sparc: tsb must be flushed before tlb
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 enqueue_huge_page(h, page);
637         }
638         spin_unlock(&hugetlb_lock);
639         hugepage_subpool_put_pages(spool, 1);
640 }
641
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
643 {
644         set_compound_page_dtor(page, free_huge_page);
645         spin_lock(&hugetlb_lock);
646         h->nr_huge_pages++;
647         h->nr_huge_pages_node[nid]++;
648         spin_unlock(&hugetlb_lock);
649         put_page(page); /* free it into the hugepage allocator */
650 }
651
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653 {
654         int i;
655         int nr_pages = 1 << order;
656         struct page *p = page + 1;
657
658         /* we rely on prep_new_huge_page to set the destructor */
659         set_compound_order(page, order);
660         __SetPageHead(page);
661         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662                 __SetPageTail(p);
663                 set_page_count(p, 0);
664                 p->first_page = page;
665         }
666 }
667
668 int PageHuge(struct page *page)
669 {
670         compound_page_dtor *dtor;
671
672         if (!PageCompound(page))
673                 return 0;
674
675         page = compound_head(page);
676         dtor = get_compound_page_dtor(page);
677
678         return dtor == free_huge_page;
679 }
680 EXPORT_SYMBOL_GPL(PageHuge);
681
682 pgoff_t __basepage_index(struct page *page)
683 {
684         struct page *page_head = compound_head(page);
685         pgoff_t index = page_index(page_head);
686         unsigned long compound_idx;
687
688         if (!PageHuge(page_head))
689                 return page_index(page);
690
691         if (compound_order(page_head) >= MAX_ORDER)
692                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
693         else
694                 compound_idx = page - page_head;
695
696         return (index << compound_order(page_head)) + compound_idx;
697 }
698
699 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
700 {
701         struct page *page;
702
703         if (h->order >= MAX_ORDER)
704                 return NULL;
705
706         page = alloc_pages_exact_node(nid,
707                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
708                                                 __GFP_REPEAT|__GFP_NOWARN,
709                 huge_page_order(h));
710         if (page) {
711                 if (arch_prepare_hugepage(page)) {
712                         __free_pages(page, huge_page_order(h));
713                         return NULL;
714                 }
715                 prep_new_huge_page(h, page, nid);
716         }
717
718         return page;
719 }
720
721 /*
722  * common helper functions for hstate_next_node_to_{alloc|free}.
723  * We may have allocated or freed a huge page based on a different
724  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
725  * be outside of *nodes_allowed.  Ensure that we use an allowed
726  * node for alloc or free.
727  */
728 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
729 {
730         nid = next_node(nid, *nodes_allowed);
731         if (nid == MAX_NUMNODES)
732                 nid = first_node(*nodes_allowed);
733         VM_BUG_ON(nid >= MAX_NUMNODES);
734
735         return nid;
736 }
737
738 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
739 {
740         if (!node_isset(nid, *nodes_allowed))
741                 nid = next_node_allowed(nid, nodes_allowed);
742         return nid;
743 }
744
745 /*
746  * returns the previously saved node ["this node"] from which to
747  * allocate a persistent huge page for the pool and advance the
748  * next node from which to allocate, handling wrap at end of node
749  * mask.
750  */
751 static int hstate_next_node_to_alloc(struct hstate *h,
752                                         nodemask_t *nodes_allowed)
753 {
754         int nid;
755
756         VM_BUG_ON(!nodes_allowed);
757
758         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
759         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
760
761         return nid;
762 }
763
764 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
765 {
766         struct page *page;
767         int start_nid;
768         int next_nid;
769         int ret = 0;
770
771         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
772         next_nid = start_nid;
773
774         do {
775                 page = alloc_fresh_huge_page_node(h, next_nid);
776                 if (page) {
777                         ret = 1;
778                         break;
779                 }
780                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
781         } while (next_nid != start_nid);
782
783         if (ret)
784                 count_vm_event(HTLB_BUDDY_PGALLOC);
785         else
786                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
787
788         return ret;
789 }
790
791 /*
792  * helper for free_pool_huge_page() - return the previously saved
793  * node ["this node"] from which to free a huge page.  Advance the
794  * next node id whether or not we find a free huge page to free so
795  * that the next attempt to free addresses the next node.
796  */
797 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
798 {
799         int nid;
800
801         VM_BUG_ON(!nodes_allowed);
802
803         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
804         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
805
806         return nid;
807 }
808
809 /*
810  * Free huge page from pool from next node to free.
811  * Attempt to keep persistent huge pages more or less
812  * balanced over allowed nodes.
813  * Called with hugetlb_lock locked.
814  */
815 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
816                                                          bool acct_surplus)
817 {
818         int start_nid;
819         int next_nid;
820         int ret = 0;
821
822         start_nid = hstate_next_node_to_free(h, nodes_allowed);
823         next_nid = start_nid;
824
825         do {
826                 /*
827                  * If we're returning unused surplus pages, only examine
828                  * nodes with surplus pages.
829                  */
830                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
831                     !list_empty(&h->hugepage_freelists[next_nid])) {
832                         struct page *page =
833                                 list_entry(h->hugepage_freelists[next_nid].next,
834                                           struct page, lru);
835                         list_del(&page->lru);
836                         h->free_huge_pages--;
837                         h->free_huge_pages_node[next_nid]--;
838                         if (acct_surplus) {
839                                 h->surplus_huge_pages--;
840                                 h->surplus_huge_pages_node[next_nid]--;
841                         }
842                         update_and_free_page(h, page);
843                         ret = 1;
844                         break;
845                 }
846                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
847         } while (next_nid != start_nid);
848
849         return ret;
850 }
851
852 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
853 {
854         struct page *page;
855         unsigned int r_nid;
856
857         if (h->order >= MAX_ORDER)
858                 return NULL;
859
860         /*
861          * Assume we will successfully allocate the surplus page to
862          * prevent racing processes from causing the surplus to exceed
863          * overcommit
864          *
865          * This however introduces a different race, where a process B
866          * tries to grow the static hugepage pool while alloc_pages() is
867          * called by process A. B will only examine the per-node
868          * counters in determining if surplus huge pages can be
869          * converted to normal huge pages in adjust_pool_surplus(). A
870          * won't be able to increment the per-node counter, until the
871          * lock is dropped by B, but B doesn't drop hugetlb_lock until
872          * no more huge pages can be converted from surplus to normal
873          * state (and doesn't try to convert again). Thus, we have a
874          * case where a surplus huge page exists, the pool is grown, and
875          * the surplus huge page still exists after, even though it
876          * should just have been converted to a normal huge page. This
877          * does not leak memory, though, as the hugepage will be freed
878          * once it is out of use. It also does not allow the counters to
879          * go out of whack in adjust_pool_surplus() as we don't modify
880          * the node values until we've gotten the hugepage and only the
881          * per-node value is checked there.
882          */
883         spin_lock(&hugetlb_lock);
884         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
885                 spin_unlock(&hugetlb_lock);
886                 return NULL;
887         } else {
888                 h->nr_huge_pages++;
889                 h->surplus_huge_pages++;
890         }
891         spin_unlock(&hugetlb_lock);
892
893         if (nid == NUMA_NO_NODE)
894                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
895                                    __GFP_REPEAT|__GFP_NOWARN,
896                                    huge_page_order(h));
897         else
898                 page = alloc_pages_exact_node(nid,
899                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
900                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
901
902         if (page && arch_prepare_hugepage(page)) {
903                 __free_pages(page, huge_page_order(h));
904                 return NULL;
905         }
906
907         spin_lock(&hugetlb_lock);
908         if (page) {
909                 r_nid = page_to_nid(page);
910                 set_compound_page_dtor(page, free_huge_page);
911                 /*
912                  * We incremented the global counters already
913                  */
914                 h->nr_huge_pages_node[r_nid]++;
915                 h->surplus_huge_pages_node[r_nid]++;
916                 __count_vm_event(HTLB_BUDDY_PGALLOC);
917         } else {
918                 h->nr_huge_pages--;
919                 h->surplus_huge_pages--;
920                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
921         }
922         spin_unlock(&hugetlb_lock);
923
924         return page;
925 }
926
927 /*
928  * This allocation function is useful in the context where vma is irrelevant.
929  * E.g. soft-offlining uses this function because it only cares physical
930  * address of error page.
931  */
932 struct page *alloc_huge_page_node(struct hstate *h, int nid)
933 {
934         struct page *page;
935
936         spin_lock(&hugetlb_lock);
937         page = dequeue_huge_page_node(h, nid);
938         spin_unlock(&hugetlb_lock);
939
940         if (!page)
941                 page = alloc_buddy_huge_page(h, nid);
942
943         return page;
944 }
945
946 /*
947  * Increase the hugetlb pool such that it can accommodate a reservation
948  * of size 'delta'.
949  */
950 static int gather_surplus_pages(struct hstate *h, int delta)
951 {
952         struct list_head surplus_list;
953         struct page *page, *tmp;
954         int ret, i;
955         int needed, allocated;
956
957         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
958         if (needed <= 0) {
959                 h->resv_huge_pages += delta;
960                 return 0;
961         }
962
963         allocated = 0;
964         INIT_LIST_HEAD(&surplus_list);
965
966         ret = -ENOMEM;
967 retry:
968         spin_unlock(&hugetlb_lock);
969         for (i = 0; i < needed; i++) {
970                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
971                 if (!page)
972                         /*
973                          * We were not able to allocate enough pages to
974                          * satisfy the entire reservation so we free what
975                          * we've allocated so far.
976                          */
977                         goto free;
978
979                 list_add(&page->lru, &surplus_list);
980         }
981         allocated += needed;
982
983         /*
984          * After retaking hugetlb_lock, we need to recalculate 'needed'
985          * because either resv_huge_pages or free_huge_pages may have changed.
986          */
987         spin_lock(&hugetlb_lock);
988         needed = (h->resv_huge_pages + delta) -
989                         (h->free_huge_pages + allocated);
990         if (needed > 0)
991                 goto retry;
992
993         /*
994          * The surplus_list now contains _at_least_ the number of extra pages
995          * needed to accommodate the reservation.  Add the appropriate number
996          * of pages to the hugetlb pool and free the extras back to the buddy
997          * allocator.  Commit the entire reservation here to prevent another
998          * process from stealing the pages as they are added to the pool but
999          * before they are reserved.
1000          */
1001         needed += allocated;
1002         h->resv_huge_pages += delta;
1003         ret = 0;
1004
1005         /* Free the needed pages to the hugetlb pool */
1006         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1007                 if ((--needed) < 0)
1008                         break;
1009                 list_del(&page->lru);
1010                 /*
1011                  * This page is now managed by the hugetlb allocator and has
1012                  * no users -- drop the buddy allocator's reference.
1013                  */
1014                 put_page_testzero(page);
1015                 VM_BUG_ON(page_count(page));
1016                 enqueue_huge_page(h, page);
1017         }
1018         spin_unlock(&hugetlb_lock);
1019
1020         /* Free unnecessary surplus pages to the buddy allocator */
1021 free:
1022         if (!list_empty(&surplus_list)) {
1023                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024                         list_del(&page->lru);
1025                         put_page(page);
1026                 }
1027         }
1028         spin_lock(&hugetlb_lock);
1029
1030         return ret;
1031 }
1032
1033 /*
1034  * When releasing a hugetlb pool reservation, any surplus pages that were
1035  * allocated to satisfy the reservation must be explicitly freed if they were
1036  * never used.
1037  * Called with hugetlb_lock held.
1038  */
1039 static void return_unused_surplus_pages(struct hstate *h,
1040                                         unsigned long unused_resv_pages)
1041 {
1042         unsigned long nr_pages;
1043
1044         /* Uncommit the reservation */
1045         h->resv_huge_pages -= unused_resv_pages;
1046
1047         /* Cannot return gigantic pages currently */
1048         if (h->order >= MAX_ORDER)
1049                 return;
1050
1051         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1052
1053         /*
1054          * We want to release as many surplus pages as possible, spread
1055          * evenly across all nodes with memory. Iterate across these nodes
1056          * until we can no longer free unreserved surplus pages. This occurs
1057          * when the nodes with surplus pages have no free pages.
1058          * free_pool_huge_page() will balance the the freed pages across the
1059          * on-line nodes with memory and will handle the hstate accounting.
1060          */
1061         while (nr_pages--) {
1062                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1063                         break;
1064         }
1065 }
1066
1067 /*
1068  * Determine if the huge page at addr within the vma has an associated
1069  * reservation.  Where it does not we will need to logically increase
1070  * reservation and actually increase subpool usage before an allocation
1071  * can occur.  Where any new reservation would be required the
1072  * reservation change is prepared, but not committed.  Once the page
1073  * has been allocated from the subpool and instantiated the change should
1074  * be committed via vma_commit_reservation.  No action is required on
1075  * failure.
1076  */
1077 static long vma_needs_reservation(struct hstate *h,
1078                         struct vm_area_struct *vma, unsigned long addr)
1079 {
1080         struct address_space *mapping = vma->vm_file->f_mapping;
1081         struct inode *inode = mapping->host;
1082
1083         if (vma->vm_flags & VM_MAYSHARE) {
1084                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1085                 return region_chg(&inode->i_mapping->private_list,
1086                                                         idx, idx + 1);
1087
1088         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1089                 return 1;
1090
1091         } else  {
1092                 long err;
1093                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1094                 struct resv_map *reservations = vma_resv_map(vma);
1095
1096                 err = region_chg(&reservations->regions, idx, idx + 1);
1097                 if (err < 0)
1098                         return err;
1099                 return 0;
1100         }
1101 }
1102 static void vma_commit_reservation(struct hstate *h,
1103                         struct vm_area_struct *vma, unsigned long addr)
1104 {
1105         struct address_space *mapping = vma->vm_file->f_mapping;
1106         struct inode *inode = mapping->host;
1107
1108         if (vma->vm_flags & VM_MAYSHARE) {
1109                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1110                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1111
1112         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1113                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1114                 struct resv_map *reservations = vma_resv_map(vma);
1115
1116                 /* Mark this page used in the map. */
1117                 region_add(&reservations->regions, idx, idx + 1);
1118         }
1119 }
1120
1121 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1122                                     unsigned long addr, int avoid_reserve)
1123 {
1124         struct hugepage_subpool *spool = subpool_vma(vma);
1125         struct hstate *h = hstate_vma(vma);
1126         struct page *page;
1127         long chg;
1128
1129         /*
1130          * Processes that did not create the mapping will have no
1131          * reserves and will not have accounted against subpool
1132          * limit. Check that the subpool limit can be made before
1133          * satisfying the allocation MAP_NORESERVE mappings may also
1134          * need pages and subpool limit allocated allocated if no reserve
1135          * mapping overlaps.
1136          */
1137         chg = vma_needs_reservation(h, vma, addr);
1138         if (chg < 0)
1139                 return ERR_PTR(-VM_FAULT_OOM);
1140         if (chg)
1141                 if (hugepage_subpool_get_pages(spool, chg))
1142                         return ERR_PTR(-VM_FAULT_SIGBUS);
1143
1144         spin_lock(&hugetlb_lock);
1145         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1146         spin_unlock(&hugetlb_lock);
1147
1148         if (!page) {
1149                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1150                 if (!page) {
1151                         hugepage_subpool_put_pages(spool, chg);
1152                         return ERR_PTR(-VM_FAULT_SIGBUS);
1153                 }
1154         }
1155
1156         set_page_private(page, (unsigned long)spool);
1157
1158         vma_commit_reservation(h, vma, addr);
1159
1160         return page;
1161 }
1162
1163 int __weak alloc_bootmem_huge_page(struct hstate *h)
1164 {
1165         struct huge_bootmem_page *m;
1166         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1167
1168         while (nr_nodes) {
1169                 void *addr;
1170
1171                 addr = __alloc_bootmem_node_nopanic(
1172                                 NODE_DATA(hstate_next_node_to_alloc(h,
1173                                                 &node_states[N_HIGH_MEMORY])),
1174                                 huge_page_size(h), huge_page_size(h), 0);
1175
1176                 if (addr) {
1177                         /*
1178                          * Use the beginning of the huge page to store the
1179                          * huge_bootmem_page struct (until gather_bootmem
1180                          * puts them into the mem_map).
1181                          */
1182                         m = addr;
1183                         goto found;
1184                 }
1185                 nr_nodes--;
1186         }
1187         return 0;
1188
1189 found:
1190         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1191         /* Put them into a private list first because mem_map is not up yet */
1192         list_add(&m->list, &huge_boot_pages);
1193         m->hstate = h;
1194         return 1;
1195 }
1196
1197 static void prep_compound_huge_page(struct page *page, int order)
1198 {
1199         if (unlikely(order > (MAX_ORDER - 1)))
1200                 prep_compound_gigantic_page(page, order);
1201         else
1202                 prep_compound_page(page, order);
1203 }
1204
1205 /* Put bootmem huge pages into the standard lists after mem_map is up */
1206 static void __init gather_bootmem_prealloc(void)
1207 {
1208         struct huge_bootmem_page *m;
1209
1210         list_for_each_entry(m, &huge_boot_pages, list) {
1211                 struct hstate *h = m->hstate;
1212                 struct page *page;
1213
1214 #ifdef CONFIG_HIGHMEM
1215                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1216                 free_bootmem_late((unsigned long)m,
1217                                   sizeof(struct huge_bootmem_page));
1218 #else
1219                 page = virt_to_page(m);
1220 #endif
1221                 __ClearPageReserved(page);
1222                 WARN_ON(page_count(page) != 1);
1223                 prep_compound_huge_page(page, h->order);
1224                 prep_new_huge_page(h, page, page_to_nid(page));
1225                 /*
1226                  * If we had gigantic hugepages allocated at boot time, we need
1227                  * to restore the 'stolen' pages to totalram_pages in order to
1228                  * fix confusing memory reports from free(1) and another
1229                  * side-effects, like CommitLimit going negative.
1230                  */
1231                 if (h->order > (MAX_ORDER - 1))
1232                         totalram_pages += 1 << h->order;
1233         }
1234 }
1235
1236 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1237 {
1238         unsigned long i;
1239
1240         for (i = 0; i < h->max_huge_pages; ++i) {
1241                 if (h->order >= MAX_ORDER) {
1242                         if (!alloc_bootmem_huge_page(h))
1243                                 break;
1244                 } else if (!alloc_fresh_huge_page(h,
1245                                          &node_states[N_HIGH_MEMORY]))
1246                         break;
1247         }
1248         h->max_huge_pages = i;
1249 }
1250
1251 static void __init hugetlb_init_hstates(void)
1252 {
1253         struct hstate *h;
1254
1255         for_each_hstate(h) {
1256                 /* oversize hugepages were init'ed in early boot */
1257                 if (h->order < MAX_ORDER)
1258                         hugetlb_hstate_alloc_pages(h);
1259         }
1260 }
1261
1262 static char * __init memfmt(char *buf, unsigned long n)
1263 {
1264         if (n >= (1UL << 30))
1265                 sprintf(buf, "%lu GB", n >> 30);
1266         else if (n >= (1UL << 20))
1267                 sprintf(buf, "%lu MB", n >> 20);
1268         else
1269                 sprintf(buf, "%lu KB", n >> 10);
1270         return buf;
1271 }
1272
1273 static void __init report_hugepages(void)
1274 {
1275         struct hstate *h;
1276
1277         for_each_hstate(h) {
1278                 char buf[32];
1279                 printk(KERN_INFO "HugeTLB registered %s page size, "
1280                                  "pre-allocated %ld pages\n",
1281                         memfmt(buf, huge_page_size(h)),
1282                         h->free_huge_pages);
1283         }
1284 }
1285
1286 #ifdef CONFIG_HIGHMEM
1287 static void try_to_free_low(struct hstate *h, unsigned long count,
1288                                                 nodemask_t *nodes_allowed)
1289 {
1290         int i;
1291
1292         if (h->order >= MAX_ORDER)
1293                 return;
1294
1295         for_each_node_mask(i, *nodes_allowed) {
1296                 struct page *page, *next;
1297                 struct list_head *freel = &h->hugepage_freelists[i];
1298                 list_for_each_entry_safe(page, next, freel, lru) {
1299                         if (count >= h->nr_huge_pages)
1300                                 return;
1301                         if (PageHighMem(page))
1302                                 continue;
1303                         list_del(&page->lru);
1304                         update_and_free_page(h, page);
1305                         h->free_huge_pages--;
1306                         h->free_huge_pages_node[page_to_nid(page)]--;
1307                 }
1308         }
1309 }
1310 #else
1311 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1312                                                 nodemask_t *nodes_allowed)
1313 {
1314 }
1315 #endif
1316
1317 /*
1318  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1319  * balanced by operating on them in a round-robin fashion.
1320  * Returns 1 if an adjustment was made.
1321  */
1322 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1323                                 int delta)
1324 {
1325         int start_nid, next_nid;
1326         int ret = 0;
1327
1328         VM_BUG_ON(delta != -1 && delta != 1);
1329
1330         if (delta < 0)
1331                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1332         else
1333                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1334         next_nid = start_nid;
1335
1336         do {
1337                 int nid = next_nid;
1338                 if (delta < 0)  {
1339                         /*
1340                          * To shrink on this node, there must be a surplus page
1341                          */
1342                         if (!h->surplus_huge_pages_node[nid]) {
1343                                 next_nid = hstate_next_node_to_alloc(h,
1344                                                                 nodes_allowed);
1345                                 continue;
1346                         }
1347                 }
1348                 if (delta > 0) {
1349                         /*
1350                          * Surplus cannot exceed the total number of pages
1351                          */
1352                         if (h->surplus_huge_pages_node[nid] >=
1353                                                 h->nr_huge_pages_node[nid]) {
1354                                 next_nid = hstate_next_node_to_free(h,
1355                                                                 nodes_allowed);
1356                                 continue;
1357                         }
1358                 }
1359
1360                 h->surplus_huge_pages += delta;
1361                 h->surplus_huge_pages_node[nid] += delta;
1362                 ret = 1;
1363                 break;
1364         } while (next_nid != start_nid);
1365
1366         return ret;
1367 }
1368
1369 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1370 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1371                                                 nodemask_t *nodes_allowed)
1372 {
1373         unsigned long min_count, ret;
1374
1375         if (h->order >= MAX_ORDER)
1376                 return h->max_huge_pages;
1377
1378         /*
1379          * Increase the pool size
1380          * First take pages out of surplus state.  Then make up the
1381          * remaining difference by allocating fresh huge pages.
1382          *
1383          * We might race with alloc_buddy_huge_page() here and be unable
1384          * to convert a surplus huge page to a normal huge page. That is
1385          * not critical, though, it just means the overall size of the
1386          * pool might be one hugepage larger than it needs to be, but
1387          * within all the constraints specified by the sysctls.
1388          */
1389         spin_lock(&hugetlb_lock);
1390         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1391                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1392                         break;
1393         }
1394
1395         while (count > persistent_huge_pages(h)) {
1396                 /*
1397                  * If this allocation races such that we no longer need the
1398                  * page, free_huge_page will handle it by freeing the page
1399                  * and reducing the surplus.
1400                  */
1401                 spin_unlock(&hugetlb_lock);
1402                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1403                 spin_lock(&hugetlb_lock);
1404                 if (!ret)
1405                         goto out;
1406
1407                 /* Bail for signals. Probably ctrl-c from user */
1408                 if (signal_pending(current))
1409                         goto out;
1410         }
1411
1412         /*
1413          * Decrease the pool size
1414          * First return free pages to the buddy allocator (being careful
1415          * to keep enough around to satisfy reservations).  Then place
1416          * pages into surplus state as needed so the pool will shrink
1417          * to the desired size as pages become free.
1418          *
1419          * By placing pages into the surplus state independent of the
1420          * overcommit value, we are allowing the surplus pool size to
1421          * exceed overcommit. There are few sane options here. Since
1422          * alloc_buddy_huge_page() is checking the global counter,
1423          * though, we'll note that we're not allowed to exceed surplus
1424          * and won't grow the pool anywhere else. Not until one of the
1425          * sysctls are changed, or the surplus pages go out of use.
1426          */
1427         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1428         min_count = max(count, min_count);
1429         try_to_free_low(h, min_count, nodes_allowed);
1430         while (min_count < persistent_huge_pages(h)) {
1431                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1432                         break;
1433         }
1434         while (count < persistent_huge_pages(h)) {
1435                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1436                         break;
1437         }
1438 out:
1439         ret = persistent_huge_pages(h);
1440         spin_unlock(&hugetlb_lock);
1441         return ret;
1442 }
1443
1444 #define HSTATE_ATTR_RO(_name) \
1445         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1446
1447 #define HSTATE_ATTR(_name) \
1448         static struct kobj_attribute _name##_attr = \
1449                 __ATTR(_name, 0644, _name##_show, _name##_store)
1450
1451 static struct kobject *hugepages_kobj;
1452 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1453
1454 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1455
1456 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1457 {
1458         int i;
1459
1460         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1461                 if (hstate_kobjs[i] == kobj) {
1462                         if (nidp)
1463                                 *nidp = NUMA_NO_NODE;
1464                         return &hstates[i];
1465                 }
1466
1467         return kobj_to_node_hstate(kobj, nidp);
1468 }
1469
1470 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1471                                         struct kobj_attribute *attr, char *buf)
1472 {
1473         struct hstate *h;
1474         unsigned long nr_huge_pages;
1475         int nid;
1476
1477         h = kobj_to_hstate(kobj, &nid);
1478         if (nid == NUMA_NO_NODE)
1479                 nr_huge_pages = h->nr_huge_pages;
1480         else
1481                 nr_huge_pages = h->nr_huge_pages_node[nid];
1482
1483         return sprintf(buf, "%lu\n", nr_huge_pages);
1484 }
1485
1486 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1487                         struct kobject *kobj, struct kobj_attribute *attr,
1488                         const char *buf, size_t len)
1489 {
1490         int err;
1491         int nid;
1492         unsigned long count;
1493         struct hstate *h;
1494         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1495
1496         err = strict_strtoul(buf, 10, &count);
1497         if (err)
1498                 goto out;
1499
1500         h = kobj_to_hstate(kobj, &nid);
1501         if (h->order >= MAX_ORDER) {
1502                 err = -EINVAL;
1503                 goto out;
1504         }
1505
1506         if (nid == NUMA_NO_NODE) {
1507                 /*
1508                  * global hstate attribute
1509                  */
1510                 if (!(obey_mempolicy &&
1511                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1512                         NODEMASK_FREE(nodes_allowed);
1513                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1514                 }
1515         } else if (nodes_allowed) {
1516                 /*
1517                  * per node hstate attribute: adjust count to global,
1518                  * but restrict alloc/free to the specified node.
1519                  */
1520                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1521                 init_nodemask_of_node(nodes_allowed, nid);
1522         } else
1523                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1524
1525         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1526
1527         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1528                 NODEMASK_FREE(nodes_allowed);
1529
1530         return len;
1531 out:
1532         NODEMASK_FREE(nodes_allowed);
1533         return err;
1534 }
1535
1536 static ssize_t nr_hugepages_show(struct kobject *kobj,
1537                                        struct kobj_attribute *attr, char *buf)
1538 {
1539         return nr_hugepages_show_common(kobj, attr, buf);
1540 }
1541
1542 static ssize_t nr_hugepages_store(struct kobject *kobj,
1543                struct kobj_attribute *attr, const char *buf, size_t len)
1544 {
1545         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1546 }
1547 HSTATE_ATTR(nr_hugepages);
1548
1549 #ifdef CONFIG_NUMA
1550
1551 /*
1552  * hstate attribute for optionally mempolicy-based constraint on persistent
1553  * huge page alloc/free.
1554  */
1555 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1556                                        struct kobj_attribute *attr, char *buf)
1557 {
1558         return nr_hugepages_show_common(kobj, attr, buf);
1559 }
1560
1561 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1562                struct kobj_attribute *attr, const char *buf, size_t len)
1563 {
1564         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1565 }
1566 HSTATE_ATTR(nr_hugepages_mempolicy);
1567 #endif
1568
1569
1570 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1571                                         struct kobj_attribute *attr, char *buf)
1572 {
1573         struct hstate *h = kobj_to_hstate(kobj, NULL);
1574         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1575 }
1576
1577 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1578                 struct kobj_attribute *attr, const char *buf, size_t count)
1579 {
1580         int err;
1581         unsigned long input;
1582         struct hstate *h = kobj_to_hstate(kobj, NULL);
1583
1584         if (h->order >= MAX_ORDER)
1585                 return -EINVAL;
1586
1587         err = strict_strtoul(buf, 10, &input);
1588         if (err)
1589                 return err;
1590
1591         spin_lock(&hugetlb_lock);
1592         h->nr_overcommit_huge_pages = input;
1593         spin_unlock(&hugetlb_lock);
1594
1595         return count;
1596 }
1597 HSTATE_ATTR(nr_overcommit_hugepages);
1598
1599 static ssize_t free_hugepages_show(struct kobject *kobj,
1600                                         struct kobj_attribute *attr, char *buf)
1601 {
1602         struct hstate *h;
1603         unsigned long free_huge_pages;
1604         int nid;
1605
1606         h = kobj_to_hstate(kobj, &nid);
1607         if (nid == NUMA_NO_NODE)
1608                 free_huge_pages = h->free_huge_pages;
1609         else
1610                 free_huge_pages = h->free_huge_pages_node[nid];
1611
1612         return sprintf(buf, "%lu\n", free_huge_pages);
1613 }
1614 HSTATE_ATTR_RO(free_hugepages);
1615
1616 static ssize_t resv_hugepages_show(struct kobject *kobj,
1617                                         struct kobj_attribute *attr, char *buf)
1618 {
1619         struct hstate *h = kobj_to_hstate(kobj, NULL);
1620         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1621 }
1622 HSTATE_ATTR_RO(resv_hugepages);
1623
1624 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1625                                         struct kobj_attribute *attr, char *buf)
1626 {
1627         struct hstate *h;
1628         unsigned long surplus_huge_pages;
1629         int nid;
1630
1631         h = kobj_to_hstate(kobj, &nid);
1632         if (nid == NUMA_NO_NODE)
1633                 surplus_huge_pages = h->surplus_huge_pages;
1634         else
1635                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1636
1637         return sprintf(buf, "%lu\n", surplus_huge_pages);
1638 }
1639 HSTATE_ATTR_RO(surplus_hugepages);
1640
1641 static struct attribute *hstate_attrs[] = {
1642         &nr_hugepages_attr.attr,
1643         &nr_overcommit_hugepages_attr.attr,
1644         &free_hugepages_attr.attr,
1645         &resv_hugepages_attr.attr,
1646         &surplus_hugepages_attr.attr,
1647 #ifdef CONFIG_NUMA
1648         &nr_hugepages_mempolicy_attr.attr,
1649 #endif
1650         NULL,
1651 };
1652
1653 static struct attribute_group hstate_attr_group = {
1654         .attrs = hstate_attrs,
1655 };
1656
1657 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1658                                     struct kobject **hstate_kobjs,
1659                                     struct attribute_group *hstate_attr_group)
1660 {
1661         int retval;
1662         int hi = h - hstates;
1663
1664         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1665         if (!hstate_kobjs[hi])
1666                 return -ENOMEM;
1667
1668         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1669         if (retval)
1670                 kobject_put(hstate_kobjs[hi]);
1671
1672         return retval;
1673 }
1674
1675 static void __init hugetlb_sysfs_init(void)
1676 {
1677         struct hstate *h;
1678         int err;
1679
1680         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1681         if (!hugepages_kobj)
1682                 return;
1683
1684         for_each_hstate(h) {
1685                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1686                                          hstate_kobjs, &hstate_attr_group);
1687                 if (err)
1688                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1689                                                                 h->name);
1690         }
1691 }
1692
1693 #ifdef CONFIG_NUMA
1694
1695 /*
1696  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1697  * with node sysdevs in node_devices[] using a parallel array.  The array
1698  * index of a node sysdev or _hstate == node id.
1699  * This is here to avoid any static dependency of the node sysdev driver, in
1700  * the base kernel, on the hugetlb module.
1701  */
1702 struct node_hstate {
1703         struct kobject          *hugepages_kobj;
1704         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1705 };
1706 struct node_hstate node_hstates[MAX_NUMNODES];
1707
1708 /*
1709  * A subset of global hstate attributes for node sysdevs
1710  */
1711 static struct attribute *per_node_hstate_attrs[] = {
1712         &nr_hugepages_attr.attr,
1713         &free_hugepages_attr.attr,
1714         &surplus_hugepages_attr.attr,
1715         NULL,
1716 };
1717
1718 static struct attribute_group per_node_hstate_attr_group = {
1719         .attrs = per_node_hstate_attrs,
1720 };
1721
1722 /*
1723  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1724  * Returns node id via non-NULL nidp.
1725  */
1726 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1727 {
1728         int nid;
1729
1730         for (nid = 0; nid < nr_node_ids; nid++) {
1731                 struct node_hstate *nhs = &node_hstates[nid];
1732                 int i;
1733                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1734                         if (nhs->hstate_kobjs[i] == kobj) {
1735                                 if (nidp)
1736                                         *nidp = nid;
1737                                 return &hstates[i];
1738                         }
1739         }
1740
1741         BUG();
1742         return NULL;
1743 }
1744
1745 /*
1746  * Unregister hstate attributes from a single node sysdev.
1747  * No-op if no hstate attributes attached.
1748  */
1749 void hugetlb_unregister_node(struct node *node)
1750 {
1751         struct hstate *h;
1752         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1753
1754         if (!nhs->hugepages_kobj)
1755                 return;         /* no hstate attributes */
1756
1757         for_each_hstate(h)
1758                 if (nhs->hstate_kobjs[h - hstates]) {
1759                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1760                         nhs->hstate_kobjs[h - hstates] = NULL;
1761                 }
1762
1763         kobject_put(nhs->hugepages_kobj);
1764         nhs->hugepages_kobj = NULL;
1765 }
1766
1767 /*
1768  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1769  * that have them.
1770  */
1771 static void hugetlb_unregister_all_nodes(void)
1772 {
1773         int nid;
1774
1775         /*
1776          * disable node sysdev registrations.
1777          */
1778         register_hugetlbfs_with_node(NULL, NULL);
1779
1780         /*
1781          * remove hstate attributes from any nodes that have them.
1782          */
1783         for (nid = 0; nid < nr_node_ids; nid++)
1784                 hugetlb_unregister_node(&node_devices[nid]);
1785 }
1786
1787 /*
1788  * Register hstate attributes for a single node sysdev.
1789  * No-op if attributes already registered.
1790  */
1791 void hugetlb_register_node(struct node *node)
1792 {
1793         struct hstate *h;
1794         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1795         int err;
1796
1797         if (nhs->hugepages_kobj)
1798                 return;         /* already allocated */
1799
1800         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1801                                                         &node->sysdev.kobj);
1802         if (!nhs->hugepages_kobj)
1803                 return;
1804
1805         for_each_hstate(h) {
1806                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1807                                                 nhs->hstate_kobjs,
1808                                                 &per_node_hstate_attr_group);
1809                 if (err) {
1810                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1811                                         " for node %d\n",
1812                                                 h->name, node->sysdev.id);
1813                         hugetlb_unregister_node(node);
1814                         break;
1815                 }
1816         }
1817 }
1818
1819 /*
1820  * hugetlb init time:  register hstate attributes for all registered node
1821  * sysdevs of nodes that have memory.  All on-line nodes should have
1822  * registered their associated sysdev by this time.
1823  */
1824 static void hugetlb_register_all_nodes(void)
1825 {
1826         int nid;
1827
1828         for_each_node_state(nid, N_HIGH_MEMORY) {
1829                 struct node *node = &node_devices[nid];
1830                 if (node->sysdev.id == nid)
1831                         hugetlb_register_node(node);
1832         }
1833
1834         /*
1835          * Let the node sysdev driver know we're here so it can
1836          * [un]register hstate attributes on node hotplug.
1837          */
1838         register_hugetlbfs_with_node(hugetlb_register_node,
1839                                      hugetlb_unregister_node);
1840 }
1841 #else   /* !CONFIG_NUMA */
1842
1843 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1844 {
1845         BUG();
1846         if (nidp)
1847                 *nidp = -1;
1848         return NULL;
1849 }
1850
1851 static void hugetlb_unregister_all_nodes(void) { }
1852
1853 static void hugetlb_register_all_nodes(void) { }
1854
1855 #endif
1856
1857 static void __exit hugetlb_exit(void)
1858 {
1859         struct hstate *h;
1860
1861         hugetlb_unregister_all_nodes();
1862
1863         for_each_hstate(h) {
1864                 kobject_put(hstate_kobjs[h - hstates]);
1865         }
1866
1867         kobject_put(hugepages_kobj);
1868 }
1869 module_exit(hugetlb_exit);
1870
1871 static int __init hugetlb_init(void)
1872 {
1873         /* Some platform decide whether they support huge pages at boot
1874          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1875          * there is no such support
1876          */
1877         if (HPAGE_SHIFT == 0)
1878                 return 0;
1879
1880         if (!size_to_hstate(default_hstate_size)) {
1881                 default_hstate_size = HPAGE_SIZE;
1882                 if (!size_to_hstate(default_hstate_size))
1883                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1884         }
1885         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1886         if (default_hstate_max_huge_pages)
1887                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1888
1889         hugetlb_init_hstates();
1890
1891         gather_bootmem_prealloc();
1892
1893         report_hugepages();
1894
1895         hugetlb_sysfs_init();
1896
1897         hugetlb_register_all_nodes();
1898
1899         return 0;
1900 }
1901 module_init(hugetlb_init);
1902
1903 /* Should be called on processing a hugepagesz=... option */
1904 void __init hugetlb_add_hstate(unsigned order)
1905 {
1906         struct hstate *h;
1907         unsigned long i;
1908
1909         if (size_to_hstate(PAGE_SIZE << order)) {
1910                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1911                 return;
1912         }
1913         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1914         BUG_ON(order == 0);
1915         h = &hstates[max_hstate++];
1916         h->order = order;
1917         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1918         h->nr_huge_pages = 0;
1919         h->free_huge_pages = 0;
1920         for (i = 0; i < MAX_NUMNODES; ++i)
1921                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1922         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1923         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1924         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1925                                         huge_page_size(h)/1024);
1926
1927         parsed_hstate = h;
1928 }
1929
1930 static int __init hugetlb_nrpages_setup(char *s)
1931 {
1932         unsigned long *mhp;
1933         static unsigned long *last_mhp;
1934
1935         /*
1936          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1937          * so this hugepages= parameter goes to the "default hstate".
1938          */
1939         if (!max_hstate)
1940                 mhp = &default_hstate_max_huge_pages;
1941         else
1942                 mhp = &parsed_hstate->max_huge_pages;
1943
1944         if (mhp == last_mhp) {
1945                 printk(KERN_WARNING "hugepages= specified twice without "
1946                         "interleaving hugepagesz=, ignoring\n");
1947                 return 1;
1948         }
1949
1950         if (sscanf(s, "%lu", mhp) <= 0)
1951                 *mhp = 0;
1952
1953         /*
1954          * Global state is always initialized later in hugetlb_init.
1955          * But we need to allocate >= MAX_ORDER hstates here early to still
1956          * use the bootmem allocator.
1957          */
1958         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1959                 hugetlb_hstate_alloc_pages(parsed_hstate);
1960
1961         last_mhp = mhp;
1962
1963         return 1;
1964 }
1965 __setup("hugepages=", hugetlb_nrpages_setup);
1966
1967 static int __init hugetlb_default_setup(char *s)
1968 {
1969         default_hstate_size = memparse(s, &s);
1970         return 1;
1971 }
1972 __setup("default_hugepagesz=", hugetlb_default_setup);
1973
1974 static unsigned int cpuset_mems_nr(unsigned int *array)
1975 {
1976         int node;
1977         unsigned int nr = 0;
1978
1979         for_each_node_mask(node, cpuset_current_mems_allowed)
1980                 nr += array[node];
1981
1982         return nr;
1983 }
1984
1985 #ifdef CONFIG_SYSCTL
1986 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1987                          struct ctl_table *table, int write,
1988                          void __user *buffer, size_t *length, loff_t *ppos)
1989 {
1990         struct hstate *h = &default_hstate;
1991         unsigned long tmp;
1992         int ret;
1993
1994         tmp = h->max_huge_pages;
1995
1996         if (write && h->order >= MAX_ORDER)
1997                 return -EINVAL;
1998
1999         table->data = &tmp;
2000         table->maxlen = sizeof(unsigned long);
2001         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2002         if (ret)
2003                 goto out;
2004
2005         if (write) {
2006                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2007                                                 GFP_KERNEL | __GFP_NORETRY);
2008                 if (!(obey_mempolicy &&
2009                                init_nodemask_of_mempolicy(nodes_allowed))) {
2010                         NODEMASK_FREE(nodes_allowed);
2011                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2012                 }
2013                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2014
2015                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2016                         NODEMASK_FREE(nodes_allowed);
2017         }
2018 out:
2019         return ret;
2020 }
2021
2022 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2023                           void __user *buffer, size_t *length, loff_t *ppos)
2024 {
2025
2026         return hugetlb_sysctl_handler_common(false, table, write,
2027                                                         buffer, length, ppos);
2028 }
2029
2030 #ifdef CONFIG_NUMA
2031 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2032                           void __user *buffer, size_t *length, loff_t *ppos)
2033 {
2034         return hugetlb_sysctl_handler_common(true, table, write,
2035                                                         buffer, length, ppos);
2036 }
2037 #endif /* CONFIG_NUMA */
2038
2039 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2040                         void __user *buffer,
2041                         size_t *length, loff_t *ppos)
2042 {
2043         proc_dointvec(table, write, buffer, length, ppos);
2044         if (hugepages_treat_as_movable)
2045                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2046         else
2047                 htlb_alloc_mask = GFP_HIGHUSER;
2048         return 0;
2049 }
2050
2051 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2052                         void __user *buffer,
2053                         size_t *length, loff_t *ppos)
2054 {
2055         struct hstate *h = &default_hstate;
2056         unsigned long tmp;
2057         int ret;
2058
2059         tmp = h->nr_overcommit_huge_pages;
2060
2061         if (write && h->order >= MAX_ORDER)
2062                 return -EINVAL;
2063
2064         table->data = &tmp;
2065         table->maxlen = sizeof(unsigned long);
2066         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2067         if (ret)
2068                 goto out;
2069
2070         if (write) {
2071                 spin_lock(&hugetlb_lock);
2072                 h->nr_overcommit_huge_pages = tmp;
2073                 spin_unlock(&hugetlb_lock);
2074         }
2075 out:
2076         return ret;
2077 }
2078
2079 #endif /* CONFIG_SYSCTL */
2080
2081 void hugetlb_report_meminfo(struct seq_file *m)
2082 {
2083         struct hstate *h = &default_hstate;
2084         seq_printf(m,
2085                         "HugePages_Total:   %5lu\n"
2086                         "HugePages_Free:    %5lu\n"
2087                         "HugePages_Rsvd:    %5lu\n"
2088                         "HugePages_Surp:    %5lu\n"
2089                         "Hugepagesize:   %8lu kB\n",
2090                         h->nr_huge_pages,
2091                         h->free_huge_pages,
2092                         h->resv_huge_pages,
2093                         h->surplus_huge_pages,
2094                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2095 }
2096
2097 int hugetlb_report_node_meminfo(int nid, char *buf)
2098 {
2099         struct hstate *h = &default_hstate;
2100         return sprintf(buf,
2101                 "Node %d HugePages_Total: %5u\n"
2102                 "Node %d HugePages_Free:  %5u\n"
2103                 "Node %d HugePages_Surp:  %5u\n",
2104                 nid, h->nr_huge_pages_node[nid],
2105                 nid, h->free_huge_pages_node[nid],
2106                 nid, h->surplus_huge_pages_node[nid]);
2107 }
2108
2109 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2110 unsigned long hugetlb_total_pages(void)
2111 {
2112         struct hstate *h;
2113         unsigned long nr_total_pages = 0;
2114
2115         for_each_hstate(h)
2116                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2117         return nr_total_pages;
2118 }
2119
2120 static int hugetlb_acct_memory(struct hstate *h, long delta)
2121 {
2122         int ret = -ENOMEM;
2123
2124         spin_lock(&hugetlb_lock);
2125         /*
2126          * When cpuset is configured, it breaks the strict hugetlb page
2127          * reservation as the accounting is done on a global variable. Such
2128          * reservation is completely rubbish in the presence of cpuset because
2129          * the reservation is not checked against page availability for the
2130          * current cpuset. Application can still potentially OOM'ed by kernel
2131          * with lack of free htlb page in cpuset that the task is in.
2132          * Attempt to enforce strict accounting with cpuset is almost
2133          * impossible (or too ugly) because cpuset is too fluid that
2134          * task or memory node can be dynamically moved between cpusets.
2135          *
2136          * The change of semantics for shared hugetlb mapping with cpuset is
2137          * undesirable. However, in order to preserve some of the semantics,
2138          * we fall back to check against current free page availability as
2139          * a best attempt and hopefully to minimize the impact of changing
2140          * semantics that cpuset has.
2141          */
2142         if (delta > 0) {
2143                 if (gather_surplus_pages(h, delta) < 0)
2144                         goto out;
2145
2146                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2147                         return_unused_surplus_pages(h, delta);
2148                         goto out;
2149                 }
2150         }
2151
2152         ret = 0;
2153         if (delta < 0)
2154                 return_unused_surplus_pages(h, (unsigned long) -delta);
2155
2156 out:
2157         spin_unlock(&hugetlb_lock);
2158         return ret;
2159 }
2160
2161 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2162 {
2163         struct resv_map *reservations = vma_resv_map(vma);
2164
2165         /*
2166          * This new VMA should share its siblings reservation map if present.
2167          * The VMA will only ever have a valid reservation map pointer where
2168          * it is being copied for another still existing VMA.  As that VMA
2169          * has a reference to the reservation map it cannot disappear until
2170          * after this open call completes.  It is therefore safe to take a
2171          * new reference here without additional locking.
2172          */
2173         if (reservations)
2174                 kref_get(&reservations->refs);
2175 }
2176
2177 static void resv_map_put(struct vm_area_struct *vma)
2178 {
2179         struct resv_map *reservations = vma_resv_map(vma);
2180
2181         if (!reservations)
2182                 return;
2183         kref_put(&reservations->refs, resv_map_release);
2184 }
2185
2186 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2187 {
2188         struct hstate *h = hstate_vma(vma);
2189         struct resv_map *reservations = vma_resv_map(vma);
2190         struct hugepage_subpool *spool = subpool_vma(vma);
2191         unsigned long reserve;
2192         unsigned long start;
2193         unsigned long end;
2194
2195         if (reservations) {
2196                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2197                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2198
2199                 reserve = (end - start) -
2200                         region_count(&reservations->regions, start, end);
2201
2202                 resv_map_put(vma);
2203
2204                 if (reserve) {
2205                         hugetlb_acct_memory(h, -reserve);
2206                         hugepage_subpool_put_pages(spool, reserve);
2207                 }
2208         }
2209 }
2210
2211 /*
2212  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2213  * handle_mm_fault() to try to instantiate regular-sized pages in the
2214  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2215  * this far.
2216  */
2217 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2218 {
2219         BUG();
2220         return 0;
2221 }
2222
2223 const struct vm_operations_struct hugetlb_vm_ops = {
2224         .fault = hugetlb_vm_op_fault,
2225         .open = hugetlb_vm_op_open,
2226         .close = hugetlb_vm_op_close,
2227 };
2228
2229 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2230                                 int writable)
2231 {
2232         pte_t entry;
2233
2234         if (writable) {
2235                 entry =
2236                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2237         } else {
2238                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2239         }
2240         entry = pte_mkyoung(entry);
2241         entry = pte_mkhuge(entry);
2242
2243         return entry;
2244 }
2245
2246 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2247                                    unsigned long address, pte_t *ptep)
2248 {
2249         pte_t entry;
2250
2251         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2252         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2253                 update_mmu_cache(vma, address, ptep);
2254 }
2255
2256
2257 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2258                             struct vm_area_struct *vma)
2259 {
2260         pte_t *src_pte, *dst_pte, entry;
2261         struct page *ptepage;
2262         unsigned long addr;
2263         int cow;
2264         struct hstate *h = hstate_vma(vma);
2265         unsigned long sz = huge_page_size(h);
2266
2267         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2268
2269         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2270                 src_pte = huge_pte_offset(src, addr);
2271                 if (!src_pte)
2272                         continue;
2273                 dst_pte = huge_pte_alloc(dst, addr, sz);
2274                 if (!dst_pte)
2275                         goto nomem;
2276
2277                 /* If the pagetables are shared don't copy or take references */
2278                 if (dst_pte == src_pte)
2279                         continue;
2280
2281                 spin_lock(&dst->page_table_lock);
2282                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2283                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2284                         if (cow)
2285                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2286                         entry = huge_ptep_get(src_pte);
2287                         ptepage = pte_page(entry);
2288                         get_page(ptepage);
2289                         page_dup_rmap(ptepage);
2290                         set_huge_pte_at(dst, addr, dst_pte, entry);
2291                 }
2292                 spin_unlock(&src->page_table_lock);
2293                 spin_unlock(&dst->page_table_lock);
2294         }
2295         return 0;
2296
2297 nomem:
2298         return -ENOMEM;
2299 }
2300
2301 static int is_hugetlb_entry_migration(pte_t pte)
2302 {
2303         swp_entry_t swp;
2304
2305         if (huge_pte_none(pte) || pte_present(pte))
2306                 return 0;
2307         swp = pte_to_swp_entry(pte);
2308         if (non_swap_entry(swp) && is_migration_entry(swp))
2309                 return 1;
2310         else
2311                 return 0;
2312 }
2313
2314 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2315 {
2316         swp_entry_t swp;
2317
2318         if (huge_pte_none(pte) || pte_present(pte))
2319                 return 0;
2320         swp = pte_to_swp_entry(pte);
2321         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2322                 return 1;
2323         else
2324                 return 0;
2325 }
2326
2327 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2328                             unsigned long end, struct page *ref_page)
2329 {
2330         struct mm_struct *mm = vma->vm_mm;
2331         unsigned long address;
2332         pte_t *ptep;
2333         pte_t pte;
2334         struct page *page;
2335         struct page *tmp;
2336         struct hstate *h = hstate_vma(vma);
2337         unsigned long sz = huge_page_size(h);
2338
2339         /*
2340          * A page gathering list, protected by per file i_mmap_mutex. The
2341          * lock is used to avoid list corruption from multiple unmapping
2342          * of the same page since we are using page->lru.
2343          */
2344         LIST_HEAD(page_list);
2345
2346         WARN_ON(!is_vm_hugetlb_page(vma));
2347         BUG_ON(start & ~huge_page_mask(h));
2348         BUG_ON(end & ~huge_page_mask(h));
2349
2350         mmu_notifier_invalidate_range_start(mm, start, end);
2351         spin_lock(&mm->page_table_lock);
2352         for (address = start; address < end; address += sz) {
2353                 ptep = huge_pte_offset(mm, address);
2354                 if (!ptep)
2355                         continue;
2356
2357                 if (huge_pmd_unshare(mm, &address, ptep))
2358                         continue;
2359
2360                 /*
2361                  * If a reference page is supplied, it is because a specific
2362                  * page is being unmapped, not a range. Ensure the page we
2363                  * are about to unmap is the actual page of interest.
2364                  */
2365                 if (ref_page) {
2366                         pte = huge_ptep_get(ptep);
2367                         if (huge_pte_none(pte))
2368                                 continue;
2369                         page = pte_page(pte);
2370                         if (page != ref_page)
2371                                 continue;
2372
2373                         /*
2374                          * Mark the VMA as having unmapped its page so that
2375                          * future faults in this VMA will fail rather than
2376                          * looking like data was lost
2377                          */
2378                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2379                 }
2380
2381                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2382                 if (huge_pte_none(pte))
2383                         continue;
2384
2385                 /*
2386                  * HWPoisoned hugepage is already unmapped and dropped reference
2387                  */
2388                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2389                         continue;
2390
2391                 page = pte_page(pte);
2392                 if (pte_dirty(pte))
2393                         set_page_dirty(page);
2394                 list_add(&page->lru, &page_list);
2395         }
2396         spin_unlock(&mm->page_table_lock);
2397         flush_tlb_range(vma, start, end);
2398         mmu_notifier_invalidate_range_end(mm, start, end);
2399         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2400                 page_remove_rmap(page);
2401                 list_del(&page->lru);
2402                 put_page(page);
2403         }
2404 }
2405
2406 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2407                           unsigned long start, unsigned long end,
2408                           struct page *ref_page)
2409 {
2410         __unmap_hugepage_range(vma, start, end, ref_page);
2411
2412         /*
2413          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2414          * test will fail on a vma being torn down, and not grab a page table
2415          * on its way out.  We're lucky that the flag has such an appropriate
2416          * name, and can in fact be safely cleared here. We could clear it
2417          * before the __unmap_hugepage_range above, but all that's necessary
2418          * is to clear it before releasing the i_mmap_mutex. This works
2419          * because in the context this is called, the VMA is about to be
2420          * destroyed and the i_mmap_mutex is held.
2421          */
2422         vma->vm_flags &= ~VM_MAYSHARE;
2423 }
2424
2425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2426                           unsigned long end, struct page *ref_page)
2427 {
2428         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2429         __unmap_hugepage_range(vma, start, end, ref_page);
2430         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2431 }
2432
2433 /*
2434  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2435  * mappping it owns the reserve page for. The intention is to unmap the page
2436  * from other VMAs and let the children be SIGKILLed if they are faulting the
2437  * same region.
2438  */
2439 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2440                                 struct page *page, unsigned long address)
2441 {
2442         struct hstate *h = hstate_vma(vma);
2443         struct vm_area_struct *iter_vma;
2444         struct address_space *mapping;
2445         struct prio_tree_iter iter;
2446         pgoff_t pgoff;
2447
2448         /*
2449          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2450          * from page cache lookup which is in HPAGE_SIZE units.
2451          */
2452         address = address & huge_page_mask(h);
2453         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2454                         vma->vm_pgoff;
2455         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2456
2457         /*
2458          * Take the mapping lock for the duration of the table walk. As
2459          * this mapping should be shared between all the VMAs,
2460          * __unmap_hugepage_range() is called as the lock is already held
2461          */
2462         mutex_lock(&mapping->i_mmap_mutex);
2463         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2464                 /* Do not unmap the current VMA */
2465                 if (iter_vma == vma)
2466                         continue;
2467
2468                 /*
2469                  * Unmap the page from other VMAs without their own reserves.
2470                  * They get marked to be SIGKILLed if they fault in these
2471                  * areas. This is because a future no-page fault on this VMA
2472                  * could insert a zeroed page instead of the data existing
2473                  * from the time of fork. This would look like data corruption
2474                  */
2475                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2476                         __unmap_hugepage_range(iter_vma,
2477                                 address, address + huge_page_size(h),
2478                                 page);
2479         }
2480         mutex_unlock(&mapping->i_mmap_mutex);
2481
2482         return 1;
2483 }
2484
2485 /*
2486  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2487  */
2488 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2489                         unsigned long address, pte_t *ptep, pte_t pte,
2490                         struct page *pagecache_page)
2491 {
2492         struct hstate *h = hstate_vma(vma);
2493         struct page *old_page, *new_page;
2494         int avoidcopy;
2495         int outside_reserve = 0;
2496
2497         old_page = pte_page(pte);
2498
2499 retry_avoidcopy:
2500         /* If no-one else is actually using this page, avoid the copy
2501          * and just make the page writable */
2502         avoidcopy = (page_mapcount(old_page) == 1);
2503         if (avoidcopy) {
2504                 if (PageAnon(old_page))
2505                         page_move_anon_rmap(old_page, vma, address);
2506                 set_huge_ptep_writable(vma, address, ptep);
2507                 return 0;
2508         }
2509
2510         /*
2511          * If the process that created a MAP_PRIVATE mapping is about to
2512          * perform a COW due to a shared page count, attempt to satisfy
2513          * the allocation without using the existing reserves. The pagecache
2514          * page is used to determine if the reserve at this address was
2515          * consumed or not. If reserves were used, a partial faulted mapping
2516          * at the time of fork() could consume its reserves on COW instead
2517          * of the full address range.
2518          */
2519         if (!(vma->vm_flags & VM_MAYSHARE) &&
2520                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2521                         old_page != pagecache_page)
2522                 outside_reserve = 1;
2523
2524         page_cache_get(old_page);
2525
2526         /* Drop page_table_lock as buddy allocator may be called */
2527         spin_unlock(&mm->page_table_lock);
2528         new_page = alloc_huge_page(vma, address, outside_reserve);
2529
2530         if (IS_ERR(new_page)) {
2531                 page_cache_release(old_page);
2532
2533                 /*
2534                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2535                  * it is due to references held by a child and an insufficient
2536                  * huge page pool. To guarantee the original mappers
2537                  * reliability, unmap the page from child processes. The child
2538                  * may get SIGKILLed if it later faults.
2539                  */
2540                 if (outside_reserve) {
2541                         BUG_ON(huge_pte_none(pte));
2542                         if (unmap_ref_private(mm, vma, old_page, address)) {
2543                                 BUG_ON(huge_pte_none(pte));
2544                                 spin_lock(&mm->page_table_lock);
2545                                 goto retry_avoidcopy;
2546                         }
2547                         WARN_ON_ONCE(1);
2548                 }
2549
2550                 /* Caller expects lock to be held */
2551                 spin_lock(&mm->page_table_lock);
2552                 return -PTR_ERR(new_page);
2553         }
2554
2555         /*
2556          * When the original hugepage is shared one, it does not have
2557          * anon_vma prepared.
2558          */
2559         if (unlikely(anon_vma_prepare(vma))) {
2560                 page_cache_release(new_page);
2561                 page_cache_release(old_page);
2562                 /* Caller expects lock to be held */
2563                 spin_lock(&mm->page_table_lock);
2564                 return VM_FAULT_OOM;
2565         }
2566
2567         copy_user_huge_page(new_page, old_page, address, vma,
2568                             pages_per_huge_page(h));
2569         __SetPageUptodate(new_page);
2570
2571         /*
2572          * Retake the page_table_lock to check for racing updates
2573          * before the page tables are altered
2574          */
2575         spin_lock(&mm->page_table_lock);
2576         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2577         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2578                 /* Break COW */
2579                 mmu_notifier_invalidate_range_start(mm,
2580                         address & huge_page_mask(h),
2581                         (address & huge_page_mask(h)) + huge_page_size(h));
2582                 huge_ptep_clear_flush(vma, address, ptep);
2583                 set_huge_pte_at(mm, address, ptep,
2584                                 make_huge_pte(vma, new_page, 1));
2585                 page_remove_rmap(old_page);
2586                 hugepage_add_new_anon_rmap(new_page, vma, address);
2587                 /* Make the old page be freed below */
2588                 new_page = old_page;
2589                 mmu_notifier_invalidate_range_end(mm,
2590                         address & huge_page_mask(h),
2591                         (address & huge_page_mask(h)) + huge_page_size(h));
2592         }
2593         page_cache_release(new_page);
2594         page_cache_release(old_page);
2595         return 0;
2596 }
2597
2598 /* Return the pagecache page at a given address within a VMA */
2599 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2600                         struct vm_area_struct *vma, unsigned long address)
2601 {
2602         struct address_space *mapping;
2603         pgoff_t idx;
2604
2605         mapping = vma->vm_file->f_mapping;
2606         idx = vma_hugecache_offset(h, vma, address);
2607
2608         return find_lock_page(mapping, idx);
2609 }
2610
2611 /*
2612  * Return whether there is a pagecache page to back given address within VMA.
2613  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2614  */
2615 static bool hugetlbfs_pagecache_present(struct hstate *h,
2616                         struct vm_area_struct *vma, unsigned long address)
2617 {
2618         struct address_space *mapping;
2619         pgoff_t idx;
2620         struct page *page;
2621
2622         mapping = vma->vm_file->f_mapping;
2623         idx = vma_hugecache_offset(h, vma, address);
2624
2625         page = find_get_page(mapping, idx);
2626         if (page)
2627                 put_page(page);
2628         return page != NULL;
2629 }
2630
2631 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2632                         unsigned long address, pte_t *ptep, unsigned int flags)
2633 {
2634         struct hstate *h = hstate_vma(vma);
2635         int ret = VM_FAULT_SIGBUS;
2636         pgoff_t idx;
2637         unsigned long size;
2638         struct page *page;
2639         struct address_space *mapping;
2640         pte_t new_pte;
2641
2642         /*
2643          * Currently, we are forced to kill the process in the event the
2644          * original mapper has unmapped pages from the child due to a failed
2645          * COW. Warn that such a situation has occurred as it may not be obvious
2646          */
2647         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2648                 printk(KERN_WARNING
2649                         "PID %d killed due to inadequate hugepage pool\n",
2650                         current->pid);
2651                 return ret;
2652         }
2653
2654         mapping = vma->vm_file->f_mapping;
2655         idx = vma_hugecache_offset(h, vma, address);
2656
2657         /*
2658          * Use page lock to guard against racing truncation
2659          * before we get page_table_lock.
2660          */
2661 retry:
2662         page = find_lock_page(mapping, idx);
2663         if (!page) {
2664                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2665                 if (idx >= size)
2666                         goto out;
2667                 page = alloc_huge_page(vma, address, 0);
2668                 if (IS_ERR(page)) {
2669                         ret = -PTR_ERR(page);
2670                         goto out;
2671                 }
2672                 clear_huge_page(page, address, pages_per_huge_page(h));
2673                 __SetPageUptodate(page);
2674
2675                 if (vma->vm_flags & VM_MAYSHARE) {
2676                         int err;
2677                         struct inode *inode = mapping->host;
2678
2679                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2680                         if (err) {
2681                                 put_page(page);
2682                                 if (err == -EEXIST)
2683                                         goto retry;
2684                                 goto out;
2685                         }
2686
2687                         spin_lock(&inode->i_lock);
2688                         inode->i_blocks += blocks_per_huge_page(h);
2689                         spin_unlock(&inode->i_lock);
2690                         page_dup_rmap(page);
2691                 } else {
2692                         lock_page(page);
2693                         if (unlikely(anon_vma_prepare(vma))) {
2694                                 ret = VM_FAULT_OOM;
2695                                 goto backout_unlocked;
2696                         }
2697                         hugepage_add_new_anon_rmap(page, vma, address);
2698                 }
2699         } else {
2700                 /*
2701                  * If memory error occurs between mmap() and fault, some process
2702                  * don't have hwpoisoned swap entry for errored virtual address.
2703                  * So we need to block hugepage fault by PG_hwpoison bit check.
2704                  */
2705                 if (unlikely(PageHWPoison(page))) {
2706                         ret = VM_FAULT_HWPOISON |
2707                               VM_FAULT_SET_HINDEX(h - hstates);
2708                         goto backout_unlocked;
2709                 }
2710                 page_dup_rmap(page);
2711         }
2712
2713         /*
2714          * If we are going to COW a private mapping later, we examine the
2715          * pending reservations for this page now. This will ensure that
2716          * any allocations necessary to record that reservation occur outside
2717          * the spinlock.
2718          */
2719         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2720                 if (vma_needs_reservation(h, vma, address) < 0) {
2721                         ret = VM_FAULT_OOM;
2722                         goto backout_unlocked;
2723                 }
2724
2725         spin_lock(&mm->page_table_lock);
2726         size = i_size_read(mapping->host) >> huge_page_shift(h);
2727         if (idx >= size)
2728                 goto backout;
2729
2730         ret = 0;
2731         if (!huge_pte_none(huge_ptep_get(ptep)))
2732                 goto backout;
2733
2734         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2735                                 && (vma->vm_flags & VM_SHARED)));
2736         set_huge_pte_at(mm, address, ptep, new_pte);
2737
2738         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2739                 /* Optimization, do the COW without a second fault */
2740                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2741         }
2742
2743         spin_unlock(&mm->page_table_lock);
2744         unlock_page(page);
2745 out:
2746         return ret;
2747
2748 backout:
2749         spin_unlock(&mm->page_table_lock);
2750 backout_unlocked:
2751         unlock_page(page);
2752         put_page(page);
2753         goto out;
2754 }
2755
2756 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2757                         unsigned long address, unsigned int flags)
2758 {
2759         pte_t *ptep;
2760         pte_t entry;
2761         int ret;
2762         struct page *page = NULL;
2763         struct page *pagecache_page = NULL;
2764         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2765         struct hstate *h = hstate_vma(vma);
2766
2767         ptep = huge_pte_offset(mm, address);
2768         if (ptep) {
2769                 entry = huge_ptep_get(ptep);
2770                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2771                         migration_entry_wait_huge(mm, ptep);
2772                         return 0;
2773                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2774                         return VM_FAULT_HWPOISON_LARGE |
2775                                VM_FAULT_SET_HINDEX(h - hstates);
2776         }
2777
2778         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2779         if (!ptep)
2780                 return VM_FAULT_OOM;
2781
2782         /*
2783          * Serialize hugepage allocation and instantiation, so that we don't
2784          * get spurious allocation failures if two CPUs race to instantiate
2785          * the same page in the page cache.
2786          */
2787         mutex_lock(&hugetlb_instantiation_mutex);
2788         entry = huge_ptep_get(ptep);
2789         if (huge_pte_none(entry)) {
2790                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2791                 goto out_mutex;
2792         }
2793
2794         ret = 0;
2795
2796         /*
2797          * If we are going to COW the mapping later, we examine the pending
2798          * reservations for this page now. This will ensure that any
2799          * allocations necessary to record that reservation occur outside the
2800          * spinlock. For private mappings, we also lookup the pagecache
2801          * page now as it is used to determine if a reservation has been
2802          * consumed.
2803          */
2804         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2805                 if (vma_needs_reservation(h, vma, address) < 0) {
2806                         ret = VM_FAULT_OOM;
2807                         goto out_mutex;
2808                 }
2809
2810                 if (!(vma->vm_flags & VM_MAYSHARE))
2811                         pagecache_page = hugetlbfs_pagecache_page(h,
2812                                                                 vma, address);
2813         }
2814
2815         /*
2816          * hugetlb_cow() requires page locks of pte_page(entry) and
2817          * pagecache_page, so here we need take the former one
2818          * when page != pagecache_page or !pagecache_page.
2819          * Note that locking order is always pagecache_page -> page,
2820          * so no worry about deadlock.
2821          */
2822         page = pte_page(entry);
2823         get_page(page);
2824         if (page != pagecache_page)
2825                 lock_page(page);
2826
2827         spin_lock(&mm->page_table_lock);
2828         /* Check for a racing update before calling hugetlb_cow */
2829         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2830                 goto out_page_table_lock;
2831
2832
2833         if (flags & FAULT_FLAG_WRITE) {
2834                 if (!pte_write(entry)) {
2835                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2836                                                         pagecache_page);
2837                         goto out_page_table_lock;
2838                 }
2839                 entry = pte_mkdirty(entry);
2840         }
2841         entry = pte_mkyoung(entry);
2842         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2843                                                 flags & FAULT_FLAG_WRITE))
2844                 update_mmu_cache(vma, address, ptep);
2845
2846 out_page_table_lock:
2847         spin_unlock(&mm->page_table_lock);
2848
2849         if (pagecache_page) {
2850                 unlock_page(pagecache_page);
2851                 put_page(pagecache_page);
2852         }
2853         if (page != pagecache_page)
2854                 unlock_page(page);
2855         put_page(page);
2856
2857 out_mutex:
2858         mutex_unlock(&hugetlb_instantiation_mutex);
2859
2860         return ret;
2861 }
2862
2863 /* Can be overriden by architectures */
2864 __attribute__((weak)) struct page *
2865 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2866                pud_t *pud, int write)
2867 {
2868         BUG();
2869         return NULL;
2870 }
2871
2872 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2873                         struct page **pages, struct vm_area_struct **vmas,
2874                         unsigned long *position, int *length, int i,
2875                         unsigned int flags)
2876 {
2877         unsigned long pfn_offset;
2878         unsigned long vaddr = *position;
2879         int remainder = *length;
2880         struct hstate *h = hstate_vma(vma);
2881
2882         spin_lock(&mm->page_table_lock);
2883         while (vaddr < vma->vm_end && remainder) {
2884                 pte_t *pte;
2885                 int absent;
2886                 struct page *page;
2887
2888                 /*
2889                  * Some archs (sparc64, sh*) have multiple pte_ts to
2890                  * each hugepage.  We have to make sure we get the
2891                  * first, for the page indexing below to work.
2892                  */
2893                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2894                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2895
2896                 /*
2897                  * When coredumping, it suits get_dump_page if we just return
2898                  * an error where there's an empty slot with no huge pagecache
2899                  * to back it.  This way, we avoid allocating a hugepage, and
2900                  * the sparse dumpfile avoids allocating disk blocks, but its
2901                  * huge holes still show up with zeroes where they need to be.
2902                  */
2903                 if (absent && (flags & FOLL_DUMP) &&
2904                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2905                         remainder = 0;
2906                         break;
2907                 }
2908
2909                 /*
2910                  * We need call hugetlb_fault for both hugepages under migration
2911                  * (in which case hugetlb_fault waits for the migration,) and
2912                  * hwpoisoned hugepages (in which case we need to prevent the
2913                  * caller from accessing to them.) In order to do this, we use
2914                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2915                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2916                  * both cases, and because we can't follow correct pages
2917                  * directly from any kind of swap entries.
2918                  */
2919                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2920                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2921                         int ret;
2922
2923                         spin_unlock(&mm->page_table_lock);
2924                         ret = hugetlb_fault(mm, vma, vaddr,
2925                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2926                         spin_lock(&mm->page_table_lock);
2927                         if (!(ret & VM_FAULT_ERROR))
2928                                 continue;
2929
2930                         remainder = 0;
2931                         break;
2932                 }
2933
2934                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2935                 page = pte_page(huge_ptep_get(pte));
2936 same_page:
2937                 if (pages) {
2938                         pages[i] = mem_map_offset(page, pfn_offset);
2939                         get_page(pages[i]);
2940                 }
2941
2942                 if (vmas)
2943                         vmas[i] = vma;
2944
2945                 vaddr += PAGE_SIZE;
2946                 ++pfn_offset;
2947                 --remainder;
2948                 ++i;
2949                 if (vaddr < vma->vm_end && remainder &&
2950                                 pfn_offset < pages_per_huge_page(h)) {
2951                         /*
2952                          * We use pfn_offset to avoid touching the pageframes
2953                          * of this compound page.
2954                          */
2955                         goto same_page;
2956                 }
2957         }
2958         spin_unlock(&mm->page_table_lock);
2959         *length = remainder;
2960         *position = vaddr;
2961
2962         return i ? i : -EFAULT;
2963 }
2964
2965 void hugetlb_change_protection(struct vm_area_struct *vma,
2966                 unsigned long address, unsigned long end, pgprot_t newprot)
2967 {
2968         struct mm_struct *mm = vma->vm_mm;
2969         unsigned long start = address;
2970         pte_t *ptep;
2971         pte_t pte;
2972         struct hstate *h = hstate_vma(vma);
2973
2974         BUG_ON(address >= end);
2975         flush_cache_range(vma, address, end);
2976
2977         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2978         spin_lock(&mm->page_table_lock);
2979         for (; address < end; address += huge_page_size(h)) {
2980                 ptep = huge_pte_offset(mm, address);
2981                 if (!ptep)
2982                         continue;
2983                 if (huge_pmd_unshare(mm, &address, ptep))
2984                         continue;
2985                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2986                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2987                         pte = pte_mkhuge(pte_modify(pte, newprot));
2988                         set_huge_pte_at(mm, address, ptep, pte);
2989                 }
2990         }
2991         spin_unlock(&mm->page_table_lock);
2992         /*
2993          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
2994          * may have cleared our pud entry and done put_page on the page table:
2995          * once we release i_mmap_mutex, another task can do the final put_page
2996          * and that page table be reused and filled with junk.
2997          */
2998         flush_tlb_range(vma, start, end);
2999         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3000 }
3001
3002 int hugetlb_reserve_pages(struct inode *inode,
3003                                         long from, long to,
3004                                         struct vm_area_struct *vma,
3005                                         vm_flags_t vm_flags)
3006 {
3007         long ret, chg;
3008         struct hstate *h = hstate_inode(inode);
3009         struct hugepage_subpool *spool = subpool_inode(inode);
3010
3011         /*
3012          * Only apply hugepage reservation if asked. At fault time, an
3013          * attempt will be made for VM_NORESERVE to allocate a page
3014          * without using reserves
3015          */
3016         if (vm_flags & VM_NORESERVE)
3017                 return 0;
3018
3019         /*
3020          * Shared mappings base their reservation on the number of pages that
3021          * are already allocated on behalf of the file. Private mappings need
3022          * to reserve the full area even if read-only as mprotect() may be
3023          * called to make the mapping read-write. Assume !vma is a shm mapping
3024          */
3025         if (!vma || vma->vm_flags & VM_MAYSHARE)
3026                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3027         else {
3028                 struct resv_map *resv_map = resv_map_alloc();
3029                 if (!resv_map)
3030                         return -ENOMEM;
3031
3032                 chg = to - from;
3033
3034                 set_vma_resv_map(vma, resv_map);
3035                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3036         }
3037
3038         if (chg < 0) {
3039                 ret = chg;
3040                 goto out_err;
3041         }
3042
3043         /* There must be enough pages in the subpool for the mapping */
3044         if (hugepage_subpool_get_pages(spool, chg)) {
3045                 ret = -ENOSPC;
3046                 goto out_err;
3047         }
3048
3049         /*
3050          * Check enough hugepages are available for the reservation.
3051          * Hand the pages back to the subpool if there are not
3052          */
3053         ret = hugetlb_acct_memory(h, chg);
3054         if (ret < 0) {
3055                 hugepage_subpool_put_pages(spool, chg);
3056                 goto out_err;
3057         }
3058
3059         /*
3060          * Account for the reservations made. Shared mappings record regions
3061          * that have reservations as they are shared by multiple VMAs.
3062          * When the last VMA disappears, the region map says how much
3063          * the reservation was and the page cache tells how much of
3064          * the reservation was consumed. Private mappings are per-VMA and
3065          * only the consumed reservations are tracked. When the VMA
3066          * disappears, the original reservation is the VMA size and the
3067          * consumed reservations are stored in the map. Hence, nothing
3068          * else has to be done for private mappings here
3069          */
3070         if (!vma || vma->vm_flags & VM_MAYSHARE)
3071                 region_add(&inode->i_mapping->private_list, from, to);
3072         return 0;
3073 out_err:
3074         if (vma)
3075                 resv_map_put(vma);
3076         return ret;
3077 }
3078
3079 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3080 {
3081         struct hstate *h = hstate_inode(inode);
3082         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3083         struct hugepage_subpool *spool = subpool_inode(inode);
3084
3085         spin_lock(&inode->i_lock);
3086         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3087         spin_unlock(&inode->i_lock);
3088
3089         hugepage_subpool_put_pages(spool, (chg - freed));
3090         hugetlb_acct_memory(h, -(chg - freed));
3091 }
3092
3093 #ifdef CONFIG_MEMORY_FAILURE
3094
3095 /* Should be called in hugetlb_lock */
3096 static int is_hugepage_on_freelist(struct page *hpage)
3097 {
3098         struct page *page;
3099         struct page *tmp;
3100         struct hstate *h = page_hstate(hpage);
3101         int nid = page_to_nid(hpage);
3102
3103         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3104                 if (page == hpage)
3105                         return 1;
3106         return 0;
3107 }
3108
3109 /*
3110  * This function is called from memory failure code.
3111  * Assume the caller holds page lock of the head page.
3112  */
3113 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3114 {
3115         struct hstate *h = page_hstate(hpage);
3116         int nid = page_to_nid(hpage);
3117         int ret = -EBUSY;
3118
3119         spin_lock(&hugetlb_lock);
3120         if (is_hugepage_on_freelist(hpage)) {
3121                 list_del(&hpage->lru);
3122                 set_page_refcounted(hpage);
3123                 h->free_huge_pages--;
3124                 h->free_huge_pages_node[nid]--;
3125                 ret = 0;
3126         }
3127         spin_unlock(&hugetlb_lock);
3128         return ret;
3129 }
3130 #endif