batman-adv: Add missing hardif_free_ref in forw_packet_free
[pandora-kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38
39 #include <asm/tlbflush.h>
40 #include "internal.h"
41
42 /*
43  * A few notes about the KSM scanning process,
44  * to make it easier to understand the data structures below:
45  *
46  * In order to reduce excessive scanning, KSM sorts the memory pages by their
47  * contents into a data structure that holds pointers to the pages' locations.
48  *
49  * Since the contents of the pages may change at any moment, KSM cannot just
50  * insert the pages into a normal sorted tree and expect it to find anything.
51  * Therefore KSM uses two data structures - the stable and the unstable tree.
52  *
53  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
54  * by their contents.  Because each such page is write-protected, searching on
55  * this tree is fully assured to be working (except when pages are unmapped),
56  * and therefore this tree is called the stable tree.
57  *
58  * In addition to the stable tree, KSM uses a second data structure called the
59  * unstable tree: this tree holds pointers to pages which have been found to
60  * be "unchanged for a period of time".  The unstable tree sorts these pages
61  * by their contents, but since they are not write-protected, KSM cannot rely
62  * upon the unstable tree to work correctly - the unstable tree is liable to
63  * be corrupted as its contents are modified, and so it is called unstable.
64  *
65  * KSM solves this problem by several techniques:
66  *
67  * 1) The unstable tree is flushed every time KSM completes scanning all
68  *    memory areas, and then the tree is rebuilt again from the beginning.
69  * 2) KSM will only insert into the unstable tree, pages whose hash value
70  *    has not changed since the previous scan of all memory areas.
71  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
72  *    colors of the nodes and not on their contents, assuring that even when
73  *    the tree gets "corrupted" it won't get out of balance, so scanning time
74  *    remains the same (also, searching and inserting nodes in an rbtree uses
75  *    the same algorithm, so we have no overhead when we flush and rebuild).
76  * 4) KSM never flushes the stable tree, which means that even if it were to
77  *    take 10 attempts to find a page in the unstable tree, once it is found,
78  *    it is secured in the stable tree.  (When we scan a new page, we first
79  *    compare it against the stable tree, and then against the unstable tree.)
80  */
81
82 /**
83  * struct mm_slot - ksm information per mm that is being scanned
84  * @link: link to the mm_slots hash list
85  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
86  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
87  * @mm: the mm that this information is valid for
88  */
89 struct mm_slot {
90         struct hlist_node link;
91         struct list_head mm_list;
92         struct rmap_item *rmap_list;
93         struct mm_struct *mm;
94 };
95
96 /**
97  * struct ksm_scan - cursor for scanning
98  * @mm_slot: the current mm_slot we are scanning
99  * @address: the next address inside that to be scanned
100  * @rmap_list: link to the next rmap to be scanned in the rmap_list
101  * @seqnr: count of completed full scans (needed when removing unstable node)
102  *
103  * There is only the one ksm_scan instance of this cursor structure.
104  */
105 struct ksm_scan {
106         struct mm_slot *mm_slot;
107         unsigned long address;
108         struct rmap_item **rmap_list;
109         unsigned long seqnr;
110 };
111
112 /**
113  * struct stable_node - node of the stable rbtree
114  * @node: rb node of this ksm page in the stable tree
115  * @hlist: hlist head of rmap_items using this ksm page
116  * @kpfn: page frame number of this ksm page
117  */
118 struct stable_node {
119         struct rb_node node;
120         struct hlist_head hlist;
121         unsigned long kpfn;
122 };
123
124 /**
125  * struct rmap_item - reverse mapping item for virtual addresses
126  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
127  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
128  * @mm: the memory structure this rmap_item is pointing into
129  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
130  * @oldchecksum: previous checksum of the page at that virtual address
131  * @node: rb node of this rmap_item in the unstable tree
132  * @head: pointer to stable_node heading this list in the stable tree
133  * @hlist: link into hlist of rmap_items hanging off that stable_node
134  */
135 struct rmap_item {
136         struct rmap_item *rmap_list;
137         struct anon_vma *anon_vma;      /* when stable */
138         struct mm_struct *mm;
139         unsigned long address;          /* + low bits used for flags below */
140         unsigned int oldchecksum;       /* when unstable */
141         union {
142                 struct rb_node node;    /* when node of unstable tree */
143                 struct {                /* when listed from stable tree */
144                         struct stable_node *head;
145                         struct hlist_node hlist;
146                 };
147         };
148 };
149
150 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
151 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
152 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
153
154 /* The stable and unstable tree heads */
155 static struct rb_root root_stable_tree = RB_ROOT;
156 static struct rb_root root_unstable_tree = RB_ROOT;
157
158 #define MM_SLOTS_HASH_SHIFT 10
159 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
160 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
161
162 static struct mm_slot ksm_mm_head = {
163         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
164 };
165 static struct ksm_scan ksm_scan = {
166         .mm_slot = &ksm_mm_head,
167 };
168
169 static struct kmem_cache *rmap_item_cache;
170 static struct kmem_cache *stable_node_cache;
171 static struct kmem_cache *mm_slot_cache;
172
173 /* The number of nodes in the stable tree */
174 static unsigned long ksm_pages_shared;
175
176 /* The number of page slots additionally sharing those nodes */
177 static unsigned long ksm_pages_sharing;
178
179 /* The number of nodes in the unstable tree */
180 static unsigned long ksm_pages_unshared;
181
182 /* The number of rmap_items in use: to calculate pages_volatile */
183 static unsigned long ksm_rmap_items;
184
185 /* Number of pages ksmd should scan in one batch */
186 static unsigned int ksm_thread_pages_to_scan = 100;
187
188 /* Milliseconds ksmd should sleep between batches */
189 static unsigned int ksm_thread_sleep_millisecs = 20;
190
191 #define KSM_RUN_STOP    0
192 #define KSM_RUN_MERGE   1
193 #define KSM_RUN_UNMERGE 2
194 static unsigned int ksm_run = KSM_RUN_STOP;
195
196 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
197 static DEFINE_MUTEX(ksm_thread_mutex);
198 static DEFINE_SPINLOCK(ksm_mmlist_lock);
199
200 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
201                 sizeof(struct __struct), __alignof__(struct __struct),\
202                 (__flags), NULL)
203
204 static int __init ksm_slab_init(void)
205 {
206         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
207         if (!rmap_item_cache)
208                 goto out;
209
210         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
211         if (!stable_node_cache)
212                 goto out_free1;
213
214         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
215         if (!mm_slot_cache)
216                 goto out_free2;
217
218         return 0;
219
220 out_free2:
221         kmem_cache_destroy(stable_node_cache);
222 out_free1:
223         kmem_cache_destroy(rmap_item_cache);
224 out:
225         return -ENOMEM;
226 }
227
228 static void __init ksm_slab_free(void)
229 {
230         kmem_cache_destroy(mm_slot_cache);
231         kmem_cache_destroy(stable_node_cache);
232         kmem_cache_destroy(rmap_item_cache);
233         mm_slot_cache = NULL;
234 }
235
236 static inline struct rmap_item *alloc_rmap_item(void)
237 {
238         struct rmap_item *rmap_item;
239
240         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
241         if (rmap_item)
242                 ksm_rmap_items++;
243         return rmap_item;
244 }
245
246 static inline void free_rmap_item(struct rmap_item *rmap_item)
247 {
248         ksm_rmap_items--;
249         rmap_item->mm = NULL;   /* debug safety */
250         kmem_cache_free(rmap_item_cache, rmap_item);
251 }
252
253 static inline struct stable_node *alloc_stable_node(void)
254 {
255         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
256 }
257
258 static inline void free_stable_node(struct stable_node *stable_node)
259 {
260         kmem_cache_free(stable_node_cache, stable_node);
261 }
262
263 static inline struct mm_slot *alloc_mm_slot(void)
264 {
265         if (!mm_slot_cache)     /* initialization failed */
266                 return NULL;
267         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
268 }
269
270 static inline void free_mm_slot(struct mm_slot *mm_slot)
271 {
272         kmem_cache_free(mm_slot_cache, mm_slot);
273 }
274
275 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
276 {
277         struct mm_slot *mm_slot;
278         struct hlist_head *bucket;
279         struct hlist_node *node;
280
281         bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
282         hlist_for_each_entry(mm_slot, node, bucket, link) {
283                 if (mm == mm_slot->mm)
284                         return mm_slot;
285         }
286         return NULL;
287 }
288
289 static void insert_to_mm_slots_hash(struct mm_struct *mm,
290                                     struct mm_slot *mm_slot)
291 {
292         struct hlist_head *bucket;
293
294         bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
295         mm_slot->mm = mm;
296         hlist_add_head(&mm_slot->link, bucket);
297 }
298
299 static inline int in_stable_tree(struct rmap_item *rmap_item)
300 {
301         return rmap_item->address & STABLE_FLAG;
302 }
303
304 /*
305  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
306  * page tables after it has passed through ksm_exit() - which, if necessary,
307  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
308  * a special flag: they can just back out as soon as mm_users goes to zero.
309  * ksm_test_exit() is used throughout to make this test for exit: in some
310  * places for correctness, in some places just to avoid unnecessary work.
311  */
312 static inline bool ksm_test_exit(struct mm_struct *mm)
313 {
314         return atomic_read(&mm->mm_users) == 0;
315 }
316
317 /*
318  * We use break_ksm to break COW on a ksm page: it's a stripped down
319  *
320  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
321  *              put_page(page);
322  *
323  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
324  * in case the application has unmapped and remapped mm,addr meanwhile.
325  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
326  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
327  */
328 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
329 {
330         struct page *page;
331         int ret = 0;
332
333         do {
334                 cond_resched();
335                 page = follow_page(vma, addr, FOLL_GET);
336                 if (IS_ERR_OR_NULL(page))
337                         break;
338                 if (PageKsm(page))
339                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
340                                                         FAULT_FLAG_WRITE);
341                 else
342                         ret = VM_FAULT_WRITE;
343                 put_page(page);
344         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
345         /*
346          * We must loop because handle_mm_fault() may back out if there's
347          * any difficulty e.g. if pte accessed bit gets updated concurrently.
348          *
349          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
350          * COW has been broken, even if the vma does not permit VM_WRITE;
351          * but note that a concurrent fault might break PageKsm for us.
352          *
353          * VM_FAULT_SIGBUS could occur if we race with truncation of the
354          * backing file, which also invalidates anonymous pages: that's
355          * okay, that truncation will have unmapped the PageKsm for us.
356          *
357          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
358          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
359          * current task has TIF_MEMDIE set, and will be OOM killed on return
360          * to user; and ksmd, having no mm, would never be chosen for that.
361          *
362          * But if the mm is in a limited mem_cgroup, then the fault may fail
363          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
364          * even ksmd can fail in this way - though it's usually breaking ksm
365          * just to undo a merge it made a moment before, so unlikely to oom.
366          *
367          * That's a pity: we might therefore have more kernel pages allocated
368          * than we're counting as nodes in the stable tree; but ksm_do_scan
369          * will retry to break_cow on each pass, so should recover the page
370          * in due course.  The important thing is to not let VM_MERGEABLE
371          * be cleared while any such pages might remain in the area.
372          */
373         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
374 }
375
376 static void break_cow(struct rmap_item *rmap_item)
377 {
378         struct mm_struct *mm = rmap_item->mm;
379         unsigned long addr = rmap_item->address;
380         struct vm_area_struct *vma;
381
382         /*
383          * It is not an accident that whenever we want to break COW
384          * to undo, we also need to drop a reference to the anon_vma.
385          */
386         put_anon_vma(rmap_item->anon_vma);
387
388         down_read(&mm->mmap_sem);
389         if (ksm_test_exit(mm))
390                 goto out;
391         vma = find_vma(mm, addr);
392         if (!vma || vma->vm_start > addr)
393                 goto out;
394         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
395                 goto out;
396         break_ksm(vma, addr);
397 out:
398         up_read(&mm->mmap_sem);
399 }
400
401 static struct page *page_trans_compound_anon(struct page *page)
402 {
403         if (PageTransCompound(page)) {
404                 struct page *head = compound_trans_head(page);
405                 /*
406                  * head may actually be splitted and freed from under
407                  * us but it's ok here.
408                  */
409                 if (PageAnon(head))
410                         return head;
411         }
412         return NULL;
413 }
414
415 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
416 {
417         struct mm_struct *mm = rmap_item->mm;
418         unsigned long addr = rmap_item->address;
419         struct vm_area_struct *vma;
420         struct page *page;
421
422         down_read(&mm->mmap_sem);
423         if (ksm_test_exit(mm))
424                 goto out;
425         vma = find_vma(mm, addr);
426         if (!vma || vma->vm_start > addr)
427                 goto out;
428         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
429                 goto out;
430
431         page = follow_page(vma, addr, FOLL_GET);
432         if (IS_ERR_OR_NULL(page))
433                 goto out;
434         if (PageAnon(page) || page_trans_compound_anon(page)) {
435                 flush_anon_page(vma, page, addr);
436                 flush_dcache_page(page);
437         } else {
438                 put_page(page);
439 out:            page = NULL;
440         }
441         up_read(&mm->mmap_sem);
442         return page;
443 }
444
445 static void remove_node_from_stable_tree(struct stable_node *stable_node)
446 {
447         struct rmap_item *rmap_item;
448         struct hlist_node *hlist;
449
450         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
451                 if (rmap_item->hlist.next)
452                         ksm_pages_sharing--;
453                 else
454                         ksm_pages_shared--;
455                 put_anon_vma(rmap_item->anon_vma);
456                 rmap_item->address &= PAGE_MASK;
457                 cond_resched();
458         }
459
460         rb_erase(&stable_node->node, &root_stable_tree);
461         free_stable_node(stable_node);
462 }
463
464 /*
465  * get_ksm_page: checks if the page indicated by the stable node
466  * is still its ksm page, despite having held no reference to it.
467  * In which case we can trust the content of the page, and it
468  * returns the gotten page; but if the page has now been zapped,
469  * remove the stale node from the stable tree and return NULL.
470  *
471  * You would expect the stable_node to hold a reference to the ksm page.
472  * But if it increments the page's count, swapping out has to wait for
473  * ksmd to come around again before it can free the page, which may take
474  * seconds or even minutes: much too unresponsive.  So instead we use a
475  * "keyhole reference": access to the ksm page from the stable node peeps
476  * out through its keyhole to see if that page still holds the right key,
477  * pointing back to this stable node.  This relies on freeing a PageAnon
478  * page to reset its page->mapping to NULL, and relies on no other use of
479  * a page to put something that might look like our key in page->mapping.
480  *
481  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
482  * but this is different - made simpler by ksm_thread_mutex being held, but
483  * interesting for assuming that no other use of the struct page could ever
484  * put our expected_mapping into page->mapping (or a field of the union which
485  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
486  * to keep the page_count protocol described with page_cache_get_speculative.
487  *
488  * Note: it is possible that get_ksm_page() will return NULL one moment,
489  * then page the next, if the page is in between page_freeze_refs() and
490  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
491  * is on its way to being freed; but it is an anomaly to bear in mind.
492  */
493 static struct page *get_ksm_page(struct stable_node *stable_node)
494 {
495         struct page *page;
496         void *expected_mapping;
497
498         page = pfn_to_page(stable_node->kpfn);
499         expected_mapping = (void *)stable_node +
500                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
501         rcu_read_lock();
502         if (page->mapping != expected_mapping)
503                 goto stale;
504         if (!get_page_unless_zero(page))
505                 goto stale;
506         if (page->mapping != expected_mapping) {
507                 put_page(page);
508                 goto stale;
509         }
510         rcu_read_unlock();
511         return page;
512 stale:
513         rcu_read_unlock();
514         remove_node_from_stable_tree(stable_node);
515         return NULL;
516 }
517
518 /*
519  * Removing rmap_item from stable or unstable tree.
520  * This function will clean the information from the stable/unstable tree.
521  */
522 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
523 {
524         if (rmap_item->address & STABLE_FLAG) {
525                 struct stable_node *stable_node;
526                 struct page *page;
527
528                 stable_node = rmap_item->head;
529                 page = get_ksm_page(stable_node);
530                 if (!page)
531                         goto out;
532
533                 lock_page(page);
534                 hlist_del(&rmap_item->hlist);
535                 unlock_page(page);
536                 put_page(page);
537
538                 if (stable_node->hlist.first)
539                         ksm_pages_sharing--;
540                 else
541                         ksm_pages_shared--;
542
543                 put_anon_vma(rmap_item->anon_vma);
544                 rmap_item->address &= PAGE_MASK;
545
546         } else if (rmap_item->address & UNSTABLE_FLAG) {
547                 unsigned char age;
548                 /*
549                  * Usually ksmd can and must skip the rb_erase, because
550                  * root_unstable_tree was already reset to RB_ROOT.
551                  * But be careful when an mm is exiting: do the rb_erase
552                  * if this rmap_item was inserted by this scan, rather
553                  * than left over from before.
554                  */
555                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
556                 BUG_ON(age > 1);
557                 if (!age)
558                         rb_erase(&rmap_item->node, &root_unstable_tree);
559
560                 ksm_pages_unshared--;
561                 rmap_item->address &= PAGE_MASK;
562         }
563 out:
564         cond_resched();         /* we're called from many long loops */
565 }
566
567 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
568                                        struct rmap_item **rmap_list)
569 {
570         while (*rmap_list) {
571                 struct rmap_item *rmap_item = *rmap_list;
572                 *rmap_list = rmap_item->rmap_list;
573                 remove_rmap_item_from_tree(rmap_item);
574                 free_rmap_item(rmap_item);
575         }
576 }
577
578 /*
579  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
580  * than check every pte of a given vma, the locking doesn't quite work for
581  * that - an rmap_item is assigned to the stable tree after inserting ksm
582  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
583  * rmap_items from parent to child at fork time (so as not to waste time
584  * if exit comes before the next scan reaches it).
585  *
586  * Similarly, although we'd like to remove rmap_items (so updating counts
587  * and freeing memory) when unmerging an area, it's easier to leave that
588  * to the next pass of ksmd - consider, for example, how ksmd might be
589  * in cmp_and_merge_page on one of the rmap_items we would be removing.
590  */
591 static int unmerge_ksm_pages(struct vm_area_struct *vma,
592                              unsigned long start, unsigned long end)
593 {
594         unsigned long addr;
595         int err = 0;
596
597         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
598                 if (ksm_test_exit(vma->vm_mm))
599                         break;
600                 if (signal_pending(current))
601                         err = -ERESTARTSYS;
602                 else
603                         err = break_ksm(vma, addr);
604         }
605         return err;
606 }
607
608 #ifdef CONFIG_SYSFS
609 /*
610  * Only called through the sysfs control interface:
611  */
612 static int unmerge_and_remove_all_rmap_items(void)
613 {
614         struct mm_slot *mm_slot;
615         struct mm_struct *mm;
616         struct vm_area_struct *vma;
617         int err = 0;
618
619         spin_lock(&ksm_mmlist_lock);
620         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
621                                                 struct mm_slot, mm_list);
622         spin_unlock(&ksm_mmlist_lock);
623
624         for (mm_slot = ksm_scan.mm_slot;
625                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
626                 mm = mm_slot->mm;
627                 down_read(&mm->mmap_sem);
628                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
629                         if (ksm_test_exit(mm))
630                                 break;
631                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
632                                 continue;
633                         err = unmerge_ksm_pages(vma,
634                                                 vma->vm_start, vma->vm_end);
635                         if (err)
636                                 goto error;
637                 }
638
639                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
640
641                 spin_lock(&ksm_mmlist_lock);
642                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
643                                                 struct mm_slot, mm_list);
644                 if (ksm_test_exit(mm)) {
645                         hlist_del(&mm_slot->link);
646                         list_del(&mm_slot->mm_list);
647                         spin_unlock(&ksm_mmlist_lock);
648
649                         free_mm_slot(mm_slot);
650                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
651                         up_read(&mm->mmap_sem);
652                         mmdrop(mm);
653                 } else {
654                         spin_unlock(&ksm_mmlist_lock);
655                         up_read(&mm->mmap_sem);
656                 }
657         }
658
659         ksm_scan.seqnr = 0;
660         return 0;
661
662 error:
663         up_read(&mm->mmap_sem);
664         spin_lock(&ksm_mmlist_lock);
665         ksm_scan.mm_slot = &ksm_mm_head;
666         spin_unlock(&ksm_mmlist_lock);
667         return err;
668 }
669 #endif /* CONFIG_SYSFS */
670
671 static u32 calc_checksum(struct page *page)
672 {
673         u32 checksum;
674         void *addr = kmap_atomic(page, KM_USER0);
675         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
676         kunmap_atomic(addr, KM_USER0);
677         return checksum;
678 }
679
680 static int memcmp_pages(struct page *page1, struct page *page2)
681 {
682         char *addr1, *addr2;
683         int ret;
684
685         addr1 = kmap_atomic(page1, KM_USER0);
686         addr2 = kmap_atomic(page2, KM_USER1);
687         ret = memcmp(addr1, addr2, PAGE_SIZE);
688         kunmap_atomic(addr2, KM_USER1);
689         kunmap_atomic(addr1, KM_USER0);
690         return ret;
691 }
692
693 static inline int pages_identical(struct page *page1, struct page *page2)
694 {
695         return !memcmp_pages(page1, page2);
696 }
697
698 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
699                               pte_t *orig_pte)
700 {
701         struct mm_struct *mm = vma->vm_mm;
702         unsigned long addr;
703         pte_t *ptep;
704         spinlock_t *ptl;
705         int swapped;
706         int err = -EFAULT;
707
708         addr = page_address_in_vma(page, vma);
709         if (addr == -EFAULT)
710                 goto out;
711
712         BUG_ON(PageTransCompound(page));
713         ptep = page_check_address(page, mm, addr, &ptl, 0);
714         if (!ptep)
715                 goto out;
716
717         if (pte_write(*ptep) || pte_dirty(*ptep)) {
718                 pte_t entry;
719
720                 swapped = PageSwapCache(page);
721                 flush_cache_page(vma, addr, page_to_pfn(page));
722                 /*
723                  * Ok this is tricky, when get_user_pages_fast() run it doesnt
724                  * take any lock, therefore the check that we are going to make
725                  * with the pagecount against the mapcount is racey and
726                  * O_DIRECT can happen right after the check.
727                  * So we clear the pte and flush the tlb before the check
728                  * this assure us that no O_DIRECT can happen after the check
729                  * or in the middle of the check.
730                  */
731                 entry = ptep_clear_flush(vma, addr, ptep);
732                 /*
733                  * Check that no O_DIRECT or similar I/O is in progress on the
734                  * page
735                  */
736                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
737                         set_pte_at(mm, addr, ptep, entry);
738                         goto out_unlock;
739                 }
740                 if (pte_dirty(entry))
741                         set_page_dirty(page);
742                 entry = pte_mkclean(pte_wrprotect(entry));
743                 set_pte_at_notify(mm, addr, ptep, entry);
744         }
745         *orig_pte = *ptep;
746         err = 0;
747
748 out_unlock:
749         pte_unmap_unlock(ptep, ptl);
750 out:
751         return err;
752 }
753
754 /**
755  * replace_page - replace page in vma by new ksm page
756  * @vma:      vma that holds the pte pointing to page
757  * @page:     the page we are replacing by kpage
758  * @kpage:    the ksm page we replace page by
759  * @orig_pte: the original value of the pte
760  *
761  * Returns 0 on success, -EFAULT on failure.
762  */
763 static int replace_page(struct vm_area_struct *vma, struct page *page,
764                         struct page *kpage, pte_t orig_pte)
765 {
766         struct mm_struct *mm = vma->vm_mm;
767         pgd_t *pgd;
768         pud_t *pud;
769         pmd_t *pmd;
770         pte_t *ptep;
771         spinlock_t *ptl;
772         unsigned long addr;
773         int err = -EFAULT;
774
775         addr = page_address_in_vma(page, vma);
776         if (addr == -EFAULT)
777                 goto out;
778
779         pgd = pgd_offset(mm, addr);
780         if (!pgd_present(*pgd))
781                 goto out;
782
783         pud = pud_offset(pgd, addr);
784         if (!pud_present(*pud))
785                 goto out;
786
787         pmd = pmd_offset(pud, addr);
788         BUG_ON(pmd_trans_huge(*pmd));
789         if (!pmd_present(*pmd))
790                 goto out;
791
792         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
793         if (!pte_same(*ptep, orig_pte)) {
794                 pte_unmap_unlock(ptep, ptl);
795                 goto out;
796         }
797
798         get_page(kpage);
799         page_add_anon_rmap(kpage, vma, addr);
800
801         flush_cache_page(vma, addr, pte_pfn(*ptep));
802         ptep_clear_flush(vma, addr, ptep);
803         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
804
805         page_remove_rmap(page);
806         if (!page_mapped(page))
807                 try_to_free_swap(page);
808         put_page(page);
809
810         pte_unmap_unlock(ptep, ptl);
811         err = 0;
812 out:
813         return err;
814 }
815
816 static int page_trans_compound_anon_split(struct page *page)
817 {
818         int ret = 0;
819         struct page *transhuge_head = page_trans_compound_anon(page);
820         if (transhuge_head) {
821                 /* Get the reference on the head to split it. */
822                 if (get_page_unless_zero(transhuge_head)) {
823                         /*
824                          * Recheck we got the reference while the head
825                          * was still anonymous.
826                          */
827                         if (PageAnon(transhuge_head))
828                                 ret = split_huge_page(transhuge_head);
829                         else
830                                 /*
831                                  * Retry later if split_huge_page run
832                                  * from under us.
833                                  */
834                                 ret = 1;
835                         put_page(transhuge_head);
836                 } else
837                         /* Retry later if split_huge_page run from under us. */
838                         ret = 1;
839         }
840         return ret;
841 }
842
843 /*
844  * try_to_merge_one_page - take two pages and merge them into one
845  * @vma: the vma that holds the pte pointing to page
846  * @page: the PageAnon page that we want to replace with kpage
847  * @kpage: the PageKsm page that we want to map instead of page,
848  *         or NULL the first time when we want to use page as kpage.
849  *
850  * This function returns 0 if the pages were merged, -EFAULT otherwise.
851  */
852 static int try_to_merge_one_page(struct vm_area_struct *vma,
853                                  struct page *page, struct page *kpage)
854 {
855         pte_t orig_pte = __pte(0);
856         int err = -EFAULT;
857
858         if (page == kpage)                      /* ksm page forked */
859                 return 0;
860
861         if (!(vma->vm_flags & VM_MERGEABLE))
862                 goto out;
863         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
864                 goto out;
865         BUG_ON(PageTransCompound(page));
866         if (!PageAnon(page))
867                 goto out;
868
869         /*
870          * We need the page lock to read a stable PageSwapCache in
871          * write_protect_page().  We use trylock_page() instead of
872          * lock_page() because we don't want to wait here - we
873          * prefer to continue scanning and merging different pages,
874          * then come back to this page when it is unlocked.
875          */
876         if (!trylock_page(page))
877                 goto out;
878         /*
879          * If this anonymous page is mapped only here, its pte may need
880          * to be write-protected.  If it's mapped elsewhere, all of its
881          * ptes are necessarily already write-protected.  But in either
882          * case, we need to lock and check page_count is not raised.
883          */
884         if (write_protect_page(vma, page, &orig_pte) == 0) {
885                 if (!kpage) {
886                         /*
887                          * While we hold page lock, upgrade page from
888                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
889                          * stable_tree_insert() will update stable_node.
890                          */
891                         set_page_stable_node(page, NULL);
892                         mark_page_accessed(page);
893                         err = 0;
894                 } else if (pages_identical(page, kpage))
895                         err = replace_page(vma, page, kpage, orig_pte);
896         }
897
898         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
899                 munlock_vma_page(page);
900                 if (!PageMlocked(kpage)) {
901                         unlock_page(page);
902                         lock_page(kpage);
903                         mlock_vma_page(kpage);
904                         page = kpage;           /* for final unlock */
905                 }
906         }
907
908         unlock_page(page);
909 out:
910         return err;
911 }
912
913 /*
914  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
915  * but no new kernel page is allocated: kpage must already be a ksm page.
916  *
917  * This function returns 0 if the pages were merged, -EFAULT otherwise.
918  */
919 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
920                                       struct page *page, struct page *kpage)
921 {
922         struct mm_struct *mm = rmap_item->mm;
923         struct vm_area_struct *vma;
924         int err = -EFAULT;
925
926         down_read(&mm->mmap_sem);
927         if (ksm_test_exit(mm))
928                 goto out;
929         vma = find_vma(mm, rmap_item->address);
930         if (!vma || vma->vm_start > rmap_item->address)
931                 goto out;
932
933         err = try_to_merge_one_page(vma, page, kpage);
934         if (err)
935                 goto out;
936
937         /* Must get reference to anon_vma while still holding mmap_sem */
938         rmap_item->anon_vma = vma->anon_vma;
939         get_anon_vma(vma->anon_vma);
940 out:
941         up_read(&mm->mmap_sem);
942         return err;
943 }
944
945 /*
946  * try_to_merge_two_pages - take two identical pages and prepare them
947  * to be merged into one page.
948  *
949  * This function returns the kpage if we successfully merged two identical
950  * pages into one ksm page, NULL otherwise.
951  *
952  * Note that this function upgrades page to ksm page: if one of the pages
953  * is already a ksm page, try_to_merge_with_ksm_page should be used.
954  */
955 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
956                                            struct page *page,
957                                            struct rmap_item *tree_rmap_item,
958                                            struct page *tree_page)
959 {
960         int err;
961
962         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
963         if (!err) {
964                 err = try_to_merge_with_ksm_page(tree_rmap_item,
965                                                         tree_page, page);
966                 /*
967                  * If that fails, we have a ksm page with only one pte
968                  * pointing to it: so break it.
969                  */
970                 if (err)
971                         break_cow(rmap_item);
972         }
973         return err ? NULL : page;
974 }
975
976 /*
977  * stable_tree_search - search for page inside the stable tree
978  *
979  * This function checks if there is a page inside the stable tree
980  * with identical content to the page that we are scanning right now.
981  *
982  * This function returns the stable tree node of identical content if found,
983  * NULL otherwise.
984  */
985 static struct page *stable_tree_search(struct page *page)
986 {
987         struct rb_node *node = root_stable_tree.rb_node;
988         struct stable_node *stable_node;
989
990         stable_node = page_stable_node(page);
991         if (stable_node) {                      /* ksm page forked */
992                 get_page(page);
993                 return page;
994         }
995
996         while (node) {
997                 struct page *tree_page;
998                 int ret;
999
1000                 cond_resched();
1001                 stable_node = rb_entry(node, struct stable_node, node);
1002                 tree_page = get_ksm_page(stable_node);
1003                 if (!tree_page)
1004                         return NULL;
1005
1006                 ret = memcmp_pages(page, tree_page);
1007
1008                 if (ret < 0) {
1009                         put_page(tree_page);
1010                         node = node->rb_left;
1011                 } else if (ret > 0) {
1012                         put_page(tree_page);
1013                         node = node->rb_right;
1014                 } else
1015                         return tree_page;
1016         }
1017
1018         return NULL;
1019 }
1020
1021 /*
1022  * stable_tree_insert - insert rmap_item pointing to new ksm page
1023  * into the stable tree.
1024  *
1025  * This function returns the stable tree node just allocated on success,
1026  * NULL otherwise.
1027  */
1028 static struct stable_node *stable_tree_insert(struct page *kpage)
1029 {
1030         struct rb_node **new = &root_stable_tree.rb_node;
1031         struct rb_node *parent = NULL;
1032         struct stable_node *stable_node;
1033
1034         while (*new) {
1035                 struct page *tree_page;
1036                 int ret;
1037
1038                 cond_resched();
1039                 stable_node = rb_entry(*new, struct stable_node, node);
1040                 tree_page = get_ksm_page(stable_node);
1041                 if (!tree_page)
1042                         return NULL;
1043
1044                 ret = memcmp_pages(kpage, tree_page);
1045                 put_page(tree_page);
1046
1047                 parent = *new;
1048                 if (ret < 0)
1049                         new = &parent->rb_left;
1050                 else if (ret > 0)
1051                         new = &parent->rb_right;
1052                 else {
1053                         /*
1054                          * It is not a bug that stable_tree_search() didn't
1055                          * find this node: because at that time our page was
1056                          * not yet write-protected, so may have changed since.
1057                          */
1058                         return NULL;
1059                 }
1060         }
1061
1062         stable_node = alloc_stable_node();
1063         if (!stable_node)
1064                 return NULL;
1065
1066         rb_link_node(&stable_node->node, parent, new);
1067         rb_insert_color(&stable_node->node, &root_stable_tree);
1068
1069         INIT_HLIST_HEAD(&stable_node->hlist);
1070
1071         stable_node->kpfn = page_to_pfn(kpage);
1072         set_page_stable_node(kpage, stable_node);
1073
1074         return stable_node;
1075 }
1076
1077 /*
1078  * unstable_tree_search_insert - search for identical page,
1079  * else insert rmap_item into the unstable tree.
1080  *
1081  * This function searches for a page in the unstable tree identical to the
1082  * page currently being scanned; and if no identical page is found in the
1083  * tree, we insert rmap_item as a new object into the unstable tree.
1084  *
1085  * This function returns pointer to rmap_item found to be identical
1086  * to the currently scanned page, NULL otherwise.
1087  *
1088  * This function does both searching and inserting, because they share
1089  * the same walking algorithm in an rbtree.
1090  */
1091 static
1092 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1093                                               struct page *page,
1094                                               struct page **tree_pagep)
1095
1096 {
1097         struct rb_node **new = &root_unstable_tree.rb_node;
1098         struct rb_node *parent = NULL;
1099
1100         while (*new) {
1101                 struct rmap_item *tree_rmap_item;
1102                 struct page *tree_page;
1103                 int ret;
1104
1105                 cond_resched();
1106                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1107                 tree_page = get_mergeable_page(tree_rmap_item);
1108                 if (IS_ERR_OR_NULL(tree_page))
1109                         return NULL;
1110
1111                 /*
1112                  * Don't substitute a ksm page for a forked page.
1113                  */
1114                 if (page == tree_page) {
1115                         put_page(tree_page);
1116                         return NULL;
1117                 }
1118
1119                 ret = memcmp_pages(page, tree_page);
1120
1121                 parent = *new;
1122                 if (ret < 0) {
1123                         put_page(tree_page);
1124                         new = &parent->rb_left;
1125                 } else if (ret > 0) {
1126                         put_page(tree_page);
1127                         new = &parent->rb_right;
1128                 } else {
1129                         *tree_pagep = tree_page;
1130                         return tree_rmap_item;
1131                 }
1132         }
1133
1134         rmap_item->address |= UNSTABLE_FLAG;
1135         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1136         rb_link_node(&rmap_item->node, parent, new);
1137         rb_insert_color(&rmap_item->node, &root_unstable_tree);
1138
1139         ksm_pages_unshared++;
1140         return NULL;
1141 }
1142
1143 /*
1144  * stable_tree_append - add another rmap_item to the linked list of
1145  * rmap_items hanging off a given node of the stable tree, all sharing
1146  * the same ksm page.
1147  */
1148 static void stable_tree_append(struct rmap_item *rmap_item,
1149                                struct stable_node *stable_node)
1150 {
1151         rmap_item->head = stable_node;
1152         rmap_item->address |= STABLE_FLAG;
1153         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1154
1155         if (rmap_item->hlist.next)
1156                 ksm_pages_sharing++;
1157         else
1158                 ksm_pages_shared++;
1159 }
1160
1161 /*
1162  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1163  * if not, compare checksum to previous and if it's the same, see if page can
1164  * be inserted into the unstable tree, or merged with a page already there and
1165  * both transferred to the stable tree.
1166  *
1167  * @page: the page that we are searching identical page to.
1168  * @rmap_item: the reverse mapping into the virtual address of this page
1169  */
1170 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1171 {
1172         struct rmap_item *tree_rmap_item;
1173         struct page *tree_page = NULL;
1174         struct stable_node *stable_node;
1175         struct page *kpage;
1176         unsigned int checksum;
1177         int err;
1178
1179         remove_rmap_item_from_tree(rmap_item);
1180
1181         /* We first start with searching the page inside the stable tree */
1182         kpage = stable_tree_search(page);
1183         if (kpage) {
1184                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1185                 if (!err) {
1186                         /*
1187                          * The page was successfully merged:
1188                          * add its rmap_item to the stable tree.
1189                          */
1190                         lock_page(kpage);
1191                         stable_tree_append(rmap_item, page_stable_node(kpage));
1192                         unlock_page(kpage);
1193                 }
1194                 put_page(kpage);
1195                 return;
1196         }
1197
1198         /*
1199          * If the hash value of the page has changed from the last time
1200          * we calculated it, this page is changing frequently: therefore we
1201          * don't want to insert it in the unstable tree, and we don't want
1202          * to waste our time searching for something identical to it there.
1203          */
1204         checksum = calc_checksum(page);
1205         if (rmap_item->oldchecksum != checksum) {
1206                 rmap_item->oldchecksum = checksum;
1207                 return;
1208         }
1209
1210         tree_rmap_item =
1211                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1212         if (tree_rmap_item) {
1213                 kpage = try_to_merge_two_pages(rmap_item, page,
1214                                                 tree_rmap_item, tree_page);
1215                 put_page(tree_page);
1216                 /*
1217                  * As soon as we merge this page, we want to remove the
1218                  * rmap_item of the page we have merged with from the unstable
1219                  * tree, and insert it instead as new node in the stable tree.
1220                  */
1221                 if (kpage) {
1222                         remove_rmap_item_from_tree(tree_rmap_item);
1223
1224                         lock_page(kpage);
1225                         stable_node = stable_tree_insert(kpage);
1226                         if (stable_node) {
1227                                 stable_tree_append(tree_rmap_item, stable_node);
1228                                 stable_tree_append(rmap_item, stable_node);
1229                         }
1230                         unlock_page(kpage);
1231
1232                         /*
1233                          * If we fail to insert the page into the stable tree,
1234                          * we will have 2 virtual addresses that are pointing
1235                          * to a ksm page left outside the stable tree,
1236                          * in which case we need to break_cow on both.
1237                          */
1238                         if (!stable_node) {
1239                                 break_cow(tree_rmap_item);
1240                                 break_cow(rmap_item);
1241                         }
1242                 }
1243         }
1244 }
1245
1246 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1247                                             struct rmap_item **rmap_list,
1248                                             unsigned long addr)
1249 {
1250         struct rmap_item *rmap_item;
1251
1252         while (*rmap_list) {
1253                 rmap_item = *rmap_list;
1254                 if ((rmap_item->address & PAGE_MASK) == addr)
1255                         return rmap_item;
1256                 if (rmap_item->address > addr)
1257                         break;
1258                 *rmap_list = rmap_item->rmap_list;
1259                 remove_rmap_item_from_tree(rmap_item);
1260                 free_rmap_item(rmap_item);
1261         }
1262
1263         rmap_item = alloc_rmap_item();
1264         if (rmap_item) {
1265                 /* It has already been zeroed */
1266                 rmap_item->mm = mm_slot->mm;
1267                 rmap_item->address = addr;
1268                 rmap_item->rmap_list = *rmap_list;
1269                 *rmap_list = rmap_item;
1270         }
1271         return rmap_item;
1272 }
1273
1274 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1275 {
1276         struct mm_struct *mm;
1277         struct mm_slot *slot;
1278         struct vm_area_struct *vma;
1279         struct rmap_item *rmap_item;
1280
1281         if (list_empty(&ksm_mm_head.mm_list))
1282                 return NULL;
1283
1284         slot = ksm_scan.mm_slot;
1285         if (slot == &ksm_mm_head) {
1286                 /*
1287                  * A number of pages can hang around indefinitely on per-cpu
1288                  * pagevecs, raised page count preventing write_protect_page
1289                  * from merging them.  Though it doesn't really matter much,
1290                  * it is puzzling to see some stuck in pages_volatile until
1291                  * other activity jostles them out, and they also prevented
1292                  * LTP's KSM test from succeeding deterministically; so drain
1293                  * them here (here rather than on entry to ksm_do_scan(),
1294                  * so we don't IPI too often when pages_to_scan is set low).
1295                  */
1296                 lru_add_drain_all();
1297
1298                 root_unstable_tree = RB_ROOT;
1299
1300                 spin_lock(&ksm_mmlist_lock);
1301                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1302                 ksm_scan.mm_slot = slot;
1303                 spin_unlock(&ksm_mmlist_lock);
1304 next_mm:
1305                 ksm_scan.address = 0;
1306                 ksm_scan.rmap_list = &slot->rmap_list;
1307         }
1308
1309         mm = slot->mm;
1310         down_read(&mm->mmap_sem);
1311         if (ksm_test_exit(mm))
1312                 vma = NULL;
1313         else
1314                 vma = find_vma(mm, ksm_scan.address);
1315
1316         for (; vma; vma = vma->vm_next) {
1317                 if (!(vma->vm_flags & VM_MERGEABLE))
1318                         continue;
1319                 if (ksm_scan.address < vma->vm_start)
1320                         ksm_scan.address = vma->vm_start;
1321                 if (!vma->anon_vma)
1322                         ksm_scan.address = vma->vm_end;
1323
1324                 while (ksm_scan.address < vma->vm_end) {
1325                         if (ksm_test_exit(mm))
1326                                 break;
1327                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1328                         if (IS_ERR_OR_NULL(*page)) {
1329                                 ksm_scan.address += PAGE_SIZE;
1330                                 cond_resched();
1331                                 continue;
1332                         }
1333                         if (PageAnon(*page) ||
1334                             page_trans_compound_anon(*page)) {
1335                                 flush_anon_page(vma, *page, ksm_scan.address);
1336                                 flush_dcache_page(*page);
1337                                 rmap_item = get_next_rmap_item(slot,
1338                                         ksm_scan.rmap_list, ksm_scan.address);
1339                                 if (rmap_item) {
1340                                         ksm_scan.rmap_list =
1341                                                         &rmap_item->rmap_list;
1342                                         ksm_scan.address += PAGE_SIZE;
1343                                 } else
1344                                         put_page(*page);
1345                                 up_read(&mm->mmap_sem);
1346                                 return rmap_item;
1347                         }
1348                         put_page(*page);
1349                         ksm_scan.address += PAGE_SIZE;
1350                         cond_resched();
1351                 }
1352         }
1353
1354         if (ksm_test_exit(mm)) {
1355                 ksm_scan.address = 0;
1356                 ksm_scan.rmap_list = &slot->rmap_list;
1357         }
1358         /*
1359          * Nuke all the rmap_items that are above this current rmap:
1360          * because there were no VM_MERGEABLE vmas with such addresses.
1361          */
1362         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1363
1364         spin_lock(&ksm_mmlist_lock);
1365         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1366                                                 struct mm_slot, mm_list);
1367         if (ksm_scan.address == 0) {
1368                 /*
1369                  * We've completed a full scan of all vmas, holding mmap_sem
1370                  * throughout, and found no VM_MERGEABLE: so do the same as
1371                  * __ksm_exit does to remove this mm from all our lists now.
1372                  * This applies either when cleaning up after __ksm_exit
1373                  * (but beware: we can reach here even before __ksm_exit),
1374                  * or when all VM_MERGEABLE areas have been unmapped (and
1375                  * mmap_sem then protects against race with MADV_MERGEABLE).
1376                  */
1377                 hlist_del(&slot->link);
1378                 list_del(&slot->mm_list);
1379                 spin_unlock(&ksm_mmlist_lock);
1380
1381                 free_mm_slot(slot);
1382                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1383                 up_read(&mm->mmap_sem);
1384                 mmdrop(mm);
1385         } else {
1386                 spin_unlock(&ksm_mmlist_lock);
1387                 up_read(&mm->mmap_sem);
1388         }
1389
1390         /* Repeat until we've completed scanning the whole list */
1391         slot = ksm_scan.mm_slot;
1392         if (slot != &ksm_mm_head)
1393                 goto next_mm;
1394
1395         ksm_scan.seqnr++;
1396         return NULL;
1397 }
1398
1399 /**
1400  * ksm_do_scan  - the ksm scanner main worker function.
1401  * @scan_npages - number of pages we want to scan before we return.
1402  */
1403 static void ksm_do_scan(unsigned int scan_npages)
1404 {
1405         struct rmap_item *rmap_item;
1406         struct page *uninitialized_var(page);
1407
1408         while (scan_npages-- && likely(!freezing(current))) {
1409                 cond_resched();
1410                 rmap_item = scan_get_next_rmap_item(&page);
1411                 if (!rmap_item)
1412                         return;
1413                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1414                         cmp_and_merge_page(page, rmap_item);
1415                 put_page(page);
1416         }
1417 }
1418
1419 static int ksmd_should_run(void)
1420 {
1421         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1422 }
1423
1424 static int ksm_scan_thread(void *nothing)
1425 {
1426         set_freezable();
1427         set_user_nice(current, 5);
1428
1429         while (!kthread_should_stop()) {
1430                 mutex_lock(&ksm_thread_mutex);
1431                 if (ksmd_should_run())
1432                         ksm_do_scan(ksm_thread_pages_to_scan);
1433                 mutex_unlock(&ksm_thread_mutex);
1434
1435                 try_to_freeze();
1436
1437                 if (ksmd_should_run()) {
1438                         schedule_timeout_interruptible(
1439                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1440                 } else {
1441                         wait_event_freezable(ksm_thread_wait,
1442                                 ksmd_should_run() || kthread_should_stop());
1443                 }
1444         }
1445         return 0;
1446 }
1447
1448 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1449                 unsigned long end, int advice, unsigned long *vm_flags)
1450 {
1451         struct mm_struct *mm = vma->vm_mm;
1452         int err;
1453
1454         switch (advice) {
1455         case MADV_MERGEABLE:
1456                 /*
1457                  * Be somewhat over-protective for now!
1458                  */
1459                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1460                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1461                                  VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1462                                  VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1463                         return 0;               /* just ignore the advice */
1464
1465                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1466                         err = __ksm_enter(mm);
1467                         if (err)
1468                                 return err;
1469                 }
1470
1471                 *vm_flags |= VM_MERGEABLE;
1472                 break;
1473
1474         case MADV_UNMERGEABLE:
1475                 if (!(*vm_flags & VM_MERGEABLE))
1476                         return 0;               /* just ignore the advice */
1477
1478                 if (vma->anon_vma) {
1479                         err = unmerge_ksm_pages(vma, start, end);
1480                         if (err)
1481                                 return err;
1482                 }
1483
1484                 *vm_flags &= ~VM_MERGEABLE;
1485                 break;
1486         }
1487
1488         return 0;
1489 }
1490
1491 int __ksm_enter(struct mm_struct *mm)
1492 {
1493         struct mm_slot *mm_slot;
1494         int needs_wakeup;
1495
1496         mm_slot = alloc_mm_slot();
1497         if (!mm_slot)
1498                 return -ENOMEM;
1499
1500         /* Check ksm_run too?  Would need tighter locking */
1501         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1502
1503         spin_lock(&ksm_mmlist_lock);
1504         insert_to_mm_slots_hash(mm, mm_slot);
1505         /*
1506          * Insert just behind the scanning cursor, to let the area settle
1507          * down a little; when fork is followed by immediate exec, we don't
1508          * want ksmd to waste time setting up and tearing down an rmap_list.
1509          */
1510         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1511         spin_unlock(&ksm_mmlist_lock);
1512
1513         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1514         atomic_inc(&mm->mm_count);
1515
1516         if (needs_wakeup)
1517                 wake_up_interruptible(&ksm_thread_wait);
1518
1519         return 0;
1520 }
1521
1522 void __ksm_exit(struct mm_struct *mm)
1523 {
1524         struct mm_slot *mm_slot;
1525         int easy_to_free = 0;
1526
1527         /*
1528          * This process is exiting: if it's straightforward (as is the
1529          * case when ksmd was never running), free mm_slot immediately.
1530          * But if it's at the cursor or has rmap_items linked to it, use
1531          * mmap_sem to synchronize with any break_cows before pagetables
1532          * are freed, and leave the mm_slot on the list for ksmd to free.
1533          * Beware: ksm may already have noticed it exiting and freed the slot.
1534          */
1535
1536         spin_lock(&ksm_mmlist_lock);
1537         mm_slot = get_mm_slot(mm);
1538         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1539                 if (!mm_slot->rmap_list) {
1540                         hlist_del(&mm_slot->link);
1541                         list_del(&mm_slot->mm_list);
1542                         easy_to_free = 1;
1543                 } else {
1544                         list_move(&mm_slot->mm_list,
1545                                   &ksm_scan.mm_slot->mm_list);
1546                 }
1547         }
1548         spin_unlock(&ksm_mmlist_lock);
1549
1550         if (easy_to_free) {
1551                 free_mm_slot(mm_slot);
1552                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1553                 mmdrop(mm);
1554         } else if (mm_slot) {
1555                 down_write(&mm->mmap_sem);
1556                 up_write(&mm->mmap_sem);
1557         }
1558 }
1559
1560 struct page *ksm_does_need_to_copy(struct page *page,
1561                         struct vm_area_struct *vma, unsigned long address)
1562 {
1563         struct page *new_page;
1564
1565         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1566         if (new_page) {
1567                 copy_user_highpage(new_page, page, address, vma);
1568
1569                 SetPageDirty(new_page);
1570                 __SetPageUptodate(new_page);
1571                 SetPageSwapBacked(new_page);
1572                 __set_page_locked(new_page);
1573
1574                 if (page_evictable(new_page, vma))
1575                         lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1576                 else
1577                         add_page_to_unevictable_list(new_page);
1578         }
1579
1580         return new_page;
1581 }
1582
1583 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1584                         unsigned long *vm_flags)
1585 {
1586         struct stable_node *stable_node;
1587         struct rmap_item *rmap_item;
1588         struct hlist_node *hlist;
1589         unsigned int mapcount = page_mapcount(page);
1590         int referenced = 0;
1591         int search_new_forks = 0;
1592
1593         VM_BUG_ON(!PageKsm(page));
1594         VM_BUG_ON(!PageLocked(page));
1595
1596         stable_node = page_stable_node(page);
1597         if (!stable_node)
1598                 return 0;
1599 again:
1600         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1601                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1602                 struct anon_vma_chain *vmac;
1603                 struct vm_area_struct *vma;
1604
1605                 anon_vma_lock(anon_vma);
1606                 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1607                         vma = vmac->vma;
1608                         if (rmap_item->address < vma->vm_start ||
1609                             rmap_item->address >= vma->vm_end)
1610                                 continue;
1611                         /*
1612                          * Initially we examine only the vma which covers this
1613                          * rmap_item; but later, if there is still work to do,
1614                          * we examine covering vmas in other mms: in case they
1615                          * were forked from the original since ksmd passed.
1616                          */
1617                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1618                                 continue;
1619
1620                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1621                                 continue;
1622
1623                         referenced += page_referenced_one(page, vma,
1624                                 rmap_item->address, &mapcount, vm_flags);
1625                         if (!search_new_forks || !mapcount)
1626                                 break;
1627                 }
1628                 anon_vma_unlock(anon_vma);
1629                 if (!mapcount)
1630                         goto out;
1631         }
1632         if (!search_new_forks++)
1633                 goto again;
1634 out:
1635         return referenced;
1636 }
1637
1638 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1639 {
1640         struct stable_node *stable_node;
1641         struct hlist_node *hlist;
1642         struct rmap_item *rmap_item;
1643         int ret = SWAP_AGAIN;
1644         int search_new_forks = 0;
1645
1646         VM_BUG_ON(!PageKsm(page));
1647         VM_BUG_ON(!PageLocked(page));
1648
1649         stable_node = page_stable_node(page);
1650         if (!stable_node)
1651                 return SWAP_FAIL;
1652 again:
1653         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1654                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1655                 struct anon_vma_chain *vmac;
1656                 struct vm_area_struct *vma;
1657
1658                 anon_vma_lock(anon_vma);
1659                 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1660                         vma = vmac->vma;
1661                         if (rmap_item->address < vma->vm_start ||
1662                             rmap_item->address >= vma->vm_end)
1663                                 continue;
1664                         /*
1665                          * Initially we examine only the vma which covers this
1666                          * rmap_item; but later, if there is still work to do,
1667                          * we examine covering vmas in other mms: in case they
1668                          * were forked from the original since ksmd passed.
1669                          */
1670                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1671                                 continue;
1672
1673                         ret = try_to_unmap_one(page, vma,
1674                                         rmap_item->address, flags);
1675                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1676                                 anon_vma_unlock(anon_vma);
1677                                 goto out;
1678                         }
1679                 }
1680                 anon_vma_unlock(anon_vma);
1681         }
1682         if (!search_new_forks++)
1683                 goto again;
1684 out:
1685         return ret;
1686 }
1687
1688 #ifdef CONFIG_MIGRATION
1689 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1690                   struct vm_area_struct *, unsigned long, void *), void *arg)
1691 {
1692         struct stable_node *stable_node;
1693         struct hlist_node *hlist;
1694         struct rmap_item *rmap_item;
1695         int ret = SWAP_AGAIN;
1696         int search_new_forks = 0;
1697
1698         VM_BUG_ON(!PageKsm(page));
1699         VM_BUG_ON(!PageLocked(page));
1700
1701         stable_node = page_stable_node(page);
1702         if (!stable_node)
1703                 return ret;
1704 again:
1705         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1706                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1707                 struct anon_vma_chain *vmac;
1708                 struct vm_area_struct *vma;
1709
1710                 anon_vma_lock(anon_vma);
1711                 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1712                         vma = vmac->vma;
1713                         if (rmap_item->address < vma->vm_start ||
1714                             rmap_item->address >= vma->vm_end)
1715                                 continue;
1716                         /*
1717                          * Initially we examine only the vma which covers this
1718                          * rmap_item; but later, if there is still work to do,
1719                          * we examine covering vmas in other mms: in case they
1720                          * were forked from the original since ksmd passed.
1721                          */
1722                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1723                                 continue;
1724
1725                         ret = rmap_one(page, vma, rmap_item->address, arg);
1726                         if (ret != SWAP_AGAIN) {
1727                                 anon_vma_unlock(anon_vma);
1728                                 goto out;
1729                         }
1730                 }
1731                 anon_vma_unlock(anon_vma);
1732         }
1733         if (!search_new_forks++)
1734                 goto again;
1735 out:
1736         return ret;
1737 }
1738
1739 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1740 {
1741         struct stable_node *stable_node;
1742
1743         VM_BUG_ON(!PageLocked(oldpage));
1744         VM_BUG_ON(!PageLocked(newpage));
1745         VM_BUG_ON(newpage->mapping != oldpage->mapping);
1746
1747         stable_node = page_stable_node(newpage);
1748         if (stable_node) {
1749                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1750                 stable_node->kpfn = page_to_pfn(newpage);
1751         }
1752 }
1753 #endif /* CONFIG_MIGRATION */
1754
1755 #ifdef CONFIG_MEMORY_HOTREMOVE
1756 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1757                                                  unsigned long end_pfn)
1758 {
1759         struct rb_node *node;
1760
1761         for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1762                 struct stable_node *stable_node;
1763
1764                 stable_node = rb_entry(node, struct stable_node, node);
1765                 if (stable_node->kpfn >= start_pfn &&
1766                     stable_node->kpfn < end_pfn)
1767                         return stable_node;
1768         }
1769         return NULL;
1770 }
1771
1772 static int ksm_memory_callback(struct notifier_block *self,
1773                                unsigned long action, void *arg)
1774 {
1775         struct memory_notify *mn = arg;
1776         struct stable_node *stable_node;
1777
1778         switch (action) {
1779         case MEM_GOING_OFFLINE:
1780                 /*
1781                  * Keep it very simple for now: just lock out ksmd and
1782                  * MADV_UNMERGEABLE while any memory is going offline.
1783                  * mutex_lock_nested() is necessary because lockdep was alarmed
1784                  * that here we take ksm_thread_mutex inside notifier chain
1785                  * mutex, and later take notifier chain mutex inside
1786                  * ksm_thread_mutex to unlock it.   But that's safe because both
1787                  * are inside mem_hotplug_mutex.
1788                  */
1789                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1790                 break;
1791
1792         case MEM_OFFLINE:
1793                 /*
1794                  * Most of the work is done by page migration; but there might
1795                  * be a few stable_nodes left over, still pointing to struct
1796                  * pages which have been offlined: prune those from the tree.
1797                  */
1798                 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1799                                         mn->start_pfn + mn->nr_pages)) != NULL)
1800                         remove_node_from_stable_tree(stable_node);
1801                 /* fallthrough */
1802
1803         case MEM_CANCEL_OFFLINE:
1804                 mutex_unlock(&ksm_thread_mutex);
1805                 break;
1806         }
1807         return NOTIFY_OK;
1808 }
1809 #endif /* CONFIG_MEMORY_HOTREMOVE */
1810
1811 #ifdef CONFIG_SYSFS
1812 /*
1813  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1814  */
1815
1816 #define KSM_ATTR_RO(_name) \
1817         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1818 #define KSM_ATTR(_name) \
1819         static struct kobj_attribute _name##_attr = \
1820                 __ATTR(_name, 0644, _name##_show, _name##_store)
1821
1822 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1823                                     struct kobj_attribute *attr, char *buf)
1824 {
1825         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1826 }
1827
1828 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1829                                      struct kobj_attribute *attr,
1830                                      const char *buf, size_t count)
1831 {
1832         unsigned long msecs;
1833         int err;
1834
1835         err = strict_strtoul(buf, 10, &msecs);
1836         if (err || msecs > UINT_MAX)
1837                 return -EINVAL;
1838
1839         ksm_thread_sleep_millisecs = msecs;
1840
1841         return count;
1842 }
1843 KSM_ATTR(sleep_millisecs);
1844
1845 static ssize_t pages_to_scan_show(struct kobject *kobj,
1846                                   struct kobj_attribute *attr, char *buf)
1847 {
1848         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1849 }
1850
1851 static ssize_t pages_to_scan_store(struct kobject *kobj,
1852                                    struct kobj_attribute *attr,
1853                                    const char *buf, size_t count)
1854 {
1855         int err;
1856         unsigned long nr_pages;
1857
1858         err = strict_strtoul(buf, 10, &nr_pages);
1859         if (err || nr_pages > UINT_MAX)
1860                 return -EINVAL;
1861
1862         ksm_thread_pages_to_scan = nr_pages;
1863
1864         return count;
1865 }
1866 KSM_ATTR(pages_to_scan);
1867
1868 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1869                         char *buf)
1870 {
1871         return sprintf(buf, "%u\n", ksm_run);
1872 }
1873
1874 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1875                          const char *buf, size_t count)
1876 {
1877         int err;
1878         unsigned long flags;
1879
1880         err = strict_strtoul(buf, 10, &flags);
1881         if (err || flags > UINT_MAX)
1882                 return -EINVAL;
1883         if (flags > KSM_RUN_UNMERGE)
1884                 return -EINVAL;
1885
1886         /*
1887          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1888          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1889          * breaking COW to free the pages_shared (but leaves mm_slots
1890          * on the list for when ksmd may be set running again).
1891          */
1892
1893         mutex_lock(&ksm_thread_mutex);
1894         if (ksm_run != flags) {
1895                 ksm_run = flags;
1896                 if (flags & KSM_RUN_UNMERGE) {
1897                         current->flags |= PF_OOM_ORIGIN;
1898                         err = unmerge_and_remove_all_rmap_items();
1899                         current->flags &= ~PF_OOM_ORIGIN;
1900                         if (err) {
1901                                 ksm_run = KSM_RUN_STOP;
1902                                 count = err;
1903                         }
1904                 }
1905         }
1906         mutex_unlock(&ksm_thread_mutex);
1907
1908         if (flags & KSM_RUN_MERGE)
1909                 wake_up_interruptible(&ksm_thread_wait);
1910
1911         return count;
1912 }
1913 KSM_ATTR(run);
1914
1915 static ssize_t pages_shared_show(struct kobject *kobj,
1916                                  struct kobj_attribute *attr, char *buf)
1917 {
1918         return sprintf(buf, "%lu\n", ksm_pages_shared);
1919 }
1920 KSM_ATTR_RO(pages_shared);
1921
1922 static ssize_t pages_sharing_show(struct kobject *kobj,
1923                                   struct kobj_attribute *attr, char *buf)
1924 {
1925         return sprintf(buf, "%lu\n", ksm_pages_sharing);
1926 }
1927 KSM_ATTR_RO(pages_sharing);
1928
1929 static ssize_t pages_unshared_show(struct kobject *kobj,
1930                                    struct kobj_attribute *attr, char *buf)
1931 {
1932         return sprintf(buf, "%lu\n", ksm_pages_unshared);
1933 }
1934 KSM_ATTR_RO(pages_unshared);
1935
1936 static ssize_t pages_volatile_show(struct kobject *kobj,
1937                                    struct kobj_attribute *attr, char *buf)
1938 {
1939         long ksm_pages_volatile;
1940
1941         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1942                                 - ksm_pages_sharing - ksm_pages_unshared;
1943         /*
1944          * It was not worth any locking to calculate that statistic,
1945          * but it might therefore sometimes be negative: conceal that.
1946          */
1947         if (ksm_pages_volatile < 0)
1948                 ksm_pages_volatile = 0;
1949         return sprintf(buf, "%ld\n", ksm_pages_volatile);
1950 }
1951 KSM_ATTR_RO(pages_volatile);
1952
1953 static ssize_t full_scans_show(struct kobject *kobj,
1954                                struct kobj_attribute *attr, char *buf)
1955 {
1956         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1957 }
1958 KSM_ATTR_RO(full_scans);
1959
1960 static struct attribute *ksm_attrs[] = {
1961         &sleep_millisecs_attr.attr,
1962         &pages_to_scan_attr.attr,
1963         &run_attr.attr,
1964         &pages_shared_attr.attr,
1965         &pages_sharing_attr.attr,
1966         &pages_unshared_attr.attr,
1967         &pages_volatile_attr.attr,
1968         &full_scans_attr.attr,
1969         NULL,
1970 };
1971
1972 static struct attribute_group ksm_attr_group = {
1973         .attrs = ksm_attrs,
1974         .name = "ksm",
1975 };
1976 #endif /* CONFIG_SYSFS */
1977
1978 static int __init ksm_init(void)
1979 {
1980         struct task_struct *ksm_thread;
1981         int err;
1982
1983         err = ksm_slab_init();
1984         if (err)
1985                 goto out;
1986
1987         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1988         if (IS_ERR(ksm_thread)) {
1989                 printk(KERN_ERR "ksm: creating kthread failed\n");
1990                 err = PTR_ERR(ksm_thread);
1991                 goto out_free;
1992         }
1993
1994 #ifdef CONFIG_SYSFS
1995         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1996         if (err) {
1997                 printk(KERN_ERR "ksm: register sysfs failed\n");
1998                 kthread_stop(ksm_thread);
1999                 goto out_free;
2000         }
2001 #else
2002         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2003
2004 #endif /* CONFIG_SYSFS */
2005
2006 #ifdef CONFIG_MEMORY_HOTREMOVE
2007         /*
2008          * Choose a high priority since the callback takes ksm_thread_mutex:
2009          * later callbacks could only be taking locks which nest within that.
2010          */
2011         hotplug_memory_notifier(ksm_memory_callback, 100);
2012 #endif
2013         return 0;
2014
2015 out_free:
2016         ksm_slab_free();
2017 out:
2018         return err;
2019 }
2020 module_init(ksm_init)