hugetlb: new sysfs interface
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/sysfs.h>
18
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21
22 #include <linux/hugetlb.h>
23 #include "internal.h"
24
25 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
26 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
27 unsigned long hugepages_treat_as_movable;
28
29 static int max_hstate;
30 unsigned int default_hstate_idx;
31 struct hstate hstates[HUGE_MAX_HSTATE];
32
33 /* for command line parsing */
34 static struct hstate * __initdata parsed_hstate;
35 static unsigned long __initdata default_hstate_max_huge_pages;
36
37 #define for_each_hstate(h) \
38         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
39
40 /*
41  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
42  */
43 static DEFINE_SPINLOCK(hugetlb_lock);
44
45 /*
46  * Region tracking -- allows tracking of reservations and instantiated pages
47  *                    across the pages in a mapping.
48  *
49  * The region data structures are protected by a combination of the mmap_sem
50  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
51  * must either hold the mmap_sem for write, or the mmap_sem for read and
52  * the hugetlb_instantiation mutex:
53  *
54  *      down_write(&mm->mmap_sem);
55  * or
56  *      down_read(&mm->mmap_sem);
57  *      mutex_lock(&hugetlb_instantiation_mutex);
58  */
59 struct file_region {
60         struct list_head link;
61         long from;
62         long to;
63 };
64
65 static long region_add(struct list_head *head, long f, long t)
66 {
67         struct file_region *rg, *nrg, *trg;
68
69         /* Locate the region we are either in or before. */
70         list_for_each_entry(rg, head, link)
71                 if (f <= rg->to)
72                         break;
73
74         /* Round our left edge to the current segment if it encloses us. */
75         if (f > rg->from)
76                 f = rg->from;
77
78         /* Check for and consume any regions we now overlap with. */
79         nrg = rg;
80         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
81                 if (&rg->link == head)
82                         break;
83                 if (rg->from > t)
84                         break;
85
86                 /* If this area reaches higher then extend our area to
87                  * include it completely.  If this is not the first area
88                  * which we intend to reuse, free it. */
89                 if (rg->to > t)
90                         t = rg->to;
91                 if (rg != nrg) {
92                         list_del(&rg->link);
93                         kfree(rg);
94                 }
95         }
96         nrg->from = f;
97         nrg->to = t;
98         return 0;
99 }
100
101 static long region_chg(struct list_head *head, long f, long t)
102 {
103         struct file_region *rg, *nrg;
104         long chg = 0;
105
106         /* Locate the region we are before or in. */
107         list_for_each_entry(rg, head, link)
108                 if (f <= rg->to)
109                         break;
110
111         /* If we are below the current region then a new region is required.
112          * Subtle, allocate a new region at the position but make it zero
113          * size such that we can guarantee to record the reservation. */
114         if (&rg->link == head || t < rg->from) {
115                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
116                 if (!nrg)
117                         return -ENOMEM;
118                 nrg->from = f;
119                 nrg->to   = f;
120                 INIT_LIST_HEAD(&nrg->link);
121                 list_add(&nrg->link, rg->link.prev);
122
123                 return t - f;
124         }
125
126         /* Round our left edge to the current segment if it encloses us. */
127         if (f > rg->from)
128                 f = rg->from;
129         chg = t - f;
130
131         /* Check for and consume any regions we now overlap with. */
132         list_for_each_entry(rg, rg->link.prev, link) {
133                 if (&rg->link == head)
134                         break;
135                 if (rg->from > t)
136                         return chg;
137
138                 /* We overlap with this area, if it extends futher than
139                  * us then we must extend ourselves.  Account for its
140                  * existing reservation. */
141                 if (rg->to > t) {
142                         chg += rg->to - t;
143                         t = rg->to;
144                 }
145                 chg -= rg->to - rg->from;
146         }
147         return chg;
148 }
149
150 static long region_truncate(struct list_head *head, long end)
151 {
152         struct file_region *rg, *trg;
153         long chg = 0;
154
155         /* Locate the region we are either in or before. */
156         list_for_each_entry(rg, head, link)
157                 if (end <= rg->to)
158                         break;
159         if (&rg->link == head)
160                 return 0;
161
162         /* If we are in the middle of a region then adjust it. */
163         if (end > rg->from) {
164                 chg = rg->to - end;
165                 rg->to = end;
166                 rg = list_entry(rg->link.next, typeof(*rg), link);
167         }
168
169         /* Drop any remaining regions. */
170         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171                 if (&rg->link == head)
172                         break;
173                 chg += rg->to - rg->from;
174                 list_del(&rg->link);
175                 kfree(rg);
176         }
177         return chg;
178 }
179
180 static long region_count(struct list_head *head, long f, long t)
181 {
182         struct file_region *rg;
183         long chg = 0;
184
185         /* Locate each segment we overlap with, and count that overlap. */
186         list_for_each_entry(rg, head, link) {
187                 int seg_from;
188                 int seg_to;
189
190                 if (rg->to <= f)
191                         continue;
192                 if (rg->from >= t)
193                         break;
194
195                 seg_from = max(rg->from, f);
196                 seg_to = min(rg->to, t);
197
198                 chg += seg_to - seg_from;
199         }
200
201         return chg;
202 }
203
204 /*
205  * Convert the address within this vma to the page offset within
206  * the mapping, in pagecache page units; huge pages here.
207  */
208 static pgoff_t vma_hugecache_offset(struct hstate *h,
209                         struct vm_area_struct *vma, unsigned long address)
210 {
211         return ((address - vma->vm_start) >> huge_page_shift(h)) +
212                         (vma->vm_pgoff >> huge_page_order(h));
213 }
214
215 /*
216  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
217  * bits of the reservation map pointer, which are always clear due to
218  * alignment.
219  */
220 #define HPAGE_RESV_OWNER    (1UL << 0)
221 #define HPAGE_RESV_UNMAPPED (1UL << 1)
222 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
223
224 /*
225  * These helpers are used to track how many pages are reserved for
226  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
227  * is guaranteed to have their future faults succeed.
228  *
229  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
230  * the reserve counters are updated with the hugetlb_lock held. It is safe
231  * to reset the VMA at fork() time as it is not in use yet and there is no
232  * chance of the global counters getting corrupted as a result of the values.
233  *
234  * The private mapping reservation is represented in a subtly different
235  * manner to a shared mapping.  A shared mapping has a region map associated
236  * with the underlying file, this region map represents the backing file
237  * pages which have ever had a reservation assigned which this persists even
238  * after the page is instantiated.  A private mapping has a region map
239  * associated with the original mmap which is attached to all VMAs which
240  * reference it, this region map represents those offsets which have consumed
241  * reservation ie. where pages have been instantiated.
242  */
243 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
244 {
245         return (unsigned long)vma->vm_private_data;
246 }
247
248 static void set_vma_private_data(struct vm_area_struct *vma,
249                                                         unsigned long value)
250 {
251         vma->vm_private_data = (void *)value;
252 }
253
254 struct resv_map {
255         struct kref refs;
256         struct list_head regions;
257 };
258
259 struct resv_map *resv_map_alloc(void)
260 {
261         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
262         if (!resv_map)
263                 return NULL;
264
265         kref_init(&resv_map->refs);
266         INIT_LIST_HEAD(&resv_map->regions);
267
268         return resv_map;
269 }
270
271 void resv_map_release(struct kref *ref)
272 {
273         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
274
275         /* Clear out any active regions before we release the map. */
276         region_truncate(&resv_map->regions, 0);
277         kfree(resv_map);
278 }
279
280 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
281 {
282         VM_BUG_ON(!is_vm_hugetlb_page(vma));
283         if (!(vma->vm_flags & VM_SHARED))
284                 return (struct resv_map *)(get_vma_private_data(vma) &
285                                                         ~HPAGE_RESV_MASK);
286         return 0;
287 }
288
289 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
290 {
291         VM_BUG_ON(!is_vm_hugetlb_page(vma));
292         VM_BUG_ON(vma->vm_flags & VM_SHARED);
293
294         set_vma_private_data(vma, (get_vma_private_data(vma) &
295                                 HPAGE_RESV_MASK) | (unsigned long)map);
296 }
297
298 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
299 {
300         VM_BUG_ON(!is_vm_hugetlb_page(vma));
301         VM_BUG_ON(vma->vm_flags & VM_SHARED);
302
303         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
304 }
305
306 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
307 {
308         VM_BUG_ON(!is_vm_hugetlb_page(vma));
309
310         return (get_vma_private_data(vma) & flag) != 0;
311 }
312
313 /* Decrement the reserved pages in the hugepage pool by one */
314 static void decrement_hugepage_resv_vma(struct hstate *h,
315                         struct vm_area_struct *vma)
316 {
317         if (vma->vm_flags & VM_NORESERVE)
318                 return;
319
320         if (vma->vm_flags & VM_SHARED) {
321                 /* Shared mappings always use reserves */
322                 h->resv_huge_pages--;
323         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
324                 /*
325                  * Only the process that called mmap() has reserves for
326                  * private mappings.
327                  */
328                 h->resv_huge_pages--;
329         }
330 }
331
332 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
333 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
334 {
335         VM_BUG_ON(!is_vm_hugetlb_page(vma));
336         if (!(vma->vm_flags & VM_SHARED))
337                 vma->vm_private_data = (void *)0;
338 }
339
340 /* Returns true if the VMA has associated reserve pages */
341 static int vma_has_private_reserves(struct vm_area_struct *vma)
342 {
343         if (vma->vm_flags & VM_SHARED)
344                 return 0;
345         if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
346                 return 0;
347         return 1;
348 }
349
350 static void clear_huge_page(struct page *page,
351                         unsigned long addr, unsigned long sz)
352 {
353         int i;
354
355         might_sleep();
356         for (i = 0; i < sz/PAGE_SIZE; i++) {
357                 cond_resched();
358                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
359         }
360 }
361
362 static void copy_huge_page(struct page *dst, struct page *src,
363                            unsigned long addr, struct vm_area_struct *vma)
364 {
365         int i;
366         struct hstate *h = hstate_vma(vma);
367
368         might_sleep();
369         for (i = 0; i < pages_per_huge_page(h); i++) {
370                 cond_resched();
371                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
372         }
373 }
374
375 static void enqueue_huge_page(struct hstate *h, struct page *page)
376 {
377         int nid = page_to_nid(page);
378         list_add(&page->lru, &h->hugepage_freelists[nid]);
379         h->free_huge_pages++;
380         h->free_huge_pages_node[nid]++;
381 }
382
383 static struct page *dequeue_huge_page(struct hstate *h)
384 {
385         int nid;
386         struct page *page = NULL;
387
388         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
389                 if (!list_empty(&h->hugepage_freelists[nid])) {
390                         page = list_entry(h->hugepage_freelists[nid].next,
391                                           struct page, lru);
392                         list_del(&page->lru);
393                         h->free_huge_pages--;
394                         h->free_huge_pages_node[nid]--;
395                         break;
396                 }
397         }
398         return page;
399 }
400
401 static struct page *dequeue_huge_page_vma(struct hstate *h,
402                                 struct vm_area_struct *vma,
403                                 unsigned long address, int avoid_reserve)
404 {
405         int nid;
406         struct page *page = NULL;
407         struct mempolicy *mpol;
408         nodemask_t *nodemask;
409         struct zonelist *zonelist = huge_zonelist(vma, address,
410                                         htlb_alloc_mask, &mpol, &nodemask);
411         struct zone *zone;
412         struct zoneref *z;
413
414         /*
415          * A child process with MAP_PRIVATE mappings created by their parent
416          * have no page reserves. This check ensures that reservations are
417          * not "stolen". The child may still get SIGKILLed
418          */
419         if (!vma_has_private_reserves(vma) &&
420                         h->free_huge_pages - h->resv_huge_pages == 0)
421                 return NULL;
422
423         /* If reserves cannot be used, ensure enough pages are in the pool */
424         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
425                 return NULL;
426
427         for_each_zone_zonelist_nodemask(zone, z, zonelist,
428                                                 MAX_NR_ZONES - 1, nodemask) {
429                 nid = zone_to_nid(zone);
430                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
431                     !list_empty(&h->hugepage_freelists[nid])) {
432                         page = list_entry(h->hugepage_freelists[nid].next,
433                                           struct page, lru);
434                         list_del(&page->lru);
435                         h->free_huge_pages--;
436                         h->free_huge_pages_node[nid]--;
437
438                         if (!avoid_reserve)
439                                 decrement_hugepage_resv_vma(h, vma);
440
441                         break;
442                 }
443         }
444         mpol_cond_put(mpol);
445         return page;
446 }
447
448 static void update_and_free_page(struct hstate *h, struct page *page)
449 {
450         int i;
451
452         h->nr_huge_pages--;
453         h->nr_huge_pages_node[page_to_nid(page)]--;
454         for (i = 0; i < pages_per_huge_page(h); i++) {
455                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
456                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
457                                 1 << PG_private | 1<< PG_writeback);
458         }
459         set_compound_page_dtor(page, NULL);
460         set_page_refcounted(page);
461         arch_release_hugepage(page);
462         __free_pages(page, huge_page_order(h));
463 }
464
465 struct hstate *size_to_hstate(unsigned long size)
466 {
467         struct hstate *h;
468
469         for_each_hstate(h) {
470                 if (huge_page_size(h) == size)
471                         return h;
472         }
473         return NULL;
474 }
475
476 static void free_huge_page(struct page *page)
477 {
478         /*
479          * Can't pass hstate in here because it is called from the
480          * compound page destructor.
481          */
482         struct hstate *h = page_hstate(page);
483         int nid = page_to_nid(page);
484         struct address_space *mapping;
485
486         mapping = (struct address_space *) page_private(page);
487         set_page_private(page, 0);
488         BUG_ON(page_count(page));
489         INIT_LIST_HEAD(&page->lru);
490
491         spin_lock(&hugetlb_lock);
492         if (h->surplus_huge_pages_node[nid]) {
493                 update_and_free_page(h, page);
494                 h->surplus_huge_pages--;
495                 h->surplus_huge_pages_node[nid]--;
496         } else {
497                 enqueue_huge_page(h, page);
498         }
499         spin_unlock(&hugetlb_lock);
500         if (mapping)
501                 hugetlb_put_quota(mapping, 1);
502 }
503
504 /*
505  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
506  * balanced by operating on them in a round-robin fashion.
507  * Returns 1 if an adjustment was made.
508  */
509 static int adjust_pool_surplus(struct hstate *h, int delta)
510 {
511         static int prev_nid;
512         int nid = prev_nid;
513         int ret = 0;
514
515         VM_BUG_ON(delta != -1 && delta != 1);
516         do {
517                 nid = next_node(nid, node_online_map);
518                 if (nid == MAX_NUMNODES)
519                         nid = first_node(node_online_map);
520
521                 /* To shrink on this node, there must be a surplus page */
522                 if (delta < 0 && !h->surplus_huge_pages_node[nid])
523                         continue;
524                 /* Surplus cannot exceed the total number of pages */
525                 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
526                                                 h->nr_huge_pages_node[nid])
527                         continue;
528
529                 h->surplus_huge_pages += delta;
530                 h->surplus_huge_pages_node[nid] += delta;
531                 ret = 1;
532                 break;
533         } while (nid != prev_nid);
534
535         prev_nid = nid;
536         return ret;
537 }
538
539 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
540 {
541         set_compound_page_dtor(page, free_huge_page);
542         spin_lock(&hugetlb_lock);
543         h->nr_huge_pages++;
544         h->nr_huge_pages_node[nid]++;
545         spin_unlock(&hugetlb_lock);
546         put_page(page); /* free it into the hugepage allocator */
547 }
548
549 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
550 {
551         struct page *page;
552
553         page = alloc_pages_node(nid,
554                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
555                                                 __GFP_REPEAT|__GFP_NOWARN,
556                 huge_page_order(h));
557         if (page) {
558                 if (arch_prepare_hugepage(page)) {
559                         __free_pages(page, HUGETLB_PAGE_ORDER);
560                         return NULL;
561                 }
562                 prep_new_huge_page(h, page, nid);
563         }
564
565         return page;
566 }
567
568 static int alloc_fresh_huge_page(struct hstate *h)
569 {
570         struct page *page;
571         int start_nid;
572         int next_nid;
573         int ret = 0;
574
575         start_nid = h->hugetlb_next_nid;
576
577         do {
578                 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
579                 if (page)
580                         ret = 1;
581                 /*
582                  * Use a helper variable to find the next node and then
583                  * copy it back to hugetlb_next_nid afterwards:
584                  * otherwise there's a window in which a racer might
585                  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
586                  * But we don't need to use a spin_lock here: it really
587                  * doesn't matter if occasionally a racer chooses the
588                  * same nid as we do.  Move nid forward in the mask even
589                  * if we just successfully allocated a hugepage so that
590                  * the next caller gets hugepages on the next node.
591                  */
592                 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
593                 if (next_nid == MAX_NUMNODES)
594                         next_nid = first_node(node_online_map);
595                 h->hugetlb_next_nid = next_nid;
596         } while (!page && h->hugetlb_next_nid != start_nid);
597
598         if (ret)
599                 count_vm_event(HTLB_BUDDY_PGALLOC);
600         else
601                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
602
603         return ret;
604 }
605
606 static struct page *alloc_buddy_huge_page(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         struct page *page;
610         unsigned int nid;
611
612         /*
613          * Assume we will successfully allocate the surplus page to
614          * prevent racing processes from causing the surplus to exceed
615          * overcommit
616          *
617          * This however introduces a different race, where a process B
618          * tries to grow the static hugepage pool while alloc_pages() is
619          * called by process A. B will only examine the per-node
620          * counters in determining if surplus huge pages can be
621          * converted to normal huge pages in adjust_pool_surplus(). A
622          * won't be able to increment the per-node counter, until the
623          * lock is dropped by B, but B doesn't drop hugetlb_lock until
624          * no more huge pages can be converted from surplus to normal
625          * state (and doesn't try to convert again). Thus, we have a
626          * case where a surplus huge page exists, the pool is grown, and
627          * the surplus huge page still exists after, even though it
628          * should just have been converted to a normal huge page. This
629          * does not leak memory, though, as the hugepage will be freed
630          * once it is out of use. It also does not allow the counters to
631          * go out of whack in adjust_pool_surplus() as we don't modify
632          * the node values until we've gotten the hugepage and only the
633          * per-node value is checked there.
634          */
635         spin_lock(&hugetlb_lock);
636         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
637                 spin_unlock(&hugetlb_lock);
638                 return NULL;
639         } else {
640                 h->nr_huge_pages++;
641                 h->surplus_huge_pages++;
642         }
643         spin_unlock(&hugetlb_lock);
644
645         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
646                                         __GFP_REPEAT|__GFP_NOWARN,
647                                         huge_page_order(h));
648
649         spin_lock(&hugetlb_lock);
650         if (page) {
651                 /*
652                  * This page is now managed by the hugetlb allocator and has
653                  * no users -- drop the buddy allocator's reference.
654                  */
655                 put_page_testzero(page);
656                 VM_BUG_ON(page_count(page));
657                 nid = page_to_nid(page);
658                 set_compound_page_dtor(page, free_huge_page);
659                 /*
660                  * We incremented the global counters already
661                  */
662                 h->nr_huge_pages_node[nid]++;
663                 h->surplus_huge_pages_node[nid]++;
664                 __count_vm_event(HTLB_BUDDY_PGALLOC);
665         } else {
666                 h->nr_huge_pages--;
667                 h->surplus_huge_pages--;
668                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
669         }
670         spin_unlock(&hugetlb_lock);
671
672         return page;
673 }
674
675 /*
676  * Increase the hugetlb pool such that it can accomodate a reservation
677  * of size 'delta'.
678  */
679 static int gather_surplus_pages(struct hstate *h, int delta)
680 {
681         struct list_head surplus_list;
682         struct page *page, *tmp;
683         int ret, i;
684         int needed, allocated;
685
686         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
687         if (needed <= 0) {
688                 h->resv_huge_pages += delta;
689                 return 0;
690         }
691
692         allocated = 0;
693         INIT_LIST_HEAD(&surplus_list);
694
695         ret = -ENOMEM;
696 retry:
697         spin_unlock(&hugetlb_lock);
698         for (i = 0; i < needed; i++) {
699                 page = alloc_buddy_huge_page(h, NULL, 0);
700                 if (!page) {
701                         /*
702                          * We were not able to allocate enough pages to
703                          * satisfy the entire reservation so we free what
704                          * we've allocated so far.
705                          */
706                         spin_lock(&hugetlb_lock);
707                         needed = 0;
708                         goto free;
709                 }
710
711                 list_add(&page->lru, &surplus_list);
712         }
713         allocated += needed;
714
715         /*
716          * After retaking hugetlb_lock, we need to recalculate 'needed'
717          * because either resv_huge_pages or free_huge_pages may have changed.
718          */
719         spin_lock(&hugetlb_lock);
720         needed = (h->resv_huge_pages + delta) -
721                         (h->free_huge_pages + allocated);
722         if (needed > 0)
723                 goto retry;
724
725         /*
726          * The surplus_list now contains _at_least_ the number of extra pages
727          * needed to accomodate the reservation.  Add the appropriate number
728          * of pages to the hugetlb pool and free the extras back to the buddy
729          * allocator.  Commit the entire reservation here to prevent another
730          * process from stealing the pages as they are added to the pool but
731          * before they are reserved.
732          */
733         needed += allocated;
734         h->resv_huge_pages += delta;
735         ret = 0;
736 free:
737         /* Free the needed pages to the hugetlb pool */
738         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
739                 if ((--needed) < 0)
740                         break;
741                 list_del(&page->lru);
742                 enqueue_huge_page(h, page);
743         }
744
745         /* Free unnecessary surplus pages to the buddy allocator */
746         if (!list_empty(&surplus_list)) {
747                 spin_unlock(&hugetlb_lock);
748                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
749                         list_del(&page->lru);
750                         /*
751                          * The page has a reference count of zero already, so
752                          * call free_huge_page directly instead of using
753                          * put_page.  This must be done with hugetlb_lock
754                          * unlocked which is safe because free_huge_page takes
755                          * hugetlb_lock before deciding how to free the page.
756                          */
757                         free_huge_page(page);
758                 }
759                 spin_lock(&hugetlb_lock);
760         }
761
762         return ret;
763 }
764
765 /*
766  * When releasing a hugetlb pool reservation, any surplus pages that were
767  * allocated to satisfy the reservation must be explicitly freed if they were
768  * never used.
769  */
770 static void return_unused_surplus_pages(struct hstate *h,
771                                         unsigned long unused_resv_pages)
772 {
773         static int nid = -1;
774         struct page *page;
775         unsigned long nr_pages;
776
777         /*
778          * We want to release as many surplus pages as possible, spread
779          * evenly across all nodes. Iterate across all nodes until we
780          * can no longer free unreserved surplus pages. This occurs when
781          * the nodes with surplus pages have no free pages.
782          */
783         unsigned long remaining_iterations = num_online_nodes();
784
785         /* Uncommit the reservation */
786         h->resv_huge_pages -= unused_resv_pages;
787
788         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
789
790         while (remaining_iterations-- && nr_pages) {
791                 nid = next_node(nid, node_online_map);
792                 if (nid == MAX_NUMNODES)
793                         nid = first_node(node_online_map);
794
795                 if (!h->surplus_huge_pages_node[nid])
796                         continue;
797
798                 if (!list_empty(&h->hugepage_freelists[nid])) {
799                         page = list_entry(h->hugepage_freelists[nid].next,
800                                           struct page, lru);
801                         list_del(&page->lru);
802                         update_and_free_page(h, page);
803                         h->free_huge_pages--;
804                         h->free_huge_pages_node[nid]--;
805                         h->surplus_huge_pages--;
806                         h->surplus_huge_pages_node[nid]--;
807                         nr_pages--;
808                         remaining_iterations = num_online_nodes();
809                 }
810         }
811 }
812
813 /*
814  * Determine if the huge page at addr within the vma has an associated
815  * reservation.  Where it does not we will need to logically increase
816  * reservation and actually increase quota before an allocation can occur.
817  * Where any new reservation would be required the reservation change is
818  * prepared, but not committed.  Once the page has been quota'd allocated
819  * an instantiated the change should be committed via vma_commit_reservation.
820  * No action is required on failure.
821  */
822 static int vma_needs_reservation(struct hstate *h,
823                         struct vm_area_struct *vma, unsigned long addr)
824 {
825         struct address_space *mapping = vma->vm_file->f_mapping;
826         struct inode *inode = mapping->host;
827
828         if (vma->vm_flags & VM_SHARED) {
829                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
830                 return region_chg(&inode->i_mapping->private_list,
831                                                         idx, idx + 1);
832
833         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
834                 return 1;
835
836         } else  {
837                 int err;
838                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
839                 struct resv_map *reservations = vma_resv_map(vma);
840
841                 err = region_chg(&reservations->regions, idx, idx + 1);
842                 if (err < 0)
843                         return err;
844                 return 0;
845         }
846 }
847 static void vma_commit_reservation(struct hstate *h,
848                         struct vm_area_struct *vma, unsigned long addr)
849 {
850         struct address_space *mapping = vma->vm_file->f_mapping;
851         struct inode *inode = mapping->host;
852
853         if (vma->vm_flags & VM_SHARED) {
854                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
855                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
856
857         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
858                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
859                 struct resv_map *reservations = vma_resv_map(vma);
860
861                 /* Mark this page used in the map. */
862                 region_add(&reservations->regions, idx, idx + 1);
863         }
864 }
865
866 static struct page *alloc_huge_page(struct vm_area_struct *vma,
867                                     unsigned long addr, int avoid_reserve)
868 {
869         struct hstate *h = hstate_vma(vma);
870         struct page *page;
871         struct address_space *mapping = vma->vm_file->f_mapping;
872         struct inode *inode = mapping->host;
873         unsigned int chg;
874
875         /*
876          * Processes that did not create the mapping will have no reserves and
877          * will not have accounted against quota. Check that the quota can be
878          * made before satisfying the allocation
879          * MAP_NORESERVE mappings may also need pages and quota allocated
880          * if no reserve mapping overlaps.
881          */
882         chg = vma_needs_reservation(h, vma, addr);
883         if (chg < 0)
884                 return ERR_PTR(chg);
885         if (chg)
886                 if (hugetlb_get_quota(inode->i_mapping, chg))
887                         return ERR_PTR(-ENOSPC);
888
889         spin_lock(&hugetlb_lock);
890         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
891         spin_unlock(&hugetlb_lock);
892
893         if (!page) {
894                 page = alloc_buddy_huge_page(h, vma, addr);
895                 if (!page) {
896                         hugetlb_put_quota(inode->i_mapping, chg);
897                         return ERR_PTR(-VM_FAULT_OOM);
898                 }
899         }
900
901         set_page_refcounted(page);
902         set_page_private(page, (unsigned long) mapping);
903
904         vma_commit_reservation(h, vma, addr);
905
906         return page;
907 }
908
909 static void __init hugetlb_init_one_hstate(struct hstate *h)
910 {
911         unsigned long i;
912
913         for (i = 0; i < MAX_NUMNODES; ++i)
914                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
915
916         h->hugetlb_next_nid = first_node(node_online_map);
917
918         for (i = 0; i < h->max_huge_pages; ++i) {
919                 if (!alloc_fresh_huge_page(h))
920                         break;
921         }
922         h->max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
923 }
924
925 static void __init hugetlb_init_hstates(void)
926 {
927         struct hstate *h;
928
929         for_each_hstate(h) {
930                 hugetlb_init_one_hstate(h);
931         }
932 }
933
934 static void __init report_hugepages(void)
935 {
936         struct hstate *h;
937
938         for_each_hstate(h) {
939                 printk(KERN_INFO "Total HugeTLB memory allocated, "
940                                 "%ld %dMB pages\n",
941                                 h->free_huge_pages,
942                                 1 << (h->order + PAGE_SHIFT - 20));
943         }
944 }
945
946 #ifdef CONFIG_SYSCTL
947 #ifdef CONFIG_HIGHMEM
948 static void try_to_free_low(struct hstate *h, unsigned long count)
949 {
950         int i;
951
952         for (i = 0; i < MAX_NUMNODES; ++i) {
953                 struct page *page, *next;
954                 struct list_head *freel = &h->hugepage_freelists[i];
955                 list_for_each_entry_safe(page, next, freel, lru) {
956                         if (count >= h->nr_huge_pages)
957                                 return;
958                         if (PageHighMem(page))
959                                 continue;
960                         list_del(&page->lru);
961                         update_and_free_page(h, page);
962                         h->free_huge_pages--;
963                         h->free_huge_pages_node[page_to_nid(page)]--;
964                 }
965         }
966 }
967 #else
968 static inline void try_to_free_low(struct hstate *h, unsigned long count)
969 {
970 }
971 #endif
972
973 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
974 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
975 {
976         unsigned long min_count, ret;
977
978         /*
979          * Increase the pool size
980          * First take pages out of surplus state.  Then make up the
981          * remaining difference by allocating fresh huge pages.
982          *
983          * We might race with alloc_buddy_huge_page() here and be unable
984          * to convert a surplus huge page to a normal huge page. That is
985          * not critical, though, it just means the overall size of the
986          * pool might be one hugepage larger than it needs to be, but
987          * within all the constraints specified by the sysctls.
988          */
989         spin_lock(&hugetlb_lock);
990         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
991                 if (!adjust_pool_surplus(h, -1))
992                         break;
993         }
994
995         while (count > persistent_huge_pages(h)) {
996                 /*
997                  * If this allocation races such that we no longer need the
998                  * page, free_huge_page will handle it by freeing the page
999                  * and reducing the surplus.
1000                  */
1001                 spin_unlock(&hugetlb_lock);
1002                 ret = alloc_fresh_huge_page(h);
1003                 spin_lock(&hugetlb_lock);
1004                 if (!ret)
1005                         goto out;
1006
1007         }
1008
1009         /*
1010          * Decrease the pool size
1011          * First return free pages to the buddy allocator (being careful
1012          * to keep enough around to satisfy reservations).  Then place
1013          * pages into surplus state as needed so the pool will shrink
1014          * to the desired size as pages become free.
1015          *
1016          * By placing pages into the surplus state independent of the
1017          * overcommit value, we are allowing the surplus pool size to
1018          * exceed overcommit. There are few sane options here. Since
1019          * alloc_buddy_huge_page() is checking the global counter,
1020          * though, we'll note that we're not allowed to exceed surplus
1021          * and won't grow the pool anywhere else. Not until one of the
1022          * sysctls are changed, or the surplus pages go out of use.
1023          */
1024         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1025         min_count = max(count, min_count);
1026         try_to_free_low(h, min_count);
1027         while (min_count < persistent_huge_pages(h)) {
1028                 struct page *page = dequeue_huge_page(h);
1029                 if (!page)
1030                         break;
1031                 update_and_free_page(h, page);
1032         }
1033         while (count < persistent_huge_pages(h)) {
1034                 if (!adjust_pool_surplus(h, 1))
1035                         break;
1036         }
1037 out:
1038         ret = persistent_huge_pages(h);
1039         spin_unlock(&hugetlb_lock);
1040         return ret;
1041 }
1042
1043 #define HSTATE_ATTR_RO(_name) \
1044         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1045
1046 #define HSTATE_ATTR(_name) \
1047         static struct kobj_attribute _name##_attr = \
1048                 __ATTR(_name, 0644, _name##_show, _name##_store)
1049
1050 static struct kobject *hugepages_kobj;
1051 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1052
1053 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1054 {
1055         int i;
1056         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1057                 if (hstate_kobjs[i] == kobj)
1058                         return &hstates[i];
1059         BUG();
1060         return NULL;
1061 }
1062
1063 static ssize_t nr_hugepages_show(struct kobject *kobj,
1064                                         struct kobj_attribute *attr, char *buf)
1065 {
1066         struct hstate *h = kobj_to_hstate(kobj);
1067         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1068 }
1069 static ssize_t nr_hugepages_store(struct kobject *kobj,
1070                 struct kobj_attribute *attr, const char *buf, size_t count)
1071 {
1072         int err;
1073         unsigned long input;
1074         struct hstate *h = kobj_to_hstate(kobj);
1075
1076         err = strict_strtoul(buf, 10, &input);
1077         if (err)
1078                 return 0;
1079
1080         h->max_huge_pages = set_max_huge_pages(h, input);
1081
1082         return count;
1083 }
1084 HSTATE_ATTR(nr_hugepages);
1085
1086 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1087                                         struct kobj_attribute *attr, char *buf)
1088 {
1089         struct hstate *h = kobj_to_hstate(kobj);
1090         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1091 }
1092 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1093                 struct kobj_attribute *attr, const char *buf, size_t count)
1094 {
1095         int err;
1096         unsigned long input;
1097         struct hstate *h = kobj_to_hstate(kobj);
1098
1099         err = strict_strtoul(buf, 10, &input);
1100         if (err)
1101                 return 0;
1102
1103         spin_lock(&hugetlb_lock);
1104         h->nr_overcommit_huge_pages = input;
1105         spin_unlock(&hugetlb_lock);
1106
1107         return count;
1108 }
1109 HSTATE_ATTR(nr_overcommit_hugepages);
1110
1111 static ssize_t free_hugepages_show(struct kobject *kobj,
1112                                         struct kobj_attribute *attr, char *buf)
1113 {
1114         struct hstate *h = kobj_to_hstate(kobj);
1115         return sprintf(buf, "%lu\n", h->free_huge_pages);
1116 }
1117 HSTATE_ATTR_RO(free_hugepages);
1118
1119 static ssize_t resv_hugepages_show(struct kobject *kobj,
1120                                         struct kobj_attribute *attr, char *buf)
1121 {
1122         struct hstate *h = kobj_to_hstate(kobj);
1123         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1124 }
1125 HSTATE_ATTR_RO(resv_hugepages);
1126
1127 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1128                                         struct kobj_attribute *attr, char *buf)
1129 {
1130         struct hstate *h = kobj_to_hstate(kobj);
1131         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1132 }
1133 HSTATE_ATTR_RO(surplus_hugepages);
1134
1135 static struct attribute *hstate_attrs[] = {
1136         &nr_hugepages_attr.attr,
1137         &nr_overcommit_hugepages_attr.attr,
1138         &free_hugepages_attr.attr,
1139         &resv_hugepages_attr.attr,
1140         &surplus_hugepages_attr.attr,
1141         NULL,
1142 };
1143
1144 static struct attribute_group hstate_attr_group = {
1145         .attrs = hstate_attrs,
1146 };
1147
1148 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1149 {
1150         int retval;
1151
1152         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1153                                                         hugepages_kobj);
1154         if (!hstate_kobjs[h - hstates])
1155                 return -ENOMEM;
1156
1157         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1158                                                         &hstate_attr_group);
1159         if (retval)
1160                 kobject_put(hstate_kobjs[h - hstates]);
1161
1162         return retval;
1163 }
1164
1165 static void __init hugetlb_sysfs_init(void)
1166 {
1167         struct hstate *h;
1168         int err;
1169
1170         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1171         if (!hugepages_kobj)
1172                 return;
1173
1174         for_each_hstate(h) {
1175                 err = hugetlb_sysfs_add_hstate(h);
1176                 if (err)
1177                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1178                                                                 h->name);
1179         }
1180 }
1181
1182 static void __exit hugetlb_exit(void)
1183 {
1184         struct hstate *h;
1185
1186         for_each_hstate(h) {
1187                 kobject_put(hstate_kobjs[h - hstates]);
1188         }
1189
1190         kobject_put(hugepages_kobj);
1191 }
1192 module_exit(hugetlb_exit);
1193
1194 static int __init hugetlb_init(void)
1195 {
1196         BUILD_BUG_ON(HPAGE_SHIFT == 0);
1197
1198         if (!size_to_hstate(HPAGE_SIZE)) {
1199                 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1200                 parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
1201         }
1202         default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;
1203
1204         hugetlb_init_hstates();
1205
1206         report_hugepages();
1207
1208         hugetlb_sysfs_init();
1209
1210         return 0;
1211 }
1212 module_init(hugetlb_init);
1213
1214 /* Should be called on processing a hugepagesz=... option */
1215 void __init hugetlb_add_hstate(unsigned order)
1216 {
1217         struct hstate *h;
1218         if (size_to_hstate(PAGE_SIZE << order)) {
1219                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1220                 return;
1221         }
1222         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1223         BUG_ON(order == 0);
1224         h = &hstates[max_hstate++];
1225         h->order = order;
1226         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1227         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1228                                         huge_page_size(h)/1024);
1229         hugetlb_init_one_hstate(h);
1230         parsed_hstate = h;
1231 }
1232
1233 static int __init hugetlb_setup(char *s)
1234 {
1235         unsigned long *mhp;
1236
1237         /*
1238          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1239          * so this hugepages= parameter goes to the "default hstate".
1240          */
1241         if (!max_hstate)
1242                 mhp = &default_hstate_max_huge_pages;
1243         else
1244                 mhp = &parsed_hstate->max_huge_pages;
1245
1246         if (sscanf(s, "%lu", mhp) <= 0)
1247                 *mhp = 0;
1248
1249         return 1;
1250 }
1251 __setup("hugepages=", hugetlb_setup);
1252
1253 static unsigned int cpuset_mems_nr(unsigned int *array)
1254 {
1255         int node;
1256         unsigned int nr = 0;
1257
1258         for_each_node_mask(node, cpuset_current_mems_allowed)
1259                 nr += array[node];
1260
1261         return nr;
1262 }
1263
1264 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1265                            struct file *file, void __user *buffer,
1266                            size_t *length, loff_t *ppos)
1267 {
1268         struct hstate *h = &default_hstate;
1269         unsigned long tmp;
1270
1271         if (!write)
1272                 tmp = h->max_huge_pages;
1273
1274         table->data = &tmp;
1275         table->maxlen = sizeof(unsigned long);
1276         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1277
1278         if (write)
1279                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1280
1281         return 0;
1282 }
1283
1284 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1285                         struct file *file, void __user *buffer,
1286                         size_t *length, loff_t *ppos)
1287 {
1288         proc_dointvec(table, write, file, buffer, length, ppos);
1289         if (hugepages_treat_as_movable)
1290                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1291         else
1292                 htlb_alloc_mask = GFP_HIGHUSER;
1293         return 0;
1294 }
1295
1296 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1297                         struct file *file, void __user *buffer,
1298                         size_t *length, loff_t *ppos)
1299 {
1300         struct hstate *h = &default_hstate;
1301         unsigned long tmp;
1302
1303         if (!write)
1304                 tmp = h->nr_overcommit_huge_pages;
1305
1306         table->data = &tmp;
1307         table->maxlen = sizeof(unsigned long);
1308         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1309
1310         if (write) {
1311                 spin_lock(&hugetlb_lock);
1312                 h->nr_overcommit_huge_pages = tmp;
1313                 spin_unlock(&hugetlb_lock);
1314         }
1315
1316         return 0;
1317 }
1318
1319 #endif /* CONFIG_SYSCTL */
1320
1321 int hugetlb_report_meminfo(char *buf)
1322 {
1323         struct hstate *h = &default_hstate;
1324         return sprintf(buf,
1325                         "HugePages_Total: %5lu\n"
1326                         "HugePages_Free:  %5lu\n"
1327                         "HugePages_Rsvd:  %5lu\n"
1328                         "HugePages_Surp:  %5lu\n"
1329                         "Hugepagesize:    %5lu kB\n",
1330                         h->nr_huge_pages,
1331                         h->free_huge_pages,
1332                         h->resv_huge_pages,
1333                         h->surplus_huge_pages,
1334                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1335 }
1336
1337 int hugetlb_report_node_meminfo(int nid, char *buf)
1338 {
1339         struct hstate *h = &default_hstate;
1340         return sprintf(buf,
1341                 "Node %d HugePages_Total: %5u\n"
1342                 "Node %d HugePages_Free:  %5u\n"
1343                 "Node %d HugePages_Surp:  %5u\n",
1344                 nid, h->nr_huge_pages_node[nid],
1345                 nid, h->free_huge_pages_node[nid],
1346                 nid, h->surplus_huge_pages_node[nid]);
1347 }
1348
1349 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1350 unsigned long hugetlb_total_pages(void)
1351 {
1352         struct hstate *h = &default_hstate;
1353         return h->nr_huge_pages * pages_per_huge_page(h);
1354 }
1355
1356 static int hugetlb_acct_memory(struct hstate *h, long delta)
1357 {
1358         int ret = -ENOMEM;
1359
1360         spin_lock(&hugetlb_lock);
1361         /*
1362          * When cpuset is configured, it breaks the strict hugetlb page
1363          * reservation as the accounting is done on a global variable. Such
1364          * reservation is completely rubbish in the presence of cpuset because
1365          * the reservation is not checked against page availability for the
1366          * current cpuset. Application can still potentially OOM'ed by kernel
1367          * with lack of free htlb page in cpuset that the task is in.
1368          * Attempt to enforce strict accounting with cpuset is almost
1369          * impossible (or too ugly) because cpuset is too fluid that
1370          * task or memory node can be dynamically moved between cpusets.
1371          *
1372          * The change of semantics for shared hugetlb mapping with cpuset is
1373          * undesirable. However, in order to preserve some of the semantics,
1374          * we fall back to check against current free page availability as
1375          * a best attempt and hopefully to minimize the impact of changing
1376          * semantics that cpuset has.
1377          */
1378         if (delta > 0) {
1379                 if (gather_surplus_pages(h, delta) < 0)
1380                         goto out;
1381
1382                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1383                         return_unused_surplus_pages(h, delta);
1384                         goto out;
1385                 }
1386         }
1387
1388         ret = 0;
1389         if (delta < 0)
1390                 return_unused_surplus_pages(h, (unsigned long) -delta);
1391
1392 out:
1393         spin_unlock(&hugetlb_lock);
1394         return ret;
1395 }
1396
1397 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1398 {
1399         struct resv_map *reservations = vma_resv_map(vma);
1400
1401         /*
1402          * This new VMA should share its siblings reservation map if present.
1403          * The VMA will only ever have a valid reservation map pointer where
1404          * it is being copied for another still existing VMA.  As that VMA
1405          * has a reference to the reservation map it cannot dissappear until
1406          * after this open call completes.  It is therefore safe to take a
1407          * new reference here without additional locking.
1408          */
1409         if (reservations)
1410                 kref_get(&reservations->refs);
1411 }
1412
1413 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1414 {
1415         struct hstate *h = hstate_vma(vma);
1416         struct resv_map *reservations = vma_resv_map(vma);
1417         unsigned long reserve;
1418         unsigned long start;
1419         unsigned long end;
1420
1421         if (reservations) {
1422                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1423                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1424
1425                 reserve = (end - start) -
1426                         region_count(&reservations->regions, start, end);
1427
1428                 kref_put(&reservations->refs, resv_map_release);
1429
1430                 if (reserve)
1431                         hugetlb_acct_memory(h, -reserve);
1432         }
1433 }
1434
1435 /*
1436  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1437  * handle_mm_fault() to try to instantiate regular-sized pages in the
1438  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1439  * this far.
1440  */
1441 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1442 {
1443         BUG();
1444         return 0;
1445 }
1446
1447 struct vm_operations_struct hugetlb_vm_ops = {
1448         .fault = hugetlb_vm_op_fault,
1449         .open = hugetlb_vm_op_open,
1450         .close = hugetlb_vm_op_close,
1451 };
1452
1453 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1454                                 int writable)
1455 {
1456         pte_t entry;
1457
1458         if (writable) {
1459                 entry =
1460                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1461         } else {
1462                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1463         }
1464         entry = pte_mkyoung(entry);
1465         entry = pte_mkhuge(entry);
1466
1467         return entry;
1468 }
1469
1470 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1471                                    unsigned long address, pte_t *ptep)
1472 {
1473         pte_t entry;
1474
1475         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1476         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1477                 update_mmu_cache(vma, address, entry);
1478         }
1479 }
1480
1481
1482 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1483                             struct vm_area_struct *vma)
1484 {
1485         pte_t *src_pte, *dst_pte, entry;
1486         struct page *ptepage;
1487         unsigned long addr;
1488         int cow;
1489         struct hstate *h = hstate_vma(vma);
1490         unsigned long sz = huge_page_size(h);
1491
1492         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1493
1494         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1495                 src_pte = huge_pte_offset(src, addr);
1496                 if (!src_pte)
1497                         continue;
1498                 dst_pte = huge_pte_alloc(dst, addr, sz);
1499                 if (!dst_pte)
1500                         goto nomem;
1501
1502                 /* If the pagetables are shared don't copy or take references */
1503                 if (dst_pte == src_pte)
1504                         continue;
1505
1506                 spin_lock(&dst->page_table_lock);
1507                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1508                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1509                         if (cow)
1510                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1511                         entry = huge_ptep_get(src_pte);
1512                         ptepage = pte_page(entry);
1513                         get_page(ptepage);
1514                         set_huge_pte_at(dst, addr, dst_pte, entry);
1515                 }
1516                 spin_unlock(&src->page_table_lock);
1517                 spin_unlock(&dst->page_table_lock);
1518         }
1519         return 0;
1520
1521 nomem:
1522         return -ENOMEM;
1523 }
1524
1525 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1526                             unsigned long end, struct page *ref_page)
1527 {
1528         struct mm_struct *mm = vma->vm_mm;
1529         unsigned long address;
1530         pte_t *ptep;
1531         pte_t pte;
1532         struct page *page;
1533         struct page *tmp;
1534         struct hstate *h = hstate_vma(vma);
1535         unsigned long sz = huge_page_size(h);
1536
1537         /*
1538          * A page gathering list, protected by per file i_mmap_lock. The
1539          * lock is used to avoid list corruption from multiple unmapping
1540          * of the same page since we are using page->lru.
1541          */
1542         LIST_HEAD(page_list);
1543
1544         WARN_ON(!is_vm_hugetlb_page(vma));
1545         BUG_ON(start & ~huge_page_mask(h));
1546         BUG_ON(end & ~huge_page_mask(h));
1547
1548         spin_lock(&mm->page_table_lock);
1549         for (address = start; address < end; address += sz) {
1550                 ptep = huge_pte_offset(mm, address);
1551                 if (!ptep)
1552                         continue;
1553
1554                 if (huge_pmd_unshare(mm, &address, ptep))
1555                         continue;
1556
1557                 /*
1558                  * If a reference page is supplied, it is because a specific
1559                  * page is being unmapped, not a range. Ensure the page we
1560                  * are about to unmap is the actual page of interest.
1561                  */
1562                 if (ref_page) {
1563                         pte = huge_ptep_get(ptep);
1564                         if (huge_pte_none(pte))
1565                                 continue;
1566                         page = pte_page(pte);
1567                         if (page != ref_page)
1568                                 continue;
1569
1570                         /*
1571                          * Mark the VMA as having unmapped its page so that
1572                          * future faults in this VMA will fail rather than
1573                          * looking like data was lost
1574                          */
1575                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1576                 }
1577
1578                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1579                 if (huge_pte_none(pte))
1580                         continue;
1581
1582                 page = pte_page(pte);
1583                 if (pte_dirty(pte))
1584                         set_page_dirty(page);
1585                 list_add(&page->lru, &page_list);
1586         }
1587         spin_unlock(&mm->page_table_lock);
1588         flush_tlb_range(vma, start, end);
1589         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1590                 list_del(&page->lru);
1591                 put_page(page);
1592         }
1593 }
1594
1595 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1596                           unsigned long end, struct page *ref_page)
1597 {
1598         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1599         __unmap_hugepage_range(vma, start, end, ref_page);
1600         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1601 }
1602
1603 /*
1604  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1605  * mappping it owns the reserve page for. The intention is to unmap the page
1606  * from other VMAs and let the children be SIGKILLed if they are faulting the
1607  * same region.
1608  */
1609 int unmap_ref_private(struct mm_struct *mm,
1610                                         struct vm_area_struct *vma,
1611                                         struct page *page,
1612                                         unsigned long address)
1613 {
1614         struct vm_area_struct *iter_vma;
1615         struct address_space *mapping;
1616         struct prio_tree_iter iter;
1617         pgoff_t pgoff;
1618
1619         /*
1620          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1621          * from page cache lookup which is in HPAGE_SIZE units.
1622          */
1623         address = address & huge_page_mask(hstate_vma(vma));
1624         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1625                 + (vma->vm_pgoff >> PAGE_SHIFT);
1626         mapping = (struct address_space *)page_private(page);
1627
1628         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1629                 /* Do not unmap the current VMA */
1630                 if (iter_vma == vma)
1631                         continue;
1632
1633                 /*
1634                  * Unmap the page from other VMAs without their own reserves.
1635                  * They get marked to be SIGKILLed if they fault in these
1636                  * areas. This is because a future no-page fault on this VMA
1637                  * could insert a zeroed page instead of the data existing
1638                  * from the time of fork. This would look like data corruption
1639                  */
1640                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1641                         unmap_hugepage_range(iter_vma,
1642                                 address, address + HPAGE_SIZE,
1643                                 page);
1644         }
1645
1646         return 1;
1647 }
1648
1649 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1650                         unsigned long address, pte_t *ptep, pte_t pte,
1651                         struct page *pagecache_page)
1652 {
1653         struct hstate *h = hstate_vma(vma);
1654         struct page *old_page, *new_page;
1655         int avoidcopy;
1656         int outside_reserve = 0;
1657
1658         old_page = pte_page(pte);
1659
1660 retry_avoidcopy:
1661         /* If no-one else is actually using this page, avoid the copy
1662          * and just make the page writable */
1663         avoidcopy = (page_count(old_page) == 1);
1664         if (avoidcopy) {
1665                 set_huge_ptep_writable(vma, address, ptep);
1666                 return 0;
1667         }
1668
1669         /*
1670          * If the process that created a MAP_PRIVATE mapping is about to
1671          * perform a COW due to a shared page count, attempt to satisfy
1672          * the allocation without using the existing reserves. The pagecache
1673          * page is used to determine if the reserve at this address was
1674          * consumed or not. If reserves were used, a partial faulted mapping
1675          * at the time of fork() could consume its reserves on COW instead
1676          * of the full address range.
1677          */
1678         if (!(vma->vm_flags & VM_SHARED) &&
1679                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1680                         old_page != pagecache_page)
1681                 outside_reserve = 1;
1682
1683         page_cache_get(old_page);
1684         new_page = alloc_huge_page(vma, address, outside_reserve);
1685
1686         if (IS_ERR(new_page)) {
1687                 page_cache_release(old_page);
1688
1689                 /*
1690                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1691                  * it is due to references held by a child and an insufficient
1692                  * huge page pool. To guarantee the original mappers
1693                  * reliability, unmap the page from child processes. The child
1694                  * may get SIGKILLed if it later faults.
1695                  */
1696                 if (outside_reserve) {
1697                         BUG_ON(huge_pte_none(pte));
1698                         if (unmap_ref_private(mm, vma, old_page, address)) {
1699                                 BUG_ON(page_count(old_page) != 1);
1700                                 BUG_ON(huge_pte_none(pte));
1701                                 goto retry_avoidcopy;
1702                         }
1703                         WARN_ON_ONCE(1);
1704                 }
1705
1706                 return -PTR_ERR(new_page);
1707         }
1708
1709         spin_unlock(&mm->page_table_lock);
1710         copy_huge_page(new_page, old_page, address, vma);
1711         __SetPageUptodate(new_page);
1712         spin_lock(&mm->page_table_lock);
1713
1714         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1715         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1716                 /* Break COW */
1717                 huge_ptep_clear_flush(vma, address, ptep);
1718                 set_huge_pte_at(mm, address, ptep,
1719                                 make_huge_pte(vma, new_page, 1));
1720                 /* Make the old page be freed below */
1721                 new_page = old_page;
1722         }
1723         page_cache_release(new_page);
1724         page_cache_release(old_page);
1725         return 0;
1726 }
1727
1728 /* Return the pagecache page at a given address within a VMA */
1729 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1730                         struct vm_area_struct *vma, unsigned long address)
1731 {
1732         struct address_space *mapping;
1733         pgoff_t idx;
1734
1735         mapping = vma->vm_file->f_mapping;
1736         idx = vma_hugecache_offset(h, vma, address);
1737
1738         return find_lock_page(mapping, idx);
1739 }
1740
1741 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1742                         unsigned long address, pte_t *ptep, int write_access)
1743 {
1744         struct hstate *h = hstate_vma(vma);
1745         int ret = VM_FAULT_SIGBUS;
1746         pgoff_t idx;
1747         unsigned long size;
1748         struct page *page;
1749         struct address_space *mapping;
1750         pte_t new_pte;
1751
1752         /*
1753          * Currently, we are forced to kill the process in the event the
1754          * original mapper has unmapped pages from the child due to a failed
1755          * COW. Warn that such a situation has occured as it may not be obvious
1756          */
1757         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1758                 printk(KERN_WARNING
1759                         "PID %d killed due to inadequate hugepage pool\n",
1760                         current->pid);
1761                 return ret;
1762         }
1763
1764         mapping = vma->vm_file->f_mapping;
1765         idx = vma_hugecache_offset(h, vma, address);
1766
1767         /*
1768          * Use page lock to guard against racing truncation
1769          * before we get page_table_lock.
1770          */
1771 retry:
1772         page = find_lock_page(mapping, idx);
1773         if (!page) {
1774                 size = i_size_read(mapping->host) >> huge_page_shift(h);
1775                 if (idx >= size)
1776                         goto out;
1777                 page = alloc_huge_page(vma, address, 0);
1778                 if (IS_ERR(page)) {
1779                         ret = -PTR_ERR(page);
1780                         goto out;
1781                 }
1782                 clear_huge_page(page, address, huge_page_size(h));
1783                 __SetPageUptodate(page);
1784
1785                 if (vma->vm_flags & VM_SHARED) {
1786                         int err;
1787                         struct inode *inode = mapping->host;
1788
1789                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1790                         if (err) {
1791                                 put_page(page);
1792                                 if (err == -EEXIST)
1793                                         goto retry;
1794                                 goto out;
1795                         }
1796
1797                         spin_lock(&inode->i_lock);
1798                         inode->i_blocks += blocks_per_huge_page(h);
1799                         spin_unlock(&inode->i_lock);
1800                 } else
1801                         lock_page(page);
1802         }
1803
1804         spin_lock(&mm->page_table_lock);
1805         size = i_size_read(mapping->host) >> huge_page_shift(h);
1806         if (idx >= size)
1807                 goto backout;
1808
1809         ret = 0;
1810         if (!huge_pte_none(huge_ptep_get(ptep)))
1811                 goto backout;
1812
1813         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1814                                 && (vma->vm_flags & VM_SHARED)));
1815         set_huge_pte_at(mm, address, ptep, new_pte);
1816
1817         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1818                 /* Optimization, do the COW without a second fault */
1819                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1820         }
1821
1822         spin_unlock(&mm->page_table_lock);
1823         unlock_page(page);
1824 out:
1825         return ret;
1826
1827 backout:
1828         spin_unlock(&mm->page_table_lock);
1829         unlock_page(page);
1830         put_page(page);
1831         goto out;
1832 }
1833
1834 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1835                         unsigned long address, int write_access)
1836 {
1837         pte_t *ptep;
1838         pte_t entry;
1839         int ret;
1840         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1841         struct hstate *h = hstate_vma(vma);
1842
1843         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1844         if (!ptep)
1845                 return VM_FAULT_OOM;
1846
1847         /*
1848          * Serialize hugepage allocation and instantiation, so that we don't
1849          * get spurious allocation failures if two CPUs race to instantiate
1850          * the same page in the page cache.
1851          */
1852         mutex_lock(&hugetlb_instantiation_mutex);
1853         entry = huge_ptep_get(ptep);
1854         if (huge_pte_none(entry)) {
1855                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1856                 mutex_unlock(&hugetlb_instantiation_mutex);
1857                 return ret;
1858         }
1859
1860         ret = 0;
1861
1862         spin_lock(&mm->page_table_lock);
1863         /* Check for a racing update before calling hugetlb_cow */
1864         if (likely(pte_same(entry, huge_ptep_get(ptep))))
1865                 if (write_access && !pte_write(entry)) {
1866                         struct page *page;
1867                         page = hugetlbfs_pagecache_page(h, vma, address);
1868                         ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1869                         if (page) {
1870                                 unlock_page(page);
1871                                 put_page(page);
1872                         }
1873                 }
1874         spin_unlock(&mm->page_table_lock);
1875         mutex_unlock(&hugetlb_instantiation_mutex);
1876
1877         return ret;
1878 }
1879
1880 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1881                         struct page **pages, struct vm_area_struct **vmas,
1882                         unsigned long *position, int *length, int i,
1883                         int write)
1884 {
1885         unsigned long pfn_offset;
1886         unsigned long vaddr = *position;
1887         int remainder = *length;
1888         struct hstate *h = hstate_vma(vma);
1889
1890         spin_lock(&mm->page_table_lock);
1891         while (vaddr < vma->vm_end && remainder) {
1892                 pte_t *pte;
1893                 struct page *page;
1894
1895                 /*
1896                  * Some archs (sparc64, sh*) have multiple pte_ts to
1897                  * each hugepage.  We have to make * sure we get the
1898                  * first, for the page indexing below to work.
1899                  */
1900                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
1901
1902                 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1903                     (write && !pte_write(huge_ptep_get(pte)))) {
1904                         int ret;
1905
1906                         spin_unlock(&mm->page_table_lock);
1907                         ret = hugetlb_fault(mm, vma, vaddr, write);
1908                         spin_lock(&mm->page_table_lock);
1909                         if (!(ret & VM_FAULT_ERROR))
1910                                 continue;
1911
1912                         remainder = 0;
1913                         if (!i)
1914                                 i = -EFAULT;
1915                         break;
1916                 }
1917
1918                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1919                 page = pte_page(huge_ptep_get(pte));
1920 same_page:
1921                 if (pages) {
1922                         get_page(page);
1923                         pages[i] = page + pfn_offset;
1924                 }
1925
1926                 if (vmas)
1927                         vmas[i] = vma;
1928
1929                 vaddr += PAGE_SIZE;
1930                 ++pfn_offset;
1931                 --remainder;
1932                 ++i;
1933                 if (vaddr < vma->vm_end && remainder &&
1934                                 pfn_offset < pages_per_huge_page(h)) {
1935                         /*
1936                          * We use pfn_offset to avoid touching the pageframes
1937                          * of this compound page.
1938                          */
1939                         goto same_page;
1940                 }
1941         }
1942         spin_unlock(&mm->page_table_lock);
1943         *length = remainder;
1944         *position = vaddr;
1945
1946         return i;
1947 }
1948
1949 void hugetlb_change_protection(struct vm_area_struct *vma,
1950                 unsigned long address, unsigned long end, pgprot_t newprot)
1951 {
1952         struct mm_struct *mm = vma->vm_mm;
1953         unsigned long start = address;
1954         pte_t *ptep;
1955         pte_t pte;
1956         struct hstate *h = hstate_vma(vma);
1957
1958         BUG_ON(address >= end);
1959         flush_cache_range(vma, address, end);
1960
1961         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1962         spin_lock(&mm->page_table_lock);
1963         for (; address < end; address += huge_page_size(h)) {
1964                 ptep = huge_pte_offset(mm, address);
1965                 if (!ptep)
1966                         continue;
1967                 if (huge_pmd_unshare(mm, &address, ptep))
1968                         continue;
1969                 if (!huge_pte_none(huge_ptep_get(ptep))) {
1970                         pte = huge_ptep_get_and_clear(mm, address, ptep);
1971                         pte = pte_mkhuge(pte_modify(pte, newprot));
1972                         set_huge_pte_at(mm, address, ptep, pte);
1973                 }
1974         }
1975         spin_unlock(&mm->page_table_lock);
1976         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1977
1978         flush_tlb_range(vma, start, end);
1979 }
1980
1981 int hugetlb_reserve_pages(struct inode *inode,
1982                                         long from, long to,
1983                                         struct vm_area_struct *vma)
1984 {
1985         long ret, chg;
1986         struct hstate *h = hstate_inode(inode);
1987
1988         if (vma && vma->vm_flags & VM_NORESERVE)
1989                 return 0;
1990
1991         /*
1992          * Shared mappings base their reservation on the number of pages that
1993          * are already allocated on behalf of the file. Private mappings need
1994          * to reserve the full area even if read-only as mprotect() may be
1995          * called to make the mapping read-write. Assume !vma is a shm mapping
1996          */
1997         if (!vma || vma->vm_flags & VM_SHARED)
1998                 chg = region_chg(&inode->i_mapping->private_list, from, to);
1999         else {
2000                 struct resv_map *resv_map = resv_map_alloc();
2001                 if (!resv_map)
2002                         return -ENOMEM;
2003
2004                 chg = to - from;
2005
2006                 set_vma_resv_map(vma, resv_map);
2007                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2008         }
2009
2010         if (chg < 0)
2011                 return chg;
2012
2013         if (hugetlb_get_quota(inode->i_mapping, chg))
2014                 return -ENOSPC;
2015         ret = hugetlb_acct_memory(h, chg);
2016         if (ret < 0) {
2017                 hugetlb_put_quota(inode->i_mapping, chg);
2018                 return ret;
2019         }
2020         if (!vma || vma->vm_flags & VM_SHARED)
2021                 region_add(&inode->i_mapping->private_list, from, to);
2022         return 0;
2023 }
2024
2025 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2026 {
2027         struct hstate *h = hstate_inode(inode);
2028         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2029
2030         spin_lock(&inode->i_lock);
2031         inode->i_blocks -= blocks_per_huge_page(h);
2032         spin_unlock(&inode->i_lock);
2033
2034         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2035         hugetlb_acct_memory(h, -(chg - freed));
2036 }