lis3lv02d: avoid divide by zero due to unchecked
[pandora-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81         /*
82          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83          */
84         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
85         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
86         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
90         MEM_CGROUP_STAT_NSTATS,
91 };
92
93 enum mem_cgroup_events_index {
94         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
95         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
96         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
97         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
98         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
99         MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108         MEM_CGROUP_TARGET_THRESH,
109         MEM_CGROUP_TARGET_SOFTLIMIT,
110         MEM_CGROUP_TARGET_NUMAINFO,
111         MEM_CGROUP_NTARGETS,
112 };
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET  (1024)
116
117 struct mem_cgroup_stat_cpu {
118         long count[MEM_CGROUP_STAT_NSTATS];
119         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120         unsigned long targets[MEM_CGROUP_NTARGETS];
121 };
122
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_zone {
127         /*
128          * spin_lock to protect the per cgroup LRU
129          */
130         struct list_head        lists[NR_LRU_LISTS];
131         unsigned long           count[NR_LRU_LISTS];
132
133         struct zone_reclaim_stat reclaim_stat;
134         struct rb_node          tree_node;      /* RB tree node */
135         unsigned long long      usage_in_excess;/* Set to the value by which */
136                                                 /* the soft limit is exceeded*/
137         bool                    on_tree;
138         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
139                                                 /* use container_of        */
140 };
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
143
144 struct mem_cgroup_per_node {
145         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146 };
147
148 struct mem_cgroup_lru_info {
149         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150 };
151
152 /*
153  * Cgroups above their limits are maintained in a RB-Tree, independent of
154  * their hierarchy representation
155  */
156
157 struct mem_cgroup_tree_per_zone {
158         struct rb_root rb_root;
159         spinlock_t lock;
160 };
161
162 struct mem_cgroup_tree_per_node {
163         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164 };
165
166 struct mem_cgroup_tree {
167         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168 };
169
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
172 struct mem_cgroup_threshold {
173         struct eventfd_ctx *eventfd;
174         u64 threshold;
175 };
176
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179         /* An array index points to threshold just below usage. */
180         int current_threshold;
181         /* Size of entries[] */
182         unsigned int size;
183         /* Array of thresholds */
184         struct mem_cgroup_threshold entries[0];
185 };
186
187 struct mem_cgroup_thresholds {
188         /* Primary thresholds array */
189         struct mem_cgroup_threshold_ary *primary;
190         /*
191          * Spare threshold array.
192          * This is needed to make mem_cgroup_unregister_event() "never fail".
193          * It must be able to store at least primary->size - 1 entries.
194          */
195         struct mem_cgroup_threshold_ary *spare;
196 };
197
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200         struct list_head list;
201         struct eventfd_ctx *eventfd;
202 };
203
204 static void mem_cgroup_threshold(struct mem_cgroup *mem);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206
207 /*
208  * The memory controller data structure. The memory controller controls both
209  * page cache and RSS per cgroup. We would eventually like to provide
210  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211  * to help the administrator determine what knobs to tune.
212  *
213  * TODO: Add a water mark for the memory controller. Reclaim will begin when
214  * we hit the water mark. May be even add a low water mark, such that
215  * no reclaim occurs from a cgroup at it's low water mark, this is
216  * a feature that will be implemented much later in the future.
217  */
218 struct mem_cgroup {
219         struct cgroup_subsys_state css;
220         /*
221          * the counter to account for memory usage
222          */
223         struct res_counter res;
224         /*
225          * the counter to account for mem+swap usage.
226          */
227         struct res_counter memsw;
228         /*
229          * Per cgroup active and inactive list, similar to the
230          * per zone LRU lists.
231          */
232         struct mem_cgroup_lru_info info;
233         /*
234          * While reclaiming in a hierarchy, we cache the last child we
235          * reclaimed from.
236          */
237         int last_scanned_child;
238         int last_scanned_node;
239 #if MAX_NUMNODES > 1
240         nodemask_t      scan_nodes;
241         atomic_t        numainfo_events;
242         atomic_t        numainfo_updating;
243 #endif
244         /*
245          * Should the accounting and control be hierarchical, per subtree?
246          */
247         bool use_hierarchy;
248
249         bool            oom_lock;
250         atomic_t        under_oom;
251
252         atomic_t        refcnt;
253
254         int     swappiness;
255         /* OOM-Killer disable */
256         int             oom_kill_disable;
257
258         /* set when res.limit == memsw.limit */
259         bool            memsw_is_minimum;
260
261         /* protect arrays of thresholds */
262         struct mutex thresholds_lock;
263
264         /* thresholds for memory usage. RCU-protected */
265         struct mem_cgroup_thresholds thresholds;
266
267         /* thresholds for mem+swap usage. RCU-protected */
268         struct mem_cgroup_thresholds memsw_thresholds;
269
270         /* For oom notifier event fd */
271         struct list_head oom_notify;
272
273         /*
274          * Should we move charges of a task when a task is moved into this
275          * mem_cgroup ? And what type of charges should we move ?
276          */
277         unsigned long   move_charge_at_immigrate;
278         /*
279          * percpu counter.
280          */
281         struct mem_cgroup_stat_cpu *stat;
282         /*
283          * used when a cpu is offlined or other synchronizations
284          * See mem_cgroup_read_stat().
285          */
286         struct mem_cgroup_stat_cpu nocpu_base;
287         spinlock_t pcp_counter_lock;
288 };
289
290 /* Stuffs for move charges at task migration. */
291 /*
292  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293  * left-shifted bitmap of these types.
294  */
295 enum move_type {
296         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
297         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
298         NR_MOVE_TYPE,
299 };
300
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct {
303         spinlock_t        lock; /* for from, to */
304         struct mem_cgroup *from;
305         struct mem_cgroup *to;
306         unsigned long precharge;
307         unsigned long moved_charge;
308         unsigned long moved_swap;
309         struct task_struct *moving_task;        /* a task moving charges */
310         wait_queue_head_t waitq;                /* a waitq for other context */
311 } mc = {
312         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314 };
315
316 static bool move_anon(void)
317 {
318         return test_bit(MOVE_CHARGE_TYPE_ANON,
319                                         &mc.to->move_charge_at_immigrate);
320 }
321
322 static bool move_file(void)
323 {
324         return test_bit(MOVE_CHARGE_TYPE_FILE,
325                                         &mc.to->move_charge_at_immigrate);
326 }
327
328 /*
329  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330  * limit reclaim to prevent infinite loops, if they ever occur.
331  */
332 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
333 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334
335 enum charge_type {
336         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337         MEM_CGROUP_CHARGE_TYPE_MAPPED,
338         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
339         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
340         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
341         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
342         NR_CHARGE_TYPE,
343 };
344
345 /* for encoding cft->private value on file */
346 #define _MEM                    (0)
347 #define _MEMSWAP                (1)
348 #define _OOM_TYPE               (2)
349 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL             (0)
354
355 /*
356  * Reclaim flags for mem_cgroup_hierarchical_reclaim
357  */
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
363 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364
365 static void mem_cgroup_get(struct mem_cgroup *mem);
366 static void mem_cgroup_put(struct mem_cgroup *mem);
367 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368 static void drain_all_stock_async(struct mem_cgroup *mem);
369
370 static struct mem_cgroup_per_zone *
371 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
372 {
373         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
374 }
375
376 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
377 {
378         return &mem->css;
379 }
380
381 static struct mem_cgroup_per_zone *
382 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
383 {
384         int nid = page_to_nid(page);
385         int zid = page_zonenum(page);
386
387         return mem_cgroup_zoneinfo(mem, nid, zid);
388 }
389
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_node_zone(int nid, int zid)
392 {
393         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394 }
395
396 static struct mem_cgroup_tree_per_zone *
397 soft_limit_tree_from_page(struct page *page)
398 {
399         int nid = page_to_nid(page);
400         int zid = page_zonenum(page);
401
402         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403 }
404
405 static void
406 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407                                 struct mem_cgroup_per_zone *mz,
408                                 struct mem_cgroup_tree_per_zone *mctz,
409                                 unsigned long long new_usage_in_excess)
410 {
411         struct rb_node **p = &mctz->rb_root.rb_node;
412         struct rb_node *parent = NULL;
413         struct mem_cgroup_per_zone *mz_node;
414
415         if (mz->on_tree)
416                 return;
417
418         mz->usage_in_excess = new_usage_in_excess;
419         if (!mz->usage_in_excess)
420                 return;
421         while (*p) {
422                 parent = *p;
423                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424                                         tree_node);
425                 if (mz->usage_in_excess < mz_node->usage_in_excess)
426                         p = &(*p)->rb_left;
427                 /*
428                  * We can't avoid mem cgroups that are over their soft
429                  * limit by the same amount
430                  */
431                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432                         p = &(*p)->rb_right;
433         }
434         rb_link_node(&mz->tree_node, parent, p);
435         rb_insert_color(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = true;
437 }
438
439 static void
440 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441                                 struct mem_cgroup_per_zone *mz,
442                                 struct mem_cgroup_tree_per_zone *mctz)
443 {
444         if (!mz->on_tree)
445                 return;
446         rb_erase(&mz->tree_node, &mctz->rb_root);
447         mz->on_tree = false;
448 }
449
450 static void
451 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
452                                 struct mem_cgroup_per_zone *mz,
453                                 struct mem_cgroup_tree_per_zone *mctz)
454 {
455         spin_lock(&mctz->lock);
456         __mem_cgroup_remove_exceeded(mem, mz, mctz);
457         spin_unlock(&mctz->lock);
458 }
459
460
461 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
462 {
463         unsigned long long excess;
464         struct mem_cgroup_per_zone *mz;
465         struct mem_cgroup_tree_per_zone *mctz;
466         int nid = page_to_nid(page);
467         int zid = page_zonenum(page);
468         mctz = soft_limit_tree_from_page(page);
469
470         /*
471          * Necessary to update all ancestors when hierarchy is used.
472          * because their event counter is not touched.
473          */
474         for (; mem; mem = parent_mem_cgroup(mem)) {
475                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
476                 excess = res_counter_soft_limit_excess(&mem->res);
477                 /*
478                  * We have to update the tree if mz is on RB-tree or
479                  * mem is over its softlimit.
480                  */
481                 if (excess || mz->on_tree) {
482                         spin_lock(&mctz->lock);
483                         /* if on-tree, remove it */
484                         if (mz->on_tree)
485                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
486                         /*
487                          * Insert again. mz->usage_in_excess will be updated.
488                          * If excess is 0, no tree ops.
489                          */
490                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491                         spin_unlock(&mctz->lock);
492                 }
493         }
494 }
495
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
497 {
498         int node, zone;
499         struct mem_cgroup_per_zone *mz;
500         struct mem_cgroup_tree_per_zone *mctz;
501
502         for_each_node_state(node, N_POSSIBLE) {
503                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504                         mz = mem_cgroup_zoneinfo(mem, node, zone);
505                         mctz = soft_limit_tree_node_zone(node, zone);
506                         mem_cgroup_remove_exceeded(mem, mz, mctz);
507                 }
508         }
509 }
510
511 static struct mem_cgroup_per_zone *
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513 {
514         struct rb_node *rightmost = NULL;
515         struct mem_cgroup_per_zone *mz;
516
517 retry:
518         mz = NULL;
519         rightmost = rb_last(&mctz->rb_root);
520         if (!rightmost)
521                 goto done;              /* Nothing to reclaim from */
522
523         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524         /*
525          * Remove the node now but someone else can add it back,
526          * we will to add it back at the end of reclaim to its correct
527          * position in the tree.
528          */
529         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531                 !css_tryget(&mz->mem->css))
532                 goto retry;
533 done:
534         return mz;
535 }
536
537 static struct mem_cgroup_per_zone *
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539 {
540         struct mem_cgroup_per_zone *mz;
541
542         spin_lock(&mctz->lock);
543         mz = __mem_cgroup_largest_soft_limit_node(mctz);
544         spin_unlock(&mctz->lock);
545         return mz;
546 }
547
548 /*
549  * Implementation Note: reading percpu statistics for memcg.
550  *
551  * Both of vmstat[] and percpu_counter has threshold and do periodic
552  * synchronization to implement "quick" read. There are trade-off between
553  * reading cost and precision of value. Then, we may have a chance to implement
554  * a periodic synchronizion of counter in memcg's counter.
555  *
556  * But this _read() function is used for user interface now. The user accounts
557  * memory usage by memory cgroup and he _always_ requires exact value because
558  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559  * have to visit all online cpus and make sum. So, for now, unnecessary
560  * synchronization is not implemented. (just implemented for cpu hotplug)
561  *
562  * If there are kernel internal actions which can make use of some not-exact
563  * value, and reading all cpu value can be performance bottleneck in some
564  * common workload, threashold and synchonization as vmstat[] should be
565  * implemented.
566  */
567 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
568                                  enum mem_cgroup_stat_index idx)
569 {
570         long val = 0;
571         int cpu;
572
573         get_online_cpus();
574         for_each_online_cpu(cpu)
575                 val += per_cpu(mem->stat->count[idx], cpu);
576 #ifdef CONFIG_HOTPLUG_CPU
577         spin_lock(&mem->pcp_counter_lock);
578         val += mem->nocpu_base.count[idx];
579         spin_unlock(&mem->pcp_counter_lock);
580 #endif
581         put_online_cpus();
582         return val;
583 }
584
585 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
586                                          bool charge)
587 {
588         int val = (charge) ? 1 : -1;
589         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 }
591
592 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
593 {
594         this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595 }
596
597 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
598 {
599         this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600 }
601
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
603                                             enum mem_cgroup_events_index idx)
604 {
605         unsigned long val = 0;
606         int cpu;
607
608         for_each_online_cpu(cpu)
609                 val += per_cpu(mem->stat->events[idx], cpu);
610 #ifdef CONFIG_HOTPLUG_CPU
611         spin_lock(&mem->pcp_counter_lock);
612         val += mem->nocpu_base.events[idx];
613         spin_unlock(&mem->pcp_counter_lock);
614 #endif
615         return val;
616 }
617
618 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619                                          bool file, int nr_pages)
620 {
621         preempt_disable();
622
623         if (file)
624                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625         else
626                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
627
628         /* pagein of a big page is an event. So, ignore page size */
629         if (nr_pages > 0)
630                 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631         else {
632                 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633                 nr_pages = -nr_pages; /* for event */
634         }
635
636         __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637
638         preempt_enable();
639 }
640
641 unsigned long
642 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
643                         unsigned int lru_mask)
644 {
645         struct mem_cgroup_per_zone *mz;
646         enum lru_list l;
647         unsigned long ret = 0;
648
649         mz = mem_cgroup_zoneinfo(mem, nid, zid);
650
651         for_each_lru(l) {
652                 if (BIT(l) & lru_mask)
653                         ret += MEM_CGROUP_ZSTAT(mz, l);
654         }
655         return ret;
656 }
657
658 static unsigned long
659 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
660                         int nid, unsigned int lru_mask)
661 {
662         u64 total = 0;
663         int zid;
664
665         for (zid = 0; zid < MAX_NR_ZONES; zid++)
666                 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
667
668         return total;
669 }
670
671 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
672                         unsigned int lru_mask)
673 {
674         int nid;
675         u64 total = 0;
676
677         for_each_node_state(nid, N_HIGH_MEMORY)
678                 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679         return total;
680 }
681
682 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
683 {
684         unsigned long val, next;
685
686         val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687         next = this_cpu_read(mem->stat->targets[target]);
688         /* from time_after() in jiffies.h */
689         return ((long)next - (long)val < 0);
690 }
691
692 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
693 {
694         unsigned long val, next;
695
696         val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697
698         switch (target) {
699         case MEM_CGROUP_TARGET_THRESH:
700                 next = val + THRESHOLDS_EVENTS_TARGET;
701                 break;
702         case MEM_CGROUP_TARGET_SOFTLIMIT:
703                 next = val + SOFTLIMIT_EVENTS_TARGET;
704                 break;
705         case MEM_CGROUP_TARGET_NUMAINFO:
706                 next = val + NUMAINFO_EVENTS_TARGET;
707                 break;
708         default:
709                 return;
710         }
711
712         this_cpu_write(mem->stat->targets[target], next);
713 }
714
715 /*
716  * Check events in order.
717  *
718  */
719 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
720 {
721         /* threshold event is triggered in finer grain than soft limit */
722         if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723                 mem_cgroup_threshold(mem);
724                 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
725                 if (unlikely(__memcg_event_check(mem,
726                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
727                         mem_cgroup_update_tree(mem, page);
728                         __mem_cgroup_target_update(mem,
729                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
730                 }
731 #if MAX_NUMNODES > 1
732                 if (unlikely(__memcg_event_check(mem,
733                         MEM_CGROUP_TARGET_NUMAINFO))) {
734                         atomic_inc(&mem->numainfo_events);
735                         __mem_cgroup_target_update(mem,
736                                 MEM_CGROUP_TARGET_NUMAINFO);
737                 }
738 #endif
739         }
740 }
741
742 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
743 {
744         return container_of(cgroup_subsys_state(cont,
745                                 mem_cgroup_subsys_id), struct mem_cgroup,
746                                 css);
747 }
748
749 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
750 {
751         /*
752          * mm_update_next_owner() may clear mm->owner to NULL
753          * if it races with swapoff, page migration, etc.
754          * So this can be called with p == NULL.
755          */
756         if (unlikely(!p))
757                 return NULL;
758
759         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
760                                 struct mem_cgroup, css);
761 }
762
763 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764 {
765         struct mem_cgroup *mem = NULL;
766
767         if (!mm)
768                 return NULL;
769         /*
770          * Because we have no locks, mm->owner's may be being moved to other
771          * cgroup. We use css_tryget() here even if this looks
772          * pessimistic (rather than adding locks here).
773          */
774         rcu_read_lock();
775         do {
776                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
777                 if (unlikely(!mem))
778                         break;
779         } while (!css_tryget(&mem->css));
780         rcu_read_unlock();
781         return mem;
782 }
783
784 /* The caller has to guarantee "mem" exists before calling this */
785 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
786 {
787         struct cgroup_subsys_state *css;
788         int found;
789
790         if (!mem) /* ROOT cgroup has the smallest ID */
791                 return root_mem_cgroup; /*css_put/get against root is ignored*/
792         if (!mem->use_hierarchy) {
793                 if (css_tryget(&mem->css))
794                         return mem;
795                 return NULL;
796         }
797         rcu_read_lock();
798         /*
799          * searching a memory cgroup which has the smallest ID under given
800          * ROOT cgroup. (ID >= 1)
801          */
802         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
803         if (css && css_tryget(css))
804                 mem = container_of(css, struct mem_cgroup, css);
805         else
806                 mem = NULL;
807         rcu_read_unlock();
808         return mem;
809 }
810
811 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
812                                         struct mem_cgroup *root,
813                                         bool cond)
814 {
815         int nextid = css_id(&iter->css) + 1;
816         int found;
817         int hierarchy_used;
818         struct cgroup_subsys_state *css;
819
820         hierarchy_used = iter->use_hierarchy;
821
822         css_put(&iter->css);
823         /* If no ROOT, walk all, ignore hierarchy */
824         if (!cond || (root && !hierarchy_used))
825                 return NULL;
826
827         if (!root)
828                 root = root_mem_cgroup;
829
830         do {
831                 iter = NULL;
832                 rcu_read_lock();
833
834                 css = css_get_next(&mem_cgroup_subsys, nextid,
835                                 &root->css, &found);
836                 if (css && css_tryget(css))
837                         iter = container_of(css, struct mem_cgroup, css);
838                 rcu_read_unlock();
839                 /* If css is NULL, no more cgroups will be found */
840                 nextid = found + 1;
841         } while (css && !iter);
842
843         return iter;
844 }
845 /*
846  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847  * be careful that "break" loop is not allowed. We have reference count.
848  * Instead of that modify "cond" to be false and "continue" to exit the loop.
849  */
850 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
851         for (iter = mem_cgroup_start_loop(root);\
852              iter != NULL;\
853              iter = mem_cgroup_get_next(iter, root, cond))
854
855 #define for_each_mem_cgroup_tree(iter, root) \
856         for_each_mem_cgroup_tree_cond(iter, root, true)
857
858 #define for_each_mem_cgroup_all(iter) \
859         for_each_mem_cgroup_tree_cond(iter, NULL, true)
860
861
862 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
863 {
864         return (mem == root_mem_cgroup);
865 }
866
867 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
868 {
869         struct mem_cgroup *mem;
870
871         if (!mm)
872                 return;
873
874         rcu_read_lock();
875         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
876         if (unlikely(!mem))
877                 goto out;
878
879         switch (idx) {
880         case PGMAJFAULT:
881                 mem_cgroup_pgmajfault(mem, 1);
882                 break;
883         case PGFAULT:
884                 mem_cgroup_pgfault(mem, 1);
885                 break;
886         default:
887                 BUG();
888         }
889 out:
890         rcu_read_unlock();
891 }
892 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
893
894 /*
895  * Following LRU functions are allowed to be used without PCG_LOCK.
896  * Operations are called by routine of global LRU independently from memcg.
897  * What we have to take care of here is validness of pc->mem_cgroup.
898  *
899  * Changes to pc->mem_cgroup happens when
900  * 1. charge
901  * 2. moving account
902  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903  * It is added to LRU before charge.
904  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905  * When moving account, the page is not on LRU. It's isolated.
906  */
907
908 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
909 {
910         struct page_cgroup *pc;
911         struct mem_cgroup_per_zone *mz;
912
913         if (mem_cgroup_disabled())
914                 return;
915         pc = lookup_page_cgroup(page);
916         /* can happen while we handle swapcache. */
917         if (!TestClearPageCgroupAcctLRU(pc))
918                 return;
919         VM_BUG_ON(!pc->mem_cgroup);
920         /*
921          * We don't check PCG_USED bit. It's cleared when the "page" is finally
922          * removed from global LRU.
923          */
924         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925         /* huge page split is done under lru_lock. so, we have no races. */
926         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927         if (mem_cgroup_is_root(pc->mem_cgroup))
928                 return;
929         VM_BUG_ON(list_empty(&pc->lru));
930         list_del_init(&pc->lru);
931 }
932
933 void mem_cgroup_del_lru(struct page *page)
934 {
935         mem_cgroup_del_lru_list(page, page_lru(page));
936 }
937
938 /*
939  * Writeback is about to end against a page which has been marked for immediate
940  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
941  * inactive list.
942  */
943 void mem_cgroup_rotate_reclaimable_page(struct page *page)
944 {
945         struct mem_cgroup_per_zone *mz;
946         struct page_cgroup *pc;
947         enum lru_list lru = page_lru(page);
948
949         if (mem_cgroup_disabled())
950                 return;
951
952         pc = lookup_page_cgroup(page);
953         /* unused or root page is not rotated. */
954         if (!PageCgroupUsed(pc))
955                 return;
956         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
957         smp_rmb();
958         if (mem_cgroup_is_root(pc->mem_cgroup))
959                 return;
960         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961         list_move_tail(&pc->lru, &mz->lists[lru]);
962 }
963
964 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
965 {
966         struct mem_cgroup_per_zone *mz;
967         struct page_cgroup *pc;
968
969         if (mem_cgroup_disabled())
970                 return;
971
972         pc = lookup_page_cgroup(page);
973         /* unused or root page is not rotated. */
974         if (!PageCgroupUsed(pc))
975                 return;
976         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977         smp_rmb();
978         if (mem_cgroup_is_root(pc->mem_cgroup))
979                 return;
980         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
981         list_move(&pc->lru, &mz->lists[lru]);
982 }
983
984 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
985 {
986         struct page_cgroup *pc;
987         struct mem_cgroup_per_zone *mz;
988
989         if (mem_cgroup_disabled())
990                 return;
991         pc = lookup_page_cgroup(page);
992         VM_BUG_ON(PageCgroupAcctLRU(pc));
993         if (!PageCgroupUsed(pc))
994                 return;
995         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
996         smp_rmb();
997         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998         /* huge page split is done under lru_lock. so, we have no races. */
999         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000         SetPageCgroupAcctLRU(pc);
1001         if (mem_cgroup_is_root(pc->mem_cgroup))
1002                 return;
1003         list_add(&pc->lru, &mz->lists[lru]);
1004 }
1005
1006 /*
1007  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008  * while it's linked to lru because the page may be reused after it's fully
1009  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010  * It's done under lock_page and expected that zone->lru_lock isnever held.
1011  */
1012 static void mem_cgroup_lru_del_before_commit(struct page *page)
1013 {
1014         unsigned long flags;
1015         struct zone *zone = page_zone(page);
1016         struct page_cgroup *pc = lookup_page_cgroup(page);
1017
1018         /*
1019          * Doing this check without taking ->lru_lock seems wrong but this
1020          * is safe. Because if page_cgroup's USED bit is unset, the page
1021          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022          * set, the commit after this will fail, anyway.
1023          * This all charge/uncharge is done under some mutual execustion.
1024          * So, we don't need to taking care of changes in USED bit.
1025          */
1026         if (likely(!PageLRU(page)))
1027                 return;
1028
1029         spin_lock_irqsave(&zone->lru_lock, flags);
1030         /*
1031          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032          * is guarded by lock_page() because the page is SwapCache.
1033          */
1034         if (!PageCgroupUsed(pc))
1035                 mem_cgroup_del_lru_list(page, page_lru(page));
1036         spin_unlock_irqrestore(&zone->lru_lock, flags);
1037 }
1038
1039 static void mem_cgroup_lru_add_after_commit(struct page *page)
1040 {
1041         unsigned long flags;
1042         struct zone *zone = page_zone(page);
1043         struct page_cgroup *pc = lookup_page_cgroup(page);
1044
1045         /* taking care of that the page is added to LRU while we commit it */
1046         if (likely(!PageLRU(page)))
1047                 return;
1048         spin_lock_irqsave(&zone->lru_lock, flags);
1049         /* link when the page is linked to LRU but page_cgroup isn't */
1050         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051                 mem_cgroup_add_lru_list(page, page_lru(page));
1052         spin_unlock_irqrestore(&zone->lru_lock, flags);
1053 }
1054
1055
1056 void mem_cgroup_move_lists(struct page *page,
1057                            enum lru_list from, enum lru_list to)
1058 {
1059         if (mem_cgroup_disabled())
1060                 return;
1061         mem_cgroup_del_lru_list(page, from);
1062         mem_cgroup_add_lru_list(page, to);
1063 }
1064
1065 /*
1066  * Checks whether given mem is same or in the root_mem's
1067  * hierarchy subtree
1068  */
1069 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070                 struct mem_cgroup *mem)
1071 {
1072         if (root_mem != mem) {
1073                 return (root_mem->use_hierarchy &&
1074                         css_is_ancestor(&mem->css, &root_mem->css));
1075         }
1076
1077         return true;
1078 }
1079
1080 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081 {
1082         int ret;
1083         struct mem_cgroup *curr = NULL;
1084         struct task_struct *p;
1085
1086         p = find_lock_task_mm(task);
1087         if (!p)
1088                 return 0;
1089         curr = try_get_mem_cgroup_from_mm(p->mm);
1090         task_unlock(p);
1091         if (!curr)
1092                 return 0;
1093         /*
1094          * We should check use_hierarchy of "mem" not "curr". Because checking
1095          * use_hierarchy of "curr" here make this function true if hierarchy is
1096          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097          * hierarchy(even if use_hierarchy is disabled in "mem").
1098          */
1099         ret = mem_cgroup_same_or_subtree(mem, curr);
1100         css_put(&curr->css);
1101         return ret;
1102 }
1103
1104 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105 {
1106         unsigned long active;
1107         unsigned long inactive;
1108         unsigned long gb;
1109         unsigned long inactive_ratio;
1110
1111         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113
1114         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115         if (gb)
1116                 inactive_ratio = int_sqrt(10 * gb);
1117         else
1118                 inactive_ratio = 1;
1119
1120         if (present_pages) {
1121                 present_pages[0] = inactive;
1122                 present_pages[1] = active;
1123         }
1124
1125         return inactive_ratio;
1126 }
1127
1128 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129 {
1130         unsigned long active;
1131         unsigned long inactive;
1132         unsigned long present_pages[2];
1133         unsigned long inactive_ratio;
1134
1135         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137         inactive = present_pages[0];
1138         active = present_pages[1];
1139
1140         if (inactive * inactive_ratio < active)
1141                 return 1;
1142
1143         return 0;
1144 }
1145
1146 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147 {
1148         unsigned long active;
1149         unsigned long inactive;
1150
1151         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153
1154         return (active > inactive);
1155 }
1156
1157 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158                                                       struct zone *zone)
1159 {
1160         int nid = zone_to_nid(zone);
1161         int zid = zone_idx(zone);
1162         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164         return &mz->reclaim_stat;
1165 }
1166
1167 struct zone_reclaim_stat *
1168 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169 {
1170         struct page_cgroup *pc;
1171         struct mem_cgroup_per_zone *mz;
1172
1173         if (mem_cgroup_disabled())
1174                 return NULL;
1175
1176         pc = lookup_page_cgroup(page);
1177         if (!PageCgroupUsed(pc))
1178                 return NULL;
1179         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180         smp_rmb();
1181         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182         return &mz->reclaim_stat;
1183 }
1184
1185 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186                                         struct list_head *dst,
1187                                         unsigned long *scanned, int order,
1188                                         isolate_mode_t mode,
1189                                         struct zone *z,
1190                                         struct mem_cgroup *mem_cont,
1191                                         int active, int file)
1192 {
1193         unsigned long nr_taken = 0;
1194         struct page *page;
1195         unsigned long scan;
1196         LIST_HEAD(pc_list);
1197         struct list_head *src;
1198         struct page_cgroup *pc, *tmp;
1199         int nid = zone_to_nid(z);
1200         int zid = zone_idx(z);
1201         struct mem_cgroup_per_zone *mz;
1202         int lru = LRU_FILE * file + active;
1203         int ret;
1204
1205         BUG_ON(!mem_cont);
1206         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1207         src = &mz->lists[lru];
1208
1209         scan = 0;
1210         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1211                 if (scan >= nr_to_scan)
1212                         break;
1213
1214                 if (unlikely(!PageCgroupUsed(pc)))
1215                         continue;
1216
1217                 page = lookup_cgroup_page(pc);
1218
1219                 if (unlikely(!PageLRU(page)))
1220                         continue;
1221
1222                 scan++;
1223                 ret = __isolate_lru_page(page, mode, file);
1224                 switch (ret) {
1225                 case 0:
1226                         list_move(&page->lru, dst);
1227                         mem_cgroup_del_lru(page);
1228                         nr_taken += hpage_nr_pages(page);
1229                         break;
1230                 case -EBUSY:
1231                         /* we don't affect global LRU but rotate in our LRU */
1232                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1233                         break;
1234                 default:
1235                         break;
1236                 }
1237         }
1238
1239         *scanned = scan;
1240
1241         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1242                                       0, 0, 0, mode);
1243
1244         return nr_taken;
1245 }
1246
1247 #define mem_cgroup_from_res_counter(counter, member)    \
1248         container_of(counter, struct mem_cgroup, member)
1249
1250 /**
1251  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1252  * @mem: the memory cgroup
1253  *
1254  * Returns the maximum amount of memory @mem can be charged with, in
1255  * pages.
1256  */
1257 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1258 {
1259         unsigned long long margin;
1260
1261         margin = res_counter_margin(&mem->res);
1262         if (do_swap_account)
1263                 margin = min(margin, res_counter_margin(&mem->memsw));
1264         return margin >> PAGE_SHIFT;
1265 }
1266
1267 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1268 {
1269         struct cgroup *cgrp = memcg->css.cgroup;
1270
1271         /* root ? */
1272         if (cgrp->parent == NULL)
1273                 return vm_swappiness;
1274
1275         return memcg->swappiness;
1276 }
1277
1278 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1279 {
1280         int cpu;
1281
1282         get_online_cpus();
1283         spin_lock(&mem->pcp_counter_lock);
1284         for_each_online_cpu(cpu)
1285                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1286         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1287         spin_unlock(&mem->pcp_counter_lock);
1288         put_online_cpus();
1289
1290         synchronize_rcu();
1291 }
1292
1293 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1294 {
1295         int cpu;
1296
1297         if (!mem)
1298                 return;
1299         get_online_cpus();
1300         spin_lock(&mem->pcp_counter_lock);
1301         for_each_online_cpu(cpu)
1302                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1303         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1304         spin_unlock(&mem->pcp_counter_lock);
1305         put_online_cpus();
1306 }
1307 /*
1308  * 2 routines for checking "mem" is under move_account() or not.
1309  *
1310  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1311  *                        for avoiding race in accounting. If true,
1312  *                        pc->mem_cgroup may be overwritten.
1313  *
1314  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1315  *                        under hierarchy of moving cgroups. This is for
1316  *                        waiting at hith-memory prressure caused by "move".
1317  */
1318
1319 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1320 {
1321         VM_BUG_ON(!rcu_read_lock_held());
1322         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1323 }
1324
1325 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1326 {
1327         struct mem_cgroup *from;
1328         struct mem_cgroup *to;
1329         bool ret = false;
1330         /*
1331          * Unlike task_move routines, we access mc.to, mc.from not under
1332          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1333          */
1334         spin_lock(&mc.lock);
1335         from = mc.from;
1336         to = mc.to;
1337         if (!from)
1338                 goto unlock;
1339
1340         ret = mem_cgroup_same_or_subtree(mem, from)
1341                 || mem_cgroup_same_or_subtree(mem, to);
1342 unlock:
1343         spin_unlock(&mc.lock);
1344         return ret;
1345 }
1346
1347 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1348 {
1349         if (mc.moving_task && current != mc.moving_task) {
1350                 if (mem_cgroup_under_move(mem)) {
1351                         DEFINE_WAIT(wait);
1352                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1353                         /* moving charge context might have finished. */
1354                         if (mc.moving_task)
1355                                 schedule();
1356                         finish_wait(&mc.waitq, &wait);
1357                         return true;
1358                 }
1359         }
1360         return false;
1361 }
1362
1363 /**
1364  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1365  * @memcg: The memory cgroup that went over limit
1366  * @p: Task that is going to be killed
1367  *
1368  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1369  * enabled
1370  */
1371 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1372 {
1373         struct cgroup *task_cgrp;
1374         struct cgroup *mem_cgrp;
1375         /*
1376          * Need a buffer in BSS, can't rely on allocations. The code relies
1377          * on the assumption that OOM is serialized for memory controller.
1378          * If this assumption is broken, revisit this code.
1379          */
1380         static char memcg_name[PATH_MAX];
1381         int ret;
1382
1383         if (!memcg || !p)
1384                 return;
1385
1386
1387         rcu_read_lock();
1388
1389         mem_cgrp = memcg->css.cgroup;
1390         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1391
1392         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1393         if (ret < 0) {
1394                 /*
1395                  * Unfortunately, we are unable to convert to a useful name
1396                  * But we'll still print out the usage information
1397                  */
1398                 rcu_read_unlock();
1399                 goto done;
1400         }
1401         rcu_read_unlock();
1402
1403         printk(KERN_INFO "Task in %s killed", memcg_name);
1404
1405         rcu_read_lock();
1406         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1407         if (ret < 0) {
1408                 rcu_read_unlock();
1409                 goto done;
1410         }
1411         rcu_read_unlock();
1412
1413         /*
1414          * Continues from above, so we don't need an KERN_ level
1415          */
1416         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1417 done:
1418
1419         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1420                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1421                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1422                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1423         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1424                 "failcnt %llu\n",
1425                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1426                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1427                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1428 }
1429
1430 /*
1431  * This function returns the number of memcg under hierarchy tree. Returns
1432  * 1(self count) if no children.
1433  */
1434 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1435 {
1436         int num = 0;
1437         struct mem_cgroup *iter;
1438
1439         for_each_mem_cgroup_tree(iter, mem)
1440                 num++;
1441         return num;
1442 }
1443
1444 /*
1445  * Return the memory (and swap, if configured) limit for a memcg.
1446  */
1447 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1448 {
1449         u64 limit;
1450         u64 memsw;
1451
1452         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1453         limit += total_swap_pages << PAGE_SHIFT;
1454
1455         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1456         /*
1457          * If memsw is finite and limits the amount of swap space available
1458          * to this memcg, return that limit.
1459          */
1460         return min(limit, memsw);
1461 }
1462
1463 /*
1464  * Visit the first child (need not be the first child as per the ordering
1465  * of the cgroup list, since we track last_scanned_child) of @mem and use
1466  * that to reclaim free pages from.
1467  */
1468 static struct mem_cgroup *
1469 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1470 {
1471         struct mem_cgroup *ret = NULL;
1472         struct cgroup_subsys_state *css;
1473         int nextid, found;
1474
1475         if (!root_mem->use_hierarchy) {
1476                 css_get(&root_mem->css);
1477                 ret = root_mem;
1478         }
1479
1480         while (!ret) {
1481                 rcu_read_lock();
1482                 nextid = root_mem->last_scanned_child + 1;
1483                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1484                                    &found);
1485                 if (css && css_tryget(css))
1486                         ret = container_of(css, struct mem_cgroup, css);
1487
1488                 rcu_read_unlock();
1489                 /* Updates scanning parameter */
1490                 if (!css) {
1491                         /* this means start scan from ID:1 */
1492                         root_mem->last_scanned_child = 0;
1493                 } else
1494                         root_mem->last_scanned_child = found;
1495         }
1496
1497         return ret;
1498 }
1499
1500 /**
1501  * test_mem_cgroup_node_reclaimable
1502  * @mem: the target memcg
1503  * @nid: the node ID to be checked.
1504  * @noswap : specify true here if the user wants flle only information.
1505  *
1506  * This function returns whether the specified memcg contains any
1507  * reclaimable pages on a node. Returns true if there are any reclaimable
1508  * pages in the node.
1509  */
1510 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1511                 int nid, bool noswap)
1512 {
1513         if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1514                 return true;
1515         if (noswap || !total_swap_pages)
1516                 return false;
1517         if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1518                 return true;
1519         return false;
1520
1521 }
1522 #if MAX_NUMNODES > 1
1523
1524 /*
1525  * Always updating the nodemask is not very good - even if we have an empty
1526  * list or the wrong list here, we can start from some node and traverse all
1527  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1528  *
1529  */
1530 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1531 {
1532         int nid;
1533         /*
1534          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1535          * pagein/pageout changes since the last update.
1536          */
1537         if (!atomic_read(&mem->numainfo_events))
1538                 return;
1539         if (atomic_inc_return(&mem->numainfo_updating) > 1)
1540                 return;
1541
1542         /* make a nodemask where this memcg uses memory from */
1543         mem->scan_nodes = node_states[N_HIGH_MEMORY];
1544
1545         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1546
1547                 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1548                         node_clear(nid, mem->scan_nodes);
1549         }
1550
1551         atomic_set(&mem->numainfo_events, 0);
1552         atomic_set(&mem->numainfo_updating, 0);
1553 }
1554
1555 /*
1556  * Selecting a node where we start reclaim from. Because what we need is just
1557  * reducing usage counter, start from anywhere is O,K. Considering
1558  * memory reclaim from current node, there are pros. and cons.
1559  *
1560  * Freeing memory from current node means freeing memory from a node which
1561  * we'll use or we've used. So, it may make LRU bad. And if several threads
1562  * hit limits, it will see a contention on a node. But freeing from remote
1563  * node means more costs for memory reclaim because of memory latency.
1564  *
1565  * Now, we use round-robin. Better algorithm is welcomed.
1566  */
1567 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1568 {
1569         int node;
1570
1571         mem_cgroup_may_update_nodemask(mem);
1572         node = mem->last_scanned_node;
1573
1574         node = next_node(node, mem->scan_nodes);
1575         if (node == MAX_NUMNODES)
1576                 node = first_node(mem->scan_nodes);
1577         /*
1578          * We call this when we hit limit, not when pages are added to LRU.
1579          * No LRU may hold pages because all pages are UNEVICTABLE or
1580          * memcg is too small and all pages are not on LRU. In that case,
1581          * we use curret node.
1582          */
1583         if (unlikely(node == MAX_NUMNODES))
1584                 node = numa_node_id();
1585
1586         mem->last_scanned_node = node;
1587         return node;
1588 }
1589
1590 /*
1591  * Check all nodes whether it contains reclaimable pages or not.
1592  * For quick scan, we make use of scan_nodes. This will allow us to skip
1593  * unused nodes. But scan_nodes is lazily updated and may not cotain
1594  * enough new information. We need to do double check.
1595  */
1596 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1597 {
1598         int nid;
1599
1600         /*
1601          * quick check...making use of scan_node.
1602          * We can skip unused nodes.
1603          */
1604         if (!nodes_empty(mem->scan_nodes)) {
1605                 for (nid = first_node(mem->scan_nodes);
1606                      nid < MAX_NUMNODES;
1607                      nid = next_node(nid, mem->scan_nodes)) {
1608
1609                         if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1610                                 return true;
1611                 }
1612         }
1613         /*
1614          * Check rest of nodes.
1615          */
1616         for_each_node_state(nid, N_HIGH_MEMORY) {
1617                 if (node_isset(nid, mem->scan_nodes))
1618                         continue;
1619                 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1620                         return true;
1621         }
1622         return false;
1623 }
1624
1625 #else
1626 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1627 {
1628         return 0;
1629 }
1630
1631 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1632 {
1633         return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1634 }
1635 #endif
1636
1637 /*
1638  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1639  * we reclaimed from, so that we don't end up penalizing one child extensively
1640  * based on its position in the children list.
1641  *
1642  * root_mem is the original ancestor that we've been reclaim from.
1643  *
1644  * We give up and return to the caller when we visit root_mem twice.
1645  * (other groups can be removed while we're walking....)
1646  *
1647  * If shrink==true, for avoiding to free too much, this returns immedieately.
1648  */
1649 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1650                                                 struct zone *zone,
1651                                                 gfp_t gfp_mask,
1652                                                 unsigned long reclaim_options,
1653                                                 unsigned long *total_scanned)
1654 {
1655         struct mem_cgroup *victim;
1656         int ret, total = 0;
1657         int loop = 0;
1658         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1659         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1660         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1661         unsigned long excess;
1662         unsigned long nr_scanned;
1663
1664         excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1665
1666         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1667         if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1668                 noswap = true;
1669
1670         while (1) {
1671                 victim = mem_cgroup_select_victim(root_mem);
1672                 if (victim == root_mem) {
1673                         loop++;
1674                         /*
1675                          * We are not draining per cpu cached charges during
1676                          * soft limit reclaim  because global reclaim doesn't
1677                          * care about charges. It tries to free some memory and
1678                          * charges will not give any.
1679                          */
1680                         if (!check_soft && loop >= 1)
1681                                 drain_all_stock_async(root_mem);
1682                         if (loop >= 2) {
1683                                 /*
1684                                  * If we have not been able to reclaim
1685                                  * anything, it might because there are
1686                                  * no reclaimable pages under this hierarchy
1687                                  */
1688                                 if (!check_soft || !total) {
1689                                         css_put(&victim->css);
1690                                         break;
1691                                 }
1692                                 /*
1693                                  * We want to do more targeted reclaim.
1694                                  * excess >> 2 is not to excessive so as to
1695                                  * reclaim too much, nor too less that we keep
1696                                  * coming back to reclaim from this cgroup
1697                                  */
1698                                 if (total >= (excess >> 2) ||
1699                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1700                                         css_put(&victim->css);
1701                                         break;
1702                                 }
1703                         }
1704                 }
1705                 if (!mem_cgroup_reclaimable(victim, noswap)) {
1706                         /* this cgroup's local usage == 0 */
1707                         css_put(&victim->css);
1708                         continue;
1709                 }
1710                 /* we use swappiness of local cgroup */
1711                 if (check_soft) {
1712                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1713                                 noswap, zone, &nr_scanned);
1714                         *total_scanned += nr_scanned;
1715                 } else
1716                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1717                                                 noswap);
1718                 css_put(&victim->css);
1719                 /*
1720                  * At shrinking usage, we can't check we should stop here or
1721                  * reclaim more. It's depends on callers. last_scanned_child
1722                  * will work enough for keeping fairness under tree.
1723                  */
1724                 if (shrink)
1725                         return ret;
1726                 total += ret;
1727                 if (check_soft) {
1728                         if (!res_counter_soft_limit_excess(&root_mem->res))
1729                                 return total;
1730                 } else if (mem_cgroup_margin(root_mem))
1731                         return total;
1732         }
1733         return total;
1734 }
1735
1736 /*
1737  * Check OOM-Killer is already running under our hierarchy.
1738  * If someone is running, return false.
1739  * Has to be called with memcg_oom_lock
1740  */
1741 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1742 {
1743         struct mem_cgroup *iter, *failed = NULL;
1744         bool cond = true;
1745
1746         for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1747                 if (iter->oom_lock) {
1748                         /*
1749                          * this subtree of our hierarchy is already locked
1750                          * so we cannot give a lock.
1751                          */
1752                         failed = iter;
1753                         cond = false;
1754                 } else
1755                         iter->oom_lock = true;
1756         }
1757
1758         if (!failed)
1759                 return true;
1760
1761         /*
1762          * OK, we failed to lock the whole subtree so we have to clean up
1763          * what we set up to the failing subtree
1764          */
1765         cond = true;
1766         for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1767                 if (iter == failed) {
1768                         cond = false;
1769                         continue;
1770                 }
1771                 iter->oom_lock = false;
1772         }
1773         return false;
1774 }
1775
1776 /*
1777  * Has to be called with memcg_oom_lock
1778  */
1779 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1780 {
1781         struct mem_cgroup *iter;
1782
1783         for_each_mem_cgroup_tree(iter, mem)
1784                 iter->oom_lock = false;
1785         return 0;
1786 }
1787
1788 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1789 {
1790         struct mem_cgroup *iter;
1791
1792         for_each_mem_cgroup_tree(iter, mem)
1793                 atomic_inc(&iter->under_oom);
1794 }
1795
1796 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1797 {
1798         struct mem_cgroup *iter;
1799
1800         /*
1801          * When a new child is created while the hierarchy is under oom,
1802          * mem_cgroup_oom_lock() may not be called. We have to use
1803          * atomic_add_unless() here.
1804          */
1805         for_each_mem_cgroup_tree(iter, mem)
1806                 atomic_add_unless(&iter->under_oom, -1, 0);
1807 }
1808
1809 static DEFINE_SPINLOCK(memcg_oom_lock);
1810 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1811
1812 struct oom_wait_info {
1813         struct mem_cgroup *mem;
1814         wait_queue_t    wait;
1815 };
1816
1817 static int memcg_oom_wake_function(wait_queue_t *wait,
1818         unsigned mode, int sync, void *arg)
1819 {
1820         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1821                           *oom_wait_mem;
1822         struct oom_wait_info *oom_wait_info;
1823
1824         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1825         oom_wait_mem = oom_wait_info->mem;
1826
1827         /*
1828          * Both of oom_wait_info->mem and wake_mem are stable under us.
1829          * Then we can use css_is_ancestor without taking care of RCU.
1830          */
1831         if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1832                         && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1833                 return 0;
1834         return autoremove_wake_function(wait, mode, sync, arg);
1835 }
1836
1837 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1838 {
1839         /* for filtering, pass "mem" as argument. */
1840         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1841 }
1842
1843 static void memcg_oom_recover(struct mem_cgroup *mem)
1844 {
1845         if (mem && atomic_read(&mem->under_oom))
1846                 memcg_wakeup_oom(mem);
1847 }
1848
1849 /*
1850  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1851  */
1852 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1853 {
1854         struct oom_wait_info owait;
1855         bool locked, need_to_kill;
1856
1857         owait.mem = mem;
1858         owait.wait.flags = 0;
1859         owait.wait.func = memcg_oom_wake_function;
1860         owait.wait.private = current;
1861         INIT_LIST_HEAD(&owait.wait.task_list);
1862         need_to_kill = true;
1863         mem_cgroup_mark_under_oom(mem);
1864
1865         /* At first, try to OOM lock hierarchy under mem.*/
1866         spin_lock(&memcg_oom_lock);
1867         locked = mem_cgroup_oom_lock(mem);
1868         /*
1869          * Even if signal_pending(), we can't quit charge() loop without
1870          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1871          * under OOM is always welcomed, use TASK_KILLABLE here.
1872          */
1873         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1874         if (!locked || mem->oom_kill_disable)
1875                 need_to_kill = false;
1876         if (locked)
1877                 mem_cgroup_oom_notify(mem);
1878         spin_unlock(&memcg_oom_lock);
1879
1880         if (need_to_kill) {
1881                 finish_wait(&memcg_oom_waitq, &owait.wait);
1882                 mem_cgroup_out_of_memory(mem, mask);
1883         } else {
1884                 schedule();
1885                 finish_wait(&memcg_oom_waitq, &owait.wait);
1886         }
1887         spin_lock(&memcg_oom_lock);
1888         if (locked)
1889                 mem_cgroup_oom_unlock(mem);
1890         memcg_wakeup_oom(mem);
1891         spin_unlock(&memcg_oom_lock);
1892
1893         mem_cgroup_unmark_under_oom(mem);
1894
1895         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1896                 return false;
1897         /* Give chance to dying process */
1898         schedule_timeout(1);
1899         return true;
1900 }
1901
1902 /*
1903  * Currently used to update mapped file statistics, but the routine can be
1904  * generalized to update other statistics as well.
1905  *
1906  * Notes: Race condition
1907  *
1908  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1909  * it tends to be costly. But considering some conditions, we doesn't need
1910  * to do so _always_.
1911  *
1912  * Considering "charge", lock_page_cgroup() is not required because all
1913  * file-stat operations happen after a page is attached to radix-tree. There
1914  * are no race with "charge".
1915  *
1916  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1917  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1918  * if there are race with "uncharge". Statistics itself is properly handled
1919  * by flags.
1920  *
1921  * Considering "move", this is an only case we see a race. To make the race
1922  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1923  * possibility of race condition. If there is, we take a lock.
1924  */
1925
1926 void mem_cgroup_update_page_stat(struct page *page,
1927                                  enum mem_cgroup_page_stat_item idx, int val)
1928 {
1929         struct mem_cgroup *mem;
1930         struct page_cgroup *pc = lookup_page_cgroup(page);
1931         bool need_unlock = false;
1932         unsigned long uninitialized_var(flags);
1933
1934         if (unlikely(!pc))
1935                 return;
1936
1937         rcu_read_lock();
1938         mem = pc->mem_cgroup;
1939         if (unlikely(!mem || !PageCgroupUsed(pc)))
1940                 goto out;
1941         /* pc->mem_cgroup is unstable ? */
1942         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1943                 /* take a lock against to access pc->mem_cgroup */
1944                 move_lock_page_cgroup(pc, &flags);
1945                 need_unlock = true;
1946                 mem = pc->mem_cgroup;
1947                 if (!mem || !PageCgroupUsed(pc))
1948                         goto out;
1949         }
1950
1951         switch (idx) {
1952         case MEMCG_NR_FILE_MAPPED:
1953                 if (val > 0)
1954                         SetPageCgroupFileMapped(pc);
1955                 else if (!page_mapped(page))
1956                         ClearPageCgroupFileMapped(pc);
1957                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1958                 break;
1959         default:
1960                 BUG();
1961         }
1962
1963         this_cpu_add(mem->stat->count[idx], val);
1964
1965 out:
1966         if (unlikely(need_unlock))
1967                 move_unlock_page_cgroup(pc, &flags);
1968         rcu_read_unlock();
1969         return;
1970 }
1971 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1972
1973 /*
1974  * size of first charge trial. "32" comes from vmscan.c's magic value.
1975  * TODO: maybe necessary to use big numbers in big irons.
1976  */
1977 #define CHARGE_BATCH    32U
1978 struct memcg_stock_pcp {
1979         struct mem_cgroup *cached; /* this never be root cgroup */
1980         unsigned int nr_pages;
1981         struct work_struct work;
1982         unsigned long flags;
1983 #define FLUSHING_CACHED_CHARGE  (0)
1984 };
1985 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1986 static DEFINE_MUTEX(percpu_charge_mutex);
1987
1988 /*
1989  * Try to consume stocked charge on this cpu. If success, one page is consumed
1990  * from local stock and true is returned. If the stock is 0 or charges from a
1991  * cgroup which is not current target, returns false. This stock will be
1992  * refilled.
1993  */
1994 static bool consume_stock(struct mem_cgroup *mem)
1995 {
1996         struct memcg_stock_pcp *stock;
1997         bool ret = true;
1998
1999         stock = &get_cpu_var(memcg_stock);
2000         if (mem == stock->cached && stock->nr_pages)
2001                 stock->nr_pages--;
2002         else /* need to call res_counter_charge */
2003                 ret = false;
2004         put_cpu_var(memcg_stock);
2005         return ret;
2006 }
2007
2008 /*
2009  * Returns stocks cached in percpu to res_counter and reset cached information.
2010  */
2011 static void drain_stock(struct memcg_stock_pcp *stock)
2012 {
2013         struct mem_cgroup *old = stock->cached;
2014
2015         if (stock->nr_pages) {
2016                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2017
2018                 res_counter_uncharge(&old->res, bytes);
2019                 if (do_swap_account)
2020                         res_counter_uncharge(&old->memsw, bytes);
2021                 stock->nr_pages = 0;
2022         }
2023         stock->cached = NULL;
2024 }
2025
2026 /*
2027  * This must be called under preempt disabled or must be called by
2028  * a thread which is pinned to local cpu.
2029  */
2030 static void drain_local_stock(struct work_struct *dummy)
2031 {
2032         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2033         drain_stock(stock);
2034         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2035 }
2036
2037 /*
2038  * Cache charges(val) which is from res_counter, to local per_cpu area.
2039  * This will be consumed by consume_stock() function, later.
2040  */
2041 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2042 {
2043         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2044
2045         if (stock->cached != mem) { /* reset if necessary */
2046                 drain_stock(stock);
2047                 stock->cached = mem;
2048         }
2049         stock->nr_pages += nr_pages;
2050         put_cpu_var(memcg_stock);
2051 }
2052
2053 /*
2054  * Drains all per-CPU charge caches for given root_mem resp. subtree
2055  * of the hierarchy under it. sync flag says whether we should block
2056  * until the work is done.
2057  */
2058 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2059 {
2060         int cpu, curcpu;
2061
2062         /* Notify other cpus that system-wide "drain" is running */
2063         get_online_cpus();
2064         curcpu = get_cpu();
2065         for_each_online_cpu(cpu) {
2066                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2067                 struct mem_cgroup *mem;
2068
2069                 mem = stock->cached;
2070                 if (!mem || !stock->nr_pages)
2071                         continue;
2072                 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2073                         continue;
2074                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2075                         if (cpu == curcpu)
2076                                 drain_local_stock(&stock->work);
2077                         else
2078                                 schedule_work_on(cpu, &stock->work);
2079                 }
2080         }
2081         put_cpu();
2082
2083         if (!sync)
2084                 goto out;
2085
2086         for_each_online_cpu(cpu) {
2087                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2088                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2089                         flush_work(&stock->work);
2090         }
2091 out:
2092         put_online_cpus();
2093 }
2094
2095 /*
2096  * Tries to drain stocked charges in other cpus. This function is asynchronous
2097  * and just put a work per cpu for draining localy on each cpu. Caller can
2098  * expects some charges will be back to res_counter later but cannot wait for
2099  * it.
2100  */
2101 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2102 {
2103         /*
2104          * If someone calls draining, avoid adding more kworker runs.
2105          */
2106         if (!mutex_trylock(&percpu_charge_mutex))
2107                 return;
2108         drain_all_stock(root_mem, false);
2109         mutex_unlock(&percpu_charge_mutex);
2110 }
2111
2112 /* This is a synchronous drain interface. */
2113 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2114 {
2115         /* called when force_empty is called */
2116         mutex_lock(&percpu_charge_mutex);
2117         drain_all_stock(root_mem, true);
2118         mutex_unlock(&percpu_charge_mutex);
2119 }
2120
2121 /*
2122  * This function drains percpu counter value from DEAD cpu and
2123  * move it to local cpu. Note that this function can be preempted.
2124  */
2125 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2126 {
2127         int i;
2128
2129         spin_lock(&mem->pcp_counter_lock);
2130         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2131                 long x = per_cpu(mem->stat->count[i], cpu);
2132
2133                 per_cpu(mem->stat->count[i], cpu) = 0;
2134                 mem->nocpu_base.count[i] += x;
2135         }
2136         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2137                 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2138
2139                 per_cpu(mem->stat->events[i], cpu) = 0;
2140                 mem->nocpu_base.events[i] += x;
2141         }
2142         /* need to clear ON_MOVE value, works as a kind of lock. */
2143         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2144         spin_unlock(&mem->pcp_counter_lock);
2145 }
2146
2147 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2148 {
2149         int idx = MEM_CGROUP_ON_MOVE;
2150
2151         spin_lock(&mem->pcp_counter_lock);
2152         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2153         spin_unlock(&mem->pcp_counter_lock);
2154 }
2155
2156 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2157                                         unsigned long action,
2158                                         void *hcpu)
2159 {
2160         int cpu = (unsigned long)hcpu;
2161         struct memcg_stock_pcp *stock;
2162         struct mem_cgroup *iter;
2163
2164         if ((action == CPU_ONLINE)) {
2165                 for_each_mem_cgroup_all(iter)
2166                         synchronize_mem_cgroup_on_move(iter, cpu);
2167                 return NOTIFY_OK;
2168         }
2169
2170         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2171                 return NOTIFY_OK;
2172
2173         for_each_mem_cgroup_all(iter)
2174                 mem_cgroup_drain_pcp_counter(iter, cpu);
2175
2176         stock = &per_cpu(memcg_stock, cpu);
2177         drain_stock(stock);
2178         return NOTIFY_OK;
2179 }
2180
2181
2182 /* See __mem_cgroup_try_charge() for details */
2183 enum {
2184         CHARGE_OK,              /* success */
2185         CHARGE_RETRY,           /* need to retry but retry is not bad */
2186         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2187         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2188         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2189 };
2190
2191 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2192                                 unsigned int nr_pages, bool oom_check)
2193 {
2194         unsigned long csize = nr_pages * PAGE_SIZE;
2195         struct mem_cgroup *mem_over_limit;
2196         struct res_counter *fail_res;
2197         unsigned long flags = 0;
2198         int ret;
2199
2200         ret = res_counter_charge(&mem->res, csize, &fail_res);
2201
2202         if (likely(!ret)) {
2203                 if (!do_swap_account)
2204                         return CHARGE_OK;
2205                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2206                 if (likely(!ret))
2207                         return CHARGE_OK;
2208
2209                 res_counter_uncharge(&mem->res, csize);
2210                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2211                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2212         } else
2213                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2214         /*
2215          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2216          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2217          *
2218          * Never reclaim on behalf of optional batching, retry with a
2219          * single page instead.
2220          */
2221         if (nr_pages == CHARGE_BATCH)
2222                 return CHARGE_RETRY;
2223
2224         if (!(gfp_mask & __GFP_WAIT))
2225                 return CHARGE_WOULDBLOCK;
2226
2227         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2228                                               gfp_mask, flags, NULL);
2229         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2230                 return CHARGE_RETRY;
2231         /*
2232          * Even though the limit is exceeded at this point, reclaim
2233          * may have been able to free some pages.  Retry the charge
2234          * before killing the task.
2235          *
2236          * Only for regular pages, though: huge pages are rather
2237          * unlikely to succeed so close to the limit, and we fall back
2238          * to regular pages anyway in case of failure.
2239          */
2240         if (nr_pages == 1 && ret)
2241                 return CHARGE_RETRY;
2242
2243         /*
2244          * At task move, charge accounts can be doubly counted. So, it's
2245          * better to wait until the end of task_move if something is going on.
2246          */
2247         if (mem_cgroup_wait_acct_move(mem_over_limit))
2248                 return CHARGE_RETRY;
2249
2250         /* If we don't need to call oom-killer at el, return immediately */
2251         if (!oom_check)
2252                 return CHARGE_NOMEM;
2253         /* check OOM */
2254         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2255                 return CHARGE_OOM_DIE;
2256
2257         return CHARGE_RETRY;
2258 }
2259
2260 /*
2261  * Unlike exported interface, "oom" parameter is added. if oom==true,
2262  * oom-killer can be invoked.
2263  */
2264 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2265                                    gfp_t gfp_mask,
2266                                    unsigned int nr_pages,
2267                                    struct mem_cgroup **memcg,
2268                                    bool oom)
2269 {
2270         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2271         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2272         struct mem_cgroup *mem = NULL;
2273         int ret;
2274
2275         /*
2276          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2277          * in system level. So, allow to go ahead dying process in addition to
2278          * MEMDIE process.
2279          */
2280         if (unlikely(test_thread_flag(TIF_MEMDIE)
2281                      || fatal_signal_pending(current)))
2282                 goto bypass;
2283
2284         /*
2285          * We always charge the cgroup the mm_struct belongs to.
2286          * The mm_struct's mem_cgroup changes on task migration if the
2287          * thread group leader migrates. It's possible that mm is not
2288          * set, if so charge the init_mm (happens for pagecache usage).
2289          */
2290         if (!*memcg && !mm)
2291                 goto bypass;
2292 again:
2293         if (*memcg) { /* css should be a valid one */
2294                 mem = *memcg;
2295                 VM_BUG_ON(css_is_removed(&mem->css));
2296                 if (mem_cgroup_is_root(mem))
2297                         goto done;
2298                 if (nr_pages == 1 && consume_stock(mem))
2299                         goto done;
2300                 css_get(&mem->css);
2301         } else {
2302                 struct task_struct *p;
2303
2304                 rcu_read_lock();
2305                 p = rcu_dereference(mm->owner);
2306                 /*
2307                  * Because we don't have task_lock(), "p" can exit.
2308                  * In that case, "mem" can point to root or p can be NULL with
2309                  * race with swapoff. Then, we have small risk of mis-accouning.
2310                  * But such kind of mis-account by race always happens because
2311                  * we don't have cgroup_mutex(). It's overkill and we allo that
2312                  * small race, here.
2313                  * (*) swapoff at el will charge against mm-struct not against
2314                  * task-struct. So, mm->owner can be NULL.
2315                  */
2316                 mem = mem_cgroup_from_task(p);
2317                 if (!mem || mem_cgroup_is_root(mem)) {
2318                         rcu_read_unlock();
2319                         goto done;
2320                 }
2321                 if (nr_pages == 1 && consume_stock(mem)) {
2322                         /*
2323                          * It seems dagerous to access memcg without css_get().
2324                          * But considering how consume_stok works, it's not
2325                          * necessary. If consume_stock success, some charges
2326                          * from this memcg are cached on this cpu. So, we
2327                          * don't need to call css_get()/css_tryget() before
2328                          * calling consume_stock().
2329                          */
2330                         rcu_read_unlock();
2331                         goto done;
2332                 }
2333                 /* after here, we may be blocked. we need to get refcnt */
2334                 if (!css_tryget(&mem->css)) {
2335                         rcu_read_unlock();
2336                         goto again;
2337                 }
2338                 rcu_read_unlock();
2339         }
2340
2341         do {
2342                 bool oom_check;
2343
2344                 /* If killed, bypass charge */
2345                 if (fatal_signal_pending(current)) {
2346                         css_put(&mem->css);
2347                         goto bypass;
2348                 }
2349
2350                 oom_check = false;
2351                 if (oom && !nr_oom_retries) {
2352                         oom_check = true;
2353                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2354                 }
2355
2356                 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2357                 switch (ret) {
2358                 case CHARGE_OK:
2359                         break;
2360                 case CHARGE_RETRY: /* not in OOM situation but retry */
2361                         batch = nr_pages;
2362                         css_put(&mem->css);
2363                         mem = NULL;
2364                         goto again;
2365                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2366                         css_put(&mem->css);
2367                         goto nomem;
2368                 case CHARGE_NOMEM: /* OOM routine works */
2369                         if (!oom) {
2370                                 css_put(&mem->css);
2371                                 goto nomem;
2372                         }
2373                         /* If oom, we never return -ENOMEM */
2374                         nr_oom_retries--;
2375                         break;
2376                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2377                         css_put(&mem->css);
2378                         goto bypass;
2379                 }
2380         } while (ret != CHARGE_OK);
2381
2382         if (batch > nr_pages)
2383                 refill_stock(mem, batch - nr_pages);
2384         css_put(&mem->css);
2385 done:
2386         *memcg = mem;
2387         return 0;
2388 nomem:
2389         *memcg = NULL;
2390         return -ENOMEM;
2391 bypass:
2392         *memcg = NULL;
2393         return 0;
2394 }
2395
2396 /*
2397  * Somemtimes we have to undo a charge we got by try_charge().
2398  * This function is for that and do uncharge, put css's refcnt.
2399  * gotten by try_charge().
2400  */
2401 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2402                                        unsigned int nr_pages)
2403 {
2404         if (!mem_cgroup_is_root(mem)) {
2405                 unsigned long bytes = nr_pages * PAGE_SIZE;
2406
2407                 res_counter_uncharge(&mem->res, bytes);
2408                 if (do_swap_account)
2409                         res_counter_uncharge(&mem->memsw, bytes);
2410         }
2411 }
2412
2413 /*
2414  * A helper function to get mem_cgroup from ID. must be called under
2415  * rcu_read_lock(). The caller must check css_is_removed() or some if
2416  * it's concern. (dropping refcnt from swap can be called against removed
2417  * memcg.)
2418  */
2419 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2420 {
2421         struct cgroup_subsys_state *css;
2422
2423         /* ID 0 is unused ID */
2424         if (!id)
2425                 return NULL;
2426         css = css_lookup(&mem_cgroup_subsys, id);
2427         if (!css)
2428                 return NULL;
2429         return container_of(css, struct mem_cgroup, css);
2430 }
2431
2432 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2433 {
2434         struct mem_cgroup *mem = NULL;
2435         struct page_cgroup *pc;
2436         unsigned short id;
2437         swp_entry_t ent;
2438
2439         VM_BUG_ON(!PageLocked(page));
2440
2441         pc = lookup_page_cgroup(page);
2442         lock_page_cgroup(pc);
2443         if (PageCgroupUsed(pc)) {
2444                 mem = pc->mem_cgroup;
2445                 if (mem && !css_tryget(&mem->css))
2446                         mem = NULL;
2447         } else if (PageSwapCache(page)) {
2448                 ent.val = page_private(page);
2449                 id = lookup_swap_cgroup(ent);
2450                 rcu_read_lock();
2451                 mem = mem_cgroup_lookup(id);
2452                 if (mem && !css_tryget(&mem->css))
2453                         mem = NULL;
2454                 rcu_read_unlock();
2455         }
2456         unlock_page_cgroup(pc);
2457         return mem;
2458 }
2459
2460 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2461                                        struct page *page,
2462                                        unsigned int nr_pages,
2463                                        struct page_cgroup *pc,
2464                                        enum charge_type ctype)
2465 {
2466         lock_page_cgroup(pc);
2467         if (unlikely(PageCgroupUsed(pc))) {
2468                 unlock_page_cgroup(pc);
2469                 __mem_cgroup_cancel_charge(mem, nr_pages);
2470                 return;
2471         }
2472         /*
2473          * we don't need page_cgroup_lock about tail pages, becase they are not
2474          * accessed by any other context at this point.
2475          */
2476         pc->mem_cgroup = mem;
2477         /*
2478          * We access a page_cgroup asynchronously without lock_page_cgroup().
2479          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2480          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2481          * before USED bit, we need memory barrier here.
2482          * See mem_cgroup_add_lru_list(), etc.
2483          */
2484         smp_wmb();
2485         switch (ctype) {
2486         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2487         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2488                 SetPageCgroupCache(pc);
2489                 SetPageCgroupUsed(pc);
2490                 break;
2491         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2492                 ClearPageCgroupCache(pc);
2493                 SetPageCgroupUsed(pc);
2494                 break;
2495         default:
2496                 break;
2497         }
2498
2499         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2500         unlock_page_cgroup(pc);
2501         /*
2502          * "charge_statistics" updated event counter. Then, check it.
2503          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2504          * if they exceeds softlimit.
2505          */
2506         memcg_check_events(mem, page);
2507 }
2508
2509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2510
2511 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2512                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2513 /*
2514  * Because tail pages are not marked as "used", set it. We're under
2515  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2516  */
2517 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2518 {
2519         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2520         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2521         unsigned long flags;
2522
2523         if (mem_cgroup_disabled())
2524                 return;
2525         /*
2526          * We have no races with charge/uncharge but will have races with
2527          * page state accounting.
2528          */
2529         move_lock_page_cgroup(head_pc, &flags);
2530
2531         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2532         smp_wmb(); /* see __commit_charge() */
2533         if (PageCgroupAcctLRU(head_pc)) {
2534                 enum lru_list lru;
2535                 struct mem_cgroup_per_zone *mz;
2536
2537                 /*
2538                  * LRU flags cannot be copied because we need to add tail
2539                  *.page to LRU by generic call and our hook will be called.
2540                  * We hold lru_lock, then, reduce counter directly.
2541                  */
2542                 lru = page_lru(head);
2543                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2544                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2545         }
2546         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2547         move_unlock_page_cgroup(head_pc, &flags);
2548 }
2549 #endif
2550
2551 /**
2552  * mem_cgroup_move_account - move account of the page
2553  * @page: the page
2554  * @nr_pages: number of regular pages (>1 for huge pages)
2555  * @pc: page_cgroup of the page.
2556  * @from: mem_cgroup which the page is moved from.
2557  * @to: mem_cgroup which the page is moved to. @from != @to.
2558  * @uncharge: whether we should call uncharge and css_put against @from.
2559  *
2560  * The caller must confirm following.
2561  * - page is not on LRU (isolate_page() is useful.)
2562  * - compound_lock is held when nr_pages > 1
2563  *
2564  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2565  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2566  * true, this function does "uncharge" from old cgroup, but it doesn't if
2567  * @uncharge is false, so a caller should do "uncharge".
2568  */
2569 static int mem_cgroup_move_account(struct page *page,
2570                                    unsigned int nr_pages,
2571                                    struct page_cgroup *pc,
2572                                    struct mem_cgroup *from,
2573                                    struct mem_cgroup *to,
2574                                    bool uncharge)
2575 {
2576         unsigned long flags;
2577         int ret;
2578
2579         VM_BUG_ON(from == to);
2580         VM_BUG_ON(PageLRU(page));
2581         /*
2582          * The page is isolated from LRU. So, collapse function
2583          * will not handle this page. But page splitting can happen.
2584          * Do this check under compound_page_lock(). The caller should
2585          * hold it.
2586          */
2587         ret = -EBUSY;
2588         if (nr_pages > 1 && !PageTransHuge(page))
2589                 goto out;
2590
2591         lock_page_cgroup(pc);
2592
2593         ret = -EINVAL;
2594         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2595                 goto unlock;
2596
2597         move_lock_page_cgroup(pc, &flags);
2598
2599         if (PageCgroupFileMapped(pc)) {
2600                 /* Update mapped_file data for mem_cgroup */
2601                 preempt_disable();
2602                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2604                 preempt_enable();
2605         }
2606         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2607         if (uncharge)
2608                 /* This is not "cancel", but cancel_charge does all we need. */
2609                 __mem_cgroup_cancel_charge(from, nr_pages);
2610
2611         /* caller should have done css_get */
2612         pc->mem_cgroup = to;
2613         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2614         /*
2615          * We charges against "to" which may not have any tasks. Then, "to"
2616          * can be under rmdir(). But in current implementation, caller of
2617          * this function is just force_empty() and move charge, so it's
2618          * guaranteed that "to" is never removed. So, we don't check rmdir
2619          * status here.
2620          */
2621         move_unlock_page_cgroup(pc, &flags);
2622         ret = 0;
2623 unlock:
2624         unlock_page_cgroup(pc);
2625         /*
2626          * check events
2627          */
2628         memcg_check_events(to, page);
2629         memcg_check_events(from, page);
2630 out:
2631         return ret;
2632 }
2633
2634 /*
2635  * move charges to its parent.
2636  */
2637
2638 static int mem_cgroup_move_parent(struct page *page,
2639                                   struct page_cgroup *pc,
2640                                   struct mem_cgroup *child,
2641                                   gfp_t gfp_mask)
2642 {
2643         struct cgroup *cg = child->css.cgroup;
2644         struct cgroup *pcg = cg->parent;
2645         struct mem_cgroup *parent;
2646         unsigned int nr_pages;
2647         unsigned long uninitialized_var(flags);
2648         int ret;
2649
2650         /* Is ROOT ? */
2651         if (!pcg)
2652                 return -EINVAL;
2653
2654         ret = -EBUSY;
2655         if (!get_page_unless_zero(page))
2656                 goto out;
2657         if (isolate_lru_page(page))
2658                 goto put;
2659
2660         nr_pages = hpage_nr_pages(page);
2661
2662         parent = mem_cgroup_from_cont(pcg);
2663         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2664         if (ret || !parent)
2665                 goto put_back;
2666
2667         if (nr_pages > 1)
2668                 flags = compound_lock_irqsave(page);
2669
2670         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2671         if (ret)
2672                 __mem_cgroup_cancel_charge(parent, nr_pages);
2673
2674         if (nr_pages > 1)
2675                 compound_unlock_irqrestore(page, flags);
2676 put_back:
2677         putback_lru_page(page);
2678 put:
2679         put_page(page);
2680 out:
2681         return ret;
2682 }
2683
2684 /*
2685  * Charge the memory controller for page usage.
2686  * Return
2687  * 0 if the charge was successful
2688  * < 0 if the cgroup is over its limit
2689  */
2690 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2691                                 gfp_t gfp_mask, enum charge_type ctype)
2692 {
2693         struct mem_cgroup *mem = NULL;
2694         unsigned int nr_pages = 1;
2695         struct page_cgroup *pc;
2696         bool oom = true;
2697         int ret;
2698
2699         if (PageTransHuge(page)) {
2700                 nr_pages <<= compound_order(page);
2701                 VM_BUG_ON(!PageTransHuge(page));
2702                 /*
2703                  * Never OOM-kill a process for a huge page.  The
2704                  * fault handler will fall back to regular pages.
2705                  */
2706                 oom = false;
2707         }
2708
2709         pc = lookup_page_cgroup(page);
2710         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2711
2712         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2713         if (ret || !mem)
2714                 return ret;
2715
2716         __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2717         return 0;
2718 }
2719
2720 int mem_cgroup_newpage_charge(struct page *page,
2721                               struct mm_struct *mm, gfp_t gfp_mask)
2722 {
2723         if (mem_cgroup_disabled())
2724                 return 0;
2725         /*
2726          * If already mapped, we don't have to account.
2727          * If page cache, page->mapping has address_space.
2728          * But page->mapping may have out-of-use anon_vma pointer,
2729          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2730          * is NULL.
2731          */
2732         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2733                 return 0;
2734         if (unlikely(!mm))
2735                 mm = &init_mm;
2736         return mem_cgroup_charge_common(page, mm, gfp_mask,
2737                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2738 }
2739
2740 static void
2741 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2742                                         enum charge_type ctype);
2743
2744 static void
2745 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2746                                         enum charge_type ctype)
2747 {
2748         struct page_cgroup *pc = lookup_page_cgroup(page);
2749         /*
2750          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2751          * is already on LRU. It means the page may on some other page_cgroup's
2752          * LRU. Take care of it.
2753          */
2754         mem_cgroup_lru_del_before_commit(page);
2755         __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2756         mem_cgroup_lru_add_after_commit(page);
2757         return;
2758 }
2759
2760 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2761                                 gfp_t gfp_mask)
2762 {
2763         struct mem_cgroup *mem = NULL;
2764         int ret;
2765
2766         if (mem_cgroup_disabled())
2767                 return 0;
2768         if (PageCompound(page))
2769                 return 0;
2770
2771         if (unlikely(!mm))
2772                 mm = &init_mm;
2773
2774         if (page_is_file_cache(page)) {
2775                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2776                 if (ret || !mem)
2777                         return ret;
2778
2779                 /*
2780                  * FUSE reuses pages without going through the final
2781                  * put that would remove them from the LRU list, make
2782                  * sure that they get relinked properly.
2783                  */
2784                 __mem_cgroup_commit_charge_lrucare(page, mem,
2785                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2786                 return ret;
2787         }
2788         /* shmem */
2789         if (PageSwapCache(page)) {
2790                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2791                 if (!ret)
2792                         __mem_cgroup_commit_charge_swapin(page, mem,
2793                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2794         } else
2795                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2796                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2797
2798         return ret;
2799 }
2800
2801 /*
2802  * While swap-in, try_charge -> commit or cancel, the page is locked.
2803  * And when try_charge() successfully returns, one refcnt to memcg without
2804  * struct page_cgroup is acquired. This refcnt will be consumed by
2805  * "commit()" or removed by "cancel()"
2806  */
2807 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2808                                  struct page *page,
2809                                  gfp_t mask, struct mem_cgroup **ptr)
2810 {
2811         struct mem_cgroup *mem;
2812         int ret;
2813
2814         *ptr = NULL;
2815
2816         if (mem_cgroup_disabled())
2817                 return 0;
2818
2819         if (!do_swap_account)
2820                 goto charge_cur_mm;
2821         /*
2822          * A racing thread's fault, or swapoff, may have already updated
2823          * the pte, and even removed page from swap cache: in those cases
2824          * do_swap_page()'s pte_same() test will fail; but there's also a
2825          * KSM case which does need to charge the page.
2826          */
2827         if (!PageSwapCache(page))
2828                 goto charge_cur_mm;
2829         mem = try_get_mem_cgroup_from_page(page);
2830         if (!mem)
2831                 goto charge_cur_mm;
2832         *ptr = mem;
2833         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2834         css_put(&mem->css);
2835         return ret;
2836 charge_cur_mm:
2837         if (unlikely(!mm))
2838                 mm = &init_mm;
2839         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2840 }
2841
2842 static void
2843 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2844                                         enum charge_type ctype)
2845 {
2846         if (mem_cgroup_disabled())
2847                 return;
2848         if (!ptr)
2849                 return;
2850         cgroup_exclude_rmdir(&ptr->css);
2851
2852         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2853         /*
2854          * Now swap is on-memory. This means this page may be
2855          * counted both as mem and swap....double count.
2856          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2857          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2858          * may call delete_from_swap_cache() before reach here.
2859          */
2860         if (do_swap_account && PageSwapCache(page)) {
2861                 swp_entry_t ent = {.val = page_private(page)};
2862                 unsigned short id;
2863                 struct mem_cgroup *memcg;
2864
2865                 id = swap_cgroup_record(ent, 0);
2866                 rcu_read_lock();
2867                 memcg = mem_cgroup_lookup(id);
2868                 if (memcg) {
2869                         /*
2870                          * This recorded memcg can be obsolete one. So, avoid
2871                          * calling css_tryget
2872                          */
2873                         if (!mem_cgroup_is_root(memcg))
2874                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2875                         mem_cgroup_swap_statistics(memcg, false);
2876                         mem_cgroup_put(memcg);
2877                 }
2878                 rcu_read_unlock();
2879         }
2880         /*
2881          * At swapin, we may charge account against cgroup which has no tasks.
2882          * So, rmdir()->pre_destroy() can be called while we do this charge.
2883          * In that case, we need to call pre_destroy() again. check it here.
2884          */
2885         cgroup_release_and_wakeup_rmdir(&ptr->css);
2886 }
2887
2888 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2889 {
2890         __mem_cgroup_commit_charge_swapin(page, ptr,
2891                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2892 }
2893
2894 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2895 {
2896         if (mem_cgroup_disabled())
2897                 return;
2898         if (!mem)
2899                 return;
2900         __mem_cgroup_cancel_charge(mem, 1);
2901 }
2902
2903 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2904                                    unsigned int nr_pages,
2905                                    const enum charge_type ctype)
2906 {
2907         struct memcg_batch_info *batch = NULL;
2908         bool uncharge_memsw = true;
2909
2910         /* If swapout, usage of swap doesn't decrease */
2911         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2912                 uncharge_memsw = false;
2913
2914         batch = &current->memcg_batch;
2915         /*
2916          * In usual, we do css_get() when we remember memcg pointer.
2917          * But in this case, we keep res->usage until end of a series of
2918          * uncharges. Then, it's ok to ignore memcg's refcnt.
2919          */
2920         if (!batch->memcg)
2921                 batch->memcg = mem;
2922         /*
2923          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2924          * In those cases, all pages freed continuously can be expected to be in
2925          * the same cgroup and we have chance to coalesce uncharges.
2926          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2927          * because we want to do uncharge as soon as possible.
2928          */
2929
2930         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2931                 goto direct_uncharge;
2932
2933         if (nr_pages > 1)
2934                 goto direct_uncharge;
2935
2936         /*
2937          * In typical case, batch->memcg == mem. This means we can
2938          * merge a series of uncharges to an uncharge of res_counter.
2939          * If not, we uncharge res_counter ony by one.
2940          */
2941         if (batch->memcg != mem)
2942                 goto direct_uncharge;
2943         /* remember freed charge and uncharge it later */
2944         batch->nr_pages++;
2945         if (uncharge_memsw)
2946                 batch->memsw_nr_pages++;
2947         return;
2948 direct_uncharge:
2949         res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2950         if (uncharge_memsw)
2951                 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2952         if (unlikely(batch->memcg != mem))
2953                 memcg_oom_recover(mem);
2954         return;
2955 }
2956
2957 /*
2958  * uncharge if !page_mapped(page)
2959  */
2960 static struct mem_cgroup *
2961 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2962 {
2963         struct mem_cgroup *mem = NULL;
2964         unsigned int nr_pages = 1;
2965         struct page_cgroup *pc;
2966
2967         if (mem_cgroup_disabled())
2968                 return NULL;
2969
2970         if (PageSwapCache(page))
2971                 return NULL;
2972
2973         if (PageTransHuge(page)) {
2974                 nr_pages <<= compound_order(page);
2975                 VM_BUG_ON(!PageTransHuge(page));
2976         }
2977         /*
2978          * Check if our page_cgroup is valid
2979          */
2980         pc = lookup_page_cgroup(page);
2981         if (unlikely(!pc || !PageCgroupUsed(pc)))
2982                 return NULL;
2983
2984         lock_page_cgroup(pc);
2985
2986         mem = pc->mem_cgroup;
2987
2988         if (!PageCgroupUsed(pc))
2989                 goto unlock_out;
2990
2991         switch (ctype) {
2992         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2993         case MEM_CGROUP_CHARGE_TYPE_DROP:
2994                 /* See mem_cgroup_prepare_migration() */
2995                 if (page_mapped(page) || PageCgroupMigration(pc))
2996                         goto unlock_out;
2997                 break;
2998         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2999                 if (!PageAnon(page)) {  /* Shared memory */
3000                         if (page->mapping && !page_is_file_cache(page))
3001                                 goto unlock_out;
3002                 } else if (page_mapped(page)) /* Anon */
3003                                 goto unlock_out;
3004                 break;
3005         default:
3006                 break;
3007         }
3008
3009         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3010
3011         ClearPageCgroupUsed(pc);
3012         /*
3013          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3014          * freed from LRU. This is safe because uncharged page is expected not
3015          * to be reused (freed soon). Exception is SwapCache, it's handled by
3016          * special functions.
3017          */
3018
3019         unlock_page_cgroup(pc);
3020         /*
3021          * even after unlock, we have mem->res.usage here and this memcg
3022          * will never be freed.
3023          */
3024         memcg_check_events(mem, page);
3025         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3026                 mem_cgroup_swap_statistics(mem, true);
3027                 mem_cgroup_get(mem);
3028         }
3029         if (!mem_cgroup_is_root(mem))
3030                 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3031
3032         return mem;
3033
3034 unlock_out:
3035         unlock_page_cgroup(pc);
3036         return NULL;
3037 }
3038
3039 void mem_cgroup_uncharge_page(struct page *page)
3040 {
3041         /* early check. */
3042         if (page_mapped(page))
3043                 return;
3044         if (page->mapping && !PageAnon(page))
3045                 return;
3046         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3047 }
3048
3049 void mem_cgroup_uncharge_cache_page(struct page *page)
3050 {
3051         VM_BUG_ON(page_mapped(page));
3052         VM_BUG_ON(page->mapping);
3053         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3054 }
3055
3056 /*
3057  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3058  * In that cases, pages are freed continuously and we can expect pages
3059  * are in the same memcg. All these calls itself limits the number of
3060  * pages freed at once, then uncharge_start/end() is called properly.
3061  * This may be called prural(2) times in a context,
3062  */
3063
3064 void mem_cgroup_uncharge_start(void)
3065 {
3066         current->memcg_batch.do_batch++;
3067         /* We can do nest. */
3068         if (current->memcg_batch.do_batch == 1) {
3069                 current->memcg_batch.memcg = NULL;
3070                 current->memcg_batch.nr_pages = 0;
3071                 current->memcg_batch.memsw_nr_pages = 0;
3072         }
3073 }
3074
3075 void mem_cgroup_uncharge_end(void)
3076 {
3077         struct memcg_batch_info *batch = &current->memcg_batch;
3078
3079         if (!batch->do_batch)
3080                 return;
3081
3082         batch->do_batch--;
3083         if (batch->do_batch) /* If stacked, do nothing. */
3084                 return;
3085
3086         if (!batch->memcg)
3087                 return;
3088         /*
3089          * This "batch->memcg" is valid without any css_get/put etc...
3090          * bacause we hide charges behind us.
3091          */
3092         if (batch->nr_pages)
3093                 res_counter_uncharge(&batch->memcg->res,
3094                                      batch->nr_pages * PAGE_SIZE);
3095         if (batch->memsw_nr_pages)
3096                 res_counter_uncharge(&batch->memcg->memsw,
3097                                      batch->memsw_nr_pages * PAGE_SIZE);
3098         memcg_oom_recover(batch->memcg);
3099         /* forget this pointer (for sanity check) */
3100         batch->memcg = NULL;
3101 }
3102
3103 #ifdef CONFIG_SWAP
3104 /*
3105  * called after __delete_from_swap_cache() and drop "page" account.
3106  * memcg information is recorded to swap_cgroup of "ent"
3107  */
3108 void
3109 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3110 {
3111         struct mem_cgroup *memcg;
3112         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3113
3114         if (!swapout) /* this was a swap cache but the swap is unused ! */
3115                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3116
3117         memcg = __mem_cgroup_uncharge_common(page, ctype);
3118
3119         /*
3120          * record memcg information,  if swapout && memcg != NULL,
3121          * mem_cgroup_get() was called in uncharge().
3122          */
3123         if (do_swap_account && swapout && memcg)
3124                 swap_cgroup_record(ent, css_id(&memcg->css));
3125 }
3126 #endif
3127
3128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3129 /*
3130  * called from swap_entry_free(). remove record in swap_cgroup and
3131  * uncharge "memsw" account.
3132  */
3133 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3134 {
3135         struct mem_cgroup *memcg;
3136         unsigned short id;
3137
3138         if (!do_swap_account)
3139                 return;
3140
3141         id = swap_cgroup_record(ent, 0);
3142         rcu_read_lock();
3143         memcg = mem_cgroup_lookup(id);
3144         if (memcg) {
3145                 /*
3146                  * We uncharge this because swap is freed.
3147                  * This memcg can be obsolete one. We avoid calling css_tryget
3148                  */
3149                 if (!mem_cgroup_is_root(memcg))
3150                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3151                 mem_cgroup_swap_statistics(memcg, false);
3152                 mem_cgroup_put(memcg);
3153         }
3154         rcu_read_unlock();
3155 }
3156
3157 /**
3158  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3159  * @entry: swap entry to be moved
3160  * @from:  mem_cgroup which the entry is moved from
3161  * @to:  mem_cgroup which the entry is moved to
3162  * @need_fixup: whether we should fixup res_counters and refcounts.
3163  *
3164  * It succeeds only when the swap_cgroup's record for this entry is the same
3165  * as the mem_cgroup's id of @from.
3166  *
3167  * Returns 0 on success, -EINVAL on failure.
3168  *
3169  * The caller must have charged to @to, IOW, called res_counter_charge() about
3170  * both res and memsw, and called css_get().
3171  */
3172 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3173                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3174 {
3175         unsigned short old_id, new_id;
3176
3177         old_id = css_id(&from->css);
3178         new_id = css_id(&to->css);
3179
3180         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3181                 mem_cgroup_swap_statistics(from, false);
3182                 mem_cgroup_swap_statistics(to, true);
3183                 /*
3184                  * This function is only called from task migration context now.
3185                  * It postpones res_counter and refcount handling till the end
3186                  * of task migration(mem_cgroup_clear_mc()) for performance
3187                  * improvement. But we cannot postpone mem_cgroup_get(to)
3188                  * because if the process that has been moved to @to does
3189                  * swap-in, the refcount of @to might be decreased to 0.
3190                  */
3191                 mem_cgroup_get(to);
3192                 if (need_fixup) {
3193                         if (!mem_cgroup_is_root(from))
3194                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3195                         mem_cgroup_put(from);
3196                         /*
3197                          * we charged both to->res and to->memsw, so we should
3198                          * uncharge to->res.
3199                          */
3200                         if (!mem_cgroup_is_root(to))
3201                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3202                 }
3203                 return 0;
3204         }
3205         return -EINVAL;
3206 }
3207 #else
3208 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3209                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3210 {
3211         return -EINVAL;
3212 }
3213 #endif
3214
3215 /*
3216  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3217  * page belongs to.
3218  */
3219 int mem_cgroup_prepare_migration(struct page *page,
3220         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3221 {
3222         struct mem_cgroup *mem = NULL;
3223         struct page_cgroup *pc;
3224         enum charge_type ctype;
3225         int ret = 0;
3226
3227         *ptr = NULL;
3228
3229         VM_BUG_ON(PageTransHuge(page));
3230         if (mem_cgroup_disabled())
3231                 return 0;
3232
3233         pc = lookup_page_cgroup(page);
3234         lock_page_cgroup(pc);
3235         if (PageCgroupUsed(pc)) {
3236                 mem = pc->mem_cgroup;
3237                 css_get(&mem->css);
3238                 /*
3239                  * At migrating an anonymous page, its mapcount goes down
3240                  * to 0 and uncharge() will be called. But, even if it's fully
3241                  * unmapped, migration may fail and this page has to be
3242                  * charged again. We set MIGRATION flag here and delay uncharge
3243                  * until end_migration() is called
3244                  *
3245                  * Corner Case Thinking
3246                  * A)
3247                  * When the old page was mapped as Anon and it's unmap-and-freed
3248                  * while migration was ongoing.
3249                  * If unmap finds the old page, uncharge() of it will be delayed
3250                  * until end_migration(). If unmap finds a new page, it's
3251                  * uncharged when it make mapcount to be 1->0. If unmap code
3252                  * finds swap_migration_entry, the new page will not be mapped
3253                  * and end_migration() will find it(mapcount==0).
3254                  *
3255                  * B)
3256                  * When the old page was mapped but migraion fails, the kernel
3257                  * remaps it. A charge for it is kept by MIGRATION flag even
3258                  * if mapcount goes down to 0. We can do remap successfully
3259                  * without charging it again.
3260                  *
3261                  * C)
3262                  * The "old" page is under lock_page() until the end of
3263                  * migration, so, the old page itself will not be swapped-out.
3264                  * If the new page is swapped out before end_migraton, our
3265                  * hook to usual swap-out path will catch the event.
3266                  */
3267                 if (PageAnon(page))
3268                         SetPageCgroupMigration(pc);
3269         }
3270         unlock_page_cgroup(pc);
3271         /*
3272          * If the page is not charged at this point,
3273          * we return here.
3274          */
3275         if (!mem)
3276                 return 0;
3277
3278         *ptr = mem;
3279         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3280         css_put(&mem->css);/* drop extra refcnt */
3281         if (ret || *ptr == NULL) {
3282                 if (PageAnon(page)) {
3283                         lock_page_cgroup(pc);
3284                         ClearPageCgroupMigration(pc);
3285                         unlock_page_cgroup(pc);
3286                         /*
3287                          * The old page may be fully unmapped while we kept it.
3288                          */
3289                         mem_cgroup_uncharge_page(page);
3290                 }
3291                 return -ENOMEM;
3292         }
3293         /*
3294          * We charge new page before it's used/mapped. So, even if unlock_page()
3295          * is called before end_migration, we can catch all events on this new
3296          * page. In the case new page is migrated but not remapped, new page's
3297          * mapcount will be finally 0 and we call uncharge in end_migration().
3298          */
3299         pc = lookup_page_cgroup(newpage);
3300         if (PageAnon(page))
3301                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3302         else if (page_is_file_cache(page))
3303                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3304         else
3305                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3306         __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3307         return ret;
3308 }
3309
3310 /* remove redundant charge if migration failed*/
3311 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3312         struct page *oldpage, struct page *newpage, bool migration_ok)
3313 {
3314         struct page *used, *unused;
3315         struct page_cgroup *pc;
3316
3317         if (!mem)
3318                 return;
3319         /* blocks rmdir() */
3320         cgroup_exclude_rmdir(&mem->css);
3321         if (!migration_ok) {
3322                 used = oldpage;
3323                 unused = newpage;
3324         } else {
3325                 used = newpage;
3326                 unused = oldpage;
3327         }
3328         /*
3329          * We disallowed uncharge of pages under migration because mapcount
3330          * of the page goes down to zero, temporarly.
3331          * Clear the flag and check the page should be charged.
3332          */
3333         pc = lookup_page_cgroup(oldpage);
3334         lock_page_cgroup(pc);
3335         ClearPageCgroupMigration(pc);
3336         unlock_page_cgroup(pc);
3337
3338         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3339
3340         /*
3341          * If a page is a file cache, radix-tree replacement is very atomic
3342          * and we can skip this check. When it was an Anon page, its mapcount
3343          * goes down to 0. But because we added MIGRATION flage, it's not
3344          * uncharged yet. There are several case but page->mapcount check
3345          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3346          * check. (see prepare_charge() also)
3347          */
3348         if (PageAnon(used))
3349                 mem_cgroup_uncharge_page(used);
3350         /*
3351          * At migration, we may charge account against cgroup which has no
3352          * tasks.
3353          * So, rmdir()->pre_destroy() can be called while we do this charge.
3354          * In that case, we need to call pre_destroy() again. check it here.
3355          */
3356         cgroup_release_and_wakeup_rmdir(&mem->css);
3357 }
3358
3359 #ifdef CONFIG_DEBUG_VM
3360 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3361 {
3362         struct page_cgroup *pc;
3363
3364         pc = lookup_page_cgroup(page);
3365         if (likely(pc) && PageCgroupUsed(pc))
3366                 return pc;
3367         return NULL;
3368 }
3369
3370 bool mem_cgroup_bad_page_check(struct page *page)
3371 {
3372         if (mem_cgroup_disabled())
3373                 return false;
3374
3375         return lookup_page_cgroup_used(page) != NULL;
3376 }
3377
3378 void mem_cgroup_print_bad_page(struct page *page)
3379 {
3380         struct page_cgroup *pc;
3381
3382         pc = lookup_page_cgroup_used(page);
3383         if (pc) {
3384                 int ret = -1;
3385                 char *path;
3386
3387                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3388                        pc, pc->flags, pc->mem_cgroup);
3389
3390                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3391                 if (path) {
3392                         rcu_read_lock();
3393                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3394                                                         path, PATH_MAX);
3395                         rcu_read_unlock();
3396                 }
3397
3398                 printk(KERN_CONT "(%s)\n",
3399                                 (ret < 0) ? "cannot get the path" : path);
3400                 kfree(path);
3401         }
3402 }
3403 #endif
3404
3405 static DEFINE_MUTEX(set_limit_mutex);
3406
3407 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3408                                 unsigned long long val)
3409 {
3410         int retry_count;
3411         u64 memswlimit, memlimit;
3412         int ret = 0;
3413         int children = mem_cgroup_count_children(memcg);
3414         u64 curusage, oldusage;
3415         int enlarge;
3416
3417         /*
3418          * For keeping hierarchical_reclaim simple, how long we should retry
3419          * is depends on callers. We set our retry-count to be function
3420          * of # of children which we should visit in this loop.
3421          */
3422         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3423
3424         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3425
3426         enlarge = 0;
3427         while (retry_count) {
3428                 if (signal_pending(current)) {
3429                         ret = -EINTR;
3430                         break;
3431                 }
3432                 /*
3433                  * Rather than hide all in some function, I do this in
3434                  * open coded manner. You see what this really does.
3435                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3436                  */
3437                 mutex_lock(&set_limit_mutex);
3438                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3439                 if (memswlimit < val) {
3440                         ret = -EINVAL;
3441                         mutex_unlock(&set_limit_mutex);
3442                         break;
3443                 }
3444
3445                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3446                 if (memlimit < val)
3447                         enlarge = 1;
3448
3449                 ret = res_counter_set_limit(&memcg->res, val);
3450                 if (!ret) {
3451                         if (memswlimit == val)
3452                                 memcg->memsw_is_minimum = true;
3453                         else
3454                                 memcg->memsw_is_minimum = false;
3455                 }
3456                 mutex_unlock(&set_limit_mutex);
3457
3458                 if (!ret)
3459                         break;
3460
3461                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3462                                                 MEM_CGROUP_RECLAIM_SHRINK,
3463                                                 NULL);
3464                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3465                 /* Usage is reduced ? */
3466                 if (curusage >= oldusage)
3467                         retry_count--;
3468                 else
3469                         oldusage = curusage;
3470         }
3471         if (!ret && enlarge)
3472                 memcg_oom_recover(memcg);
3473
3474         return ret;
3475 }
3476
3477 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3478                                         unsigned long long val)
3479 {
3480         int retry_count;
3481         u64 memlimit, memswlimit, oldusage, curusage;
3482         int children = mem_cgroup_count_children(memcg);
3483         int ret = -EBUSY;
3484         int enlarge = 0;
3485
3486         /* see mem_cgroup_resize_res_limit */
3487         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3488         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3489         while (retry_count) {
3490                 if (signal_pending(current)) {
3491                         ret = -EINTR;
3492                         break;
3493                 }
3494                 /*
3495                  * Rather than hide all in some function, I do this in
3496                  * open coded manner. You see what this really does.
3497                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3498                  */
3499                 mutex_lock(&set_limit_mutex);
3500                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3501                 if (memlimit > val) {
3502                         ret = -EINVAL;
3503                         mutex_unlock(&set_limit_mutex);
3504                         break;
3505                 }
3506                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3507                 if (memswlimit < val)
3508                         enlarge = 1;
3509                 ret = res_counter_set_limit(&memcg->memsw, val);
3510                 if (!ret) {
3511                         if (memlimit == val)
3512                                 memcg->memsw_is_minimum = true;
3513                         else
3514                                 memcg->memsw_is_minimum = false;
3515                 }
3516                 mutex_unlock(&set_limit_mutex);
3517
3518                 if (!ret)
3519                         break;
3520
3521                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3522                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3523                                                 MEM_CGROUP_RECLAIM_SHRINK,
3524                                                 NULL);
3525                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3526                 /* Usage is reduced ? */
3527                 if (curusage >= oldusage)
3528                         retry_count--;
3529                 else
3530                         oldusage = curusage;
3531         }
3532         if (!ret && enlarge)
3533                 memcg_oom_recover(memcg);
3534         return ret;
3535 }
3536
3537 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3538                                             gfp_t gfp_mask,
3539                                             unsigned long *total_scanned)
3540 {
3541         unsigned long nr_reclaimed = 0;
3542         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3543         unsigned long reclaimed;
3544         int loop = 0;
3545         struct mem_cgroup_tree_per_zone *mctz;
3546         unsigned long long excess;
3547         unsigned long nr_scanned;
3548
3549         if (order > 0)
3550                 return 0;
3551
3552         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3553         /*
3554          * This loop can run a while, specially if mem_cgroup's continuously
3555          * keep exceeding their soft limit and putting the system under
3556          * pressure
3557          */
3558         do {
3559                 if (next_mz)
3560                         mz = next_mz;
3561                 else
3562                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3563                 if (!mz)
3564                         break;
3565
3566                 nr_scanned = 0;
3567                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3568                                                 gfp_mask,
3569                                                 MEM_CGROUP_RECLAIM_SOFT,
3570                                                 &nr_scanned);
3571                 nr_reclaimed += reclaimed;
3572                 *total_scanned += nr_scanned;
3573                 spin_lock(&mctz->lock);
3574
3575                 /*
3576                  * If we failed to reclaim anything from this memory cgroup
3577                  * it is time to move on to the next cgroup
3578                  */
3579                 next_mz = NULL;
3580                 if (!reclaimed) {
3581                         do {
3582                                 /*
3583                                  * Loop until we find yet another one.
3584                                  *
3585                                  * By the time we get the soft_limit lock
3586                                  * again, someone might have aded the
3587                                  * group back on the RB tree. Iterate to
3588                                  * make sure we get a different mem.
3589                                  * mem_cgroup_largest_soft_limit_node returns
3590                                  * NULL if no other cgroup is present on
3591                                  * the tree
3592                                  */
3593                                 next_mz =
3594                                 __mem_cgroup_largest_soft_limit_node(mctz);
3595                                 if (next_mz == mz)
3596                                         css_put(&next_mz->mem->css);
3597                                 else /* next_mz == NULL or other memcg */
3598                                         break;
3599                         } while (1);
3600                 }
3601                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3602                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3603                 /*
3604                  * One school of thought says that we should not add
3605                  * back the node to the tree if reclaim returns 0.
3606                  * But our reclaim could return 0, simply because due
3607                  * to priority we are exposing a smaller subset of
3608                  * memory to reclaim from. Consider this as a longer
3609                  * term TODO.
3610                  */
3611                 /* If excess == 0, no tree ops */
3612                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3613                 spin_unlock(&mctz->lock);
3614                 css_put(&mz->mem->css);
3615                 loop++;
3616                 /*
3617                  * Could not reclaim anything and there are no more
3618                  * mem cgroups to try or we seem to be looping without
3619                  * reclaiming anything.
3620                  */
3621                 if (!nr_reclaimed &&
3622                         (next_mz == NULL ||
3623                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3624                         break;
3625         } while (!nr_reclaimed);
3626         if (next_mz)
3627                 css_put(&next_mz->mem->css);
3628         return nr_reclaimed;
3629 }
3630
3631 /*
3632  * This routine traverse page_cgroup in given list and drop them all.
3633  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3634  */
3635 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3636                                 int node, int zid, enum lru_list lru)
3637 {
3638         struct zone *zone;
3639         struct mem_cgroup_per_zone *mz;
3640         struct page_cgroup *pc, *busy;
3641         unsigned long flags, loop;
3642         struct list_head *list;
3643         int ret = 0;
3644
3645         zone = &NODE_DATA(node)->node_zones[zid];
3646         mz = mem_cgroup_zoneinfo(mem, node, zid);
3647         list = &mz->lists[lru];
3648
3649         loop = MEM_CGROUP_ZSTAT(mz, lru);
3650         /* give some margin against EBUSY etc...*/
3651         loop += 256;
3652         busy = NULL;
3653         while (loop--) {
3654                 struct page *page;
3655
3656                 ret = 0;
3657                 spin_lock_irqsave(&zone->lru_lock, flags);
3658                 if (list_empty(list)) {
3659                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3660                         break;
3661                 }
3662                 pc = list_entry(list->prev, struct page_cgroup, lru);
3663                 if (busy == pc) {
3664                         list_move(&pc->lru, list);
3665                         busy = NULL;
3666                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3667                         continue;
3668                 }
3669                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3670
3671                 page = lookup_cgroup_page(pc);
3672
3673                 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3674                 if (ret == -ENOMEM)
3675                         break;
3676
3677                 if (ret == -EBUSY || ret == -EINVAL) {
3678                         /* found lock contention or "pc" is obsolete. */
3679                         busy = pc;
3680                         cond_resched();
3681                 } else
3682                         busy = NULL;
3683         }
3684
3685         if (!ret && !list_empty(list))
3686                 return -EBUSY;
3687         return ret;
3688 }
3689
3690 /*
3691  * make mem_cgroup's charge to be 0 if there is no task.
3692  * This enables deleting this mem_cgroup.
3693  */
3694 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3695 {
3696         int ret;
3697         int node, zid, shrink;
3698         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3699         struct cgroup *cgrp = mem->css.cgroup;
3700
3701         css_get(&mem->css);
3702
3703         shrink = 0;
3704         /* should free all ? */
3705         if (free_all)
3706                 goto try_to_free;
3707 move_account:
3708         do {
3709                 ret = -EBUSY;
3710                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3711                         goto out;
3712                 ret = -EINTR;
3713                 if (signal_pending(current))
3714                         goto out;
3715                 /* This is for making all *used* pages to be on LRU. */
3716                 lru_add_drain_all();
3717                 drain_all_stock_sync(mem);
3718                 ret = 0;
3719                 mem_cgroup_start_move(mem);
3720                 for_each_node_state(node, N_HIGH_MEMORY) {
3721                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3722                                 enum lru_list l;
3723                                 for_each_lru(l) {
3724                                         ret = mem_cgroup_force_empty_list(mem,
3725                                                         node, zid, l);
3726                                         if (ret)
3727                                                 break;
3728                                 }
3729                         }
3730                         if (ret)
3731                                 break;
3732                 }
3733                 mem_cgroup_end_move(mem);
3734                 memcg_oom_recover(mem);
3735                 /* it seems parent cgroup doesn't have enough mem */
3736                 if (ret == -ENOMEM)
3737                         goto try_to_free;
3738                 cond_resched();
3739         /* "ret" should also be checked to ensure all lists are empty. */
3740         } while (mem->res.usage > 0 || ret);
3741 out:
3742         css_put(&mem->css);
3743         return ret;
3744
3745 try_to_free:
3746         /* returns EBUSY if there is a task or if we come here twice. */
3747         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3748                 ret = -EBUSY;
3749                 goto out;
3750         }
3751         /* we call try-to-free pages for make this cgroup empty */
3752         lru_add_drain_all();
3753         /* try to free all pages in this cgroup */
3754         shrink = 1;
3755         while (nr_retries && mem->res.usage > 0) {
3756                 int progress;
3757
3758                 if (signal_pending(current)) {
3759                         ret = -EINTR;
3760                         goto out;
3761                 }
3762                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3763                                                 false);
3764                 if (!progress) {
3765                         nr_retries--;
3766                         /* maybe some writeback is necessary */
3767                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3768                 }
3769
3770         }
3771         lru_add_drain();
3772         /* try move_account...there may be some *locked* pages. */
3773         goto move_account;
3774 }
3775
3776 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3777 {
3778         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3779 }
3780
3781
3782 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3783 {
3784         return mem_cgroup_from_cont(cont)->use_hierarchy;
3785 }
3786
3787 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3788                                         u64 val)
3789 {
3790         int retval = 0;
3791         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3792         struct cgroup *parent = cont->parent;
3793         struct mem_cgroup *parent_mem = NULL;
3794
3795         if (parent)
3796                 parent_mem = mem_cgroup_from_cont(parent);
3797
3798         cgroup_lock();
3799         /*
3800          * If parent's use_hierarchy is set, we can't make any modifications
3801          * in the child subtrees. If it is unset, then the change can
3802          * occur, provided the current cgroup has no children.
3803          *
3804          * For the root cgroup, parent_mem is NULL, we allow value to be
3805          * set if there are no children.
3806          */
3807         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3808                                 (val == 1 || val == 0)) {
3809                 if (list_empty(&cont->children))
3810                         mem->use_hierarchy = val;
3811                 else
3812                         retval = -EBUSY;
3813         } else
3814                 retval = -EINVAL;
3815         cgroup_unlock();
3816
3817         return retval;
3818 }
3819
3820
3821 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3822                                                enum mem_cgroup_stat_index idx)
3823 {
3824         struct mem_cgroup *iter;
3825         long val = 0;
3826
3827         /* Per-cpu values can be negative, use a signed accumulator */
3828         for_each_mem_cgroup_tree(iter, mem)
3829                 val += mem_cgroup_read_stat(iter, idx);
3830
3831         if (val < 0) /* race ? */
3832                 val = 0;
3833         return val;
3834 }
3835
3836 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3837 {
3838         u64 val;
3839
3840         if (!mem_cgroup_is_root(mem)) {
3841                 if (!swap)
3842                         return res_counter_read_u64(&mem->res, RES_USAGE);
3843                 else
3844                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3845         }
3846
3847         val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3848         val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3849
3850         if (swap)
3851                 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3852
3853         return val << PAGE_SHIFT;
3854 }
3855
3856 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3857 {
3858         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3859         u64 val;
3860         int type, name;
3861
3862         type = MEMFILE_TYPE(cft->private);
3863         name = MEMFILE_ATTR(cft->private);
3864         switch (type) {
3865         case _MEM:
3866                 if (name == RES_USAGE)
3867                         val = mem_cgroup_usage(mem, false);
3868                 else
3869                         val = res_counter_read_u64(&mem->res, name);
3870                 break;
3871         case _MEMSWAP:
3872                 if (name == RES_USAGE)
3873                         val = mem_cgroup_usage(mem, true);
3874                 else
3875                         val = res_counter_read_u64(&mem->memsw, name);
3876                 break;
3877         default:
3878                 BUG();
3879                 break;
3880         }
3881         return val;
3882 }
3883 /*
3884  * The user of this function is...
3885  * RES_LIMIT.
3886  */
3887 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3888                             const char *buffer)
3889 {
3890         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3891         int type, name;
3892         unsigned long long val;
3893         int ret;
3894
3895         type = MEMFILE_TYPE(cft->private);
3896         name = MEMFILE_ATTR(cft->private);
3897         switch (name) {
3898         case RES_LIMIT:
3899                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3900                         ret = -EINVAL;
3901                         break;
3902                 }
3903                 /* This function does all necessary parse...reuse it */
3904                 ret = res_counter_memparse_write_strategy(buffer, &val);
3905                 if (ret)
3906                         break;
3907                 if (type == _MEM)
3908                         ret = mem_cgroup_resize_limit(memcg, val);
3909                 else
3910                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3911                 break;
3912         case RES_SOFT_LIMIT:
3913                 ret = res_counter_memparse_write_strategy(buffer, &val);
3914                 if (ret)
3915                         break;
3916                 /*
3917                  * For memsw, soft limits are hard to implement in terms
3918                  * of semantics, for now, we support soft limits for
3919                  * control without swap
3920                  */
3921                 if (type == _MEM)
3922                         ret = res_counter_set_soft_limit(&memcg->res, val);
3923                 else
3924                         ret = -EINVAL;
3925                 break;
3926         default:
3927                 ret = -EINVAL; /* should be BUG() ? */
3928                 break;
3929         }
3930         return ret;
3931 }
3932
3933 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3934                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3935 {
3936         struct cgroup *cgroup;
3937         unsigned long long min_limit, min_memsw_limit, tmp;
3938
3939         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3940         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3941         cgroup = memcg->css.cgroup;
3942         if (!memcg->use_hierarchy)
3943                 goto out;
3944
3945         while (cgroup->parent) {
3946                 cgroup = cgroup->parent;
3947                 memcg = mem_cgroup_from_cont(cgroup);
3948                 if (!memcg->use_hierarchy)
3949                         break;
3950                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3951                 min_limit = min(min_limit, tmp);
3952                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3953                 min_memsw_limit = min(min_memsw_limit, tmp);
3954         }
3955 out:
3956         *mem_limit = min_limit;
3957         *memsw_limit = min_memsw_limit;
3958         return;
3959 }
3960
3961 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3962 {
3963         struct mem_cgroup *mem;
3964         int type, name;
3965
3966         mem = mem_cgroup_from_cont(cont);
3967         type = MEMFILE_TYPE(event);
3968         name = MEMFILE_ATTR(event);
3969         switch (name) {
3970         case RES_MAX_USAGE:
3971                 if (type == _MEM)
3972                         res_counter_reset_max(&mem->res);
3973                 else
3974                         res_counter_reset_max(&mem->memsw);
3975                 break;
3976         case RES_FAILCNT:
3977                 if (type == _MEM)
3978                         res_counter_reset_failcnt(&mem->res);
3979                 else
3980                         res_counter_reset_failcnt(&mem->memsw);
3981                 break;
3982         }
3983
3984         return 0;
3985 }
3986
3987 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3988                                         struct cftype *cft)
3989 {
3990         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3991 }
3992
3993 #ifdef CONFIG_MMU
3994 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3995                                         struct cftype *cft, u64 val)
3996 {
3997         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3998
3999         if (val >= (1 << NR_MOVE_TYPE))
4000                 return -EINVAL;
4001         /*
4002          * We check this value several times in both in can_attach() and
4003          * attach(), so we need cgroup lock to prevent this value from being
4004          * inconsistent.
4005          */
4006         cgroup_lock();
4007         mem->move_charge_at_immigrate = val;
4008         cgroup_unlock();
4009
4010         return 0;
4011 }
4012 #else
4013 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4014                                         struct cftype *cft, u64 val)
4015 {
4016         return -ENOSYS;
4017 }
4018 #endif
4019
4020
4021 /* For read statistics */
4022 enum {
4023         MCS_CACHE,
4024         MCS_RSS,
4025         MCS_FILE_MAPPED,
4026         MCS_PGPGIN,
4027         MCS_PGPGOUT,
4028         MCS_SWAP,
4029         MCS_PGFAULT,
4030         MCS_PGMAJFAULT,
4031         MCS_INACTIVE_ANON,
4032         MCS_ACTIVE_ANON,
4033         MCS_INACTIVE_FILE,
4034         MCS_ACTIVE_FILE,
4035         MCS_UNEVICTABLE,
4036         NR_MCS_STAT,
4037 };
4038
4039 struct mcs_total_stat {
4040         s64 stat[NR_MCS_STAT];
4041 };
4042
4043 struct {
4044         char *local_name;
4045         char *total_name;
4046 } memcg_stat_strings[NR_MCS_STAT] = {
4047         {"cache", "total_cache"},
4048         {"rss", "total_rss"},
4049         {"mapped_file", "total_mapped_file"},
4050         {"pgpgin", "total_pgpgin"},
4051         {"pgpgout", "total_pgpgout"},
4052         {"swap", "total_swap"},
4053         {"pgfault", "total_pgfault"},
4054         {"pgmajfault", "total_pgmajfault"},
4055         {"inactive_anon", "total_inactive_anon"},
4056         {"active_anon", "total_active_anon"},
4057         {"inactive_file", "total_inactive_file"},
4058         {"active_file", "total_active_file"},
4059         {"unevictable", "total_unevictable"}
4060 };
4061
4062
4063 static void
4064 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4065 {
4066         s64 val;
4067
4068         /* per cpu stat */
4069         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4070         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4071         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4072         s->stat[MCS_RSS] += val * PAGE_SIZE;
4073         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4074         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4075         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4076         s->stat[MCS_PGPGIN] += val;
4077         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4078         s->stat[MCS_PGPGOUT] += val;
4079         if (do_swap_account) {
4080                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4081                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4082         }
4083         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4084         s->stat[MCS_PGFAULT] += val;
4085         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4086         s->stat[MCS_PGMAJFAULT] += val;
4087
4088         /* per zone stat */
4089         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4090         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4091         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4092         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4093         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4094         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4095         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4096         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4097         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4098         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4099 }
4100
4101 static void
4102 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4103 {
4104         struct mem_cgroup *iter;
4105
4106         for_each_mem_cgroup_tree(iter, mem)
4107                 mem_cgroup_get_local_stat(iter, s);
4108 }
4109
4110 #ifdef CONFIG_NUMA
4111 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4112 {
4113         int nid;
4114         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4115         unsigned long node_nr;
4116         struct cgroup *cont = m->private;
4117         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4118
4119         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4120         seq_printf(m, "total=%lu", total_nr);
4121         for_each_node_state(nid, N_HIGH_MEMORY) {
4122                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4123                 seq_printf(m, " N%d=%lu", nid, node_nr);
4124         }
4125         seq_putc(m, '\n');
4126
4127         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4128         seq_printf(m, "file=%lu", file_nr);
4129         for_each_node_state(nid, N_HIGH_MEMORY) {
4130                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4131                                 LRU_ALL_FILE);
4132                 seq_printf(m, " N%d=%lu", nid, node_nr);
4133         }
4134         seq_putc(m, '\n');
4135
4136         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4137         seq_printf(m, "anon=%lu", anon_nr);
4138         for_each_node_state(nid, N_HIGH_MEMORY) {
4139                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4140                                 LRU_ALL_ANON);
4141                 seq_printf(m, " N%d=%lu", nid, node_nr);
4142         }
4143         seq_putc(m, '\n');
4144
4145         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4146         seq_printf(m, "unevictable=%lu", unevictable_nr);
4147         for_each_node_state(nid, N_HIGH_MEMORY) {
4148                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4149                                 BIT(LRU_UNEVICTABLE));
4150                 seq_printf(m, " N%d=%lu", nid, node_nr);
4151         }
4152         seq_putc(m, '\n');
4153         return 0;
4154 }
4155 #endif /* CONFIG_NUMA */
4156
4157 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4158                                  struct cgroup_map_cb *cb)
4159 {
4160         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4161         struct mcs_total_stat mystat;
4162         int i;
4163
4164         memset(&mystat, 0, sizeof(mystat));
4165         mem_cgroup_get_local_stat(mem_cont, &mystat);
4166
4167
4168         for (i = 0; i < NR_MCS_STAT; i++) {
4169                 if (i == MCS_SWAP && !do_swap_account)
4170                         continue;
4171                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4172         }
4173
4174         /* Hierarchical information */
4175         {
4176                 unsigned long long limit, memsw_limit;
4177                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4178                 cb->fill(cb, "hierarchical_memory_limit", limit);
4179                 if (do_swap_account)
4180                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4181         }
4182
4183         memset(&mystat, 0, sizeof(mystat));
4184         mem_cgroup_get_total_stat(mem_cont, &mystat);
4185         for (i = 0; i < NR_MCS_STAT; i++) {
4186                 if (i == MCS_SWAP && !do_swap_account)
4187                         continue;
4188                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4189         }
4190
4191 #ifdef CONFIG_DEBUG_VM
4192         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4193
4194         {
4195                 int nid, zid;
4196                 struct mem_cgroup_per_zone *mz;
4197                 unsigned long recent_rotated[2] = {0, 0};
4198                 unsigned long recent_scanned[2] = {0, 0};
4199
4200                 for_each_online_node(nid)
4201                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4202                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4203
4204                                 recent_rotated[0] +=
4205                                         mz->reclaim_stat.recent_rotated[0];
4206                                 recent_rotated[1] +=
4207                                         mz->reclaim_stat.recent_rotated[1];
4208                                 recent_scanned[0] +=
4209                                         mz->reclaim_stat.recent_scanned[0];
4210                                 recent_scanned[1] +=
4211                                         mz->reclaim_stat.recent_scanned[1];
4212                         }
4213                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4214                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4215                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4216                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4217         }
4218 #endif
4219
4220         return 0;
4221 }
4222
4223 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4224 {
4225         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4226
4227         return mem_cgroup_swappiness(memcg);
4228 }
4229
4230 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4231                                        u64 val)
4232 {
4233         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4234         struct mem_cgroup *parent;
4235
4236         if (val > 100)
4237                 return -EINVAL;
4238
4239         if (cgrp->parent == NULL)
4240                 return -EINVAL;
4241
4242         parent = mem_cgroup_from_cont(cgrp->parent);
4243
4244         cgroup_lock();
4245
4246         /* If under hierarchy, only empty-root can set this value */
4247         if ((parent->use_hierarchy) ||
4248             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4249                 cgroup_unlock();
4250                 return -EINVAL;
4251         }
4252
4253         memcg->swappiness = val;
4254
4255         cgroup_unlock();
4256
4257         return 0;
4258 }
4259
4260 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4261 {
4262         struct mem_cgroup_threshold_ary *t;
4263         u64 usage;
4264         int i;
4265
4266         rcu_read_lock();
4267         if (!swap)
4268                 t = rcu_dereference(memcg->thresholds.primary);
4269         else
4270                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4271
4272         if (!t)
4273                 goto unlock;
4274
4275         usage = mem_cgroup_usage(memcg, swap);
4276
4277         /*
4278          * current_threshold points to threshold just below usage.
4279          * If it's not true, a threshold was crossed after last
4280          * call of __mem_cgroup_threshold().
4281          */
4282         i = t->current_threshold;
4283
4284         /*
4285          * Iterate backward over array of thresholds starting from
4286          * current_threshold and check if a threshold is crossed.
4287          * If none of thresholds below usage is crossed, we read
4288          * only one element of the array here.
4289          */
4290         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4291                 eventfd_signal(t->entries[i].eventfd, 1);
4292
4293         /* i = current_threshold + 1 */
4294         i++;
4295
4296         /*
4297          * Iterate forward over array of thresholds starting from
4298          * current_threshold+1 and check if a threshold is crossed.
4299          * If none of thresholds above usage is crossed, we read
4300          * only one element of the array here.
4301          */
4302         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4303                 eventfd_signal(t->entries[i].eventfd, 1);
4304
4305         /* Update current_threshold */
4306         t->current_threshold = i - 1;
4307 unlock:
4308         rcu_read_unlock();
4309 }
4310
4311 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4312 {
4313         while (memcg) {
4314                 __mem_cgroup_threshold(memcg, false);
4315                 if (do_swap_account)
4316                         __mem_cgroup_threshold(memcg, true);
4317
4318                 memcg = parent_mem_cgroup(memcg);
4319         }
4320 }
4321
4322 static int compare_thresholds(const void *a, const void *b)
4323 {
4324         const struct mem_cgroup_threshold *_a = a;
4325         const struct mem_cgroup_threshold *_b = b;
4326
4327         return _a->threshold - _b->threshold;
4328 }
4329
4330 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4331 {
4332         struct mem_cgroup_eventfd_list *ev;
4333
4334         list_for_each_entry(ev, &mem->oom_notify, list)
4335                 eventfd_signal(ev->eventfd, 1);
4336         return 0;
4337 }
4338
4339 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4340 {
4341         struct mem_cgroup *iter;
4342
4343         for_each_mem_cgroup_tree(iter, mem)
4344                 mem_cgroup_oom_notify_cb(iter);
4345 }
4346
4347 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4348         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4349 {
4350         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4351         struct mem_cgroup_thresholds *thresholds;
4352         struct mem_cgroup_threshold_ary *new;
4353         int type = MEMFILE_TYPE(cft->private);
4354         u64 threshold, usage;
4355         int i, size, ret;
4356
4357         ret = res_counter_memparse_write_strategy(args, &threshold);
4358         if (ret)
4359                 return ret;
4360
4361         mutex_lock(&memcg->thresholds_lock);
4362
4363         if (type == _MEM)
4364                 thresholds = &memcg->thresholds;
4365         else if (type == _MEMSWAP)
4366                 thresholds = &memcg->memsw_thresholds;
4367         else
4368                 BUG();
4369
4370         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4371
4372         /* Check if a threshold crossed before adding a new one */
4373         if (thresholds->primary)
4374                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4375
4376         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4377
4378         /* Allocate memory for new array of thresholds */
4379         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4380                         GFP_KERNEL);
4381         if (!new) {
4382                 ret = -ENOMEM;
4383                 goto unlock;
4384         }
4385         new->size = size;
4386
4387         /* Copy thresholds (if any) to new array */
4388         if (thresholds->primary) {
4389                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4390                                 sizeof(struct mem_cgroup_threshold));
4391         }
4392
4393         /* Add new threshold */
4394         new->entries[size - 1].eventfd = eventfd;
4395         new->entries[size - 1].threshold = threshold;
4396
4397         /* Sort thresholds. Registering of new threshold isn't time-critical */
4398         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4399                         compare_thresholds, NULL);
4400
4401         /* Find current threshold */
4402         new->current_threshold = -1;
4403         for (i = 0; i < size; i++) {
4404                 if (new->entries[i].threshold < usage) {
4405                         /*
4406                          * new->current_threshold will not be used until
4407                          * rcu_assign_pointer(), so it's safe to increment
4408                          * it here.
4409                          */
4410                         ++new->current_threshold;
4411                 }
4412         }
4413
4414         /* Free old spare buffer and save old primary buffer as spare */
4415         kfree(thresholds->spare);
4416         thresholds->spare = thresholds->primary;
4417
4418         rcu_assign_pointer(thresholds->primary, new);
4419
4420         /* To be sure that nobody uses thresholds */
4421         synchronize_rcu();
4422
4423 unlock:
4424         mutex_unlock(&memcg->thresholds_lock);
4425
4426         return ret;
4427 }
4428
4429 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4430         struct cftype *cft, struct eventfd_ctx *eventfd)
4431 {
4432         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4433         struct mem_cgroup_thresholds *thresholds;
4434         struct mem_cgroup_threshold_ary *new;
4435         int type = MEMFILE_TYPE(cft->private);
4436         u64 usage;
4437         int i, j, size;
4438
4439         mutex_lock(&memcg->thresholds_lock);
4440         if (type == _MEM)
4441                 thresholds = &memcg->thresholds;
4442         else if (type == _MEMSWAP)
4443                 thresholds = &memcg->memsw_thresholds;
4444         else
4445                 BUG();
4446
4447         /*
4448          * Something went wrong if we trying to unregister a threshold
4449          * if we don't have thresholds
4450          */
4451         BUG_ON(!thresholds);
4452
4453         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4454
4455         /* Check if a threshold crossed before removing */
4456         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4457
4458         /* Calculate new number of threshold */
4459         size = 0;
4460         for (i = 0; i < thresholds->primary->size; i++) {
4461                 if (thresholds->primary->entries[i].eventfd != eventfd)
4462                         size++;
4463         }
4464
4465         new = thresholds->spare;
4466
4467         /* Set thresholds array to NULL if we don't have thresholds */
4468         if (!size) {
4469                 kfree(new);
4470                 new = NULL;
4471                 goto swap_buffers;
4472         }
4473
4474         new->size = size;
4475
4476         /* Copy thresholds and find current threshold */
4477         new->current_threshold = -1;
4478         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4479                 if (thresholds->primary->entries[i].eventfd == eventfd)
4480                         continue;
4481
4482                 new->entries[j] = thresholds->primary->entries[i];
4483                 if (new->entries[j].threshold < usage) {
4484                         /*
4485                          * new->current_threshold will not be used
4486                          * until rcu_assign_pointer(), so it's safe to increment
4487                          * it here.
4488                          */
4489                         ++new->current_threshold;
4490                 }
4491                 j++;
4492         }
4493
4494 swap_buffers:
4495         /* Swap primary and spare array */
4496         thresholds->spare = thresholds->primary;
4497         rcu_assign_pointer(thresholds->primary, new);
4498
4499         /* To be sure that nobody uses thresholds */
4500         synchronize_rcu();
4501
4502         mutex_unlock(&memcg->thresholds_lock);
4503 }
4504
4505 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4506         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4507 {
4508         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4509         struct mem_cgroup_eventfd_list *event;
4510         int type = MEMFILE_TYPE(cft->private);
4511
4512         BUG_ON(type != _OOM_TYPE);
4513         event = kmalloc(sizeof(*event), GFP_KERNEL);
4514         if (!event)
4515                 return -ENOMEM;
4516
4517         spin_lock(&memcg_oom_lock);
4518
4519         event->eventfd = eventfd;
4520         list_add(&event->list, &memcg->oom_notify);
4521
4522         /* already in OOM ? */
4523         if (atomic_read(&memcg->under_oom))
4524                 eventfd_signal(eventfd, 1);
4525         spin_unlock(&memcg_oom_lock);
4526
4527         return 0;
4528 }
4529
4530 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4531         struct cftype *cft, struct eventfd_ctx *eventfd)
4532 {
4533         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4534         struct mem_cgroup_eventfd_list *ev, *tmp;
4535         int type = MEMFILE_TYPE(cft->private);
4536
4537         BUG_ON(type != _OOM_TYPE);
4538
4539         spin_lock(&memcg_oom_lock);
4540
4541         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4542                 if (ev->eventfd == eventfd) {
4543                         list_del(&ev->list);
4544                         kfree(ev);
4545                 }
4546         }
4547
4548         spin_unlock(&memcg_oom_lock);
4549 }
4550
4551 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4552         struct cftype *cft,  struct cgroup_map_cb *cb)
4553 {
4554         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4555
4556         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4557
4558         if (atomic_read(&mem->under_oom))
4559                 cb->fill(cb, "under_oom", 1);
4560         else
4561                 cb->fill(cb, "under_oom", 0);
4562         return 0;
4563 }
4564
4565 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4566         struct cftype *cft, u64 val)
4567 {
4568         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4569         struct mem_cgroup *parent;
4570
4571         /* cannot set to root cgroup and only 0 and 1 are allowed */
4572         if (!cgrp->parent || !((val == 0) || (val == 1)))
4573                 return -EINVAL;
4574
4575         parent = mem_cgroup_from_cont(cgrp->parent);
4576
4577         cgroup_lock();
4578         /* oom-kill-disable is a flag for subhierarchy. */
4579         if ((parent->use_hierarchy) ||
4580             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4581                 cgroup_unlock();
4582                 return -EINVAL;
4583         }
4584         mem->oom_kill_disable = val;
4585         if (!val)
4586                 memcg_oom_recover(mem);
4587         cgroup_unlock();
4588         return 0;
4589 }
4590
4591 #ifdef CONFIG_NUMA
4592 static const struct file_operations mem_control_numa_stat_file_operations = {
4593         .read = seq_read,
4594         .llseek = seq_lseek,
4595         .release = single_release,
4596 };
4597
4598 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4599 {
4600         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4601
4602         file->f_op = &mem_control_numa_stat_file_operations;
4603         return single_open(file, mem_control_numa_stat_show, cont);
4604 }
4605 #endif /* CONFIG_NUMA */
4606
4607 static struct cftype mem_cgroup_files[] = {
4608         {
4609                 .name = "usage_in_bytes",
4610                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4611                 .read_u64 = mem_cgroup_read,
4612                 .register_event = mem_cgroup_usage_register_event,
4613                 .unregister_event = mem_cgroup_usage_unregister_event,
4614         },
4615         {
4616                 .name = "max_usage_in_bytes",
4617                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4618                 .trigger = mem_cgroup_reset,
4619                 .read_u64 = mem_cgroup_read,
4620         },
4621         {
4622                 .name = "limit_in_bytes",
4623                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4624                 .write_string = mem_cgroup_write,
4625                 .read_u64 = mem_cgroup_read,
4626         },
4627         {
4628                 .name = "soft_limit_in_bytes",
4629                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4630                 .write_string = mem_cgroup_write,
4631                 .read_u64 = mem_cgroup_read,
4632         },
4633         {
4634                 .name = "failcnt",
4635                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4636                 .trigger = mem_cgroup_reset,
4637                 .read_u64 = mem_cgroup_read,
4638         },
4639         {
4640                 .name = "stat",
4641                 .read_map = mem_control_stat_show,
4642         },
4643         {
4644                 .name = "force_empty",
4645                 .trigger = mem_cgroup_force_empty_write,
4646         },
4647         {
4648                 .name = "use_hierarchy",
4649                 .write_u64 = mem_cgroup_hierarchy_write,
4650                 .read_u64 = mem_cgroup_hierarchy_read,
4651         },
4652         {
4653                 .name = "swappiness",
4654                 .read_u64 = mem_cgroup_swappiness_read,
4655                 .write_u64 = mem_cgroup_swappiness_write,
4656         },
4657         {
4658                 .name = "move_charge_at_immigrate",
4659                 .read_u64 = mem_cgroup_move_charge_read,
4660                 .write_u64 = mem_cgroup_move_charge_write,
4661         },
4662         {
4663                 .name = "oom_control",
4664                 .read_map = mem_cgroup_oom_control_read,
4665                 .write_u64 = mem_cgroup_oom_control_write,
4666                 .register_event = mem_cgroup_oom_register_event,
4667                 .unregister_event = mem_cgroup_oom_unregister_event,
4668                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4669         },
4670 #ifdef CONFIG_NUMA
4671         {
4672                 .name = "numa_stat",
4673                 .open = mem_control_numa_stat_open,
4674                 .mode = S_IRUGO,
4675         },
4676 #endif
4677 };
4678
4679 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4680 static struct cftype memsw_cgroup_files[] = {
4681         {
4682                 .name = "memsw.usage_in_bytes",
4683                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4684                 .read_u64 = mem_cgroup_read,
4685                 .register_event = mem_cgroup_usage_register_event,
4686                 .unregister_event = mem_cgroup_usage_unregister_event,
4687         },
4688         {
4689                 .name = "memsw.max_usage_in_bytes",
4690                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4691                 .trigger = mem_cgroup_reset,
4692                 .read_u64 = mem_cgroup_read,
4693         },
4694         {
4695                 .name = "memsw.limit_in_bytes",
4696                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4697                 .write_string = mem_cgroup_write,
4698                 .read_u64 = mem_cgroup_read,
4699         },
4700         {
4701                 .name = "memsw.failcnt",
4702                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4703                 .trigger = mem_cgroup_reset,
4704                 .read_u64 = mem_cgroup_read,
4705         },
4706 };
4707
4708 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4709 {
4710         if (!do_swap_account)
4711                 return 0;
4712         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4713                                 ARRAY_SIZE(memsw_cgroup_files));
4714 };
4715 #else
4716 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4717 {
4718         return 0;
4719 }
4720 #endif
4721
4722 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4723 {
4724         struct mem_cgroup_per_node *pn;
4725         struct mem_cgroup_per_zone *mz;
4726         enum lru_list l;
4727         int zone, tmp = node;
4728         /*
4729          * This routine is called against possible nodes.
4730          * But it's BUG to call kmalloc() against offline node.
4731          *
4732          * TODO: this routine can waste much memory for nodes which will
4733          *       never be onlined. It's better to use memory hotplug callback
4734          *       function.
4735          */
4736         if (!node_state(node, N_NORMAL_MEMORY))
4737                 tmp = -1;
4738         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4739         if (!pn)
4740                 return 1;
4741
4742         mem->info.nodeinfo[node] = pn;
4743         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4744                 mz = &pn->zoneinfo[zone];
4745                 for_each_lru(l)
4746                         INIT_LIST_HEAD(&mz->lists[l]);
4747                 mz->usage_in_excess = 0;
4748                 mz->on_tree = false;
4749                 mz->mem = mem;
4750         }
4751         return 0;
4752 }
4753
4754 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4755 {
4756         kfree(mem->info.nodeinfo[node]);
4757 }
4758
4759 static struct mem_cgroup *mem_cgroup_alloc(void)
4760 {
4761         struct mem_cgroup *mem;
4762         int size = sizeof(struct mem_cgroup);
4763
4764         /* Can be very big if MAX_NUMNODES is very big */
4765         if (size < PAGE_SIZE)
4766                 mem = kzalloc(size, GFP_KERNEL);
4767         else
4768                 mem = vzalloc(size);
4769
4770         if (!mem)
4771                 return NULL;
4772
4773         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4774         if (!mem->stat)
4775                 goto out_free;
4776         spin_lock_init(&mem->pcp_counter_lock);
4777         return mem;
4778
4779 out_free:
4780         if (size < PAGE_SIZE)
4781                 kfree(mem);
4782         else
4783                 vfree(mem);
4784         return NULL;
4785 }
4786
4787 /*
4788  * At destroying mem_cgroup, references from swap_cgroup can remain.
4789  * (scanning all at force_empty is too costly...)
4790  *
4791  * Instead of clearing all references at force_empty, we remember
4792  * the number of reference from swap_cgroup and free mem_cgroup when
4793  * it goes down to 0.
4794  *
4795  * Removal of cgroup itself succeeds regardless of refs from swap.
4796  */
4797
4798 static void __mem_cgroup_free(struct mem_cgroup *mem)
4799 {
4800         int node;
4801
4802         mem_cgroup_remove_from_trees(mem);
4803         free_css_id(&mem_cgroup_subsys, &mem->css);
4804
4805         for_each_node_state(node, N_POSSIBLE)
4806                 free_mem_cgroup_per_zone_info(mem, node);
4807
4808         free_percpu(mem->stat);
4809         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4810                 kfree(mem);
4811         else
4812                 vfree(mem);
4813 }
4814
4815 static void mem_cgroup_get(struct mem_cgroup *mem)
4816 {
4817         atomic_inc(&mem->refcnt);
4818 }
4819
4820 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4821 {
4822         if (atomic_sub_and_test(count, &mem->refcnt)) {
4823                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4824                 __mem_cgroup_free(mem);
4825                 if (parent)
4826                         mem_cgroup_put(parent);
4827         }
4828 }
4829
4830 static void mem_cgroup_put(struct mem_cgroup *mem)
4831 {
4832         __mem_cgroup_put(mem, 1);
4833 }
4834
4835 /*
4836  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4837  */
4838 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4839 {
4840         if (!mem->res.parent)
4841                 return NULL;
4842         return mem_cgroup_from_res_counter(mem->res.parent, res);
4843 }
4844
4845 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4846 static void __init enable_swap_cgroup(void)
4847 {
4848         if (!mem_cgroup_disabled() && really_do_swap_account)
4849                 do_swap_account = 1;
4850 }
4851 #else
4852 static void __init enable_swap_cgroup(void)
4853 {
4854 }
4855 #endif
4856
4857 static int mem_cgroup_soft_limit_tree_init(void)
4858 {
4859         struct mem_cgroup_tree_per_node *rtpn;
4860         struct mem_cgroup_tree_per_zone *rtpz;
4861         int tmp, node, zone;
4862
4863         for_each_node_state(node, N_POSSIBLE) {
4864                 tmp = node;
4865                 if (!node_state(node, N_NORMAL_MEMORY))
4866                         tmp = -1;
4867                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4868                 if (!rtpn)
4869                         return 1;
4870
4871                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4872
4873                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4874                         rtpz = &rtpn->rb_tree_per_zone[zone];
4875                         rtpz->rb_root = RB_ROOT;
4876                         spin_lock_init(&rtpz->lock);
4877                 }
4878         }
4879         return 0;
4880 }
4881
4882 static struct cgroup_subsys_state * __ref
4883 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4884 {
4885         struct mem_cgroup *mem, *parent;
4886         long error = -ENOMEM;
4887         int node;
4888
4889         mem = mem_cgroup_alloc();
4890         if (!mem)
4891                 return ERR_PTR(error);
4892
4893         for_each_node_state(node, N_POSSIBLE)
4894                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4895                         goto free_out;
4896
4897         /* root ? */
4898         if (cont->parent == NULL) {
4899                 int cpu;
4900                 enable_swap_cgroup();
4901                 parent = NULL;
4902                 root_mem_cgroup = mem;
4903                 if (mem_cgroup_soft_limit_tree_init())
4904                         goto free_out;
4905                 for_each_possible_cpu(cpu) {
4906                         struct memcg_stock_pcp *stock =
4907                                                 &per_cpu(memcg_stock, cpu);
4908                         INIT_WORK(&stock->work, drain_local_stock);
4909                 }
4910                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4911         } else {
4912                 parent = mem_cgroup_from_cont(cont->parent);
4913                 mem->use_hierarchy = parent->use_hierarchy;
4914                 mem->oom_kill_disable = parent->oom_kill_disable;
4915         }
4916
4917         if (parent && parent->use_hierarchy) {
4918                 res_counter_init(&mem->res, &parent->res);
4919                 res_counter_init(&mem->memsw, &parent->memsw);
4920                 /*
4921                  * We increment refcnt of the parent to ensure that we can
4922                  * safely access it on res_counter_charge/uncharge.
4923                  * This refcnt will be decremented when freeing this
4924                  * mem_cgroup(see mem_cgroup_put).
4925                  */
4926                 mem_cgroup_get(parent);
4927         } else {
4928                 res_counter_init(&mem->res, NULL);
4929                 res_counter_init(&mem->memsw, NULL);
4930         }
4931         mem->last_scanned_child = 0;
4932         mem->last_scanned_node = MAX_NUMNODES;
4933         INIT_LIST_HEAD(&mem->oom_notify);
4934
4935         if (parent)
4936                 mem->swappiness = mem_cgroup_swappiness(parent);
4937         atomic_set(&mem->refcnt, 1);
4938         mem->move_charge_at_immigrate = 0;
4939         mutex_init(&mem->thresholds_lock);
4940         return &mem->css;
4941 free_out:
4942         __mem_cgroup_free(mem);
4943         root_mem_cgroup = NULL;
4944         return ERR_PTR(error);
4945 }
4946
4947 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4948                                         struct cgroup *cont)
4949 {
4950         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4951
4952         return mem_cgroup_force_empty(mem, false);
4953 }
4954
4955 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4956                                 struct cgroup *cont)
4957 {
4958         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4959
4960         mem_cgroup_put(mem);
4961 }
4962
4963 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4964                                 struct cgroup *cont)
4965 {
4966         int ret;
4967
4968         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4969                                 ARRAY_SIZE(mem_cgroup_files));
4970
4971         if (!ret)
4972                 ret = register_memsw_files(cont, ss);
4973         return ret;
4974 }
4975
4976 #ifdef CONFIG_MMU
4977 /* Handlers for move charge at task migration. */
4978 #define PRECHARGE_COUNT_AT_ONCE 256
4979 static int mem_cgroup_do_precharge(unsigned long count)
4980 {
4981         int ret = 0;
4982         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4983         struct mem_cgroup *mem = mc.to;
4984
4985         if (mem_cgroup_is_root(mem)) {
4986                 mc.precharge += count;
4987                 /* we don't need css_get for root */
4988                 return ret;
4989         }
4990         /* try to charge at once */
4991         if (count > 1) {
4992                 struct res_counter *dummy;
4993                 /*
4994                  * "mem" cannot be under rmdir() because we've already checked
4995                  * by cgroup_lock_live_cgroup() that it is not removed and we
4996                  * are still under the same cgroup_mutex. So we can postpone
4997                  * css_get().
4998                  */
4999                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5000                         goto one_by_one;
5001                 if (do_swap_account && res_counter_charge(&mem->memsw,
5002                                                 PAGE_SIZE * count, &dummy)) {
5003                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5004                         goto one_by_one;
5005                 }
5006                 mc.precharge += count;
5007                 return ret;
5008         }
5009 one_by_one:
5010         /* fall back to one by one charge */
5011         while (count--) {
5012                 if (signal_pending(current)) {
5013                         ret = -EINTR;
5014                         break;
5015                 }
5016                 if (!batch_count--) {
5017                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5018                         cond_resched();
5019                 }
5020                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5021                 if (ret || !mem)
5022                         /* mem_cgroup_clear_mc() will do uncharge later */
5023                         return -ENOMEM;
5024                 mc.precharge++;
5025         }
5026         return ret;
5027 }
5028
5029 /**
5030  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5031  * @vma: the vma the pte to be checked belongs
5032  * @addr: the address corresponding to the pte to be checked
5033  * @ptent: the pte to be checked
5034  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5035  *
5036  * Returns
5037  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5038  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5039  *     move charge. if @target is not NULL, the page is stored in target->page
5040  *     with extra refcnt got(Callers should handle it).
5041  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5042  *     target for charge migration. if @target is not NULL, the entry is stored
5043  *     in target->ent.
5044  *
5045  * Called with pte lock held.
5046  */
5047 union mc_target {
5048         struct page     *page;
5049         swp_entry_t     ent;
5050 };
5051
5052 enum mc_target_type {
5053         MC_TARGET_NONE, /* not used */
5054         MC_TARGET_PAGE,
5055         MC_TARGET_SWAP,
5056 };
5057
5058 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5059                                                 unsigned long addr, pte_t ptent)
5060 {
5061         struct page *page = vm_normal_page(vma, addr, ptent);
5062
5063         if (!page || !page_mapped(page))
5064                 return NULL;
5065         if (PageAnon(page)) {
5066                 /* we don't move shared anon */
5067                 if (!move_anon() || page_mapcount(page) > 2)
5068                         return NULL;
5069         } else if (!move_file())
5070                 /* we ignore mapcount for file pages */
5071                 return NULL;
5072         if (!get_page_unless_zero(page))
5073                 return NULL;
5074
5075         return page;
5076 }
5077
5078 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5079                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5080 {
5081         int usage_count;
5082         struct page *page = NULL;
5083         swp_entry_t ent = pte_to_swp_entry(ptent);
5084
5085         if (!move_anon() || non_swap_entry(ent))
5086                 return NULL;
5087         usage_count = mem_cgroup_count_swap_user(ent, &page);
5088         if (usage_count > 1) { /* we don't move shared anon */
5089                 if (page)
5090                         put_page(page);
5091                 return NULL;
5092         }
5093         if (do_swap_account)
5094                 entry->val = ent.val;
5095
5096         return page;
5097 }
5098
5099 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5100                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5101 {
5102         struct page *page = NULL;
5103         struct inode *inode;
5104         struct address_space *mapping;
5105         pgoff_t pgoff;
5106
5107         if (!vma->vm_file) /* anonymous vma */
5108                 return NULL;
5109         if (!move_file())
5110                 return NULL;
5111
5112         inode = vma->vm_file->f_path.dentry->d_inode;
5113         mapping = vma->vm_file->f_mapping;
5114         if (pte_none(ptent))
5115                 pgoff = linear_page_index(vma, addr);
5116         else /* pte_file(ptent) is true */
5117                 pgoff = pte_to_pgoff(ptent);
5118
5119         /* page is moved even if it's not RSS of this task(page-faulted). */
5120         page = find_get_page(mapping, pgoff);
5121
5122 #ifdef CONFIG_SWAP
5123         /* shmem/tmpfs may report page out on swap: account for that too. */
5124         if (radix_tree_exceptional_entry(page)) {
5125                 swp_entry_t swap = radix_to_swp_entry(page);
5126                 if (do_swap_account)
5127                         *entry = swap;
5128                 page = find_get_page(&swapper_space, swap.val);
5129         }
5130 #endif
5131         return page;
5132 }
5133
5134 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5135                 unsigned long addr, pte_t ptent, union mc_target *target)
5136 {
5137         struct page *page = NULL;
5138         struct page_cgroup *pc;
5139         int ret = 0;
5140         swp_entry_t ent = { .val = 0 };
5141
5142         if (pte_present(ptent))
5143                 page = mc_handle_present_pte(vma, addr, ptent);
5144         else if (is_swap_pte(ptent))
5145                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5146         else if (pte_none(ptent) || pte_file(ptent))
5147                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5148
5149         if (!page && !ent.val)
5150                 return 0;
5151         if (page) {
5152                 pc = lookup_page_cgroup(page);
5153                 /*
5154                  * Do only loose check w/o page_cgroup lock.
5155                  * mem_cgroup_move_account() checks the pc is valid or not under
5156                  * the lock.
5157                  */
5158                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5159                         ret = MC_TARGET_PAGE;
5160                         if (target)
5161                                 target->page = page;
5162                 }
5163                 if (!ret || !target)
5164                         put_page(page);
5165         }
5166         /* There is a swap entry and a page doesn't exist or isn't charged */
5167         if (ent.val && !ret &&
5168                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5169                 ret = MC_TARGET_SWAP;
5170                 if (target)
5171                         target->ent = ent;
5172         }
5173         return ret;
5174 }
5175
5176 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5177                                         unsigned long addr, unsigned long end,
5178                                         struct mm_walk *walk)
5179 {
5180         struct vm_area_struct *vma = walk->private;
5181         pte_t *pte;
5182         spinlock_t *ptl;
5183
5184         split_huge_page_pmd(walk->mm, pmd);
5185
5186         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5187         for (; addr != end; pte++, addr += PAGE_SIZE)
5188                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5189                         mc.precharge++; /* increment precharge temporarily */
5190         pte_unmap_unlock(pte - 1, ptl);
5191         cond_resched();
5192
5193         return 0;
5194 }
5195
5196 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5197 {
5198         unsigned long precharge;
5199         struct vm_area_struct *vma;
5200
5201         down_read(&mm->mmap_sem);
5202         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5203                 struct mm_walk mem_cgroup_count_precharge_walk = {
5204                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5205                         .mm = mm,
5206                         .private = vma,
5207                 };
5208                 if (is_vm_hugetlb_page(vma))
5209                         continue;
5210                 walk_page_range(vma->vm_start, vma->vm_end,
5211                                         &mem_cgroup_count_precharge_walk);
5212         }
5213         up_read(&mm->mmap_sem);
5214
5215         precharge = mc.precharge;
5216         mc.precharge = 0;
5217
5218         return precharge;
5219 }
5220
5221 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5222 {
5223         unsigned long precharge = mem_cgroup_count_precharge(mm);
5224
5225         VM_BUG_ON(mc.moving_task);
5226         mc.moving_task = current;
5227         return mem_cgroup_do_precharge(precharge);
5228 }
5229
5230 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5231 static void __mem_cgroup_clear_mc(void)
5232 {
5233         struct mem_cgroup *from = mc.from;
5234         struct mem_cgroup *to = mc.to;
5235
5236         /* we must uncharge all the leftover precharges from mc.to */
5237         if (mc.precharge) {
5238                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5239                 mc.precharge = 0;
5240         }
5241         /*
5242          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5243          * we must uncharge here.
5244          */
5245         if (mc.moved_charge) {
5246                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5247                 mc.moved_charge = 0;
5248         }
5249         /* we must fixup refcnts and charges */
5250         if (mc.moved_swap) {
5251                 /* uncharge swap account from the old cgroup */
5252                 if (!mem_cgroup_is_root(mc.from))
5253                         res_counter_uncharge(&mc.from->memsw,
5254                                                 PAGE_SIZE * mc.moved_swap);
5255                 __mem_cgroup_put(mc.from, mc.moved_swap);
5256
5257                 if (!mem_cgroup_is_root(mc.to)) {
5258                         /*
5259                          * we charged both to->res and to->memsw, so we should
5260                          * uncharge to->res.
5261                          */
5262                         res_counter_uncharge(&mc.to->res,
5263                                                 PAGE_SIZE * mc.moved_swap);
5264                 }
5265                 /* we've already done mem_cgroup_get(mc.to) */
5266                 mc.moved_swap = 0;
5267         }
5268         memcg_oom_recover(from);
5269         memcg_oom_recover(to);
5270         wake_up_all(&mc.waitq);
5271 }
5272
5273 static void mem_cgroup_clear_mc(void)
5274 {
5275         struct mem_cgroup *from = mc.from;
5276
5277         /*
5278          * we must clear moving_task before waking up waiters at the end of
5279          * task migration.
5280          */
5281         mc.moving_task = NULL;
5282         __mem_cgroup_clear_mc();
5283         spin_lock(&mc.lock);
5284         mc.from = NULL;
5285         mc.to = NULL;
5286         spin_unlock(&mc.lock);
5287         mem_cgroup_end_move(from);
5288 }
5289
5290 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5291                                 struct cgroup *cgroup,
5292                                 struct task_struct *p)
5293 {
5294         int ret = 0;
5295         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5296
5297         if (mem->move_charge_at_immigrate) {
5298                 struct mm_struct *mm;
5299                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5300
5301                 VM_BUG_ON(from == mem);
5302
5303                 mm = get_task_mm(p);
5304                 if (!mm)
5305                         return 0;
5306                 /* We move charges only when we move a owner of the mm */
5307                 if (mm->owner == p) {
5308                         VM_BUG_ON(mc.from);
5309                         VM_BUG_ON(mc.to);
5310                         VM_BUG_ON(mc.precharge);
5311                         VM_BUG_ON(mc.moved_charge);
5312                         VM_BUG_ON(mc.moved_swap);
5313                         mem_cgroup_start_move(from);
5314                         spin_lock(&mc.lock);
5315                         mc.from = from;
5316                         mc.to = mem;
5317                         spin_unlock(&mc.lock);
5318                         /* We set mc.moving_task later */
5319
5320                         ret = mem_cgroup_precharge_mc(mm);
5321                         if (ret)
5322                                 mem_cgroup_clear_mc();
5323                 }
5324                 mmput(mm);
5325         }
5326         return ret;
5327 }
5328
5329 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5330                                 struct cgroup *cgroup,
5331                                 struct task_struct *p)
5332 {
5333         mem_cgroup_clear_mc();
5334 }
5335
5336 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5337                                 unsigned long addr, unsigned long end,
5338                                 struct mm_walk *walk)
5339 {
5340         int ret = 0;
5341         struct vm_area_struct *vma = walk->private;
5342         pte_t *pte;
5343         spinlock_t *ptl;
5344
5345         split_huge_page_pmd(walk->mm, pmd);
5346 retry:
5347         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5348         for (; addr != end; addr += PAGE_SIZE) {
5349                 pte_t ptent = *(pte++);
5350                 union mc_target target;
5351                 int type;
5352                 struct page *page;
5353                 struct page_cgroup *pc;
5354                 swp_entry_t ent;
5355
5356                 if (!mc.precharge)
5357                         break;
5358
5359                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5360                 switch (type) {
5361                 case MC_TARGET_PAGE:
5362                         page = target.page;
5363                         if (isolate_lru_page(page))
5364                                 goto put;
5365                         pc = lookup_page_cgroup(page);
5366                         if (!mem_cgroup_move_account(page, 1, pc,
5367                                                      mc.from, mc.to, false)) {
5368                                 mc.precharge--;
5369                                 /* we uncharge from mc.from later. */
5370                                 mc.moved_charge++;
5371                         }
5372                         putback_lru_page(page);
5373 put:                    /* is_target_pte_for_mc() gets the page */
5374                         put_page(page);
5375                         break;
5376                 case MC_TARGET_SWAP:
5377                         ent = target.ent;
5378                         if (!mem_cgroup_move_swap_account(ent,
5379                                                 mc.from, mc.to, false)) {
5380                                 mc.precharge--;
5381                                 /* we fixup refcnts and charges later. */
5382                                 mc.moved_swap++;
5383                         }
5384                         break;
5385                 default:
5386                         break;
5387                 }
5388         }
5389         pte_unmap_unlock(pte - 1, ptl);
5390         cond_resched();
5391
5392         if (addr != end) {
5393                 /*
5394                  * We have consumed all precharges we got in can_attach().
5395                  * We try charge one by one, but don't do any additional
5396                  * charges to mc.to if we have failed in charge once in attach()
5397                  * phase.
5398                  */
5399                 ret = mem_cgroup_do_precharge(1);
5400                 if (!ret)
5401                         goto retry;
5402         }
5403
5404         return ret;
5405 }
5406
5407 static void mem_cgroup_move_charge(struct mm_struct *mm)
5408 {
5409         struct vm_area_struct *vma;
5410
5411         lru_add_drain_all();
5412 retry:
5413         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5414                 /*
5415                  * Someone who are holding the mmap_sem might be waiting in
5416                  * waitq. So we cancel all extra charges, wake up all waiters,
5417                  * and retry. Because we cancel precharges, we might not be able
5418                  * to move enough charges, but moving charge is a best-effort
5419                  * feature anyway, so it wouldn't be a big problem.
5420                  */
5421                 __mem_cgroup_clear_mc();
5422                 cond_resched();
5423                 goto retry;
5424         }
5425         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5426                 int ret;
5427                 struct mm_walk mem_cgroup_move_charge_walk = {
5428                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5429                         .mm = mm,
5430                         .private = vma,
5431                 };
5432                 if (is_vm_hugetlb_page(vma))
5433                         continue;
5434                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5435                                                 &mem_cgroup_move_charge_walk);
5436                 if (ret)
5437                         /*
5438                          * means we have consumed all precharges and failed in
5439                          * doing additional charge. Just abandon here.
5440                          */
5441                         break;
5442         }
5443         up_read(&mm->mmap_sem);
5444 }
5445
5446 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5447                                 struct cgroup *cont,
5448                                 struct cgroup *old_cont,
5449                                 struct task_struct *p)
5450 {
5451         struct mm_struct *mm = get_task_mm(p);
5452
5453         if (mm) {
5454                 if (mc.to)
5455                         mem_cgroup_move_charge(mm);
5456                 put_swap_token(mm);
5457                 mmput(mm);
5458         }
5459         if (mc.to)
5460                 mem_cgroup_clear_mc();
5461 }
5462 #else   /* !CONFIG_MMU */
5463 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5464                                 struct cgroup *cgroup,
5465                                 struct task_struct *p)
5466 {
5467         return 0;
5468 }
5469 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5470                                 struct cgroup *cgroup,
5471                                 struct task_struct *p)
5472 {
5473 }
5474 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5475                                 struct cgroup *cont,
5476                                 struct cgroup *old_cont,
5477                                 struct task_struct *p)
5478 {
5479 }
5480 #endif
5481
5482 struct cgroup_subsys mem_cgroup_subsys = {
5483         .name = "memory",
5484         .subsys_id = mem_cgroup_subsys_id,
5485         .create = mem_cgroup_create,
5486         .pre_destroy = mem_cgroup_pre_destroy,
5487         .destroy = mem_cgroup_destroy,
5488         .populate = mem_cgroup_populate,
5489         .can_attach = mem_cgroup_can_attach,
5490         .cancel_attach = mem_cgroup_cancel_attach,
5491         .attach = mem_cgroup_move_task,
5492         .early_init = 0,
5493         .use_id = 1,
5494 };
5495
5496 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5497 static int __init enable_swap_account(char *s)
5498 {
5499         /* consider enabled if no parameter or 1 is given */
5500         if (!strcmp(s, "1"))
5501                 really_do_swap_account = 1;
5502         else if (!strcmp(s, "0"))
5503                 really_do_swap_account = 0;
5504         return 1;
5505 }
5506 __setup("swapaccount=", enable_swap_account);
5507
5508 #endif