Merge tag 'dt-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm...
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44
45 __initdata LIST_HEAD(huge_boot_pages);
46
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
51
52 /*
53  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54  * free_huge_pages, and surplus_huge_pages.
55  */
56 DEFINE_SPINLOCK(hugetlb_lock);
57
58 /*
59  * Serializes faults on the same logical page.  This is used to
60  * prevent spurious OOMs when the hugepage pool is fully utilized.
61  */
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 {
67         bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69         spin_unlock(&spool->lock);
70
71         /* If no pages are used, and no other handles to the subpool
72          * remain, free the subpool the subpool remain */
73         if (free)
74                 kfree(spool);
75 }
76
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 {
79         struct hugepage_subpool *spool;
80
81         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82         if (!spool)
83                 return NULL;
84
85         spin_lock_init(&spool->lock);
86         spool->count = 1;
87         spool->max_hpages = nr_blocks;
88         spool->used_hpages = 0;
89
90         return spool;
91 }
92
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 {
95         spin_lock(&spool->lock);
96         BUG_ON(!spool->count);
97         spool->count--;
98         unlock_or_release_subpool(spool);
99 }
100
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102                                       long delta)
103 {
104         int ret = 0;
105
106         if (!spool)
107                 return 0;
108
109         spin_lock(&spool->lock);
110         if ((spool->used_hpages + delta) <= spool->max_hpages) {
111                 spool->used_hpages += delta;
112         } else {
113                 ret = -ENOMEM;
114         }
115         spin_unlock(&spool->lock);
116
117         return ret;
118 }
119
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121                                        long delta)
122 {
123         if (!spool)
124                 return;
125
126         spin_lock(&spool->lock);
127         spool->used_hpages -= delta;
128         /* If hugetlbfs_put_super couldn't free spool due to
129         * an outstanding quota reference, free it now. */
130         unlock_or_release_subpool(spool);
131 }
132
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 {
135         return HUGETLBFS_SB(inode->i_sb)->spool;
136 }
137
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 {
140         return subpool_inode(file_inode(vma->vm_file));
141 }
142
143 /*
144  * Region tracking -- allows tracking of reservations and instantiated pages
145  *                    across the pages in a mapping.
146  *
147  * The region data structures are embedded into a resv_map and
148  * protected by a resv_map's lock
149  */
150 struct file_region {
151         struct list_head link;
152         long from;
153         long to;
154 };
155
156 static long region_add(struct resv_map *resv, long f, long t)
157 {
158         struct list_head *head = &resv->regions;
159         struct file_region *rg, *nrg, *trg;
160
161         spin_lock(&resv->lock);
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (f <= rg->to)
165                         break;
166
167         /* Round our left edge to the current segment if it encloses us. */
168         if (f > rg->from)
169                 f = rg->from;
170
171         /* Check for and consume any regions we now overlap with. */
172         nrg = rg;
173         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174                 if (&rg->link == head)
175                         break;
176                 if (rg->from > t)
177                         break;
178
179                 /* If this area reaches higher then extend our area to
180                  * include it completely.  If this is not the first area
181                  * which we intend to reuse, free it. */
182                 if (rg->to > t)
183                         t = rg->to;
184                 if (rg != nrg) {
185                         list_del(&rg->link);
186                         kfree(rg);
187                 }
188         }
189         nrg->from = f;
190         nrg->to = t;
191         spin_unlock(&resv->lock);
192         return 0;
193 }
194
195 static long region_chg(struct resv_map *resv, long f, long t)
196 {
197         struct list_head *head = &resv->regions;
198         struct file_region *rg, *nrg = NULL;
199         long chg = 0;
200
201 retry:
202         spin_lock(&resv->lock);
203         /* Locate the region we are before or in. */
204         list_for_each_entry(rg, head, link)
205                 if (f <= rg->to)
206                         break;
207
208         /* If we are below the current region then a new region is required.
209          * Subtle, allocate a new region at the position but make it zero
210          * size such that we can guarantee to record the reservation. */
211         if (&rg->link == head || t < rg->from) {
212                 if (!nrg) {
213                         spin_unlock(&resv->lock);
214                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215                         if (!nrg)
216                                 return -ENOMEM;
217
218                         nrg->from = f;
219                         nrg->to   = f;
220                         INIT_LIST_HEAD(&nrg->link);
221                         goto retry;
222                 }
223
224                 list_add(&nrg->link, rg->link.prev);
225                 chg = t - f;
226                 goto out_nrg;
227         }
228
229         /* Round our left edge to the current segment if it encloses us. */
230         if (f > rg->from)
231                 f = rg->from;
232         chg = t - f;
233
234         /* Check for and consume any regions we now overlap with. */
235         list_for_each_entry(rg, rg->link.prev, link) {
236                 if (&rg->link == head)
237                         break;
238                 if (rg->from > t)
239                         goto out;
240
241                 /* We overlap with this area, if it extends further than
242                  * us then we must extend ourselves.  Account for its
243                  * existing reservation. */
244                 if (rg->to > t) {
245                         chg += rg->to - t;
246                         t = rg->to;
247                 }
248                 chg -= rg->to - rg->from;
249         }
250
251 out:
252         spin_unlock(&resv->lock);
253         /*  We already know we raced and no longer need the new region */
254         kfree(nrg);
255         return chg;
256 out_nrg:
257         spin_unlock(&resv->lock);
258         return chg;
259 }
260
261 static long region_truncate(struct resv_map *resv, long end)
262 {
263         struct list_head *head = &resv->regions;
264         struct file_region *rg, *trg;
265         long chg = 0;
266
267         spin_lock(&resv->lock);
268         /* Locate the region we are either in or before. */
269         list_for_each_entry(rg, head, link)
270                 if (end <= rg->to)
271                         break;
272         if (&rg->link == head)
273                 goto out;
274
275         /* If we are in the middle of a region then adjust it. */
276         if (end > rg->from) {
277                 chg = rg->to - end;
278                 rg->to = end;
279                 rg = list_entry(rg->link.next, typeof(*rg), link);
280         }
281
282         /* Drop any remaining regions. */
283         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284                 if (&rg->link == head)
285                         break;
286                 chg += rg->to - rg->from;
287                 list_del(&rg->link);
288                 kfree(rg);
289         }
290
291 out:
292         spin_unlock(&resv->lock);
293         return chg;
294 }
295
296 static long region_count(struct resv_map *resv, long f, long t)
297 {
298         struct list_head *head = &resv->regions;
299         struct file_region *rg;
300         long chg = 0;
301
302         spin_lock(&resv->lock);
303         /* Locate each segment we overlap with, and count that overlap. */
304         list_for_each_entry(rg, head, link) {
305                 long seg_from;
306                 long seg_to;
307
308                 if (rg->to <= f)
309                         continue;
310                 if (rg->from >= t)
311                         break;
312
313                 seg_from = max(rg->from, f);
314                 seg_to = min(rg->to, t);
315
316                 chg += seg_to - seg_from;
317         }
318         spin_unlock(&resv->lock);
319
320         return chg;
321 }
322
323 /*
324  * Convert the address within this vma to the page offset within
325  * the mapping, in pagecache page units; huge pages here.
326  */
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328                         struct vm_area_struct *vma, unsigned long address)
329 {
330         return ((address - vma->vm_start) >> huge_page_shift(h)) +
331                         (vma->vm_pgoff >> huge_page_order(h));
332 }
333
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335                                      unsigned long address)
336 {
337         return vma_hugecache_offset(hstate_vma(vma), vma, address);
338 }
339
340 /*
341  * Return the size of the pages allocated when backing a VMA. In the majority
342  * cases this will be same size as used by the page table entries.
343  */
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 {
346         struct hstate *hstate;
347
348         if (!is_vm_hugetlb_page(vma))
349                 return PAGE_SIZE;
350
351         hstate = hstate_vma(vma);
352
353         return 1UL << huge_page_shift(hstate);
354 }
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357 /*
358  * Return the page size being used by the MMU to back a VMA. In the majority
359  * of cases, the page size used by the kernel matches the MMU size. On
360  * architectures where it differs, an architecture-specific version of this
361  * function is required.
362  */
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 {
366         return vma_kernel_pagesize(vma);
367 }
368 #endif
369
370 /*
371  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
372  * bits of the reservation map pointer, which are always clear due to
373  * alignment.
374  */
375 #define HPAGE_RESV_OWNER    (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379 /*
380  * These helpers are used to track how many pages are reserved for
381  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382  * is guaranteed to have their future faults succeed.
383  *
384  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385  * the reserve counters are updated with the hugetlb_lock held. It is safe
386  * to reset the VMA at fork() time as it is not in use yet and there is no
387  * chance of the global counters getting corrupted as a result of the values.
388  *
389  * The private mapping reservation is represented in a subtly different
390  * manner to a shared mapping.  A shared mapping has a region map associated
391  * with the underlying file, this region map represents the backing file
392  * pages which have ever had a reservation assigned which this persists even
393  * after the page is instantiated.  A private mapping has a region map
394  * associated with the original mmap which is attached to all VMAs which
395  * reference it, this region map represents those offsets which have consumed
396  * reservation ie. where pages have been instantiated.
397  */
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 {
400         return (unsigned long)vma->vm_private_data;
401 }
402
403 static void set_vma_private_data(struct vm_area_struct *vma,
404                                                         unsigned long value)
405 {
406         vma->vm_private_data = (void *)value;
407 }
408
409 struct resv_map *resv_map_alloc(void)
410 {
411         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412         if (!resv_map)
413                 return NULL;
414
415         kref_init(&resv_map->refs);
416         spin_lock_init(&resv_map->lock);
417         INIT_LIST_HEAD(&resv_map->regions);
418
419         return resv_map;
420 }
421
422 void resv_map_release(struct kref *ref)
423 {
424         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426         /* Clear out any active regions before we release the map. */
427         region_truncate(resv_map, 0);
428         kfree(resv_map);
429 }
430
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 {
433         return inode->i_mapping->private_data;
434 }
435
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 {
438         VM_BUG_ON(!is_vm_hugetlb_page(vma));
439         if (vma->vm_flags & VM_MAYSHARE) {
440                 struct address_space *mapping = vma->vm_file->f_mapping;
441                 struct inode *inode = mapping->host;
442
443                 return inode_resv_map(inode);
444
445         } else {
446                 return (struct resv_map *)(get_vma_private_data(vma) &
447                                                         ~HPAGE_RESV_MASK);
448         }
449 }
450
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 {
453         VM_BUG_ON(!is_vm_hugetlb_page(vma));
454         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456         set_vma_private_data(vma, (get_vma_private_data(vma) &
457                                 HPAGE_RESV_MASK) | (unsigned long)map);
458 }
459
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 {
462         VM_BUG_ON(!is_vm_hugetlb_page(vma));
463         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 }
467
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 {
470         VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472         return (get_vma_private_data(vma) & flag) != 0;
473 }
474
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 {
478         VM_BUG_ON(!is_vm_hugetlb_page(vma));
479         if (!(vma->vm_flags & VM_MAYSHARE))
480                 vma->vm_private_data = (void *)0;
481 }
482
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 {
486         if (vma->vm_flags & VM_NORESERVE) {
487                 /*
488                  * This address is already reserved by other process(chg == 0),
489                  * so, we should decrement reserved count. Without decrementing,
490                  * reserve count remains after releasing inode, because this
491                  * allocated page will go into page cache and is regarded as
492                  * coming from reserved pool in releasing step.  Currently, we
493                  * don't have any other solution to deal with this situation
494                  * properly, so add work-around here.
495                  */
496                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497                         return 1;
498                 else
499                         return 0;
500         }
501
502         /* Shared mappings always use reserves */
503         if (vma->vm_flags & VM_MAYSHARE)
504                 return 1;
505
506         /*
507          * Only the process that called mmap() has reserves for
508          * private mappings.
509          */
510         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511                 return 1;
512
513         return 0;
514 }
515
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 {
518         int nid = page_to_nid(page);
519         list_move(&page->lru, &h->hugepage_freelists[nid]);
520         h->free_huge_pages++;
521         h->free_huge_pages_node[nid]++;
522 }
523
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 {
526         struct page *page;
527
528         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529                 if (!is_migrate_isolate_page(page))
530                         break;
531         /*
532          * if 'non-isolated free hugepage' not found on the list,
533          * the allocation fails.
534          */
535         if (&h->hugepage_freelists[nid] == &page->lru)
536                 return NULL;
537         list_move(&page->lru, &h->hugepage_activelist);
538         set_page_refcounted(page);
539         h->free_huge_pages--;
540         h->free_huge_pages_node[nid]--;
541         return page;
542 }
543
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 {
547         if (hugepages_treat_as_movable || hugepage_migration_support(h))
548                 return GFP_HIGHUSER_MOVABLE;
549         else
550                 return GFP_HIGHUSER;
551 }
552
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554                                 struct vm_area_struct *vma,
555                                 unsigned long address, int avoid_reserve,
556                                 long chg)
557 {
558         struct page *page = NULL;
559         struct mempolicy *mpol;
560         nodemask_t *nodemask;
561         struct zonelist *zonelist;
562         struct zone *zone;
563         struct zoneref *z;
564         unsigned int cpuset_mems_cookie;
565
566         /*
567          * A child process with MAP_PRIVATE mappings created by their parent
568          * have no page reserves. This check ensures that reservations are
569          * not "stolen". The child may still get SIGKILLed
570          */
571         if (!vma_has_reserves(vma, chg) &&
572                         h->free_huge_pages - h->resv_huge_pages == 0)
573                 goto err;
574
575         /* If reserves cannot be used, ensure enough pages are in the pool */
576         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577                 goto err;
578
579 retry_cpuset:
580         cpuset_mems_cookie = read_mems_allowed_begin();
581         zonelist = huge_zonelist(vma, address,
582                                         htlb_alloc_mask(h), &mpol, &nodemask);
583
584         for_each_zone_zonelist_nodemask(zone, z, zonelist,
585                                                 MAX_NR_ZONES - 1, nodemask) {
586                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
588                         if (page) {
589                                 if (avoid_reserve)
590                                         break;
591                                 if (!vma_has_reserves(vma, chg))
592                                         break;
593
594                                 SetPagePrivate(page);
595                                 h->resv_huge_pages--;
596                                 break;
597                         }
598                 }
599         }
600
601         mpol_cond_put(mpol);
602         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603                 goto retry_cpuset;
604         return page;
605
606 err:
607         return NULL;
608 }
609
610 static void update_and_free_page(struct hstate *h, struct page *page)
611 {
612         int i;
613
614         VM_BUG_ON(h->order >= MAX_ORDER);
615
616         h->nr_huge_pages--;
617         h->nr_huge_pages_node[page_to_nid(page)]--;
618         for (i = 0; i < pages_per_huge_page(h); i++) {
619                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620                                 1 << PG_referenced | 1 << PG_dirty |
621                                 1 << PG_active | 1 << PG_reserved |
622                                 1 << PG_private | 1 << PG_writeback);
623         }
624         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625         set_compound_page_dtor(page, NULL);
626         set_page_refcounted(page);
627         arch_release_hugepage(page);
628         __free_pages(page, huge_page_order(h));
629 }
630
631 struct hstate *size_to_hstate(unsigned long size)
632 {
633         struct hstate *h;
634
635         for_each_hstate(h) {
636                 if (huge_page_size(h) == size)
637                         return h;
638         }
639         return NULL;
640 }
641
642 static void free_huge_page(struct page *page)
643 {
644         /*
645          * Can't pass hstate in here because it is called from the
646          * compound page destructor.
647          */
648         struct hstate *h = page_hstate(page);
649         int nid = page_to_nid(page);
650         struct hugepage_subpool *spool =
651                 (struct hugepage_subpool *)page_private(page);
652         bool restore_reserve;
653
654         set_page_private(page, 0);
655         page->mapping = NULL;
656         BUG_ON(page_count(page));
657         BUG_ON(page_mapcount(page));
658         restore_reserve = PagePrivate(page);
659         ClearPagePrivate(page);
660
661         spin_lock(&hugetlb_lock);
662         hugetlb_cgroup_uncharge_page(hstate_index(h),
663                                      pages_per_huge_page(h), page);
664         if (restore_reserve)
665                 h->resv_huge_pages++;
666
667         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668                 /* remove the page from active list */
669                 list_del(&page->lru);
670                 update_and_free_page(h, page);
671                 h->surplus_huge_pages--;
672                 h->surplus_huge_pages_node[nid]--;
673         } else {
674                 arch_clear_hugepage_flags(page);
675                 enqueue_huge_page(h, page);
676         }
677         spin_unlock(&hugetlb_lock);
678         hugepage_subpool_put_pages(spool, 1);
679 }
680
681 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682 {
683         INIT_LIST_HEAD(&page->lru);
684         set_compound_page_dtor(page, free_huge_page);
685         spin_lock(&hugetlb_lock);
686         set_hugetlb_cgroup(page, NULL);
687         h->nr_huge_pages++;
688         h->nr_huge_pages_node[nid]++;
689         spin_unlock(&hugetlb_lock);
690         put_page(page); /* free it into the hugepage allocator */
691 }
692
693 static void __init prep_compound_gigantic_page(struct page *page,
694                                                unsigned long order)
695 {
696         int i;
697         int nr_pages = 1 << order;
698         struct page *p = page + 1;
699
700         /* we rely on prep_new_huge_page to set the destructor */
701         set_compound_order(page, order);
702         __SetPageHead(page);
703         __ClearPageReserved(page);
704         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705                 __SetPageTail(p);
706                 /*
707                  * For gigantic hugepages allocated through bootmem at
708                  * boot, it's safer to be consistent with the not-gigantic
709                  * hugepages and clear the PG_reserved bit from all tail pages
710                  * too.  Otherwse drivers using get_user_pages() to access tail
711                  * pages may get the reference counting wrong if they see
712                  * PG_reserved set on a tail page (despite the head page not
713                  * having PG_reserved set).  Enforcing this consistency between
714                  * head and tail pages allows drivers to optimize away a check
715                  * on the head page when they need know if put_page() is needed
716                  * after get_user_pages().
717                  */
718                 __ClearPageReserved(p);
719                 set_page_count(p, 0);
720                 p->first_page = page;
721         }
722 }
723
724 /*
725  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726  * transparent huge pages.  See the PageTransHuge() documentation for more
727  * details.
728  */
729 int PageHuge(struct page *page)
730 {
731         if (!PageCompound(page))
732                 return 0;
733
734         page = compound_head(page);
735         return get_compound_page_dtor(page) == free_huge_page;
736 }
737 EXPORT_SYMBOL_GPL(PageHuge);
738
739 /*
740  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741  * normal or transparent huge pages.
742  */
743 int PageHeadHuge(struct page *page_head)
744 {
745         if (!PageHead(page_head))
746                 return 0;
747
748         return get_compound_page_dtor(page_head) == free_huge_page;
749 }
750
751 pgoff_t __basepage_index(struct page *page)
752 {
753         struct page *page_head = compound_head(page);
754         pgoff_t index = page_index(page_head);
755         unsigned long compound_idx;
756
757         if (!PageHuge(page_head))
758                 return page_index(page);
759
760         if (compound_order(page_head) >= MAX_ORDER)
761                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762         else
763                 compound_idx = page - page_head;
764
765         return (index << compound_order(page_head)) + compound_idx;
766 }
767
768 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
769 {
770         struct page *page;
771
772         if (h->order >= MAX_ORDER)
773                 return NULL;
774
775         page = alloc_pages_exact_node(nid,
776                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777                                                 __GFP_REPEAT|__GFP_NOWARN,
778                 huge_page_order(h));
779         if (page) {
780                 if (arch_prepare_hugepage(page)) {
781                         __free_pages(page, huge_page_order(h));
782                         return NULL;
783                 }
784                 prep_new_huge_page(h, page, nid);
785         }
786
787         return page;
788 }
789
790 /*
791  * common helper functions for hstate_next_node_to_{alloc|free}.
792  * We may have allocated or freed a huge page based on a different
793  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794  * be outside of *nodes_allowed.  Ensure that we use an allowed
795  * node for alloc or free.
796  */
797 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798 {
799         nid = next_node(nid, *nodes_allowed);
800         if (nid == MAX_NUMNODES)
801                 nid = first_node(*nodes_allowed);
802         VM_BUG_ON(nid >= MAX_NUMNODES);
803
804         return nid;
805 }
806
807 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808 {
809         if (!node_isset(nid, *nodes_allowed))
810                 nid = next_node_allowed(nid, nodes_allowed);
811         return nid;
812 }
813
814 /*
815  * returns the previously saved node ["this node"] from which to
816  * allocate a persistent huge page for the pool and advance the
817  * next node from which to allocate, handling wrap at end of node
818  * mask.
819  */
820 static int hstate_next_node_to_alloc(struct hstate *h,
821                                         nodemask_t *nodes_allowed)
822 {
823         int nid;
824
825         VM_BUG_ON(!nodes_allowed);
826
827         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829
830         return nid;
831 }
832
833 /*
834  * helper for free_pool_huge_page() - return the previously saved
835  * node ["this node"] from which to free a huge page.  Advance the
836  * next node id whether or not we find a free huge page to free so
837  * that the next attempt to free addresses the next node.
838  */
839 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840 {
841         int nid;
842
843         VM_BUG_ON(!nodes_allowed);
844
845         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847
848         return nid;
849 }
850
851 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
852         for (nr_nodes = nodes_weight(*mask);                            \
853                 nr_nodes > 0 &&                                         \
854                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
855                 nr_nodes--)
856
857 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
858         for (nr_nodes = nodes_weight(*mask);                            \
859                 nr_nodes > 0 &&                                         \
860                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
861                 nr_nodes--)
862
863 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864 {
865         struct page *page;
866         int nr_nodes, node;
867         int ret = 0;
868
869         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870                 page = alloc_fresh_huge_page_node(h, node);
871                 if (page) {
872                         ret = 1;
873                         break;
874                 }
875         }
876
877         if (ret)
878                 count_vm_event(HTLB_BUDDY_PGALLOC);
879         else
880                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882         return ret;
883 }
884
885 /*
886  * Free huge page from pool from next node to free.
887  * Attempt to keep persistent huge pages more or less
888  * balanced over allowed nodes.
889  * Called with hugetlb_lock locked.
890  */
891 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892                                                          bool acct_surplus)
893 {
894         int nr_nodes, node;
895         int ret = 0;
896
897         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898                 /*
899                  * If we're returning unused surplus pages, only examine
900                  * nodes with surplus pages.
901                  */
902                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903                     !list_empty(&h->hugepage_freelists[node])) {
904                         struct page *page =
905                                 list_entry(h->hugepage_freelists[node].next,
906                                           struct page, lru);
907                         list_del(&page->lru);
908                         h->free_huge_pages--;
909                         h->free_huge_pages_node[node]--;
910                         if (acct_surplus) {
911                                 h->surplus_huge_pages--;
912                                 h->surplus_huge_pages_node[node]--;
913                         }
914                         update_and_free_page(h, page);
915                         ret = 1;
916                         break;
917                 }
918         }
919
920         return ret;
921 }
922
923 /*
924  * Dissolve a given free hugepage into free buddy pages. This function does
925  * nothing for in-use (including surplus) hugepages.
926  */
927 static void dissolve_free_huge_page(struct page *page)
928 {
929         spin_lock(&hugetlb_lock);
930         if (PageHuge(page) && !page_count(page)) {
931                 struct hstate *h = page_hstate(page);
932                 int nid = page_to_nid(page);
933                 list_del(&page->lru);
934                 h->free_huge_pages--;
935                 h->free_huge_pages_node[nid]--;
936                 update_and_free_page(h, page);
937         }
938         spin_unlock(&hugetlb_lock);
939 }
940
941 /*
942  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943  * make specified memory blocks removable from the system.
944  * Note that start_pfn should aligned with (minimum) hugepage size.
945  */
946 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947 {
948         unsigned int order = 8 * sizeof(void *);
949         unsigned long pfn;
950         struct hstate *h;
951
952         /* Set scan step to minimum hugepage size */
953         for_each_hstate(h)
954                 if (order > huge_page_order(h))
955                         order = huge_page_order(h);
956         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958                 dissolve_free_huge_page(pfn_to_page(pfn));
959 }
960
961 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962 {
963         struct page *page;
964         unsigned int r_nid;
965
966         if (h->order >= MAX_ORDER)
967                 return NULL;
968
969         /*
970          * Assume we will successfully allocate the surplus page to
971          * prevent racing processes from causing the surplus to exceed
972          * overcommit
973          *
974          * This however introduces a different race, where a process B
975          * tries to grow the static hugepage pool while alloc_pages() is
976          * called by process A. B will only examine the per-node
977          * counters in determining if surplus huge pages can be
978          * converted to normal huge pages in adjust_pool_surplus(). A
979          * won't be able to increment the per-node counter, until the
980          * lock is dropped by B, but B doesn't drop hugetlb_lock until
981          * no more huge pages can be converted from surplus to normal
982          * state (and doesn't try to convert again). Thus, we have a
983          * case where a surplus huge page exists, the pool is grown, and
984          * the surplus huge page still exists after, even though it
985          * should just have been converted to a normal huge page. This
986          * does not leak memory, though, as the hugepage will be freed
987          * once it is out of use. It also does not allow the counters to
988          * go out of whack in adjust_pool_surplus() as we don't modify
989          * the node values until we've gotten the hugepage and only the
990          * per-node value is checked there.
991          */
992         spin_lock(&hugetlb_lock);
993         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994                 spin_unlock(&hugetlb_lock);
995                 return NULL;
996         } else {
997                 h->nr_huge_pages++;
998                 h->surplus_huge_pages++;
999         }
1000         spin_unlock(&hugetlb_lock);
1001
1002         if (nid == NUMA_NO_NODE)
1003                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004                                    __GFP_REPEAT|__GFP_NOWARN,
1005                                    huge_page_order(h));
1006         else
1007                 page = alloc_pages_exact_node(nid,
1008                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011         if (page && arch_prepare_hugepage(page)) {
1012                 __free_pages(page, huge_page_order(h));
1013                 page = NULL;
1014         }
1015
1016         spin_lock(&hugetlb_lock);
1017         if (page) {
1018                 INIT_LIST_HEAD(&page->lru);
1019                 r_nid = page_to_nid(page);
1020                 set_compound_page_dtor(page, free_huge_page);
1021                 set_hugetlb_cgroup(page, NULL);
1022                 /*
1023                  * We incremented the global counters already
1024                  */
1025                 h->nr_huge_pages_node[r_nid]++;
1026                 h->surplus_huge_pages_node[r_nid]++;
1027                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1028         } else {
1029                 h->nr_huge_pages--;
1030                 h->surplus_huge_pages--;
1031                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032         }
1033         spin_unlock(&hugetlb_lock);
1034
1035         return page;
1036 }
1037
1038 /*
1039  * This allocation function is useful in the context where vma is irrelevant.
1040  * E.g. soft-offlining uses this function because it only cares physical
1041  * address of error page.
1042  */
1043 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044 {
1045         struct page *page = NULL;
1046
1047         spin_lock(&hugetlb_lock);
1048         if (h->free_huge_pages - h->resv_huge_pages > 0)
1049                 page = dequeue_huge_page_node(h, nid);
1050         spin_unlock(&hugetlb_lock);
1051
1052         if (!page)
1053                 page = alloc_buddy_huge_page(h, nid);
1054
1055         return page;
1056 }
1057
1058 /*
1059  * Increase the hugetlb pool such that it can accommodate a reservation
1060  * of size 'delta'.
1061  */
1062 static int gather_surplus_pages(struct hstate *h, int delta)
1063 {
1064         struct list_head surplus_list;
1065         struct page *page, *tmp;
1066         int ret, i;
1067         int needed, allocated;
1068         bool alloc_ok = true;
1069
1070         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071         if (needed <= 0) {
1072                 h->resv_huge_pages += delta;
1073                 return 0;
1074         }
1075
1076         allocated = 0;
1077         INIT_LIST_HEAD(&surplus_list);
1078
1079         ret = -ENOMEM;
1080 retry:
1081         spin_unlock(&hugetlb_lock);
1082         for (i = 0; i < needed; i++) {
1083                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084                 if (!page) {
1085                         alloc_ok = false;
1086                         break;
1087                 }
1088                 list_add(&page->lru, &surplus_list);
1089         }
1090         allocated += i;
1091
1092         /*
1093          * After retaking hugetlb_lock, we need to recalculate 'needed'
1094          * because either resv_huge_pages or free_huge_pages may have changed.
1095          */
1096         spin_lock(&hugetlb_lock);
1097         needed = (h->resv_huge_pages + delta) -
1098                         (h->free_huge_pages + allocated);
1099         if (needed > 0) {
1100                 if (alloc_ok)
1101                         goto retry;
1102                 /*
1103                  * We were not able to allocate enough pages to
1104                  * satisfy the entire reservation so we free what
1105                  * we've allocated so far.
1106                  */
1107                 goto free;
1108         }
1109         /*
1110          * The surplus_list now contains _at_least_ the number of extra pages
1111          * needed to accommodate the reservation.  Add the appropriate number
1112          * of pages to the hugetlb pool and free the extras back to the buddy
1113          * allocator.  Commit the entire reservation here to prevent another
1114          * process from stealing the pages as they are added to the pool but
1115          * before they are reserved.
1116          */
1117         needed += allocated;
1118         h->resv_huge_pages += delta;
1119         ret = 0;
1120
1121         /* Free the needed pages to the hugetlb pool */
1122         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123                 if ((--needed) < 0)
1124                         break;
1125                 /*
1126                  * This page is now managed by the hugetlb allocator and has
1127                  * no users -- drop the buddy allocator's reference.
1128                  */
1129                 put_page_testzero(page);
1130                 VM_BUG_ON_PAGE(page_count(page), page);
1131                 enqueue_huge_page(h, page);
1132         }
1133 free:
1134         spin_unlock(&hugetlb_lock);
1135
1136         /* Free unnecessary surplus pages to the buddy allocator */
1137         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138                 put_page(page);
1139         spin_lock(&hugetlb_lock);
1140
1141         return ret;
1142 }
1143
1144 /*
1145  * When releasing a hugetlb pool reservation, any surplus pages that were
1146  * allocated to satisfy the reservation must be explicitly freed if they were
1147  * never used.
1148  * Called with hugetlb_lock held.
1149  */
1150 static void return_unused_surplus_pages(struct hstate *h,
1151                                         unsigned long unused_resv_pages)
1152 {
1153         unsigned long nr_pages;
1154
1155         /* Uncommit the reservation */
1156         h->resv_huge_pages -= unused_resv_pages;
1157
1158         /* Cannot return gigantic pages currently */
1159         if (h->order >= MAX_ORDER)
1160                 return;
1161
1162         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164         /*
1165          * We want to release as many surplus pages as possible, spread
1166          * evenly across all nodes with memory. Iterate across these nodes
1167          * until we can no longer free unreserved surplus pages. This occurs
1168          * when the nodes with surplus pages have no free pages.
1169          * free_pool_huge_page() will balance the the freed pages across the
1170          * on-line nodes with memory and will handle the hstate accounting.
1171          */
1172         while (nr_pages--) {
1173                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174                         break;
1175                 cond_resched_lock(&hugetlb_lock);
1176         }
1177 }
1178
1179 /*
1180  * Determine if the huge page at addr within the vma has an associated
1181  * reservation.  Where it does not we will need to logically increase
1182  * reservation and actually increase subpool usage before an allocation
1183  * can occur.  Where any new reservation would be required the
1184  * reservation change is prepared, but not committed.  Once the page
1185  * has been allocated from the subpool and instantiated the change should
1186  * be committed via vma_commit_reservation.  No action is required on
1187  * failure.
1188  */
1189 static long vma_needs_reservation(struct hstate *h,
1190                         struct vm_area_struct *vma, unsigned long addr)
1191 {
1192         struct resv_map *resv;
1193         pgoff_t idx;
1194         long chg;
1195
1196         resv = vma_resv_map(vma);
1197         if (!resv)
1198                 return 1;
1199
1200         idx = vma_hugecache_offset(h, vma, addr);
1201         chg = region_chg(resv, idx, idx + 1);
1202
1203         if (vma->vm_flags & VM_MAYSHARE)
1204                 return chg;
1205         else
1206                 return chg < 0 ? chg : 0;
1207 }
1208 static void vma_commit_reservation(struct hstate *h,
1209                         struct vm_area_struct *vma, unsigned long addr)
1210 {
1211         struct resv_map *resv;
1212         pgoff_t idx;
1213
1214         resv = vma_resv_map(vma);
1215         if (!resv)
1216                 return;
1217
1218         idx = vma_hugecache_offset(h, vma, addr);
1219         region_add(resv, idx, idx + 1);
1220 }
1221
1222 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1223                                     unsigned long addr, int avoid_reserve)
1224 {
1225         struct hugepage_subpool *spool = subpool_vma(vma);
1226         struct hstate *h = hstate_vma(vma);
1227         struct page *page;
1228         long chg;
1229         int ret, idx;
1230         struct hugetlb_cgroup *h_cg;
1231
1232         idx = hstate_index(h);
1233         /*
1234          * Processes that did not create the mapping will have no
1235          * reserves and will not have accounted against subpool
1236          * limit. Check that the subpool limit can be made before
1237          * satisfying the allocation MAP_NORESERVE mappings may also
1238          * need pages and subpool limit allocated allocated if no reserve
1239          * mapping overlaps.
1240          */
1241         chg = vma_needs_reservation(h, vma, addr);
1242         if (chg < 0)
1243                 return ERR_PTR(-ENOMEM);
1244         if (chg || avoid_reserve)
1245                 if (hugepage_subpool_get_pages(spool, 1))
1246                         return ERR_PTR(-ENOSPC);
1247
1248         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1249         if (ret) {
1250                 if (chg || avoid_reserve)
1251                         hugepage_subpool_put_pages(spool, 1);
1252                 return ERR_PTR(-ENOSPC);
1253         }
1254         spin_lock(&hugetlb_lock);
1255         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1256         if (!page) {
1257                 spin_unlock(&hugetlb_lock);
1258                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1259                 if (!page) {
1260                         hugetlb_cgroup_uncharge_cgroup(idx,
1261                                                        pages_per_huge_page(h),
1262                                                        h_cg);
1263                         if (chg || avoid_reserve)
1264                                 hugepage_subpool_put_pages(spool, 1);
1265                         return ERR_PTR(-ENOSPC);
1266                 }
1267                 spin_lock(&hugetlb_lock);
1268                 list_move(&page->lru, &h->hugepage_activelist);
1269                 /* Fall through */
1270         }
1271         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1272         spin_unlock(&hugetlb_lock);
1273
1274         set_page_private(page, (unsigned long)spool);
1275
1276         vma_commit_reservation(h, vma, addr);
1277         return page;
1278 }
1279
1280 /*
1281  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1282  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1283  * where no ERR_VALUE is expected to be returned.
1284  */
1285 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1286                                 unsigned long addr, int avoid_reserve)
1287 {
1288         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1289         if (IS_ERR(page))
1290                 page = NULL;
1291         return page;
1292 }
1293
1294 int __weak alloc_bootmem_huge_page(struct hstate *h)
1295 {
1296         struct huge_bootmem_page *m;
1297         int nr_nodes, node;
1298
1299         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1300                 void *addr;
1301
1302                 addr = memblock_virt_alloc_try_nid_nopanic(
1303                                 huge_page_size(h), huge_page_size(h),
1304                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1305                 if (addr) {
1306                         /*
1307                          * Use the beginning of the huge page to store the
1308                          * huge_bootmem_page struct (until gather_bootmem
1309                          * puts them into the mem_map).
1310                          */
1311                         m = addr;
1312                         goto found;
1313                 }
1314         }
1315         return 0;
1316
1317 found:
1318         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1319         /* Put them into a private list first because mem_map is not up yet */
1320         list_add(&m->list, &huge_boot_pages);
1321         m->hstate = h;
1322         return 1;
1323 }
1324
1325 static void __init prep_compound_huge_page(struct page *page, int order)
1326 {
1327         if (unlikely(order > (MAX_ORDER - 1)))
1328                 prep_compound_gigantic_page(page, order);
1329         else
1330                 prep_compound_page(page, order);
1331 }
1332
1333 /* Put bootmem huge pages into the standard lists after mem_map is up */
1334 static void __init gather_bootmem_prealloc(void)
1335 {
1336         struct huge_bootmem_page *m;
1337
1338         list_for_each_entry(m, &huge_boot_pages, list) {
1339                 struct hstate *h = m->hstate;
1340                 struct page *page;
1341
1342 #ifdef CONFIG_HIGHMEM
1343                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1344                 memblock_free_late(__pa(m),
1345                                    sizeof(struct huge_bootmem_page));
1346 #else
1347                 page = virt_to_page(m);
1348 #endif
1349                 WARN_ON(page_count(page) != 1);
1350                 prep_compound_huge_page(page, h->order);
1351                 WARN_ON(PageReserved(page));
1352                 prep_new_huge_page(h, page, page_to_nid(page));
1353                 /*
1354                  * If we had gigantic hugepages allocated at boot time, we need
1355                  * to restore the 'stolen' pages to totalram_pages in order to
1356                  * fix confusing memory reports from free(1) and another
1357                  * side-effects, like CommitLimit going negative.
1358                  */
1359                 if (h->order > (MAX_ORDER - 1))
1360                         adjust_managed_page_count(page, 1 << h->order);
1361         }
1362 }
1363
1364 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1365 {
1366         unsigned long i;
1367
1368         for (i = 0; i < h->max_huge_pages; ++i) {
1369                 if (h->order >= MAX_ORDER) {
1370                         if (!alloc_bootmem_huge_page(h))
1371                                 break;
1372                 } else if (!alloc_fresh_huge_page(h,
1373                                          &node_states[N_MEMORY]))
1374                         break;
1375         }
1376         h->max_huge_pages = i;
1377 }
1378
1379 static void __init hugetlb_init_hstates(void)
1380 {
1381         struct hstate *h;
1382
1383         for_each_hstate(h) {
1384                 /* oversize hugepages were init'ed in early boot */
1385                 if (h->order < MAX_ORDER)
1386                         hugetlb_hstate_alloc_pages(h);
1387         }
1388 }
1389
1390 static char * __init memfmt(char *buf, unsigned long n)
1391 {
1392         if (n >= (1UL << 30))
1393                 sprintf(buf, "%lu GB", n >> 30);
1394         else if (n >= (1UL << 20))
1395                 sprintf(buf, "%lu MB", n >> 20);
1396         else
1397                 sprintf(buf, "%lu KB", n >> 10);
1398         return buf;
1399 }
1400
1401 static void __init report_hugepages(void)
1402 {
1403         struct hstate *h;
1404
1405         for_each_hstate(h) {
1406                 char buf[32];
1407                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1408                         memfmt(buf, huge_page_size(h)),
1409                         h->free_huge_pages);
1410         }
1411 }
1412
1413 #ifdef CONFIG_HIGHMEM
1414 static void try_to_free_low(struct hstate *h, unsigned long count,
1415                                                 nodemask_t *nodes_allowed)
1416 {
1417         int i;
1418
1419         if (h->order >= MAX_ORDER)
1420                 return;
1421
1422         for_each_node_mask(i, *nodes_allowed) {
1423                 struct page *page, *next;
1424                 struct list_head *freel = &h->hugepage_freelists[i];
1425                 list_for_each_entry_safe(page, next, freel, lru) {
1426                         if (count >= h->nr_huge_pages)
1427                                 return;
1428                         if (PageHighMem(page))
1429                                 continue;
1430                         list_del(&page->lru);
1431                         update_and_free_page(h, page);
1432                         h->free_huge_pages--;
1433                         h->free_huge_pages_node[page_to_nid(page)]--;
1434                 }
1435         }
1436 }
1437 #else
1438 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1439                                                 nodemask_t *nodes_allowed)
1440 {
1441 }
1442 #endif
1443
1444 /*
1445  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1446  * balanced by operating on them in a round-robin fashion.
1447  * Returns 1 if an adjustment was made.
1448  */
1449 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1450                                 int delta)
1451 {
1452         int nr_nodes, node;
1453
1454         VM_BUG_ON(delta != -1 && delta != 1);
1455
1456         if (delta < 0) {
1457                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1458                         if (h->surplus_huge_pages_node[node])
1459                                 goto found;
1460                 }
1461         } else {
1462                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1463                         if (h->surplus_huge_pages_node[node] <
1464                                         h->nr_huge_pages_node[node])
1465                                 goto found;
1466                 }
1467         }
1468         return 0;
1469
1470 found:
1471         h->surplus_huge_pages += delta;
1472         h->surplus_huge_pages_node[node] += delta;
1473         return 1;
1474 }
1475
1476 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1477 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1478                                                 nodemask_t *nodes_allowed)
1479 {
1480         unsigned long min_count, ret;
1481
1482         if (h->order >= MAX_ORDER)
1483                 return h->max_huge_pages;
1484
1485         /*
1486          * Increase the pool size
1487          * First take pages out of surplus state.  Then make up the
1488          * remaining difference by allocating fresh huge pages.
1489          *
1490          * We might race with alloc_buddy_huge_page() here and be unable
1491          * to convert a surplus huge page to a normal huge page. That is
1492          * not critical, though, it just means the overall size of the
1493          * pool might be one hugepage larger than it needs to be, but
1494          * within all the constraints specified by the sysctls.
1495          */
1496         spin_lock(&hugetlb_lock);
1497         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1498                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1499                         break;
1500         }
1501
1502         while (count > persistent_huge_pages(h)) {
1503                 /*
1504                  * If this allocation races such that we no longer need the
1505                  * page, free_huge_page will handle it by freeing the page
1506                  * and reducing the surplus.
1507                  */
1508                 spin_unlock(&hugetlb_lock);
1509                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1510                 spin_lock(&hugetlb_lock);
1511                 if (!ret)
1512                         goto out;
1513
1514                 /* Bail for signals. Probably ctrl-c from user */
1515                 if (signal_pending(current))
1516                         goto out;
1517         }
1518
1519         /*
1520          * Decrease the pool size
1521          * First return free pages to the buddy allocator (being careful
1522          * to keep enough around to satisfy reservations).  Then place
1523          * pages into surplus state as needed so the pool will shrink
1524          * to the desired size as pages become free.
1525          *
1526          * By placing pages into the surplus state independent of the
1527          * overcommit value, we are allowing the surplus pool size to
1528          * exceed overcommit. There are few sane options here. Since
1529          * alloc_buddy_huge_page() is checking the global counter,
1530          * though, we'll note that we're not allowed to exceed surplus
1531          * and won't grow the pool anywhere else. Not until one of the
1532          * sysctls are changed, or the surplus pages go out of use.
1533          */
1534         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1535         min_count = max(count, min_count);
1536         try_to_free_low(h, min_count, nodes_allowed);
1537         while (min_count < persistent_huge_pages(h)) {
1538                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1539                         break;
1540                 cond_resched_lock(&hugetlb_lock);
1541         }
1542         while (count < persistent_huge_pages(h)) {
1543                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1544                         break;
1545         }
1546 out:
1547         ret = persistent_huge_pages(h);
1548         spin_unlock(&hugetlb_lock);
1549         return ret;
1550 }
1551
1552 #define HSTATE_ATTR_RO(_name) \
1553         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1554
1555 #define HSTATE_ATTR(_name) \
1556         static struct kobj_attribute _name##_attr = \
1557                 __ATTR(_name, 0644, _name##_show, _name##_store)
1558
1559 static struct kobject *hugepages_kobj;
1560 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1561
1562 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1563
1564 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1565 {
1566         int i;
1567
1568         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1569                 if (hstate_kobjs[i] == kobj) {
1570                         if (nidp)
1571                                 *nidp = NUMA_NO_NODE;
1572                         return &hstates[i];
1573                 }
1574
1575         return kobj_to_node_hstate(kobj, nidp);
1576 }
1577
1578 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1579                                         struct kobj_attribute *attr, char *buf)
1580 {
1581         struct hstate *h;
1582         unsigned long nr_huge_pages;
1583         int nid;
1584
1585         h = kobj_to_hstate(kobj, &nid);
1586         if (nid == NUMA_NO_NODE)
1587                 nr_huge_pages = h->nr_huge_pages;
1588         else
1589                 nr_huge_pages = h->nr_huge_pages_node[nid];
1590
1591         return sprintf(buf, "%lu\n", nr_huge_pages);
1592 }
1593
1594 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1595                         struct kobject *kobj, struct kobj_attribute *attr,
1596                         const char *buf, size_t len)
1597 {
1598         int err;
1599         int nid;
1600         unsigned long count;
1601         struct hstate *h;
1602         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1603
1604         err = kstrtoul(buf, 10, &count);
1605         if (err)
1606                 goto out;
1607
1608         h = kobj_to_hstate(kobj, &nid);
1609         if (h->order >= MAX_ORDER) {
1610                 err = -EINVAL;
1611                 goto out;
1612         }
1613
1614         if (nid == NUMA_NO_NODE) {
1615                 /*
1616                  * global hstate attribute
1617                  */
1618                 if (!(obey_mempolicy &&
1619                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1620                         NODEMASK_FREE(nodes_allowed);
1621                         nodes_allowed = &node_states[N_MEMORY];
1622                 }
1623         } else if (nodes_allowed) {
1624                 /*
1625                  * per node hstate attribute: adjust count to global,
1626                  * but restrict alloc/free to the specified node.
1627                  */
1628                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1629                 init_nodemask_of_node(nodes_allowed, nid);
1630         } else
1631                 nodes_allowed = &node_states[N_MEMORY];
1632
1633         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1634
1635         if (nodes_allowed != &node_states[N_MEMORY])
1636                 NODEMASK_FREE(nodes_allowed);
1637
1638         return len;
1639 out:
1640         NODEMASK_FREE(nodes_allowed);
1641         return err;
1642 }
1643
1644 static ssize_t nr_hugepages_show(struct kobject *kobj,
1645                                        struct kobj_attribute *attr, char *buf)
1646 {
1647         return nr_hugepages_show_common(kobj, attr, buf);
1648 }
1649
1650 static ssize_t nr_hugepages_store(struct kobject *kobj,
1651                struct kobj_attribute *attr, const char *buf, size_t len)
1652 {
1653         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1654 }
1655 HSTATE_ATTR(nr_hugepages);
1656
1657 #ifdef CONFIG_NUMA
1658
1659 /*
1660  * hstate attribute for optionally mempolicy-based constraint on persistent
1661  * huge page alloc/free.
1662  */
1663 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1664                                        struct kobj_attribute *attr, char *buf)
1665 {
1666         return nr_hugepages_show_common(kobj, attr, buf);
1667 }
1668
1669 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1670                struct kobj_attribute *attr, const char *buf, size_t len)
1671 {
1672         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1673 }
1674 HSTATE_ATTR(nr_hugepages_mempolicy);
1675 #endif
1676
1677
1678 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1679                                         struct kobj_attribute *attr, char *buf)
1680 {
1681         struct hstate *h = kobj_to_hstate(kobj, NULL);
1682         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1683 }
1684
1685 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1686                 struct kobj_attribute *attr, const char *buf, size_t count)
1687 {
1688         int err;
1689         unsigned long input;
1690         struct hstate *h = kobj_to_hstate(kobj, NULL);
1691
1692         if (h->order >= MAX_ORDER)
1693                 return -EINVAL;
1694
1695         err = kstrtoul(buf, 10, &input);
1696         if (err)
1697                 return err;
1698
1699         spin_lock(&hugetlb_lock);
1700         h->nr_overcommit_huge_pages = input;
1701         spin_unlock(&hugetlb_lock);
1702
1703         return count;
1704 }
1705 HSTATE_ATTR(nr_overcommit_hugepages);
1706
1707 static ssize_t free_hugepages_show(struct kobject *kobj,
1708                                         struct kobj_attribute *attr, char *buf)
1709 {
1710         struct hstate *h;
1711         unsigned long free_huge_pages;
1712         int nid;
1713
1714         h = kobj_to_hstate(kobj, &nid);
1715         if (nid == NUMA_NO_NODE)
1716                 free_huge_pages = h->free_huge_pages;
1717         else
1718                 free_huge_pages = h->free_huge_pages_node[nid];
1719
1720         return sprintf(buf, "%lu\n", free_huge_pages);
1721 }
1722 HSTATE_ATTR_RO(free_hugepages);
1723
1724 static ssize_t resv_hugepages_show(struct kobject *kobj,
1725                                         struct kobj_attribute *attr, char *buf)
1726 {
1727         struct hstate *h = kobj_to_hstate(kobj, NULL);
1728         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1729 }
1730 HSTATE_ATTR_RO(resv_hugepages);
1731
1732 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1733                                         struct kobj_attribute *attr, char *buf)
1734 {
1735         struct hstate *h;
1736         unsigned long surplus_huge_pages;
1737         int nid;
1738
1739         h = kobj_to_hstate(kobj, &nid);
1740         if (nid == NUMA_NO_NODE)
1741                 surplus_huge_pages = h->surplus_huge_pages;
1742         else
1743                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1744
1745         return sprintf(buf, "%lu\n", surplus_huge_pages);
1746 }
1747 HSTATE_ATTR_RO(surplus_hugepages);
1748
1749 static struct attribute *hstate_attrs[] = {
1750         &nr_hugepages_attr.attr,
1751         &nr_overcommit_hugepages_attr.attr,
1752         &free_hugepages_attr.attr,
1753         &resv_hugepages_attr.attr,
1754         &surplus_hugepages_attr.attr,
1755 #ifdef CONFIG_NUMA
1756         &nr_hugepages_mempolicy_attr.attr,
1757 #endif
1758         NULL,
1759 };
1760
1761 static struct attribute_group hstate_attr_group = {
1762         .attrs = hstate_attrs,
1763 };
1764
1765 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1766                                     struct kobject **hstate_kobjs,
1767                                     struct attribute_group *hstate_attr_group)
1768 {
1769         int retval;
1770         int hi = hstate_index(h);
1771
1772         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1773         if (!hstate_kobjs[hi])
1774                 return -ENOMEM;
1775
1776         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1777         if (retval)
1778                 kobject_put(hstate_kobjs[hi]);
1779
1780         return retval;
1781 }
1782
1783 static void __init hugetlb_sysfs_init(void)
1784 {
1785         struct hstate *h;
1786         int err;
1787
1788         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1789         if (!hugepages_kobj)
1790                 return;
1791
1792         for_each_hstate(h) {
1793                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1794                                          hstate_kobjs, &hstate_attr_group);
1795                 if (err)
1796                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1797         }
1798 }
1799
1800 #ifdef CONFIG_NUMA
1801
1802 /*
1803  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1804  * with node devices in node_devices[] using a parallel array.  The array
1805  * index of a node device or _hstate == node id.
1806  * This is here to avoid any static dependency of the node device driver, in
1807  * the base kernel, on the hugetlb module.
1808  */
1809 struct node_hstate {
1810         struct kobject          *hugepages_kobj;
1811         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1812 };
1813 struct node_hstate node_hstates[MAX_NUMNODES];
1814
1815 /*
1816  * A subset of global hstate attributes for node devices
1817  */
1818 static struct attribute *per_node_hstate_attrs[] = {
1819         &nr_hugepages_attr.attr,
1820         &free_hugepages_attr.attr,
1821         &surplus_hugepages_attr.attr,
1822         NULL,
1823 };
1824
1825 static struct attribute_group per_node_hstate_attr_group = {
1826         .attrs = per_node_hstate_attrs,
1827 };
1828
1829 /*
1830  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1831  * Returns node id via non-NULL nidp.
1832  */
1833 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1834 {
1835         int nid;
1836
1837         for (nid = 0; nid < nr_node_ids; nid++) {
1838                 struct node_hstate *nhs = &node_hstates[nid];
1839                 int i;
1840                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1841                         if (nhs->hstate_kobjs[i] == kobj) {
1842                                 if (nidp)
1843                                         *nidp = nid;
1844                                 return &hstates[i];
1845                         }
1846         }
1847
1848         BUG();
1849         return NULL;
1850 }
1851
1852 /*
1853  * Unregister hstate attributes from a single node device.
1854  * No-op if no hstate attributes attached.
1855  */
1856 static void hugetlb_unregister_node(struct node *node)
1857 {
1858         struct hstate *h;
1859         struct node_hstate *nhs = &node_hstates[node->dev.id];
1860
1861         if (!nhs->hugepages_kobj)
1862                 return;         /* no hstate attributes */
1863
1864         for_each_hstate(h) {
1865                 int idx = hstate_index(h);
1866                 if (nhs->hstate_kobjs[idx]) {
1867                         kobject_put(nhs->hstate_kobjs[idx]);
1868                         nhs->hstate_kobjs[idx] = NULL;
1869                 }
1870         }
1871
1872         kobject_put(nhs->hugepages_kobj);
1873         nhs->hugepages_kobj = NULL;
1874 }
1875
1876 /*
1877  * hugetlb module exit:  unregister hstate attributes from node devices
1878  * that have them.
1879  */
1880 static void hugetlb_unregister_all_nodes(void)
1881 {
1882         int nid;
1883
1884         /*
1885          * disable node device registrations.
1886          */
1887         register_hugetlbfs_with_node(NULL, NULL);
1888
1889         /*
1890          * remove hstate attributes from any nodes that have them.
1891          */
1892         for (nid = 0; nid < nr_node_ids; nid++)
1893                 hugetlb_unregister_node(node_devices[nid]);
1894 }
1895
1896 /*
1897  * Register hstate attributes for a single node device.
1898  * No-op if attributes already registered.
1899  */
1900 static void hugetlb_register_node(struct node *node)
1901 {
1902         struct hstate *h;
1903         struct node_hstate *nhs = &node_hstates[node->dev.id];
1904         int err;
1905
1906         if (nhs->hugepages_kobj)
1907                 return;         /* already allocated */
1908
1909         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1910                                                         &node->dev.kobj);
1911         if (!nhs->hugepages_kobj)
1912                 return;
1913
1914         for_each_hstate(h) {
1915                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1916                                                 nhs->hstate_kobjs,
1917                                                 &per_node_hstate_attr_group);
1918                 if (err) {
1919                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1920                                 h->name, node->dev.id);
1921                         hugetlb_unregister_node(node);
1922                         break;
1923                 }
1924         }
1925 }
1926
1927 /*
1928  * hugetlb init time:  register hstate attributes for all registered node
1929  * devices of nodes that have memory.  All on-line nodes should have
1930  * registered their associated device by this time.
1931  */
1932 static void hugetlb_register_all_nodes(void)
1933 {
1934         int nid;
1935
1936         for_each_node_state(nid, N_MEMORY) {
1937                 struct node *node = node_devices[nid];
1938                 if (node->dev.id == nid)
1939                         hugetlb_register_node(node);
1940         }
1941
1942         /*
1943          * Let the node device driver know we're here so it can
1944          * [un]register hstate attributes on node hotplug.
1945          */
1946         register_hugetlbfs_with_node(hugetlb_register_node,
1947                                      hugetlb_unregister_node);
1948 }
1949 #else   /* !CONFIG_NUMA */
1950
1951 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1952 {
1953         BUG();
1954         if (nidp)
1955                 *nidp = -1;
1956         return NULL;
1957 }
1958
1959 static void hugetlb_unregister_all_nodes(void) { }
1960
1961 static void hugetlb_register_all_nodes(void) { }
1962
1963 #endif
1964
1965 static void __exit hugetlb_exit(void)
1966 {
1967         struct hstate *h;
1968
1969         hugetlb_unregister_all_nodes();
1970
1971         for_each_hstate(h) {
1972                 kobject_put(hstate_kobjs[hstate_index(h)]);
1973         }
1974
1975         kobject_put(hugepages_kobj);
1976         kfree(htlb_fault_mutex_table);
1977 }
1978 module_exit(hugetlb_exit);
1979
1980 static int __init hugetlb_init(void)
1981 {
1982         int i;
1983
1984         if (!hugepages_supported())
1985                 return 0;
1986
1987         if (!size_to_hstate(default_hstate_size)) {
1988                 default_hstate_size = HPAGE_SIZE;
1989                 if (!size_to_hstate(default_hstate_size))
1990                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1991         }
1992         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1993         if (default_hstate_max_huge_pages)
1994                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1995
1996         hugetlb_init_hstates();
1997         gather_bootmem_prealloc();
1998         report_hugepages();
1999
2000         hugetlb_sysfs_init();
2001         hugetlb_register_all_nodes();
2002         hugetlb_cgroup_file_init();
2003
2004 #ifdef CONFIG_SMP
2005         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2006 #else
2007         num_fault_mutexes = 1;
2008 #endif
2009         htlb_fault_mutex_table =
2010                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2011         BUG_ON(!htlb_fault_mutex_table);
2012
2013         for (i = 0; i < num_fault_mutexes; i++)
2014                 mutex_init(&htlb_fault_mutex_table[i]);
2015         return 0;
2016 }
2017 module_init(hugetlb_init);
2018
2019 /* Should be called on processing a hugepagesz=... option */
2020 void __init hugetlb_add_hstate(unsigned order)
2021 {
2022         struct hstate *h;
2023         unsigned long i;
2024
2025         if (size_to_hstate(PAGE_SIZE << order)) {
2026                 pr_warning("hugepagesz= specified twice, ignoring\n");
2027                 return;
2028         }
2029         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2030         BUG_ON(order == 0);
2031         h = &hstates[hugetlb_max_hstate++];
2032         h->order = order;
2033         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2034         h->nr_huge_pages = 0;
2035         h->free_huge_pages = 0;
2036         for (i = 0; i < MAX_NUMNODES; ++i)
2037                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2038         INIT_LIST_HEAD(&h->hugepage_activelist);
2039         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2040         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2041         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2042                                         huge_page_size(h)/1024);
2043
2044         parsed_hstate = h;
2045 }
2046
2047 static int __init hugetlb_nrpages_setup(char *s)
2048 {
2049         unsigned long *mhp;
2050         static unsigned long *last_mhp;
2051
2052         /*
2053          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2054          * so this hugepages= parameter goes to the "default hstate".
2055          */
2056         if (!hugetlb_max_hstate)
2057                 mhp = &default_hstate_max_huge_pages;
2058         else
2059                 mhp = &parsed_hstate->max_huge_pages;
2060
2061         if (mhp == last_mhp) {
2062                 pr_warning("hugepages= specified twice without "
2063                            "interleaving hugepagesz=, ignoring\n");
2064                 return 1;
2065         }
2066
2067         if (sscanf(s, "%lu", mhp) <= 0)
2068                 *mhp = 0;
2069
2070         /*
2071          * Global state is always initialized later in hugetlb_init.
2072          * But we need to allocate >= MAX_ORDER hstates here early to still
2073          * use the bootmem allocator.
2074          */
2075         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2076                 hugetlb_hstate_alloc_pages(parsed_hstate);
2077
2078         last_mhp = mhp;
2079
2080         return 1;
2081 }
2082 __setup("hugepages=", hugetlb_nrpages_setup);
2083
2084 static int __init hugetlb_default_setup(char *s)
2085 {
2086         default_hstate_size = memparse(s, &s);
2087         return 1;
2088 }
2089 __setup("default_hugepagesz=", hugetlb_default_setup);
2090
2091 static unsigned int cpuset_mems_nr(unsigned int *array)
2092 {
2093         int node;
2094         unsigned int nr = 0;
2095
2096         for_each_node_mask(node, cpuset_current_mems_allowed)
2097                 nr += array[node];
2098
2099         return nr;
2100 }
2101
2102 #ifdef CONFIG_SYSCTL
2103 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2104                          struct ctl_table *table, int write,
2105                          void __user *buffer, size_t *length, loff_t *ppos)
2106 {
2107         struct hstate *h = &default_hstate;
2108         unsigned long tmp;
2109         int ret;
2110
2111         if (!hugepages_supported())
2112                 return -ENOTSUPP;
2113
2114         tmp = h->max_huge_pages;
2115
2116         if (write && h->order >= MAX_ORDER)
2117                 return -EINVAL;
2118
2119         table->data = &tmp;
2120         table->maxlen = sizeof(unsigned long);
2121         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122         if (ret)
2123                 goto out;
2124
2125         if (write) {
2126                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127                                                 GFP_KERNEL | __GFP_NORETRY);
2128                 if (!(obey_mempolicy &&
2129                                init_nodemask_of_mempolicy(nodes_allowed))) {
2130                         NODEMASK_FREE(nodes_allowed);
2131                         nodes_allowed = &node_states[N_MEMORY];
2132                 }
2133                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135                 if (nodes_allowed != &node_states[N_MEMORY])
2136                         NODEMASK_FREE(nodes_allowed);
2137         }
2138 out:
2139         return ret;
2140 }
2141
2142 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143                           void __user *buffer, size_t *length, loff_t *ppos)
2144 {
2145
2146         return hugetlb_sysctl_handler_common(false, table, write,
2147                                                         buffer, length, ppos);
2148 }
2149
2150 #ifdef CONFIG_NUMA
2151 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152                           void __user *buffer, size_t *length, loff_t *ppos)
2153 {
2154         return hugetlb_sysctl_handler_common(true, table, write,
2155                                                         buffer, length, ppos);
2156 }
2157 #endif /* CONFIG_NUMA */
2158
2159 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160                         void __user *buffer,
2161                         size_t *length, loff_t *ppos)
2162 {
2163         struct hstate *h = &default_hstate;
2164         unsigned long tmp;
2165         int ret;
2166
2167         if (!hugepages_supported())
2168                 return -ENOTSUPP;
2169
2170         tmp = h->nr_overcommit_huge_pages;
2171
2172         if (write && h->order >= MAX_ORDER)
2173                 return -EINVAL;
2174
2175         table->data = &tmp;
2176         table->maxlen = sizeof(unsigned long);
2177         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2178         if (ret)
2179                 goto out;
2180
2181         if (write) {
2182                 spin_lock(&hugetlb_lock);
2183                 h->nr_overcommit_huge_pages = tmp;
2184                 spin_unlock(&hugetlb_lock);
2185         }
2186 out:
2187         return ret;
2188 }
2189
2190 #endif /* CONFIG_SYSCTL */
2191
2192 void hugetlb_report_meminfo(struct seq_file *m)
2193 {
2194         struct hstate *h = &default_hstate;
2195         if (!hugepages_supported())
2196                 return;
2197         seq_printf(m,
2198                         "HugePages_Total:   %5lu\n"
2199                         "HugePages_Free:    %5lu\n"
2200                         "HugePages_Rsvd:    %5lu\n"
2201                         "HugePages_Surp:    %5lu\n"
2202                         "Hugepagesize:   %8lu kB\n",
2203                         h->nr_huge_pages,
2204                         h->free_huge_pages,
2205                         h->resv_huge_pages,
2206                         h->surplus_huge_pages,
2207                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2208 }
2209
2210 int hugetlb_report_node_meminfo(int nid, char *buf)
2211 {
2212         struct hstate *h = &default_hstate;
2213         if (!hugepages_supported())
2214                 return 0;
2215         return sprintf(buf,
2216                 "Node %d HugePages_Total: %5u\n"
2217                 "Node %d HugePages_Free:  %5u\n"
2218                 "Node %d HugePages_Surp:  %5u\n",
2219                 nid, h->nr_huge_pages_node[nid],
2220                 nid, h->free_huge_pages_node[nid],
2221                 nid, h->surplus_huge_pages_node[nid]);
2222 }
2223
2224 void hugetlb_show_meminfo(void)
2225 {
2226         struct hstate *h;
2227         int nid;
2228
2229         if (!hugepages_supported())
2230                 return;
2231
2232         for_each_node_state(nid, N_MEMORY)
2233                 for_each_hstate(h)
2234                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2235                                 nid,
2236                                 h->nr_huge_pages_node[nid],
2237                                 h->free_huge_pages_node[nid],
2238                                 h->surplus_huge_pages_node[nid],
2239                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2240 }
2241
2242 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2243 unsigned long hugetlb_total_pages(void)
2244 {
2245         struct hstate *h;
2246         unsigned long nr_total_pages = 0;
2247
2248         for_each_hstate(h)
2249                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2250         return nr_total_pages;
2251 }
2252
2253 static int hugetlb_acct_memory(struct hstate *h, long delta)
2254 {
2255         int ret = -ENOMEM;
2256
2257         spin_lock(&hugetlb_lock);
2258         /*
2259          * When cpuset is configured, it breaks the strict hugetlb page
2260          * reservation as the accounting is done on a global variable. Such
2261          * reservation is completely rubbish in the presence of cpuset because
2262          * the reservation is not checked against page availability for the
2263          * current cpuset. Application can still potentially OOM'ed by kernel
2264          * with lack of free htlb page in cpuset that the task is in.
2265          * Attempt to enforce strict accounting with cpuset is almost
2266          * impossible (or too ugly) because cpuset is too fluid that
2267          * task or memory node can be dynamically moved between cpusets.
2268          *
2269          * The change of semantics for shared hugetlb mapping with cpuset is
2270          * undesirable. However, in order to preserve some of the semantics,
2271          * we fall back to check against current free page availability as
2272          * a best attempt and hopefully to minimize the impact of changing
2273          * semantics that cpuset has.
2274          */
2275         if (delta > 0) {
2276                 if (gather_surplus_pages(h, delta) < 0)
2277                         goto out;
2278
2279                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2280                         return_unused_surplus_pages(h, delta);
2281                         goto out;
2282                 }
2283         }
2284
2285         ret = 0;
2286         if (delta < 0)
2287                 return_unused_surplus_pages(h, (unsigned long) -delta);
2288
2289 out:
2290         spin_unlock(&hugetlb_lock);
2291         return ret;
2292 }
2293
2294 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2295 {
2296         struct resv_map *resv = vma_resv_map(vma);
2297
2298         /*
2299          * This new VMA should share its siblings reservation map if present.
2300          * The VMA will only ever have a valid reservation map pointer where
2301          * it is being copied for another still existing VMA.  As that VMA
2302          * has a reference to the reservation map it cannot disappear until
2303          * after this open call completes.  It is therefore safe to take a
2304          * new reference here without additional locking.
2305          */
2306         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2307                 kref_get(&resv->refs);
2308 }
2309
2310 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2311 {
2312         struct hstate *h = hstate_vma(vma);
2313         struct resv_map *resv = vma_resv_map(vma);
2314         struct hugepage_subpool *spool = subpool_vma(vma);
2315         unsigned long reserve, start, end;
2316
2317         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2318                 return;
2319
2320         start = vma_hugecache_offset(h, vma, vma->vm_start);
2321         end = vma_hugecache_offset(h, vma, vma->vm_end);
2322
2323         reserve = (end - start) - region_count(resv, start, end);
2324
2325         kref_put(&resv->refs, resv_map_release);
2326
2327         if (reserve) {
2328                 hugetlb_acct_memory(h, -reserve);
2329                 hugepage_subpool_put_pages(spool, reserve);
2330         }
2331 }
2332
2333 /*
2334  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2335  * handle_mm_fault() to try to instantiate regular-sized pages in the
2336  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2337  * this far.
2338  */
2339 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2340 {
2341         BUG();
2342         return 0;
2343 }
2344
2345 const struct vm_operations_struct hugetlb_vm_ops = {
2346         .fault = hugetlb_vm_op_fault,
2347         .open = hugetlb_vm_op_open,
2348         .close = hugetlb_vm_op_close,
2349 };
2350
2351 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2352                                 int writable)
2353 {
2354         pte_t entry;
2355
2356         if (writable) {
2357                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2358                                          vma->vm_page_prot)));
2359         } else {
2360                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2361                                            vma->vm_page_prot));
2362         }
2363         entry = pte_mkyoung(entry);
2364         entry = pte_mkhuge(entry);
2365         entry = arch_make_huge_pte(entry, vma, page, writable);
2366
2367         return entry;
2368 }
2369
2370 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2371                                    unsigned long address, pte_t *ptep)
2372 {
2373         pte_t entry;
2374
2375         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2376         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2377                 update_mmu_cache(vma, address, ptep);
2378 }
2379
2380
2381 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2382                             struct vm_area_struct *vma)
2383 {
2384         pte_t *src_pte, *dst_pte, entry;
2385         struct page *ptepage;
2386         unsigned long addr;
2387         int cow;
2388         struct hstate *h = hstate_vma(vma);
2389         unsigned long sz = huge_page_size(h);
2390         unsigned long mmun_start;       /* For mmu_notifiers */
2391         unsigned long mmun_end;         /* For mmu_notifiers */
2392         int ret = 0;
2393
2394         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2395
2396         mmun_start = vma->vm_start;
2397         mmun_end = vma->vm_end;
2398         if (cow)
2399                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2400
2401         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2402                 spinlock_t *src_ptl, *dst_ptl;
2403                 src_pte = huge_pte_offset(src, addr);
2404                 if (!src_pte)
2405                         continue;
2406                 dst_pte = huge_pte_alloc(dst, addr, sz);
2407                 if (!dst_pte) {
2408                         ret = -ENOMEM;
2409                         break;
2410                 }
2411
2412                 /* If the pagetables are shared don't copy or take references */
2413                 if (dst_pte == src_pte)
2414                         continue;
2415
2416                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2417                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2418                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2419                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2420                         if (cow)
2421                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2422                         entry = huge_ptep_get(src_pte);
2423                         ptepage = pte_page(entry);
2424                         get_page(ptepage);
2425                         page_dup_rmap(ptepage);
2426                         set_huge_pte_at(dst, addr, dst_pte, entry);
2427                 }
2428                 spin_unlock(src_ptl);
2429                 spin_unlock(dst_ptl);
2430         }
2431
2432         if (cow)
2433                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2434
2435         return ret;
2436 }
2437
2438 static int is_hugetlb_entry_migration(pte_t pte)
2439 {
2440         swp_entry_t swp;
2441
2442         if (huge_pte_none(pte) || pte_present(pte))
2443                 return 0;
2444         swp = pte_to_swp_entry(pte);
2445         if (non_swap_entry(swp) && is_migration_entry(swp))
2446                 return 1;
2447         else
2448                 return 0;
2449 }
2450
2451 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2452 {
2453         swp_entry_t swp;
2454
2455         if (huge_pte_none(pte) || pte_present(pte))
2456                 return 0;
2457         swp = pte_to_swp_entry(pte);
2458         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2459                 return 1;
2460         else
2461                 return 0;
2462 }
2463
2464 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2465                             unsigned long start, unsigned long end,
2466                             struct page *ref_page)
2467 {
2468         int force_flush = 0;
2469         struct mm_struct *mm = vma->vm_mm;
2470         unsigned long address;
2471         pte_t *ptep;
2472         pte_t pte;
2473         spinlock_t *ptl;
2474         struct page *page;
2475         struct hstate *h = hstate_vma(vma);
2476         unsigned long sz = huge_page_size(h);
2477         const unsigned long mmun_start = start; /* For mmu_notifiers */
2478         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2479
2480         WARN_ON(!is_vm_hugetlb_page(vma));
2481         BUG_ON(start & ~huge_page_mask(h));
2482         BUG_ON(end & ~huge_page_mask(h));
2483
2484         tlb_start_vma(tlb, vma);
2485         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486 again:
2487         for (address = start; address < end; address += sz) {
2488                 ptep = huge_pte_offset(mm, address);
2489                 if (!ptep)
2490                         continue;
2491
2492                 ptl = huge_pte_lock(h, mm, ptep);
2493                 if (huge_pmd_unshare(mm, &address, ptep))
2494                         goto unlock;
2495
2496                 pte = huge_ptep_get(ptep);
2497                 if (huge_pte_none(pte))
2498                         goto unlock;
2499
2500                 /*
2501                  * HWPoisoned hugepage is already unmapped and dropped reference
2502                  */
2503                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2504                         huge_pte_clear(mm, address, ptep);
2505                         goto unlock;
2506                 }
2507
2508                 page = pte_page(pte);
2509                 /*
2510                  * If a reference page is supplied, it is because a specific
2511                  * page is being unmapped, not a range. Ensure the page we
2512                  * are about to unmap is the actual page of interest.
2513                  */
2514                 if (ref_page) {
2515                         if (page != ref_page)
2516                                 goto unlock;
2517
2518                         /*
2519                          * Mark the VMA as having unmapped its page so that
2520                          * future faults in this VMA will fail rather than
2521                          * looking like data was lost
2522                          */
2523                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2524                 }
2525
2526                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2527                 tlb_remove_tlb_entry(tlb, ptep, address);
2528                 if (huge_pte_dirty(pte))
2529                         set_page_dirty(page);
2530
2531                 page_remove_rmap(page);
2532                 force_flush = !__tlb_remove_page(tlb, page);
2533                 if (force_flush) {
2534                         spin_unlock(ptl);
2535                         break;
2536                 }
2537                 /* Bail out after unmapping reference page if supplied */
2538                 if (ref_page) {
2539                         spin_unlock(ptl);
2540                         break;
2541                 }
2542 unlock:
2543                 spin_unlock(ptl);
2544         }
2545         /*
2546          * mmu_gather ran out of room to batch pages, we break out of
2547          * the PTE lock to avoid doing the potential expensive TLB invalidate
2548          * and page-free while holding it.
2549          */
2550         if (force_flush) {
2551                 force_flush = 0;
2552                 tlb_flush_mmu(tlb);
2553                 if (address < end && !ref_page)
2554                         goto again;
2555         }
2556         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2557         tlb_end_vma(tlb, vma);
2558 }
2559
2560 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2561                           struct vm_area_struct *vma, unsigned long start,
2562                           unsigned long end, struct page *ref_page)
2563 {
2564         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2565
2566         /*
2567          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2568          * test will fail on a vma being torn down, and not grab a page table
2569          * on its way out.  We're lucky that the flag has such an appropriate
2570          * name, and can in fact be safely cleared here. We could clear it
2571          * before the __unmap_hugepage_range above, but all that's necessary
2572          * is to clear it before releasing the i_mmap_mutex. This works
2573          * because in the context this is called, the VMA is about to be
2574          * destroyed and the i_mmap_mutex is held.
2575          */
2576         vma->vm_flags &= ~VM_MAYSHARE;
2577 }
2578
2579 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2580                           unsigned long end, struct page *ref_page)
2581 {
2582         struct mm_struct *mm;
2583         struct mmu_gather tlb;
2584
2585         mm = vma->vm_mm;
2586
2587         tlb_gather_mmu(&tlb, mm, start, end);
2588         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2589         tlb_finish_mmu(&tlb, start, end);
2590 }
2591
2592 /*
2593  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2594  * mappping it owns the reserve page for. The intention is to unmap the page
2595  * from other VMAs and let the children be SIGKILLed if they are faulting the
2596  * same region.
2597  */
2598 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2599                                 struct page *page, unsigned long address)
2600 {
2601         struct hstate *h = hstate_vma(vma);
2602         struct vm_area_struct *iter_vma;
2603         struct address_space *mapping;
2604         pgoff_t pgoff;
2605
2606         /*
2607          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2608          * from page cache lookup which is in HPAGE_SIZE units.
2609          */
2610         address = address & huge_page_mask(h);
2611         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2612                         vma->vm_pgoff;
2613         mapping = file_inode(vma->vm_file)->i_mapping;
2614
2615         /*
2616          * Take the mapping lock for the duration of the table walk. As
2617          * this mapping should be shared between all the VMAs,
2618          * __unmap_hugepage_range() is called as the lock is already held
2619          */
2620         mutex_lock(&mapping->i_mmap_mutex);
2621         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2622                 /* Do not unmap the current VMA */
2623                 if (iter_vma == vma)
2624                         continue;
2625
2626                 /*
2627                  * Unmap the page from other VMAs without their own reserves.
2628                  * They get marked to be SIGKILLed if they fault in these
2629                  * areas. This is because a future no-page fault on this VMA
2630                  * could insert a zeroed page instead of the data existing
2631                  * from the time of fork. This would look like data corruption
2632                  */
2633                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2634                         unmap_hugepage_range(iter_vma, address,
2635                                              address + huge_page_size(h), page);
2636         }
2637         mutex_unlock(&mapping->i_mmap_mutex);
2638
2639         return 1;
2640 }
2641
2642 /*
2643  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2644  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2645  * cannot race with other handlers or page migration.
2646  * Keep the pte_same checks anyway to make transition from the mutex easier.
2647  */
2648 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2649                         unsigned long address, pte_t *ptep, pte_t pte,
2650                         struct page *pagecache_page, spinlock_t *ptl)
2651 {
2652         struct hstate *h = hstate_vma(vma);
2653         struct page *old_page, *new_page;
2654         int outside_reserve = 0;
2655         unsigned long mmun_start;       /* For mmu_notifiers */
2656         unsigned long mmun_end;         /* For mmu_notifiers */
2657
2658         old_page = pte_page(pte);
2659
2660 retry_avoidcopy:
2661         /* If no-one else is actually using this page, avoid the copy
2662          * and just make the page writable */
2663         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2664                 page_move_anon_rmap(old_page, vma, address);
2665                 set_huge_ptep_writable(vma, address, ptep);
2666                 return 0;
2667         }
2668
2669         /*
2670          * If the process that created a MAP_PRIVATE mapping is about to
2671          * perform a COW due to a shared page count, attempt to satisfy
2672          * the allocation without using the existing reserves. The pagecache
2673          * page is used to determine if the reserve at this address was
2674          * consumed or not. If reserves were used, a partial faulted mapping
2675          * at the time of fork() could consume its reserves on COW instead
2676          * of the full address range.
2677          */
2678         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2679                         old_page != pagecache_page)
2680                 outside_reserve = 1;
2681
2682         page_cache_get(old_page);
2683
2684         /* Drop page table lock as buddy allocator may be called */
2685         spin_unlock(ptl);
2686         new_page = alloc_huge_page(vma, address, outside_reserve);
2687
2688         if (IS_ERR(new_page)) {
2689                 long err = PTR_ERR(new_page);
2690                 page_cache_release(old_page);
2691
2692                 /*
2693                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2694                  * it is due to references held by a child and an insufficient
2695                  * huge page pool. To guarantee the original mappers
2696                  * reliability, unmap the page from child processes. The child
2697                  * may get SIGKILLed if it later faults.
2698                  */
2699                 if (outside_reserve) {
2700                         BUG_ON(huge_pte_none(pte));
2701                         if (unmap_ref_private(mm, vma, old_page, address)) {
2702                                 BUG_ON(huge_pte_none(pte));
2703                                 spin_lock(ptl);
2704                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2705                                 if (likely(ptep &&
2706                                            pte_same(huge_ptep_get(ptep), pte)))
2707                                         goto retry_avoidcopy;
2708                                 /*
2709                                  * race occurs while re-acquiring page table
2710                                  * lock, and our job is done.
2711                                  */
2712                                 return 0;
2713                         }
2714                         WARN_ON_ONCE(1);
2715                 }
2716
2717                 /* Caller expects lock to be held */
2718                 spin_lock(ptl);
2719                 if (err == -ENOMEM)
2720                         return VM_FAULT_OOM;
2721                 else
2722                         return VM_FAULT_SIGBUS;
2723         }
2724
2725         /*
2726          * When the original hugepage is shared one, it does not have
2727          * anon_vma prepared.
2728          */
2729         if (unlikely(anon_vma_prepare(vma))) {
2730                 page_cache_release(new_page);
2731                 page_cache_release(old_page);
2732                 /* Caller expects lock to be held */
2733                 spin_lock(ptl);
2734                 return VM_FAULT_OOM;
2735         }
2736
2737         copy_user_huge_page(new_page, old_page, address, vma,
2738                             pages_per_huge_page(h));
2739         __SetPageUptodate(new_page);
2740
2741         mmun_start = address & huge_page_mask(h);
2742         mmun_end = mmun_start + huge_page_size(h);
2743         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2744         /*
2745          * Retake the page table lock to check for racing updates
2746          * before the page tables are altered
2747          */
2748         spin_lock(ptl);
2749         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2750         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2751                 ClearPagePrivate(new_page);
2752
2753                 /* Break COW */
2754                 huge_ptep_clear_flush(vma, address, ptep);
2755                 set_huge_pte_at(mm, address, ptep,
2756                                 make_huge_pte(vma, new_page, 1));
2757                 page_remove_rmap(old_page);
2758                 hugepage_add_new_anon_rmap(new_page, vma, address);
2759                 /* Make the old page be freed below */
2760                 new_page = old_page;
2761         }
2762         spin_unlock(ptl);
2763         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764         page_cache_release(new_page);
2765         page_cache_release(old_page);
2766
2767         /* Caller expects lock to be held */
2768         spin_lock(ptl);
2769         return 0;
2770 }
2771
2772 /* Return the pagecache page at a given address within a VMA */
2773 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2774                         struct vm_area_struct *vma, unsigned long address)
2775 {
2776         struct address_space *mapping;
2777         pgoff_t idx;
2778
2779         mapping = vma->vm_file->f_mapping;
2780         idx = vma_hugecache_offset(h, vma, address);
2781
2782         return find_lock_page(mapping, idx);
2783 }
2784
2785 /*
2786  * Return whether there is a pagecache page to back given address within VMA.
2787  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2788  */
2789 static bool hugetlbfs_pagecache_present(struct hstate *h,
2790                         struct vm_area_struct *vma, unsigned long address)
2791 {
2792         struct address_space *mapping;
2793         pgoff_t idx;
2794         struct page *page;
2795
2796         mapping = vma->vm_file->f_mapping;
2797         idx = vma_hugecache_offset(h, vma, address);
2798
2799         page = find_get_page(mapping, idx);
2800         if (page)
2801                 put_page(page);
2802         return page != NULL;
2803 }
2804
2805 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2806                            struct address_space *mapping, pgoff_t idx,
2807                            unsigned long address, pte_t *ptep, unsigned int flags)
2808 {
2809         struct hstate *h = hstate_vma(vma);
2810         int ret = VM_FAULT_SIGBUS;
2811         int anon_rmap = 0;
2812         unsigned long size;
2813         struct page *page;
2814         pte_t new_pte;
2815         spinlock_t *ptl;
2816
2817         /*
2818          * Currently, we are forced to kill the process in the event the
2819          * original mapper has unmapped pages from the child due to a failed
2820          * COW. Warn that such a situation has occurred as it may not be obvious
2821          */
2822         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2823                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2824                            current->pid);
2825                 return ret;
2826         }
2827
2828         /*
2829          * Use page lock to guard against racing truncation
2830          * before we get page_table_lock.
2831          */
2832 retry:
2833         page = find_lock_page(mapping, idx);
2834         if (!page) {
2835                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2836                 if (idx >= size)
2837                         goto out;
2838                 page = alloc_huge_page(vma, address, 0);
2839                 if (IS_ERR(page)) {
2840                         ret = PTR_ERR(page);
2841                         if (ret == -ENOMEM)
2842                                 ret = VM_FAULT_OOM;
2843                         else
2844                                 ret = VM_FAULT_SIGBUS;
2845                         goto out;
2846                 }
2847                 clear_huge_page(page, address, pages_per_huge_page(h));
2848                 __SetPageUptodate(page);
2849
2850                 if (vma->vm_flags & VM_MAYSHARE) {
2851                         int err;
2852                         struct inode *inode = mapping->host;
2853
2854                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2855                         if (err) {
2856                                 put_page(page);
2857                                 if (err == -EEXIST)
2858                                         goto retry;
2859                                 goto out;
2860                         }
2861                         ClearPagePrivate(page);
2862
2863                         spin_lock(&inode->i_lock);
2864                         inode->i_blocks += blocks_per_huge_page(h);
2865                         spin_unlock(&inode->i_lock);
2866                 } else {
2867                         lock_page(page);
2868                         if (unlikely(anon_vma_prepare(vma))) {
2869                                 ret = VM_FAULT_OOM;
2870                                 goto backout_unlocked;
2871                         }
2872                         anon_rmap = 1;
2873                 }
2874         } else {
2875                 /*
2876                  * If memory error occurs between mmap() and fault, some process
2877                  * don't have hwpoisoned swap entry for errored virtual address.
2878                  * So we need to block hugepage fault by PG_hwpoison bit check.
2879                  */
2880                 if (unlikely(PageHWPoison(page))) {
2881                         ret = VM_FAULT_HWPOISON |
2882                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2883                         goto backout_unlocked;
2884                 }
2885         }
2886
2887         /*
2888          * If we are going to COW a private mapping later, we examine the
2889          * pending reservations for this page now. This will ensure that
2890          * any allocations necessary to record that reservation occur outside
2891          * the spinlock.
2892          */
2893         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2894                 if (vma_needs_reservation(h, vma, address) < 0) {
2895                         ret = VM_FAULT_OOM;
2896                         goto backout_unlocked;
2897                 }
2898
2899         ptl = huge_pte_lockptr(h, mm, ptep);
2900         spin_lock(ptl);
2901         size = i_size_read(mapping->host) >> huge_page_shift(h);
2902         if (idx >= size)
2903                 goto backout;
2904
2905         ret = 0;
2906         if (!huge_pte_none(huge_ptep_get(ptep)))
2907                 goto backout;
2908
2909         if (anon_rmap) {
2910                 ClearPagePrivate(page);
2911                 hugepage_add_new_anon_rmap(page, vma, address);
2912         } else
2913                 page_dup_rmap(page);
2914         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2915                                 && (vma->vm_flags & VM_SHARED)));
2916         set_huge_pte_at(mm, address, ptep, new_pte);
2917
2918         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2919                 /* Optimization, do the COW without a second fault */
2920                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2921         }
2922
2923         spin_unlock(ptl);
2924         unlock_page(page);
2925 out:
2926         return ret;
2927
2928 backout:
2929         spin_unlock(ptl);
2930 backout_unlocked:
2931         unlock_page(page);
2932         put_page(page);
2933         goto out;
2934 }
2935
2936 #ifdef CONFIG_SMP
2937 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2938                             struct vm_area_struct *vma,
2939                             struct address_space *mapping,
2940                             pgoff_t idx, unsigned long address)
2941 {
2942         unsigned long key[2];
2943         u32 hash;
2944
2945         if (vma->vm_flags & VM_SHARED) {
2946                 key[0] = (unsigned long) mapping;
2947                 key[1] = idx;
2948         } else {
2949                 key[0] = (unsigned long) mm;
2950                 key[1] = address >> huge_page_shift(h);
2951         }
2952
2953         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2954
2955         return hash & (num_fault_mutexes - 1);
2956 }
2957 #else
2958 /*
2959  * For uniprocesor systems we always use a single mutex, so just
2960  * return 0 and avoid the hashing overhead.
2961  */
2962 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2963                             struct vm_area_struct *vma,
2964                             struct address_space *mapping,
2965                             pgoff_t idx, unsigned long address)
2966 {
2967         return 0;
2968 }
2969 #endif
2970
2971 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2972                         unsigned long address, unsigned int flags)
2973 {
2974         pte_t *ptep, entry;
2975         spinlock_t *ptl;
2976         int ret;
2977         u32 hash;
2978         pgoff_t idx;
2979         struct page *page = NULL;
2980         struct page *pagecache_page = NULL;
2981         struct hstate *h = hstate_vma(vma);
2982         struct address_space *mapping;
2983
2984         address &= huge_page_mask(h);
2985
2986         ptep = huge_pte_offset(mm, address);
2987         if (ptep) {
2988                 entry = huge_ptep_get(ptep);
2989                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2990                         migration_entry_wait_huge(vma, mm, ptep);
2991                         return 0;
2992                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2993                         return VM_FAULT_HWPOISON_LARGE |
2994                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2995         }
2996
2997         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2998         if (!ptep)
2999                 return VM_FAULT_OOM;
3000
3001         mapping = vma->vm_file->f_mapping;
3002         idx = vma_hugecache_offset(h, vma, address);
3003
3004         /*
3005          * Serialize hugepage allocation and instantiation, so that we don't
3006          * get spurious allocation failures if two CPUs race to instantiate
3007          * the same page in the page cache.
3008          */
3009         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3010         mutex_lock(&htlb_fault_mutex_table[hash]);
3011
3012         entry = huge_ptep_get(ptep);
3013         if (huge_pte_none(entry)) {
3014                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3015                 goto out_mutex;
3016         }
3017
3018         ret = 0;
3019
3020         /*
3021          * If we are going to COW the mapping later, we examine the pending
3022          * reservations for this page now. This will ensure that any
3023          * allocations necessary to record that reservation occur outside the
3024          * spinlock. For private mappings, we also lookup the pagecache
3025          * page now as it is used to determine if a reservation has been
3026          * consumed.
3027          */
3028         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3029                 if (vma_needs_reservation(h, vma, address) < 0) {
3030                         ret = VM_FAULT_OOM;
3031                         goto out_mutex;
3032                 }
3033
3034                 if (!(vma->vm_flags & VM_MAYSHARE))
3035                         pagecache_page = hugetlbfs_pagecache_page(h,
3036                                                                 vma, address);
3037         }
3038
3039         /*
3040          * hugetlb_cow() requires page locks of pte_page(entry) and
3041          * pagecache_page, so here we need take the former one
3042          * when page != pagecache_page or !pagecache_page.
3043          * Note that locking order is always pagecache_page -> page,
3044          * so no worry about deadlock.
3045          */
3046         page = pte_page(entry);
3047         get_page(page);
3048         if (page != pagecache_page)
3049                 lock_page(page);
3050
3051         ptl = huge_pte_lockptr(h, mm, ptep);
3052         spin_lock(ptl);
3053         /* Check for a racing update before calling hugetlb_cow */
3054         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3055                 goto out_ptl;
3056
3057
3058         if (flags & FAULT_FLAG_WRITE) {
3059                 if (!huge_pte_write(entry)) {
3060                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3061                                         pagecache_page, ptl);
3062                         goto out_ptl;
3063                 }
3064                 entry = huge_pte_mkdirty(entry);
3065         }
3066         entry = pte_mkyoung(entry);
3067         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3068                                                 flags & FAULT_FLAG_WRITE))
3069                 update_mmu_cache(vma, address, ptep);
3070
3071 out_ptl:
3072         spin_unlock(ptl);
3073
3074         if (pagecache_page) {
3075                 unlock_page(pagecache_page);
3076                 put_page(pagecache_page);
3077         }
3078         if (page != pagecache_page)
3079                 unlock_page(page);
3080         put_page(page);
3081
3082 out_mutex:
3083         mutex_unlock(&htlb_fault_mutex_table[hash]);
3084         return ret;
3085 }
3086
3087 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3088                          struct page **pages, struct vm_area_struct **vmas,
3089                          unsigned long *position, unsigned long *nr_pages,
3090                          long i, unsigned int flags)
3091 {
3092         unsigned long pfn_offset;
3093         unsigned long vaddr = *position;
3094         unsigned long remainder = *nr_pages;
3095         struct hstate *h = hstate_vma(vma);
3096
3097         while (vaddr < vma->vm_end && remainder) {
3098                 pte_t *pte;
3099                 spinlock_t *ptl = NULL;
3100                 int absent;
3101                 struct page *page;
3102
3103                 /*
3104                  * Some archs (sparc64, sh*) have multiple pte_ts to
3105                  * each hugepage.  We have to make sure we get the
3106                  * first, for the page indexing below to work.
3107                  *
3108                  * Note that page table lock is not held when pte is null.
3109                  */
3110                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3111                 if (pte)
3112                         ptl = huge_pte_lock(h, mm, pte);
3113                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3114
3115                 /*
3116                  * When coredumping, it suits get_dump_page if we just return
3117                  * an error where there's an empty slot with no huge pagecache
3118                  * to back it.  This way, we avoid allocating a hugepage, and
3119                  * the sparse dumpfile avoids allocating disk blocks, but its
3120                  * huge holes still show up with zeroes where they need to be.
3121                  */
3122                 if (absent && (flags & FOLL_DUMP) &&
3123                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3124                         if (pte)
3125                                 spin_unlock(ptl);
3126                         remainder = 0;
3127                         break;
3128                 }
3129
3130                 /*
3131                  * We need call hugetlb_fault for both hugepages under migration
3132                  * (in which case hugetlb_fault waits for the migration,) and
3133                  * hwpoisoned hugepages (in which case we need to prevent the
3134                  * caller from accessing to them.) In order to do this, we use
3135                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3136                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3137                  * both cases, and because we can't follow correct pages
3138                  * directly from any kind of swap entries.
3139                  */
3140                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3141                     ((flags & FOLL_WRITE) &&
3142                       !huge_pte_write(huge_ptep_get(pte)))) {
3143                         int ret;
3144
3145                         if (pte)
3146                                 spin_unlock(ptl);
3147                         ret = hugetlb_fault(mm, vma, vaddr,
3148                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3149                         if (!(ret & VM_FAULT_ERROR))
3150                                 continue;
3151
3152                         remainder = 0;
3153                         break;
3154                 }
3155
3156                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3157                 page = pte_page(huge_ptep_get(pte));
3158 same_page:
3159                 if (pages) {
3160                         pages[i] = mem_map_offset(page, pfn_offset);
3161                         get_page_foll(pages[i]);
3162                 }
3163
3164                 if (vmas)
3165                         vmas[i] = vma;
3166
3167                 vaddr += PAGE_SIZE;
3168                 ++pfn_offset;
3169                 --remainder;
3170                 ++i;
3171                 if (vaddr < vma->vm_end && remainder &&
3172                                 pfn_offset < pages_per_huge_page(h)) {
3173                         /*
3174                          * We use pfn_offset to avoid touching the pageframes
3175                          * of this compound page.
3176                          */
3177                         goto same_page;
3178                 }
3179                 spin_unlock(ptl);
3180         }
3181         *nr_pages = remainder;
3182         *position = vaddr;
3183
3184         return i ? i : -EFAULT;
3185 }
3186
3187 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3188                 unsigned long address, unsigned long end, pgprot_t newprot)
3189 {
3190         struct mm_struct *mm = vma->vm_mm;
3191         unsigned long start = address;
3192         pte_t *ptep;
3193         pte_t pte;
3194         struct hstate *h = hstate_vma(vma);
3195         unsigned long pages = 0;
3196
3197         BUG_ON(address >= end);
3198         flush_cache_range(vma, address, end);
3199
3200         mmu_notifier_invalidate_range_start(mm, start, end);
3201         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3202         for (; address < end; address += huge_page_size(h)) {
3203                 spinlock_t *ptl;
3204                 ptep = huge_pte_offset(mm, address);
3205                 if (!ptep)
3206                         continue;
3207                 ptl = huge_pte_lock(h, mm, ptep);
3208                 if (huge_pmd_unshare(mm, &address, ptep)) {
3209                         pages++;
3210                         spin_unlock(ptl);
3211                         continue;
3212                 }
3213                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3214                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3215                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3216                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3217                         set_huge_pte_at(mm, address, ptep, pte);
3218                         pages++;
3219                 }
3220                 spin_unlock(ptl);
3221         }
3222         /*
3223          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3224          * may have cleared our pud entry and done put_page on the page table:
3225          * once we release i_mmap_mutex, another task can do the final put_page
3226          * and that page table be reused and filled with junk.
3227          */
3228         flush_tlb_range(vma, start, end);
3229         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3230         mmu_notifier_invalidate_range_end(mm, start, end);
3231
3232         return pages << h->order;
3233 }
3234
3235 int hugetlb_reserve_pages(struct inode *inode,
3236                                         long from, long to,
3237                                         struct vm_area_struct *vma,
3238                                         vm_flags_t vm_flags)
3239 {
3240         long ret, chg;
3241         struct hstate *h = hstate_inode(inode);
3242         struct hugepage_subpool *spool = subpool_inode(inode);
3243         struct resv_map *resv_map;
3244
3245         /*
3246          * Only apply hugepage reservation if asked. At fault time, an
3247          * attempt will be made for VM_NORESERVE to allocate a page
3248          * without using reserves
3249          */
3250         if (vm_flags & VM_NORESERVE)
3251                 return 0;
3252
3253         /*
3254          * Shared mappings base their reservation on the number of pages that
3255          * are already allocated on behalf of the file. Private mappings need
3256          * to reserve the full area even if read-only as mprotect() may be
3257          * called to make the mapping read-write. Assume !vma is a shm mapping
3258          */
3259         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3260                 resv_map = inode_resv_map(inode);
3261
3262                 chg = region_chg(resv_map, from, to);
3263
3264         } else {
3265                 resv_map = resv_map_alloc();
3266                 if (!resv_map)
3267                         return -ENOMEM;
3268
3269                 chg = to - from;
3270
3271                 set_vma_resv_map(vma, resv_map);
3272                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3273         }
3274
3275         if (chg < 0) {
3276                 ret = chg;
3277                 goto out_err;
3278         }
3279
3280         /* There must be enough pages in the subpool for the mapping */
3281         if (hugepage_subpool_get_pages(spool, chg)) {
3282                 ret = -ENOSPC;
3283                 goto out_err;
3284         }
3285
3286         /*
3287          * Check enough hugepages are available for the reservation.
3288          * Hand the pages back to the subpool if there are not
3289          */
3290         ret = hugetlb_acct_memory(h, chg);
3291         if (ret < 0) {
3292                 hugepage_subpool_put_pages(spool, chg);
3293                 goto out_err;
3294         }
3295
3296         /*
3297          * Account for the reservations made. Shared mappings record regions
3298          * that have reservations as they are shared by multiple VMAs.
3299          * When the last VMA disappears, the region map says how much
3300          * the reservation was and the page cache tells how much of
3301          * the reservation was consumed. Private mappings are per-VMA and
3302          * only the consumed reservations are tracked. When the VMA
3303          * disappears, the original reservation is the VMA size and the
3304          * consumed reservations are stored in the map. Hence, nothing
3305          * else has to be done for private mappings here
3306          */
3307         if (!vma || vma->vm_flags & VM_MAYSHARE)
3308                 region_add(resv_map, from, to);
3309         return 0;
3310 out_err:
3311         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3312                 kref_put(&resv_map->refs, resv_map_release);
3313         return ret;
3314 }
3315
3316 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3317 {
3318         struct hstate *h = hstate_inode(inode);
3319         struct resv_map *resv_map = inode_resv_map(inode);
3320         long chg = 0;
3321         struct hugepage_subpool *spool = subpool_inode(inode);
3322
3323         if (resv_map)
3324                 chg = region_truncate(resv_map, offset);
3325         spin_lock(&inode->i_lock);
3326         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3327         spin_unlock(&inode->i_lock);
3328
3329         hugepage_subpool_put_pages(spool, (chg - freed));
3330         hugetlb_acct_memory(h, -(chg - freed));
3331 }
3332
3333 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3334 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3335                                 struct vm_area_struct *vma,
3336                                 unsigned long addr, pgoff_t idx)
3337 {
3338         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3339                                 svma->vm_start;
3340         unsigned long sbase = saddr & PUD_MASK;
3341         unsigned long s_end = sbase + PUD_SIZE;
3342
3343         /* Allow segments to share if only one is marked locked */
3344         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3345         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3346
3347         /*
3348          * match the virtual addresses, permission and the alignment of the
3349          * page table page.
3350          */
3351         if (pmd_index(addr) != pmd_index(saddr) ||
3352             vm_flags != svm_flags ||
3353             sbase < svma->vm_start || svma->vm_end < s_end)
3354                 return 0;
3355
3356         return saddr;
3357 }
3358
3359 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3360 {
3361         unsigned long base = addr & PUD_MASK;
3362         unsigned long end = base + PUD_SIZE;
3363
3364         /*
3365          * check on proper vm_flags and page table alignment
3366          */
3367         if (vma->vm_flags & VM_MAYSHARE &&
3368             vma->vm_start <= base && end <= vma->vm_end)
3369                 return 1;
3370         return 0;
3371 }
3372
3373 /*
3374  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3375  * and returns the corresponding pte. While this is not necessary for the
3376  * !shared pmd case because we can allocate the pmd later as well, it makes the
3377  * code much cleaner. pmd allocation is essential for the shared case because
3378  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3379  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3380  * bad pmd for sharing.
3381  */
3382 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3383 {
3384         struct vm_area_struct *vma = find_vma(mm, addr);
3385         struct address_space *mapping = vma->vm_file->f_mapping;
3386         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3387                         vma->vm_pgoff;
3388         struct vm_area_struct *svma;
3389         unsigned long saddr;
3390         pte_t *spte = NULL;
3391         pte_t *pte;
3392         spinlock_t *ptl;
3393
3394         if (!vma_shareable(vma, addr))
3395                 return (pte_t *)pmd_alloc(mm, pud, addr);
3396
3397         mutex_lock(&mapping->i_mmap_mutex);
3398         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3399                 if (svma == vma)
3400                         continue;
3401
3402                 saddr = page_table_shareable(svma, vma, addr, idx);
3403                 if (saddr) {
3404                         spte = huge_pte_offset(svma->vm_mm, saddr);
3405                         if (spte) {
3406                                 get_page(virt_to_page(spte));
3407                                 break;
3408                         }
3409                 }
3410         }
3411
3412         if (!spte)
3413                 goto out;
3414
3415         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3416         spin_lock(ptl);
3417         if (pud_none(*pud))
3418                 pud_populate(mm, pud,
3419                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3420         else
3421                 put_page(virt_to_page(spte));
3422         spin_unlock(ptl);
3423 out:
3424         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3425         mutex_unlock(&mapping->i_mmap_mutex);
3426         return pte;
3427 }
3428
3429 /*
3430  * unmap huge page backed by shared pte.
3431  *
3432  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3433  * indicated by page_count > 1, unmap is achieved by clearing pud and
3434  * decrementing the ref count. If count == 1, the pte page is not shared.
3435  *
3436  * called with page table lock held.
3437  *
3438  * returns: 1 successfully unmapped a shared pte page
3439  *          0 the underlying pte page is not shared, or it is the last user
3440  */
3441 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3442 {
3443         pgd_t *pgd = pgd_offset(mm, *addr);
3444         pud_t *pud = pud_offset(pgd, *addr);
3445
3446         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3447         if (page_count(virt_to_page(ptep)) == 1)
3448                 return 0;
3449
3450         pud_clear(pud);
3451         put_page(virt_to_page(ptep));
3452         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3453         return 1;
3454 }
3455 #define want_pmd_share()        (1)
3456 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3457 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3458 {
3459         return NULL;
3460 }
3461 #define want_pmd_share()        (0)
3462 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3463
3464 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3465 pte_t *huge_pte_alloc(struct mm_struct *mm,
3466                         unsigned long addr, unsigned long sz)
3467 {
3468         pgd_t *pgd;
3469         pud_t *pud;
3470         pte_t *pte = NULL;
3471
3472         pgd = pgd_offset(mm, addr);
3473         pud = pud_alloc(mm, pgd, addr);
3474         if (pud) {
3475                 if (sz == PUD_SIZE) {
3476                         pte = (pte_t *)pud;
3477                 } else {
3478                         BUG_ON(sz != PMD_SIZE);
3479                         if (want_pmd_share() && pud_none(*pud))
3480                                 pte = huge_pmd_share(mm, addr, pud);
3481                         else
3482                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3483                 }
3484         }
3485         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3486
3487         return pte;
3488 }
3489
3490 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3491 {
3492         pgd_t *pgd;
3493         pud_t *pud;
3494         pmd_t *pmd = NULL;
3495
3496         pgd = pgd_offset(mm, addr);
3497         if (pgd_present(*pgd)) {
3498                 pud = pud_offset(pgd, addr);
3499                 if (pud_present(*pud)) {
3500                         if (pud_huge(*pud))
3501                                 return (pte_t *)pud;
3502                         pmd = pmd_offset(pud, addr);
3503                 }
3504         }
3505         return (pte_t *) pmd;
3506 }
3507
3508 struct page *
3509 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3510                 pmd_t *pmd, int write)
3511 {
3512         struct page *page;
3513
3514         page = pte_page(*(pte_t *)pmd);
3515         if (page)
3516                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3517         return page;
3518 }
3519
3520 struct page *
3521 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3522                 pud_t *pud, int write)
3523 {
3524         struct page *page;
3525
3526         page = pte_page(*(pte_t *)pud);
3527         if (page)
3528                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3529         return page;
3530 }
3531
3532 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
3534 /* Can be overriden by architectures */
3535 struct page * __weak
3536 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3537                pud_t *pud, int write)
3538 {
3539         BUG();
3540         return NULL;
3541 }
3542
3543 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3544
3545 #ifdef CONFIG_MEMORY_FAILURE
3546
3547 /* Should be called in hugetlb_lock */
3548 static int is_hugepage_on_freelist(struct page *hpage)
3549 {
3550         struct page *page;
3551         struct page *tmp;
3552         struct hstate *h = page_hstate(hpage);
3553         int nid = page_to_nid(hpage);
3554
3555         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3556                 if (page == hpage)
3557                         return 1;
3558         return 0;
3559 }
3560
3561 /*
3562  * This function is called from memory failure code.
3563  * Assume the caller holds page lock of the head page.
3564  */
3565 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3566 {
3567         struct hstate *h = page_hstate(hpage);
3568         int nid = page_to_nid(hpage);
3569         int ret = -EBUSY;
3570
3571         spin_lock(&hugetlb_lock);
3572         if (is_hugepage_on_freelist(hpage)) {
3573                 /*
3574                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3575                  * but dangling hpage->lru can trigger list-debug warnings
3576                  * (this happens when we call unpoison_memory() on it),
3577                  * so let it point to itself with list_del_init().
3578                  */
3579                 list_del_init(&hpage->lru);
3580                 set_page_refcounted(hpage);
3581                 h->free_huge_pages--;
3582                 h->free_huge_pages_node[nid]--;
3583                 ret = 0;
3584         }
3585         spin_unlock(&hugetlb_lock);
3586         return ret;
3587 }
3588 #endif
3589
3590 bool isolate_huge_page(struct page *page, struct list_head *list)
3591 {
3592         VM_BUG_ON_PAGE(!PageHead(page), page);
3593         if (!get_page_unless_zero(page))
3594                 return false;
3595         spin_lock(&hugetlb_lock);
3596         list_move_tail(&page->lru, list);
3597         spin_unlock(&hugetlb_lock);
3598         return true;
3599 }
3600
3601 void putback_active_hugepage(struct page *page)
3602 {
3603         VM_BUG_ON_PAGE(!PageHead(page), page);
3604         spin_lock(&hugetlb_lock);
3605         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3606         spin_unlock(&hugetlb_lock);
3607         put_page(page);
3608 }
3609
3610 bool is_hugepage_active(struct page *page)
3611 {
3612         VM_BUG_ON_PAGE(!PageHuge(page), page);
3613         /*
3614          * This function can be called for a tail page because the caller,
3615          * scan_movable_pages, scans through a given pfn-range which typically
3616          * covers one memory block. In systems using gigantic hugepage (1GB
3617          * for x86_64,) a hugepage is larger than a memory block, and we don't
3618          * support migrating such large hugepages for now, so return false
3619          * when called for tail pages.
3620          */
3621         if (PageTail(page))
3622                 return false;
3623         /*
3624          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3625          * so we should return false for them.
3626          */
3627         if (unlikely(PageHWPoison(page)))
3628                 return false;
3629         return page_count(page) > 0;
3630 }