Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 arch_clear_hugepage_flags(page);
637                 enqueue_huge_page(h, page);
638         }
639         spin_unlock(&hugetlb_lock);
640         hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645         set_compound_page_dtor(page, free_huge_page);
646         spin_lock(&hugetlb_lock);
647         h->nr_huge_pages++;
648         h->nr_huge_pages_node[nid]++;
649         spin_unlock(&hugetlb_lock);
650         put_page(page); /* free it into the hugepage allocator */
651 }
652
653 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 {
655         int i;
656         int nr_pages = 1 << order;
657         struct page *p = page + 1;
658
659         /* we rely on prep_new_huge_page to set the destructor */
660         set_compound_order(page, order);
661         __SetPageHead(page);
662         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
663                 __SetPageTail(p);
664                 set_page_count(p, 0);
665                 p->first_page = page;
666         }
667 }
668
669 int PageHuge(struct page *page)
670 {
671         compound_page_dtor *dtor;
672
673         if (!PageCompound(page))
674                 return 0;
675
676         page = compound_head(page);
677         dtor = get_compound_page_dtor(page);
678
679         return dtor == free_huge_page;
680 }
681 EXPORT_SYMBOL_GPL(PageHuge);
682
683 /*
684  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
685  * normal or transparent huge pages.
686  */
687 int PageHeadHuge(struct page *page_head)
688 {
689         compound_page_dtor *dtor;
690
691         if (!PageHead(page_head))
692                 return 0;
693
694         dtor = get_compound_page_dtor(page_head);
695
696         return dtor == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHeadHuge);
699
700 pgoff_t __basepage_index(struct page *page)
701 {
702         struct page *page_head = compound_head(page);
703         pgoff_t index = page_index(page_head);
704         unsigned long compound_idx;
705
706         if (!PageHuge(page_head))
707                 return page_index(page);
708
709         if (compound_order(page_head) >= MAX_ORDER)
710                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
711         else
712                 compound_idx = page - page_head;
713
714         return (index << compound_order(page_head)) + compound_idx;
715 }
716
717 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
718 {
719         struct page *page;
720
721         if (h->order >= MAX_ORDER)
722                 return NULL;
723
724         page = alloc_pages_exact_node(nid,
725                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
726                                                 __GFP_REPEAT|__GFP_NOWARN,
727                 huge_page_order(h));
728         if (page) {
729                 if (arch_prepare_hugepage(page)) {
730                         __free_pages(page, huge_page_order(h));
731                         return NULL;
732                 }
733                 prep_new_huge_page(h, page, nid);
734         }
735
736         return page;
737 }
738
739 /*
740  * common helper functions for hstate_next_node_to_{alloc|free}.
741  * We may have allocated or freed a huge page based on a different
742  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
743  * be outside of *nodes_allowed.  Ensure that we use an allowed
744  * node for alloc or free.
745  */
746 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
747 {
748         nid = next_node(nid, *nodes_allowed);
749         if (nid == MAX_NUMNODES)
750                 nid = first_node(*nodes_allowed);
751         VM_BUG_ON(nid >= MAX_NUMNODES);
752
753         return nid;
754 }
755
756 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
757 {
758         if (!node_isset(nid, *nodes_allowed))
759                 nid = next_node_allowed(nid, nodes_allowed);
760         return nid;
761 }
762
763 /*
764  * returns the previously saved node ["this node"] from which to
765  * allocate a persistent huge page for the pool and advance the
766  * next node from which to allocate, handling wrap at end of node
767  * mask.
768  */
769 static int hstate_next_node_to_alloc(struct hstate *h,
770                                         nodemask_t *nodes_allowed)
771 {
772         int nid;
773
774         VM_BUG_ON(!nodes_allowed);
775
776         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
777         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
778
779         return nid;
780 }
781
782 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
783 {
784         struct page *page;
785         int start_nid;
786         int next_nid;
787         int ret = 0;
788
789         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
790         next_nid = start_nid;
791
792         do {
793                 page = alloc_fresh_huge_page_node(h, next_nid);
794                 if (page) {
795                         ret = 1;
796                         break;
797                 }
798                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
799         } while (next_nid != start_nid);
800
801         if (ret)
802                 count_vm_event(HTLB_BUDDY_PGALLOC);
803         else
804                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
805
806         return ret;
807 }
808
809 /*
810  * helper for free_pool_huge_page() - return the previously saved
811  * node ["this node"] from which to free a huge page.  Advance the
812  * next node id whether or not we find a free huge page to free so
813  * that the next attempt to free addresses the next node.
814  */
815 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
816 {
817         int nid;
818
819         VM_BUG_ON(!nodes_allowed);
820
821         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
822         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
823
824         return nid;
825 }
826
827 /*
828  * Free huge page from pool from next node to free.
829  * Attempt to keep persistent huge pages more or less
830  * balanced over allowed nodes.
831  * Called with hugetlb_lock locked.
832  */
833 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
834                                                          bool acct_surplus)
835 {
836         int start_nid;
837         int next_nid;
838         int ret = 0;
839
840         start_nid = hstate_next_node_to_free(h, nodes_allowed);
841         next_nid = start_nid;
842
843         do {
844                 /*
845                  * If we're returning unused surplus pages, only examine
846                  * nodes with surplus pages.
847                  */
848                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
849                     !list_empty(&h->hugepage_freelists[next_nid])) {
850                         struct page *page =
851                                 list_entry(h->hugepage_freelists[next_nid].next,
852                                           struct page, lru);
853                         list_del(&page->lru);
854                         h->free_huge_pages--;
855                         h->free_huge_pages_node[next_nid]--;
856                         if (acct_surplus) {
857                                 h->surplus_huge_pages--;
858                                 h->surplus_huge_pages_node[next_nid]--;
859                         }
860                         update_and_free_page(h, page);
861                         ret = 1;
862                         break;
863                 }
864                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
865         } while (next_nid != start_nid);
866
867         return ret;
868 }
869
870 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
871 {
872         struct page *page;
873         unsigned int r_nid;
874
875         if (h->order >= MAX_ORDER)
876                 return NULL;
877
878         /*
879          * Assume we will successfully allocate the surplus page to
880          * prevent racing processes from causing the surplus to exceed
881          * overcommit
882          *
883          * This however introduces a different race, where a process B
884          * tries to grow the static hugepage pool while alloc_pages() is
885          * called by process A. B will only examine the per-node
886          * counters in determining if surplus huge pages can be
887          * converted to normal huge pages in adjust_pool_surplus(). A
888          * won't be able to increment the per-node counter, until the
889          * lock is dropped by B, but B doesn't drop hugetlb_lock until
890          * no more huge pages can be converted from surplus to normal
891          * state (and doesn't try to convert again). Thus, we have a
892          * case where a surplus huge page exists, the pool is grown, and
893          * the surplus huge page still exists after, even though it
894          * should just have been converted to a normal huge page. This
895          * does not leak memory, though, as the hugepage will be freed
896          * once it is out of use. It also does not allow the counters to
897          * go out of whack in adjust_pool_surplus() as we don't modify
898          * the node values until we've gotten the hugepage and only the
899          * per-node value is checked there.
900          */
901         spin_lock(&hugetlb_lock);
902         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
903                 spin_unlock(&hugetlb_lock);
904                 return NULL;
905         } else {
906                 h->nr_huge_pages++;
907                 h->surplus_huge_pages++;
908         }
909         spin_unlock(&hugetlb_lock);
910
911         if (nid == NUMA_NO_NODE)
912                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
913                                    __GFP_REPEAT|__GFP_NOWARN,
914                                    huge_page_order(h));
915         else
916                 page = alloc_pages_exact_node(nid,
917                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
918                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
919
920         if (page && arch_prepare_hugepage(page)) {
921                 __free_pages(page, huge_page_order(h));
922                 return NULL;
923         }
924
925         spin_lock(&hugetlb_lock);
926         if (page) {
927                 r_nid = page_to_nid(page);
928                 set_compound_page_dtor(page, free_huge_page);
929                 /*
930                  * We incremented the global counters already
931                  */
932                 h->nr_huge_pages_node[r_nid]++;
933                 h->surplus_huge_pages_node[r_nid]++;
934                 __count_vm_event(HTLB_BUDDY_PGALLOC);
935         } else {
936                 h->nr_huge_pages--;
937                 h->surplus_huge_pages--;
938                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
939         }
940         spin_unlock(&hugetlb_lock);
941
942         return page;
943 }
944
945 /*
946  * This allocation function is useful in the context where vma is irrelevant.
947  * E.g. soft-offlining uses this function because it only cares physical
948  * address of error page.
949  */
950 struct page *alloc_huge_page_node(struct hstate *h, int nid)
951 {
952         struct page *page;
953
954         spin_lock(&hugetlb_lock);
955         page = dequeue_huge_page_node(h, nid);
956         spin_unlock(&hugetlb_lock);
957
958         if (!page)
959                 page = alloc_buddy_huge_page(h, nid);
960
961         return page;
962 }
963
964 /*
965  * Increase the hugetlb pool such that it can accommodate a reservation
966  * of size 'delta'.
967  */
968 static int gather_surplus_pages(struct hstate *h, int delta)
969 {
970         struct list_head surplus_list;
971         struct page *page, *tmp;
972         int ret, i;
973         int needed, allocated;
974
975         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
976         if (needed <= 0) {
977                 h->resv_huge_pages += delta;
978                 return 0;
979         }
980
981         allocated = 0;
982         INIT_LIST_HEAD(&surplus_list);
983
984         ret = -ENOMEM;
985 retry:
986         spin_unlock(&hugetlb_lock);
987         for (i = 0; i < needed; i++) {
988                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
989                 if (!page)
990                         /*
991                          * We were not able to allocate enough pages to
992                          * satisfy the entire reservation so we free what
993                          * we've allocated so far.
994                          */
995                         goto free;
996
997                 list_add(&page->lru, &surplus_list);
998         }
999         allocated += needed;
1000
1001         /*
1002          * After retaking hugetlb_lock, we need to recalculate 'needed'
1003          * because either resv_huge_pages or free_huge_pages may have changed.
1004          */
1005         spin_lock(&hugetlb_lock);
1006         needed = (h->resv_huge_pages + delta) -
1007                         (h->free_huge_pages + allocated);
1008         if (needed > 0)
1009                 goto retry;
1010
1011         /*
1012          * The surplus_list now contains _at_least_ the number of extra pages
1013          * needed to accommodate the reservation.  Add the appropriate number
1014          * of pages to the hugetlb pool and free the extras back to the buddy
1015          * allocator.  Commit the entire reservation here to prevent another
1016          * process from stealing the pages as they are added to the pool but
1017          * before they are reserved.
1018          */
1019         needed += allocated;
1020         h->resv_huge_pages += delta;
1021         ret = 0;
1022
1023         /* Free the needed pages to the hugetlb pool */
1024         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1025                 if ((--needed) < 0)
1026                         break;
1027                 list_del(&page->lru);
1028                 /*
1029                  * This page is now managed by the hugetlb allocator and has
1030                  * no users -- drop the buddy allocator's reference.
1031                  */
1032                 put_page_testzero(page);
1033                 VM_BUG_ON(page_count(page));
1034                 enqueue_huge_page(h, page);
1035         }
1036         spin_unlock(&hugetlb_lock);
1037
1038         /* Free unnecessary surplus pages to the buddy allocator */
1039 free:
1040         if (!list_empty(&surplus_list)) {
1041                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1042                         list_del(&page->lru);
1043                         put_page(page);
1044                 }
1045         }
1046         spin_lock(&hugetlb_lock);
1047
1048         return ret;
1049 }
1050
1051 /*
1052  * When releasing a hugetlb pool reservation, any surplus pages that were
1053  * allocated to satisfy the reservation must be explicitly freed if they were
1054  * never used.
1055  * Called with hugetlb_lock held.
1056  */
1057 static void return_unused_surplus_pages(struct hstate *h,
1058                                         unsigned long unused_resv_pages)
1059 {
1060         unsigned long nr_pages;
1061
1062         /* Uncommit the reservation */
1063         h->resv_huge_pages -= unused_resv_pages;
1064
1065         /* Cannot return gigantic pages currently */
1066         if (h->order >= MAX_ORDER)
1067                 return;
1068
1069         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1070
1071         /*
1072          * We want to release as many surplus pages as possible, spread
1073          * evenly across all nodes with memory. Iterate across these nodes
1074          * until we can no longer free unreserved surplus pages. This occurs
1075          * when the nodes with surplus pages have no free pages.
1076          * free_pool_huge_page() will balance the the freed pages across the
1077          * on-line nodes with memory and will handle the hstate accounting.
1078          */
1079         while (nr_pages--) {
1080                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1081                         break;
1082                 cond_resched_lock(&hugetlb_lock);
1083         }
1084 }
1085
1086 /*
1087  * Determine if the huge page at addr within the vma has an associated
1088  * reservation.  Where it does not we will need to logically increase
1089  * reservation and actually increase subpool usage before an allocation
1090  * can occur.  Where any new reservation would be required the
1091  * reservation change is prepared, but not committed.  Once the page
1092  * has been allocated from the subpool and instantiated the change should
1093  * be committed via vma_commit_reservation.  No action is required on
1094  * failure.
1095  */
1096 static long vma_needs_reservation(struct hstate *h,
1097                         struct vm_area_struct *vma, unsigned long addr)
1098 {
1099         struct address_space *mapping = vma->vm_file->f_mapping;
1100         struct inode *inode = mapping->host;
1101
1102         if (vma->vm_flags & VM_MAYSHARE) {
1103                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104                 return region_chg(&inode->i_mapping->private_list,
1105                                                         idx, idx + 1);
1106
1107         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1108                 return 1;
1109
1110         } else  {
1111                 long err;
1112                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1113                 struct resv_map *reservations = vma_resv_map(vma);
1114
1115                 err = region_chg(&reservations->regions, idx, idx + 1);
1116                 if (err < 0)
1117                         return err;
1118                 return 0;
1119         }
1120 }
1121 static void vma_commit_reservation(struct hstate *h,
1122                         struct vm_area_struct *vma, unsigned long addr)
1123 {
1124         struct address_space *mapping = vma->vm_file->f_mapping;
1125         struct inode *inode = mapping->host;
1126
1127         if (vma->vm_flags & VM_MAYSHARE) {
1128                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1130
1131         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1132                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1133                 struct resv_map *reservations = vma_resv_map(vma);
1134
1135                 /* Mark this page used in the map. */
1136                 region_add(&reservations->regions, idx, idx + 1);
1137         }
1138 }
1139
1140 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1141                                     unsigned long addr, int avoid_reserve)
1142 {
1143         struct hugepage_subpool *spool = subpool_vma(vma);
1144         struct hstate *h = hstate_vma(vma);
1145         struct page *page;
1146         long chg;
1147
1148         /*
1149          * Processes that did not create the mapping will have no
1150          * reserves and will not have accounted against subpool
1151          * limit. Check that the subpool limit can be made before
1152          * satisfying the allocation MAP_NORESERVE mappings may also
1153          * need pages and subpool limit allocated allocated if no reserve
1154          * mapping overlaps.
1155          */
1156         chg = vma_needs_reservation(h, vma, addr);
1157         if (chg < 0)
1158                 return ERR_PTR(-VM_FAULT_OOM);
1159         if (chg)
1160                 if (hugepage_subpool_get_pages(spool, chg))
1161                         return ERR_PTR(-VM_FAULT_SIGBUS);
1162
1163         spin_lock(&hugetlb_lock);
1164         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1165         spin_unlock(&hugetlb_lock);
1166
1167         if (!page) {
1168                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1169                 if (!page) {
1170                         hugepage_subpool_put_pages(spool, chg);
1171                         return ERR_PTR(-VM_FAULT_SIGBUS);
1172                 }
1173         }
1174
1175         set_page_private(page, (unsigned long)spool);
1176
1177         vma_commit_reservation(h, vma, addr);
1178
1179         return page;
1180 }
1181
1182 int __weak alloc_bootmem_huge_page(struct hstate *h)
1183 {
1184         struct huge_bootmem_page *m;
1185         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1186
1187         while (nr_nodes) {
1188                 void *addr;
1189
1190                 addr = __alloc_bootmem_node_nopanic(
1191                                 NODE_DATA(hstate_next_node_to_alloc(h,
1192                                                 &node_states[N_HIGH_MEMORY])),
1193                                 huge_page_size(h), huge_page_size(h), 0);
1194
1195                 if (addr) {
1196                         /*
1197                          * Use the beginning of the huge page to store the
1198                          * huge_bootmem_page struct (until gather_bootmem
1199                          * puts them into the mem_map).
1200                          */
1201                         m = addr;
1202                         goto found;
1203                 }
1204                 nr_nodes--;
1205         }
1206         return 0;
1207
1208 found:
1209         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1210         /* Put them into a private list first because mem_map is not up yet */
1211         list_add(&m->list, &huge_boot_pages);
1212         m->hstate = h;
1213         return 1;
1214 }
1215
1216 static void prep_compound_huge_page(struct page *page, int order)
1217 {
1218         if (unlikely(order > (MAX_ORDER - 1)))
1219                 prep_compound_gigantic_page(page, order);
1220         else
1221                 prep_compound_page(page, order);
1222 }
1223
1224 /* Put bootmem huge pages into the standard lists after mem_map is up */
1225 static void __init gather_bootmem_prealloc(void)
1226 {
1227         struct huge_bootmem_page *m;
1228
1229         list_for_each_entry(m, &huge_boot_pages, list) {
1230                 struct hstate *h = m->hstate;
1231                 struct page *page;
1232
1233 #ifdef CONFIG_HIGHMEM
1234                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1235                 free_bootmem_late((unsigned long)m,
1236                                   sizeof(struct huge_bootmem_page));
1237 #else
1238                 page = virt_to_page(m);
1239 #endif
1240                 __ClearPageReserved(page);
1241                 WARN_ON(page_count(page) != 1);
1242                 prep_compound_huge_page(page, h->order);
1243                 prep_new_huge_page(h, page, page_to_nid(page));
1244                 /*
1245                  * If we had gigantic hugepages allocated at boot time, we need
1246                  * to restore the 'stolen' pages to totalram_pages in order to
1247                  * fix confusing memory reports from free(1) and another
1248                  * side-effects, like CommitLimit going negative.
1249                  */
1250                 if (h->order > (MAX_ORDER - 1))
1251                         totalram_pages += 1 << h->order;
1252         }
1253 }
1254
1255 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1256 {
1257         unsigned long i;
1258
1259         for (i = 0; i < h->max_huge_pages; ++i) {
1260                 if (h->order >= MAX_ORDER) {
1261                         if (!alloc_bootmem_huge_page(h))
1262                                 break;
1263                 } else if (!alloc_fresh_huge_page(h,
1264                                          &node_states[N_HIGH_MEMORY]))
1265                         break;
1266         }
1267         h->max_huge_pages = i;
1268 }
1269
1270 static void __init hugetlb_init_hstates(void)
1271 {
1272         struct hstate *h;
1273
1274         for_each_hstate(h) {
1275                 /* oversize hugepages were init'ed in early boot */
1276                 if (h->order < MAX_ORDER)
1277                         hugetlb_hstate_alloc_pages(h);
1278         }
1279 }
1280
1281 static char * __init memfmt(char *buf, unsigned long n)
1282 {
1283         if (n >= (1UL << 30))
1284                 sprintf(buf, "%lu GB", n >> 30);
1285         else if (n >= (1UL << 20))
1286                 sprintf(buf, "%lu MB", n >> 20);
1287         else
1288                 sprintf(buf, "%lu KB", n >> 10);
1289         return buf;
1290 }
1291
1292 static void __init report_hugepages(void)
1293 {
1294         struct hstate *h;
1295
1296         for_each_hstate(h) {
1297                 char buf[32];
1298                 printk(KERN_INFO "HugeTLB registered %s page size, "
1299                                  "pre-allocated %ld pages\n",
1300                         memfmt(buf, huge_page_size(h)),
1301                         h->free_huge_pages);
1302         }
1303 }
1304
1305 #ifdef CONFIG_HIGHMEM
1306 static void try_to_free_low(struct hstate *h, unsigned long count,
1307                                                 nodemask_t *nodes_allowed)
1308 {
1309         int i;
1310
1311         if (h->order >= MAX_ORDER)
1312                 return;
1313
1314         for_each_node_mask(i, *nodes_allowed) {
1315                 struct page *page, *next;
1316                 struct list_head *freel = &h->hugepage_freelists[i];
1317                 list_for_each_entry_safe(page, next, freel, lru) {
1318                         if (count >= h->nr_huge_pages)
1319                                 return;
1320                         if (PageHighMem(page))
1321                                 continue;
1322                         list_del(&page->lru);
1323                         update_and_free_page(h, page);
1324                         h->free_huge_pages--;
1325                         h->free_huge_pages_node[page_to_nid(page)]--;
1326                 }
1327         }
1328 }
1329 #else
1330 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1331                                                 nodemask_t *nodes_allowed)
1332 {
1333 }
1334 #endif
1335
1336 /*
1337  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1338  * balanced by operating on them in a round-robin fashion.
1339  * Returns 1 if an adjustment was made.
1340  */
1341 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1342                                 int delta)
1343 {
1344         int start_nid, next_nid;
1345         int ret = 0;
1346
1347         VM_BUG_ON(delta != -1 && delta != 1);
1348
1349         if (delta < 0)
1350                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1351         else
1352                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1353         next_nid = start_nid;
1354
1355         do {
1356                 int nid = next_nid;
1357                 if (delta < 0)  {
1358                         /*
1359                          * To shrink on this node, there must be a surplus page
1360                          */
1361                         if (!h->surplus_huge_pages_node[nid]) {
1362                                 next_nid = hstate_next_node_to_alloc(h,
1363                                                                 nodes_allowed);
1364                                 continue;
1365                         }
1366                 }
1367                 if (delta > 0) {
1368                         /*
1369                          * Surplus cannot exceed the total number of pages
1370                          */
1371                         if (h->surplus_huge_pages_node[nid] >=
1372                                                 h->nr_huge_pages_node[nid]) {
1373                                 next_nid = hstate_next_node_to_free(h,
1374                                                                 nodes_allowed);
1375                                 continue;
1376                         }
1377                 }
1378
1379                 h->surplus_huge_pages += delta;
1380                 h->surplus_huge_pages_node[nid] += delta;
1381                 ret = 1;
1382                 break;
1383         } while (next_nid != start_nid);
1384
1385         return ret;
1386 }
1387
1388 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1389 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1390                                                 nodemask_t *nodes_allowed)
1391 {
1392         unsigned long min_count, ret;
1393
1394         if (h->order >= MAX_ORDER)
1395                 return h->max_huge_pages;
1396
1397         /*
1398          * Increase the pool size
1399          * First take pages out of surplus state.  Then make up the
1400          * remaining difference by allocating fresh huge pages.
1401          *
1402          * We might race with alloc_buddy_huge_page() here and be unable
1403          * to convert a surplus huge page to a normal huge page. That is
1404          * not critical, though, it just means the overall size of the
1405          * pool might be one hugepage larger than it needs to be, but
1406          * within all the constraints specified by the sysctls.
1407          */
1408         spin_lock(&hugetlb_lock);
1409         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1410                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1411                         break;
1412         }
1413
1414         while (count > persistent_huge_pages(h)) {
1415                 /*
1416                  * If this allocation races such that we no longer need the
1417                  * page, free_huge_page will handle it by freeing the page
1418                  * and reducing the surplus.
1419                  */
1420                 spin_unlock(&hugetlb_lock);
1421                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1422                 spin_lock(&hugetlb_lock);
1423                 if (!ret)
1424                         goto out;
1425
1426                 /* Bail for signals. Probably ctrl-c from user */
1427                 if (signal_pending(current))
1428                         goto out;
1429         }
1430
1431         /*
1432          * Decrease the pool size
1433          * First return free pages to the buddy allocator (being careful
1434          * to keep enough around to satisfy reservations).  Then place
1435          * pages into surplus state as needed so the pool will shrink
1436          * to the desired size as pages become free.
1437          *
1438          * By placing pages into the surplus state independent of the
1439          * overcommit value, we are allowing the surplus pool size to
1440          * exceed overcommit. There are few sane options here. Since
1441          * alloc_buddy_huge_page() is checking the global counter,
1442          * though, we'll note that we're not allowed to exceed surplus
1443          * and won't grow the pool anywhere else. Not until one of the
1444          * sysctls are changed, or the surplus pages go out of use.
1445          */
1446         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1447         min_count = max(count, min_count);
1448         try_to_free_low(h, min_count, nodes_allowed);
1449         while (min_count < persistent_huge_pages(h)) {
1450                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1451                         break;
1452                 cond_resched_lock(&hugetlb_lock);
1453         }
1454         while (count < persistent_huge_pages(h)) {
1455                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1456                         break;
1457         }
1458 out:
1459         ret = persistent_huge_pages(h);
1460         spin_unlock(&hugetlb_lock);
1461         return ret;
1462 }
1463
1464 #define HSTATE_ATTR_RO(_name) \
1465         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1466
1467 #define HSTATE_ATTR(_name) \
1468         static struct kobj_attribute _name##_attr = \
1469                 __ATTR(_name, 0644, _name##_show, _name##_store)
1470
1471 static struct kobject *hugepages_kobj;
1472 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1473
1474 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1475
1476 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1477 {
1478         int i;
1479
1480         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1481                 if (hstate_kobjs[i] == kobj) {
1482                         if (nidp)
1483                                 *nidp = NUMA_NO_NODE;
1484                         return &hstates[i];
1485                 }
1486
1487         return kobj_to_node_hstate(kobj, nidp);
1488 }
1489
1490 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1491                                         struct kobj_attribute *attr, char *buf)
1492 {
1493         struct hstate *h;
1494         unsigned long nr_huge_pages;
1495         int nid;
1496
1497         h = kobj_to_hstate(kobj, &nid);
1498         if (nid == NUMA_NO_NODE)
1499                 nr_huge_pages = h->nr_huge_pages;
1500         else
1501                 nr_huge_pages = h->nr_huge_pages_node[nid];
1502
1503         return sprintf(buf, "%lu\n", nr_huge_pages);
1504 }
1505
1506 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1507                         struct kobject *kobj, struct kobj_attribute *attr,
1508                         const char *buf, size_t len)
1509 {
1510         int err;
1511         int nid;
1512         unsigned long count;
1513         struct hstate *h;
1514         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1515
1516         err = strict_strtoul(buf, 10, &count);
1517         if (err)
1518                 goto out;
1519
1520         h = kobj_to_hstate(kobj, &nid);
1521         if (h->order >= MAX_ORDER) {
1522                 err = -EINVAL;
1523                 goto out;
1524         }
1525
1526         if (nid == NUMA_NO_NODE) {
1527                 /*
1528                  * global hstate attribute
1529                  */
1530                 if (!(obey_mempolicy &&
1531                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1532                         NODEMASK_FREE(nodes_allowed);
1533                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1534                 }
1535         } else if (nodes_allowed) {
1536                 /*
1537                  * per node hstate attribute: adjust count to global,
1538                  * but restrict alloc/free to the specified node.
1539                  */
1540                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1541                 init_nodemask_of_node(nodes_allowed, nid);
1542         } else
1543                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1544
1545         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1546
1547         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1548                 NODEMASK_FREE(nodes_allowed);
1549
1550         return len;
1551 out:
1552         NODEMASK_FREE(nodes_allowed);
1553         return err;
1554 }
1555
1556 static ssize_t nr_hugepages_show(struct kobject *kobj,
1557                                        struct kobj_attribute *attr, char *buf)
1558 {
1559         return nr_hugepages_show_common(kobj, attr, buf);
1560 }
1561
1562 static ssize_t nr_hugepages_store(struct kobject *kobj,
1563                struct kobj_attribute *attr, const char *buf, size_t len)
1564 {
1565         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1566 }
1567 HSTATE_ATTR(nr_hugepages);
1568
1569 #ifdef CONFIG_NUMA
1570
1571 /*
1572  * hstate attribute for optionally mempolicy-based constraint on persistent
1573  * huge page alloc/free.
1574  */
1575 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1576                                        struct kobj_attribute *attr, char *buf)
1577 {
1578         return nr_hugepages_show_common(kobj, attr, buf);
1579 }
1580
1581 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1582                struct kobj_attribute *attr, const char *buf, size_t len)
1583 {
1584         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1585 }
1586 HSTATE_ATTR(nr_hugepages_mempolicy);
1587 #endif
1588
1589
1590 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1591                                         struct kobj_attribute *attr, char *buf)
1592 {
1593         struct hstate *h = kobj_to_hstate(kobj, NULL);
1594         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1595 }
1596
1597 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1598                 struct kobj_attribute *attr, const char *buf, size_t count)
1599 {
1600         int err;
1601         unsigned long input;
1602         struct hstate *h = kobj_to_hstate(kobj, NULL);
1603
1604         if (h->order >= MAX_ORDER)
1605                 return -EINVAL;
1606
1607         err = strict_strtoul(buf, 10, &input);
1608         if (err)
1609                 return err;
1610
1611         spin_lock(&hugetlb_lock);
1612         h->nr_overcommit_huge_pages = input;
1613         spin_unlock(&hugetlb_lock);
1614
1615         return count;
1616 }
1617 HSTATE_ATTR(nr_overcommit_hugepages);
1618
1619 static ssize_t free_hugepages_show(struct kobject *kobj,
1620                                         struct kobj_attribute *attr, char *buf)
1621 {
1622         struct hstate *h;
1623         unsigned long free_huge_pages;
1624         int nid;
1625
1626         h = kobj_to_hstate(kobj, &nid);
1627         if (nid == NUMA_NO_NODE)
1628                 free_huge_pages = h->free_huge_pages;
1629         else
1630                 free_huge_pages = h->free_huge_pages_node[nid];
1631
1632         return sprintf(buf, "%lu\n", free_huge_pages);
1633 }
1634 HSTATE_ATTR_RO(free_hugepages);
1635
1636 static ssize_t resv_hugepages_show(struct kobject *kobj,
1637                                         struct kobj_attribute *attr, char *buf)
1638 {
1639         struct hstate *h = kobj_to_hstate(kobj, NULL);
1640         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1641 }
1642 HSTATE_ATTR_RO(resv_hugepages);
1643
1644 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1645                                         struct kobj_attribute *attr, char *buf)
1646 {
1647         struct hstate *h;
1648         unsigned long surplus_huge_pages;
1649         int nid;
1650
1651         h = kobj_to_hstate(kobj, &nid);
1652         if (nid == NUMA_NO_NODE)
1653                 surplus_huge_pages = h->surplus_huge_pages;
1654         else
1655                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1656
1657         return sprintf(buf, "%lu\n", surplus_huge_pages);
1658 }
1659 HSTATE_ATTR_RO(surplus_hugepages);
1660
1661 static struct attribute *hstate_attrs[] = {
1662         &nr_hugepages_attr.attr,
1663         &nr_overcommit_hugepages_attr.attr,
1664         &free_hugepages_attr.attr,
1665         &resv_hugepages_attr.attr,
1666         &surplus_hugepages_attr.attr,
1667 #ifdef CONFIG_NUMA
1668         &nr_hugepages_mempolicy_attr.attr,
1669 #endif
1670         NULL,
1671 };
1672
1673 static struct attribute_group hstate_attr_group = {
1674         .attrs = hstate_attrs,
1675 };
1676
1677 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1678                                     struct kobject **hstate_kobjs,
1679                                     struct attribute_group *hstate_attr_group)
1680 {
1681         int retval;
1682         int hi = h - hstates;
1683
1684         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1685         if (!hstate_kobjs[hi])
1686                 return -ENOMEM;
1687
1688         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1689         if (retval)
1690                 kobject_put(hstate_kobjs[hi]);
1691
1692         return retval;
1693 }
1694
1695 static void __init hugetlb_sysfs_init(void)
1696 {
1697         struct hstate *h;
1698         int err;
1699
1700         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1701         if (!hugepages_kobj)
1702                 return;
1703
1704         for_each_hstate(h) {
1705                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1706                                          hstate_kobjs, &hstate_attr_group);
1707                 if (err)
1708                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1709                                                                 h->name);
1710         }
1711 }
1712
1713 #ifdef CONFIG_NUMA
1714
1715 /*
1716  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1717  * with node devices in node_devices[] using a parallel array.  The array
1718  * index of a node device or _hstate == node id.
1719  * This is here to avoid any static dependency of the node device driver, in
1720  * the base kernel, on the hugetlb module.
1721  */
1722 struct node_hstate {
1723         struct kobject          *hugepages_kobj;
1724         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1725 };
1726 struct node_hstate node_hstates[MAX_NUMNODES];
1727
1728 /*
1729  * A subset of global hstate attributes for node devices
1730  */
1731 static struct attribute *per_node_hstate_attrs[] = {
1732         &nr_hugepages_attr.attr,
1733         &free_hugepages_attr.attr,
1734         &surplus_hugepages_attr.attr,
1735         NULL,
1736 };
1737
1738 static struct attribute_group per_node_hstate_attr_group = {
1739         .attrs = per_node_hstate_attrs,
1740 };
1741
1742 /*
1743  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1744  * Returns node id via non-NULL nidp.
1745  */
1746 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1747 {
1748         int nid;
1749
1750         for (nid = 0; nid < nr_node_ids; nid++) {
1751                 struct node_hstate *nhs = &node_hstates[nid];
1752                 int i;
1753                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1754                         if (nhs->hstate_kobjs[i] == kobj) {
1755                                 if (nidp)
1756                                         *nidp = nid;
1757                                 return &hstates[i];
1758                         }
1759         }
1760
1761         BUG();
1762         return NULL;
1763 }
1764
1765 /*
1766  * Unregister hstate attributes from a single node device.
1767  * No-op if no hstate attributes attached.
1768  */
1769 void hugetlb_unregister_node(struct node *node)
1770 {
1771         struct hstate *h;
1772         struct node_hstate *nhs = &node_hstates[node->dev.id];
1773
1774         if (!nhs->hugepages_kobj)
1775                 return;         /* no hstate attributes */
1776
1777         for_each_hstate(h)
1778                 if (nhs->hstate_kobjs[h - hstates]) {
1779                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1780                         nhs->hstate_kobjs[h - hstates] = NULL;
1781                 }
1782
1783         kobject_put(nhs->hugepages_kobj);
1784         nhs->hugepages_kobj = NULL;
1785 }
1786
1787 /*
1788  * hugetlb module exit:  unregister hstate attributes from node devices
1789  * that have them.
1790  */
1791 static void hugetlb_unregister_all_nodes(void)
1792 {
1793         int nid;
1794
1795         /*
1796          * disable node device registrations.
1797          */
1798         register_hugetlbfs_with_node(NULL, NULL);
1799
1800         /*
1801          * remove hstate attributes from any nodes that have them.
1802          */
1803         for (nid = 0; nid < nr_node_ids; nid++)
1804                 hugetlb_unregister_node(&node_devices[nid]);
1805 }
1806
1807 /*
1808  * Register hstate attributes for a single node device.
1809  * No-op if attributes already registered.
1810  */
1811 void hugetlb_register_node(struct node *node)
1812 {
1813         struct hstate *h;
1814         struct node_hstate *nhs = &node_hstates[node->dev.id];
1815         int err;
1816
1817         if (nhs->hugepages_kobj)
1818                 return;         /* already allocated */
1819
1820         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1821                                                         &node->dev.kobj);
1822         if (!nhs->hugepages_kobj)
1823                 return;
1824
1825         for_each_hstate(h) {
1826                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1827                                                 nhs->hstate_kobjs,
1828                                                 &per_node_hstate_attr_group);
1829                 if (err) {
1830                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1831                                         " for node %d\n",
1832                                                 h->name, node->dev.id);
1833                         hugetlb_unregister_node(node);
1834                         break;
1835                 }
1836         }
1837 }
1838
1839 /*
1840  * hugetlb init time:  register hstate attributes for all registered node
1841  * devices of nodes that have memory.  All on-line nodes should have
1842  * registered their associated device by this time.
1843  */
1844 static void hugetlb_register_all_nodes(void)
1845 {
1846         int nid;
1847
1848         for_each_node_state(nid, N_HIGH_MEMORY) {
1849                 struct node *node = &node_devices[nid];
1850                 if (node->dev.id == nid)
1851                         hugetlb_register_node(node);
1852         }
1853
1854         /*
1855          * Let the node device driver know we're here so it can
1856          * [un]register hstate attributes on node hotplug.
1857          */
1858         register_hugetlbfs_with_node(hugetlb_register_node,
1859                                      hugetlb_unregister_node);
1860 }
1861 #else   /* !CONFIG_NUMA */
1862
1863 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1864 {
1865         BUG();
1866         if (nidp)
1867                 *nidp = -1;
1868         return NULL;
1869 }
1870
1871 static void hugetlb_unregister_all_nodes(void) { }
1872
1873 static void hugetlb_register_all_nodes(void) { }
1874
1875 #endif
1876
1877 static void __exit hugetlb_exit(void)
1878 {
1879         struct hstate *h;
1880
1881         hugetlb_unregister_all_nodes();
1882
1883         for_each_hstate(h) {
1884                 kobject_put(hstate_kobjs[h - hstates]);
1885         }
1886
1887         kobject_put(hugepages_kobj);
1888 }
1889 module_exit(hugetlb_exit);
1890
1891 static int __init hugetlb_init(void)
1892 {
1893         if (!hugepages_supported())
1894                 return 0;
1895
1896         if (!size_to_hstate(default_hstate_size)) {
1897                 default_hstate_size = HPAGE_SIZE;
1898                 if (!size_to_hstate(default_hstate_size))
1899                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1900         }
1901         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1902         if (default_hstate_max_huge_pages)
1903                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1904
1905         hugetlb_init_hstates();
1906
1907         gather_bootmem_prealloc();
1908
1909         report_hugepages();
1910
1911         hugetlb_sysfs_init();
1912
1913         hugetlb_register_all_nodes();
1914
1915         return 0;
1916 }
1917 module_init(hugetlb_init);
1918
1919 /* Should be called on processing a hugepagesz=... option */
1920 void __init hugetlb_add_hstate(unsigned order)
1921 {
1922         struct hstate *h;
1923         unsigned long i;
1924
1925         if (size_to_hstate(PAGE_SIZE << order)) {
1926                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1927                 return;
1928         }
1929         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1930         BUG_ON(order == 0);
1931         h = &hstates[max_hstate++];
1932         h->order = order;
1933         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1934         h->nr_huge_pages = 0;
1935         h->free_huge_pages = 0;
1936         for (i = 0; i < MAX_NUMNODES; ++i)
1937                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1938         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1939         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1940         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1941                                         huge_page_size(h)/1024);
1942
1943         parsed_hstate = h;
1944 }
1945
1946 static int __init hugetlb_nrpages_setup(char *s)
1947 {
1948         unsigned long *mhp;
1949         static unsigned long *last_mhp;
1950
1951         /*
1952          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1953          * so this hugepages= parameter goes to the "default hstate".
1954          */
1955         if (!max_hstate)
1956                 mhp = &default_hstate_max_huge_pages;
1957         else
1958                 mhp = &parsed_hstate->max_huge_pages;
1959
1960         if (mhp == last_mhp) {
1961                 printk(KERN_WARNING "hugepages= specified twice without "
1962                         "interleaving hugepagesz=, ignoring\n");
1963                 return 1;
1964         }
1965
1966         if (sscanf(s, "%lu", mhp) <= 0)
1967                 *mhp = 0;
1968
1969         /*
1970          * Global state is always initialized later in hugetlb_init.
1971          * But we need to allocate >= MAX_ORDER hstates here early to still
1972          * use the bootmem allocator.
1973          */
1974         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1975                 hugetlb_hstate_alloc_pages(parsed_hstate);
1976
1977         last_mhp = mhp;
1978
1979         return 1;
1980 }
1981 __setup("hugepages=", hugetlb_nrpages_setup);
1982
1983 static int __init hugetlb_default_setup(char *s)
1984 {
1985         default_hstate_size = memparse(s, &s);
1986         return 1;
1987 }
1988 __setup("default_hugepagesz=", hugetlb_default_setup);
1989
1990 static unsigned int cpuset_mems_nr(unsigned int *array)
1991 {
1992         int node;
1993         unsigned int nr = 0;
1994
1995         for_each_node_mask(node, cpuset_current_mems_allowed)
1996                 nr += array[node];
1997
1998         return nr;
1999 }
2000
2001 #ifdef CONFIG_SYSCTL
2002 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2003                          struct ctl_table *table, int write,
2004                          void __user *buffer, size_t *length, loff_t *ppos)
2005 {
2006         struct hstate *h = &default_hstate;
2007         unsigned long tmp;
2008         int ret;
2009
2010         if (!hugepages_supported())
2011                 return -ENOTSUPP;
2012
2013         tmp = h->max_huge_pages;
2014
2015         if (write && h->order >= MAX_ORDER)
2016                 return -EINVAL;
2017
2018         table->data = &tmp;
2019         table->maxlen = sizeof(unsigned long);
2020         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2021         if (ret)
2022                 goto out;
2023
2024         if (write) {
2025                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2026                                                 GFP_KERNEL | __GFP_NORETRY);
2027                 if (!(obey_mempolicy &&
2028                                init_nodemask_of_mempolicy(nodes_allowed))) {
2029                         NODEMASK_FREE(nodes_allowed);
2030                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2031                 }
2032                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2033
2034                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2035                         NODEMASK_FREE(nodes_allowed);
2036         }
2037 out:
2038         return ret;
2039 }
2040
2041 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2042                           void __user *buffer, size_t *length, loff_t *ppos)
2043 {
2044
2045         return hugetlb_sysctl_handler_common(false, table, write,
2046                                                         buffer, length, ppos);
2047 }
2048
2049 #ifdef CONFIG_NUMA
2050 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2051                           void __user *buffer, size_t *length, loff_t *ppos)
2052 {
2053         return hugetlb_sysctl_handler_common(true, table, write,
2054                                                         buffer, length, ppos);
2055 }
2056 #endif /* CONFIG_NUMA */
2057
2058 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2059                         void __user *buffer,
2060                         size_t *length, loff_t *ppos)
2061 {
2062         proc_dointvec(table, write, buffer, length, ppos);
2063         if (hugepages_treat_as_movable)
2064                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2065         else
2066                 htlb_alloc_mask = GFP_HIGHUSER;
2067         return 0;
2068 }
2069
2070 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2071                         void __user *buffer,
2072                         size_t *length, loff_t *ppos)
2073 {
2074         struct hstate *h = &default_hstate;
2075         unsigned long tmp;
2076         int ret;
2077
2078         if (!hugepages_supported())
2079                 return -ENOTSUPP;
2080
2081         tmp = h->nr_overcommit_huge_pages;
2082
2083         if (write && h->order >= MAX_ORDER)
2084                 return -EINVAL;
2085
2086         table->data = &tmp;
2087         table->maxlen = sizeof(unsigned long);
2088         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089         if (ret)
2090                 goto out;
2091
2092         if (write) {
2093                 spin_lock(&hugetlb_lock);
2094                 h->nr_overcommit_huge_pages = tmp;
2095                 spin_unlock(&hugetlb_lock);
2096         }
2097 out:
2098         return ret;
2099 }
2100
2101 #endif /* CONFIG_SYSCTL */
2102
2103 void hugetlb_report_meminfo(struct seq_file *m)
2104 {
2105         struct hstate *h = &default_hstate;
2106         if (!hugepages_supported())
2107                 return;
2108         seq_printf(m,
2109                         "HugePages_Total:   %5lu\n"
2110                         "HugePages_Free:    %5lu\n"
2111                         "HugePages_Rsvd:    %5lu\n"
2112                         "HugePages_Surp:    %5lu\n"
2113                         "Hugepagesize:   %8lu kB\n",
2114                         h->nr_huge_pages,
2115                         h->free_huge_pages,
2116                         h->resv_huge_pages,
2117                         h->surplus_huge_pages,
2118                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2119 }
2120
2121 int hugetlb_report_node_meminfo(int nid, char *buf)
2122 {
2123         struct hstate *h = &default_hstate;
2124         if (!hugepages_supported())
2125                 return 0;
2126         return sprintf(buf,
2127                 "Node %d HugePages_Total: %5u\n"
2128                 "Node %d HugePages_Free:  %5u\n"
2129                 "Node %d HugePages_Surp:  %5u\n",
2130                 nid, h->nr_huge_pages_node[nid],
2131                 nid, h->free_huge_pages_node[nid],
2132                 nid, h->surplus_huge_pages_node[nid]);
2133 }
2134
2135 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2136 unsigned long hugetlb_total_pages(void)
2137 {
2138         struct hstate *h;
2139         unsigned long nr_total_pages = 0;
2140
2141         for_each_hstate(h)
2142                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2143         return nr_total_pages;
2144 }
2145
2146 static int hugetlb_acct_memory(struct hstate *h, long delta)
2147 {
2148         int ret = -ENOMEM;
2149
2150         spin_lock(&hugetlb_lock);
2151         /*
2152          * When cpuset is configured, it breaks the strict hugetlb page
2153          * reservation as the accounting is done on a global variable. Such
2154          * reservation is completely rubbish in the presence of cpuset because
2155          * the reservation is not checked against page availability for the
2156          * current cpuset. Application can still potentially OOM'ed by kernel
2157          * with lack of free htlb page in cpuset that the task is in.
2158          * Attempt to enforce strict accounting with cpuset is almost
2159          * impossible (or too ugly) because cpuset is too fluid that
2160          * task or memory node can be dynamically moved between cpusets.
2161          *
2162          * The change of semantics for shared hugetlb mapping with cpuset is
2163          * undesirable. However, in order to preserve some of the semantics,
2164          * we fall back to check against current free page availability as
2165          * a best attempt and hopefully to minimize the impact of changing
2166          * semantics that cpuset has.
2167          */
2168         if (delta > 0) {
2169                 if (gather_surplus_pages(h, delta) < 0)
2170                         goto out;
2171
2172                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2173                         return_unused_surplus_pages(h, delta);
2174                         goto out;
2175                 }
2176         }
2177
2178         ret = 0;
2179         if (delta < 0)
2180                 return_unused_surplus_pages(h, (unsigned long) -delta);
2181
2182 out:
2183         spin_unlock(&hugetlb_lock);
2184         return ret;
2185 }
2186
2187 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2188 {
2189         struct resv_map *reservations = vma_resv_map(vma);
2190
2191         /*
2192          * This new VMA should share its siblings reservation map if present.
2193          * The VMA will only ever have a valid reservation map pointer where
2194          * it is being copied for another still existing VMA.  As that VMA
2195          * has a reference to the reservation map it cannot disappear until
2196          * after this open call completes.  It is therefore safe to take a
2197          * new reference here without additional locking.
2198          */
2199         if (reservations)
2200                 kref_get(&reservations->refs);
2201 }
2202
2203 static void resv_map_put(struct vm_area_struct *vma)
2204 {
2205         struct resv_map *reservations = vma_resv_map(vma);
2206
2207         if (!reservations)
2208                 return;
2209         kref_put(&reservations->refs, resv_map_release);
2210 }
2211
2212 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2213 {
2214         struct hstate *h = hstate_vma(vma);
2215         struct resv_map *reservations = vma_resv_map(vma);
2216         struct hugepage_subpool *spool = subpool_vma(vma);
2217         unsigned long reserve;
2218         unsigned long start;
2219         unsigned long end;
2220
2221         if (reservations) {
2222                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2223                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2224
2225                 reserve = (end - start) -
2226                         region_count(&reservations->regions, start, end);
2227
2228                 resv_map_put(vma);
2229
2230                 if (reserve) {
2231                         hugetlb_acct_memory(h, -reserve);
2232                         hugepage_subpool_put_pages(spool, reserve);
2233                 }
2234         }
2235 }
2236
2237 /*
2238  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2239  * handle_mm_fault() to try to instantiate regular-sized pages in the
2240  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2241  * this far.
2242  */
2243 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2244 {
2245         BUG();
2246         return 0;
2247 }
2248
2249 const struct vm_operations_struct hugetlb_vm_ops = {
2250         .fault = hugetlb_vm_op_fault,
2251         .open = hugetlb_vm_op_open,
2252         .close = hugetlb_vm_op_close,
2253 };
2254
2255 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2256                                 int writable)
2257 {
2258         pte_t entry;
2259
2260         if (writable) {
2261                 entry =
2262                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2263         } else {
2264                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2265         }
2266         entry = pte_mkyoung(entry);
2267         entry = pte_mkhuge(entry);
2268
2269         return entry;
2270 }
2271
2272 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2273                                    unsigned long address, pte_t *ptep)
2274 {
2275         pte_t entry;
2276
2277         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2278         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2279                 update_mmu_cache(vma, address, ptep);
2280 }
2281
2282 static int is_hugetlb_entry_migration(pte_t pte)
2283 {
2284         swp_entry_t swp;
2285
2286         if (huge_pte_none(pte) || pte_present(pte))
2287                 return 0;
2288         swp = pte_to_swp_entry(pte);
2289         if (non_swap_entry(swp) && is_migration_entry(swp))
2290                 return 1;
2291         else
2292                 return 0;
2293 }
2294
2295 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2296 {
2297         swp_entry_t swp;
2298
2299         if (huge_pte_none(pte) || pte_present(pte))
2300                 return 0;
2301         swp = pte_to_swp_entry(pte);
2302         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2303                 return 1;
2304         else
2305                 return 0;
2306 }
2307
2308 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2309                             struct vm_area_struct *vma)
2310 {
2311         pte_t *src_pte, *dst_pte, entry;
2312         struct page *ptepage;
2313         unsigned long addr;
2314         int cow;
2315         struct hstate *h = hstate_vma(vma);
2316         unsigned long sz = huge_page_size(h);
2317
2318         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2319
2320         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2321                 src_pte = huge_pte_offset(src, addr);
2322                 if (!src_pte)
2323                         continue;
2324                 dst_pte = huge_pte_alloc(dst, addr, sz);
2325                 if (!dst_pte)
2326                         goto nomem;
2327
2328                 /* If the pagetables are shared don't copy or take references */
2329                 if (dst_pte == src_pte)
2330                         continue;
2331
2332                 spin_lock(&dst->page_table_lock);
2333                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2334                 entry = huge_ptep_get(src_pte);
2335                 if (huge_pte_none(entry)) { /* skip none entry */
2336                         ;
2337                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2338                                     is_hugetlb_entry_hwpoisoned(entry))) {
2339                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2340
2341                         if (is_write_migration_entry(swp_entry) && cow) {
2342                                 /*
2343                                  * COW mappings require pages in both
2344                                  * parent and child to be set to read.
2345                                  */
2346                                 make_migration_entry_read(&swp_entry);
2347                                 entry = swp_entry_to_pte(swp_entry);
2348                                 set_huge_pte_at(src, addr, src_pte, entry);
2349                         }
2350                         set_huge_pte_at(dst, addr, dst_pte, entry);
2351                 } else {
2352                         if (cow)
2353                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2354                         entry = huge_ptep_get(src_pte);
2355                         ptepage = pte_page(entry);
2356                         get_page(ptepage);
2357                         page_dup_rmap(ptepage);
2358                         set_huge_pte_at(dst, addr, dst_pte, entry);
2359                 }
2360                 spin_unlock(&src->page_table_lock);
2361                 spin_unlock(&dst->page_table_lock);
2362         }
2363         return 0;
2364
2365 nomem:
2366         return -ENOMEM;
2367 }
2368
2369 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2370                             unsigned long end, struct page *ref_page)
2371 {
2372         struct mm_struct *mm = vma->vm_mm;
2373         unsigned long address;
2374         pte_t *ptep;
2375         pte_t pte;
2376         struct page *page;
2377         struct page *tmp;
2378         struct hstate *h = hstate_vma(vma);
2379         unsigned long sz = huge_page_size(h);
2380
2381         /*
2382          * A page gathering list, protected by per file i_mmap_mutex. The
2383          * lock is used to avoid list corruption from multiple unmapping
2384          * of the same page since we are using page->lru.
2385          */
2386         LIST_HEAD(page_list);
2387
2388         WARN_ON(!is_vm_hugetlb_page(vma));
2389         BUG_ON(start & ~huge_page_mask(h));
2390         BUG_ON(end & ~huge_page_mask(h));
2391
2392         mmu_notifier_invalidate_range_start(mm, start, end);
2393         spin_lock(&mm->page_table_lock);
2394         for (address = start; address < end; address += sz) {
2395                 ptep = huge_pte_offset(mm, address);
2396                 if (!ptep)
2397                         continue;
2398
2399                 if (huge_pmd_unshare(mm, &address, ptep))
2400                         continue;
2401
2402                 /*
2403                  * If a reference page is supplied, it is because a specific
2404                  * page is being unmapped, not a range. Ensure the page we
2405                  * are about to unmap is the actual page of interest.
2406                  */
2407                 if (ref_page) {
2408                         pte = huge_ptep_get(ptep);
2409                         if (huge_pte_none(pte))
2410                                 continue;
2411                         page = pte_page(pte);
2412                         if (page != ref_page)
2413                                 continue;
2414
2415                         /*
2416                          * Mark the VMA as having unmapped its page so that
2417                          * future faults in this VMA will fail rather than
2418                          * looking like data was lost
2419                          */
2420                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2421                 }
2422
2423                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2424                 if (huge_pte_none(pte))
2425                         continue;
2426
2427                 /*
2428                  * Migrating hugepage or HWPoisoned hugepage is already
2429                  * unmapped and its refcount is dropped
2430                  */
2431                 if (unlikely(!pte_present(pte)))
2432                         continue;
2433
2434                 page = pte_page(pte);
2435                 if (pte_dirty(pte))
2436                         set_page_dirty(page);
2437                 list_add(&page->lru, &page_list);
2438         }
2439         spin_unlock(&mm->page_table_lock);
2440         flush_tlb_range(vma, start, end);
2441         mmu_notifier_invalidate_range_end(mm, start, end);
2442         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2443                 page_remove_rmap(page);
2444                 list_del(&page->lru);
2445                 put_page(page);
2446         }
2447 }
2448
2449 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2450                           unsigned long start, unsigned long end,
2451                           struct page *ref_page)
2452 {
2453         __unmap_hugepage_range(vma, start, end, ref_page);
2454
2455         /*
2456          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2457          * test will fail on a vma being torn down, and not grab a page table
2458          * on its way out.  We're lucky that the flag has such an appropriate
2459          * name, and can in fact be safely cleared here. We could clear it
2460          * before the __unmap_hugepage_range above, but all that's necessary
2461          * is to clear it before releasing the i_mmap_mutex. This works
2462          * because in the context this is called, the VMA is about to be
2463          * destroyed and the i_mmap_mutex is held.
2464          */
2465         vma->vm_flags &= ~VM_MAYSHARE;
2466 }
2467
2468 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2469                           unsigned long end, struct page *ref_page)
2470 {
2471         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2472         __unmap_hugepage_range(vma, start, end, ref_page);
2473         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2474 }
2475
2476 /*
2477  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2478  * mappping it owns the reserve page for. The intention is to unmap the page
2479  * from other VMAs and let the children be SIGKILLed if they are faulting the
2480  * same region.
2481  */
2482 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2483                                 struct page *page, unsigned long address)
2484 {
2485         struct hstate *h = hstate_vma(vma);
2486         struct vm_area_struct *iter_vma;
2487         struct address_space *mapping;
2488         struct prio_tree_iter iter;
2489         pgoff_t pgoff;
2490
2491         /*
2492          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2493          * from page cache lookup which is in HPAGE_SIZE units.
2494          */
2495         address = address & huge_page_mask(h);
2496         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2497                         vma->vm_pgoff;
2498         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2499
2500         /*
2501          * Take the mapping lock for the duration of the table walk. As
2502          * this mapping should be shared between all the VMAs,
2503          * __unmap_hugepage_range() is called as the lock is already held
2504          */
2505         mutex_lock(&mapping->i_mmap_mutex);
2506         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2507                 /* Do not unmap the current VMA */
2508                 if (iter_vma == vma)
2509                         continue;
2510
2511                 /*
2512                  * Shared VMAs have their own reserves and do not affect
2513                  * MAP_PRIVATE accounting but it is possible that a shared
2514                  * VMA is using the same page so check and skip such VMAs.
2515                  */
2516                 if (iter_vma->vm_flags & VM_MAYSHARE)
2517                         continue;
2518
2519                 /*
2520                  * Unmap the page from other VMAs without their own reserves.
2521                  * They get marked to be SIGKILLed if they fault in these
2522                  * areas. This is because a future no-page fault on this VMA
2523                  * could insert a zeroed page instead of the data existing
2524                  * from the time of fork. This would look like data corruption
2525                  */
2526                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2527                         __unmap_hugepage_range(iter_vma,
2528                                 address, address + huge_page_size(h),
2529                                 page);
2530         }
2531         mutex_unlock(&mapping->i_mmap_mutex);
2532
2533         return 1;
2534 }
2535
2536 /*
2537  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2538  */
2539 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2540                         unsigned long address, pte_t *ptep, pte_t pte,
2541                         struct page *pagecache_page)
2542 {
2543         struct hstate *h = hstate_vma(vma);
2544         struct page *old_page, *new_page;
2545         int avoidcopy;
2546         int outside_reserve = 0;
2547
2548         old_page = pte_page(pte);
2549
2550 retry_avoidcopy:
2551         /* If no-one else is actually using this page, avoid the copy
2552          * and just make the page writable */
2553         avoidcopy = (page_mapcount(old_page) == 1);
2554         if (avoidcopy) {
2555                 if (PageAnon(old_page))
2556                         page_move_anon_rmap(old_page, vma, address);
2557                 set_huge_ptep_writable(vma, address, ptep);
2558                 return 0;
2559         }
2560
2561         /*
2562          * If the process that created a MAP_PRIVATE mapping is about to
2563          * perform a COW due to a shared page count, attempt to satisfy
2564          * the allocation without using the existing reserves. The pagecache
2565          * page is used to determine if the reserve at this address was
2566          * consumed or not. If reserves were used, a partial faulted mapping
2567          * at the time of fork() could consume its reserves on COW instead
2568          * of the full address range.
2569          */
2570         if (!(vma->vm_flags & VM_MAYSHARE) &&
2571                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2572                         old_page != pagecache_page)
2573                 outside_reserve = 1;
2574
2575         page_cache_get(old_page);
2576
2577         /* Drop page_table_lock as buddy allocator may be called */
2578         spin_unlock(&mm->page_table_lock);
2579         new_page = alloc_huge_page(vma, address, outside_reserve);
2580
2581         if (IS_ERR(new_page)) {
2582                 page_cache_release(old_page);
2583
2584                 /*
2585                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2586                  * it is due to references held by a child and an insufficient
2587                  * huge page pool. To guarantee the original mappers
2588                  * reliability, unmap the page from child processes. The child
2589                  * may get SIGKILLed if it later faults.
2590                  */
2591                 if (outside_reserve) {
2592                         BUG_ON(huge_pte_none(pte));
2593                         if (unmap_ref_private(mm, vma, old_page, address)) {
2594                                 BUG_ON(huge_pte_none(pte));
2595                                 spin_lock(&mm->page_table_lock);
2596                                 goto retry_avoidcopy;
2597                         }
2598                         WARN_ON_ONCE(1);
2599                 }
2600
2601                 /* Caller expects lock to be held */
2602                 spin_lock(&mm->page_table_lock);
2603                 return -PTR_ERR(new_page);
2604         }
2605
2606         /*
2607          * When the original hugepage is shared one, it does not have
2608          * anon_vma prepared.
2609          */
2610         if (unlikely(anon_vma_prepare(vma))) {
2611                 page_cache_release(new_page);
2612                 page_cache_release(old_page);
2613                 /* Caller expects lock to be held */
2614                 spin_lock(&mm->page_table_lock);
2615                 return VM_FAULT_OOM;
2616         }
2617
2618         copy_user_huge_page(new_page, old_page, address, vma,
2619                             pages_per_huge_page(h));
2620         __SetPageUptodate(new_page);
2621
2622         /*
2623          * Retake the page_table_lock to check for racing updates
2624          * before the page tables are altered
2625          */
2626         spin_lock(&mm->page_table_lock);
2627         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2628         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2629                 /* Break COW */
2630                 mmu_notifier_invalidate_range_start(mm,
2631                         address & huge_page_mask(h),
2632                         (address & huge_page_mask(h)) + huge_page_size(h));
2633                 huge_ptep_clear_flush(vma, address, ptep);
2634                 set_huge_pte_at(mm, address, ptep,
2635                                 make_huge_pte(vma, new_page, 1));
2636                 page_remove_rmap(old_page);
2637                 hugepage_add_new_anon_rmap(new_page, vma, address);
2638                 /* Make the old page be freed below */
2639                 new_page = old_page;
2640                 mmu_notifier_invalidate_range_end(mm,
2641                         address & huge_page_mask(h),
2642                         (address & huge_page_mask(h)) + huge_page_size(h));
2643         }
2644         page_cache_release(new_page);
2645         page_cache_release(old_page);
2646         return 0;
2647 }
2648
2649 /* Return the pagecache page at a given address within a VMA */
2650 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2651                         struct vm_area_struct *vma, unsigned long address)
2652 {
2653         struct address_space *mapping;
2654         pgoff_t idx;
2655
2656         mapping = vma->vm_file->f_mapping;
2657         idx = vma_hugecache_offset(h, vma, address);
2658
2659         return find_lock_page(mapping, idx);
2660 }
2661
2662 /*
2663  * Return whether there is a pagecache page to back given address within VMA.
2664  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2665  */
2666 static bool hugetlbfs_pagecache_present(struct hstate *h,
2667                         struct vm_area_struct *vma, unsigned long address)
2668 {
2669         struct address_space *mapping;
2670         pgoff_t idx;
2671         struct page *page;
2672
2673         mapping = vma->vm_file->f_mapping;
2674         idx = vma_hugecache_offset(h, vma, address);
2675
2676         page = find_get_page(mapping, idx);
2677         if (page)
2678                 put_page(page);
2679         return page != NULL;
2680 }
2681
2682 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2683                         unsigned long address, pte_t *ptep, unsigned int flags)
2684 {
2685         struct hstate *h = hstate_vma(vma);
2686         int ret = VM_FAULT_SIGBUS;
2687         pgoff_t idx;
2688         unsigned long size;
2689         struct page *page;
2690         struct address_space *mapping;
2691         pte_t new_pte;
2692
2693         /*
2694          * Currently, we are forced to kill the process in the event the
2695          * original mapper has unmapped pages from the child due to a failed
2696          * COW. Warn that such a situation has occurred as it may not be obvious
2697          */
2698         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2699                 printk(KERN_WARNING
2700                         "PID %d killed due to inadequate hugepage pool\n",
2701                         current->pid);
2702                 return ret;
2703         }
2704
2705         mapping = vma->vm_file->f_mapping;
2706         idx = vma_hugecache_offset(h, vma, address);
2707
2708         /*
2709          * Use page lock to guard against racing truncation
2710          * before we get page_table_lock.
2711          */
2712 retry:
2713         page = find_lock_page(mapping, idx);
2714         if (!page) {
2715                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2716                 if (idx >= size)
2717                         goto out;
2718                 page = alloc_huge_page(vma, address, 0);
2719                 if (IS_ERR(page)) {
2720                         ret = -PTR_ERR(page);
2721                         goto out;
2722                 }
2723                 clear_huge_page(page, address, pages_per_huge_page(h));
2724                 __SetPageUptodate(page);
2725
2726                 if (vma->vm_flags & VM_MAYSHARE) {
2727                         int err;
2728                         struct inode *inode = mapping->host;
2729
2730                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2731                         if (err) {
2732                                 put_page(page);
2733                                 if (err == -EEXIST)
2734                                         goto retry;
2735                                 goto out;
2736                         }
2737
2738                         spin_lock(&inode->i_lock);
2739                         inode->i_blocks += blocks_per_huge_page(h);
2740                         spin_unlock(&inode->i_lock);
2741                         page_dup_rmap(page);
2742                 } else {
2743                         lock_page(page);
2744                         if (unlikely(anon_vma_prepare(vma))) {
2745                                 ret = VM_FAULT_OOM;
2746                                 goto backout_unlocked;
2747                         }
2748                         hugepage_add_new_anon_rmap(page, vma, address);
2749                 }
2750         } else {
2751                 /*
2752                  * If memory error occurs between mmap() and fault, some process
2753                  * don't have hwpoisoned swap entry for errored virtual address.
2754                  * So we need to block hugepage fault by PG_hwpoison bit check.
2755                  */
2756                 if (unlikely(PageHWPoison(page))) {
2757                         ret = VM_FAULT_HWPOISON |
2758                               VM_FAULT_SET_HINDEX(h - hstates);
2759                         goto backout_unlocked;
2760                 }
2761                 page_dup_rmap(page);
2762         }
2763
2764         /*
2765          * If we are going to COW a private mapping later, we examine the
2766          * pending reservations for this page now. This will ensure that
2767          * any allocations necessary to record that reservation occur outside
2768          * the spinlock.
2769          */
2770         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2771                 if (vma_needs_reservation(h, vma, address) < 0) {
2772                         ret = VM_FAULT_OOM;
2773                         goto backout_unlocked;
2774                 }
2775
2776         spin_lock(&mm->page_table_lock);
2777         size = i_size_read(mapping->host) >> huge_page_shift(h);
2778         if (idx >= size)
2779                 goto backout;
2780
2781         ret = 0;
2782         if (!huge_pte_none(huge_ptep_get(ptep)))
2783                 goto backout;
2784
2785         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2786                                 && (vma->vm_flags & VM_SHARED)));
2787         set_huge_pte_at(mm, address, ptep, new_pte);
2788
2789         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2790                 /* Optimization, do the COW without a second fault */
2791                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2792         }
2793
2794         spin_unlock(&mm->page_table_lock);
2795         unlock_page(page);
2796 out:
2797         return ret;
2798
2799 backout:
2800         spin_unlock(&mm->page_table_lock);
2801 backout_unlocked:
2802         unlock_page(page);
2803         put_page(page);
2804         goto out;
2805 }
2806
2807 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2808                         unsigned long address, unsigned int flags)
2809 {
2810         pte_t *ptep;
2811         pte_t entry;
2812         int ret;
2813         struct page *page = NULL;
2814         struct page *pagecache_page = NULL;
2815         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2816         struct hstate *h = hstate_vma(vma);
2817         int need_wait_lock = 0;
2818
2819         ptep = huge_pte_offset(mm, address);
2820         if (ptep) {
2821                 entry = huge_ptep_get(ptep);
2822                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2823                         migration_entry_wait_huge(mm, ptep);
2824                         return 0;
2825                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826                         return VM_FAULT_HWPOISON_LARGE |
2827                                VM_FAULT_SET_HINDEX(h - hstates);
2828         } else {
2829                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2830                 if (!ptep)
2831                         return VM_FAULT_OOM;
2832         }
2833
2834         /*
2835          * Serialize hugepage allocation and instantiation, so that we don't
2836          * get spurious allocation failures if two CPUs race to instantiate
2837          * the same page in the page cache.
2838          */
2839         mutex_lock(&hugetlb_instantiation_mutex);
2840         entry = huge_ptep_get(ptep);
2841         if (huge_pte_none(entry)) {
2842                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843                 goto out_mutex;
2844         }
2845
2846         ret = 0;
2847
2848         /*
2849          * entry could be a migration/hwpoison entry at this point, so this
2850          * check prevents the kernel from going below assuming that we have
2851          * a active hugepage in pagecache. This goto expects the 2nd page fault,
2852          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2853          * handle it.
2854          */
2855         if (!pte_present(entry))
2856                 goto out_mutex;
2857
2858         /*
2859          * If we are going to COW the mapping later, we examine the pending
2860          * reservations for this page now. This will ensure that any
2861          * allocations necessary to record that reservation occur outside the
2862          * spinlock. For private mappings, we also lookup the pagecache
2863          * page now as it is used to determine if a reservation has been
2864          * consumed.
2865          */
2866         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2867                 if (vma_needs_reservation(h, vma, address) < 0) {
2868                         ret = VM_FAULT_OOM;
2869                         goto out_mutex;
2870                 }
2871
2872                 if (!(vma->vm_flags & VM_MAYSHARE))
2873                         pagecache_page = hugetlbfs_pagecache_page(h,
2874                                                                 vma, address);
2875         }
2876
2877         spin_lock(&mm->page_table_lock);
2878         /* Check for a racing update before calling hugetlb_cow */
2879         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2880                 goto out_page_table_lock;
2881
2882         /*
2883          * hugetlb_cow() requires page locks of pte_page(entry) and
2884          * pagecache_page, so here we need take the former one
2885          * when page != pagecache_page or !pagecache_page.
2886          */
2887         page = pte_page(entry);
2888         if (page != pagecache_page)
2889                 if (!trylock_page(page)) {
2890                         need_wait_lock = 1;
2891                         goto out_page_table_lock;
2892                 }
2893
2894         get_page(page);
2895
2896         if (flags & FAULT_FLAG_WRITE) {
2897                 if (!pte_write(entry)) {
2898                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2899                                                         pagecache_page);
2900                         goto out_put_page;
2901                 }
2902                 entry = pte_mkdirty(entry);
2903         }
2904         entry = pte_mkyoung(entry);
2905         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2906                                                 flags & FAULT_FLAG_WRITE))
2907                 update_mmu_cache(vma, address, ptep);
2908 out_put_page:
2909         if (page != pagecache_page)
2910                 unlock_page(page);
2911         put_page(page);
2912 out_page_table_lock:
2913         spin_unlock(&mm->page_table_lock);
2914
2915         if (pagecache_page) {
2916                 unlock_page(pagecache_page);
2917                 put_page(pagecache_page);
2918         }
2919 out_mutex:
2920         mutex_unlock(&hugetlb_instantiation_mutex);
2921
2922         /*
2923          * Generally it's safe to hold refcount during waiting page lock. But
2924          * here we just wait to defer the next page fault to avoid busy loop and
2925          * the page is not used after unlocked before returning from the current
2926          * page fault. So we are safe from accessing freed page, even if we wait
2927          * here without taking refcount.
2928          */
2929         if (need_wait_lock)
2930                 wait_on_page_locked(page);
2931         return ret;
2932 }
2933
2934 /* Can be overriden by architectures */
2935 __attribute__((weak)) struct page *
2936 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2937                pud_t *pud, int write)
2938 {
2939         BUG();
2940         return NULL;
2941 }
2942
2943 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2944                         struct page **pages, struct vm_area_struct **vmas,
2945                         unsigned long *position, int *length, int i,
2946                         unsigned int flags)
2947 {
2948         unsigned long pfn_offset;
2949         unsigned long vaddr = *position;
2950         int remainder = *length;
2951         struct hstate *h = hstate_vma(vma);
2952
2953         spin_lock(&mm->page_table_lock);
2954         while (vaddr < vma->vm_end && remainder) {
2955                 pte_t *pte;
2956                 int absent;
2957                 struct page *page;
2958
2959                 /*
2960                  * Some archs (sparc64, sh*) have multiple pte_ts to
2961                  * each hugepage.  We have to make sure we get the
2962                  * first, for the page indexing below to work.
2963                  */
2964                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2965                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2966
2967                 /*
2968                  * When coredumping, it suits get_dump_page if we just return
2969                  * an error where there's an empty slot with no huge pagecache
2970                  * to back it.  This way, we avoid allocating a hugepage, and
2971                  * the sparse dumpfile avoids allocating disk blocks, but its
2972                  * huge holes still show up with zeroes where they need to be.
2973                  */
2974                 if (absent && (flags & FOLL_DUMP) &&
2975                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2976                         remainder = 0;
2977                         break;
2978                 }
2979
2980                 /*
2981                  * We need call hugetlb_fault for both hugepages under migration
2982                  * (in which case hugetlb_fault waits for the migration,) and
2983                  * hwpoisoned hugepages (in which case we need to prevent the
2984                  * caller from accessing to them.) In order to do this, we use
2985                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2986                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2987                  * both cases, and because we can't follow correct pages
2988                  * directly from any kind of swap entries.
2989                  */
2990                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2991                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2992                         int ret;
2993
2994                         spin_unlock(&mm->page_table_lock);
2995                         ret = hugetlb_fault(mm, vma, vaddr,
2996                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2997                         spin_lock(&mm->page_table_lock);
2998                         if (!(ret & VM_FAULT_ERROR))
2999                                 continue;
3000
3001                         remainder = 0;
3002                         break;
3003                 }
3004
3005                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3006                 page = pte_page(huge_ptep_get(pte));
3007 same_page:
3008                 if (pages) {
3009                         pages[i] = mem_map_offset(page, pfn_offset);
3010                         get_page(pages[i]);
3011                 }
3012
3013                 if (vmas)
3014                         vmas[i] = vma;
3015
3016                 vaddr += PAGE_SIZE;
3017                 ++pfn_offset;
3018                 --remainder;
3019                 ++i;
3020                 if (vaddr < vma->vm_end && remainder &&
3021                                 pfn_offset < pages_per_huge_page(h)) {
3022                         /*
3023                          * We use pfn_offset to avoid touching the pageframes
3024                          * of this compound page.
3025                          */
3026                         goto same_page;
3027                 }
3028         }
3029         spin_unlock(&mm->page_table_lock);
3030         *length = remainder;
3031         *position = vaddr;
3032
3033         return i ? i : -EFAULT;
3034 }
3035
3036 void hugetlb_change_protection(struct vm_area_struct *vma,
3037                 unsigned long address, unsigned long end, pgprot_t newprot)
3038 {
3039         struct mm_struct *mm = vma->vm_mm;
3040         unsigned long start = address;
3041         pte_t *ptep;
3042         pte_t pte;
3043         struct hstate *h = hstate_vma(vma);
3044
3045         BUG_ON(address >= end);
3046         flush_cache_range(vma, address, end);
3047
3048         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3049         spin_lock(&mm->page_table_lock);
3050         for (; address < end; address += huge_page_size(h)) {
3051                 ptep = huge_pte_offset(mm, address);
3052                 if (!ptep)
3053                         continue;
3054                 if (huge_pmd_unshare(mm, &address, ptep))
3055                         continue;
3056                 pte = huge_ptep_get(ptep);
3057                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
3058                         continue;
3059                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3060                         swp_entry_t entry = pte_to_swp_entry(pte);
3061
3062                         if (is_write_migration_entry(entry)) {
3063                                 pte_t newpte;
3064
3065                                 make_migration_entry_read(&entry);
3066                                 newpte = swp_entry_to_pte(entry);
3067                                 set_huge_pte_at(mm, address, ptep, newpte);
3068                         }
3069                         continue;
3070                 }
3071                 if (!huge_pte_none(pte)) {
3072                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3073                         pte = pte_mkhuge(pte_modify(pte, newprot));
3074                         set_huge_pte_at(mm, address, ptep, pte);
3075                 }
3076         }
3077         spin_unlock(&mm->page_table_lock);
3078         /*
3079          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3080          * may have cleared our pud entry and done put_page on the page table:
3081          * once we release i_mmap_mutex, another task can do the final put_page
3082          * and that page table be reused and filled with junk.
3083          */
3084         flush_tlb_range(vma, start, end);
3085         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3086 }
3087
3088 int hugetlb_reserve_pages(struct inode *inode,
3089                                         long from, long to,
3090                                         struct vm_area_struct *vma,
3091                                         vm_flags_t vm_flags)
3092 {
3093         long ret, chg;
3094         struct hstate *h = hstate_inode(inode);
3095         struct hugepage_subpool *spool = subpool_inode(inode);
3096
3097         /*
3098          * Only apply hugepage reservation if asked. At fault time, an
3099          * attempt will be made for VM_NORESERVE to allocate a page
3100          * without using reserves
3101          */
3102         if (vm_flags & VM_NORESERVE)
3103                 return 0;
3104
3105         /*
3106          * Shared mappings base their reservation on the number of pages that
3107          * are already allocated on behalf of the file. Private mappings need
3108          * to reserve the full area even if read-only as mprotect() may be
3109          * called to make the mapping read-write. Assume !vma is a shm mapping
3110          */
3111         if (!vma || vma->vm_flags & VM_MAYSHARE)
3112                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3113         else {
3114                 struct resv_map *resv_map = resv_map_alloc();
3115                 if (!resv_map)
3116                         return -ENOMEM;
3117
3118                 chg = to - from;
3119
3120                 set_vma_resv_map(vma, resv_map);
3121                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3122         }
3123
3124         if (chg < 0) {
3125                 ret = chg;
3126                 goto out_err;
3127         }
3128
3129         /* There must be enough pages in the subpool for the mapping */
3130         if (hugepage_subpool_get_pages(spool, chg)) {
3131                 ret = -ENOSPC;
3132                 goto out_err;
3133         }
3134
3135         /*
3136          * Check enough hugepages are available for the reservation.
3137          * Hand the pages back to the subpool if there are not
3138          */
3139         ret = hugetlb_acct_memory(h, chg);
3140         if (ret < 0) {
3141                 hugepage_subpool_put_pages(spool, chg);
3142                 goto out_err;
3143         }
3144
3145         /*
3146          * Account for the reservations made. Shared mappings record regions
3147          * that have reservations as they are shared by multiple VMAs.
3148          * When the last VMA disappears, the region map says how much
3149          * the reservation was and the page cache tells how much of
3150          * the reservation was consumed. Private mappings are per-VMA and
3151          * only the consumed reservations are tracked. When the VMA
3152          * disappears, the original reservation is the VMA size and the
3153          * consumed reservations are stored in the map. Hence, nothing
3154          * else has to be done for private mappings here
3155          */
3156         if (!vma || vma->vm_flags & VM_MAYSHARE)
3157                 region_add(&inode->i_mapping->private_list, from, to);
3158         return 0;
3159 out_err:
3160         if (vma)
3161                 resv_map_put(vma);
3162         return ret;
3163 }
3164
3165 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3166 {
3167         struct hstate *h = hstate_inode(inode);
3168         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3169         struct hugepage_subpool *spool = subpool_inode(inode);
3170
3171         spin_lock(&inode->i_lock);
3172         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3173         spin_unlock(&inode->i_lock);
3174
3175         hugepage_subpool_put_pages(spool, (chg - freed));
3176         hugetlb_acct_memory(h, -(chg - freed));
3177 }
3178
3179 #ifdef CONFIG_MEMORY_FAILURE
3180
3181 /* Should be called in hugetlb_lock */
3182 static int is_hugepage_on_freelist(struct page *hpage)
3183 {
3184         struct page *page;
3185         struct page *tmp;
3186         struct hstate *h = page_hstate(hpage);
3187         int nid = page_to_nid(hpage);
3188
3189         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3190                 if (page == hpage)
3191                         return 1;
3192         return 0;
3193 }
3194
3195 /*
3196  * This function is called from memory failure code.
3197  * Assume the caller holds page lock of the head page.
3198  */
3199 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3200 {
3201         struct hstate *h = page_hstate(hpage);
3202         int nid = page_to_nid(hpage);
3203         int ret = -EBUSY;
3204
3205         spin_lock(&hugetlb_lock);
3206         if (is_hugepage_on_freelist(hpage)) {
3207                 list_del(&hpage->lru);
3208                 set_page_refcounted(hpage);
3209                 h->free_huge_pages--;
3210                 h->free_huge_pages_node[nid]--;
3211                 ret = 0;
3212         }
3213         spin_unlock(&hugetlb_lock);
3214         return ret;
3215 }
3216 #endif