pte_none(*page_table))
3117                         goto unlock;
3118                 goto setpte;
3119         }
3120
3121         /* Allocate our own private page. */
3122         if (unlikely(anon_vma_prepare(vma)))
3123                 goto oom;
3124         page = alloc_zeroed_user_highpage_movable(vma, address);
3125         if (!page)
3126                 goto oom;
3127         __SetPageUptodate(page);
3128
3129         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3130                 goto oom_free_page;
3131
3132         entry = mk_pte(page, vma->vm_page_prot);
3133         if (vma->vm_flags & VM_WRITE)
3134                 entry = pte_mkwrite(pte_mkdirty(entry));
3135
3136         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3137         if (!pte_none(*page_table))
3138                 goto release;
3139
3140         inc_mm_counter_fast(mm, MM_ANONPAGES);
3141         page_add_new_anon_rmap(page, vma, address);
3142 setpte:
3143         set_pte_at(mm, address, page_table, entry);
3144
3145         /* No need to invalidate - it was non-present before */
3146         update_mmu_cache(vma, address, page_table);
3147 unlock:
3148         pte_unmap_unlock(page_table, ptl);
3149         return 0;
3150 release:
3151         mem_cgroup_uncharge_page(page);
3152         page_cache_release(page);
3153         goto unlock;
3154 oom_free_page:
3155         page_cache_release(page);
3156 oom:
3157         return VM_FAULT_OOM;
3158 }
3159
3160 /*
3161  * __do_fault() tries to create a new page mapping. It aggressively
3162  * tries to share with existing pages, but makes a separate copy if
3163  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3164  * the next page fault.
3165  *
3166  * As this is called only for pages that do not currently exist, we
3167  * do not need to flush old virtual caches or the TLB.
3168  *
3169  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3170  * but allow concurrent faults), and pte neither mapped nor locked.
3171  * We return with mmap_sem still held, but pte unmapped and unlocked.
3172  */
3173 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3174                 unsigned long address, pmd_t *pmd,
3175                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3176 {
3177         pte_t *page_table;
3178         spinlock_t *ptl;
3179         struct page *page;
3180         struct page *cow_page;
3181         pte_t entry;
3182         int anon = 0;
3183         struct page *dirty_page = NULL;
3184         struct vm_fault vmf;
3185         int ret;
3186         int page_mkwrite = 0;
3187
3188         /*
3189          * If we do COW later, allocate page befor taking lock_page()
3190          * on the file cache page. This will reduce lock holding time.
3191          */
3192         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3193
3194                 if (unlikely(anon_vma_prepare(vma)))
3195                         return VM_FAULT_OOM;
3196
3197                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3198                 if (!cow_page)
3199                         return VM_FAULT_OOM;
3200
3201                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3202                         page_cache_release(cow_page);
3203                         return VM_FAULT_OOM;
3204                 }
3205         } else
3206                 cow_page = NULL;
3207
3208         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3209         vmf.pgoff = pgoff;
3210         vmf.flags = flags;
3211         vmf.page = NULL;
3212
3213         ret = vma->vm_ops->fault(vma, &vmf);
3214         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3215                             VM_FAULT_RETRY)))
3216                 goto uncharge_out;
3217
3218         if (unlikely(PageHWPoison(vmf.page))) {
3219                 if (ret & VM_FAULT_LOCKED)
3220                         unlock_page(vmf.page);
3221                 ret = VM_FAULT_HWPOISON;
3222                 goto uncharge_out;
3223         }
3224
3225         /*
3226          * For consistency in subsequent calls, make the faulted page always
3227          * locked.
3228          */
3229         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3230                 lock_page(vmf.page);
3231         else
3232                 VM_BUG_ON(!PageLocked(vmf.page));
3233
3234         /*
3235          * Should we do an early C-O-W break?
3236          */
3237         page = vmf.page;
3238         if (flags & FAULT_FLAG_WRITE) {
3239                 if (!(vma->vm_flags & VM_SHARED)) {
3240                         page = cow_page;
3241                         anon = 1;
3242                         copy_user_highpage(page, vmf.page, address, vma);
3243                         __SetPageUptodate(page);
3244                 } else {
3245                         /*
3246                          * If the page will be shareable, see if the backing
3247                          * address space wants to know that the page is about
3248                          * to become writable
3249                          */
3250                         if (vma->vm_ops->page_mkwrite) {
3251                                 int tmp;
3252
3253                                 unlock_page(page);
3254                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3255                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3256                                 if (unlikely(tmp &
3257                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3258                                         ret = tmp;
3259                                         goto unwritable_page;
3260                                 }
3261                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3262                                         lock_page(page);
3263                                         if (!page->mapping) {
3264                                                 ret = 0; /* retry the fault */
3265                                                 unlock_page(page);
3266                                                 goto unwritable_page;
3267                                         }
3268                                 } else
3269                                         VM_BUG_ON(!PageLocked(page));
3270                                 page_mkwrite = 1;
3271                         }
3272                 }
3273
3274         }
3275
3276         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3277
3278         /*
3279          * This silly early PAGE_DIRTY setting removes a race
3280          * due to the bad i386 page protection. But it's valid
3281          * for other architectures too.
3282          *
3283          * Note that if FAULT_FLAG_WRITE is set, we either now have
3284          * an exclusive copy of the page, or this is a shared mapping,
3285          * so we can make it writable and dirty to avoid having to
3286          * handle that later.
3287          */
3288         /* Only go through if we didn't race with anybody else... */
3289         if (likely(pte_same(*page_table, orig_pte))) {
3290                 flush_icache_page(vma, page);
3291                 entry = mk_pte(page, vma->vm_page_prot);
3292                 if (flags & FAULT_FLAG_WRITE)
3293                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3294                 if (anon) {
3295                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3296                         page_add_new_anon_rmap(page, vma, address);
3297                 } else {
3298                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3299                         page_add_file_rmap(page);
3300                         if (flags & FAULT_FLAG_WRITE) {
3301                                 dirty_page = page;
3302                                 get_page(dirty_page);
3303                         }
3304                 }
3305                 set_pte_at(mm, address, page_table, entry);
3306
3307                 /* no need to invalidate: a not-present page won't be cached */
3308                 update_mmu_cache(vma, address, page_table);
3309         } else {
3310                 if (cow_page)
3311                         mem_cgroup_uncharge_page(cow_page);
3312                 if (anon)
3313                         page_cache_release(page);
3314                 else
3315                         anon = 1; /* no anon but release faulted_page */
3316         }
3317
3318         pte_unmap_unlock(page_table, ptl);
3319
3320         if (dirty_page) {
3321                 struct address_space *mapping = page->mapping;
3322
3323                 if (set_page_dirty(dirty_page))
3324                         page_mkwrite = 1;
3325                 unlock_page(dirty_page);
3326                 put_page(dirty_page);
3327                 if (page_mkwrite && mapping) {
3328                         /*
3329                          * Some device drivers do not set page.mapping but still
3330                          * dirty their pages
3331                          */
3332                         balance_dirty_pages_ratelimited(mapping);
3333                 }
3334
3335                 /* file_update_time outside page_lock */
3336                 if (vma->vm_file)
3337                         file_update_time(vma->vm_file);
3338         } else {
3339                 unlock_page(vmf.page);
3340                 if (anon)
3341                         page_cache_release(vmf.page);
3342         }
3343
3344         return ret;
3345
3346 unwritable_page:
3347         page_cache_release(page);
3348         return ret;
3349 uncharge_out:
3350         /* fs's fault handler get error */
3351         if (cow_page) {
3352                 mem_cgroup_uncharge_page(cow_page);
3353                 page_cache_release(cow_page);
3354         }
3355         return ret;
3356 }
3357
3358 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3359                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3360                 unsigned int flags, pte_t orig_pte)
3361 {
3362         pgoff_t pgoff = (((address & PAGE_MASK)
3363                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3364
3365         pte_unmap(page_table);
3366         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3367 }
3368
3369 /*
3370  * Fault of a previously existing named mapping. Repopulate the pte
3371  * from the encoded file_pte if possible. This enables swappable
3372  * nonlinear vmas.
3373  *
3374  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3375  * but allow concurrent faults), and pte mapped but not yet locked.
3376  * We return with mmap_sem still held, but pte unmapped and unlocked.
3377  */
3378 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3379                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3380                 unsigned int flags, pte_t orig_pte)
3381 {
3382         pgoff_t pgoff;
3383
3384         flags |= FAULT_FLAG_NONLINEAR;
3385
3386         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3387                 return 0;
3388
3389         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3390                 /*
3391                  * Page table corrupted: show pte and kill process.
3392                  */
3393                 print_bad_pte(vma, address, orig_pte, NULL);
3394                 return VM_FAULT_SIGBUS;
3395         }
3396
3397         pgoff = pte_to_pgoff(orig_pte);
3398         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3399 }
3400
3401 /*
3402  * These routines also need to handle stuff like marking pages dirty
3403  * and/or accessed for architectures that don't do it in hardware (most
3404  * RISC architectures).  The early dirtying is also good on the i386.
3405  *
3406  * There is also a hook called "update_mmu_cache()" that architectures
3407  * with external mmu caches can use to update those (ie the Sparc or
3408  * PowerPC hashed page tables that act as extended TLBs).
3409  *
3410  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3411  * but allow concurrent faults), and pte mapped but not yet locked.
3412  * We return with mmap_sem still held, but pte unmapped and unlocked.
3413  */
3414 int handle_pte_fault(struct mm_struct *mm,
3415                      struct vm_area_struct *vma, unsigned long address,
3416                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3417 {
3418         pte_t entry;
3419         spinlock_t *ptl;
3420
3421         entry = *pte;
3422         if (!pte_present(entry)) {
3423                 if (pte_none(entry)) {
3424                         if (vma->vm_ops) {
3425                                 if (likely(vma->vm_ops->fault))
3426                                         return do_linear_fault(mm, vma, address,
3427                                                 pte, pmd, flags, entry);
3428                         }
3429                         return do_anonymous_page(mm, vma, address,
3430                                                  pte, pmd, flags);
3431                 }
3432                 if (pte_file(entry))
3433                         return do_nonlinear_fault(mm, vma, address,
3434                                         pte, pmd, flags, entry);
3435                 return do_swap_page(mm, vma, address,
3436                                         pte, pmd, flags, entry);
3437         }
3438
3439         ptl = pte_lockptr(mm, pmd);
3440         spin_lock(ptl);
3441         if (unlikely(!pte_same(*pte, entry)))
3442                 goto unlock;
3443         if (flags & FAULT_FLAG_WRITE) {
3444                 if (!pte_write(entry))
3445                         return do_wp_page(mm, vma, address,
3446                                         pte, pmd, ptl, entry);
3447                 entry = pte_mkdirty(entry);
3448         }
3449         entry = pte_mkyoung(entry);
3450         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3451                 update_mmu_cache(vma, address, pte);
3452         } else {
3453                 /*
3454                  * This is needed only for protection faults but the arch code
3455                  * is not yet telling us if this is a protection fault or not.
3456                  * This still avoids useless tlb flushes for .text page faults
3457                  * with threads.
3458                  */
3459                 if (flags & FAULT_FLAG_WRITE)
3460                         flush_tlb_fix_spurious_fault(vma, address);
3461         }
3462 unlock:
3463         pte_unmap_unlock(pte, ptl);
3464         return 0;
3465 }
3466
3467 /*
3468  * By the time we get here, we already hold the mm semaphore
3469  */
3470 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3471                 unsigned long address, unsigned int flags)
3472 {
3473         pgd_t *pgd;
3474         pud_t *pud;
3475         pmd_t *pmd;
3476         pte_t *pte;
3477
3478         __set_current_state(TASK_RUNNING);
3479
3480         count_vm_event(PGFAULT);
3481         mem_cgroup_count_vm_event(mm, PGFAULT);
3482
3483         /* do counter updates before entering really critical section. */
3484         check_sync_rss_stat(current);
3485
3486         if (unlikely(is_vm_hugetlb_page(vma)))
3487                 return hugetlb_fault(mm, vma, address, flags);
3488
3489 retry:
3490         pgd = pgd_offset(mm, address);
3491         pud = pud_alloc(mm, pgd, address);
3492         if (!pud)
3493                 return VM_FAULT_OOM;
3494         pmd = pmd_alloc(mm, pud, address);
3495         if (!pmd)
3496                 return VM_FAULT_OOM;
3497         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3498                 if (!vma->vm_ops)
3499                         return do_huge_pmd_anonymous_page(mm, vma, address,
3500                                                           pmd, flags);
3501         } else {
3502                 pmd_t orig_pmd = *pmd;
3503                 int ret;
3504
3505                 barrier();
3506                 if (pmd_trans_huge(orig_pmd)) {
3507                         if (flags & FAULT_FLAG_WRITE &&
3508                             !pmd_write(orig_pmd) &&
3509                             !pmd_trans_splitting(orig_pmd)) {
3510                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3511                                                           orig_pmd);
3512                                 /*
3513                                  * If COW results in an oom, the huge pmd will
3514                                  * have been split, so retry the fault on the
3515                                  * pte for a smaller charge.
3516                                  */
3517                                 if (unlikely(ret & VM_FAULT_OOM))
3518                                         goto retry;
3519                                 return ret;
3520                         }
3521                         return 0;
3522                 }
3523         }
3524
3525         /*
3526          * Use __pte_alloc instead of pte_alloc_map, because we can't
3527          * run pte_offset_map on the pmd, if an huge pmd could
3528          * materialize from under us from a different thread.
3529          */
3530         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3531                 return VM_FAULT_OOM;
3532         /* if an huge pmd materialized from under us just retry later */
3533         if (unlikely(pmd_trans_huge(*pmd)))
3534                 return 0;
3535         /*
3536          * A regular pmd is established and it can't morph into a huge pmd
3537          * from under us anymore at this point because we hold the mmap_sem
3538          * read mode and khugepaged takes it in write mode. So now it's
3539          * safe to run pte_offset_map().
3540          */
3541         pte = pte_offset_map(pmd, address);
3542
3543         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3544 }
3545
3546 #ifndef __PAGETABLE_PUD_FOLDED
3547 /*
3548  * Allocate page upper directory.
3549  * We've already handled the fast-path in-line.
3550  */
3551 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3552 {
3553         pud_t *new = pud_alloc_one(mm, address);
3554         if (!new)
3555                 return -ENOMEM;
3556
3557         smp_wmb(); /* See comment in __pte_alloc */
3558
3559         spin_lock(&mm->page_table_lock);
3560         if (pgd_present(*pgd))          /* Another has populated it */
3561                 pud_free(mm, new);
3562         else
3563                 pgd_populate(mm, pgd, new);
3564         spin_unlock(&mm->page_table_lock);
3565         return 0;
3566 }
3567 #endif /* __PAGETABLE_PUD_FOLDED */
3568
3569 #ifndef __PAGETABLE_PMD_FOLDED
3570 /*
3571  * Allocate page middle directory.
3572  * We've already handled the fast-path in-line.
3573  */
3574 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3575 {
3576         pmd_t *new = pmd_alloc_one(mm, address);
3577         if (!new)
3578                 return -ENOMEM;
3579
3580         smp_wmb(); /* See comment in __pte_alloc */
3581
3582         spin_lock(&mm->page_table_lock);
3583 #ifndef __ARCH_HAS_4LEVEL_HACK
3584         if (pud_present(*pud))          /* Another has populated it */
3585                 pmd_free(mm, new);
3586         else
3587                 pud_populate(mm, pud, new);
3588 #else
3589         if (pgd_present(*pud))          /* Another has populated it */
3590                 pmd_free(mm, new);
3591         else
3592                 pgd_populate(mm, pud, new);
3593 #endif /* __ARCH_HAS_4LEVEL_HACK */
3594         spin_unlock(&mm->page_table_lock);
3595         return 0;
3596 }
3597 #endif /* __PAGETABLE_PMD_FOLDED */
3598
3599 int make_pages_present(unsigned long addr, unsigned long end)
3600 {
3601         int ret, len, write;
3602         struct vm_area_struct * vma;
3603
3604         vma = find_vma(current->mm, addr);
3605         if (!vma)
3606                 return -ENOMEM;
3607         /*
3608          * We want to touch writable mappings with a write fault in order
3609          * to break COW, except for shared mappings because these don't COW
3610          * and we would not want to dirty them for nothing.
3611          */
3612         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3613         BUG_ON(addr >= end);
3614         BUG_ON(end > vma->vm_end);
3615         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3616         ret = get_user_pages(current, current->mm, addr,
3617                         len, write, 0, NULL, NULL);
3618         if (ret < 0)
3619                 return ret;
3620         return ret == len ? 0 : -EFAULT;
3621 }
3622
3623 #if !defined(__HAVE_ARCH_GATE_AREA)
3624
3625 #if defined(AT_SYSINFO_EHDR)
3626 static struct vm_area_struct gate_vma;
3627
3628 static int __init gate_vma_init(void)
3629 {
3630         gate_vma.vm_mm = NULL;
3631         gate_vma.vm_start = FIXADDR_USER_START;
3632         gate_vma.vm_end = FIXADDR_USER_END;
3633         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3634         gate_vma.vm_page_prot = __P101;
3635
3636         return 0;
3637 }
3638 __initcall(gate_vma_init);
3639 #endif
3640
3641 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3642 {
3643 #ifdef AT_SYSINFO_EHDR
3644         return &gate_vma;
3645 #else
3646         return NULL;
3647 #endif
3648 }
3649
3650 int in_gate_area_no_mm(unsigned long addr)
3651 {
3652 #ifdef AT_SYSINFO_EHDR
3653         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3654                 return 1;
3655 #endif
3656         return 0;
3657 }
3658
3659 #endif  /* __HAVE_ARCH_GATE_AREA */
3660
3661 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3662                 pte_t **ptepp, spinlock_t **ptlp)
3663 {
3664         pgd_t *pgd;
3665         pud_t *pud;
3666         pmd_t *pmd;
3667         pte_t *ptep;
3668
3669         pgd = pgd_offset(mm, address);
3670         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3671                 goto out;
3672
3673         pud = pud_offset(pgd, address);
3674         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3675                 goto out;
3676
3677         pmd = pmd_offset(pud, address);
3678         VM_BUG_ON(pmd_trans_huge(*pmd));
3679         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3680                 goto out;
3681
3682         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3683         if (pmd_huge(*pmd))
3684                 goto out;
3685
3686         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3687         if (!ptep)
3688                 goto out;
3689         if (!pte_present(*ptep))
3690                 goto unlock;
3691         *ptepp = ptep;
3692         return 0;
3693 unlock:
3694         pte_unmap_unlock(ptep, *ptlp);
3695 out:
3696         return -EINVAL;
3697 }
3698
3699 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3700                              pte_t **ptepp, spinlock_t **ptlp)
3701 {
3702         int res;
3703
3704         /* (void) is needed to make gcc happy */
3705         (void) __cond_lock(*ptlp,
3706                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3707         return res;
3708 }
3709
3710 /**
3711  * follow_pfn - look up PFN at a user virtual address
3712  * @vma: memory mapping
3713  * @address: user virtual address
3714  * @pfn: location to store found PFN
3715  *
3716  * Only IO mappings and raw PFN mappings are allowed.
3717  *
3718  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3719  */
3720 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3721         unsigned long *pfn)
3722 {
3723         int ret = -EINVAL;
3724         spinlock_t *ptl;
3725         pte_t *ptep;
3726
3727         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3728                 return ret;
3729
3730         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3731         if (ret)
3732                 return ret;
3733         *pfn = pte_pfn(*ptep);
3734         pte_unmap_unlock(ptep, ptl);
3735         return 0;
3736 }
3737 EXPORT_SYMBOL(follow_pfn);
3738
3739 #ifdef CONFIG_HAVE_IOREMAP_PROT
3740 int follow_phys(struct vm_area_struct *vma,
3741                 unsigned long address, unsigned int flags,
3742                 unsigned long *prot, resource_size_t *phys)
3743 {
3744         int ret = -EINVAL;
3745         pte_t *ptep, pte;
3746         spinlock_t *ptl;
3747
3748         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3749                 goto out;
3750
3751         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3752                 goto out;
3753         pte = *ptep;
3754
3755         if ((flags & FOLL_WRITE) && !pte_write(pte))
3756                 goto unlock;
3757
3758         *prot = pgprot_val(pte_pgprot(pte));
3759         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3760
3761         ret = 0;
3762 unlock:
3763         pte_unmap_unlock(ptep, ptl);
3764 out:
3765         return ret;
3766 }
3767
3768 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3769                         void *buf, int len, int write)
3770 {
3771         resource_size_t phys_addr;
3772         unsigned long prot = 0;
3773         void __iomem *maddr;
3774         int offset = addr & (PAGE_SIZE-1);
3775
3776         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3777                 return -EINVAL;
3778
3779         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3780         if (write)
3781                 memcpy_toio(maddr + offset, buf, len);
3782         else
3783                 memcpy_fromio(buf, maddr + offset, len);
3784         iounmap(maddr);
3785
3786         return len;
3787 }
3788 #endif
3789
3790 /*
3791  * Access another process' address space as given in mm.  If non-NULL, use the
3792  * given task for page fault accounting.
3793  */
3794 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3795                 unsigned long addr, void *buf, int len, int write)
3796 {
3797         struct vm_area_struct *vma;
3798         void *old_buf = buf;
3799
3800         down_read(&mm->mmap_sem);
3801         /* ignore errors, just check how much was successfully transferred */
3802         while (len) {
3803                 int bytes, ret, offset;
3804                 void *maddr;
3805                 struct page *page = NULL;
3806
3807                 ret = get_user_pages(tsk, mm, addr, 1,
3808                                 write, 1, &page, &vma);
3809                 if (ret <= 0) {
3810                         /*
3811                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3812                          * we can access using slightly different code.
3813                          */
3814 #ifdef CONFIG_HAVE_IOREMAP_PROT
3815                         vma = find_vma(mm, addr);
3816                         if (!vma || vma->vm_start > addr)
3817                                 break;
3818                         if (vma->vm_ops && vma->vm_ops->access)
3819                                 ret = vma->vm_ops->access(vma, addr, buf,
3820                                                           len, write);
3821                         if (ret <= 0)
3822 #endif
3823                                 break;
3824                         bytes = ret;
3825                 } else {
3826                         bytes = len;
3827                         offset = addr & (PAGE_SIZE-1);
3828                         if (bytes > PAGE_SIZE-offset)
3829                                 bytes = PAGE_SIZE-offset;
3830
3831                         maddr = kmap(page);
3832                         if (write) {
3833                                 copy_to_user_page(vma, page, addr,
3834                                                   maddr + offset, buf, bytes);
3835                                 set_page_dirty_lock(page);
3836                         } else {
3837                                 copy_from_user_page(vma, page, addr,
3838                                                     buf, maddr + offset, bytes);
3839                         }
3840                         kunmap(page);
3841                         page_cache_release(page);
3842                 }
3843                 len -= bytes;
3844                 buf += bytes;
3845                 addr += bytes;
3846         }
3847         up_read(&mm->mmap_sem);
3848
3849         return buf - old_buf;
3850 }
3851
3852 /**
3853  * access_remote_vm - access another process' address space
3854  * @mm:         the mm_struct of the target address space
3855  * @addr:       start address to access
3856  * @buf:        source or destination buffer
3857  * @len:        number of bytes to transfer
3858  * @write:      whether the access is a write
3859  *
3860  * The caller must hold a reference on @mm.
3861  */
3862 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3863                 void *buf, int len, int write)
3864 {
3865         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3866 }
3867
3868 /*
3869  * Access another process' address space.
3870  * Source/target buffer must be kernel space,
3871  * Do not walk the page table directly, use get_user_pages
3872  */
3873 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3874                 void *buf, int len, int write)
3875 {
3876         struct mm_struct *mm;
3877         int ret;
3878
3879         mm = get_task_mm(tsk);
3880         if (!mm)
3881                 return 0;
3882
3883         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3884         mmput(mm);
3885
3886         return ret;
3887 }
3888
3889 /*
3890  * Print the name of a VMA.
3891  */
3892 void print_vma_addr(char *prefix, unsigned long ip)
3893 {
3894         struct mm_struct *mm = current->mm;
3895         struct vm_area_struct *vma;
3896
3897         /*
3898          * Do not print if we are in atomic
3899          * contexts (in exception stacks, etc.):
3900          */
3901         if (preempt_count())
3902                 return;
3903
3904         down_read(&mm->mmap_sem);
3905         vma = find_vma(mm, ip);
3906         if (vma && vma->vm_file) {
3907                 struct file *f = vma->vm_file;
3908                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3909                 if (buf) {
3910                         char *p, *s;
3911
3912                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3913                         if (IS_ERR(p))
3914                                 p = "?";
3915                         s = strrchr(p, '/');
3916                         if (s)
3917                                 p = s+1;
3918                         printk("%s%s[%lx+%lx]", prefix, p,
3919                                         vma->vm_start,
3920                                         vma->vm_end - vma->vm_start);
3921                         free_page((unsigned long)buf);
3922                 }
3923         }
3924         up_read(&current->mm->mmap_sem);
3925 }
3926
3927 #ifdef CONFIG_PROVE_LOCKING
3928 void might_fault(void)
3929 {
3930         /*
3931          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3932          * holding the mmap_sem, this is safe because kernel memory doesn't
3933          * get paged out, therefore we'll never actually fault, and the
3934          * below annotations will generate false positives.
3935          */
3936         if (segment_eq(get_fs(), KERNEL_DS))
3937                 return;
3938
3939         might_sleep();
3940         /*
3941          * it would be nicer only to annotate paths which are not under
3942          * pagefault_disable, however that requires a larger audit and
3943          * providing helpers like get_user_atomic.
3944          */
3945         if (!in_atomic() && current->mm)
3946                 might_lock_read(&current->mm->mmap_sem);
3947 }
3948 EXPORT_SYMBOL(might_fault);
3949 #endif
3950
3951 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3952 static void clear_gigantic_page(struct page *page,
3953                                 unsigned long addr,
3954                                 unsigned int pages_per_huge_page)
3955 {
3956         int i;
3957         struct page *p = page;
3958
3959         might_sleep();
3960         for (i = 0; i < pages_per_huge_page;
3961              i++, p = mem_map_next(p, page, i)) {
3962                 cond_resched();
3963                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3964         }
3965 }
3966 void clear_huge_page(struct page *page,
3967                      unsigned long addr, unsigned int pages_per_huge_page)
3968 {
3969         int i;
3970
3971         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3972                 clear_gigantic_page(page, addr, pages_per_huge_page);
3973                 return;
3974         }
3975
3976         might_sleep();
3977         for (i = 0; i < pages_per_huge_page; i++) {
3978                 cond_resched();
3979                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3980         }
3981 }
3982
3983 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3984                                     unsigned long addr,
3985                                     struct vm_area_struct *vma,
3986                                     unsigned int pages_per_huge_page)
3987 {
3988         int i;
3989         struct page *dst_base = dst;
3990         struct page *src_base = src;
3991
3992         for (i = 0; i < pages_per_huge_page; ) {
3993                 cond_resched();
3994                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3995
3996                 i++;
3997                 dst = mem_map_next(dst, dst_base, i);
3998                 src = mem_map_next(src, src_base, i);
3999         }
4000 }
4001
4002 void copy_user_huge_page(struct page *dst, struct page *src,
4003                          unsigned long addr, struct vm_area_struct *vma,
4004                          unsigned int pages_per_huge_page)
4005 {
4006         int i;
4007
4008         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4009                 copy_user_gigantic_page(dst, src, addr, vma,
4010                                         pages_per_huge_page);
4011                 return;
4012         }
4013
4014         might_sleep();
4015         for (i = 0; i < pages_per_huge_page; i++) {
4016                 cond_resched();
4017                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4018         }
4019 }
4020 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */