slub: use raw_cpu_inc for incrementing statistics
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44
45 __initdata LIST_HEAD(huge_boot_pages);
46
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
51
52 /*
53  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54  * free_huge_pages, and surplus_huge_pages.
55  */
56 DEFINE_SPINLOCK(hugetlb_lock);
57
58 /*
59  * Serializes faults on the same logical page.  This is used to
60  * prevent spurious OOMs when the hugepage pool is fully utilized.
61  */
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 {
67         bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69         spin_unlock(&spool->lock);
70
71         /* If no pages are used, and no other handles to the subpool
72          * remain, free the subpool the subpool remain */
73         if (free)
74                 kfree(spool);
75 }
76
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 {
79         struct hugepage_subpool *spool;
80
81         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82         if (!spool)
83                 return NULL;
84
85         spin_lock_init(&spool->lock);
86         spool->count = 1;
87         spool->max_hpages = nr_blocks;
88         spool->used_hpages = 0;
89
90         return spool;
91 }
92
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 {
95         spin_lock(&spool->lock);
96         BUG_ON(!spool->count);
97         spool->count--;
98         unlock_or_release_subpool(spool);
99 }
100
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102                                       long delta)
103 {
104         int ret = 0;
105
106         if (!spool)
107                 return 0;
108
109         spin_lock(&spool->lock);
110         if ((spool->used_hpages + delta) <= spool->max_hpages) {
111                 spool->used_hpages += delta;
112         } else {
113                 ret = -ENOMEM;
114         }
115         spin_unlock(&spool->lock);
116
117         return ret;
118 }
119
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121                                        long delta)
122 {
123         if (!spool)
124                 return;
125
126         spin_lock(&spool->lock);
127         spool->used_hpages -= delta;
128         /* If hugetlbfs_put_super couldn't free spool due to
129         * an outstanding quota reference, free it now. */
130         unlock_or_release_subpool(spool);
131 }
132
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 {
135         return HUGETLBFS_SB(inode->i_sb)->spool;
136 }
137
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 {
140         return subpool_inode(file_inode(vma->vm_file));
141 }
142
143 /*
144  * Region tracking -- allows tracking of reservations and instantiated pages
145  *                    across the pages in a mapping.
146  *
147  * The region data structures are embedded into a resv_map and
148  * protected by a resv_map's lock
149  */
150 struct file_region {
151         struct list_head link;
152         long from;
153         long to;
154 };
155
156 static long region_add(struct resv_map *resv, long f, long t)
157 {
158         struct list_head *head = &resv->regions;
159         struct file_region *rg, *nrg, *trg;
160
161         spin_lock(&resv->lock);
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (f <= rg->to)
165                         break;
166
167         /* Round our left edge to the current segment if it encloses us. */
168         if (f > rg->from)
169                 f = rg->from;
170
171         /* Check for and consume any regions we now overlap with. */
172         nrg = rg;
173         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174                 if (&rg->link == head)
175                         break;
176                 if (rg->from > t)
177                         break;
178
179                 /* If this area reaches higher then extend our area to
180                  * include it completely.  If this is not the first area
181                  * which we intend to reuse, free it. */
182                 if (rg->to > t)
183                         t = rg->to;
184                 if (rg != nrg) {
185                         list_del(&rg->link);
186                         kfree(rg);
187                 }
188         }
189         nrg->from = f;
190         nrg->to = t;
191         spin_unlock(&resv->lock);
192         return 0;
193 }
194
195 static long region_chg(struct resv_map *resv, long f, long t)
196 {
197         struct list_head *head = &resv->regions;
198         struct file_region *rg, *nrg = NULL;
199         long chg = 0;
200
201 retry:
202         spin_lock(&resv->lock);
203         /* Locate the region we are before or in. */
204         list_for_each_entry(rg, head, link)
205                 if (f <= rg->to)
206                         break;
207
208         /* If we are below the current region then a new region is required.
209          * Subtle, allocate a new region at the position but make it zero
210          * size such that we can guarantee to record the reservation. */
211         if (&rg->link == head || t < rg->from) {
212                 if (!nrg) {
213                         spin_unlock(&resv->lock);
214                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215                         if (!nrg)
216                                 return -ENOMEM;
217
218                         nrg->from = f;
219                         nrg->to   = f;
220                         INIT_LIST_HEAD(&nrg->link);
221                         goto retry;
222                 }
223
224                 list_add(&nrg->link, rg->link.prev);
225                 chg = t - f;
226                 goto out_nrg;
227         }
228
229         /* Round our left edge to the current segment if it encloses us. */
230         if (f > rg->from)
231                 f = rg->from;
232         chg = t - f;
233
234         /* Check for and consume any regions we now overlap with. */
235         list_for_each_entry(rg, rg->link.prev, link) {
236                 if (&rg->link == head)
237                         break;
238                 if (rg->from > t)
239                         goto out;
240
241                 /* We overlap with this area, if it extends further than
242                  * us then we must extend ourselves.  Account for its
243                  * existing reservation. */
244                 if (rg->to > t) {
245                         chg += rg->to - t;
246                         t = rg->to;
247                 }
248                 chg -= rg->to - rg->from;
249         }
250
251 out:
252         spin_unlock(&resv->lock);
253         /*  We already know we raced and no longer need the new region */
254         kfree(nrg);
255         return chg;
256 out_nrg:
257         spin_unlock(&resv->lock);
258         return chg;
259 }
260
261 static long region_truncate(struct resv_map *resv, long end)
262 {
263         struct list_head *head = &resv->regions;
264         struct file_region *rg, *trg;
265         long chg = 0;
266
267         spin_lock(&resv->lock);
268         /* Locate the region we are either in or before. */
269         list_for_each_entry(rg, head, link)
270                 if (end <= rg->to)
271                         break;
272         if (&rg->link == head)
273                 goto out;
274
275         /* If we are in the middle of a region then adjust it. */
276         if (end > rg->from) {
277                 chg = rg->to - end;
278                 rg->to = end;
279                 rg = list_entry(rg->link.next, typeof(*rg), link);
280         }
281
282         /* Drop any remaining regions. */
283         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284                 if (&rg->link == head)
285                         break;
286                 chg += rg->to - rg->from;
287                 list_del(&rg->link);
288                 kfree(rg);
289         }
290
291 out:
292         spin_unlock(&resv->lock);
293         return chg;
294 }
295
296 static long region_count(struct resv_map *resv, long f, long t)
297 {
298         struct list_head *head = &resv->regions;
299         struct file_region *rg;
300         long chg = 0;
301
302         spin_lock(&resv->lock);
303         /* Locate each segment we overlap with, and count that overlap. */
304         list_for_each_entry(rg, head, link) {
305                 long seg_from;
306                 long seg_to;
307
308                 if (rg->to <= f)
309                         continue;
310                 if (rg->from >= t)
311                         break;
312
313                 seg_from = max(rg->from, f);
314                 seg_to = min(rg->to, t);
315
316                 chg += seg_to - seg_from;
317         }
318         spin_unlock(&resv->lock);
319
320         return chg;
321 }
322
323 /*
324  * Convert the address within this vma to the page offset within
325  * the mapping, in pagecache page units; huge pages here.
326  */
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328                         struct vm_area_struct *vma, unsigned long address)
329 {
330         return ((address - vma->vm_start) >> huge_page_shift(h)) +
331                         (vma->vm_pgoff >> huge_page_order(h));
332 }
333
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335                                      unsigned long address)
336 {
337         return vma_hugecache_offset(hstate_vma(vma), vma, address);
338 }
339
340 /*
341  * Return the size of the pages allocated when backing a VMA. In the majority
342  * cases this will be same size as used by the page table entries.
343  */
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 {
346         struct hstate *hstate;
347
348         if (!is_vm_hugetlb_page(vma))
349                 return PAGE_SIZE;
350
351         hstate = hstate_vma(vma);
352
353         return 1UL << huge_page_shift(hstate);
354 }
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357 /*
358  * Return the page size being used by the MMU to back a VMA. In the majority
359  * of cases, the page size used by the kernel matches the MMU size. On
360  * architectures where it differs, an architecture-specific version of this
361  * function is required.
362  */
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 {
366         return vma_kernel_pagesize(vma);
367 }
368 #endif
369
370 /*
371  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
372  * bits of the reservation map pointer, which are always clear due to
373  * alignment.
374  */
375 #define HPAGE_RESV_OWNER    (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379 /*
380  * These helpers are used to track how many pages are reserved for
381  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382  * is guaranteed to have their future faults succeed.
383  *
384  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385  * the reserve counters are updated with the hugetlb_lock held. It is safe
386  * to reset the VMA at fork() time as it is not in use yet and there is no
387  * chance of the global counters getting corrupted as a result of the values.
388  *
389  * The private mapping reservation is represented in a subtly different
390  * manner to a shared mapping.  A shared mapping has a region map associated
391  * with the underlying file, this region map represents the backing file
392  * pages which have ever had a reservation assigned which this persists even
393  * after the page is instantiated.  A private mapping has a region map
394  * associated with the original mmap which is attached to all VMAs which
395  * reference it, this region map represents those offsets which have consumed
396  * reservation ie. where pages have been instantiated.
397  */
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 {
400         return (unsigned long)vma->vm_private_data;
401 }
402
403 static void set_vma_private_data(struct vm_area_struct *vma,
404                                                         unsigned long value)
405 {
406         vma->vm_private_data = (void *)value;
407 }
408
409 struct resv_map *resv_map_alloc(void)
410 {
411         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412         if (!resv_map)
413                 return NULL;
414
415         kref_init(&resv_map->refs);
416         spin_lock_init(&resv_map->lock);
417         INIT_LIST_HEAD(&resv_map->regions);
418
419         return resv_map;
420 }
421
422 void resv_map_release(struct kref *ref)
423 {
424         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426         /* Clear out any active regions before we release the map. */
427         region_truncate(resv_map, 0);
428         kfree(resv_map);
429 }
430
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 {
433         return inode->i_mapping->private_data;
434 }
435
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 {
438         VM_BUG_ON(!is_vm_hugetlb_page(vma));
439         if (vma->vm_flags & VM_MAYSHARE) {
440                 struct address_space *mapping = vma->vm_file->f_mapping;
441                 struct inode *inode = mapping->host;
442
443                 return inode_resv_map(inode);
444
445         } else {
446                 return (struct resv_map *)(get_vma_private_data(vma) &
447                                                         ~HPAGE_RESV_MASK);
448         }
449 }
450
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 {
453         VM_BUG_ON(!is_vm_hugetlb_page(vma));
454         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456         set_vma_private_data(vma, (get_vma_private_data(vma) &
457                                 HPAGE_RESV_MASK) | (unsigned long)map);
458 }
459
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 {
462         VM_BUG_ON(!is_vm_hugetlb_page(vma));
463         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 }
467
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 {
470         VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472         return (get_vma_private_data(vma) & flag) != 0;
473 }
474
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 {
478         VM_BUG_ON(!is_vm_hugetlb_page(vma));
479         if (!(vma->vm_flags & VM_MAYSHARE))
480                 vma->vm_private_data = (void *)0;
481 }
482
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 {
486         if (vma->vm_flags & VM_NORESERVE) {
487                 /*
488                  * This address is already reserved by other process(chg == 0),
489                  * so, we should decrement reserved count. Without decrementing,
490                  * reserve count remains after releasing inode, because this
491                  * allocated page will go into page cache and is regarded as
492                  * coming from reserved pool in releasing step.  Currently, we
493                  * don't have any other solution to deal with this situation
494                  * properly, so add work-around here.
495                  */
496                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497                         return 1;
498                 else
499                         return 0;
500         }
501
502         /* Shared mappings always use reserves */
503         if (vma->vm_flags & VM_MAYSHARE)
504                 return 1;
505
506         /*
507          * Only the process that called mmap() has reserves for
508          * private mappings.
509          */
510         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511                 return 1;
512
513         return 0;
514 }
515
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 {
518         int nid = page_to_nid(page);
519         list_move(&page->lru, &h->hugepage_freelists[nid]);
520         h->free_huge_pages++;
521         h->free_huge_pages_node[nid]++;
522 }
523
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 {
526         struct page *page;
527
528         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529                 if (!is_migrate_isolate_page(page))
530                         break;
531         /*
532          * if 'non-isolated free hugepage' not found on the list,
533          * the allocation fails.
534          */
535         if (&h->hugepage_freelists[nid] == &page->lru)
536                 return NULL;
537         list_move(&page->lru, &h->hugepage_activelist);
538         set_page_refcounted(page);
539         h->free_huge_pages--;
540         h->free_huge_pages_node[nid]--;
541         return page;
542 }
543
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 {
547         if (hugepages_treat_as_movable || hugepage_migration_support(h))
548                 return GFP_HIGHUSER_MOVABLE;
549         else
550                 return GFP_HIGHUSER;
551 }
552
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554                                 struct vm_area_struct *vma,
555                                 unsigned long address, int avoid_reserve,
556                                 long chg)
557 {
558         struct page *page = NULL;
559         struct mempolicy *mpol;
560         nodemask_t *nodemask;
561         struct zonelist *zonelist;
562         struct zone *zone;
563         struct zoneref *z;
564         unsigned int cpuset_mems_cookie;
565
566         /*
567          * A child process with MAP_PRIVATE mappings created by their parent
568          * have no page reserves. This check ensures that reservations are
569          * not "stolen". The child may still get SIGKILLed
570          */
571         if (!vma_has_reserves(vma, chg) &&
572                         h->free_huge_pages - h->resv_huge_pages == 0)
573                 goto err;
574
575         /* If reserves cannot be used, ensure enough pages are in the pool */
576         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577                 goto err;
578
579 retry_cpuset:
580         cpuset_mems_cookie = read_mems_allowed_begin();
581         zonelist = huge_zonelist(vma, address,
582                                         htlb_alloc_mask(h), &mpol, &nodemask);
583
584         for_each_zone_zonelist_nodemask(zone, z, zonelist,
585                                                 MAX_NR_ZONES - 1, nodemask) {
586                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
588                         if (page) {
589                                 if (avoid_reserve)
590                                         break;
591                                 if (!vma_has_reserves(vma, chg))
592                                         break;
593
594                                 SetPagePrivate(page);
595                                 h->resv_huge_pages--;
596                                 break;
597                         }
598                 }
599         }
600
601         mpol_cond_put(mpol);
602         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603                 goto retry_cpuset;
604         return page;
605
606 err:
607         return NULL;
608 }
609
610 static void update_and_free_page(struct hstate *h, struct page *page)
611 {
612         int i;
613
614         VM_BUG_ON(h->order >= MAX_ORDER);
615
616         h->nr_huge_pages--;
617         h->nr_huge_pages_node[page_to_nid(page)]--;
618         for (i = 0; i < pages_per_huge_page(h); i++) {
619                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620                                 1 << PG_referenced | 1 << PG_dirty |
621                                 1 << PG_active | 1 << PG_reserved |
622                                 1 << PG_private | 1 << PG_writeback);
623         }
624         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625         set_compound_page_dtor(page, NULL);
626         set_page_refcounted(page);
627         arch_release_hugepage(page);
628         __free_pages(page, huge_page_order(h));
629 }
630
631 struct hstate *size_to_hstate(unsigned long size)
632 {
633         struct hstate *h;
634
635         for_each_hstate(h) {
636                 if (huge_page_size(h) == size)
637                         return h;
638         }
639         return NULL;
640 }
641
642 static void free_huge_page(struct page *page)
643 {
644         /*
645          * Can't pass hstate in here because it is called from the
646          * compound page destructor.
647          */
648         struct hstate *h = page_hstate(page);
649         int nid = page_to_nid(page);
650         struct hugepage_subpool *spool =
651                 (struct hugepage_subpool *)page_private(page);
652         bool restore_reserve;
653
654         set_page_private(page, 0);
655         page->mapping = NULL;
656         BUG_ON(page_count(page));
657         BUG_ON(page_mapcount(page));
658         restore_reserve = PagePrivate(page);
659         ClearPagePrivate(page);
660
661         spin_lock(&hugetlb_lock);
662         hugetlb_cgroup_uncharge_page(hstate_index(h),
663                                      pages_per_huge_page(h), page);
664         if (restore_reserve)
665                 h->resv_huge_pages++;
666
667         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668                 /* remove the page from active list */
669                 list_del(&page->lru);
670                 update_and_free_page(h, page);
671                 h->surplus_huge_pages--;
672                 h->surplus_huge_pages_node[nid]--;
673         } else {
674                 arch_clear_hugepage_flags(page);
675                 enqueue_huge_page(h, page);
676         }
677         spin_unlock(&hugetlb_lock);
678         hugepage_subpool_put_pages(spool, 1);
679 }
680
681 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682 {
683         INIT_LIST_HEAD(&page->lru);
684         set_compound_page_dtor(page, free_huge_page);
685         spin_lock(&hugetlb_lock);
686         set_hugetlb_cgroup(page, NULL);
687         h->nr_huge_pages++;
688         h->nr_huge_pages_node[nid]++;
689         spin_unlock(&hugetlb_lock);
690         put_page(page); /* free it into the hugepage allocator */
691 }
692
693 static void __init prep_compound_gigantic_page(struct page *page,
694                                                unsigned long order)
695 {
696         int i;
697         int nr_pages = 1 << order;
698         struct page *p = page + 1;
699
700         /* we rely on prep_new_huge_page to set the destructor */
701         set_compound_order(page, order);
702         __SetPageHead(page);
703         __ClearPageReserved(page);
704         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705                 __SetPageTail(p);
706                 /*
707                  * For gigantic hugepages allocated through bootmem at
708                  * boot, it's safer to be consistent with the not-gigantic
709                  * hugepages and clear the PG_reserved bit from all tail pages
710                  * too.  Otherwse drivers using get_user_pages() to access tail
711                  * pages may get the reference counting wrong if they see
712                  * PG_reserved set on a tail page (despite the head page not
713                  * having PG_reserved set).  Enforcing this consistency between
714                  * head and tail pages allows drivers to optimize away a check
715                  * on the head page when they need know if put_page() is needed
716                  * after get_user_pages().
717                  */
718                 __ClearPageReserved(p);
719                 set_page_count(p, 0);
720                 p->first_page = page;
721         }
722 }
723
724 /*
725  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726  * transparent huge pages.  See the PageTransHuge() documentation for more
727  * details.
728  */
729 int PageHuge(struct page *page)
730 {
731         if (!PageCompound(page))
732                 return 0;
733
734         page = compound_head(page);
735         return get_compound_page_dtor(page) == free_huge_page;
736 }
737 EXPORT_SYMBOL_GPL(PageHuge);
738
739 /*
740  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741  * normal or transparent huge pages.
742  */
743 int PageHeadHuge(struct page *page_head)
744 {
745         if (!PageHead(page_head))
746                 return 0;
747
748         return get_compound_page_dtor(page_head) == free_huge_page;
749 }
750
751 pgoff_t __basepage_index(struct page *page)
752 {
753         struct page *page_head = compound_head(page);
754         pgoff_t index = page_index(page_head);
755         unsigned long compound_idx;
756
757         if (!PageHuge(page_head))
758                 return page_index(page);
759
760         if (compound_order(page_head) >= MAX_ORDER)
761                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762         else
763                 compound_idx = page - page_head;
764
765         return (index << compound_order(page_head)) + compound_idx;
766 }
767
768 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
769 {
770         struct page *page;
771
772         if (h->order >= MAX_ORDER)
773                 return NULL;
774
775         page = alloc_pages_exact_node(nid,
776                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777                                                 __GFP_REPEAT|__GFP_NOWARN,
778                 huge_page_order(h));
779         if (page) {
780                 if (arch_prepare_hugepage(page)) {
781                         __free_pages(page, huge_page_order(h));
782                         return NULL;
783                 }
784                 prep_new_huge_page(h, page, nid);
785         }
786
787         return page;
788 }
789
790 /*
791  * common helper functions for hstate_next_node_to_{alloc|free}.
792  * We may have allocated or freed a huge page based on a different
793  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794  * be outside of *nodes_allowed.  Ensure that we use an allowed
795  * node for alloc or free.
796  */
797 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798 {
799         nid = next_node(nid, *nodes_allowed);
800         if (nid == MAX_NUMNODES)
801                 nid = first_node(*nodes_allowed);
802         VM_BUG_ON(nid >= MAX_NUMNODES);
803
804         return nid;
805 }
806
807 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808 {
809         if (!node_isset(nid, *nodes_allowed))
810                 nid = next_node_allowed(nid, nodes_allowed);
811         return nid;
812 }
813
814 /*
815  * returns the previously saved node ["this node"] from which to
816  * allocate a persistent huge page for the pool and advance the
817  * next node from which to allocate, handling wrap at end of node
818  * mask.
819  */
820 static int hstate_next_node_to_alloc(struct hstate *h,
821                                         nodemask_t *nodes_allowed)
822 {
823         int nid;
824
825         VM_BUG_ON(!nodes_allowed);
826
827         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829
830         return nid;
831 }
832
833 /*
834  * helper for free_pool_huge_page() - return the previously saved
835  * node ["this node"] from which to free a huge page.  Advance the
836  * next node id whether or not we find a free huge page to free so
837  * that the next attempt to free addresses the next node.
838  */
839 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840 {
841         int nid;
842
843         VM_BUG_ON(!nodes_allowed);
844
845         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847
848         return nid;
849 }
850
851 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
852         for (nr_nodes = nodes_weight(*mask);                            \
853                 nr_nodes > 0 &&                                         \
854                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
855                 nr_nodes--)
856
857 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
858         for (nr_nodes = nodes_weight(*mask);                            \
859                 nr_nodes > 0 &&                                         \
860                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
861                 nr_nodes--)
862
863 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864 {
865         struct page *page;
866         int nr_nodes, node;
867         int ret = 0;
868
869         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870                 page = alloc_fresh_huge_page_node(h, node);
871                 if (page) {
872                         ret = 1;
873                         break;
874                 }
875         }
876
877         if (ret)
878                 count_vm_event(HTLB_BUDDY_PGALLOC);
879         else
880                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882         return ret;
883 }
884
885 /*
886  * Free huge page from pool from next node to free.
887  * Attempt to keep persistent huge pages more or less
888  * balanced over allowed nodes.
889  * Called with hugetlb_lock locked.
890  */
891 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892                                                          bool acct_surplus)
893 {
894         int nr_nodes, node;
895         int ret = 0;
896
897         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898                 /*
899                  * If we're returning unused surplus pages, only examine
900                  * nodes with surplus pages.
901                  */
902                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903                     !list_empty(&h->hugepage_freelists[node])) {
904                         struct page *page =
905                                 list_entry(h->hugepage_freelists[node].next,
906                                           struct page, lru);
907                         list_del(&page->lru);
908                         h->free_huge_pages--;
909                         h->free_huge_pages_node[node]--;
910                         if (acct_surplus) {
911                                 h->surplus_huge_pages--;
912                                 h->surplus_huge_pages_node[node]--;
913                         }
914                         update_and_free_page(h, page);
915                         ret = 1;
916                         break;
917                 }
918         }
919
920         return ret;
921 }
922
923 /*
924  * Dissolve a given free hugepage into free buddy pages. This function does
925  * nothing for in-use (including surplus) hugepages.
926  */
927 static void dissolve_free_huge_page(struct page *page)
928 {
929         spin_lock(&hugetlb_lock);
930         if (PageHuge(page) && !page_count(page)) {
931                 struct hstate *h = page_hstate(page);
932                 int nid = page_to_nid(page);
933                 list_del(&page->lru);
934                 h->free_huge_pages--;
935                 h->free_huge_pages_node[nid]--;
936                 update_and_free_page(h, page);
937         }
938         spin_unlock(&hugetlb_lock);
939 }
940
941 /*
942  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943  * make specified memory blocks removable from the system.
944  * Note that start_pfn should aligned with (minimum) hugepage size.
945  */
946 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947 {
948         unsigned int order = 8 * sizeof(void *);
949         unsigned long pfn;
950         struct hstate *h;
951
952         /* Set scan step to minimum hugepage size */
953         for_each_hstate(h)
954                 if (order > huge_page_order(h))
955                         order = huge_page_order(h);
956         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958                 dissolve_free_huge_page(pfn_to_page(pfn));
959 }
960
961 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962 {
963         struct page *page;
964         unsigned int r_nid;
965
966         if (h->order >= MAX_ORDER)
967                 return NULL;
968
969         /*
970          * Assume we will successfully allocate the surplus page to
971          * prevent racing processes from causing the surplus to exceed
972          * overcommit
973          *
974          * This however introduces a different race, where a process B
975          * tries to grow the static hugepage pool while alloc_pages() is
976          * called by process A. B will only examine the per-node
977          * counters in determining if surplus huge pages can be
978          * converted to normal huge pages in adjust_pool_surplus(). A
979          * won't be able to increment the per-node counter, until the
980          * lock is dropped by B, but B doesn't drop hugetlb_lock until
981          * no more huge pages can be converted from surplus to normal
982          * state (and doesn't try to convert again). Thus, we have a
983          * case where a surplus huge page exists, the pool is grown, and
984          * the surplus huge page still exists after, even though it
985          * should just have been converted to a normal huge page. This
986          * does not leak memory, though, as the hugepage will be freed
987          * once it is out of use. It also does not allow the counters to
988          * go out of whack in adjust_pool_surplus() as we don't modify
989          * the node values until we've gotten the hugepage and only the
990          * per-node value is checked there.
991          */
992         spin_lock(&hugetlb_lock);
993         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994                 spin_unlock(&hugetlb_lock);
995                 return NULL;
996         } else {
997                 h->nr_huge_pages++;
998                 h->surplus_huge_pages++;
999         }
1000         spin_unlock(&hugetlb_lock);
1001
1002         if (nid == NUMA_NO_NODE)
1003                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004                                    __GFP_REPEAT|__GFP_NOWARN,
1005                                    huge_page_order(h));
1006         else
1007                 page = alloc_pages_exact_node(nid,
1008                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011         if (page && arch_prepare_hugepage(page)) {
1012                 __free_pages(page, huge_page_order(h));
1013                 page = NULL;
1014         }
1015
1016         spin_lock(&hugetlb_lock);
1017         if (page) {
1018                 INIT_LIST_HEAD(&page->lru);
1019                 r_nid = page_to_nid(page);
1020                 set_compound_page_dtor(page, free_huge_page);
1021                 set_hugetlb_cgroup(page, NULL);
1022                 /*
1023                  * We incremented the global counters already
1024                  */
1025                 h->nr_huge_pages_node[r_nid]++;
1026                 h->surplus_huge_pages_node[r_nid]++;
1027                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1028         } else {
1029                 h->nr_huge_pages--;
1030                 h->surplus_huge_pages--;
1031                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032         }
1033         spin_unlock(&hugetlb_lock);
1034
1035         return page;
1036 }
1037
1038 /*
1039  * This allocation function is useful in the context where vma is irrelevant.
1040  * E.g. soft-offlining uses this function because it only cares physical
1041  * address of error page.
1042  */
1043 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044 {
1045         struct page *page = NULL;
1046
1047         spin_lock(&hugetlb_lock);
1048         if (h->free_huge_pages - h->resv_huge_pages > 0)
1049                 page = dequeue_huge_page_node(h, nid);
1050         spin_unlock(&hugetlb_lock);
1051
1052         if (!page)
1053                 page = alloc_buddy_huge_page(h, nid);
1054
1055         return page;
1056 }
1057
1058 /*
1059  * Increase the hugetlb pool such that it can accommodate a reservation
1060  * of size 'delta'.
1061  */
1062 static int gather_surplus_pages(struct hstate *h, int delta)
1063 {
1064         struct list_head surplus_list;
1065         struct page *page, *tmp;
1066         int ret, i;
1067         int needed, allocated;
1068         bool alloc_ok = true;
1069
1070         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071         if (needed <= 0) {
1072                 h->resv_huge_pages += delta;
1073                 return 0;
1074         }
1075
1076         allocated = 0;
1077         INIT_LIST_HEAD(&surplus_list);
1078
1079         ret = -ENOMEM;
1080 retry:
1081         spin_unlock(&hugetlb_lock);
1082         for (i = 0; i < needed; i++) {
1083                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084                 if (!page) {
1085                         alloc_ok = false;
1086                         break;
1087                 }
1088                 list_add(&page->lru, &surplus_list);
1089         }
1090         allocated += i;
1091
1092         /*
1093          * After retaking hugetlb_lock, we need to recalculate 'needed'
1094          * because either resv_huge_pages or free_huge_pages may have changed.
1095          */
1096         spin_lock(&hugetlb_lock);
1097         needed = (h->resv_huge_pages + delta) -
1098                         (h->free_huge_pages + allocated);
1099         if (needed > 0) {
1100                 if (alloc_ok)
1101                         goto retry;
1102                 /*
1103                  * We were not able to allocate enough pages to
1104                  * satisfy the entire reservation so we free what
1105                  * we've allocated so far.
1106                  */
1107                 goto free;
1108         }
1109         /*
1110          * The surplus_list now contains _at_least_ the number of extra pages
1111          * needed to accommodate the reservation.  Add the appropriate number
1112          * of pages to the hugetlb pool and free the extras back to the buddy
1113          * allocator.  Commit the entire reservation here to prevent another
1114          * process from stealing the pages as they are added to the pool but
1115          * before they are reserved.
1116          */
1117         needed += allocated;
1118         h->resv_huge_pages += delta;
1119         ret = 0;
1120
1121         /* Free the needed pages to the hugetlb pool */
1122         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123                 if ((--needed) < 0)
1124                         break;
1125                 /*
1126                  * This page is now managed by the hugetlb allocator and has
1127                  * no users -- drop the buddy allocator's reference.
1128                  */
1129                 put_page_testzero(page);
1130                 VM_BUG_ON_PAGE(page_count(page), page);
1131                 enqueue_huge_page(h, page);
1132         }
1133 free:
1134         spin_unlock(&hugetlb_lock);
1135
1136         /* Free unnecessary surplus pages to the buddy allocator */
1137         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138                 put_page(page);
1139         spin_lock(&hugetlb_lock);
1140
1141         return ret;
1142 }
1143
1144 /*
1145  * When releasing a hugetlb pool reservation, any surplus pages that were
1146  * allocated to satisfy the reservation must be explicitly freed if they were
1147  * never used.
1148  * Called with hugetlb_lock held.
1149  */
1150 static void return_unused_surplus_pages(struct hstate *h,
1151                                         unsigned long unused_resv_pages)
1152 {
1153         unsigned long nr_pages;
1154
1155         /* Uncommit the reservation */
1156         h->resv_huge_pages -= unused_resv_pages;
1157
1158         /* Cannot return gigantic pages currently */
1159         if (h->order >= MAX_ORDER)
1160                 return;
1161
1162         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164         /*
1165          * We want to release as many surplus pages as possible, spread
1166          * evenly across all nodes with memory. Iterate across these nodes
1167          * until we can no longer free unreserved surplus pages. This occurs
1168          * when the nodes with surplus pages have no free pages.
1169          * free_pool_huge_page() will balance the the freed pages across the
1170          * on-line nodes with memory and will handle the hstate accounting.
1171          */
1172         while (nr_pages--) {
1173                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174                         break;
1175         }
1176 }
1177
1178 /*
1179  * Determine if the huge page at addr within the vma has an associated
1180  * reservation.  Where it does not we will need to logically increase
1181  * reservation and actually increase subpool usage before an allocation
1182  * can occur.  Where any new reservation would be required the
1183  * reservation change is prepared, but not committed.  Once the page
1184  * has been allocated from the subpool and instantiated the change should
1185  * be committed via vma_commit_reservation.  No action is required on
1186  * failure.
1187  */
1188 static long vma_needs_reservation(struct hstate *h,
1189                         struct vm_area_struct *vma, unsigned long addr)
1190 {
1191         struct resv_map *resv;
1192         pgoff_t idx;
1193         long chg;
1194
1195         resv = vma_resv_map(vma);
1196         if (!resv)
1197                 return 1;
1198
1199         idx = vma_hugecache_offset(h, vma, addr);
1200         chg = region_chg(resv, idx, idx + 1);
1201
1202         if (vma->vm_flags & VM_MAYSHARE)
1203                 return chg;
1204         else
1205                 return chg < 0 ? chg : 0;
1206 }
1207 static void vma_commit_reservation(struct hstate *h,
1208                         struct vm_area_struct *vma, unsigned long addr)
1209 {
1210         struct resv_map *resv;
1211         pgoff_t idx;
1212
1213         resv = vma_resv_map(vma);
1214         if (!resv)
1215                 return;
1216
1217         idx = vma_hugecache_offset(h, vma, addr);
1218         region_add(resv, idx, idx + 1);
1219 }
1220
1221 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1222                                     unsigned long addr, int avoid_reserve)
1223 {
1224         struct hugepage_subpool *spool = subpool_vma(vma);
1225         struct hstate *h = hstate_vma(vma);
1226         struct page *page;
1227         long chg;
1228         int ret, idx;
1229         struct hugetlb_cgroup *h_cg;
1230
1231         idx = hstate_index(h);
1232         /*
1233          * Processes that did not create the mapping will have no
1234          * reserves and will not have accounted against subpool
1235          * limit. Check that the subpool limit can be made before
1236          * satisfying the allocation MAP_NORESERVE mappings may also
1237          * need pages and subpool limit allocated allocated if no reserve
1238          * mapping overlaps.
1239          */
1240         chg = vma_needs_reservation(h, vma, addr);
1241         if (chg < 0)
1242                 return ERR_PTR(-ENOMEM);
1243         if (chg || avoid_reserve)
1244                 if (hugepage_subpool_get_pages(spool, 1))
1245                         return ERR_PTR(-ENOSPC);
1246
1247         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1248         if (ret) {
1249                 if (chg || avoid_reserve)
1250                         hugepage_subpool_put_pages(spool, 1);
1251                 return ERR_PTR(-ENOSPC);
1252         }
1253         spin_lock(&hugetlb_lock);
1254         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1255         if (!page) {
1256                 spin_unlock(&hugetlb_lock);
1257                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1258                 if (!page) {
1259                         hugetlb_cgroup_uncharge_cgroup(idx,
1260                                                        pages_per_huge_page(h),
1261                                                        h_cg);
1262                         if (chg || avoid_reserve)
1263                                 hugepage_subpool_put_pages(spool, 1);
1264                         return ERR_PTR(-ENOSPC);
1265                 }
1266                 spin_lock(&hugetlb_lock);
1267                 list_move(&page->lru, &h->hugepage_activelist);
1268                 /* Fall through */
1269         }
1270         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1271         spin_unlock(&hugetlb_lock);
1272
1273         set_page_private(page, (unsigned long)spool);
1274
1275         vma_commit_reservation(h, vma, addr);
1276         return page;
1277 }
1278
1279 /*
1280  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1281  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1282  * where no ERR_VALUE is expected to be returned.
1283  */
1284 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1285                                 unsigned long addr, int avoid_reserve)
1286 {
1287         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1288         if (IS_ERR(page))
1289                 page = NULL;
1290         return page;
1291 }
1292
1293 int __weak alloc_bootmem_huge_page(struct hstate *h)
1294 {
1295         struct huge_bootmem_page *m;
1296         int nr_nodes, node;
1297
1298         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1299                 void *addr;
1300
1301                 addr = memblock_virt_alloc_try_nid_nopanic(
1302                                 huge_page_size(h), huge_page_size(h),
1303                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1304                 if (addr) {
1305                         /*
1306                          * Use the beginning of the huge page to store the
1307                          * huge_bootmem_page struct (until gather_bootmem
1308                          * puts them into the mem_map).
1309                          */
1310                         m = addr;
1311                         goto found;
1312                 }
1313         }
1314         return 0;
1315
1316 found:
1317         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1318         /* Put them into a private list first because mem_map is not up yet */
1319         list_add(&m->list, &huge_boot_pages);
1320         m->hstate = h;
1321         return 1;
1322 }
1323
1324 static void __init prep_compound_huge_page(struct page *page, int order)
1325 {
1326         if (unlikely(order > (MAX_ORDER - 1)))
1327                 prep_compound_gigantic_page(page, order);
1328         else
1329                 prep_compound_page(page, order);
1330 }
1331
1332 /* Put bootmem huge pages into the standard lists after mem_map is up */
1333 static void __init gather_bootmem_prealloc(void)
1334 {
1335         struct huge_bootmem_page *m;
1336
1337         list_for_each_entry(m, &huge_boot_pages, list) {
1338                 struct hstate *h = m->hstate;
1339                 struct page *page;
1340
1341 #ifdef CONFIG_HIGHMEM
1342                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1343                 memblock_free_late(__pa(m),
1344                                    sizeof(struct huge_bootmem_page));
1345 #else
1346                 page = virt_to_page(m);
1347 #endif
1348                 WARN_ON(page_count(page) != 1);
1349                 prep_compound_huge_page(page, h->order);
1350                 WARN_ON(PageReserved(page));
1351                 prep_new_huge_page(h, page, page_to_nid(page));
1352                 /*
1353                  * If we had gigantic hugepages allocated at boot time, we need
1354                  * to restore the 'stolen' pages to totalram_pages in order to
1355                  * fix confusing memory reports from free(1) and another
1356                  * side-effects, like CommitLimit going negative.
1357                  */
1358                 if (h->order > (MAX_ORDER - 1))
1359                         adjust_managed_page_count(page, 1 << h->order);
1360         }
1361 }
1362
1363 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1364 {
1365         unsigned long i;
1366
1367         for (i = 0; i < h->max_huge_pages; ++i) {
1368                 if (h->order >= MAX_ORDER) {
1369                         if (!alloc_bootmem_huge_page(h))
1370                                 break;
1371                 } else if (!alloc_fresh_huge_page(h,
1372                                          &node_states[N_MEMORY]))
1373                         break;
1374         }
1375         h->max_huge_pages = i;
1376 }
1377
1378 static void __init hugetlb_init_hstates(void)
1379 {
1380         struct hstate *h;
1381
1382         for_each_hstate(h) {
1383                 /* oversize hugepages were init'ed in early boot */
1384                 if (h->order < MAX_ORDER)
1385                         hugetlb_hstate_alloc_pages(h);
1386         }
1387 }
1388
1389 static char * __init memfmt(char *buf, unsigned long n)
1390 {
1391         if (n >= (1UL << 30))
1392                 sprintf(buf, "%lu GB", n >> 30);
1393         else if (n >= (1UL << 20))
1394                 sprintf(buf, "%lu MB", n >> 20);
1395         else
1396                 sprintf(buf, "%lu KB", n >> 10);
1397         return buf;
1398 }
1399
1400 static void __init report_hugepages(void)
1401 {
1402         struct hstate *h;
1403
1404         for_each_hstate(h) {
1405                 char buf[32];
1406                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1407                         memfmt(buf, huge_page_size(h)),
1408                         h->free_huge_pages);
1409         }
1410 }
1411
1412 #ifdef CONFIG_HIGHMEM
1413 static void try_to_free_low(struct hstate *h, unsigned long count,
1414                                                 nodemask_t *nodes_allowed)
1415 {
1416         int i;
1417
1418         if (h->order >= MAX_ORDER)
1419                 return;
1420
1421         for_each_node_mask(i, *nodes_allowed) {
1422                 struct page *page, *next;
1423                 struct list_head *freel = &h->hugepage_freelists[i];
1424                 list_for_each_entry_safe(page, next, freel, lru) {
1425                         if (count >= h->nr_huge_pages)
1426                                 return;
1427                         if (PageHighMem(page))
1428                                 continue;
1429                         list_del(&page->lru);
1430                         update_and_free_page(h, page);
1431                         h->free_huge_pages--;
1432                         h->free_huge_pages_node[page_to_nid(page)]--;
1433                 }
1434         }
1435 }
1436 #else
1437 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1438                                                 nodemask_t *nodes_allowed)
1439 {
1440 }
1441 #endif
1442
1443 /*
1444  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1445  * balanced by operating on them in a round-robin fashion.
1446  * Returns 1 if an adjustment was made.
1447  */
1448 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1449                                 int delta)
1450 {
1451         int nr_nodes, node;
1452
1453         VM_BUG_ON(delta != -1 && delta != 1);
1454
1455         if (delta < 0) {
1456                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1457                         if (h->surplus_huge_pages_node[node])
1458                                 goto found;
1459                 }
1460         } else {
1461                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462                         if (h->surplus_huge_pages_node[node] <
1463                                         h->nr_huge_pages_node[node])
1464                                 goto found;
1465                 }
1466         }
1467         return 0;
1468
1469 found:
1470         h->surplus_huge_pages += delta;
1471         h->surplus_huge_pages_node[node] += delta;
1472         return 1;
1473 }
1474
1475 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1476 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1477                                                 nodemask_t *nodes_allowed)
1478 {
1479         unsigned long min_count, ret;
1480
1481         if (h->order >= MAX_ORDER)
1482                 return h->max_huge_pages;
1483
1484         /*
1485          * Increase the pool size
1486          * First take pages out of surplus state.  Then make up the
1487          * remaining difference by allocating fresh huge pages.
1488          *
1489          * We might race with alloc_buddy_huge_page() here and be unable
1490          * to convert a surplus huge page to a normal huge page. That is
1491          * not critical, though, it just means the overall size of the
1492          * pool might be one hugepage larger than it needs to be, but
1493          * within all the constraints specified by the sysctls.
1494          */
1495         spin_lock(&hugetlb_lock);
1496         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1497                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1498                         break;
1499         }
1500
1501         while (count > persistent_huge_pages(h)) {
1502                 /*
1503                  * If this allocation races such that we no longer need the
1504                  * page, free_huge_page will handle it by freeing the page
1505                  * and reducing the surplus.
1506                  */
1507                 spin_unlock(&hugetlb_lock);
1508                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1509                 spin_lock(&hugetlb_lock);
1510                 if (!ret)
1511                         goto out;
1512
1513                 /* Bail for signals. Probably ctrl-c from user */
1514                 if (signal_pending(current))
1515                         goto out;
1516         }
1517
1518         /*
1519          * Decrease the pool size
1520          * First return free pages to the buddy allocator (being careful
1521          * to keep enough around to satisfy reservations).  Then place
1522          * pages into surplus state as needed so the pool will shrink
1523          * to the desired size as pages become free.
1524          *
1525          * By placing pages into the surplus state independent of the
1526          * overcommit value, we are allowing the surplus pool size to
1527          * exceed overcommit. There are few sane options here. Since
1528          * alloc_buddy_huge_page() is checking the global counter,
1529          * though, we'll note that we're not allowed to exceed surplus
1530          * and won't grow the pool anywhere else. Not until one of the
1531          * sysctls are changed, or the surplus pages go out of use.
1532          */
1533         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1534         min_count = max(count, min_count);
1535         try_to_free_low(h, min_count, nodes_allowed);
1536         while (min_count < persistent_huge_pages(h)) {
1537                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1538                         break;
1539                 cond_resched_lock(&hugetlb_lock);
1540         }
1541         while (count < persistent_huge_pages(h)) {
1542                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1543                         break;
1544         }
1545 out:
1546         ret = persistent_huge_pages(h);
1547         spin_unlock(&hugetlb_lock);
1548         return ret;
1549 }
1550
1551 #define HSTATE_ATTR_RO(_name) \
1552         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1553
1554 #define HSTATE_ATTR(_name) \
1555         static struct kobj_attribute _name##_attr = \
1556                 __ATTR(_name, 0644, _name##_show, _name##_store)
1557
1558 static struct kobject *hugepages_kobj;
1559 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1560
1561 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1562
1563 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1564 {
1565         int i;
1566
1567         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1568                 if (hstate_kobjs[i] == kobj) {
1569                         if (nidp)
1570                                 *nidp = NUMA_NO_NODE;
1571                         return &hstates[i];
1572                 }
1573
1574         return kobj_to_node_hstate(kobj, nidp);
1575 }
1576
1577 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1578                                         struct kobj_attribute *attr, char *buf)
1579 {
1580         struct hstate *h;
1581         unsigned long nr_huge_pages;
1582         int nid;
1583
1584         h = kobj_to_hstate(kobj, &nid);
1585         if (nid == NUMA_NO_NODE)
1586                 nr_huge_pages = h->nr_huge_pages;
1587         else
1588                 nr_huge_pages = h->nr_huge_pages_node[nid];
1589
1590         return sprintf(buf, "%lu\n", nr_huge_pages);
1591 }
1592
1593 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1594                         struct kobject *kobj, struct kobj_attribute *attr,
1595                         const char *buf, size_t len)
1596 {
1597         int err;
1598         int nid;
1599         unsigned long count;
1600         struct hstate *h;
1601         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1602
1603         err = kstrtoul(buf, 10, &count);
1604         if (err)
1605                 goto out;
1606
1607         h = kobj_to_hstate(kobj, &nid);
1608         if (h->order >= MAX_ORDER) {
1609                 err = -EINVAL;
1610                 goto out;
1611         }
1612
1613         if (nid == NUMA_NO_NODE) {
1614                 /*
1615                  * global hstate attribute
1616                  */
1617                 if (!(obey_mempolicy &&
1618                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1619                         NODEMASK_FREE(nodes_allowed);
1620                         nodes_allowed = &node_states[N_MEMORY];
1621                 }
1622         } else if (nodes_allowed) {
1623                 /*
1624                  * per node hstate attribute: adjust count to global,
1625                  * but restrict alloc/free to the specified node.
1626                  */
1627                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1628                 init_nodemask_of_node(nodes_allowed, nid);
1629         } else
1630                 nodes_allowed = &node_states[N_MEMORY];
1631
1632         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1633
1634         if (nodes_allowed != &node_states[N_MEMORY])
1635                 NODEMASK_FREE(nodes_allowed);
1636
1637         return len;
1638 out:
1639         NODEMASK_FREE(nodes_allowed);
1640         return err;
1641 }
1642
1643 static ssize_t nr_hugepages_show(struct kobject *kobj,
1644                                        struct kobj_attribute *attr, char *buf)
1645 {
1646         return nr_hugepages_show_common(kobj, attr, buf);
1647 }
1648
1649 static ssize_t nr_hugepages_store(struct kobject *kobj,
1650                struct kobj_attribute *attr, const char *buf, size_t len)
1651 {
1652         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1653 }
1654 HSTATE_ATTR(nr_hugepages);
1655
1656 #ifdef CONFIG_NUMA
1657
1658 /*
1659  * hstate attribute for optionally mempolicy-based constraint on persistent
1660  * huge page alloc/free.
1661  */
1662 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1663                                        struct kobj_attribute *attr, char *buf)
1664 {
1665         return nr_hugepages_show_common(kobj, attr, buf);
1666 }
1667
1668 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1669                struct kobj_attribute *attr, const char *buf, size_t len)
1670 {
1671         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1672 }
1673 HSTATE_ATTR(nr_hugepages_mempolicy);
1674 #endif
1675
1676
1677 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1678                                         struct kobj_attribute *attr, char *buf)
1679 {
1680         struct hstate *h = kobj_to_hstate(kobj, NULL);
1681         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1682 }
1683
1684 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1685                 struct kobj_attribute *attr, const char *buf, size_t count)
1686 {
1687         int err;
1688         unsigned long input;
1689         struct hstate *h = kobj_to_hstate(kobj, NULL);
1690
1691         if (h->order >= MAX_ORDER)
1692                 return -EINVAL;
1693
1694         err = kstrtoul(buf, 10, &input);
1695         if (err)
1696                 return err;
1697
1698         spin_lock(&hugetlb_lock);
1699         h->nr_overcommit_huge_pages = input;
1700         spin_unlock(&hugetlb_lock);
1701
1702         return count;
1703 }
1704 HSTATE_ATTR(nr_overcommit_hugepages);
1705
1706 static ssize_t free_hugepages_show(struct kobject *kobj,
1707                                         struct kobj_attribute *attr, char *buf)
1708 {
1709         struct hstate *h;
1710         unsigned long free_huge_pages;
1711         int nid;
1712
1713         h = kobj_to_hstate(kobj, &nid);
1714         if (nid == NUMA_NO_NODE)
1715                 free_huge_pages = h->free_huge_pages;
1716         else
1717                 free_huge_pages = h->free_huge_pages_node[nid];
1718
1719         return sprintf(buf, "%lu\n", free_huge_pages);
1720 }
1721 HSTATE_ATTR_RO(free_hugepages);
1722
1723 static ssize_t resv_hugepages_show(struct kobject *kobj,
1724                                         struct kobj_attribute *attr, char *buf)
1725 {
1726         struct hstate *h = kobj_to_hstate(kobj, NULL);
1727         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1728 }
1729 HSTATE_ATTR_RO(resv_hugepages);
1730
1731 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1732                                         struct kobj_attribute *attr, char *buf)
1733 {
1734         struct hstate *h;
1735         unsigned long surplus_huge_pages;
1736         int nid;
1737
1738         h = kobj_to_hstate(kobj, &nid);
1739         if (nid == NUMA_NO_NODE)
1740                 surplus_huge_pages = h->surplus_huge_pages;
1741         else
1742                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1743
1744         return sprintf(buf, "%lu\n", surplus_huge_pages);
1745 }
1746 HSTATE_ATTR_RO(surplus_hugepages);
1747
1748 static struct attribute *hstate_attrs[] = {
1749         &nr_hugepages_attr.attr,
1750         &nr_overcommit_hugepages_attr.attr,
1751         &free_hugepages_attr.attr,
1752         &resv_hugepages_attr.attr,
1753         &surplus_hugepages_attr.attr,
1754 #ifdef CONFIG_NUMA
1755         &nr_hugepages_mempolicy_attr.attr,
1756 #endif
1757         NULL,
1758 };
1759
1760 static struct attribute_group hstate_attr_group = {
1761         .attrs = hstate_attrs,
1762 };
1763
1764 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1765                                     struct kobject **hstate_kobjs,
1766                                     struct attribute_group *hstate_attr_group)
1767 {
1768         int retval;
1769         int hi = hstate_index(h);
1770
1771         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1772         if (!hstate_kobjs[hi])
1773                 return -ENOMEM;
1774
1775         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1776         if (retval)
1777                 kobject_put(hstate_kobjs[hi]);
1778
1779         return retval;
1780 }
1781
1782 static void __init hugetlb_sysfs_init(void)
1783 {
1784         struct hstate *h;
1785         int err;
1786
1787         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1788         if (!hugepages_kobj)
1789                 return;
1790
1791         for_each_hstate(h) {
1792                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1793                                          hstate_kobjs, &hstate_attr_group);
1794                 if (err)
1795                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1796         }
1797 }
1798
1799 #ifdef CONFIG_NUMA
1800
1801 /*
1802  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1803  * with node devices in node_devices[] using a parallel array.  The array
1804  * index of a node device or _hstate == node id.
1805  * This is here to avoid any static dependency of the node device driver, in
1806  * the base kernel, on the hugetlb module.
1807  */
1808 struct node_hstate {
1809         struct kobject          *hugepages_kobj;
1810         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1811 };
1812 struct node_hstate node_hstates[MAX_NUMNODES];
1813
1814 /*
1815  * A subset of global hstate attributes for node devices
1816  */
1817 static struct attribute *per_node_hstate_attrs[] = {
1818         &nr_hugepages_attr.attr,
1819         &free_hugepages_attr.attr,
1820         &surplus_hugepages_attr.attr,
1821         NULL,
1822 };
1823
1824 static struct attribute_group per_node_hstate_attr_group = {
1825         .attrs = per_node_hstate_attrs,
1826 };
1827
1828 /*
1829  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1830  * Returns node id via non-NULL nidp.
1831  */
1832 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1833 {
1834         int nid;
1835
1836         for (nid = 0; nid < nr_node_ids; nid++) {
1837                 struct node_hstate *nhs = &node_hstates[nid];
1838                 int i;
1839                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1840                         if (nhs->hstate_kobjs[i] == kobj) {
1841                                 if (nidp)
1842                                         *nidp = nid;
1843                                 return &hstates[i];
1844                         }
1845         }
1846
1847         BUG();
1848         return NULL;
1849 }
1850
1851 /*
1852  * Unregister hstate attributes from a single node device.
1853  * No-op if no hstate attributes attached.
1854  */
1855 static void hugetlb_unregister_node(struct node *node)
1856 {
1857         struct hstate *h;
1858         struct node_hstate *nhs = &node_hstates[node->dev.id];
1859
1860         if (!nhs->hugepages_kobj)
1861                 return;         /* no hstate attributes */
1862
1863         for_each_hstate(h) {
1864                 int idx = hstate_index(h);
1865                 if (nhs->hstate_kobjs[idx]) {
1866                         kobject_put(nhs->hstate_kobjs[idx]);
1867                         nhs->hstate_kobjs[idx] = NULL;
1868                 }
1869         }
1870
1871         kobject_put(nhs->hugepages_kobj);
1872         nhs->hugepages_kobj = NULL;
1873 }
1874
1875 /*
1876  * hugetlb module exit:  unregister hstate attributes from node devices
1877  * that have them.
1878  */
1879 static void hugetlb_unregister_all_nodes(void)
1880 {
1881         int nid;
1882
1883         /*
1884          * disable node device registrations.
1885          */
1886         register_hugetlbfs_with_node(NULL, NULL);
1887
1888         /*
1889          * remove hstate attributes from any nodes that have them.
1890          */
1891         for (nid = 0; nid < nr_node_ids; nid++)
1892                 hugetlb_unregister_node(node_devices[nid]);
1893 }
1894
1895 /*
1896  * Register hstate attributes for a single node device.
1897  * No-op if attributes already registered.
1898  */
1899 static void hugetlb_register_node(struct node *node)
1900 {
1901         struct hstate *h;
1902         struct node_hstate *nhs = &node_hstates[node->dev.id];
1903         int err;
1904
1905         if (nhs->hugepages_kobj)
1906                 return;         /* already allocated */
1907
1908         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1909                                                         &node->dev.kobj);
1910         if (!nhs->hugepages_kobj)
1911                 return;
1912
1913         for_each_hstate(h) {
1914                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1915                                                 nhs->hstate_kobjs,
1916                                                 &per_node_hstate_attr_group);
1917                 if (err) {
1918                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1919                                 h->name, node->dev.id);
1920                         hugetlb_unregister_node(node);
1921                         break;
1922                 }
1923         }
1924 }
1925
1926 /*
1927  * hugetlb init time:  register hstate attributes for all registered node
1928  * devices of nodes that have memory.  All on-line nodes should have
1929  * registered their associated device by this time.
1930  */
1931 static void hugetlb_register_all_nodes(void)
1932 {
1933         int nid;
1934
1935         for_each_node_state(nid, N_MEMORY) {
1936                 struct node *node = node_devices[nid];
1937                 if (node->dev.id == nid)
1938                         hugetlb_register_node(node);
1939         }
1940
1941         /*
1942          * Let the node device driver know we're here so it can
1943          * [un]register hstate attributes on node hotplug.
1944          */
1945         register_hugetlbfs_with_node(hugetlb_register_node,
1946                                      hugetlb_unregister_node);
1947 }
1948 #else   /* !CONFIG_NUMA */
1949
1950 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1951 {
1952         BUG();
1953         if (nidp)
1954                 *nidp = -1;
1955         return NULL;
1956 }
1957
1958 static void hugetlb_unregister_all_nodes(void) { }
1959
1960 static void hugetlb_register_all_nodes(void) { }
1961
1962 #endif
1963
1964 static void __exit hugetlb_exit(void)
1965 {
1966         struct hstate *h;
1967
1968         hugetlb_unregister_all_nodes();
1969
1970         for_each_hstate(h) {
1971                 kobject_put(hstate_kobjs[hstate_index(h)]);
1972         }
1973
1974         kobject_put(hugepages_kobj);
1975         kfree(htlb_fault_mutex_table);
1976 }
1977 module_exit(hugetlb_exit);
1978
1979 static int __init hugetlb_init(void)
1980 {
1981         int i;
1982
1983         /* Some platform decide whether they support huge pages at boot
1984          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1985          * there is no such support
1986          */
1987         if (HPAGE_SHIFT == 0)
1988                 return 0;
1989
1990         if (!size_to_hstate(default_hstate_size)) {
1991                 default_hstate_size = HPAGE_SIZE;
1992                 if (!size_to_hstate(default_hstate_size))
1993                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1994         }
1995         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1996         if (default_hstate_max_huge_pages)
1997                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1998
1999         hugetlb_init_hstates();
2000         gather_bootmem_prealloc();
2001         report_hugepages();
2002
2003         hugetlb_sysfs_init();
2004         hugetlb_register_all_nodes();
2005         hugetlb_cgroup_file_init();
2006
2007 #ifdef CONFIG_SMP
2008         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2009 #else
2010         num_fault_mutexes = 1;
2011 #endif
2012         htlb_fault_mutex_table =
2013                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2014         BUG_ON(!htlb_fault_mutex_table);
2015
2016         for (i = 0; i < num_fault_mutexes; i++)
2017                 mutex_init(&htlb_fault_mutex_table[i]);
2018         return 0;
2019 }
2020 module_init(hugetlb_init);
2021
2022 /* Should be called on processing a hugepagesz=... option */
2023 void __init hugetlb_add_hstate(unsigned order)
2024 {
2025         struct hstate *h;
2026         unsigned long i;
2027
2028         if (size_to_hstate(PAGE_SIZE << order)) {
2029                 pr_warning("hugepagesz= specified twice, ignoring\n");
2030                 return;
2031         }
2032         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2033         BUG_ON(order == 0);
2034         h = &hstates[hugetlb_max_hstate++];
2035         h->order = order;
2036         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2037         h->nr_huge_pages = 0;
2038         h->free_huge_pages = 0;
2039         for (i = 0; i < MAX_NUMNODES; ++i)
2040                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2041         INIT_LIST_HEAD(&h->hugepage_activelist);
2042         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2043         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2044         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2045                                         huge_page_size(h)/1024);
2046
2047         parsed_hstate = h;
2048 }
2049
2050 static int __init hugetlb_nrpages_setup(char *s)
2051 {
2052         unsigned long *mhp;
2053         static unsigned long *last_mhp;
2054
2055         /*
2056          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2057          * so this hugepages= parameter goes to the "default hstate".
2058          */
2059         if (!hugetlb_max_hstate)
2060                 mhp = &default_hstate_max_huge_pages;
2061         else
2062                 mhp = &parsed_hstate->max_huge_pages;
2063
2064         if (mhp == last_mhp) {
2065                 pr_warning("hugepages= specified twice without "
2066                            "interleaving hugepagesz=, ignoring\n");
2067                 return 1;
2068         }
2069
2070         if (sscanf(s, "%lu", mhp) <= 0)
2071                 *mhp = 0;
2072
2073         /*
2074          * Global state is always initialized later in hugetlb_init.
2075          * But we need to allocate >= MAX_ORDER hstates here early to still
2076          * use the bootmem allocator.
2077          */
2078         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2079                 hugetlb_hstate_alloc_pages(parsed_hstate);
2080
2081         last_mhp = mhp;
2082
2083         return 1;
2084 }
2085 __setup("hugepages=", hugetlb_nrpages_setup);
2086
2087 static int __init hugetlb_default_setup(char *s)
2088 {
2089         default_hstate_size = memparse(s, &s);
2090         return 1;
2091 }
2092 __setup("default_hugepagesz=", hugetlb_default_setup);
2093
2094 static unsigned int cpuset_mems_nr(unsigned int *array)
2095 {
2096         int node;
2097         unsigned int nr = 0;
2098
2099         for_each_node_mask(node, cpuset_current_mems_allowed)
2100                 nr += array[node];
2101
2102         return nr;
2103 }
2104
2105 #ifdef CONFIG_SYSCTL
2106 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2107                          struct ctl_table *table, int write,
2108                          void __user *buffer, size_t *length, loff_t *ppos)
2109 {
2110         struct hstate *h = &default_hstate;
2111         unsigned long tmp;
2112         int ret;
2113
2114         tmp = h->max_huge_pages;
2115
2116         if (write && h->order >= MAX_ORDER)
2117                 return -EINVAL;
2118
2119         table->data = &tmp;
2120         table->maxlen = sizeof(unsigned long);
2121         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122         if (ret)
2123                 goto out;
2124
2125         if (write) {
2126                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127                                                 GFP_KERNEL | __GFP_NORETRY);
2128                 if (!(obey_mempolicy &&
2129                                init_nodemask_of_mempolicy(nodes_allowed))) {
2130                         NODEMASK_FREE(nodes_allowed);
2131                         nodes_allowed = &node_states[N_MEMORY];
2132                 }
2133                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135                 if (nodes_allowed != &node_states[N_MEMORY])
2136                         NODEMASK_FREE(nodes_allowed);
2137         }
2138 out:
2139         return ret;
2140 }
2141
2142 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143                           void __user *buffer, size_t *length, loff_t *ppos)
2144 {
2145
2146         return hugetlb_sysctl_handler_common(false, table, write,
2147                                                         buffer, length, ppos);
2148 }
2149
2150 #ifdef CONFIG_NUMA
2151 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152                           void __user *buffer, size_t *length, loff_t *ppos)
2153 {
2154         return hugetlb_sysctl_handler_common(true, table, write,
2155                                                         buffer, length, ppos);
2156 }
2157 #endif /* CONFIG_NUMA */
2158
2159 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160                         void __user *buffer,
2161                         size_t *length, loff_t *ppos)
2162 {
2163         struct hstate *h = &default_hstate;
2164         unsigned long tmp;
2165         int ret;
2166
2167         tmp = h->nr_overcommit_huge_pages;
2168
2169         if (write && h->order >= MAX_ORDER)
2170                 return -EINVAL;
2171
2172         table->data = &tmp;
2173         table->maxlen = sizeof(unsigned long);
2174         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2175         if (ret)
2176                 goto out;
2177
2178         if (write) {
2179                 spin_lock(&hugetlb_lock);
2180                 h->nr_overcommit_huge_pages = tmp;
2181                 spin_unlock(&hugetlb_lock);
2182         }
2183 out:
2184         return ret;
2185 }
2186
2187 #endif /* CONFIG_SYSCTL */
2188
2189 void hugetlb_report_meminfo(struct seq_file *m)
2190 {
2191         struct hstate *h = &default_hstate;
2192         seq_printf(m,
2193                         "HugePages_Total:   %5lu\n"
2194                         "HugePages_Free:    %5lu\n"
2195                         "HugePages_Rsvd:    %5lu\n"
2196                         "HugePages_Surp:    %5lu\n"
2197                         "Hugepagesize:   %8lu kB\n",
2198                         h->nr_huge_pages,
2199                         h->free_huge_pages,
2200                         h->resv_huge_pages,
2201                         h->surplus_huge_pages,
2202                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2203 }
2204
2205 int hugetlb_report_node_meminfo(int nid, char *buf)
2206 {
2207         struct hstate *h = &default_hstate;
2208         return sprintf(buf,
2209                 "Node %d HugePages_Total: %5u\n"
2210                 "Node %d HugePages_Free:  %5u\n"
2211                 "Node %d HugePages_Surp:  %5u\n",
2212                 nid, h->nr_huge_pages_node[nid],
2213                 nid, h->free_huge_pages_node[nid],
2214                 nid, h->surplus_huge_pages_node[nid]);
2215 }
2216
2217 void hugetlb_show_meminfo(void)
2218 {
2219         struct hstate *h;
2220         int nid;
2221
2222         for_each_node_state(nid, N_MEMORY)
2223                 for_each_hstate(h)
2224                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2225                                 nid,
2226                                 h->nr_huge_pages_node[nid],
2227                                 h->free_huge_pages_node[nid],
2228                                 h->surplus_huge_pages_node[nid],
2229                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2230 }
2231
2232 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2233 unsigned long hugetlb_total_pages(void)
2234 {
2235         struct hstate *h;
2236         unsigned long nr_total_pages = 0;
2237
2238         for_each_hstate(h)
2239                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2240         return nr_total_pages;
2241 }
2242
2243 static int hugetlb_acct_memory(struct hstate *h, long delta)
2244 {
2245         int ret = -ENOMEM;
2246
2247         spin_lock(&hugetlb_lock);
2248         /*
2249          * When cpuset is configured, it breaks the strict hugetlb page
2250          * reservation as the accounting is done on a global variable. Such
2251          * reservation is completely rubbish in the presence of cpuset because
2252          * the reservation is not checked against page availability for the
2253          * current cpuset. Application can still potentially OOM'ed by kernel
2254          * with lack of free htlb page in cpuset that the task is in.
2255          * Attempt to enforce strict accounting with cpuset is almost
2256          * impossible (or too ugly) because cpuset is too fluid that
2257          * task or memory node can be dynamically moved between cpusets.
2258          *
2259          * The change of semantics for shared hugetlb mapping with cpuset is
2260          * undesirable. However, in order to preserve some of the semantics,
2261          * we fall back to check against current free page availability as
2262          * a best attempt and hopefully to minimize the impact of changing
2263          * semantics that cpuset has.
2264          */
2265         if (delta > 0) {
2266                 if (gather_surplus_pages(h, delta) < 0)
2267                         goto out;
2268
2269                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2270                         return_unused_surplus_pages(h, delta);
2271                         goto out;
2272                 }
2273         }
2274
2275         ret = 0;
2276         if (delta < 0)
2277                 return_unused_surplus_pages(h, (unsigned long) -delta);
2278
2279 out:
2280         spin_unlock(&hugetlb_lock);
2281         return ret;
2282 }
2283
2284 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2285 {
2286         struct resv_map *resv = vma_resv_map(vma);
2287
2288         /*
2289          * This new VMA should share its siblings reservation map if present.
2290          * The VMA will only ever have a valid reservation map pointer where
2291          * it is being copied for another still existing VMA.  As that VMA
2292          * has a reference to the reservation map it cannot disappear until
2293          * after this open call completes.  It is therefore safe to take a
2294          * new reference here without additional locking.
2295          */
2296         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2297                 kref_get(&resv->refs);
2298 }
2299
2300 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2301 {
2302         struct hstate *h = hstate_vma(vma);
2303         struct resv_map *resv = vma_resv_map(vma);
2304         struct hugepage_subpool *spool = subpool_vma(vma);
2305         unsigned long reserve, start, end;
2306
2307         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2308                 return;
2309
2310         start = vma_hugecache_offset(h, vma, vma->vm_start);
2311         end = vma_hugecache_offset(h, vma, vma->vm_end);
2312
2313         reserve = (end - start) - region_count(resv, start, end);
2314
2315         kref_put(&resv->refs, resv_map_release);
2316
2317         if (reserve) {
2318                 hugetlb_acct_memory(h, -reserve);
2319                 hugepage_subpool_put_pages(spool, reserve);
2320         }
2321 }
2322
2323 /*
2324  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2325  * handle_mm_fault() to try to instantiate regular-sized pages in the
2326  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2327  * this far.
2328  */
2329 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2330 {
2331         BUG();
2332         return 0;
2333 }
2334
2335 const struct vm_operations_struct hugetlb_vm_ops = {
2336         .fault = hugetlb_vm_op_fault,
2337         .open = hugetlb_vm_op_open,
2338         .close = hugetlb_vm_op_close,
2339 };
2340
2341 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2342                                 int writable)
2343 {
2344         pte_t entry;
2345
2346         if (writable) {
2347                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2348                                          vma->vm_page_prot)));
2349         } else {
2350                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2351                                            vma->vm_page_prot));
2352         }
2353         entry = pte_mkyoung(entry);
2354         entry = pte_mkhuge(entry);
2355         entry = arch_make_huge_pte(entry, vma, page, writable);
2356
2357         return entry;
2358 }
2359
2360 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2361                                    unsigned long address, pte_t *ptep)
2362 {
2363         pte_t entry;
2364
2365         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2366         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2367                 update_mmu_cache(vma, address, ptep);
2368 }
2369
2370
2371 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2372                             struct vm_area_struct *vma)
2373 {
2374         pte_t *src_pte, *dst_pte, entry;
2375         struct page *ptepage;
2376         unsigned long addr;
2377         int cow;
2378         struct hstate *h = hstate_vma(vma);
2379         unsigned long sz = huge_page_size(h);
2380         unsigned long mmun_start;       /* For mmu_notifiers */
2381         unsigned long mmun_end;         /* For mmu_notifiers */
2382         int ret = 0;
2383
2384         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2385
2386         mmun_start = vma->vm_start;
2387         mmun_end = vma->vm_end;
2388         if (cow)
2389                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2390
2391         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2392                 spinlock_t *src_ptl, *dst_ptl;
2393                 src_pte = huge_pte_offset(src, addr);
2394                 if (!src_pte)
2395                         continue;
2396                 dst_pte = huge_pte_alloc(dst, addr, sz);
2397                 if (!dst_pte) {
2398                         ret = -ENOMEM;
2399                         break;
2400                 }
2401
2402                 /* If the pagetables are shared don't copy or take references */
2403                 if (dst_pte == src_pte)
2404                         continue;
2405
2406                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2407                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2408                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2409                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2410                         if (cow)
2411                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2412                         entry = huge_ptep_get(src_pte);
2413                         ptepage = pte_page(entry);
2414                         get_page(ptepage);
2415                         page_dup_rmap(ptepage);
2416                         set_huge_pte_at(dst, addr, dst_pte, entry);
2417                 }
2418                 spin_unlock(src_ptl);
2419                 spin_unlock(dst_ptl);
2420         }
2421
2422         if (cow)
2423                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2424
2425         return ret;
2426 }
2427
2428 static int is_hugetlb_entry_migration(pte_t pte)
2429 {
2430         swp_entry_t swp;
2431
2432         if (huge_pte_none(pte) || pte_present(pte))
2433                 return 0;
2434         swp = pte_to_swp_entry(pte);
2435         if (non_swap_entry(swp) && is_migration_entry(swp))
2436                 return 1;
2437         else
2438                 return 0;
2439 }
2440
2441 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2442 {
2443         swp_entry_t swp;
2444
2445         if (huge_pte_none(pte) || pte_present(pte))
2446                 return 0;
2447         swp = pte_to_swp_entry(pte);
2448         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2449                 return 1;
2450         else
2451                 return 0;
2452 }
2453
2454 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2455                             unsigned long start, unsigned long end,
2456                             struct page *ref_page)
2457 {
2458         int force_flush = 0;
2459         struct mm_struct *mm = vma->vm_mm;
2460         unsigned long address;
2461         pte_t *ptep;
2462         pte_t pte;
2463         spinlock_t *ptl;
2464         struct page *page;
2465         struct hstate *h = hstate_vma(vma);
2466         unsigned long sz = huge_page_size(h);
2467         const unsigned long mmun_start = start; /* For mmu_notifiers */
2468         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2469
2470         WARN_ON(!is_vm_hugetlb_page(vma));
2471         BUG_ON(start & ~huge_page_mask(h));
2472         BUG_ON(end & ~huge_page_mask(h));
2473
2474         tlb_start_vma(tlb, vma);
2475         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2476 again:
2477         for (address = start; address < end; address += sz) {
2478                 ptep = huge_pte_offset(mm, address);
2479                 if (!ptep)
2480                         continue;
2481
2482                 ptl = huge_pte_lock(h, mm, ptep);
2483                 if (huge_pmd_unshare(mm, &address, ptep))
2484                         goto unlock;
2485
2486                 pte = huge_ptep_get(ptep);
2487                 if (huge_pte_none(pte))
2488                         goto unlock;
2489
2490                 /*
2491                  * HWPoisoned hugepage is already unmapped and dropped reference
2492                  */
2493                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2494                         huge_pte_clear(mm, address, ptep);
2495                         goto unlock;
2496                 }
2497
2498                 page = pte_page(pte);
2499                 /*
2500                  * If a reference page is supplied, it is because a specific
2501                  * page is being unmapped, not a range. Ensure the page we
2502                  * are about to unmap is the actual page of interest.
2503                  */
2504                 if (ref_page) {
2505                         if (page != ref_page)
2506                                 goto unlock;
2507
2508                         /*
2509                          * Mark the VMA as having unmapped its page so that
2510                          * future faults in this VMA will fail rather than
2511                          * looking like data was lost
2512                          */
2513                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2514                 }
2515
2516                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2517                 tlb_remove_tlb_entry(tlb, ptep, address);
2518                 if (huge_pte_dirty(pte))
2519                         set_page_dirty(page);
2520
2521                 page_remove_rmap(page);
2522                 force_flush = !__tlb_remove_page(tlb, page);
2523                 if (force_flush) {
2524                         spin_unlock(ptl);
2525                         break;
2526                 }
2527                 /* Bail out after unmapping reference page if supplied */
2528                 if (ref_page) {
2529                         spin_unlock(ptl);
2530                         break;
2531                 }
2532 unlock:
2533                 spin_unlock(ptl);
2534         }
2535         /*
2536          * mmu_gather ran out of room to batch pages, we break out of
2537          * the PTE lock to avoid doing the potential expensive TLB invalidate
2538          * and page-free while holding it.
2539          */
2540         if (force_flush) {
2541                 force_flush = 0;
2542                 tlb_flush_mmu(tlb);
2543                 if (address < end && !ref_page)
2544                         goto again;
2545         }
2546         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2547         tlb_end_vma(tlb, vma);
2548 }
2549
2550 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2551                           struct vm_area_struct *vma, unsigned long start,
2552                           unsigned long end, struct page *ref_page)
2553 {
2554         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2555
2556         /*
2557          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2558          * test will fail on a vma being torn down, and not grab a page table
2559          * on its way out.  We're lucky that the flag has such an appropriate
2560          * name, and can in fact be safely cleared here. We could clear it
2561          * before the __unmap_hugepage_range above, but all that's necessary
2562          * is to clear it before releasing the i_mmap_mutex. This works
2563          * because in the context this is called, the VMA is about to be
2564          * destroyed and the i_mmap_mutex is held.
2565          */
2566         vma->vm_flags &= ~VM_MAYSHARE;
2567 }
2568
2569 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2570                           unsigned long end, struct page *ref_page)
2571 {
2572         struct mm_struct *mm;
2573         struct mmu_gather tlb;
2574
2575         mm = vma->vm_mm;
2576
2577         tlb_gather_mmu(&tlb, mm, start, end);
2578         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2579         tlb_finish_mmu(&tlb, start, end);
2580 }
2581
2582 /*
2583  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2584  * mappping it owns the reserve page for. The intention is to unmap the page
2585  * from other VMAs and let the children be SIGKILLed if they are faulting the
2586  * same region.
2587  */
2588 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2589                                 struct page *page, unsigned long address)
2590 {
2591         struct hstate *h = hstate_vma(vma);
2592         struct vm_area_struct *iter_vma;
2593         struct address_space *mapping;
2594         pgoff_t pgoff;
2595
2596         /*
2597          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2598          * from page cache lookup which is in HPAGE_SIZE units.
2599          */
2600         address = address & huge_page_mask(h);
2601         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2602                         vma->vm_pgoff;
2603         mapping = file_inode(vma->vm_file)->i_mapping;
2604
2605         /*
2606          * Take the mapping lock for the duration of the table walk. As
2607          * this mapping should be shared between all the VMAs,
2608          * __unmap_hugepage_range() is called as the lock is already held
2609          */
2610         mutex_lock(&mapping->i_mmap_mutex);
2611         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2612                 /* Do not unmap the current VMA */
2613                 if (iter_vma == vma)
2614                         continue;
2615
2616                 /*
2617                  * Unmap the page from other VMAs without their own reserves.
2618                  * They get marked to be SIGKILLed if they fault in these
2619                  * areas. This is because a future no-page fault on this VMA
2620                  * could insert a zeroed page instead of the data existing
2621                  * from the time of fork. This would look like data corruption
2622                  */
2623                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2624                         unmap_hugepage_range(iter_vma, address,
2625                                              address + huge_page_size(h), page);
2626         }
2627         mutex_unlock(&mapping->i_mmap_mutex);
2628
2629         return 1;
2630 }
2631
2632 /*
2633  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2634  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2635  * cannot race with other handlers or page migration.
2636  * Keep the pte_same checks anyway to make transition from the mutex easier.
2637  */
2638 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2639                         unsigned long address, pte_t *ptep, pte_t pte,
2640                         struct page *pagecache_page, spinlock_t *ptl)
2641 {
2642         struct hstate *h = hstate_vma(vma);
2643         struct page *old_page, *new_page;
2644         int outside_reserve = 0;
2645         unsigned long mmun_start;       /* For mmu_notifiers */
2646         unsigned long mmun_end;         /* For mmu_notifiers */
2647
2648         old_page = pte_page(pte);
2649
2650 retry_avoidcopy:
2651         /* If no-one else is actually using this page, avoid the copy
2652          * and just make the page writable */
2653         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2654                 page_move_anon_rmap(old_page, vma, address);
2655                 set_huge_ptep_writable(vma, address, ptep);
2656                 return 0;
2657         }
2658
2659         /*
2660          * If the process that created a MAP_PRIVATE mapping is about to
2661          * perform a COW due to a shared page count, attempt to satisfy
2662          * the allocation without using the existing reserves. The pagecache
2663          * page is used to determine if the reserve at this address was
2664          * consumed or not. If reserves were used, a partial faulted mapping
2665          * at the time of fork() could consume its reserves on COW instead
2666          * of the full address range.
2667          */
2668         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2669                         old_page != pagecache_page)
2670                 outside_reserve = 1;
2671
2672         page_cache_get(old_page);
2673
2674         /* Drop page table lock as buddy allocator may be called */
2675         spin_unlock(ptl);
2676         new_page = alloc_huge_page(vma, address, outside_reserve);
2677
2678         if (IS_ERR(new_page)) {
2679                 long err = PTR_ERR(new_page);
2680                 page_cache_release(old_page);
2681
2682                 /*
2683                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2684                  * it is due to references held by a child and an insufficient
2685                  * huge page pool. To guarantee the original mappers
2686                  * reliability, unmap the page from child processes. The child
2687                  * may get SIGKILLed if it later faults.
2688                  */
2689                 if (outside_reserve) {
2690                         BUG_ON(huge_pte_none(pte));
2691                         if (unmap_ref_private(mm, vma, old_page, address)) {
2692                                 BUG_ON(huge_pte_none(pte));
2693                                 spin_lock(ptl);
2694                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2695                                 if (likely(ptep &&
2696                                            pte_same(huge_ptep_get(ptep), pte)))
2697                                         goto retry_avoidcopy;
2698                                 /*
2699                                  * race occurs while re-acquiring page table
2700                                  * lock, and our job is done.
2701                                  */
2702                                 return 0;
2703                         }
2704                         WARN_ON_ONCE(1);
2705                 }
2706
2707                 /* Caller expects lock to be held */
2708                 spin_lock(ptl);
2709                 if (err == -ENOMEM)
2710                         return VM_FAULT_OOM;
2711                 else
2712                         return VM_FAULT_SIGBUS;
2713         }
2714
2715         /*
2716          * When the original hugepage is shared one, it does not have
2717          * anon_vma prepared.
2718          */
2719         if (unlikely(anon_vma_prepare(vma))) {
2720                 page_cache_release(new_page);
2721                 page_cache_release(old_page);
2722                 /* Caller expects lock to be held */
2723                 spin_lock(ptl);
2724                 return VM_FAULT_OOM;
2725         }
2726
2727         copy_user_huge_page(new_page, old_page, address, vma,
2728                             pages_per_huge_page(h));
2729         __SetPageUptodate(new_page);
2730
2731         mmun_start = address & huge_page_mask(h);
2732         mmun_end = mmun_start + huge_page_size(h);
2733         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2734         /*
2735          * Retake the page table lock to check for racing updates
2736          * before the page tables are altered
2737          */
2738         spin_lock(ptl);
2739         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2740         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2741                 ClearPagePrivate(new_page);
2742
2743                 /* Break COW */
2744                 huge_ptep_clear_flush(vma, address, ptep);
2745                 set_huge_pte_at(mm, address, ptep,
2746                                 make_huge_pte(vma, new_page, 1));
2747                 page_remove_rmap(old_page);
2748                 hugepage_add_new_anon_rmap(new_page, vma, address);
2749                 /* Make the old page be freed below */
2750                 new_page = old_page;
2751         }
2752         spin_unlock(ptl);
2753         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2754         page_cache_release(new_page);
2755         page_cache_release(old_page);
2756
2757         /* Caller expects lock to be held */
2758         spin_lock(ptl);
2759         return 0;
2760 }
2761
2762 /* Return the pagecache page at a given address within a VMA */
2763 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2764                         struct vm_area_struct *vma, unsigned long address)
2765 {
2766         struct address_space *mapping;
2767         pgoff_t idx;
2768
2769         mapping = vma->vm_file->f_mapping;
2770         idx = vma_hugecache_offset(h, vma, address);
2771
2772         return find_lock_page(mapping, idx);
2773 }
2774
2775 /*
2776  * Return whether there is a pagecache page to back given address within VMA.
2777  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2778  */
2779 static bool hugetlbfs_pagecache_present(struct hstate *h,
2780                         struct vm_area_struct *vma, unsigned long address)
2781 {
2782         struct address_space *mapping;
2783         pgoff_t idx;
2784         struct page *page;
2785
2786         mapping = vma->vm_file->f_mapping;
2787         idx = vma_hugecache_offset(h, vma, address);
2788
2789         page = find_get_page(mapping, idx);
2790         if (page)
2791                 put_page(page);
2792         return page != NULL;
2793 }
2794
2795 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2796                            struct address_space *mapping, pgoff_t idx,
2797                            unsigned long address, pte_t *ptep, unsigned int flags)
2798 {
2799         struct hstate *h = hstate_vma(vma);
2800         int ret = VM_FAULT_SIGBUS;
2801         int anon_rmap = 0;
2802         unsigned long size;
2803         struct page *page;
2804         pte_t new_pte;
2805         spinlock_t *ptl;
2806
2807         /*
2808          * Currently, we are forced to kill the process in the event the
2809          * original mapper has unmapped pages from the child due to a failed
2810          * COW. Warn that such a situation has occurred as it may not be obvious
2811          */
2812         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2813                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2814                            current->pid);
2815                 return ret;
2816         }
2817
2818         /*
2819          * Use page lock to guard against racing truncation
2820          * before we get page_table_lock.
2821          */
2822 retry:
2823         page = find_lock_page(mapping, idx);
2824         if (!page) {
2825                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2826                 if (idx >= size)
2827                         goto out;
2828                 page = alloc_huge_page(vma, address, 0);
2829                 if (IS_ERR(page)) {
2830                         ret = PTR_ERR(page);
2831                         if (ret == -ENOMEM)
2832                                 ret = VM_FAULT_OOM;
2833                         else
2834                                 ret = VM_FAULT_SIGBUS;
2835                         goto out;
2836                 }
2837                 clear_huge_page(page, address, pages_per_huge_page(h));
2838                 __SetPageUptodate(page);
2839
2840                 if (vma->vm_flags & VM_MAYSHARE) {
2841                         int err;
2842                         struct inode *inode = mapping->host;
2843
2844                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2845                         if (err) {
2846                                 put_page(page);
2847                                 if (err == -EEXIST)
2848                                         goto retry;
2849                                 goto out;
2850                         }
2851                         ClearPagePrivate(page);
2852
2853                         spin_lock(&inode->i_lock);
2854                         inode->i_blocks += blocks_per_huge_page(h);
2855                         spin_unlock(&inode->i_lock);
2856                 } else {
2857                         lock_page(page);
2858                         if (unlikely(anon_vma_prepare(vma))) {
2859                                 ret = VM_FAULT_OOM;
2860                                 goto backout_unlocked;
2861                         }
2862                         anon_rmap = 1;
2863                 }
2864         } else {
2865                 /*
2866                  * If memory error occurs between mmap() and fault, some process
2867                  * don't have hwpoisoned swap entry for errored virtual address.
2868                  * So we need to block hugepage fault by PG_hwpoison bit check.
2869                  */
2870                 if (unlikely(PageHWPoison(page))) {
2871                         ret = VM_FAULT_HWPOISON |
2872                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2873                         goto backout_unlocked;
2874                 }
2875         }
2876
2877         /*
2878          * If we are going to COW a private mapping later, we examine the
2879          * pending reservations for this page now. This will ensure that
2880          * any allocations necessary to record that reservation occur outside
2881          * the spinlock.
2882          */
2883         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2884                 if (vma_needs_reservation(h, vma, address) < 0) {
2885                         ret = VM_FAULT_OOM;
2886                         goto backout_unlocked;
2887                 }
2888
2889         ptl = huge_pte_lockptr(h, mm, ptep);
2890         spin_lock(ptl);
2891         size = i_size_read(mapping->host) >> huge_page_shift(h);
2892         if (idx >= size)
2893                 goto backout;
2894
2895         ret = 0;
2896         if (!huge_pte_none(huge_ptep_get(ptep)))
2897                 goto backout;
2898
2899         if (anon_rmap) {
2900                 ClearPagePrivate(page);
2901                 hugepage_add_new_anon_rmap(page, vma, address);
2902         } else
2903                 page_dup_rmap(page);
2904         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2905                                 && (vma->vm_flags & VM_SHARED)));
2906         set_huge_pte_at(mm, address, ptep, new_pte);
2907
2908         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2909                 /* Optimization, do the COW without a second fault */
2910                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2911         }
2912
2913         spin_unlock(ptl);
2914         unlock_page(page);
2915 out:
2916         return ret;
2917
2918 backout:
2919         spin_unlock(ptl);
2920 backout_unlocked:
2921         unlock_page(page);
2922         put_page(page);
2923         goto out;
2924 }
2925
2926 #ifdef CONFIG_SMP
2927 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2928                             struct vm_area_struct *vma,
2929                             struct address_space *mapping,
2930                             pgoff_t idx, unsigned long address)
2931 {
2932         unsigned long key[2];
2933         u32 hash;
2934
2935         if (vma->vm_flags & VM_SHARED) {
2936                 key[0] = (unsigned long) mapping;
2937                 key[1] = idx;
2938         } else {
2939                 key[0] = (unsigned long) mm;
2940                 key[1] = address >> huge_page_shift(h);
2941         }
2942
2943         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2944
2945         return hash & (num_fault_mutexes - 1);
2946 }
2947 #else
2948 /*
2949  * For uniprocesor systems we always use a single mutex, so just
2950  * return 0 and avoid the hashing overhead.
2951  */
2952 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2953                             struct vm_area_struct *vma,
2954                             struct address_space *mapping,
2955                             pgoff_t idx, unsigned long address)
2956 {
2957         return 0;
2958 }
2959 #endif
2960
2961 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962                         unsigned long address, unsigned int flags)
2963 {
2964         pte_t *ptep, entry;
2965         spinlock_t *ptl;
2966         int ret;
2967         u32 hash;
2968         pgoff_t idx;
2969         struct page *page = NULL;
2970         struct page *pagecache_page = NULL;
2971         struct hstate *h = hstate_vma(vma);
2972         struct address_space *mapping;
2973
2974         address &= huge_page_mask(h);
2975
2976         ptep = huge_pte_offset(mm, address);
2977         if (ptep) {
2978                 entry = huge_ptep_get(ptep);
2979                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2980                         migration_entry_wait_huge(vma, mm, ptep);
2981                         return 0;
2982                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2983                         return VM_FAULT_HWPOISON_LARGE |
2984                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2985         }
2986
2987         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2988         if (!ptep)
2989                 return VM_FAULT_OOM;
2990
2991         mapping = vma->vm_file->f_mapping;
2992         idx = vma_hugecache_offset(h, vma, address);
2993
2994         /*
2995          * Serialize hugepage allocation and instantiation, so that we don't
2996          * get spurious allocation failures if two CPUs race to instantiate
2997          * the same page in the page cache.
2998          */
2999         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3000         mutex_lock(&htlb_fault_mutex_table[hash]);
3001
3002         entry = huge_ptep_get(ptep);
3003         if (huge_pte_none(entry)) {
3004                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3005                 goto out_mutex;
3006         }
3007
3008         ret = 0;
3009
3010         /*
3011          * If we are going to COW the mapping later, we examine the pending
3012          * reservations for this page now. This will ensure that any
3013          * allocations necessary to record that reservation occur outside the
3014          * spinlock. For private mappings, we also lookup the pagecache
3015          * page now as it is used to determine if a reservation has been
3016          * consumed.
3017          */
3018         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3019                 if (vma_needs_reservation(h, vma, address) < 0) {
3020                         ret = VM_FAULT_OOM;
3021                         goto out_mutex;
3022                 }
3023
3024                 if (!(vma->vm_flags & VM_MAYSHARE))
3025                         pagecache_page = hugetlbfs_pagecache_page(h,
3026                                                                 vma, address);
3027         }
3028
3029         /*
3030          * hugetlb_cow() requires page locks of pte_page(entry) and
3031          * pagecache_page, so here we need take the former one
3032          * when page != pagecache_page or !pagecache_page.
3033          * Note that locking order is always pagecache_page -> page,
3034          * so no worry about deadlock.
3035          */
3036         page = pte_page(entry);
3037         get_page(page);
3038         if (page != pagecache_page)
3039                 lock_page(page);
3040
3041         ptl = huge_pte_lockptr(h, mm, ptep);
3042         spin_lock(ptl);
3043         /* Check for a racing update before calling hugetlb_cow */
3044         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3045                 goto out_ptl;
3046
3047
3048         if (flags & FAULT_FLAG_WRITE) {
3049                 if (!huge_pte_write(entry)) {
3050                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3051                                         pagecache_page, ptl);
3052                         goto out_ptl;
3053                 }
3054                 entry = huge_pte_mkdirty(entry);
3055         }
3056         entry = pte_mkyoung(entry);
3057         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3058                                                 flags & FAULT_FLAG_WRITE))
3059                 update_mmu_cache(vma, address, ptep);
3060
3061 out_ptl:
3062         spin_unlock(ptl);
3063
3064         if (pagecache_page) {
3065                 unlock_page(pagecache_page);
3066                 put_page(pagecache_page);
3067         }
3068         if (page != pagecache_page)
3069                 unlock_page(page);
3070         put_page(page);
3071
3072 out_mutex:
3073         mutex_unlock(&htlb_fault_mutex_table[hash]);
3074         return ret;
3075 }
3076
3077 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3078                          struct page **pages, struct vm_area_struct **vmas,
3079                          unsigned long *position, unsigned long *nr_pages,
3080                          long i, unsigned int flags)
3081 {
3082         unsigned long pfn_offset;
3083         unsigned long vaddr = *position;
3084         unsigned long remainder = *nr_pages;
3085         struct hstate *h = hstate_vma(vma);
3086
3087         while (vaddr < vma->vm_end && remainder) {
3088                 pte_t *pte;
3089                 spinlock_t *ptl = NULL;
3090                 int absent;
3091                 struct page *page;
3092
3093                 /*
3094                  * Some archs (sparc64, sh*) have multiple pte_ts to
3095                  * each hugepage.  We have to make sure we get the
3096                  * first, for the page indexing below to work.
3097                  *
3098                  * Note that page table lock is not held when pte is null.
3099                  */
3100                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3101                 if (pte)
3102                         ptl = huge_pte_lock(h, mm, pte);
3103                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3104
3105                 /*
3106                  * When coredumping, it suits get_dump_page if we just return
3107                  * an error where there's an empty slot with no huge pagecache
3108                  * to back it.  This way, we avoid allocating a hugepage, and
3109                  * the sparse dumpfile avoids allocating disk blocks, but its
3110                  * huge holes still show up with zeroes where they need to be.
3111                  */
3112                 if (absent && (flags & FOLL_DUMP) &&
3113                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3114                         if (pte)
3115                                 spin_unlock(ptl);
3116                         remainder = 0;
3117                         break;
3118                 }
3119
3120                 /*
3121                  * We need call hugetlb_fault for both hugepages under migration
3122                  * (in which case hugetlb_fault waits for the migration,) and
3123                  * hwpoisoned hugepages (in which case we need to prevent the
3124                  * caller from accessing to them.) In order to do this, we use
3125                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3126                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3127                  * both cases, and because we can't follow correct pages
3128                  * directly from any kind of swap entries.
3129                  */
3130                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3131                     ((flags & FOLL_WRITE) &&
3132                       !huge_pte_write(huge_ptep_get(pte)))) {
3133                         int ret;
3134
3135                         if (pte)
3136                                 spin_unlock(ptl);
3137                         ret = hugetlb_fault(mm, vma, vaddr,
3138                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3139                         if (!(ret & VM_FAULT_ERROR))
3140                                 continue;
3141
3142                         remainder = 0;
3143                         break;
3144                 }
3145
3146                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3147                 page = pte_page(huge_ptep_get(pte));
3148 same_page:
3149                 if (pages) {
3150                         pages[i] = mem_map_offset(page, pfn_offset);
3151                         get_page_foll(pages[i]);
3152                 }
3153
3154                 if (vmas)
3155                         vmas[i] = vma;
3156
3157                 vaddr += PAGE_SIZE;
3158                 ++pfn_offset;
3159                 --remainder;
3160                 ++i;
3161                 if (vaddr < vma->vm_end && remainder &&
3162                                 pfn_offset < pages_per_huge_page(h)) {
3163                         /*
3164                          * We use pfn_offset to avoid touching the pageframes
3165                          * of this compound page.
3166                          */
3167                         goto same_page;
3168                 }
3169                 spin_unlock(ptl);
3170         }
3171         *nr_pages = remainder;
3172         *position = vaddr;
3173
3174         return i ? i : -EFAULT;
3175 }
3176
3177 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3178                 unsigned long address, unsigned long end, pgprot_t newprot)
3179 {
3180         struct mm_struct *mm = vma->vm_mm;
3181         unsigned long start = address;
3182         pte_t *ptep;
3183         pte_t pte;
3184         struct hstate *h = hstate_vma(vma);
3185         unsigned long pages = 0;
3186
3187         BUG_ON(address >= end);
3188         flush_cache_range(vma, address, end);
3189
3190         mmu_notifier_invalidate_range_start(mm, start, end);
3191         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3192         for (; address < end; address += huge_page_size(h)) {
3193                 spinlock_t *ptl;
3194                 ptep = huge_pte_offset(mm, address);
3195                 if (!ptep)
3196                         continue;
3197                 ptl = huge_pte_lock(h, mm, ptep);
3198                 if (huge_pmd_unshare(mm, &address, ptep)) {
3199                         pages++;
3200                         spin_unlock(ptl);
3201                         continue;
3202                 }
3203                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3204                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3205                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3206                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3207                         set_huge_pte_at(mm, address, ptep, pte);
3208                         pages++;
3209                 }
3210                 spin_unlock(ptl);
3211         }
3212         /*
3213          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3214          * may have cleared our pud entry and done put_page on the page table:
3215          * once we release i_mmap_mutex, another task can do the final put_page
3216          * and that page table be reused and filled with junk.
3217          */
3218         flush_tlb_range(vma, start, end);
3219         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3220         mmu_notifier_invalidate_range_end(mm, start, end);
3221
3222         return pages << h->order;
3223 }
3224
3225 int hugetlb_reserve_pages(struct inode *inode,
3226                                         long from, long to,
3227                                         struct vm_area_struct *vma,
3228                                         vm_flags_t vm_flags)
3229 {
3230         long ret, chg;
3231         struct hstate *h = hstate_inode(inode);
3232         struct hugepage_subpool *spool = subpool_inode(inode);
3233         struct resv_map *resv_map;
3234
3235         /*
3236          * Only apply hugepage reservation if asked. At fault time, an
3237          * attempt will be made for VM_NORESERVE to allocate a page
3238          * without using reserves
3239          */
3240         if (vm_flags & VM_NORESERVE)
3241                 return 0;
3242
3243         /*
3244          * Shared mappings base their reservation on the number of pages that
3245          * are already allocated on behalf of the file. Private mappings need
3246          * to reserve the full area even if read-only as mprotect() may be
3247          * called to make the mapping read-write. Assume !vma is a shm mapping
3248          */
3249         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3250                 resv_map = inode_resv_map(inode);
3251
3252                 chg = region_chg(resv_map, from, to);
3253
3254         } else {
3255                 resv_map = resv_map_alloc();
3256                 if (!resv_map)
3257                         return -ENOMEM;
3258
3259                 chg = to - from;
3260
3261                 set_vma_resv_map(vma, resv_map);
3262                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3263         }
3264
3265         if (chg < 0) {
3266                 ret = chg;
3267                 goto out_err;
3268         }
3269
3270         /* There must be enough pages in the subpool for the mapping */
3271         if (hugepage_subpool_get_pages(spool, chg)) {
3272                 ret = -ENOSPC;
3273                 goto out_err;
3274         }
3275
3276         /*
3277          * Check enough hugepages are available for the reservation.
3278          * Hand the pages back to the subpool if there are not
3279          */
3280         ret = hugetlb_acct_memory(h, chg);
3281         if (ret < 0) {
3282                 hugepage_subpool_put_pages(spool, chg);
3283                 goto out_err;
3284         }
3285
3286         /*
3287          * Account for the reservations made. Shared mappings record regions
3288          * that have reservations as they are shared by multiple VMAs.
3289          * When the last VMA disappears, the region map says how much
3290          * the reservation was and the page cache tells how much of
3291          * the reservation was consumed. Private mappings are per-VMA and
3292          * only the consumed reservations are tracked. When the VMA
3293          * disappears, the original reservation is the VMA size and the
3294          * consumed reservations are stored in the map. Hence, nothing
3295          * else has to be done for private mappings here
3296          */
3297         if (!vma || vma->vm_flags & VM_MAYSHARE)
3298                 region_add(resv_map, from, to);
3299         return 0;
3300 out_err:
3301         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3302                 kref_put(&resv_map->refs, resv_map_release);
3303         return ret;
3304 }
3305
3306 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3307 {
3308         struct hstate *h = hstate_inode(inode);
3309         struct resv_map *resv_map = inode_resv_map(inode);
3310         long chg = 0;
3311         struct hugepage_subpool *spool = subpool_inode(inode);
3312
3313         if (resv_map)
3314                 chg = region_truncate(resv_map, offset);
3315         spin_lock(&inode->i_lock);
3316         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3317         spin_unlock(&inode->i_lock);
3318
3319         hugepage_subpool_put_pages(spool, (chg - freed));
3320         hugetlb_acct_memory(h, -(chg - freed));
3321 }
3322
3323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3324 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3325                                 struct vm_area_struct *vma,
3326                                 unsigned long addr, pgoff_t idx)
3327 {
3328         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3329                                 svma->vm_start;
3330         unsigned long sbase = saddr & PUD_MASK;
3331         unsigned long s_end = sbase + PUD_SIZE;
3332
3333         /* Allow segments to share if only one is marked locked */
3334         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3335         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3336
3337         /*
3338          * match the virtual addresses, permission and the alignment of the
3339          * page table page.
3340          */
3341         if (pmd_index(addr) != pmd_index(saddr) ||
3342             vm_flags != svm_flags ||
3343             sbase < svma->vm_start || svma->vm_end < s_end)
3344                 return 0;
3345
3346         return saddr;
3347 }
3348
3349 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3350 {
3351         unsigned long base = addr & PUD_MASK;
3352         unsigned long end = base + PUD_SIZE;
3353
3354         /*
3355          * check on proper vm_flags and page table alignment
3356          */
3357         if (vma->vm_flags & VM_MAYSHARE &&
3358             vma->vm_start <= base && end <= vma->vm_end)
3359                 return 1;
3360         return 0;
3361 }
3362
3363 /*
3364  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3365  * and returns the corresponding pte. While this is not necessary for the
3366  * !shared pmd case because we can allocate the pmd later as well, it makes the
3367  * code much cleaner. pmd allocation is essential for the shared case because
3368  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3369  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3370  * bad pmd for sharing.
3371  */
3372 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3373 {
3374         struct vm_area_struct *vma = find_vma(mm, addr);
3375         struct address_space *mapping = vma->vm_file->f_mapping;
3376         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3377                         vma->vm_pgoff;
3378         struct vm_area_struct *svma;
3379         unsigned long saddr;
3380         pte_t *spte = NULL;
3381         pte_t *pte;
3382         spinlock_t *ptl;
3383
3384         if (!vma_shareable(vma, addr))
3385                 return (pte_t *)pmd_alloc(mm, pud, addr);
3386
3387         mutex_lock(&mapping->i_mmap_mutex);
3388         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3389                 if (svma == vma)
3390                         continue;
3391
3392                 saddr = page_table_shareable(svma, vma, addr, idx);
3393                 if (saddr) {
3394                         spte = huge_pte_offset(svma->vm_mm, saddr);
3395                         if (spte) {
3396                                 get_page(virt_to_page(spte));
3397                                 break;
3398                         }
3399                 }
3400         }
3401
3402         if (!spte)
3403                 goto out;
3404
3405         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3406         spin_lock(ptl);
3407         if (pud_none(*pud))
3408                 pud_populate(mm, pud,
3409                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3410         else
3411                 put_page(virt_to_page(spte));
3412         spin_unlock(ptl);
3413 out:
3414         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3415         mutex_unlock(&mapping->i_mmap_mutex);
3416         return pte;
3417 }
3418
3419 /*
3420  * unmap huge page backed by shared pte.
3421  *
3422  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3423  * indicated by page_count > 1, unmap is achieved by clearing pud and
3424  * decrementing the ref count. If count == 1, the pte page is not shared.
3425  *
3426  * called with page table lock held.
3427  *
3428  * returns: 1 successfully unmapped a shared pte page
3429  *          0 the underlying pte page is not shared, or it is the last user
3430  */
3431 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3432 {
3433         pgd_t *pgd = pgd_offset(mm, *addr);
3434         pud_t *pud = pud_offset(pgd, *addr);
3435
3436         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3437         if (page_count(virt_to_page(ptep)) == 1)
3438                 return 0;
3439
3440         pud_clear(pud);
3441         put_page(virt_to_page(ptep));
3442         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3443         return 1;
3444 }
3445 #define want_pmd_share()        (1)
3446 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3447 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3448 {
3449         return NULL;
3450 }
3451 #define want_pmd_share()        (0)
3452 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3453
3454 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3455 pte_t *huge_pte_alloc(struct mm_struct *mm,
3456                         unsigned long addr, unsigned long sz)
3457 {
3458         pgd_t *pgd;
3459         pud_t *pud;
3460         pte_t *pte = NULL;
3461
3462         pgd = pgd_offset(mm, addr);
3463         pud = pud_alloc(mm, pgd, addr);
3464         if (pud) {
3465                 if (sz == PUD_SIZE) {
3466                         pte = (pte_t *)pud;
3467                 } else {
3468                         BUG_ON(sz != PMD_SIZE);
3469                         if (want_pmd_share() && pud_none(*pud))
3470                                 pte = huge_pmd_share(mm, addr, pud);
3471                         else
3472                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3473                 }
3474         }
3475         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3476
3477         return pte;
3478 }
3479
3480 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3481 {
3482         pgd_t *pgd;
3483         pud_t *pud;
3484         pmd_t *pmd = NULL;
3485
3486         pgd = pgd_offset(mm, addr);
3487         if (pgd_present(*pgd)) {
3488                 pud = pud_offset(pgd, addr);
3489                 if (pud_present(*pud)) {
3490                         if (pud_huge(*pud))
3491                                 return (pte_t *)pud;
3492                         pmd = pmd_offset(pud, addr);
3493                 }
3494         }
3495         return (pte_t *) pmd;
3496 }
3497
3498 struct page *
3499 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3500                 pmd_t *pmd, int write)
3501 {
3502         struct page *page;
3503
3504         page = pte_page(*(pte_t *)pmd);
3505         if (page)
3506                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3507         return page;
3508 }
3509
3510 struct page *
3511 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3512                 pud_t *pud, int write)
3513 {
3514         struct page *page;
3515
3516         page = pte_page(*(pte_t *)pud);
3517         if (page)
3518                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3519         return page;
3520 }
3521
3522 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3523
3524 /* Can be overriden by architectures */
3525 struct page * __weak
3526 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3527                pud_t *pud, int write)
3528 {
3529         BUG();
3530         return NULL;
3531 }
3532
3533 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3534
3535 #ifdef CONFIG_MEMORY_FAILURE
3536
3537 /* Should be called in hugetlb_lock */
3538 static int is_hugepage_on_freelist(struct page *hpage)
3539 {
3540         struct page *page;
3541         struct page *tmp;
3542         struct hstate *h = page_hstate(hpage);
3543         int nid = page_to_nid(hpage);
3544
3545         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3546                 if (page == hpage)
3547                         return 1;
3548         return 0;
3549 }
3550
3551 /*
3552  * This function is called from memory failure code.
3553  * Assume the caller holds page lock of the head page.
3554  */
3555 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3556 {
3557         struct hstate *h = page_hstate(hpage);
3558         int nid = page_to_nid(hpage);
3559         int ret = -EBUSY;
3560
3561         spin_lock(&hugetlb_lock);
3562         if (is_hugepage_on_freelist(hpage)) {
3563                 /*
3564                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3565                  * but dangling hpage->lru can trigger list-debug warnings
3566                  * (this happens when we call unpoison_memory() on it),
3567                  * so let it point to itself with list_del_init().
3568                  */
3569                 list_del_init(&hpage->lru);
3570                 set_page_refcounted(hpage);
3571                 h->free_huge_pages--;
3572                 h->free_huge_pages_node[nid]--;
3573                 ret = 0;
3574         }
3575         spin_unlock(&hugetlb_lock);
3576         return ret;
3577 }
3578 #endif
3579
3580 bool isolate_huge_page(struct page *page, struct list_head *list)
3581 {
3582         VM_BUG_ON_PAGE(!PageHead(page), page);
3583         if (!get_page_unless_zero(page))
3584                 return false;
3585         spin_lock(&hugetlb_lock);
3586         list_move_tail(&page->lru, list);
3587         spin_unlock(&hugetlb_lock);
3588         return true;
3589 }
3590
3591 void putback_active_hugepage(struct page *page)
3592 {
3593         VM_BUG_ON_PAGE(!PageHead(page), page);
3594         spin_lock(&hugetlb_lock);
3595         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3596         spin_unlock(&hugetlb_lock);
3597         put_page(page);
3598 }
3599
3600 bool is_hugepage_active(struct page *page)
3601 {
3602         VM_BUG_ON_PAGE(!PageHuge(page), page);
3603         /*
3604          * This function can be called for a tail page because the caller,
3605          * scan_movable_pages, scans through a given pfn-range which typically
3606          * covers one memory block. In systems using gigantic hugepage (1GB
3607          * for x86_64,) a hugepage is larger than a memory block, and we don't
3608          * support migrating such large hugepages for now, so return false
3609          * when called for tail pages.
3610          */
3611         if (PageTail(page))
3612                 return false;
3613         /*
3614          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3615          * so we should return false for them.
3616          */
3617         if (unlikely(PageHWPoison(page)))
3618                 return false;
3619         return page_count(page) > 0;
3620 }