Merge branch 'master' of ssh://ra.kernel.org/pub/scm/linux/kernel/git/linville/wirele...
[pandora-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81         /*
82          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83          */
84         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
85         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
86         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
90         MEM_CGROUP_STAT_NSTATS,
91 };
92
93 enum mem_cgroup_events_index {
94         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
95         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
96         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
97         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
98         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
99         MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108         MEM_CGROUP_TARGET_THRESH,
109         MEM_CGROUP_TARGET_SOFTLIMIT,
110         MEM_CGROUP_TARGET_NUMAINFO,
111         MEM_CGROUP_NTARGETS,
112 };
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET  (1024)
116
117 struct mem_cgroup_stat_cpu {
118         long count[MEM_CGROUP_STAT_NSTATS];
119         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120         unsigned long targets[MEM_CGROUP_NTARGETS];
121 };
122
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_zone {
127         /*
128          * spin_lock to protect the per cgroup LRU
129          */
130         struct list_head        lists[NR_LRU_LISTS];
131         unsigned long           count[NR_LRU_LISTS];
132
133         struct zone_reclaim_stat reclaim_stat;
134         struct rb_node          tree_node;      /* RB tree node */
135         unsigned long long      usage_in_excess;/* Set to the value by which */
136                                                 /* the soft limit is exceeded*/
137         bool                    on_tree;
138         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
139                                                 /* use container_of        */
140 };
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
143
144 struct mem_cgroup_per_node {
145         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146 };
147
148 struct mem_cgroup_lru_info {
149         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150 };
151
152 /*
153  * Cgroups above their limits are maintained in a RB-Tree, independent of
154  * their hierarchy representation
155  */
156
157 struct mem_cgroup_tree_per_zone {
158         struct rb_root rb_root;
159         spinlock_t lock;
160 };
161
162 struct mem_cgroup_tree_per_node {
163         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164 };
165
166 struct mem_cgroup_tree {
167         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168 };
169
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
172 struct mem_cgroup_threshold {
173         struct eventfd_ctx *eventfd;
174         u64 threshold;
175 };
176
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179         /* An array index points to threshold just below usage. */
180         int current_threshold;
181         /* Size of entries[] */
182         unsigned int size;
183         /* Array of thresholds */
184         struct mem_cgroup_threshold entries[0];
185 };
186
187 struct mem_cgroup_thresholds {
188         /* Primary thresholds array */
189         struct mem_cgroup_threshold_ary *primary;
190         /*
191          * Spare threshold array.
192          * This is needed to make mem_cgroup_unregister_event() "never fail".
193          * It must be able to store at least primary->size - 1 entries.
194          */
195         struct mem_cgroup_threshold_ary *spare;
196 };
197
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200         struct list_head list;
201         struct eventfd_ctx *eventfd;
202 };
203
204 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
206
207 /*
208  * The memory controller data structure. The memory controller controls both
209  * page cache and RSS per cgroup. We would eventually like to provide
210  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211  * to help the administrator determine what knobs to tune.
212  *
213  * TODO: Add a water mark for the memory controller. Reclaim will begin when
214  * we hit the water mark. May be even add a low water mark, such that
215  * no reclaim occurs from a cgroup at it's low water mark, this is
216  * a feature that will be implemented much later in the future.
217  */
218 struct mem_cgroup {
219         struct cgroup_subsys_state css;
220         /*
221          * the counter to account for memory usage
222          */
223         struct res_counter res;
224         /*
225          * the counter to account for mem+swap usage.
226          */
227         struct res_counter memsw;
228         /*
229          * Per cgroup active and inactive list, similar to the
230          * per zone LRU lists.
231          */
232         struct mem_cgroup_lru_info info;
233         /*
234          * While reclaiming in a hierarchy, we cache the last child we
235          * reclaimed from.
236          */
237         int last_scanned_child;
238         int last_scanned_node;
239 #if MAX_NUMNODES > 1
240         nodemask_t      scan_nodes;
241         atomic_t        numainfo_events;
242         atomic_t        numainfo_updating;
243 #endif
244         /*
245          * Should the accounting and control be hierarchical, per subtree?
246          */
247         bool use_hierarchy;
248
249         bool            oom_lock;
250         atomic_t        under_oom;
251
252         atomic_t        refcnt;
253
254         int     swappiness;
255         /* OOM-Killer disable */
256         int             oom_kill_disable;
257
258         /* set when res.limit == memsw.limit */
259         bool            memsw_is_minimum;
260
261         /* protect arrays of thresholds */
262         struct mutex thresholds_lock;
263
264         /* thresholds for memory usage. RCU-protected */
265         struct mem_cgroup_thresholds thresholds;
266
267         /* thresholds for mem+swap usage. RCU-protected */
268         struct mem_cgroup_thresholds memsw_thresholds;
269
270         /* For oom notifier event fd */
271         struct list_head oom_notify;
272
273         /*
274          * Should we move charges of a task when a task is moved into this
275          * mem_cgroup ? And what type of charges should we move ?
276          */
277         unsigned long   move_charge_at_immigrate;
278         /*
279          * percpu counter.
280          */
281         struct mem_cgroup_stat_cpu *stat;
282         /*
283          * used when a cpu is offlined or other synchronizations
284          * See mem_cgroup_read_stat().
285          */
286         struct mem_cgroup_stat_cpu nocpu_base;
287         spinlock_t pcp_counter_lock;
288 };
289
290 /* Stuffs for move charges at task migration. */
291 /*
292  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293  * left-shifted bitmap of these types.
294  */
295 enum move_type {
296         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
297         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
298         NR_MOVE_TYPE,
299 };
300
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct {
303         spinlock_t        lock; /* for from, to */
304         struct mem_cgroup *from;
305         struct mem_cgroup *to;
306         unsigned long precharge;
307         unsigned long moved_charge;
308         unsigned long moved_swap;
309         struct task_struct *moving_task;        /* a task moving charges */
310         wait_queue_head_t waitq;                /* a waitq for other context */
311 } mc = {
312         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314 };
315
316 static bool move_anon(void)
317 {
318         return test_bit(MOVE_CHARGE_TYPE_ANON,
319                                         &mc.to->move_charge_at_immigrate);
320 }
321
322 static bool move_file(void)
323 {
324         return test_bit(MOVE_CHARGE_TYPE_FILE,
325                                         &mc.to->move_charge_at_immigrate);
326 }
327
328 /*
329  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330  * limit reclaim to prevent infinite loops, if they ever occur.
331  */
332 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
333 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334
335 enum charge_type {
336         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337         MEM_CGROUP_CHARGE_TYPE_MAPPED,
338         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
339         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
340         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
341         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
342         NR_CHARGE_TYPE,
343 };
344
345 /* for encoding cft->private value on file */
346 #define _MEM                    (0)
347 #define _MEMSWAP                (1)
348 #define _OOM_TYPE               (2)
349 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL             (0)
354
355 /*
356  * Reclaim flags for mem_cgroup_hierarchical_reclaim
357  */
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
363 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364
365 static void mem_cgroup_get(struct mem_cgroup *memcg);
366 static void mem_cgroup_put(struct mem_cgroup *memcg);
367 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
368 static void drain_all_stock_async(struct mem_cgroup *memcg);
369
370 static struct mem_cgroup_per_zone *
371 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
372 {
373         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
374 }
375
376 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
377 {
378         return &memcg->css;
379 }
380
381 static struct mem_cgroup_per_zone *
382 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
383 {
384         int nid = page_to_nid(page);
385         int zid = page_zonenum(page);
386
387         return mem_cgroup_zoneinfo(memcg, nid, zid);
388 }
389
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_node_zone(int nid, int zid)
392 {
393         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394 }
395
396 static struct mem_cgroup_tree_per_zone *
397 soft_limit_tree_from_page(struct page *page)
398 {
399         int nid = page_to_nid(page);
400         int zid = page_zonenum(page);
401
402         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403 }
404
405 static void
406 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
407                                 struct mem_cgroup_per_zone *mz,
408                                 struct mem_cgroup_tree_per_zone *mctz,
409                                 unsigned long long new_usage_in_excess)
410 {
411         struct rb_node **p = &mctz->rb_root.rb_node;
412         struct rb_node *parent = NULL;
413         struct mem_cgroup_per_zone *mz_node;
414
415         if (mz->on_tree)
416                 return;
417
418         mz->usage_in_excess = new_usage_in_excess;
419         if (!mz->usage_in_excess)
420                 return;
421         while (*p) {
422                 parent = *p;
423                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424                                         tree_node);
425                 if (mz->usage_in_excess < mz_node->usage_in_excess)
426                         p = &(*p)->rb_left;
427                 /*
428                  * We can't avoid mem cgroups that are over their soft
429                  * limit by the same amount
430                  */
431                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432                         p = &(*p)->rb_right;
433         }
434         rb_link_node(&mz->tree_node, parent, p);
435         rb_insert_color(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = true;
437 }
438
439 static void
440 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
441                                 struct mem_cgroup_per_zone *mz,
442                                 struct mem_cgroup_tree_per_zone *mctz)
443 {
444         if (!mz->on_tree)
445                 return;
446         rb_erase(&mz->tree_node, &mctz->rb_root);
447         mz->on_tree = false;
448 }
449
450 static void
451 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
452                                 struct mem_cgroup_per_zone *mz,
453                                 struct mem_cgroup_tree_per_zone *mctz)
454 {
455         spin_lock(&mctz->lock);
456         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
457         spin_unlock(&mctz->lock);
458 }
459
460
461 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
462 {
463         unsigned long long excess;
464         struct mem_cgroup_per_zone *mz;
465         struct mem_cgroup_tree_per_zone *mctz;
466         int nid = page_to_nid(page);
467         int zid = page_zonenum(page);
468         mctz = soft_limit_tree_from_page(page);
469
470         /*
471          * Necessary to update all ancestors when hierarchy is used.
472          * because their event counter is not touched.
473          */
474         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
475                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
476                 excess = res_counter_soft_limit_excess(&memcg->res);
477                 /*
478                  * We have to update the tree if mz is on RB-tree or
479                  * mem is over its softlimit.
480                  */
481                 if (excess || mz->on_tree) {
482                         spin_lock(&mctz->lock);
483                         /* if on-tree, remove it */
484                         if (mz->on_tree)
485                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
486                         /*
487                          * Insert again. mz->usage_in_excess will be updated.
488                          * If excess is 0, no tree ops.
489                          */
490                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
491                         spin_unlock(&mctz->lock);
492                 }
493         }
494 }
495
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 {
498         int node, zone;
499         struct mem_cgroup_per_zone *mz;
500         struct mem_cgroup_tree_per_zone *mctz;
501
502         for_each_node_state(node, N_POSSIBLE) {
503                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
505                         mctz = soft_limit_tree_node_zone(node, zone);
506                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
507                 }
508         }
509 }
510
511 static struct mem_cgroup_per_zone *
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513 {
514         struct rb_node *rightmost = NULL;
515         struct mem_cgroup_per_zone *mz;
516
517 retry:
518         mz = NULL;
519         rightmost = rb_last(&mctz->rb_root);
520         if (!rightmost)
521                 goto done;              /* Nothing to reclaim from */
522
523         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524         /*
525          * Remove the node now but someone else can add it back,
526          * we will to add it back at the end of reclaim to its correct
527          * position in the tree.
528          */
529         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531                 !css_tryget(&mz->mem->css))
532                 goto retry;
533 done:
534         return mz;
535 }
536
537 static struct mem_cgroup_per_zone *
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539 {
540         struct mem_cgroup_per_zone *mz;
541
542         spin_lock(&mctz->lock);
543         mz = __mem_cgroup_largest_soft_limit_node(mctz);
544         spin_unlock(&mctz->lock);
545         return mz;
546 }
547
548 /*
549  * Implementation Note: reading percpu statistics for memcg.
550  *
551  * Both of vmstat[] and percpu_counter has threshold and do periodic
552  * synchronization to implement "quick" read. There are trade-off between
553  * reading cost and precision of value. Then, we may have a chance to implement
554  * a periodic synchronizion of counter in memcg's counter.
555  *
556  * But this _read() function is used for user interface now. The user accounts
557  * memory usage by memory cgroup and he _always_ requires exact value because
558  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559  * have to visit all online cpus and make sum. So, for now, unnecessary
560  * synchronization is not implemented. (just implemented for cpu hotplug)
561  *
562  * If there are kernel internal actions which can make use of some not-exact
563  * value, and reading all cpu value can be performance bottleneck in some
564  * common workload, threashold and synchonization as vmstat[] should be
565  * implemented.
566  */
567 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
568                                  enum mem_cgroup_stat_index idx)
569 {
570         long val = 0;
571         int cpu;
572
573         get_online_cpus();
574         for_each_online_cpu(cpu)
575                 val += per_cpu(memcg->stat->count[idx], cpu);
576 #ifdef CONFIG_HOTPLUG_CPU
577         spin_lock(&memcg->pcp_counter_lock);
578         val += memcg->nocpu_base.count[idx];
579         spin_unlock(&memcg->pcp_counter_lock);
580 #endif
581         put_online_cpus();
582         return val;
583 }
584
585 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
586                                          bool charge)
587 {
588         int val = (charge) ? 1 : -1;
589         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 }
591
592 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
593 {
594         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595 }
596
597 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
598 {
599         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600 }
601
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
603                                             enum mem_cgroup_events_index idx)
604 {
605         unsigned long val = 0;
606         int cpu;
607
608         for_each_online_cpu(cpu)
609                 val += per_cpu(memcg->stat->events[idx], cpu);
610 #ifdef CONFIG_HOTPLUG_CPU
611         spin_lock(&memcg->pcp_counter_lock);
612         val += memcg->nocpu_base.events[idx];
613         spin_unlock(&memcg->pcp_counter_lock);
614 #endif
615         return val;
616 }
617
618 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
619                                          bool file, int nr_pages)
620 {
621         preempt_disable();
622
623         if (file)
624                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
625                                 nr_pages);
626         else
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
628                                 nr_pages);
629
630         /* pagein of a big page is an event. So, ignore page size */
631         if (nr_pages > 0)
632                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633         else {
634                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635                 nr_pages = -nr_pages; /* for event */
636         }
637
638         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
639
640         preempt_enable();
641 }
642
643 unsigned long
644 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
645                         unsigned int lru_mask)
646 {
647         struct mem_cgroup_per_zone *mz;
648         enum lru_list l;
649         unsigned long ret = 0;
650
651         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
652
653         for_each_lru(l) {
654                 if (BIT(l) & lru_mask)
655                         ret += MEM_CGROUP_ZSTAT(mz, l);
656         }
657         return ret;
658 }
659
660 static unsigned long
661 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
662                         int nid, unsigned int lru_mask)
663 {
664         u64 total = 0;
665         int zid;
666
667         for (zid = 0; zid < MAX_NR_ZONES; zid++)
668                 total += mem_cgroup_zone_nr_lru_pages(memcg,
669                                                 nid, zid, lru_mask);
670
671         return total;
672 }
673
674 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
675                         unsigned int lru_mask)
676 {
677         int nid;
678         u64 total = 0;
679
680         for_each_node_state(nid, N_HIGH_MEMORY)
681                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
682         return total;
683 }
684
685 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
686 {
687         unsigned long val, next;
688
689         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
690         next = __this_cpu_read(memcg->stat->targets[target]);
691         /* from time_after() in jiffies.h */
692         return ((long)next - (long)val < 0);
693 }
694
695 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
696 {
697         unsigned long val, next;
698
699         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
700
701         switch (target) {
702         case MEM_CGROUP_TARGET_THRESH:
703                 next = val + THRESHOLDS_EVENTS_TARGET;
704                 break;
705         case MEM_CGROUP_TARGET_SOFTLIMIT:
706                 next = val + SOFTLIMIT_EVENTS_TARGET;
707                 break;
708         case MEM_CGROUP_TARGET_NUMAINFO:
709                 next = val + NUMAINFO_EVENTS_TARGET;
710                 break;
711         default:
712                 return;
713         }
714
715         __this_cpu_write(memcg->stat->targets[target], next);
716 }
717
718 /*
719  * Check events in order.
720  *
721  */
722 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
723 {
724         preempt_disable();
725         /* threshold event is triggered in finer grain than soft limit */
726         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
727                 mem_cgroup_threshold(memcg);
728                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
729                 if (unlikely(__memcg_event_check(memcg,
730                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
731                         mem_cgroup_update_tree(memcg, page);
732                         __mem_cgroup_target_update(memcg,
733                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
734                 }
735 #if MAX_NUMNODES > 1
736                 if (unlikely(__memcg_event_check(memcg,
737                         MEM_CGROUP_TARGET_NUMAINFO))) {
738                         atomic_inc(&memcg->numainfo_events);
739                         __mem_cgroup_target_update(memcg,
740                                 MEM_CGROUP_TARGET_NUMAINFO);
741                 }
742 #endif
743         }
744         preempt_enable();
745 }
746
747 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
748 {
749         return container_of(cgroup_subsys_state(cont,
750                                 mem_cgroup_subsys_id), struct mem_cgroup,
751                                 css);
752 }
753
754 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
755 {
756         /*
757          * mm_update_next_owner() may clear mm->owner to NULL
758          * if it races with swapoff, page migration, etc.
759          * So this can be called with p == NULL.
760          */
761         if (unlikely(!p))
762                 return NULL;
763
764         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
765                                 struct mem_cgroup, css);
766 }
767
768 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
769 {
770         struct mem_cgroup *memcg = NULL;
771
772         if (!mm)
773                 return NULL;
774         /*
775          * Because we have no locks, mm->owner's may be being moved to other
776          * cgroup. We use css_tryget() here even if this looks
777          * pessimistic (rather than adding locks here).
778          */
779         rcu_read_lock();
780         do {
781                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
782                 if (unlikely(!memcg))
783                         break;
784         } while (!css_tryget(&memcg->css));
785         rcu_read_unlock();
786         return memcg;
787 }
788
789 /* The caller has to guarantee "mem" exists before calling this */
790 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
791 {
792         struct cgroup_subsys_state *css;
793         int found;
794
795         if (!memcg) /* ROOT cgroup has the smallest ID */
796                 return root_mem_cgroup; /*css_put/get against root is ignored*/
797         if (!memcg->use_hierarchy) {
798                 if (css_tryget(&memcg->css))
799                         return memcg;
800                 return NULL;
801         }
802         rcu_read_lock();
803         /*
804          * searching a memory cgroup which has the smallest ID under given
805          * ROOT cgroup. (ID >= 1)
806          */
807         css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
808         if (css && css_tryget(css))
809                 memcg = container_of(css, struct mem_cgroup, css);
810         else
811                 memcg = NULL;
812         rcu_read_unlock();
813         return memcg;
814 }
815
816 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
817                                         struct mem_cgroup *root,
818                                         bool cond)
819 {
820         int nextid = css_id(&iter->css) + 1;
821         int found;
822         int hierarchy_used;
823         struct cgroup_subsys_state *css;
824
825         hierarchy_used = iter->use_hierarchy;
826
827         css_put(&iter->css);
828         /* If no ROOT, walk all, ignore hierarchy */
829         if (!cond || (root && !hierarchy_used))
830                 return NULL;
831
832         if (!root)
833                 root = root_mem_cgroup;
834
835         do {
836                 iter = NULL;
837                 rcu_read_lock();
838
839                 css = css_get_next(&mem_cgroup_subsys, nextid,
840                                 &root->css, &found);
841                 if (css && css_tryget(css))
842                         iter = container_of(css, struct mem_cgroup, css);
843                 rcu_read_unlock();
844                 /* If css is NULL, no more cgroups will be found */
845                 nextid = found + 1;
846         } while (css && !iter);
847
848         return iter;
849 }
850 /*
851  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
852  * be careful that "break" loop is not allowed. We have reference count.
853  * Instead of that modify "cond" to be false and "continue" to exit the loop.
854  */
855 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
856         for (iter = mem_cgroup_start_loop(root);\
857              iter != NULL;\
858              iter = mem_cgroup_get_next(iter, root, cond))
859
860 #define for_each_mem_cgroup_tree(iter, root) \
861         for_each_mem_cgroup_tree_cond(iter, root, true)
862
863 #define for_each_mem_cgroup_all(iter) \
864         for_each_mem_cgroup_tree_cond(iter, NULL, true)
865
866
867 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
868 {
869         return (memcg == root_mem_cgroup);
870 }
871
872 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
873 {
874         struct mem_cgroup *memcg;
875
876         if (!mm)
877                 return;
878
879         rcu_read_lock();
880         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
881         if (unlikely(!memcg))
882                 goto out;
883
884         switch (idx) {
885         case PGMAJFAULT:
886                 mem_cgroup_pgmajfault(memcg, 1);
887                 break;
888         case PGFAULT:
889                 mem_cgroup_pgfault(memcg, 1);
890                 break;
891         default:
892                 BUG();
893         }
894 out:
895         rcu_read_unlock();
896 }
897 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
898
899 /*
900  * Following LRU functions are allowed to be used without PCG_LOCK.
901  * Operations are called by routine of global LRU independently from memcg.
902  * What we have to take care of here is validness of pc->mem_cgroup.
903  *
904  * Changes to pc->mem_cgroup happens when
905  * 1. charge
906  * 2. moving account
907  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
908  * It is added to LRU before charge.
909  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
910  * When moving account, the page is not on LRU. It's isolated.
911  */
912
913 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
914 {
915         struct page_cgroup *pc;
916         struct mem_cgroup_per_zone *mz;
917
918         if (mem_cgroup_disabled())
919                 return;
920         pc = lookup_page_cgroup(page);
921         /* can happen while we handle swapcache. */
922         if (!TestClearPageCgroupAcctLRU(pc))
923                 return;
924         VM_BUG_ON(!pc->mem_cgroup);
925         /*
926          * We don't check PCG_USED bit. It's cleared when the "page" is finally
927          * removed from global LRU.
928          */
929         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
930         /* huge page split is done under lru_lock. so, we have no races. */
931         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
932         if (mem_cgroup_is_root(pc->mem_cgroup))
933                 return;
934         VM_BUG_ON(list_empty(&pc->lru));
935         list_del_init(&pc->lru);
936 }
937
938 void mem_cgroup_del_lru(struct page *page)
939 {
940         mem_cgroup_del_lru_list(page, page_lru(page));
941 }
942
943 /*
944  * Writeback is about to end against a page which has been marked for immediate
945  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
946  * inactive list.
947  */
948 void mem_cgroup_rotate_reclaimable_page(struct page *page)
949 {
950         struct mem_cgroup_per_zone *mz;
951         struct page_cgroup *pc;
952         enum lru_list lru = page_lru(page);
953
954         if (mem_cgroup_disabled())
955                 return;
956
957         pc = lookup_page_cgroup(page);
958         /* unused or root page is not rotated. */
959         if (!PageCgroupUsed(pc))
960                 return;
961         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
962         smp_rmb();
963         if (mem_cgroup_is_root(pc->mem_cgroup))
964                 return;
965         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
966         list_move_tail(&pc->lru, &mz->lists[lru]);
967 }
968
969 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
970 {
971         struct mem_cgroup_per_zone *mz;
972         struct page_cgroup *pc;
973
974         if (mem_cgroup_disabled())
975                 return;
976
977         pc = lookup_page_cgroup(page);
978         /* unused or root page is not rotated. */
979         if (!PageCgroupUsed(pc))
980                 return;
981         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
982         smp_rmb();
983         if (mem_cgroup_is_root(pc->mem_cgroup))
984                 return;
985         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
986         list_move(&pc->lru, &mz->lists[lru]);
987 }
988
989 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
990 {
991         struct page_cgroup *pc;
992         struct mem_cgroup_per_zone *mz;
993
994         if (mem_cgroup_disabled())
995                 return;
996         pc = lookup_page_cgroup(page);
997         VM_BUG_ON(PageCgroupAcctLRU(pc));
998         /*
999          * putback:                             charge:
1000          * SetPageLRU                           SetPageCgroupUsed
1001          * smp_mb                               smp_mb
1002          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1003          *
1004          * Ensure that one of the two sides adds the page to the memcg
1005          * LRU during a race.
1006          */
1007         smp_mb();
1008         if (!PageCgroupUsed(pc))
1009                 return;
1010         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1011         smp_rmb();
1012         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1013         /* huge page split is done under lru_lock. so, we have no races. */
1014         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1015         SetPageCgroupAcctLRU(pc);
1016         if (mem_cgroup_is_root(pc->mem_cgroup))
1017                 return;
1018         list_add(&pc->lru, &mz->lists[lru]);
1019 }
1020
1021 /*
1022  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1023  * while it's linked to lru because the page may be reused after it's fully
1024  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1025  * It's done under lock_page and expected that zone->lru_lock isnever held.
1026  */
1027 static void mem_cgroup_lru_del_before_commit(struct page *page)
1028 {
1029         unsigned long flags;
1030         struct zone *zone = page_zone(page);
1031         struct page_cgroup *pc = lookup_page_cgroup(page);
1032
1033         /*
1034          * Doing this check without taking ->lru_lock seems wrong but this
1035          * is safe. Because if page_cgroup's USED bit is unset, the page
1036          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1037          * set, the commit after this will fail, anyway.
1038          * This all charge/uncharge is done under some mutual execustion.
1039          * So, we don't need to taking care of changes in USED bit.
1040          */
1041         if (likely(!PageLRU(page)))
1042                 return;
1043
1044         spin_lock_irqsave(&zone->lru_lock, flags);
1045         /*
1046          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1047          * is guarded by lock_page() because the page is SwapCache.
1048          */
1049         if (!PageCgroupUsed(pc))
1050                 mem_cgroup_del_lru_list(page, page_lru(page));
1051         spin_unlock_irqrestore(&zone->lru_lock, flags);
1052 }
1053
1054 static void mem_cgroup_lru_add_after_commit(struct page *page)
1055 {
1056         unsigned long flags;
1057         struct zone *zone = page_zone(page);
1058         struct page_cgroup *pc = lookup_page_cgroup(page);
1059         /*
1060          * putback:                             charge:
1061          * SetPageLRU                           SetPageCgroupUsed
1062          * smp_mb                               smp_mb
1063          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1064          *
1065          * Ensure that one of the two sides adds the page to the memcg
1066          * LRU during a race.
1067          */
1068         smp_mb();
1069         /* taking care of that the page is added to LRU while we commit it */
1070         if (likely(!PageLRU(page)))
1071                 return;
1072         spin_lock_irqsave(&zone->lru_lock, flags);
1073         /* link when the page is linked to LRU but page_cgroup isn't */
1074         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1075                 mem_cgroup_add_lru_list(page, page_lru(page));
1076         spin_unlock_irqrestore(&zone->lru_lock, flags);
1077 }
1078
1079
1080 void mem_cgroup_move_lists(struct page *page,
1081                            enum lru_list from, enum lru_list to)
1082 {
1083         if (mem_cgroup_disabled())
1084                 return;
1085         mem_cgroup_del_lru_list(page, from);
1086         mem_cgroup_add_lru_list(page, to);
1087 }
1088
1089 /*
1090  * Checks whether given mem is same or in the root_mem_cgroup's
1091  * hierarchy subtree
1092  */
1093 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1094                 struct mem_cgroup *memcg)
1095 {
1096         if (root_memcg != memcg) {
1097                 return (root_memcg->use_hierarchy &&
1098                         css_is_ancestor(&memcg->css, &root_memcg->css));
1099         }
1100
1101         return true;
1102 }
1103
1104 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1105 {
1106         int ret;
1107         struct mem_cgroup *curr = NULL;
1108         struct task_struct *p;
1109
1110         p = find_lock_task_mm(task);
1111         if (!p)
1112                 return 0;
1113         curr = try_get_mem_cgroup_from_mm(p->mm);
1114         task_unlock(p);
1115         if (!curr)
1116                 return 0;
1117         /*
1118          * We should check use_hierarchy of "memcg" not "curr". Because checking
1119          * use_hierarchy of "curr" here make this function true if hierarchy is
1120          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1121          * hierarchy(even if use_hierarchy is disabled in "memcg").
1122          */
1123         ret = mem_cgroup_same_or_subtree(memcg, curr);
1124         css_put(&curr->css);
1125         return ret;
1126 }
1127
1128 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1129 {
1130         unsigned long inactive_ratio;
1131         int nid = zone_to_nid(zone);
1132         int zid = zone_idx(zone);
1133         unsigned long inactive;
1134         unsigned long active;
1135         unsigned long gb;
1136
1137         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1138                                                 BIT(LRU_INACTIVE_ANON));
1139         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1140                                               BIT(LRU_ACTIVE_ANON));
1141
1142         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1143         if (gb)
1144                 inactive_ratio = int_sqrt(10 * gb);
1145         else
1146                 inactive_ratio = 1;
1147
1148         return inactive * inactive_ratio < active;
1149 }
1150
1151 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1152 {
1153         unsigned long active;
1154         unsigned long inactive;
1155         int zid = zone_idx(zone);
1156         int nid = zone_to_nid(zone);
1157
1158         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1159                                                 BIT(LRU_INACTIVE_FILE));
1160         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1161                                               BIT(LRU_ACTIVE_FILE));
1162
1163         return (active > inactive);
1164 }
1165
1166 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1167                                                       struct zone *zone)
1168 {
1169         int nid = zone_to_nid(zone);
1170         int zid = zone_idx(zone);
1171         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1172
1173         return &mz->reclaim_stat;
1174 }
1175
1176 struct zone_reclaim_stat *
1177 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1178 {
1179         struct page_cgroup *pc;
1180         struct mem_cgroup_per_zone *mz;
1181
1182         if (mem_cgroup_disabled())
1183                 return NULL;
1184
1185         pc = lookup_page_cgroup(page);
1186         if (!PageCgroupUsed(pc))
1187                 return NULL;
1188         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1189         smp_rmb();
1190         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1191         return &mz->reclaim_stat;
1192 }
1193
1194 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1195                                         struct list_head *dst,
1196                                         unsigned long *scanned, int order,
1197                                         isolate_mode_t mode,
1198                                         struct zone *z,
1199                                         struct mem_cgroup *mem_cont,
1200                                         int active, int file)
1201 {
1202         unsigned long nr_taken = 0;
1203         struct page *page;
1204         unsigned long scan;
1205         LIST_HEAD(pc_list);
1206         struct list_head *src;
1207         struct page_cgroup *pc, *tmp;
1208         int nid = zone_to_nid(z);
1209         int zid = zone_idx(z);
1210         struct mem_cgroup_per_zone *mz;
1211         int lru = LRU_FILE * file + active;
1212         int ret;
1213
1214         BUG_ON(!mem_cont);
1215         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1216         src = &mz->lists[lru];
1217
1218         scan = 0;
1219         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1220                 if (scan >= nr_to_scan)
1221                         break;
1222
1223                 if (unlikely(!PageCgroupUsed(pc)))
1224                         continue;
1225
1226                 page = lookup_cgroup_page(pc);
1227
1228                 if (unlikely(!PageLRU(page)))
1229                         continue;
1230
1231                 scan++;
1232                 ret = __isolate_lru_page(page, mode, file);
1233                 switch (ret) {
1234                 case 0:
1235                         list_move(&page->lru, dst);
1236                         mem_cgroup_del_lru(page);
1237                         nr_taken += hpage_nr_pages(page);
1238                         break;
1239                 case -EBUSY:
1240                         /* we don't affect global LRU but rotate in our LRU */
1241                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1242                         break;
1243                 default:
1244                         break;
1245                 }
1246         }
1247
1248         *scanned = scan;
1249
1250         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1251                                       0, 0, 0, mode);
1252
1253         return nr_taken;
1254 }
1255
1256 #define mem_cgroup_from_res_counter(counter, member)    \
1257         container_of(counter, struct mem_cgroup, member)
1258
1259 /**
1260  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1261  * @mem: the memory cgroup
1262  *
1263  * Returns the maximum amount of memory @mem can be charged with, in
1264  * pages.
1265  */
1266 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1267 {
1268         unsigned long long margin;
1269
1270         margin = res_counter_margin(&memcg->res);
1271         if (do_swap_account)
1272                 margin = min(margin, res_counter_margin(&memcg->memsw));
1273         return margin >> PAGE_SHIFT;
1274 }
1275
1276 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1277 {
1278         struct cgroup *cgrp = memcg->css.cgroup;
1279
1280         /* root ? */
1281         if (cgrp->parent == NULL)
1282                 return vm_swappiness;
1283
1284         return memcg->swappiness;
1285 }
1286
1287 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1288 {
1289         int cpu;
1290
1291         get_online_cpus();
1292         spin_lock(&memcg->pcp_counter_lock);
1293         for_each_online_cpu(cpu)
1294                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1295         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1296         spin_unlock(&memcg->pcp_counter_lock);
1297         put_online_cpus();
1298
1299         synchronize_rcu();
1300 }
1301
1302 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1303 {
1304         int cpu;
1305
1306         if (!memcg)
1307                 return;
1308         get_online_cpus();
1309         spin_lock(&memcg->pcp_counter_lock);
1310         for_each_online_cpu(cpu)
1311                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1312         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1313         spin_unlock(&memcg->pcp_counter_lock);
1314         put_online_cpus();
1315 }
1316 /*
1317  * 2 routines for checking "mem" is under move_account() or not.
1318  *
1319  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1320  *                        for avoiding race in accounting. If true,
1321  *                        pc->mem_cgroup may be overwritten.
1322  *
1323  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1324  *                        under hierarchy of moving cgroups. This is for
1325  *                        waiting at hith-memory prressure caused by "move".
1326  */
1327
1328 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1329 {
1330         VM_BUG_ON(!rcu_read_lock_held());
1331         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1332 }
1333
1334 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1335 {
1336         struct mem_cgroup *from;
1337         struct mem_cgroup *to;
1338         bool ret = false;
1339         /*
1340          * Unlike task_move routines, we access mc.to, mc.from not under
1341          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1342          */
1343         spin_lock(&mc.lock);
1344         from = mc.from;
1345         to = mc.to;
1346         if (!from)
1347                 goto unlock;
1348
1349         ret = mem_cgroup_same_or_subtree(memcg, from)
1350                 || mem_cgroup_same_or_subtree(memcg, to);
1351 unlock:
1352         spin_unlock(&mc.lock);
1353         return ret;
1354 }
1355
1356 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1357 {
1358         if (mc.moving_task && current != mc.moving_task) {
1359                 if (mem_cgroup_under_move(memcg)) {
1360                         DEFINE_WAIT(wait);
1361                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1362                         /* moving charge context might have finished. */
1363                         if (mc.moving_task)
1364                                 schedule();
1365                         finish_wait(&mc.waitq, &wait);
1366                         return true;
1367                 }
1368         }
1369         return false;
1370 }
1371
1372 /**
1373  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1374  * @memcg: The memory cgroup that went over limit
1375  * @p: Task that is going to be killed
1376  *
1377  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1378  * enabled
1379  */
1380 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1381 {
1382         struct cgroup *task_cgrp;
1383         struct cgroup *mem_cgrp;
1384         /*
1385          * Need a buffer in BSS, can't rely on allocations. The code relies
1386          * on the assumption that OOM is serialized for memory controller.
1387          * If this assumption is broken, revisit this code.
1388          */
1389         static char memcg_name[PATH_MAX];
1390         int ret;
1391
1392         if (!memcg || !p)
1393                 return;
1394
1395
1396         rcu_read_lock();
1397
1398         mem_cgrp = memcg->css.cgroup;
1399         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1400
1401         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402         if (ret < 0) {
1403                 /*
1404                  * Unfortunately, we are unable to convert to a useful name
1405                  * But we'll still print out the usage information
1406                  */
1407                 rcu_read_unlock();
1408                 goto done;
1409         }
1410         rcu_read_unlock();
1411
1412         printk(KERN_INFO "Task in %s killed", memcg_name);
1413
1414         rcu_read_lock();
1415         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416         if (ret < 0) {
1417                 rcu_read_unlock();
1418                 goto done;
1419         }
1420         rcu_read_unlock();
1421
1422         /*
1423          * Continues from above, so we don't need an KERN_ level
1424          */
1425         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426 done:
1427
1428         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433                 "failcnt %llu\n",
1434                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1437 }
1438
1439 /*
1440  * This function returns the number of memcg under hierarchy tree. Returns
1441  * 1(self count) if no children.
1442  */
1443 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1444 {
1445         int num = 0;
1446         struct mem_cgroup *iter;
1447
1448         for_each_mem_cgroup_tree(iter, memcg)
1449                 num++;
1450         return num;
1451 }
1452
1453 /*
1454  * Return the memory (and swap, if configured) limit for a memcg.
1455  */
1456 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1457 {
1458         u64 limit;
1459         u64 memsw;
1460
1461         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462         limit += total_swap_pages << PAGE_SHIFT;
1463
1464         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465         /*
1466          * If memsw is finite and limits the amount of swap space available
1467          * to this memcg, return that limit.
1468          */
1469         return min(limit, memsw);
1470 }
1471
1472 /*
1473  * Visit the first child (need not be the first child as per the ordering
1474  * of the cgroup list, since we track last_scanned_child) of @mem and use
1475  * that to reclaim free pages from.
1476  */
1477 static struct mem_cgroup *
1478 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1479 {
1480         struct mem_cgroup *ret = NULL;
1481         struct cgroup_subsys_state *css;
1482         int nextid, found;
1483
1484         if (!root_memcg->use_hierarchy) {
1485                 css_get(&root_memcg->css);
1486                 ret = root_memcg;
1487         }
1488
1489         while (!ret) {
1490                 rcu_read_lock();
1491                 nextid = root_memcg->last_scanned_child + 1;
1492                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1493                                    &found);
1494                 if (css && css_tryget(css))
1495                         ret = container_of(css, struct mem_cgroup, css);
1496
1497                 rcu_read_unlock();
1498                 /* Updates scanning parameter */
1499                 if (!css) {
1500                         /* this means start scan from ID:1 */
1501                         root_memcg->last_scanned_child = 0;
1502                 } else
1503                         root_memcg->last_scanned_child = found;
1504         }
1505
1506         return ret;
1507 }
1508
1509 /**
1510  * test_mem_cgroup_node_reclaimable
1511  * @mem: the target memcg
1512  * @nid: the node ID to be checked.
1513  * @noswap : specify true here if the user wants flle only information.
1514  *
1515  * This function returns whether the specified memcg contains any
1516  * reclaimable pages on a node. Returns true if there are any reclaimable
1517  * pages in the node.
1518  */
1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520                 int nid, bool noswap)
1521 {
1522         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523                 return true;
1524         if (noswap || !total_swap_pages)
1525                 return false;
1526         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527                 return true;
1528         return false;
1529
1530 }
1531 #if MAX_NUMNODES > 1
1532
1533 /*
1534  * Always updating the nodemask is not very good - even if we have an empty
1535  * list or the wrong list here, we can start from some node and traverse all
1536  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537  *
1538  */
1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540 {
1541         int nid;
1542         /*
1543          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544          * pagein/pageout changes since the last update.
1545          */
1546         if (!atomic_read(&memcg->numainfo_events))
1547                 return;
1548         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549                 return;
1550
1551         /* make a nodemask where this memcg uses memory from */
1552         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1553
1554         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555
1556                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557                         node_clear(nid, memcg->scan_nodes);
1558         }
1559
1560         atomic_set(&memcg->numainfo_events, 0);
1561         atomic_set(&memcg->numainfo_updating, 0);
1562 }
1563
1564 /*
1565  * Selecting a node where we start reclaim from. Because what we need is just
1566  * reducing usage counter, start from anywhere is O,K. Considering
1567  * memory reclaim from current node, there are pros. and cons.
1568  *
1569  * Freeing memory from current node means freeing memory from a node which
1570  * we'll use or we've used. So, it may make LRU bad. And if several threads
1571  * hit limits, it will see a contention on a node. But freeing from remote
1572  * node means more costs for memory reclaim because of memory latency.
1573  *
1574  * Now, we use round-robin. Better algorithm is welcomed.
1575  */
1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577 {
1578         int node;
1579
1580         mem_cgroup_may_update_nodemask(memcg);
1581         node = memcg->last_scanned_node;
1582
1583         node = next_node(node, memcg->scan_nodes);
1584         if (node == MAX_NUMNODES)
1585                 node = first_node(memcg->scan_nodes);
1586         /*
1587          * We call this when we hit limit, not when pages are added to LRU.
1588          * No LRU may hold pages because all pages are UNEVICTABLE or
1589          * memcg is too small and all pages are not on LRU. In that case,
1590          * we use curret node.
1591          */
1592         if (unlikely(node == MAX_NUMNODES))
1593                 node = numa_node_id();
1594
1595         memcg->last_scanned_node = node;
1596         return node;
1597 }
1598
1599 /*
1600  * Check all nodes whether it contains reclaimable pages or not.
1601  * For quick scan, we make use of scan_nodes. This will allow us to skip
1602  * unused nodes. But scan_nodes is lazily updated and may not cotain
1603  * enough new information. We need to do double check.
1604  */
1605 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606 {
1607         int nid;
1608
1609         /*
1610          * quick check...making use of scan_node.
1611          * We can skip unused nodes.
1612          */
1613         if (!nodes_empty(memcg->scan_nodes)) {
1614                 for (nid = first_node(memcg->scan_nodes);
1615                      nid < MAX_NUMNODES;
1616                      nid = next_node(nid, memcg->scan_nodes)) {
1617
1618                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619                                 return true;
1620                 }
1621         }
1622         /*
1623          * Check rest of nodes.
1624          */
1625         for_each_node_state(nid, N_HIGH_MEMORY) {
1626                 if (node_isset(nid, memcg->scan_nodes))
1627                         continue;
1628                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629                         return true;
1630         }
1631         return false;
1632 }
1633
1634 #else
1635 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636 {
1637         return 0;
1638 }
1639
1640 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641 {
1642         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643 }
1644 #endif
1645
1646 /*
1647  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1648  * we reclaimed from, so that we don't end up penalizing one child extensively
1649  * based on its position in the children list.
1650  *
1651  * root_memcg is the original ancestor that we've been reclaim from.
1652  *
1653  * We give up and return to the caller when we visit root_memcg twice.
1654  * (other groups can be removed while we're walking....)
1655  *
1656  * If shrink==true, for avoiding to free too much, this returns immedieately.
1657  */
1658 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1659                                                 struct zone *zone,
1660                                                 gfp_t gfp_mask,
1661                                                 unsigned long reclaim_options,
1662                                                 unsigned long *total_scanned)
1663 {
1664         struct mem_cgroup *victim;
1665         int ret, total = 0;
1666         int loop = 0;
1667         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1668         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1669         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1670         unsigned long excess;
1671         unsigned long nr_scanned;
1672
1673         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1674
1675         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1676         if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1677                 noswap = true;
1678
1679         while (1) {
1680                 victim = mem_cgroup_select_victim(root_memcg);
1681                 if (victim == root_memcg) {
1682                         loop++;
1683                         /*
1684                          * We are not draining per cpu cached charges during
1685                          * soft limit reclaim  because global reclaim doesn't
1686                          * care about charges. It tries to free some memory and
1687                          * charges will not give any.
1688                          */
1689                         if (!check_soft && loop >= 1)
1690                                 drain_all_stock_async(root_memcg);
1691                         if (loop >= 2) {
1692                                 /*
1693                                  * If we have not been able to reclaim
1694                                  * anything, it might because there are
1695                                  * no reclaimable pages under this hierarchy
1696                                  */
1697                                 if (!check_soft || !total) {
1698                                         css_put(&victim->css);
1699                                         break;
1700                                 }
1701                                 /*
1702                                  * We want to do more targeted reclaim.
1703                                  * excess >> 2 is not to excessive so as to
1704                                  * reclaim too much, nor too less that we keep
1705                                  * coming back to reclaim from this cgroup
1706                                  */
1707                                 if (total >= (excess >> 2) ||
1708                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1709                                         css_put(&victim->css);
1710                                         break;
1711                                 }
1712                         }
1713                 }
1714                 if (!mem_cgroup_reclaimable(victim, noswap)) {
1715                         /* this cgroup's local usage == 0 */
1716                         css_put(&victim->css);
1717                         continue;
1718                 }
1719                 /* we use swappiness of local cgroup */
1720                 if (check_soft) {
1721                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1722                                 noswap, zone, &nr_scanned);
1723                         *total_scanned += nr_scanned;
1724                 } else
1725                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1726                                                 noswap);
1727                 css_put(&victim->css);
1728                 /*
1729                  * At shrinking usage, we can't check we should stop here or
1730                  * reclaim more. It's depends on callers. last_scanned_child
1731                  * will work enough for keeping fairness under tree.
1732                  */
1733                 if (shrink)
1734                         return ret;
1735                 total += ret;
1736                 if (check_soft) {
1737                         if (!res_counter_soft_limit_excess(&root_memcg->res))
1738                                 return total;
1739                 } else if (mem_cgroup_margin(root_memcg))
1740                         return total;
1741         }
1742         return total;
1743 }
1744
1745 /*
1746  * Check OOM-Killer is already running under our hierarchy.
1747  * If someone is running, return false.
1748  * Has to be called with memcg_oom_lock
1749  */
1750 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1751 {
1752         struct mem_cgroup *iter, *failed = NULL;
1753         bool cond = true;
1754
1755         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1756                 if (iter->oom_lock) {
1757                         /*
1758                          * this subtree of our hierarchy is already locked
1759                          * so we cannot give a lock.
1760                          */
1761                         failed = iter;
1762                         cond = false;
1763                 } else
1764                         iter->oom_lock = true;
1765         }
1766
1767         if (!failed)
1768                 return true;
1769
1770         /*
1771          * OK, we failed to lock the whole subtree so we have to clean up
1772          * what we set up to the failing subtree
1773          */
1774         cond = true;
1775         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1776                 if (iter == failed) {
1777                         cond = false;
1778                         continue;
1779                 }
1780                 iter->oom_lock = false;
1781         }
1782         return false;
1783 }
1784
1785 /*
1786  * Has to be called with memcg_oom_lock
1787  */
1788 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1789 {
1790         struct mem_cgroup *iter;
1791
1792         for_each_mem_cgroup_tree(iter, memcg)
1793                 iter->oom_lock = false;
1794         return 0;
1795 }
1796
1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1798 {
1799         struct mem_cgroup *iter;
1800
1801         for_each_mem_cgroup_tree(iter, memcg)
1802                 atomic_inc(&iter->under_oom);
1803 }
1804
1805 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1806 {
1807         struct mem_cgroup *iter;
1808
1809         /*
1810          * When a new child is created while the hierarchy is under oom,
1811          * mem_cgroup_oom_lock() may not be called. We have to use
1812          * atomic_add_unless() here.
1813          */
1814         for_each_mem_cgroup_tree(iter, memcg)
1815                 atomic_add_unless(&iter->under_oom, -1, 0);
1816 }
1817
1818 static DEFINE_SPINLOCK(memcg_oom_lock);
1819 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1820
1821 struct oom_wait_info {
1822         struct mem_cgroup *mem;
1823         wait_queue_t    wait;
1824 };
1825
1826 static int memcg_oom_wake_function(wait_queue_t *wait,
1827         unsigned mode, int sync, void *arg)
1828 {
1829         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1830                           *oom_wait_memcg;
1831         struct oom_wait_info *oom_wait_info;
1832
1833         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1834         oom_wait_memcg = oom_wait_info->mem;
1835
1836         /*
1837          * Both of oom_wait_info->mem and wake_mem are stable under us.
1838          * Then we can use css_is_ancestor without taking care of RCU.
1839          */
1840         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1841                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1842                 return 0;
1843         return autoremove_wake_function(wait, mode, sync, arg);
1844 }
1845
1846 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1847 {
1848         /* for filtering, pass "memcg" as argument. */
1849         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1850 }
1851
1852 static void memcg_oom_recover(struct mem_cgroup *memcg)
1853 {
1854         if (memcg && atomic_read(&memcg->under_oom))
1855                 memcg_wakeup_oom(memcg);
1856 }
1857
1858 /*
1859  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1860  */
1861 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1862 {
1863         struct oom_wait_info owait;
1864         bool locked, need_to_kill;
1865
1866         owait.mem = memcg;
1867         owait.wait.flags = 0;
1868         owait.wait.func = memcg_oom_wake_function;
1869         owait.wait.private = current;
1870         INIT_LIST_HEAD(&owait.wait.task_list);
1871         need_to_kill = true;
1872         mem_cgroup_mark_under_oom(memcg);
1873
1874         /* At first, try to OOM lock hierarchy under memcg.*/
1875         spin_lock(&memcg_oom_lock);
1876         locked = mem_cgroup_oom_lock(memcg);
1877         /*
1878          * Even if signal_pending(), we can't quit charge() loop without
1879          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1880          * under OOM is always welcomed, use TASK_KILLABLE here.
1881          */
1882         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1883         if (!locked || memcg->oom_kill_disable)
1884                 need_to_kill = false;
1885         if (locked)
1886                 mem_cgroup_oom_notify(memcg);
1887         spin_unlock(&memcg_oom_lock);
1888
1889         if (need_to_kill) {
1890                 finish_wait(&memcg_oom_waitq, &owait.wait);
1891                 mem_cgroup_out_of_memory(memcg, mask);
1892         } else {
1893                 schedule();
1894                 finish_wait(&memcg_oom_waitq, &owait.wait);
1895         }
1896         spin_lock(&memcg_oom_lock);
1897         if (locked)
1898                 mem_cgroup_oom_unlock(memcg);
1899         memcg_wakeup_oom(memcg);
1900         spin_unlock(&memcg_oom_lock);
1901
1902         mem_cgroup_unmark_under_oom(memcg);
1903
1904         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1905                 return false;
1906         /* Give chance to dying process */
1907         schedule_timeout_uninterruptible(1);
1908         return true;
1909 }
1910
1911 /*
1912  * Currently used to update mapped file statistics, but the routine can be
1913  * generalized to update other statistics as well.
1914  *
1915  * Notes: Race condition
1916  *
1917  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1918  * it tends to be costly. But considering some conditions, we doesn't need
1919  * to do so _always_.
1920  *
1921  * Considering "charge", lock_page_cgroup() is not required because all
1922  * file-stat operations happen after a page is attached to radix-tree. There
1923  * are no race with "charge".
1924  *
1925  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1926  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1927  * if there are race with "uncharge". Statistics itself is properly handled
1928  * by flags.
1929  *
1930  * Considering "move", this is an only case we see a race. To make the race
1931  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1932  * possibility of race condition. If there is, we take a lock.
1933  */
1934
1935 void mem_cgroup_update_page_stat(struct page *page,
1936                                  enum mem_cgroup_page_stat_item idx, int val)
1937 {
1938         struct mem_cgroup *memcg;
1939         struct page_cgroup *pc = lookup_page_cgroup(page);
1940         bool need_unlock = false;
1941         unsigned long uninitialized_var(flags);
1942
1943         if (unlikely(!pc))
1944                 return;
1945
1946         rcu_read_lock();
1947         memcg = pc->mem_cgroup;
1948         if (unlikely(!memcg || !PageCgroupUsed(pc)))
1949                 goto out;
1950         /* pc->mem_cgroup is unstable ? */
1951         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1952                 /* take a lock against to access pc->mem_cgroup */
1953                 move_lock_page_cgroup(pc, &flags);
1954                 need_unlock = true;
1955                 memcg = pc->mem_cgroup;
1956                 if (!memcg || !PageCgroupUsed(pc))
1957                         goto out;
1958         }
1959
1960         switch (idx) {
1961         case MEMCG_NR_FILE_MAPPED:
1962                 if (val > 0)
1963                         SetPageCgroupFileMapped(pc);
1964                 else if (!page_mapped(page))
1965                         ClearPageCgroupFileMapped(pc);
1966                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1967                 break;
1968         default:
1969                 BUG();
1970         }
1971
1972         this_cpu_add(memcg->stat->count[idx], val);
1973
1974 out:
1975         if (unlikely(need_unlock))
1976                 move_unlock_page_cgroup(pc, &flags);
1977         rcu_read_unlock();
1978         return;
1979 }
1980 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1981
1982 /*
1983  * size of first charge trial. "32" comes from vmscan.c's magic value.
1984  * TODO: maybe necessary to use big numbers in big irons.
1985  */
1986 #define CHARGE_BATCH    32U
1987 struct memcg_stock_pcp {
1988         struct mem_cgroup *cached; /* this never be root cgroup */
1989         unsigned int nr_pages;
1990         struct work_struct work;
1991         unsigned long flags;
1992 #define FLUSHING_CACHED_CHARGE  (0)
1993 };
1994 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1995 static DEFINE_MUTEX(percpu_charge_mutex);
1996
1997 /*
1998  * Try to consume stocked charge on this cpu. If success, one page is consumed
1999  * from local stock and true is returned. If the stock is 0 or charges from a
2000  * cgroup which is not current target, returns false. This stock will be
2001  * refilled.
2002  */
2003 static bool consume_stock(struct mem_cgroup *memcg)
2004 {
2005         struct memcg_stock_pcp *stock;
2006         bool ret = true;
2007
2008         stock = &get_cpu_var(memcg_stock);
2009         if (memcg == stock->cached && stock->nr_pages)
2010                 stock->nr_pages--;
2011         else /* need to call res_counter_charge */
2012                 ret = false;
2013         put_cpu_var(memcg_stock);
2014         return ret;
2015 }
2016
2017 /*
2018  * Returns stocks cached in percpu to res_counter and reset cached information.
2019  */
2020 static void drain_stock(struct memcg_stock_pcp *stock)
2021 {
2022         struct mem_cgroup *old = stock->cached;
2023
2024         if (stock->nr_pages) {
2025                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2026
2027                 res_counter_uncharge(&old->res, bytes);
2028                 if (do_swap_account)
2029                         res_counter_uncharge(&old->memsw, bytes);
2030                 stock->nr_pages = 0;
2031         }
2032         stock->cached = NULL;
2033 }
2034
2035 /*
2036  * This must be called under preempt disabled or must be called by
2037  * a thread which is pinned to local cpu.
2038  */
2039 static void drain_local_stock(struct work_struct *dummy)
2040 {
2041         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2042         drain_stock(stock);
2043         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2044 }
2045
2046 /*
2047  * Cache charges(val) which is from res_counter, to local per_cpu area.
2048  * This will be consumed by consume_stock() function, later.
2049  */
2050 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2051 {
2052         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2053
2054         if (stock->cached != memcg) { /* reset if necessary */
2055                 drain_stock(stock);
2056                 stock->cached = memcg;
2057         }
2058         stock->nr_pages += nr_pages;
2059         put_cpu_var(memcg_stock);
2060 }
2061
2062 /*
2063  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2064  * of the hierarchy under it. sync flag says whether we should block
2065  * until the work is done.
2066  */
2067 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2068 {
2069         int cpu, curcpu;
2070
2071         /* Notify other cpus that system-wide "drain" is running */
2072         get_online_cpus();
2073         curcpu = get_cpu();
2074         for_each_online_cpu(cpu) {
2075                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2076                 struct mem_cgroup *memcg;
2077
2078                 memcg = stock->cached;
2079                 if (!memcg || !stock->nr_pages)
2080                         continue;
2081                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2082                         continue;
2083                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2084                         if (cpu == curcpu)
2085                                 drain_local_stock(&stock->work);
2086                         else
2087                                 schedule_work_on(cpu, &stock->work);
2088                 }
2089         }
2090         put_cpu();
2091
2092         if (!sync)
2093                 goto out;
2094
2095         for_each_online_cpu(cpu) {
2096                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2097                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2098                         flush_work(&stock->work);
2099         }
2100 out:
2101         put_online_cpus();
2102 }
2103
2104 /*
2105  * Tries to drain stocked charges in other cpus. This function is asynchronous
2106  * and just put a work per cpu for draining localy on each cpu. Caller can
2107  * expects some charges will be back to res_counter later but cannot wait for
2108  * it.
2109  */
2110 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2111 {
2112         /*
2113          * If someone calls draining, avoid adding more kworker runs.
2114          */
2115         if (!mutex_trylock(&percpu_charge_mutex))
2116                 return;
2117         drain_all_stock(root_memcg, false);
2118         mutex_unlock(&percpu_charge_mutex);
2119 }
2120
2121 /* This is a synchronous drain interface. */
2122 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2123 {
2124         /* called when force_empty is called */
2125         mutex_lock(&percpu_charge_mutex);
2126         drain_all_stock(root_memcg, true);
2127         mutex_unlock(&percpu_charge_mutex);
2128 }
2129
2130 /*
2131  * This function drains percpu counter value from DEAD cpu and
2132  * move it to local cpu. Note that this function can be preempted.
2133  */
2134 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2135 {
2136         int i;
2137
2138         spin_lock(&memcg->pcp_counter_lock);
2139         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2140                 long x = per_cpu(memcg->stat->count[i], cpu);
2141
2142                 per_cpu(memcg->stat->count[i], cpu) = 0;
2143                 memcg->nocpu_base.count[i] += x;
2144         }
2145         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2146                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2147
2148                 per_cpu(memcg->stat->events[i], cpu) = 0;
2149                 memcg->nocpu_base.events[i] += x;
2150         }
2151         /* need to clear ON_MOVE value, works as a kind of lock. */
2152         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2153         spin_unlock(&memcg->pcp_counter_lock);
2154 }
2155
2156 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2157 {
2158         int idx = MEM_CGROUP_ON_MOVE;
2159
2160         spin_lock(&memcg->pcp_counter_lock);
2161         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2162         spin_unlock(&memcg->pcp_counter_lock);
2163 }
2164
2165 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2166                                         unsigned long action,
2167                                         void *hcpu)
2168 {
2169         int cpu = (unsigned long)hcpu;
2170         struct memcg_stock_pcp *stock;
2171         struct mem_cgroup *iter;
2172
2173         if ((action == CPU_ONLINE)) {
2174                 for_each_mem_cgroup_all(iter)
2175                         synchronize_mem_cgroup_on_move(iter, cpu);
2176                 return NOTIFY_OK;
2177         }
2178
2179         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2180                 return NOTIFY_OK;
2181
2182         for_each_mem_cgroup_all(iter)
2183                 mem_cgroup_drain_pcp_counter(iter, cpu);
2184
2185         stock = &per_cpu(memcg_stock, cpu);
2186         drain_stock(stock);
2187         return NOTIFY_OK;
2188 }
2189
2190
2191 /* See __mem_cgroup_try_charge() for details */
2192 enum {
2193         CHARGE_OK,              /* success */
2194         CHARGE_RETRY,           /* need to retry but retry is not bad */
2195         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2196         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2197         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2198 };
2199
2200 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2201                                 unsigned int nr_pages, bool oom_check)
2202 {
2203         unsigned long csize = nr_pages * PAGE_SIZE;
2204         struct mem_cgroup *mem_over_limit;
2205         struct res_counter *fail_res;
2206         unsigned long flags = 0;
2207         int ret;
2208
2209         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2210
2211         if (likely(!ret)) {
2212                 if (!do_swap_account)
2213                         return CHARGE_OK;
2214                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2215                 if (likely(!ret))
2216                         return CHARGE_OK;
2217
2218                 res_counter_uncharge(&memcg->res, csize);
2219                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2220                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2221         } else
2222                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2223         /*
2224          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2225          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2226          *
2227          * Never reclaim on behalf of optional batching, retry with a
2228          * single page instead.
2229          */
2230         if (nr_pages == CHARGE_BATCH)
2231                 return CHARGE_RETRY;
2232
2233         if (!(gfp_mask & __GFP_WAIT))
2234                 return CHARGE_WOULDBLOCK;
2235
2236         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2237                                               gfp_mask, flags, NULL);
2238         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2239                 return CHARGE_RETRY;
2240         /*
2241          * Even though the limit is exceeded at this point, reclaim
2242          * may have been able to free some pages.  Retry the charge
2243          * before killing the task.
2244          *
2245          * Only for regular pages, though: huge pages are rather
2246          * unlikely to succeed so close to the limit, and we fall back
2247          * to regular pages anyway in case of failure.
2248          */
2249         if (nr_pages == 1 && ret)
2250                 return CHARGE_RETRY;
2251
2252         /*
2253          * At task move, charge accounts can be doubly counted. So, it's
2254          * better to wait until the end of task_move if something is going on.
2255          */
2256         if (mem_cgroup_wait_acct_move(mem_over_limit))
2257                 return CHARGE_RETRY;
2258
2259         /* If we don't need to call oom-killer at el, return immediately */
2260         if (!oom_check)
2261                 return CHARGE_NOMEM;
2262         /* check OOM */
2263         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2264                 return CHARGE_OOM_DIE;
2265
2266         return CHARGE_RETRY;
2267 }
2268
2269 /*
2270  * Unlike exported interface, "oom" parameter is added. if oom==true,
2271  * oom-killer can be invoked.
2272  */
2273 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2274                                    gfp_t gfp_mask,
2275                                    unsigned int nr_pages,
2276                                    struct mem_cgroup **ptr,
2277                                    bool oom)
2278 {
2279         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2280         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2281         struct mem_cgroup *memcg = NULL;
2282         int ret;
2283
2284         /*
2285          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2286          * in system level. So, allow to go ahead dying process in addition to
2287          * MEMDIE process.
2288          */
2289         if (unlikely(test_thread_flag(TIF_MEMDIE)
2290                      || fatal_signal_pending(current)))
2291                 goto bypass;
2292
2293         /*
2294          * We always charge the cgroup the mm_struct belongs to.
2295          * The mm_struct's mem_cgroup changes on task migration if the
2296          * thread group leader migrates. It's possible that mm is not
2297          * set, if so charge the init_mm (happens for pagecache usage).
2298          */
2299         if (!*ptr && !mm)
2300                 goto bypass;
2301 again:
2302         if (*ptr) { /* css should be a valid one */
2303                 memcg = *ptr;
2304                 VM_BUG_ON(css_is_removed(&memcg->css));
2305                 if (mem_cgroup_is_root(memcg))
2306                         goto done;
2307                 if (nr_pages == 1 && consume_stock(memcg))
2308                         goto done;
2309                 css_get(&memcg->css);
2310         } else {
2311                 struct task_struct *p;
2312
2313                 rcu_read_lock();
2314                 p = rcu_dereference(mm->owner);
2315                 /*
2316                  * Because we don't have task_lock(), "p" can exit.
2317                  * In that case, "memcg" can point to root or p can be NULL with
2318                  * race with swapoff. Then, we have small risk of mis-accouning.
2319                  * But such kind of mis-account by race always happens because
2320                  * we don't have cgroup_mutex(). It's overkill and we allo that
2321                  * small race, here.
2322                  * (*) swapoff at el will charge against mm-struct not against
2323                  * task-struct. So, mm->owner can be NULL.
2324                  */
2325                 memcg = mem_cgroup_from_task(p);
2326                 if (!memcg || mem_cgroup_is_root(memcg)) {
2327                         rcu_read_unlock();
2328                         goto done;
2329                 }
2330                 if (nr_pages == 1 && consume_stock(memcg)) {
2331                         /*
2332                          * It seems dagerous to access memcg without css_get().
2333                          * But considering how consume_stok works, it's not
2334                          * necessary. If consume_stock success, some charges
2335                          * from this memcg are cached on this cpu. So, we
2336                          * don't need to call css_get()/css_tryget() before
2337                          * calling consume_stock().
2338                          */
2339                         rcu_read_unlock();
2340                         goto done;
2341                 }
2342                 /* after here, we may be blocked. we need to get refcnt */
2343                 if (!css_tryget(&memcg->css)) {
2344                         rcu_read_unlock();
2345                         goto again;
2346                 }
2347                 rcu_read_unlock();
2348         }
2349
2350         do {
2351                 bool oom_check;
2352
2353                 /* If killed, bypass charge */
2354                 if (fatal_signal_pending(current)) {
2355                         css_put(&memcg->css);
2356                         goto bypass;
2357                 }
2358
2359                 oom_check = false;
2360                 if (oom && !nr_oom_retries) {
2361                         oom_check = true;
2362                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2363                 }
2364
2365                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2366                 switch (ret) {
2367                 case CHARGE_OK:
2368                         break;
2369                 case CHARGE_RETRY: /* not in OOM situation but retry */
2370                         batch = nr_pages;
2371                         css_put(&memcg->css);
2372                         memcg = NULL;
2373                         goto again;
2374                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2375                         css_put(&memcg->css);
2376                         goto nomem;
2377                 case CHARGE_NOMEM: /* OOM routine works */
2378                         if (!oom) {
2379                                 css_put(&memcg->css);
2380                                 goto nomem;
2381                         }
2382                         /* If oom, we never return -ENOMEM */
2383                         nr_oom_retries--;
2384                         break;
2385                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2386                         css_put(&memcg->css);
2387                         goto bypass;
2388                 }
2389         } while (ret != CHARGE_OK);
2390
2391         if (batch > nr_pages)
2392                 refill_stock(memcg, batch - nr_pages);
2393         css_put(&memcg->css);
2394 done:
2395         *ptr = memcg;
2396         return 0;
2397 nomem:
2398         *ptr = NULL;
2399         return -ENOMEM;
2400 bypass:
2401         *ptr = NULL;
2402         return 0;
2403 }
2404
2405 /*
2406  * Somemtimes we have to undo a charge we got by try_charge().
2407  * This function is for that and do uncharge, put css's refcnt.
2408  * gotten by try_charge().
2409  */
2410 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2411                                        unsigned int nr_pages)
2412 {
2413         if (!mem_cgroup_is_root(memcg)) {
2414                 unsigned long bytes = nr_pages * PAGE_SIZE;
2415
2416                 res_counter_uncharge(&memcg->res, bytes);
2417                 if (do_swap_account)
2418                         res_counter_uncharge(&memcg->memsw, bytes);
2419         }
2420 }
2421
2422 /*
2423  * A helper function to get mem_cgroup from ID. must be called under
2424  * rcu_read_lock(). The caller must check css_is_removed() or some if
2425  * it's concern. (dropping refcnt from swap can be called against removed
2426  * memcg.)
2427  */
2428 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2429 {
2430         struct cgroup_subsys_state *css;
2431
2432         /* ID 0 is unused ID */
2433         if (!id)
2434                 return NULL;
2435         css = css_lookup(&mem_cgroup_subsys, id);
2436         if (!css)
2437                 return NULL;
2438         return container_of(css, struct mem_cgroup, css);
2439 }
2440
2441 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2442 {
2443         struct mem_cgroup *memcg = NULL;
2444         struct page_cgroup *pc;
2445         unsigned short id;
2446         swp_entry_t ent;
2447
2448         VM_BUG_ON(!PageLocked(page));
2449
2450         pc = lookup_page_cgroup(page);
2451         lock_page_cgroup(pc);
2452         if (PageCgroupUsed(pc)) {
2453                 memcg = pc->mem_cgroup;
2454                 if (memcg && !css_tryget(&memcg->css))
2455                         memcg = NULL;
2456         } else if (PageSwapCache(page)) {
2457                 ent.val = page_private(page);
2458                 id = lookup_swap_cgroup(ent);
2459                 rcu_read_lock();
2460                 memcg = mem_cgroup_lookup(id);
2461                 if (memcg && !css_tryget(&memcg->css))
2462                         memcg = NULL;
2463                 rcu_read_unlock();
2464         }
2465         unlock_page_cgroup(pc);
2466         return memcg;
2467 }
2468
2469 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2470                                        struct page *page,
2471                                        unsigned int nr_pages,
2472                                        struct page_cgroup *pc,
2473                                        enum charge_type ctype)
2474 {
2475         lock_page_cgroup(pc);
2476         if (unlikely(PageCgroupUsed(pc))) {
2477                 unlock_page_cgroup(pc);
2478                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2479                 return;
2480         }
2481         /*
2482          * we don't need page_cgroup_lock about tail pages, becase they are not
2483          * accessed by any other context at this point.
2484          */
2485         pc->mem_cgroup = memcg;
2486         /*
2487          * We access a page_cgroup asynchronously without lock_page_cgroup().
2488          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2489          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2490          * before USED bit, we need memory barrier here.
2491          * See mem_cgroup_add_lru_list(), etc.
2492          */
2493         smp_wmb();
2494         switch (ctype) {
2495         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2496         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2497                 SetPageCgroupCache(pc);
2498                 SetPageCgroupUsed(pc);
2499                 break;
2500         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2501                 ClearPageCgroupCache(pc);
2502                 SetPageCgroupUsed(pc);
2503                 break;
2504         default:
2505                 break;
2506         }
2507
2508         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2509         unlock_page_cgroup(pc);
2510         /*
2511          * "charge_statistics" updated event counter. Then, check it.
2512          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2513          * if they exceeds softlimit.
2514          */
2515         memcg_check_events(memcg, page);
2516 }
2517
2518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2519
2520 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2521                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2522 /*
2523  * Because tail pages are not marked as "used", set it. We're under
2524  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2525  */
2526 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2527 {
2528         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2529         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2530         unsigned long flags;
2531
2532         if (mem_cgroup_disabled())
2533                 return;
2534         /*
2535          * We have no races with charge/uncharge but will have races with
2536          * page state accounting.
2537          */
2538         move_lock_page_cgroup(head_pc, &flags);
2539
2540         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2541         smp_wmb(); /* see __commit_charge() */
2542         if (PageCgroupAcctLRU(head_pc)) {
2543                 enum lru_list lru;
2544                 struct mem_cgroup_per_zone *mz;
2545
2546                 /*
2547                  * LRU flags cannot be copied because we need to add tail
2548                  *.page to LRU by generic call and our hook will be called.
2549                  * We hold lru_lock, then, reduce counter directly.
2550                  */
2551                 lru = page_lru(head);
2552                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2553                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2554         }
2555         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2556         move_unlock_page_cgroup(head_pc, &flags);
2557 }
2558 #endif
2559
2560 /**
2561  * mem_cgroup_move_account - move account of the page
2562  * @page: the page
2563  * @nr_pages: number of regular pages (>1 for huge pages)
2564  * @pc: page_cgroup of the page.
2565  * @from: mem_cgroup which the page is moved from.
2566  * @to: mem_cgroup which the page is moved to. @from != @to.
2567  * @uncharge: whether we should call uncharge and css_put against @from.
2568  *
2569  * The caller must confirm following.
2570  * - page is not on LRU (isolate_page() is useful.)
2571  * - compound_lock is held when nr_pages > 1
2572  *
2573  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2574  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2575  * true, this function does "uncharge" from old cgroup, but it doesn't if
2576  * @uncharge is false, so a caller should do "uncharge".
2577  */
2578 static int mem_cgroup_move_account(struct page *page,
2579                                    unsigned int nr_pages,
2580                                    struct page_cgroup *pc,
2581                                    struct mem_cgroup *from,
2582                                    struct mem_cgroup *to,
2583                                    bool uncharge)
2584 {
2585         unsigned long flags;
2586         int ret;
2587
2588         VM_BUG_ON(from == to);
2589         VM_BUG_ON(PageLRU(page));
2590         /*
2591          * The page is isolated from LRU. So, collapse function
2592          * will not handle this page. But page splitting can happen.
2593          * Do this check under compound_page_lock(). The caller should
2594          * hold it.
2595          */
2596         ret = -EBUSY;
2597         if (nr_pages > 1 && !PageTransHuge(page))
2598                 goto out;
2599
2600         lock_page_cgroup(pc);
2601
2602         ret = -EINVAL;
2603         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2604                 goto unlock;
2605
2606         move_lock_page_cgroup(pc, &flags);
2607
2608         if (PageCgroupFileMapped(pc)) {
2609                 /* Update mapped_file data for mem_cgroup */
2610                 preempt_disable();
2611                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2612                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613                 preempt_enable();
2614         }
2615         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2616         if (uncharge)
2617                 /* This is not "cancel", but cancel_charge does all we need. */
2618                 __mem_cgroup_cancel_charge(from, nr_pages);
2619
2620         /* caller should have done css_get */
2621         pc->mem_cgroup = to;
2622         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2623         /*
2624          * We charges against "to" which may not have any tasks. Then, "to"
2625          * can be under rmdir(). But in current implementation, caller of
2626          * this function is just force_empty() and move charge, so it's
2627          * guaranteed that "to" is never removed. So, we don't check rmdir
2628          * status here.
2629          */
2630         move_unlock_page_cgroup(pc, &flags);
2631         ret = 0;
2632 unlock:
2633         unlock_page_cgroup(pc);
2634         /*
2635          * check events
2636          */
2637         memcg_check_events(to, page);
2638         memcg_check_events(from, page);
2639 out:
2640         return ret;
2641 }
2642
2643 /*
2644  * move charges to its parent.
2645  */
2646
2647 static int mem_cgroup_move_parent(struct page *page,
2648                                   struct page_cgroup *pc,
2649                                   struct mem_cgroup *child,
2650                                   gfp_t gfp_mask)
2651 {
2652         struct cgroup *cg = child->css.cgroup;
2653         struct cgroup *pcg = cg->parent;
2654         struct mem_cgroup *parent;
2655         unsigned int nr_pages;
2656         unsigned long uninitialized_var(flags);
2657         int ret;
2658
2659         /* Is ROOT ? */
2660         if (!pcg)
2661                 return -EINVAL;
2662
2663         ret = -EBUSY;
2664         if (!get_page_unless_zero(page))
2665                 goto out;
2666         if (isolate_lru_page(page))
2667                 goto put;
2668
2669         nr_pages = hpage_nr_pages(page);
2670
2671         parent = mem_cgroup_from_cont(pcg);
2672         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2673         if (ret || !parent)
2674                 goto put_back;
2675
2676         if (nr_pages > 1)
2677                 flags = compound_lock_irqsave(page);
2678
2679         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2680         if (ret)
2681                 __mem_cgroup_cancel_charge(parent, nr_pages);
2682
2683         if (nr_pages > 1)
2684                 compound_unlock_irqrestore(page, flags);
2685 put_back:
2686         putback_lru_page(page);
2687 put:
2688         put_page(page);
2689 out:
2690         return ret;
2691 }
2692
2693 /*
2694  * Charge the memory controller for page usage.
2695  * Return
2696  * 0 if the charge was successful
2697  * < 0 if the cgroup is over its limit
2698  */
2699 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2700                                 gfp_t gfp_mask, enum charge_type ctype)
2701 {
2702         struct mem_cgroup *memcg = NULL;
2703         unsigned int nr_pages = 1;
2704         struct page_cgroup *pc;
2705         bool oom = true;
2706         int ret;
2707
2708         if (PageTransHuge(page)) {
2709                 nr_pages <<= compound_order(page);
2710                 VM_BUG_ON(!PageTransHuge(page));
2711                 /*
2712                  * Never OOM-kill a process for a huge page.  The
2713                  * fault handler will fall back to regular pages.
2714                  */
2715                 oom = false;
2716         }
2717
2718         pc = lookup_page_cgroup(page);
2719         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2720
2721         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2722         if (ret || !memcg)
2723                 return ret;
2724
2725         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2726         return 0;
2727 }
2728
2729 int mem_cgroup_newpage_charge(struct page *page,
2730                               struct mm_struct *mm, gfp_t gfp_mask)
2731 {
2732         if (mem_cgroup_disabled())
2733                 return 0;
2734         /*
2735          * If already mapped, we don't have to account.
2736          * If page cache, page->mapping has address_space.
2737          * But page->mapping may have out-of-use anon_vma pointer,
2738          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2739          * is NULL.
2740          */
2741         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2742                 return 0;
2743         if (unlikely(!mm))
2744                 mm = &init_mm;
2745         return mem_cgroup_charge_common(page, mm, gfp_mask,
2746                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2747 }
2748
2749 static void
2750 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2751                                         enum charge_type ctype);
2752
2753 static void
2754 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2755                                         enum charge_type ctype)
2756 {
2757         struct page_cgroup *pc = lookup_page_cgroup(page);
2758         /*
2759          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2760          * is already on LRU. It means the page may on some other page_cgroup's
2761          * LRU. Take care of it.
2762          */
2763         mem_cgroup_lru_del_before_commit(page);
2764         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2765         mem_cgroup_lru_add_after_commit(page);
2766         return;
2767 }
2768
2769 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2770                                 gfp_t gfp_mask)
2771 {
2772         struct mem_cgroup *memcg = NULL;
2773         int ret;
2774
2775         if (mem_cgroup_disabled())
2776                 return 0;
2777         if (PageCompound(page))
2778                 return 0;
2779
2780         if (unlikely(!mm))
2781                 mm = &init_mm;
2782
2783         if (page_is_file_cache(page)) {
2784                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2785                 if (ret || !memcg)
2786                         return ret;
2787
2788                 /*
2789                  * FUSE reuses pages without going through the final
2790                  * put that would remove them from the LRU list, make
2791                  * sure that they get relinked properly.
2792                  */
2793                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2794                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2795                 return ret;
2796         }
2797         /* shmem */
2798         if (PageSwapCache(page)) {
2799                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2800                 if (!ret)
2801                         __mem_cgroup_commit_charge_swapin(page, memcg,
2802                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2803         } else
2804                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2805                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2806
2807         return ret;
2808 }
2809
2810 /*
2811  * While swap-in, try_charge -> commit or cancel, the page is locked.
2812  * And when try_charge() successfully returns, one refcnt to memcg without
2813  * struct page_cgroup is acquired. This refcnt will be consumed by
2814  * "commit()" or removed by "cancel()"
2815  */
2816 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2817                                  struct page *page,
2818                                  gfp_t mask, struct mem_cgroup **ptr)
2819 {
2820         struct mem_cgroup *memcg;
2821         int ret;
2822
2823         *ptr = NULL;
2824
2825         if (mem_cgroup_disabled())
2826                 return 0;
2827
2828         if (!do_swap_account)
2829                 goto charge_cur_mm;
2830         /*
2831          * A racing thread's fault, or swapoff, may have already updated
2832          * the pte, and even removed page from swap cache: in those cases
2833          * do_swap_page()'s pte_same() test will fail; but there's also a
2834          * KSM case which does need to charge the page.
2835          */
2836         if (!PageSwapCache(page))
2837                 goto charge_cur_mm;
2838         memcg = try_get_mem_cgroup_from_page(page);
2839         if (!memcg)
2840                 goto charge_cur_mm;
2841         *ptr = memcg;
2842         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2843         css_put(&memcg->css);
2844         return ret;
2845 charge_cur_mm:
2846         if (unlikely(!mm))
2847                 mm = &init_mm;
2848         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2849 }
2850
2851 static void
2852 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2853                                         enum charge_type ctype)
2854 {
2855         if (mem_cgroup_disabled())
2856                 return;
2857         if (!ptr)
2858                 return;
2859         cgroup_exclude_rmdir(&ptr->css);
2860
2861         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2862         /*
2863          * Now swap is on-memory. This means this page may be
2864          * counted both as mem and swap....double count.
2865          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2866          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2867          * may call delete_from_swap_cache() before reach here.
2868          */
2869         if (do_swap_account && PageSwapCache(page)) {
2870                 swp_entry_t ent = {.val = page_private(page)};
2871                 unsigned short id;
2872                 struct mem_cgroup *memcg;
2873
2874                 id = swap_cgroup_record(ent, 0);
2875                 rcu_read_lock();
2876                 memcg = mem_cgroup_lookup(id);
2877                 if (memcg) {
2878                         /*
2879                          * This recorded memcg can be obsolete one. So, avoid
2880                          * calling css_tryget
2881                          */
2882                         if (!mem_cgroup_is_root(memcg))
2883                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2884                         mem_cgroup_swap_statistics(memcg, false);
2885                         mem_cgroup_put(memcg);
2886                 }
2887                 rcu_read_unlock();
2888         }
2889         /*
2890          * At swapin, we may charge account against cgroup which has no tasks.
2891          * So, rmdir()->pre_destroy() can be called while we do this charge.
2892          * In that case, we need to call pre_destroy() again. check it here.
2893          */
2894         cgroup_release_and_wakeup_rmdir(&ptr->css);
2895 }
2896
2897 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2898 {
2899         __mem_cgroup_commit_charge_swapin(page, ptr,
2900                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2901 }
2902
2903 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2904 {
2905         if (mem_cgroup_disabled())
2906                 return;
2907         if (!memcg)
2908                 return;
2909         __mem_cgroup_cancel_charge(memcg, 1);
2910 }
2911
2912 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2913                                    unsigned int nr_pages,
2914                                    const enum charge_type ctype)
2915 {
2916         struct memcg_batch_info *batch = NULL;
2917         bool uncharge_memsw = true;
2918
2919         /* If swapout, usage of swap doesn't decrease */
2920         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2921                 uncharge_memsw = false;
2922
2923         batch = &current->memcg_batch;
2924         /*
2925          * In usual, we do css_get() when we remember memcg pointer.
2926          * But in this case, we keep res->usage until end of a series of
2927          * uncharges. Then, it's ok to ignore memcg's refcnt.
2928          */
2929         if (!batch->memcg)
2930                 batch->memcg = memcg;
2931         /*
2932          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2933          * In those cases, all pages freed continuously can be expected to be in
2934          * the same cgroup and we have chance to coalesce uncharges.
2935          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2936          * because we want to do uncharge as soon as possible.
2937          */
2938
2939         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2940                 goto direct_uncharge;
2941
2942         if (nr_pages > 1)
2943                 goto direct_uncharge;
2944
2945         /*
2946          * In typical case, batch->memcg == mem. This means we can
2947          * merge a series of uncharges to an uncharge of res_counter.
2948          * If not, we uncharge res_counter ony by one.
2949          */
2950         if (batch->memcg != memcg)
2951                 goto direct_uncharge;
2952         /* remember freed charge and uncharge it later */
2953         batch->nr_pages++;
2954         if (uncharge_memsw)
2955                 batch->memsw_nr_pages++;
2956         return;
2957 direct_uncharge:
2958         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2959         if (uncharge_memsw)
2960                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2961         if (unlikely(batch->memcg != memcg))
2962                 memcg_oom_recover(memcg);
2963         return;
2964 }
2965
2966 /*
2967  * uncharge if !page_mapped(page)
2968  */
2969 static struct mem_cgroup *
2970 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2971 {
2972         struct mem_cgroup *memcg = NULL;
2973         unsigned int nr_pages = 1;
2974         struct page_cgroup *pc;
2975
2976         if (mem_cgroup_disabled())
2977                 return NULL;
2978
2979         if (PageSwapCache(page))
2980                 return NULL;
2981
2982         if (PageTransHuge(page)) {
2983                 nr_pages <<= compound_order(page);
2984                 VM_BUG_ON(!PageTransHuge(page));
2985         }
2986         /*
2987          * Check if our page_cgroup is valid
2988          */
2989         pc = lookup_page_cgroup(page);
2990         if (unlikely(!pc || !PageCgroupUsed(pc)))
2991                 return NULL;
2992
2993         lock_page_cgroup(pc);
2994
2995         memcg = pc->mem_cgroup;
2996
2997         if (!PageCgroupUsed(pc))
2998                 goto unlock_out;
2999
3000         switch (ctype) {
3001         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3002         case MEM_CGROUP_CHARGE_TYPE_DROP:
3003                 /* See mem_cgroup_prepare_migration() */
3004                 if (page_mapped(page) || PageCgroupMigration(pc))
3005                         goto unlock_out;
3006                 break;
3007         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3008                 if (!PageAnon(page)) {  /* Shared memory */
3009                         if (page->mapping && !page_is_file_cache(page))
3010                                 goto unlock_out;
3011                 } else if (page_mapped(page)) /* Anon */
3012                                 goto unlock_out;
3013                 break;
3014         default:
3015                 break;
3016         }
3017
3018         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3019
3020         ClearPageCgroupUsed(pc);
3021         /*
3022          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3023          * freed from LRU. This is safe because uncharged page is expected not
3024          * to be reused (freed soon). Exception is SwapCache, it's handled by
3025          * special functions.
3026          */
3027
3028         unlock_page_cgroup(pc);
3029         /*
3030          * even after unlock, we have memcg->res.usage here and this memcg
3031          * will never be freed.
3032          */
3033         memcg_check_events(memcg, page);
3034         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3035                 mem_cgroup_swap_statistics(memcg, true);
3036                 mem_cgroup_get(memcg);
3037         }
3038         if (!mem_cgroup_is_root(memcg))
3039                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3040
3041         return memcg;
3042
3043 unlock_out:
3044         unlock_page_cgroup(pc);
3045         return NULL;
3046 }
3047
3048 void mem_cgroup_uncharge_page(struct page *page)
3049 {
3050         /* early check. */
3051         if (page_mapped(page))
3052                 return;
3053         if (page->mapping && !PageAnon(page))
3054                 return;
3055         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3056 }
3057
3058 void mem_cgroup_uncharge_cache_page(struct page *page)
3059 {
3060         VM_BUG_ON(page_mapped(page));
3061         VM_BUG_ON(page->mapping);
3062         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3063 }
3064
3065 /*
3066  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3067  * In that cases, pages are freed continuously and we can expect pages
3068  * are in the same memcg. All these calls itself limits the number of
3069  * pages freed at once, then uncharge_start/end() is called properly.
3070  * This may be called prural(2) times in a context,
3071  */
3072
3073 void mem_cgroup_uncharge_start(void)
3074 {
3075         current->memcg_batch.do_batch++;
3076         /* We can do nest. */
3077         if (current->memcg_batch.do_batch == 1) {
3078                 current->memcg_batch.memcg = NULL;
3079                 current->memcg_batch.nr_pages = 0;
3080                 current->memcg_batch.memsw_nr_pages = 0;
3081         }
3082 }
3083
3084 void mem_cgroup_uncharge_end(void)
3085 {
3086         struct memcg_batch_info *batch = &current->memcg_batch;
3087
3088         if (!batch->do_batch)
3089                 return;
3090
3091         batch->do_batch--;
3092         if (batch->do_batch) /* If stacked, do nothing. */
3093                 return;
3094
3095         if (!batch->memcg)
3096                 return;
3097         /*
3098          * This "batch->memcg" is valid without any css_get/put etc...
3099          * bacause we hide charges behind us.
3100          */
3101         if (batch->nr_pages)
3102                 res_counter_uncharge(&batch->memcg->res,
3103                                      batch->nr_pages * PAGE_SIZE);
3104         if (batch->memsw_nr_pages)
3105                 res_counter_uncharge(&batch->memcg->memsw,
3106                                      batch->memsw_nr_pages * PAGE_SIZE);
3107         memcg_oom_recover(batch->memcg);
3108         /* forget this pointer (for sanity check) */
3109         batch->memcg = NULL;
3110 }
3111
3112 #ifdef CONFIG_SWAP
3113 /*
3114  * called after __delete_from_swap_cache() and drop "page" account.
3115  * memcg information is recorded to swap_cgroup of "ent"
3116  */
3117 void
3118 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3119 {
3120         struct mem_cgroup *memcg;
3121         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3122
3123         if (!swapout) /* this was a swap cache but the swap is unused ! */
3124                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3125
3126         memcg = __mem_cgroup_uncharge_common(page, ctype);
3127
3128         /*
3129          * record memcg information,  if swapout && memcg != NULL,
3130          * mem_cgroup_get() was called in uncharge().
3131          */
3132         if (do_swap_account && swapout && memcg)
3133                 swap_cgroup_record(ent, css_id(&memcg->css));
3134 }
3135 #endif
3136
3137 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3138 /*
3139  * called from swap_entry_free(). remove record in swap_cgroup and
3140  * uncharge "memsw" account.
3141  */
3142 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3143 {
3144         struct mem_cgroup *memcg;
3145         unsigned short id;
3146
3147         if (!do_swap_account)
3148                 return;
3149
3150         id = swap_cgroup_record(ent, 0);
3151         rcu_read_lock();
3152         memcg = mem_cgroup_lookup(id);
3153         if (memcg) {
3154                 /*
3155                  * We uncharge this because swap is freed.
3156                  * This memcg can be obsolete one. We avoid calling css_tryget
3157                  */
3158                 if (!mem_cgroup_is_root(memcg))
3159                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3160                 mem_cgroup_swap_statistics(memcg, false);
3161                 mem_cgroup_put(memcg);
3162         }
3163         rcu_read_unlock();
3164 }
3165
3166 /**
3167  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3168  * @entry: swap entry to be moved
3169  * @from:  mem_cgroup which the entry is moved from
3170  * @to:  mem_cgroup which the entry is moved to
3171  * @need_fixup: whether we should fixup res_counters and refcounts.
3172  *
3173  * It succeeds only when the swap_cgroup's record for this entry is the same
3174  * as the mem_cgroup's id of @from.
3175  *
3176  * Returns 0 on success, -EINVAL on failure.
3177  *
3178  * The caller must have charged to @to, IOW, called res_counter_charge() about
3179  * both res and memsw, and called css_get().
3180  */
3181 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3182                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3183 {
3184         unsigned short old_id, new_id;
3185
3186         old_id = css_id(&from->css);
3187         new_id = css_id(&to->css);
3188
3189         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3190                 mem_cgroup_swap_statistics(from, false);
3191                 mem_cgroup_swap_statistics(to, true);
3192                 /*
3193                  * This function is only called from task migration context now.
3194                  * It postpones res_counter and refcount handling till the end
3195                  * of task migration(mem_cgroup_clear_mc()) for performance
3196                  * improvement. But we cannot postpone mem_cgroup_get(to)
3197                  * because if the process that has been moved to @to does
3198                  * swap-in, the refcount of @to might be decreased to 0.
3199                  */
3200                 mem_cgroup_get(to);
3201                 if (need_fixup) {
3202                         if (!mem_cgroup_is_root(from))
3203                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3204                         mem_cgroup_put(from);
3205                         /*
3206                          * we charged both to->res and to->memsw, so we should
3207                          * uncharge to->res.
3208                          */
3209                         if (!mem_cgroup_is_root(to))
3210                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3211                 }
3212                 return 0;
3213         }
3214         return -EINVAL;
3215 }
3216 #else
3217 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3218                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3219 {
3220         return -EINVAL;
3221 }
3222 #endif
3223
3224 /*
3225  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3226  * page belongs to.
3227  */
3228 int mem_cgroup_prepare_migration(struct page *page,
3229         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3230 {
3231         struct mem_cgroup *memcg = NULL;
3232         struct page_cgroup *pc;
3233         enum charge_type ctype;
3234         int ret = 0;
3235
3236         *ptr = NULL;
3237
3238         VM_BUG_ON(PageTransHuge(page));
3239         if (mem_cgroup_disabled())
3240                 return 0;
3241
3242         pc = lookup_page_cgroup(page);
3243         lock_page_cgroup(pc);
3244         if (PageCgroupUsed(pc)) {
3245                 memcg = pc->mem_cgroup;
3246                 css_get(&memcg->css);
3247                 /*
3248                  * At migrating an anonymous page, its mapcount goes down
3249                  * to 0 and uncharge() will be called. But, even if it's fully
3250                  * unmapped, migration may fail and this page has to be
3251                  * charged again. We set MIGRATION flag here and delay uncharge
3252                  * until end_migration() is called
3253                  *
3254                  * Corner Case Thinking
3255                  * A)
3256                  * When the old page was mapped as Anon and it's unmap-and-freed
3257                  * while migration was ongoing.
3258                  * If unmap finds the old page, uncharge() of it will be delayed
3259                  * until end_migration(). If unmap finds a new page, it's
3260                  * uncharged when it make mapcount to be 1->0. If unmap code
3261                  * finds swap_migration_entry, the new page will not be mapped
3262                  * and end_migration() will find it(mapcount==0).
3263                  *
3264                  * B)
3265                  * When the old page was mapped but migraion fails, the kernel
3266                  * remaps it. A charge for it is kept by MIGRATION flag even
3267                  * if mapcount goes down to 0. We can do remap successfully
3268                  * without charging it again.
3269                  *
3270                  * C)
3271                  * The "old" page is under lock_page() until the end of
3272                  * migration, so, the old page itself will not be swapped-out.
3273                  * If the new page is swapped out before end_migraton, our
3274                  * hook to usual swap-out path will catch the event.
3275                  */
3276                 if (PageAnon(page))
3277                         SetPageCgroupMigration(pc);
3278         }
3279         unlock_page_cgroup(pc);
3280         /*
3281          * If the page is not charged at this point,
3282          * we return here.
3283          */
3284         if (!memcg)
3285                 return 0;
3286
3287         *ptr = memcg;
3288         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3289         css_put(&memcg->css);/* drop extra refcnt */
3290         if (ret || *ptr == NULL) {
3291                 if (PageAnon(page)) {
3292                         lock_page_cgroup(pc);
3293                         ClearPageCgroupMigration(pc);
3294                         unlock_page_cgroup(pc);
3295                         /*
3296                          * The old page may be fully unmapped while we kept it.
3297                          */
3298                         mem_cgroup_uncharge_page(page);
3299                 }
3300                 return -ENOMEM;
3301         }
3302         /*
3303          * We charge new page before it's used/mapped. So, even if unlock_page()
3304          * is called before end_migration, we can catch all events on this new
3305          * page. In the case new page is migrated but not remapped, new page's
3306          * mapcount will be finally 0 and we call uncharge in end_migration().
3307          */
3308         pc = lookup_page_cgroup(newpage);
3309         if (PageAnon(page))
3310                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3311         else if (page_is_file_cache(page))
3312                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3313         else
3314                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3315         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3316         return ret;
3317 }
3318
3319 /* remove redundant charge if migration failed*/
3320 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3321         struct page *oldpage, struct page *newpage, bool migration_ok)
3322 {
3323         struct page *used, *unused;
3324         struct page_cgroup *pc;
3325
3326         if (!memcg)
3327                 return;
3328         /* blocks rmdir() */
3329         cgroup_exclude_rmdir(&memcg->css);
3330         if (!migration_ok) {
3331                 used = oldpage;
3332                 unused = newpage;
3333         } else {
3334                 used = newpage;
3335                 unused = oldpage;
3336         }
3337         /*
3338          * We disallowed uncharge of pages under migration because mapcount
3339          * of the page goes down to zero, temporarly.
3340          * Clear the flag and check the page should be charged.
3341          */
3342         pc = lookup_page_cgroup(oldpage);
3343         lock_page_cgroup(pc);
3344         ClearPageCgroupMigration(pc);
3345         unlock_page_cgroup(pc);
3346
3347         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3348
3349         /*
3350          * If a page is a file cache, radix-tree replacement is very atomic
3351          * and we can skip this check. When it was an Anon page, its mapcount
3352          * goes down to 0. But because we added MIGRATION flage, it's not
3353          * uncharged yet. There are several case but page->mapcount check
3354          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3355          * check. (see prepare_charge() also)
3356          */
3357         if (PageAnon(used))
3358                 mem_cgroup_uncharge_page(used);
3359         /*
3360          * At migration, we may charge account against cgroup which has no
3361          * tasks.
3362          * So, rmdir()->pre_destroy() can be called while we do this charge.
3363          * In that case, we need to call pre_destroy() again. check it here.
3364          */
3365         cgroup_release_and_wakeup_rmdir(&memcg->css);
3366 }
3367
3368 #ifdef CONFIG_DEBUG_VM
3369 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3370 {
3371         struct page_cgroup *pc;
3372
3373         pc = lookup_page_cgroup(page);
3374         if (likely(pc) && PageCgroupUsed(pc))
3375                 return pc;
3376         return NULL;
3377 }
3378
3379 bool mem_cgroup_bad_page_check(struct page *page)
3380 {
3381         if (mem_cgroup_disabled())
3382                 return false;
3383
3384         return lookup_page_cgroup_used(page) != NULL;
3385 }
3386
3387 void mem_cgroup_print_bad_page(struct page *page)
3388 {
3389         struct page_cgroup *pc;
3390
3391         pc = lookup_page_cgroup_used(page);
3392         if (pc) {
3393                 int ret = -1;
3394                 char *path;
3395
3396                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3397                        pc, pc->flags, pc->mem_cgroup);
3398
3399                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3400                 if (path) {
3401                         rcu_read_lock();
3402                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3403                                                         path, PATH_MAX);
3404                         rcu_read_unlock();
3405                 }
3406
3407                 printk(KERN_CONT "(%s)\n",
3408                                 (ret < 0) ? "cannot get the path" : path);
3409                 kfree(path);
3410         }
3411 }
3412 #endif
3413
3414 static DEFINE_MUTEX(set_limit_mutex);
3415
3416 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3417                                 unsigned long long val)
3418 {
3419         int retry_count;
3420         u64 memswlimit, memlimit;
3421         int ret = 0;
3422         int children = mem_cgroup_count_children(memcg);
3423         u64 curusage, oldusage;
3424         int enlarge;
3425
3426         /*
3427          * For keeping hierarchical_reclaim simple, how long we should retry
3428          * is depends on callers. We set our retry-count to be function
3429          * of # of children which we should visit in this loop.
3430          */
3431         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3432
3433         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3434
3435         enlarge = 0;
3436         while (retry_count) {
3437                 if (signal_pending(current)) {
3438                         ret = -EINTR;
3439                         break;
3440                 }
3441                 /*
3442                  * Rather than hide all in some function, I do this in
3443                  * open coded manner. You see what this really does.
3444                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3445                  */
3446                 mutex_lock(&set_limit_mutex);
3447                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3448                 if (memswlimit < val) {
3449                         ret = -EINVAL;
3450                         mutex_unlock(&set_limit_mutex);
3451                         break;
3452                 }
3453
3454                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3455                 if (memlimit < val)
3456                         enlarge = 1;
3457
3458                 ret = res_counter_set_limit(&memcg->res, val);
3459                 if (!ret) {
3460                         if (memswlimit == val)
3461                                 memcg->memsw_is_minimum = true;
3462                         else
3463                                 memcg->memsw_is_minimum = false;
3464                 }
3465                 mutex_unlock(&set_limit_mutex);
3466
3467                 if (!ret)
3468                         break;
3469
3470                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3471                                                 MEM_CGROUP_RECLAIM_SHRINK,
3472                                                 NULL);
3473                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3474                 /* Usage is reduced ? */
3475                 if (curusage >= oldusage)
3476                         retry_count--;
3477                 else
3478                         oldusage = curusage;
3479         }
3480         if (!ret && enlarge)
3481                 memcg_oom_recover(memcg);
3482
3483         return ret;
3484 }
3485
3486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3487                                         unsigned long long val)
3488 {
3489         int retry_count;
3490         u64 memlimit, memswlimit, oldusage, curusage;
3491         int children = mem_cgroup_count_children(memcg);
3492         int ret = -EBUSY;
3493         int enlarge = 0;
3494
3495         /* see mem_cgroup_resize_res_limit */
3496         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3497         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3498         while (retry_count) {
3499                 if (signal_pending(current)) {
3500                         ret = -EINTR;
3501                         break;
3502                 }
3503                 /*
3504                  * Rather than hide all in some function, I do this in
3505                  * open coded manner. You see what this really does.
3506                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3507                  */
3508                 mutex_lock(&set_limit_mutex);
3509                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510                 if (memlimit > val) {
3511                         ret = -EINVAL;
3512                         mutex_unlock(&set_limit_mutex);
3513                         break;
3514                 }
3515                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3516                 if (memswlimit < val)
3517                         enlarge = 1;
3518                 ret = res_counter_set_limit(&memcg->memsw, val);
3519                 if (!ret) {
3520                         if (memlimit == val)
3521                                 memcg->memsw_is_minimum = true;
3522                         else
3523                                 memcg->memsw_is_minimum = false;
3524                 }
3525                 mutex_unlock(&set_limit_mutex);
3526
3527                 if (!ret)
3528                         break;
3529
3530                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3531                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3532                                                 MEM_CGROUP_RECLAIM_SHRINK,
3533                                                 NULL);
3534                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3535                 /* Usage is reduced ? */
3536                 if (curusage >= oldusage)
3537                         retry_count--;
3538                 else
3539                         oldusage = curusage;
3540         }
3541         if (!ret && enlarge)
3542                 memcg_oom_recover(memcg);
3543         return ret;
3544 }
3545
3546 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3547                                             gfp_t gfp_mask,
3548                                             unsigned long *total_scanned)
3549 {
3550         unsigned long nr_reclaimed = 0;
3551         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3552         unsigned long reclaimed;
3553         int loop = 0;
3554         struct mem_cgroup_tree_per_zone *mctz;
3555         unsigned long long excess;
3556         unsigned long nr_scanned;
3557
3558         if (order > 0)
3559                 return 0;
3560
3561         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3562         /*
3563          * This loop can run a while, specially if mem_cgroup's continuously
3564          * keep exceeding their soft limit and putting the system under
3565          * pressure
3566          */
3567         do {
3568                 if (next_mz)
3569                         mz = next_mz;
3570                 else
3571                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3572                 if (!mz)
3573                         break;
3574
3575                 nr_scanned = 0;
3576                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3577                                                 gfp_mask,
3578                                                 MEM_CGROUP_RECLAIM_SOFT,
3579                                                 &nr_scanned);
3580                 nr_reclaimed += reclaimed;
3581                 *total_scanned += nr_scanned;
3582                 spin_lock(&mctz->lock);
3583
3584                 /*
3585                  * If we failed to reclaim anything from this memory cgroup
3586                  * it is time to move on to the next cgroup
3587                  */
3588                 next_mz = NULL;
3589                 if (!reclaimed) {
3590                         do {
3591                                 /*
3592                                  * Loop until we find yet another one.
3593                                  *
3594                                  * By the time we get the soft_limit lock
3595                                  * again, someone might have aded the
3596                                  * group back on the RB tree. Iterate to
3597                                  * make sure we get a different mem.
3598                                  * mem_cgroup_largest_soft_limit_node returns
3599                                  * NULL if no other cgroup is present on
3600                                  * the tree
3601                                  */
3602                                 next_mz =
3603                                 __mem_cgroup_largest_soft_limit_node(mctz);
3604                                 if (next_mz == mz)
3605                                         css_put(&next_mz->mem->css);
3606                                 else /* next_mz == NULL or other memcg */
3607                                         break;
3608                         } while (1);
3609                 }
3610                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3611                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3612                 /*
3613                  * One school of thought says that we should not add
3614                  * back the node to the tree if reclaim returns 0.
3615                  * But our reclaim could return 0, simply because due
3616                  * to priority we are exposing a smaller subset of
3617                  * memory to reclaim from. Consider this as a longer
3618                  * term TODO.
3619                  */
3620                 /* If excess == 0, no tree ops */
3621                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3622                 spin_unlock(&mctz->lock);
3623                 css_put(&mz->mem->css);
3624                 loop++;
3625                 /*
3626                  * Could not reclaim anything and there are no more
3627                  * mem cgroups to try or we seem to be looping without
3628                  * reclaiming anything.
3629                  */
3630                 if (!nr_reclaimed &&
3631                         (next_mz == NULL ||
3632                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3633                         break;
3634         } while (!nr_reclaimed);
3635         if (next_mz)
3636                 css_put(&next_mz->mem->css);
3637         return nr_reclaimed;
3638 }
3639
3640 /*
3641  * This routine traverse page_cgroup in given list and drop them all.
3642  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3643  */
3644 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3645                                 int node, int zid, enum lru_list lru)
3646 {
3647         struct zone *zone;
3648         struct mem_cgroup_per_zone *mz;
3649         struct page_cgroup *pc, *busy;
3650         unsigned long flags, loop;
3651         struct list_head *list;
3652         int ret = 0;
3653
3654         zone = &NODE_DATA(node)->node_zones[zid];
3655         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3656         list = &mz->lists[lru];
3657
3658         loop = MEM_CGROUP_ZSTAT(mz, lru);
3659         /* give some margin against EBUSY etc...*/
3660         loop += 256;
3661         busy = NULL;
3662         while (loop--) {
3663                 struct page *page;
3664
3665                 ret = 0;
3666                 spin_lock_irqsave(&zone->lru_lock, flags);
3667                 if (list_empty(list)) {
3668                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3669                         break;
3670                 }
3671                 pc = list_entry(list->prev, struct page_cgroup, lru);
3672                 if (busy == pc) {
3673                         list_move(&pc->lru, list);
3674                         busy = NULL;
3675                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3676                         continue;
3677                 }
3678                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3679
3680                 page = lookup_cgroup_page(pc);
3681
3682                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3683                 if (ret == -ENOMEM)
3684                         break;
3685
3686                 if (ret == -EBUSY || ret == -EINVAL) {
3687                         /* found lock contention or "pc" is obsolete. */
3688                         busy = pc;
3689                         cond_resched();
3690                 } else
3691                         busy = NULL;
3692         }
3693
3694         if (!ret && !list_empty(list))
3695                 return -EBUSY;
3696         return ret;
3697 }
3698
3699 /*
3700  * make mem_cgroup's charge to be 0 if there is no task.
3701  * This enables deleting this mem_cgroup.
3702  */
3703 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3704 {
3705         int ret;
3706         int node, zid, shrink;
3707         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3708         struct cgroup *cgrp = memcg->css.cgroup;
3709
3710         css_get(&memcg->css);
3711
3712         shrink = 0;
3713         /* should free all ? */
3714         if (free_all)
3715                 goto try_to_free;
3716 move_account:
3717         do {
3718                 ret = -EBUSY;
3719                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3720                         goto out;
3721                 ret = -EINTR;
3722                 if (signal_pending(current))
3723                         goto out;
3724                 /* This is for making all *used* pages to be on LRU. */
3725                 lru_add_drain_all();
3726                 drain_all_stock_sync(memcg);
3727                 ret = 0;
3728                 mem_cgroup_start_move(memcg);
3729                 for_each_node_state(node, N_HIGH_MEMORY) {
3730                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3731                                 enum lru_list l;
3732                                 for_each_lru(l) {
3733                                         ret = mem_cgroup_force_empty_list(memcg,
3734                                                         node, zid, l);
3735                                         if (ret)
3736                                                 break;
3737                                 }
3738                         }
3739                         if (ret)
3740                                 break;
3741                 }
3742                 mem_cgroup_end_move(memcg);
3743                 memcg_oom_recover(memcg);
3744                 /* it seems parent cgroup doesn't have enough mem */
3745                 if (ret == -ENOMEM)
3746                         goto try_to_free;
3747                 cond_resched();
3748         /* "ret" should also be checked to ensure all lists are empty. */
3749         } while (memcg->res.usage > 0 || ret);
3750 out:
3751         css_put(&memcg->css);
3752         return ret;
3753
3754 try_to_free:
3755         /* returns EBUSY if there is a task or if we come here twice. */
3756         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3757                 ret = -EBUSY;
3758                 goto out;
3759         }
3760         /* we call try-to-free pages for make this cgroup empty */
3761         lru_add_drain_all();
3762         /* try to free all pages in this cgroup */
3763         shrink = 1;
3764         while (nr_retries && memcg->res.usage > 0) {
3765                 int progress;
3766
3767                 if (signal_pending(current)) {
3768                         ret = -EINTR;
3769                         goto out;
3770                 }
3771                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3772                                                 false);
3773                 if (!progress) {
3774                         nr_retries--;
3775                         /* maybe some writeback is necessary */
3776                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3777                 }
3778
3779         }
3780         lru_add_drain();
3781         /* try move_account...there may be some *locked* pages. */
3782         goto move_account;
3783 }
3784
3785 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3786 {
3787         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3788 }
3789
3790
3791 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3792 {
3793         return mem_cgroup_from_cont(cont)->use_hierarchy;
3794 }
3795
3796 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3797                                         u64 val)
3798 {
3799         int retval = 0;
3800         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3801         struct cgroup *parent = cont->parent;
3802         struct mem_cgroup *parent_memcg = NULL;
3803
3804         if (parent)
3805                 parent_memcg = mem_cgroup_from_cont(parent);
3806
3807         cgroup_lock();
3808         /*
3809          * If parent's use_hierarchy is set, we can't make any modifications
3810          * in the child subtrees. If it is unset, then the change can
3811          * occur, provided the current cgroup has no children.
3812          *
3813          * For the root cgroup, parent_mem is NULL, we allow value to be
3814          * set if there are no children.
3815          */
3816         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3817                                 (val == 1 || val == 0)) {
3818                 if (list_empty(&cont->children))
3819                         memcg->use_hierarchy = val;
3820                 else
3821                         retval = -EBUSY;
3822         } else
3823                 retval = -EINVAL;
3824         cgroup_unlock();
3825
3826         return retval;
3827 }
3828
3829
3830 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3831                                                enum mem_cgroup_stat_index idx)
3832 {
3833         struct mem_cgroup *iter;
3834         long val = 0;
3835
3836         /* Per-cpu values can be negative, use a signed accumulator */
3837         for_each_mem_cgroup_tree(iter, memcg)
3838                 val += mem_cgroup_read_stat(iter, idx);
3839
3840         if (val < 0) /* race ? */
3841                 val = 0;
3842         return val;
3843 }
3844
3845 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3846 {
3847         u64 val;
3848
3849         if (!mem_cgroup_is_root(memcg)) {
3850                 if (!swap)
3851                         return res_counter_read_u64(&memcg->res, RES_USAGE);
3852                 else
3853                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3854         }
3855
3856         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3857         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3858
3859         if (swap)
3860                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3861
3862         return val << PAGE_SHIFT;
3863 }
3864
3865 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3866 {
3867         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868         u64 val;
3869         int type, name;
3870
3871         type = MEMFILE_TYPE(cft->private);
3872         name = MEMFILE_ATTR(cft->private);
3873         switch (type) {
3874         case _MEM:
3875                 if (name == RES_USAGE)
3876                         val = mem_cgroup_usage(memcg, false);
3877                 else
3878                         val = res_counter_read_u64(&memcg->res, name);
3879                 break;
3880         case _MEMSWAP:
3881                 if (name == RES_USAGE)
3882                         val = mem_cgroup_usage(memcg, true);
3883                 else
3884                         val = res_counter_read_u64(&memcg->memsw, name);
3885                 break;
3886         default:
3887                 BUG();
3888                 break;
3889         }
3890         return val;
3891 }
3892 /*
3893  * The user of this function is...
3894  * RES_LIMIT.
3895  */
3896 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3897                             const char *buffer)
3898 {
3899         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3900         int type, name;
3901         unsigned long long val;
3902         int ret;
3903
3904         type = MEMFILE_TYPE(cft->private);
3905         name = MEMFILE_ATTR(cft->private);
3906         switch (name) {
3907         case RES_LIMIT:
3908                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3909                         ret = -EINVAL;
3910                         break;
3911                 }
3912                 /* This function does all necessary parse...reuse it */
3913                 ret = res_counter_memparse_write_strategy(buffer, &val);
3914                 if (ret)
3915                         break;
3916                 if (type == _MEM)
3917                         ret = mem_cgroup_resize_limit(memcg, val);
3918                 else
3919                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3920                 break;
3921         case RES_SOFT_LIMIT:
3922                 ret = res_counter_memparse_write_strategy(buffer, &val);
3923                 if (ret)
3924                         break;
3925                 /*
3926                  * For memsw, soft limits are hard to implement in terms
3927                  * of semantics, for now, we support soft limits for
3928                  * control without swap
3929                  */
3930                 if (type == _MEM)
3931                         ret = res_counter_set_soft_limit(&memcg->res, val);
3932                 else
3933                         ret = -EINVAL;
3934                 break;
3935         default:
3936                 ret = -EINVAL; /* should be BUG() ? */
3937                 break;
3938         }
3939         return ret;
3940 }
3941
3942 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3943                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3944 {
3945         struct cgroup *cgroup;
3946         unsigned long long min_limit, min_memsw_limit, tmp;
3947
3948         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3949         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3950         cgroup = memcg->css.cgroup;
3951         if (!memcg->use_hierarchy)
3952                 goto out;
3953
3954         while (cgroup->parent) {
3955                 cgroup = cgroup->parent;
3956                 memcg = mem_cgroup_from_cont(cgroup);
3957                 if (!memcg->use_hierarchy)
3958                         break;
3959                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3960                 min_limit = min(min_limit, tmp);
3961                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3962                 min_memsw_limit = min(min_memsw_limit, tmp);
3963         }
3964 out:
3965         *mem_limit = min_limit;
3966         *memsw_limit = min_memsw_limit;
3967         return;
3968 }
3969
3970 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3971 {
3972         struct mem_cgroup *memcg;
3973         int type, name;
3974
3975         memcg = mem_cgroup_from_cont(cont);
3976         type = MEMFILE_TYPE(event);
3977         name = MEMFILE_ATTR(event);
3978         switch (name) {
3979         case RES_MAX_USAGE:
3980                 if (type == _MEM)
3981                         res_counter_reset_max(&memcg->res);
3982                 else
3983                         res_counter_reset_max(&memcg->memsw);
3984                 break;
3985         case RES_FAILCNT:
3986                 if (type == _MEM)
3987                         res_counter_reset_failcnt(&memcg->res);
3988                 else
3989                         res_counter_reset_failcnt(&memcg->memsw);
3990                 break;
3991         }
3992
3993         return 0;
3994 }
3995
3996 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3997                                         struct cftype *cft)
3998 {
3999         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4000 }
4001
4002 #ifdef CONFIG_MMU
4003 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4004                                         struct cftype *cft, u64 val)
4005 {
4006         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4007
4008         if (val >= (1 << NR_MOVE_TYPE))
4009                 return -EINVAL;
4010         /*
4011          * We check this value several times in both in can_attach() and
4012          * attach(), so we need cgroup lock to prevent this value from being
4013          * inconsistent.
4014          */
4015         cgroup_lock();
4016         memcg->move_charge_at_immigrate = val;
4017         cgroup_unlock();
4018
4019         return 0;
4020 }
4021 #else
4022 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4023                                         struct cftype *cft, u64 val)
4024 {
4025         return -ENOSYS;
4026 }
4027 #endif
4028
4029
4030 /* For read statistics */
4031 enum {
4032         MCS_CACHE,
4033         MCS_RSS,
4034         MCS_FILE_MAPPED,
4035         MCS_PGPGIN,
4036         MCS_PGPGOUT,
4037         MCS_SWAP,
4038         MCS_PGFAULT,
4039         MCS_PGMAJFAULT,
4040         MCS_INACTIVE_ANON,
4041         MCS_ACTIVE_ANON,
4042         MCS_INACTIVE_FILE,
4043         MCS_ACTIVE_FILE,
4044         MCS_UNEVICTABLE,
4045         NR_MCS_STAT,
4046 };
4047
4048 struct mcs_total_stat {
4049         s64 stat[NR_MCS_STAT];
4050 };
4051
4052 struct {
4053         char *local_name;
4054         char *total_name;
4055 } memcg_stat_strings[NR_MCS_STAT] = {
4056         {"cache", "total_cache"},
4057         {"rss", "total_rss"},
4058         {"mapped_file", "total_mapped_file"},
4059         {"pgpgin", "total_pgpgin"},
4060         {"pgpgout", "total_pgpgout"},
4061         {"swap", "total_swap"},
4062         {"pgfault", "total_pgfault"},
4063         {"pgmajfault", "total_pgmajfault"},
4064         {"inactive_anon", "total_inactive_anon"},
4065         {"active_anon", "total_active_anon"},
4066         {"inactive_file", "total_inactive_file"},
4067         {"active_file", "total_active_file"},
4068         {"unevictable", "total_unevictable"}
4069 };
4070
4071
4072 static void
4073 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4074 {
4075         s64 val;
4076
4077         /* per cpu stat */
4078         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4079         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4080         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4081         s->stat[MCS_RSS] += val * PAGE_SIZE;
4082         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4083         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4084         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4085         s->stat[MCS_PGPGIN] += val;
4086         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4087         s->stat[MCS_PGPGOUT] += val;
4088         if (do_swap_account) {
4089                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4090                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4091         }
4092         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4093         s->stat[MCS_PGFAULT] += val;
4094         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4095         s->stat[MCS_PGMAJFAULT] += val;
4096
4097         /* per zone stat */
4098         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4099         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4100         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4101         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4102         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4103         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4104         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4105         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4106         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4107         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4108 }
4109
4110 static void
4111 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4112 {
4113         struct mem_cgroup *iter;
4114
4115         for_each_mem_cgroup_tree(iter, memcg)
4116                 mem_cgroup_get_local_stat(iter, s);
4117 }
4118
4119 #ifdef CONFIG_NUMA
4120 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4121 {
4122         int nid;
4123         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4124         unsigned long node_nr;
4125         struct cgroup *cont = m->private;
4126         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4127
4128         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4129         seq_printf(m, "total=%lu", total_nr);
4130         for_each_node_state(nid, N_HIGH_MEMORY) {
4131                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4132                 seq_printf(m, " N%d=%lu", nid, node_nr);
4133         }
4134         seq_putc(m, '\n');
4135
4136         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4137         seq_printf(m, "file=%lu", file_nr);
4138         for_each_node_state(nid, N_HIGH_MEMORY) {
4139                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4140                                 LRU_ALL_FILE);
4141                 seq_printf(m, " N%d=%lu", nid, node_nr);
4142         }
4143         seq_putc(m, '\n');
4144
4145         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4146         seq_printf(m, "anon=%lu", anon_nr);
4147         for_each_node_state(nid, N_HIGH_MEMORY) {
4148                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4149                                 LRU_ALL_ANON);
4150                 seq_printf(m, " N%d=%lu", nid, node_nr);
4151         }
4152         seq_putc(m, '\n');
4153
4154         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4155         seq_printf(m, "unevictable=%lu", unevictable_nr);
4156         for_each_node_state(nid, N_HIGH_MEMORY) {
4157                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4158                                 BIT(LRU_UNEVICTABLE));
4159                 seq_printf(m, " N%d=%lu", nid, node_nr);
4160         }
4161         seq_putc(m, '\n');
4162         return 0;
4163 }
4164 #endif /* CONFIG_NUMA */
4165
4166 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4167                                  struct cgroup_map_cb *cb)
4168 {
4169         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4170         struct mcs_total_stat mystat;
4171         int i;
4172
4173         memset(&mystat, 0, sizeof(mystat));
4174         mem_cgroup_get_local_stat(mem_cont, &mystat);
4175
4176
4177         for (i = 0; i < NR_MCS_STAT; i++) {
4178                 if (i == MCS_SWAP && !do_swap_account)
4179                         continue;
4180                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4181         }
4182
4183         /* Hierarchical information */
4184         {
4185                 unsigned long long limit, memsw_limit;
4186                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4187                 cb->fill(cb, "hierarchical_memory_limit", limit);
4188                 if (do_swap_account)
4189                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4190         }
4191
4192         memset(&mystat, 0, sizeof(mystat));
4193         mem_cgroup_get_total_stat(mem_cont, &mystat);
4194         for (i = 0; i < NR_MCS_STAT; i++) {
4195                 if (i == MCS_SWAP && !do_swap_account)
4196                         continue;
4197                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4198         }
4199
4200 #ifdef CONFIG_DEBUG_VM
4201         {
4202                 int nid, zid;
4203                 struct mem_cgroup_per_zone *mz;
4204                 unsigned long recent_rotated[2] = {0, 0};
4205                 unsigned long recent_scanned[2] = {0, 0};
4206
4207                 for_each_online_node(nid)
4208                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4209                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4210
4211                                 recent_rotated[0] +=
4212                                         mz->reclaim_stat.recent_rotated[0];
4213                                 recent_rotated[1] +=
4214                                         mz->reclaim_stat.recent_rotated[1];
4215                                 recent_scanned[0] +=
4216                                         mz->reclaim_stat.recent_scanned[0];
4217                                 recent_scanned[1] +=
4218                                         mz->reclaim_stat.recent_scanned[1];
4219                         }
4220                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4221                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4222                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4223                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4224         }
4225 #endif
4226
4227         return 0;
4228 }
4229
4230 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4231 {
4232         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233
4234         return mem_cgroup_swappiness(memcg);
4235 }
4236
4237 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4238                                        u64 val)
4239 {
4240         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4241         struct mem_cgroup *parent;
4242
4243         if (val > 100)
4244                 return -EINVAL;
4245
4246         if (cgrp->parent == NULL)
4247                 return -EINVAL;
4248
4249         parent = mem_cgroup_from_cont(cgrp->parent);
4250
4251         cgroup_lock();
4252
4253         /* If under hierarchy, only empty-root can set this value */
4254         if ((parent->use_hierarchy) ||
4255             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4256                 cgroup_unlock();
4257                 return -EINVAL;
4258         }
4259
4260         memcg->swappiness = val;
4261
4262         cgroup_unlock();
4263
4264         return 0;
4265 }
4266
4267 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4268 {
4269         struct mem_cgroup_threshold_ary *t;
4270         u64 usage;
4271         int i;
4272
4273         rcu_read_lock();
4274         if (!swap)
4275                 t = rcu_dereference(memcg->thresholds.primary);
4276         else
4277                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4278
4279         if (!t)
4280                 goto unlock;
4281
4282         usage = mem_cgroup_usage(memcg, swap);
4283
4284         /*
4285          * current_threshold points to threshold just below usage.
4286          * If it's not true, a threshold was crossed after last
4287          * call of __mem_cgroup_threshold().
4288          */
4289         i = t->current_threshold;
4290
4291         /*
4292          * Iterate backward over array of thresholds starting from
4293          * current_threshold and check if a threshold is crossed.
4294          * If none of thresholds below usage is crossed, we read
4295          * only one element of the array here.
4296          */
4297         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4298                 eventfd_signal(t->entries[i].eventfd, 1);
4299
4300         /* i = current_threshold + 1 */
4301         i++;
4302
4303         /*
4304          * Iterate forward over array of thresholds starting from
4305          * current_threshold+1 and check if a threshold is crossed.
4306          * If none of thresholds above usage is crossed, we read
4307          * only one element of the array here.
4308          */
4309         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4310                 eventfd_signal(t->entries[i].eventfd, 1);
4311
4312         /* Update current_threshold */
4313         t->current_threshold = i - 1;
4314 unlock:
4315         rcu_read_unlock();
4316 }
4317
4318 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4319 {
4320         while (memcg) {
4321                 __mem_cgroup_threshold(memcg, false);
4322                 if (do_swap_account)
4323                         __mem_cgroup_threshold(memcg, true);
4324
4325                 memcg = parent_mem_cgroup(memcg);
4326         }
4327 }
4328
4329 static int compare_thresholds(const void *a, const void *b)
4330 {
4331         const struct mem_cgroup_threshold *_a = a;
4332         const struct mem_cgroup_threshold *_b = b;
4333
4334         return _a->threshold - _b->threshold;
4335 }
4336
4337 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4338 {
4339         struct mem_cgroup_eventfd_list *ev;
4340
4341         list_for_each_entry(ev, &memcg->oom_notify, list)
4342                 eventfd_signal(ev->eventfd, 1);
4343         return 0;
4344 }
4345
4346 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4347 {
4348         struct mem_cgroup *iter;
4349
4350         for_each_mem_cgroup_tree(iter, memcg)
4351                 mem_cgroup_oom_notify_cb(iter);
4352 }
4353
4354 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4355         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4356 {
4357         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4358         struct mem_cgroup_thresholds *thresholds;
4359         struct mem_cgroup_threshold_ary *new;
4360         int type = MEMFILE_TYPE(cft->private);
4361         u64 threshold, usage;
4362         int i, size, ret;
4363
4364         ret = res_counter_memparse_write_strategy(args, &threshold);
4365         if (ret)
4366                 return ret;
4367
4368         mutex_lock(&memcg->thresholds_lock);
4369
4370         if (type == _MEM)
4371                 thresholds = &memcg->thresholds;
4372         else if (type == _MEMSWAP)
4373                 thresholds = &memcg->memsw_thresholds;
4374         else
4375                 BUG();
4376
4377         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4378
4379         /* Check if a threshold crossed before adding a new one */
4380         if (thresholds->primary)
4381                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4382
4383         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4384
4385         /* Allocate memory for new array of thresholds */
4386         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4387                         GFP_KERNEL);
4388         if (!new) {
4389                 ret = -ENOMEM;
4390                 goto unlock;
4391         }
4392         new->size = size;
4393
4394         /* Copy thresholds (if any) to new array */
4395         if (thresholds->primary) {
4396                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4397                                 sizeof(struct mem_cgroup_threshold));
4398         }
4399
4400         /* Add new threshold */
4401         new->entries[size - 1].eventfd = eventfd;
4402         new->entries[size - 1].threshold = threshold;
4403
4404         /* Sort thresholds. Registering of new threshold isn't time-critical */
4405         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4406                         compare_thresholds, NULL);
4407
4408         /* Find current threshold */
4409         new->current_threshold = -1;
4410         for (i = 0; i < size; i++) {
4411                 if (new->entries[i].threshold < usage) {
4412                         /*
4413                          * new->current_threshold will not be used until
4414                          * rcu_assign_pointer(), so it's safe to increment
4415                          * it here.
4416                          */
4417                         ++new->current_threshold;
4418                 }
4419         }
4420
4421         /* Free old spare buffer and save old primary buffer as spare */
4422         kfree(thresholds->spare);
4423         thresholds->spare = thresholds->primary;
4424
4425         rcu_assign_pointer(thresholds->primary, new);
4426
4427         /* To be sure that nobody uses thresholds */
4428         synchronize_rcu();
4429
4430 unlock:
4431         mutex_unlock(&memcg->thresholds_lock);
4432
4433         return ret;
4434 }
4435
4436 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4437         struct cftype *cft, struct eventfd_ctx *eventfd)
4438 {
4439         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4440         struct mem_cgroup_thresholds *thresholds;
4441         struct mem_cgroup_threshold_ary *new;
4442         int type = MEMFILE_TYPE(cft->private);
4443         u64 usage;
4444         int i, j, size;
4445
4446         mutex_lock(&memcg->thresholds_lock);
4447         if (type == _MEM)
4448                 thresholds = &memcg->thresholds;
4449         else if (type == _MEMSWAP)
4450                 thresholds = &memcg->memsw_thresholds;
4451         else
4452                 BUG();
4453
4454         /*
4455          * Something went wrong if we trying to unregister a threshold
4456          * if we don't have thresholds
4457          */
4458         BUG_ON(!thresholds);
4459
4460         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4461
4462         /* Check if a threshold crossed before removing */
4463         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4464
4465         /* Calculate new number of threshold */
4466         size = 0;
4467         for (i = 0; i < thresholds->primary->size; i++) {
4468                 if (thresholds->primary->entries[i].eventfd != eventfd)
4469                         size++;
4470         }
4471
4472         new = thresholds->spare;
4473
4474         /* Set thresholds array to NULL if we don't have thresholds */
4475         if (!size) {
4476                 kfree(new);
4477                 new = NULL;
4478                 goto swap_buffers;
4479         }
4480
4481         new->size = size;
4482
4483         /* Copy thresholds and find current threshold */
4484         new->current_threshold = -1;
4485         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4486                 if (thresholds->primary->entries[i].eventfd == eventfd)
4487                         continue;
4488
4489                 new->entries[j] = thresholds->primary->entries[i];
4490                 if (new->entries[j].threshold < usage) {
4491                         /*
4492                          * new->current_threshold will not be used
4493                          * until rcu_assign_pointer(), so it's safe to increment
4494                          * it here.
4495                          */
4496                         ++new->current_threshold;
4497                 }
4498                 j++;
4499         }
4500
4501 swap_buffers:
4502         /* Swap primary and spare array */
4503         thresholds->spare = thresholds->primary;
4504         rcu_assign_pointer(thresholds->primary, new);
4505
4506         /* To be sure that nobody uses thresholds */
4507         synchronize_rcu();
4508
4509         mutex_unlock(&memcg->thresholds_lock);
4510 }
4511
4512 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4513         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4514 {
4515         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4516         struct mem_cgroup_eventfd_list *event;
4517         int type = MEMFILE_TYPE(cft->private);
4518
4519         BUG_ON(type != _OOM_TYPE);
4520         event = kmalloc(sizeof(*event), GFP_KERNEL);
4521         if (!event)
4522                 return -ENOMEM;
4523
4524         spin_lock(&memcg_oom_lock);
4525
4526         event->eventfd = eventfd;
4527         list_add(&event->list, &memcg->oom_notify);
4528
4529         /* already in OOM ? */
4530         if (atomic_read(&memcg->under_oom))
4531                 eventfd_signal(eventfd, 1);
4532         spin_unlock(&memcg_oom_lock);
4533
4534         return 0;
4535 }
4536
4537 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4538         struct cftype *cft, struct eventfd_ctx *eventfd)
4539 {
4540         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4541         struct mem_cgroup_eventfd_list *ev, *tmp;
4542         int type = MEMFILE_TYPE(cft->private);
4543
4544         BUG_ON(type != _OOM_TYPE);
4545
4546         spin_lock(&memcg_oom_lock);
4547
4548         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4549                 if (ev->eventfd == eventfd) {
4550                         list_del(&ev->list);
4551                         kfree(ev);
4552                 }
4553         }
4554
4555         spin_unlock(&memcg_oom_lock);
4556 }
4557
4558 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4559         struct cftype *cft,  struct cgroup_map_cb *cb)
4560 {
4561         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4562
4563         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4564
4565         if (atomic_read(&memcg->under_oom))
4566                 cb->fill(cb, "under_oom", 1);
4567         else
4568                 cb->fill(cb, "under_oom", 0);
4569         return 0;
4570 }
4571
4572 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4573         struct cftype *cft, u64 val)
4574 {
4575         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576         struct mem_cgroup *parent;
4577
4578         /* cannot set to root cgroup and only 0 and 1 are allowed */
4579         if (!cgrp->parent || !((val == 0) || (val == 1)))
4580                 return -EINVAL;
4581
4582         parent = mem_cgroup_from_cont(cgrp->parent);
4583
4584         cgroup_lock();
4585         /* oom-kill-disable is a flag for subhierarchy. */
4586         if ((parent->use_hierarchy) ||
4587             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4588                 cgroup_unlock();
4589                 return -EINVAL;
4590         }
4591         memcg->oom_kill_disable = val;
4592         if (!val)
4593                 memcg_oom_recover(memcg);
4594         cgroup_unlock();
4595         return 0;
4596 }
4597
4598 #ifdef CONFIG_NUMA
4599 static const struct file_operations mem_control_numa_stat_file_operations = {
4600         .read = seq_read,
4601         .llseek = seq_lseek,
4602         .release = single_release,
4603 };
4604
4605 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4606 {
4607         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4608
4609         file->f_op = &mem_control_numa_stat_file_operations;
4610         return single_open(file, mem_control_numa_stat_show, cont);
4611 }
4612 #endif /* CONFIG_NUMA */
4613
4614 static struct cftype mem_cgroup_files[] = {
4615         {
4616                 .name = "usage_in_bytes",
4617                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4618                 .read_u64 = mem_cgroup_read,
4619                 .register_event = mem_cgroup_usage_register_event,
4620                 .unregister_event = mem_cgroup_usage_unregister_event,
4621         },
4622         {
4623                 .name = "max_usage_in_bytes",
4624                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4625                 .trigger = mem_cgroup_reset,
4626                 .read_u64 = mem_cgroup_read,
4627         },
4628         {
4629                 .name = "limit_in_bytes",
4630                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4631                 .write_string = mem_cgroup_write,
4632                 .read_u64 = mem_cgroup_read,
4633         },
4634         {
4635                 .name = "soft_limit_in_bytes",
4636                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4637                 .write_string = mem_cgroup_write,
4638                 .read_u64 = mem_cgroup_read,
4639         },
4640         {
4641                 .name = "failcnt",
4642                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4643                 .trigger = mem_cgroup_reset,
4644                 .read_u64 = mem_cgroup_read,
4645         },
4646         {
4647                 .name = "stat",
4648                 .read_map = mem_control_stat_show,
4649         },
4650         {
4651                 .name = "force_empty",
4652                 .trigger = mem_cgroup_force_empty_write,
4653         },
4654         {
4655                 .name = "use_hierarchy",
4656                 .write_u64 = mem_cgroup_hierarchy_write,
4657                 .read_u64 = mem_cgroup_hierarchy_read,
4658         },
4659         {
4660                 .name = "swappiness",
4661                 .read_u64 = mem_cgroup_swappiness_read,
4662                 .write_u64 = mem_cgroup_swappiness_write,
4663         },
4664         {
4665                 .name = "move_charge_at_immigrate",
4666                 .read_u64 = mem_cgroup_move_charge_read,
4667                 .write_u64 = mem_cgroup_move_charge_write,
4668         },
4669         {
4670                 .name = "oom_control",
4671                 .read_map = mem_cgroup_oom_control_read,
4672                 .write_u64 = mem_cgroup_oom_control_write,
4673                 .register_event = mem_cgroup_oom_register_event,
4674                 .unregister_event = mem_cgroup_oom_unregister_event,
4675                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4676         },
4677 #ifdef CONFIG_NUMA
4678         {
4679                 .name = "numa_stat",
4680                 .open = mem_control_numa_stat_open,
4681                 .mode = S_IRUGO,
4682         },
4683 #endif
4684 };
4685
4686 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4687 static struct cftype memsw_cgroup_files[] = {
4688         {
4689                 .name = "memsw.usage_in_bytes",
4690                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4691                 .read_u64 = mem_cgroup_read,
4692                 .register_event = mem_cgroup_usage_register_event,
4693                 .unregister_event = mem_cgroup_usage_unregister_event,
4694         },
4695         {
4696                 .name = "memsw.max_usage_in_bytes",
4697                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4698                 .trigger = mem_cgroup_reset,
4699                 .read_u64 = mem_cgroup_read,
4700         },
4701         {
4702                 .name = "memsw.limit_in_bytes",
4703                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4704                 .write_string = mem_cgroup_write,
4705                 .read_u64 = mem_cgroup_read,
4706         },
4707         {
4708                 .name = "memsw.failcnt",
4709                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4710                 .trigger = mem_cgroup_reset,
4711                 .read_u64 = mem_cgroup_read,
4712         },
4713 };
4714
4715 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716 {
4717         if (!do_swap_account)
4718                 return 0;
4719         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4720                                 ARRAY_SIZE(memsw_cgroup_files));
4721 };
4722 #else
4723 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4724 {
4725         return 0;
4726 }
4727 #endif
4728
4729 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4730 {
4731         struct mem_cgroup_per_node *pn;
4732         struct mem_cgroup_per_zone *mz;
4733         enum lru_list l;
4734         int zone, tmp = node;
4735         /*
4736          * This routine is called against possible nodes.
4737          * But it's BUG to call kmalloc() against offline node.
4738          *
4739          * TODO: this routine can waste much memory for nodes which will
4740          *       never be onlined. It's better to use memory hotplug callback
4741          *       function.
4742          */
4743         if (!node_state(node, N_NORMAL_MEMORY))
4744                 tmp = -1;
4745         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4746         if (!pn)
4747                 return 1;
4748
4749         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4750                 mz = &pn->zoneinfo[zone];
4751                 for_each_lru(l)
4752                         INIT_LIST_HEAD(&mz->lists[l]);
4753                 mz->usage_in_excess = 0;
4754                 mz->on_tree = false;
4755                 mz->mem = memcg;
4756         }
4757         memcg->info.nodeinfo[node] = pn;
4758         return 0;
4759 }
4760
4761 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4762 {
4763         kfree(memcg->info.nodeinfo[node]);
4764 }
4765
4766 static struct mem_cgroup *mem_cgroup_alloc(void)
4767 {
4768         struct mem_cgroup *mem;
4769         int size = sizeof(struct mem_cgroup);
4770
4771         /* Can be very big if MAX_NUMNODES is very big */
4772         if (size < PAGE_SIZE)
4773                 mem = kzalloc(size, GFP_KERNEL);
4774         else
4775                 mem = vzalloc(size);
4776
4777         if (!mem)
4778                 return NULL;
4779
4780         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4781         if (!mem->stat)
4782                 goto out_free;
4783         spin_lock_init(&mem->pcp_counter_lock);
4784         return mem;
4785
4786 out_free:
4787         if (size < PAGE_SIZE)
4788                 kfree(mem);
4789         else
4790                 vfree(mem);
4791         return NULL;
4792 }
4793
4794 /*
4795  * At destroying mem_cgroup, references from swap_cgroup can remain.
4796  * (scanning all at force_empty is too costly...)
4797  *
4798  * Instead of clearing all references at force_empty, we remember
4799  * the number of reference from swap_cgroup and free mem_cgroup when
4800  * it goes down to 0.
4801  *
4802  * Removal of cgroup itself succeeds regardless of refs from swap.
4803  */
4804
4805 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4806 {
4807         int node;
4808
4809         mem_cgroup_remove_from_trees(memcg);
4810         free_css_id(&mem_cgroup_subsys, &memcg->css);
4811
4812         for_each_node_state(node, N_POSSIBLE)
4813                 free_mem_cgroup_per_zone_info(memcg, node);
4814
4815         free_percpu(memcg->stat);
4816         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4817                 kfree(memcg);
4818         else
4819                 vfree(memcg);
4820 }
4821
4822 static void mem_cgroup_get(struct mem_cgroup *memcg)
4823 {
4824         atomic_inc(&memcg->refcnt);
4825 }
4826
4827 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4828 {
4829         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4830                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4831                 __mem_cgroup_free(memcg);
4832                 if (parent)
4833                         mem_cgroup_put(parent);
4834         }
4835 }
4836
4837 static void mem_cgroup_put(struct mem_cgroup *memcg)
4838 {
4839         __mem_cgroup_put(memcg, 1);
4840 }
4841
4842 /*
4843  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4844  */
4845 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4846 {
4847         if (!memcg->res.parent)
4848                 return NULL;
4849         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4850 }
4851
4852 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4853 static void __init enable_swap_cgroup(void)
4854 {
4855         if (!mem_cgroup_disabled() && really_do_swap_account)
4856                 do_swap_account = 1;
4857 }
4858 #else
4859 static void __init enable_swap_cgroup(void)
4860 {
4861 }
4862 #endif
4863
4864 static int mem_cgroup_soft_limit_tree_init(void)
4865 {
4866         struct mem_cgroup_tree_per_node *rtpn;
4867         struct mem_cgroup_tree_per_zone *rtpz;
4868         int tmp, node, zone;
4869
4870         for_each_node_state(node, N_POSSIBLE) {
4871                 tmp = node;
4872                 if (!node_state(node, N_NORMAL_MEMORY))
4873                         tmp = -1;
4874                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4875                 if (!rtpn)
4876                         return 1;
4877
4878                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4879
4880                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4881                         rtpz = &rtpn->rb_tree_per_zone[zone];
4882                         rtpz->rb_root = RB_ROOT;
4883                         spin_lock_init(&rtpz->lock);
4884                 }
4885         }
4886         return 0;
4887 }
4888
4889 static struct cgroup_subsys_state * __ref
4890 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4891 {
4892         struct mem_cgroup *memcg, *parent;
4893         long error = -ENOMEM;
4894         int node;
4895
4896         memcg = mem_cgroup_alloc();
4897         if (!memcg)
4898                 return ERR_PTR(error);
4899
4900         for_each_node_state(node, N_POSSIBLE)
4901                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4902                         goto free_out;
4903
4904         /* root ? */
4905         if (cont->parent == NULL) {
4906                 int cpu;
4907                 enable_swap_cgroup();
4908                 parent = NULL;
4909                 root_mem_cgroup = memcg;
4910                 if (mem_cgroup_soft_limit_tree_init())
4911                         goto free_out;
4912                 for_each_possible_cpu(cpu) {
4913                         struct memcg_stock_pcp *stock =
4914                                                 &per_cpu(memcg_stock, cpu);
4915                         INIT_WORK(&stock->work, drain_local_stock);
4916                 }
4917                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4918         } else {
4919                 parent = mem_cgroup_from_cont(cont->parent);
4920                 memcg->use_hierarchy = parent->use_hierarchy;
4921                 memcg->oom_kill_disable = parent->oom_kill_disable;
4922         }
4923
4924         if (parent && parent->use_hierarchy) {
4925                 res_counter_init(&memcg->res, &parent->res);
4926                 res_counter_init(&memcg->memsw, &parent->memsw);
4927                 /*
4928                  * We increment refcnt of the parent to ensure that we can
4929                  * safely access it on res_counter_charge/uncharge.
4930                  * This refcnt will be decremented when freeing this
4931                  * mem_cgroup(see mem_cgroup_put).
4932                  */
4933                 mem_cgroup_get(parent);
4934         } else {
4935                 res_counter_init(&memcg->res, NULL);
4936                 res_counter_init(&memcg->memsw, NULL);
4937         }
4938         memcg->last_scanned_child = 0;
4939         memcg->last_scanned_node = MAX_NUMNODES;
4940         INIT_LIST_HEAD(&memcg->oom_notify);
4941
4942         if (parent)
4943                 memcg->swappiness = mem_cgroup_swappiness(parent);
4944         atomic_set(&memcg->refcnt, 1);
4945         memcg->move_charge_at_immigrate = 0;
4946         mutex_init(&memcg->thresholds_lock);
4947         return &memcg->css;
4948 free_out:
4949         __mem_cgroup_free(memcg);
4950         root_mem_cgroup = NULL;
4951         return ERR_PTR(error);
4952 }
4953
4954 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4955                                         struct cgroup *cont)
4956 {
4957         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4958
4959         return mem_cgroup_force_empty(memcg, false);
4960 }
4961
4962 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4963                                 struct cgroup *cont)
4964 {
4965         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4966
4967         mem_cgroup_put(memcg);
4968 }
4969
4970 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4971                                 struct cgroup *cont)
4972 {
4973         int ret;
4974
4975         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4976                                 ARRAY_SIZE(mem_cgroup_files));
4977
4978         if (!ret)
4979                 ret = register_memsw_files(cont, ss);
4980         return ret;
4981 }
4982
4983 #ifdef CONFIG_MMU
4984 /* Handlers for move charge at task migration. */
4985 #define PRECHARGE_COUNT_AT_ONCE 256
4986 static int mem_cgroup_do_precharge(unsigned long count)
4987 {
4988         int ret = 0;
4989         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4990         struct mem_cgroup *memcg = mc.to;
4991
4992         if (mem_cgroup_is_root(memcg)) {
4993                 mc.precharge += count;
4994                 /* we don't need css_get for root */
4995                 return ret;
4996         }
4997         /* try to charge at once */
4998         if (count > 1) {
4999                 struct res_counter *dummy;
5000                 /*
5001                  * "memcg" cannot be under rmdir() because we've already checked
5002                  * by cgroup_lock_live_cgroup() that it is not removed and we
5003                  * are still under the same cgroup_mutex. So we can postpone
5004                  * css_get().
5005                  */
5006                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5007                         goto one_by_one;
5008                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5009                                                 PAGE_SIZE * count, &dummy)) {
5010                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5011                         goto one_by_one;
5012                 }
5013                 mc.precharge += count;
5014                 return ret;
5015         }
5016 one_by_one:
5017         /* fall back to one by one charge */
5018         while (count--) {
5019                 if (signal_pending(current)) {
5020                         ret = -EINTR;
5021                         break;
5022                 }
5023                 if (!batch_count--) {
5024                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5025                         cond_resched();
5026                 }
5027                 ret = __mem_cgroup_try_charge(NULL,
5028                                         GFP_KERNEL, 1, &memcg, false);
5029                 if (ret || !memcg)
5030                         /* mem_cgroup_clear_mc() will do uncharge later */
5031                         return -ENOMEM;
5032                 mc.precharge++;
5033         }
5034         return ret;
5035 }
5036
5037 /**
5038  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5039  * @vma: the vma the pte to be checked belongs
5040  * @addr: the address corresponding to the pte to be checked
5041  * @ptent: the pte to be checked
5042  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5043  *
5044  * Returns
5045  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5046  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5047  *     move charge. if @target is not NULL, the page is stored in target->page
5048  *     with extra refcnt got(Callers should handle it).
5049  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5050  *     target for charge migration. if @target is not NULL, the entry is stored
5051  *     in target->ent.
5052  *
5053  * Called with pte lock held.
5054  */
5055 union mc_target {
5056         struct page     *page;
5057         swp_entry_t     ent;
5058 };
5059
5060 enum mc_target_type {
5061         MC_TARGET_NONE, /* not used */
5062         MC_TARGET_PAGE,
5063         MC_TARGET_SWAP,
5064 };
5065
5066 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5067                                                 unsigned long addr, pte_t ptent)
5068 {
5069         struct page *page = vm_normal_page(vma, addr, ptent);
5070
5071         if (!page || !page_mapped(page))
5072                 return NULL;
5073         if (PageAnon(page)) {
5074                 /* we don't move shared anon */
5075                 if (!move_anon() || page_mapcount(page) > 2)
5076                         return NULL;
5077         } else if (!move_file())
5078                 /* we ignore mapcount for file pages */
5079                 return NULL;
5080         if (!get_page_unless_zero(page))
5081                 return NULL;
5082
5083         return page;
5084 }
5085
5086 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5087                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5088 {
5089         int usage_count;
5090         struct page *page = NULL;
5091         swp_entry_t ent = pte_to_swp_entry(ptent);
5092
5093         if (!move_anon() || non_swap_entry(ent))
5094                 return NULL;
5095         usage_count = mem_cgroup_count_swap_user(ent, &page);
5096         if (usage_count > 1) { /* we don't move shared anon */
5097                 if (page)
5098                         put_page(page);
5099                 return NULL;
5100         }
5101         if (do_swap_account)
5102                 entry->val = ent.val;
5103
5104         return page;
5105 }
5106
5107 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5108                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5109 {
5110         struct page *page = NULL;
5111         struct inode *inode;
5112         struct address_space *mapping;
5113         pgoff_t pgoff;
5114
5115         if (!vma->vm_file) /* anonymous vma */
5116                 return NULL;
5117         if (!move_file())
5118                 return NULL;
5119
5120         inode = vma->vm_file->f_path.dentry->d_inode;
5121         mapping = vma->vm_file->f_mapping;
5122         if (pte_none(ptent))
5123                 pgoff = linear_page_index(vma, addr);
5124         else /* pte_file(ptent) is true */
5125                 pgoff = pte_to_pgoff(ptent);
5126
5127         /* page is moved even if it's not RSS of this task(page-faulted). */
5128         page = find_get_page(mapping, pgoff);
5129
5130 #ifdef CONFIG_SWAP
5131         /* shmem/tmpfs may report page out on swap: account for that too. */
5132         if (radix_tree_exceptional_entry(page)) {
5133                 swp_entry_t swap = radix_to_swp_entry(page);
5134                 if (do_swap_account)
5135                         *entry = swap;
5136                 page = find_get_page(&swapper_space, swap.val);
5137         }
5138 #endif
5139         return page;
5140 }
5141
5142 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5143                 unsigned long addr, pte_t ptent, union mc_target *target)
5144 {
5145         struct page *page = NULL;
5146         struct page_cgroup *pc;
5147         int ret = 0;
5148         swp_entry_t ent = { .val = 0 };
5149
5150         if (pte_present(ptent))
5151                 page = mc_handle_present_pte(vma, addr, ptent);
5152         else if (is_swap_pte(ptent))
5153                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5154         else if (pte_none(ptent) || pte_file(ptent))
5155                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5156
5157         if (!page && !ent.val)
5158                 return 0;
5159         if (page) {
5160                 pc = lookup_page_cgroup(page);
5161                 /*
5162                  * Do only loose check w/o page_cgroup lock.
5163                  * mem_cgroup_move_account() checks the pc is valid or not under
5164                  * the lock.
5165                  */
5166                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5167                         ret = MC_TARGET_PAGE;
5168                         if (target)
5169                                 target->page = page;
5170                 }
5171                 if (!ret || !target)
5172                         put_page(page);
5173         }
5174         /* There is a swap entry and a page doesn't exist or isn't charged */
5175         if (ent.val && !ret &&
5176                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5177                 ret = MC_TARGET_SWAP;
5178                 if (target)
5179                         target->ent = ent;
5180         }
5181         return ret;
5182 }
5183
5184 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5185                                         unsigned long addr, unsigned long end,
5186                                         struct mm_walk *walk)
5187 {
5188         struct vm_area_struct *vma = walk->private;
5189         pte_t *pte;
5190         spinlock_t *ptl;
5191
5192         split_huge_page_pmd(walk->mm, pmd);
5193
5194         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5195         for (; addr != end; pte++, addr += PAGE_SIZE)
5196                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5197                         mc.precharge++; /* increment precharge temporarily */
5198         pte_unmap_unlock(pte - 1, ptl);
5199         cond_resched();
5200
5201         return 0;
5202 }
5203
5204 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5205 {
5206         unsigned long precharge;
5207         struct vm_area_struct *vma;
5208
5209         down_read(&mm->mmap_sem);
5210         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5211                 struct mm_walk mem_cgroup_count_precharge_walk = {
5212                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5213                         .mm = mm,
5214                         .private = vma,
5215                 };
5216                 if (is_vm_hugetlb_page(vma))
5217                         continue;
5218                 walk_page_range(vma->vm_start, vma->vm_end,
5219                                         &mem_cgroup_count_precharge_walk);
5220         }
5221         up_read(&mm->mmap_sem);
5222
5223         precharge = mc.precharge;
5224         mc.precharge = 0;
5225
5226         return precharge;
5227 }
5228
5229 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5230 {
5231         unsigned long precharge = mem_cgroup_count_precharge(mm);
5232
5233         VM_BUG_ON(mc.moving_task);
5234         mc.moving_task = current;
5235         return mem_cgroup_do_precharge(precharge);
5236 }
5237
5238 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5239 static void __mem_cgroup_clear_mc(void)
5240 {
5241         struct mem_cgroup *from = mc.from;
5242         struct mem_cgroup *to = mc.to;
5243
5244         /* we must uncharge all the leftover precharges from mc.to */
5245         if (mc.precharge) {
5246                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5247                 mc.precharge = 0;
5248         }
5249         /*
5250          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5251          * we must uncharge here.
5252          */
5253         if (mc.moved_charge) {
5254                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5255                 mc.moved_charge = 0;
5256         }
5257         /* we must fixup refcnts and charges */
5258         if (mc.moved_swap) {
5259                 /* uncharge swap account from the old cgroup */
5260                 if (!mem_cgroup_is_root(mc.from))
5261                         res_counter_uncharge(&mc.from->memsw,
5262                                                 PAGE_SIZE * mc.moved_swap);
5263                 __mem_cgroup_put(mc.from, mc.moved_swap);
5264
5265                 if (!mem_cgroup_is_root(mc.to)) {
5266                         /*
5267                          * we charged both to->res and to->memsw, so we should
5268                          * uncharge to->res.
5269                          */
5270                         res_counter_uncharge(&mc.to->res,
5271                                                 PAGE_SIZE * mc.moved_swap);
5272                 }
5273                 /* we've already done mem_cgroup_get(mc.to) */
5274                 mc.moved_swap = 0;
5275         }
5276         memcg_oom_recover(from);
5277         memcg_oom_recover(to);
5278         wake_up_all(&mc.waitq);
5279 }
5280
5281 static void mem_cgroup_clear_mc(void)
5282 {
5283         struct mem_cgroup *from = mc.from;
5284
5285         /*
5286          * we must clear moving_task before waking up waiters at the end of
5287          * task migration.
5288          */
5289         mc.moving_task = NULL;
5290         __mem_cgroup_clear_mc();
5291         spin_lock(&mc.lock);
5292         mc.from = NULL;
5293         mc.to = NULL;
5294         spin_unlock(&mc.lock);
5295         mem_cgroup_end_move(from);
5296 }
5297
5298 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5299                                 struct cgroup *cgroup,
5300                                 struct task_struct *p)
5301 {
5302         int ret = 0;
5303         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5304
5305         if (memcg->move_charge_at_immigrate) {
5306                 struct mm_struct *mm;
5307                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5308
5309                 VM_BUG_ON(from == memcg);
5310
5311                 mm = get_task_mm(p);
5312                 if (!mm)
5313                         return 0;
5314                 /* We move charges only when we move a owner of the mm */
5315                 if (mm->owner == p) {
5316                         VM_BUG_ON(mc.from);
5317                         VM_BUG_ON(mc.to);
5318                         VM_BUG_ON(mc.precharge);
5319                         VM_BUG_ON(mc.moved_charge);
5320                         VM_BUG_ON(mc.moved_swap);
5321                         mem_cgroup_start_move(from);
5322                         spin_lock(&mc.lock);
5323                         mc.from = from;
5324                         mc.to = memcg;
5325                         spin_unlock(&mc.lock);
5326                         /* We set mc.moving_task later */
5327
5328                         ret = mem_cgroup_precharge_mc(mm);
5329                         if (ret)
5330                                 mem_cgroup_clear_mc();
5331                 }
5332                 mmput(mm);
5333         }
5334         return ret;
5335 }
5336
5337 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5338                                 struct cgroup *cgroup,
5339                                 struct task_struct *p)
5340 {
5341         mem_cgroup_clear_mc();
5342 }
5343
5344 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5345                                 unsigned long addr, unsigned long end,
5346                                 struct mm_walk *walk)
5347 {
5348         int ret = 0;
5349         struct vm_area_struct *vma = walk->private;
5350         pte_t *pte;
5351         spinlock_t *ptl;
5352
5353         split_huge_page_pmd(walk->mm, pmd);
5354 retry:
5355         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5356         for (; addr != end; addr += PAGE_SIZE) {
5357                 pte_t ptent = *(pte++);
5358                 union mc_target target;
5359                 int type;
5360                 struct page *page;
5361                 struct page_cgroup *pc;
5362                 swp_entry_t ent;
5363
5364                 if (!mc.precharge)
5365                         break;
5366
5367                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5368                 switch (type) {
5369                 case MC_TARGET_PAGE:
5370                         page = target.page;
5371                         if (isolate_lru_page(page))
5372                                 goto put;
5373                         pc = lookup_page_cgroup(page);
5374                         if (!mem_cgroup_move_account(page, 1, pc,
5375                                                      mc.from, mc.to, false)) {
5376                                 mc.precharge--;
5377                                 /* we uncharge from mc.from later. */
5378                                 mc.moved_charge++;
5379                         }
5380                         putback_lru_page(page);
5381 put:                    /* is_target_pte_for_mc() gets the page */
5382                         put_page(page);
5383                         break;
5384                 case MC_TARGET_SWAP:
5385                         ent = target.ent;
5386                         if (!mem_cgroup_move_swap_account(ent,
5387                                                 mc.from, mc.to, false)) {
5388                                 mc.precharge--;
5389                                 /* we fixup refcnts and charges later. */
5390                                 mc.moved_swap++;
5391                         }
5392                         break;
5393                 default:
5394                         break;
5395                 }
5396         }
5397         pte_unmap_unlock(pte - 1, ptl);
5398         cond_resched();
5399
5400         if (addr != end) {
5401                 /*
5402                  * We have consumed all precharges we got in can_attach().
5403                  * We try charge one by one, but don't do any additional
5404                  * charges to mc.to if we have failed in charge once in attach()
5405                  * phase.
5406                  */
5407                 ret = mem_cgroup_do_precharge(1);
5408                 if (!ret)
5409                         goto retry;
5410         }
5411
5412         return ret;
5413 }
5414
5415 static void mem_cgroup_move_charge(struct mm_struct *mm)
5416 {
5417         struct vm_area_struct *vma;
5418
5419         lru_add_drain_all();
5420 retry:
5421         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5422                 /*
5423                  * Someone who are holding the mmap_sem might be waiting in
5424                  * waitq. So we cancel all extra charges, wake up all waiters,
5425                  * and retry. Because we cancel precharges, we might not be able
5426                  * to move enough charges, but moving charge is a best-effort
5427                  * feature anyway, so it wouldn't be a big problem.
5428                  */
5429                 __mem_cgroup_clear_mc();
5430                 cond_resched();
5431                 goto retry;
5432         }
5433         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5434                 int ret;
5435                 struct mm_walk mem_cgroup_move_charge_walk = {
5436                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5437                         .mm = mm,
5438                         .private = vma,
5439                 };
5440                 if (is_vm_hugetlb_page(vma))
5441                         continue;
5442                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5443                                                 &mem_cgroup_move_charge_walk);
5444                 if (ret)
5445                         /*
5446                          * means we have consumed all precharges and failed in
5447                          * doing additional charge. Just abandon here.
5448                          */
5449                         break;
5450         }
5451         up_read(&mm->mmap_sem);
5452 }
5453
5454 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5455                                 struct cgroup *cont,
5456                                 struct cgroup *old_cont,
5457                                 struct task_struct *p)
5458 {
5459         struct mm_struct *mm = get_task_mm(p);
5460
5461         if (mm) {
5462                 if (mc.to)
5463                         mem_cgroup_move_charge(mm);
5464                 put_swap_token(mm);
5465                 mmput(mm);
5466         }
5467         if (mc.to)
5468                 mem_cgroup_clear_mc();
5469 }
5470 #else   /* !CONFIG_MMU */
5471 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5472                                 struct cgroup *cgroup,
5473                                 struct task_struct *p)
5474 {
5475         return 0;
5476 }
5477 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5478                                 struct cgroup *cgroup,
5479                                 struct task_struct *p)
5480 {
5481 }
5482 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5483                                 struct cgroup *cont,
5484                                 struct cgroup *old_cont,
5485                                 struct task_struct *p)
5486 {
5487 }
5488 #endif
5489
5490 struct cgroup_subsys mem_cgroup_subsys = {
5491         .name = "memory",
5492         .subsys_id = mem_cgroup_subsys_id,
5493         .create = mem_cgroup_create,
5494         .pre_destroy = mem_cgroup_pre_destroy,
5495         .destroy = mem_cgroup_destroy,
5496         .populate = mem_cgroup_populate,
5497         .can_attach = mem_cgroup_can_attach,
5498         .cancel_attach = mem_cgroup_cancel_attach,
5499         .attach = mem_cgroup_move_task,
5500         .early_init = 0,
5501         .use_id = 1,
5502 };
5503
5504 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5505 static int __init enable_swap_account(char *s)
5506 {
5507         /* consider enabled if no parameter or 1 is given */
5508         if (!strcmp(s, "1"))
5509                 really_do_swap_account = 1;
5510         else if (!strcmp(s, "0"))
5511                 really_do_swap_account = 0;
5512         return 1;
5513 }
5514 __setup("swapaccount=", enable_swap_account);
5515
5516 #endif