Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 arch_clear_hugepage_flags(page);
637                 enqueue_huge_page(h, page);
638         }
639         spin_unlock(&hugetlb_lock);
640         hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645         set_compound_page_dtor(page, free_huge_page);
646         spin_lock(&hugetlb_lock);
647         h->nr_huge_pages++;
648         h->nr_huge_pages_node[nid]++;
649         spin_unlock(&hugetlb_lock);
650         put_page(page); /* free it into the hugepage allocator */
651 }
652
653 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 {
655         int i;
656         int nr_pages = 1 << order;
657         struct page *p = page + 1;
658
659         /* we rely on prep_new_huge_page to set the destructor */
660         set_compound_order(page, order);
661         __SetPageHead(page);
662         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
663                 __SetPageTail(p);
664                 set_page_count(p, 0);
665                 p->first_page = page;
666         }
667 }
668
669 int PageHuge(struct page *page)
670 {
671         compound_page_dtor *dtor;
672
673         if (!PageCompound(page))
674                 return 0;
675
676         page = compound_head(page);
677         dtor = get_compound_page_dtor(page);
678
679         return dtor == free_huge_page;
680 }
681 EXPORT_SYMBOL_GPL(PageHuge);
682
683 /*
684  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
685  * normal or transparent huge pages.
686  */
687 int PageHeadHuge(struct page *page_head)
688 {
689         compound_page_dtor *dtor;
690
691         if (!PageHead(page_head))
692                 return 0;
693
694         dtor = get_compound_page_dtor(page_head);
695
696         return dtor == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHeadHuge);
699
700 pgoff_t __basepage_index(struct page *page)
701 {
702         struct page *page_head = compound_head(page);
703         pgoff_t index = page_index(page_head);
704         unsigned long compound_idx;
705
706         if (!PageHuge(page_head))
707                 return page_index(page);
708
709         if (compound_order(page_head) >= MAX_ORDER)
710                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
711         else
712                 compound_idx = page - page_head;
713
714         return (index << compound_order(page_head)) + compound_idx;
715 }
716
717 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
718 {
719         struct page *page;
720
721         if (h->order >= MAX_ORDER)
722                 return NULL;
723
724         page = alloc_pages_exact_node(nid,
725                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
726                                                 __GFP_REPEAT|__GFP_NOWARN,
727                 huge_page_order(h));
728         if (page) {
729                 if (arch_prepare_hugepage(page)) {
730                         __free_pages(page, huge_page_order(h));
731                         return NULL;
732                 }
733                 prep_new_huge_page(h, page, nid);
734         }
735
736         return page;
737 }
738
739 /*
740  * common helper functions for hstate_next_node_to_{alloc|free}.
741  * We may have allocated or freed a huge page based on a different
742  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
743  * be outside of *nodes_allowed.  Ensure that we use an allowed
744  * node for alloc or free.
745  */
746 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
747 {
748         nid = next_node(nid, *nodes_allowed);
749         if (nid == MAX_NUMNODES)
750                 nid = first_node(*nodes_allowed);
751         VM_BUG_ON(nid >= MAX_NUMNODES);
752
753         return nid;
754 }
755
756 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
757 {
758         if (!node_isset(nid, *nodes_allowed))
759                 nid = next_node_allowed(nid, nodes_allowed);
760         return nid;
761 }
762
763 /*
764  * returns the previously saved node ["this node"] from which to
765  * allocate a persistent huge page for the pool and advance the
766  * next node from which to allocate, handling wrap at end of node
767  * mask.
768  */
769 static int hstate_next_node_to_alloc(struct hstate *h,
770                                         nodemask_t *nodes_allowed)
771 {
772         int nid;
773
774         VM_BUG_ON(!nodes_allowed);
775
776         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
777         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
778
779         return nid;
780 }
781
782 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
783 {
784         struct page *page;
785         int start_nid;
786         int next_nid;
787         int ret = 0;
788
789         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
790         next_nid = start_nid;
791
792         do {
793                 page = alloc_fresh_huge_page_node(h, next_nid);
794                 if (page) {
795                         ret = 1;
796                         break;
797                 }
798                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
799         } while (next_nid != start_nid);
800
801         if (ret)
802                 count_vm_event(HTLB_BUDDY_PGALLOC);
803         else
804                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
805
806         return ret;
807 }
808
809 /*
810  * helper for free_pool_huge_page() - return the previously saved
811  * node ["this node"] from which to free a huge page.  Advance the
812  * next node id whether or not we find a free huge page to free so
813  * that the next attempt to free addresses the next node.
814  */
815 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
816 {
817         int nid;
818
819         VM_BUG_ON(!nodes_allowed);
820
821         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
822         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
823
824         return nid;
825 }
826
827 /*
828  * Free huge page from pool from next node to free.
829  * Attempt to keep persistent huge pages more or less
830  * balanced over allowed nodes.
831  * Called with hugetlb_lock locked.
832  */
833 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
834                                                          bool acct_surplus)
835 {
836         int start_nid;
837         int next_nid;
838         int ret = 0;
839
840         start_nid = hstate_next_node_to_free(h, nodes_allowed);
841         next_nid = start_nid;
842
843         do {
844                 /*
845                  * If we're returning unused surplus pages, only examine
846                  * nodes with surplus pages.
847                  */
848                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
849                     !list_empty(&h->hugepage_freelists[next_nid])) {
850                         struct page *page =
851                                 list_entry(h->hugepage_freelists[next_nid].next,
852                                           struct page, lru);
853                         list_del(&page->lru);
854                         h->free_huge_pages--;
855                         h->free_huge_pages_node[next_nid]--;
856                         if (acct_surplus) {
857                                 h->surplus_huge_pages--;
858                                 h->surplus_huge_pages_node[next_nid]--;
859                         }
860                         update_and_free_page(h, page);
861                         ret = 1;
862                         break;
863                 }
864                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
865         } while (next_nid != start_nid);
866
867         return ret;
868 }
869
870 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
871 {
872         struct page *page;
873         unsigned int r_nid;
874
875         if (h->order >= MAX_ORDER)
876                 return NULL;
877
878         /*
879          * Assume we will successfully allocate the surplus page to
880          * prevent racing processes from causing the surplus to exceed
881          * overcommit
882          *
883          * This however introduces a different race, where a process B
884          * tries to grow the static hugepage pool while alloc_pages() is
885          * called by process A. B will only examine the per-node
886          * counters in determining if surplus huge pages can be
887          * converted to normal huge pages in adjust_pool_surplus(). A
888          * won't be able to increment the per-node counter, until the
889          * lock is dropped by B, but B doesn't drop hugetlb_lock until
890          * no more huge pages can be converted from surplus to normal
891          * state (and doesn't try to convert again). Thus, we have a
892          * case where a surplus huge page exists, the pool is grown, and
893          * the surplus huge page still exists after, even though it
894          * should just have been converted to a normal huge page. This
895          * does not leak memory, though, as the hugepage will be freed
896          * once it is out of use. It also does not allow the counters to
897          * go out of whack in adjust_pool_surplus() as we don't modify
898          * the node values until we've gotten the hugepage and only the
899          * per-node value is checked there.
900          */
901         spin_lock(&hugetlb_lock);
902         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
903                 spin_unlock(&hugetlb_lock);
904                 return NULL;
905         } else {
906                 h->nr_huge_pages++;
907                 h->surplus_huge_pages++;
908         }
909         spin_unlock(&hugetlb_lock);
910
911         if (nid == NUMA_NO_NODE)
912                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
913                                    __GFP_REPEAT|__GFP_NOWARN,
914                                    huge_page_order(h));
915         else
916                 page = alloc_pages_exact_node(nid,
917                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
918                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
919
920         if (page && arch_prepare_hugepage(page)) {
921                 __free_pages(page, huge_page_order(h));
922                 return NULL;
923         }
924
925         spin_lock(&hugetlb_lock);
926         if (page) {
927                 r_nid = page_to_nid(page);
928                 set_compound_page_dtor(page, free_huge_page);
929                 /*
930                  * We incremented the global counters already
931                  */
932                 h->nr_huge_pages_node[r_nid]++;
933                 h->surplus_huge_pages_node[r_nid]++;
934                 __count_vm_event(HTLB_BUDDY_PGALLOC);
935         } else {
936                 h->nr_huge_pages--;
937                 h->surplus_huge_pages--;
938                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
939         }
940         spin_unlock(&hugetlb_lock);
941
942         return page;
943 }
944
945 /*
946  * This allocation function is useful in the context where vma is irrelevant.
947  * E.g. soft-offlining uses this function because it only cares physical
948  * address of error page.
949  */
950 struct page *alloc_huge_page_node(struct hstate *h, int nid)
951 {
952         struct page *page;
953
954         spin_lock(&hugetlb_lock);
955         page = dequeue_huge_page_node(h, nid);
956         spin_unlock(&hugetlb_lock);
957
958         if (!page)
959                 page = alloc_buddy_huge_page(h, nid);
960
961         return page;
962 }
963
964 /*
965  * Increase the hugetlb pool such that it can accommodate a reservation
966  * of size 'delta'.
967  */
968 static int gather_surplus_pages(struct hstate *h, int delta)
969 {
970         struct list_head surplus_list;
971         struct page *page, *tmp;
972         int ret, i;
973         int needed, allocated;
974
975         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
976         if (needed <= 0) {
977                 h->resv_huge_pages += delta;
978                 return 0;
979         }
980
981         allocated = 0;
982         INIT_LIST_HEAD(&surplus_list);
983
984         ret = -ENOMEM;
985 retry:
986         spin_unlock(&hugetlb_lock);
987         for (i = 0; i < needed; i++) {
988                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
989                 if (!page)
990                         /*
991                          * We were not able to allocate enough pages to
992                          * satisfy the entire reservation so we free what
993                          * we've allocated so far.
994                          */
995                         goto free;
996
997                 list_add(&page->lru, &surplus_list);
998         }
999         allocated += needed;
1000
1001         /*
1002          * After retaking hugetlb_lock, we need to recalculate 'needed'
1003          * because either resv_huge_pages or free_huge_pages may have changed.
1004          */
1005         spin_lock(&hugetlb_lock);
1006         needed = (h->resv_huge_pages + delta) -
1007                         (h->free_huge_pages + allocated);
1008         if (needed > 0)
1009                 goto retry;
1010
1011         /*
1012          * The surplus_list now contains _at_least_ the number of extra pages
1013          * needed to accommodate the reservation.  Add the appropriate number
1014          * of pages to the hugetlb pool and free the extras back to the buddy
1015          * allocator.  Commit the entire reservation here to prevent another
1016          * process from stealing the pages as they are added to the pool but
1017          * before they are reserved.
1018          */
1019         needed += allocated;
1020         h->resv_huge_pages += delta;
1021         ret = 0;
1022
1023         /* Free the needed pages to the hugetlb pool */
1024         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1025                 if ((--needed) < 0)
1026                         break;
1027                 list_del(&page->lru);
1028                 /*
1029                  * This page is now managed by the hugetlb allocator and has
1030                  * no users -- drop the buddy allocator's reference.
1031                  */
1032                 put_page_testzero(page);
1033                 VM_BUG_ON(page_count(page));
1034                 enqueue_huge_page(h, page);
1035         }
1036         spin_unlock(&hugetlb_lock);
1037
1038         /* Free unnecessary surplus pages to the buddy allocator */
1039 free:
1040         if (!list_empty(&surplus_list)) {
1041                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1042                         list_del(&page->lru);
1043                         put_page(page);
1044                 }
1045         }
1046         spin_lock(&hugetlb_lock);
1047
1048         return ret;
1049 }
1050
1051 /*
1052  * When releasing a hugetlb pool reservation, any surplus pages that were
1053  * allocated to satisfy the reservation must be explicitly freed if they were
1054  * never used.
1055  * Called with hugetlb_lock held.
1056  */
1057 static void return_unused_surplus_pages(struct hstate *h,
1058                                         unsigned long unused_resv_pages)
1059 {
1060         unsigned long nr_pages;
1061
1062         /* Uncommit the reservation */
1063         h->resv_huge_pages -= unused_resv_pages;
1064
1065         /* Cannot return gigantic pages currently */
1066         if (h->order >= MAX_ORDER)
1067                 return;
1068
1069         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1070
1071         /*
1072          * We want to release as many surplus pages as possible, spread
1073          * evenly across all nodes with memory. Iterate across these nodes
1074          * until we can no longer free unreserved surplus pages. This occurs
1075          * when the nodes with surplus pages have no free pages.
1076          * free_pool_huge_page() will balance the the freed pages across the
1077          * on-line nodes with memory and will handle the hstate accounting.
1078          */
1079         while (nr_pages--) {
1080                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1081                         break;
1082                 cond_resched_lock(&hugetlb_lock);
1083         }
1084 }
1085
1086 /*
1087  * Determine if the huge page at addr within the vma has an associated
1088  * reservation.  Where it does not we will need to logically increase
1089  * reservation and actually increase subpool usage before an allocation
1090  * can occur.  Where any new reservation would be required the
1091  * reservation change is prepared, but not committed.  Once the page
1092  * has been allocated from the subpool and instantiated the change should
1093  * be committed via vma_commit_reservation.  No action is required on
1094  * failure.
1095  */
1096 static long vma_needs_reservation(struct hstate *h,
1097                         struct vm_area_struct *vma, unsigned long addr)
1098 {
1099         struct address_space *mapping = vma->vm_file->f_mapping;
1100         struct inode *inode = mapping->host;
1101
1102         if (vma->vm_flags & VM_MAYSHARE) {
1103                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104                 return region_chg(&inode->i_mapping->private_list,
1105                                                         idx, idx + 1);
1106
1107         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1108                 return 1;
1109
1110         } else  {
1111                 long err;
1112                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1113                 struct resv_map *reservations = vma_resv_map(vma);
1114
1115                 err = region_chg(&reservations->regions, idx, idx + 1);
1116                 if (err < 0)
1117                         return err;
1118                 return 0;
1119         }
1120 }
1121 static void vma_commit_reservation(struct hstate *h,
1122                         struct vm_area_struct *vma, unsigned long addr)
1123 {
1124         struct address_space *mapping = vma->vm_file->f_mapping;
1125         struct inode *inode = mapping->host;
1126
1127         if (vma->vm_flags & VM_MAYSHARE) {
1128                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1130
1131         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1132                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1133                 struct resv_map *reservations = vma_resv_map(vma);
1134
1135                 /* Mark this page used in the map. */
1136                 region_add(&reservations->regions, idx, idx + 1);
1137         }
1138 }
1139
1140 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1141                                     unsigned long addr, int avoid_reserve)
1142 {
1143         struct hugepage_subpool *spool = subpool_vma(vma);
1144         struct hstate *h = hstate_vma(vma);
1145         struct page *page;
1146         long chg;
1147
1148         /*
1149          * Processes that did not create the mapping will have no
1150          * reserves and will not have accounted against subpool
1151          * limit. Check that the subpool limit can be made before
1152          * satisfying the allocation MAP_NORESERVE mappings may also
1153          * need pages and subpool limit allocated allocated if no reserve
1154          * mapping overlaps.
1155          */
1156         chg = vma_needs_reservation(h, vma, addr);
1157         if (chg < 0)
1158                 return ERR_PTR(-VM_FAULT_OOM);
1159         if (chg)
1160                 if (hugepage_subpool_get_pages(spool, chg))
1161                         return ERR_PTR(-VM_FAULT_SIGBUS);
1162
1163         spin_lock(&hugetlb_lock);
1164         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1165         spin_unlock(&hugetlb_lock);
1166
1167         if (!page) {
1168                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1169                 if (!page) {
1170                         hugepage_subpool_put_pages(spool, chg);
1171                         return ERR_PTR(-VM_FAULT_SIGBUS);
1172                 }
1173         }
1174
1175         set_page_private(page, (unsigned long)spool);
1176
1177         vma_commit_reservation(h, vma, addr);
1178
1179         return page;
1180 }
1181
1182 int __weak alloc_bootmem_huge_page(struct hstate *h)
1183 {
1184         struct huge_bootmem_page *m;
1185         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1186
1187         while (nr_nodes) {
1188                 void *addr;
1189
1190                 addr = __alloc_bootmem_node_nopanic(
1191                                 NODE_DATA(hstate_next_node_to_alloc(h,
1192                                                 &node_states[N_HIGH_MEMORY])),
1193                                 huge_page_size(h), huge_page_size(h), 0);
1194
1195                 if (addr) {
1196                         /*
1197                          * Use the beginning of the huge page to store the
1198                          * huge_bootmem_page struct (until gather_bootmem
1199                          * puts them into the mem_map).
1200                          */
1201                         m = addr;
1202                         goto found;
1203                 }
1204                 nr_nodes--;
1205         }
1206         return 0;
1207
1208 found:
1209         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1210         /* Put them into a private list first because mem_map is not up yet */
1211         list_add(&m->list, &huge_boot_pages);
1212         m->hstate = h;
1213         return 1;
1214 }
1215
1216 static void prep_compound_huge_page(struct page *page, int order)
1217 {
1218         if (unlikely(order > (MAX_ORDER - 1)))
1219                 prep_compound_gigantic_page(page, order);
1220         else
1221                 prep_compound_page(page, order);
1222 }
1223
1224 /* Put bootmem huge pages into the standard lists after mem_map is up */
1225 static void __init gather_bootmem_prealloc(void)
1226 {
1227         struct huge_bootmem_page *m;
1228
1229         list_for_each_entry(m, &huge_boot_pages, list) {
1230                 struct hstate *h = m->hstate;
1231                 struct page *page;
1232
1233 #ifdef CONFIG_HIGHMEM
1234                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1235                 free_bootmem_late((unsigned long)m,
1236                                   sizeof(struct huge_bootmem_page));
1237 #else
1238                 page = virt_to_page(m);
1239 #endif
1240                 __ClearPageReserved(page);
1241                 WARN_ON(page_count(page) != 1);
1242                 prep_compound_huge_page(page, h->order);
1243                 prep_new_huge_page(h, page, page_to_nid(page));
1244                 /*
1245                  * If we had gigantic hugepages allocated at boot time, we need
1246                  * to restore the 'stolen' pages to totalram_pages in order to
1247                  * fix confusing memory reports from free(1) and another
1248                  * side-effects, like CommitLimit going negative.
1249                  */
1250                 if (h->order > (MAX_ORDER - 1))
1251                         totalram_pages += 1 << h->order;
1252         }
1253 }
1254
1255 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1256 {
1257         unsigned long i;
1258
1259         for (i = 0; i < h->max_huge_pages; ++i) {
1260                 if (h->order >= MAX_ORDER) {
1261                         if (!alloc_bootmem_huge_page(h))
1262                                 break;
1263                 } else if (!alloc_fresh_huge_page(h,
1264                                          &node_states[N_HIGH_MEMORY]))
1265                         break;
1266         }
1267         h->max_huge_pages = i;
1268 }
1269
1270 static void __init hugetlb_init_hstates(void)
1271 {
1272         struct hstate *h;
1273
1274         for_each_hstate(h) {
1275                 /* oversize hugepages were init'ed in early boot */
1276                 if (h->order < MAX_ORDER)
1277                         hugetlb_hstate_alloc_pages(h);
1278         }
1279 }
1280
1281 static char * __init memfmt(char *buf, unsigned long n)
1282 {
1283         if (n >= (1UL << 30))
1284                 sprintf(buf, "%lu GB", n >> 30);
1285         else if (n >= (1UL << 20))
1286                 sprintf(buf, "%lu MB", n >> 20);
1287         else
1288                 sprintf(buf, "%lu KB", n >> 10);
1289         return buf;
1290 }
1291
1292 static void __init report_hugepages(void)
1293 {
1294         struct hstate *h;
1295
1296         for_each_hstate(h) {
1297                 char buf[32];
1298                 printk(KERN_INFO "HugeTLB registered %s page size, "
1299                                  "pre-allocated %ld pages\n",
1300                         memfmt(buf, huge_page_size(h)),
1301                         h->free_huge_pages);
1302         }
1303 }
1304
1305 #ifdef CONFIG_HIGHMEM
1306 static void try_to_free_low(struct hstate *h, unsigned long count,
1307                                                 nodemask_t *nodes_allowed)
1308 {
1309         int i;
1310
1311         if (h->order >= MAX_ORDER)
1312                 return;
1313
1314         for_each_node_mask(i, *nodes_allowed) {
1315                 struct page *page, *next;
1316                 struct list_head *freel = &h->hugepage_freelists[i];
1317                 list_for_each_entry_safe(page, next, freel, lru) {
1318                         if (count >= h->nr_huge_pages)
1319                                 return;
1320                         if (PageHighMem(page))
1321                                 continue;
1322                         list_del(&page->lru);
1323                         update_and_free_page(h, page);
1324                         h->free_huge_pages--;
1325                         h->free_huge_pages_node[page_to_nid(page)]--;
1326                 }
1327         }
1328 }
1329 #else
1330 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1331                                                 nodemask_t *nodes_allowed)
1332 {
1333 }
1334 #endif
1335
1336 /*
1337  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1338  * balanced by operating on them in a round-robin fashion.
1339  * Returns 1 if an adjustment was made.
1340  */
1341 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1342                                 int delta)
1343 {
1344         int start_nid, next_nid;
1345         int ret = 0;
1346
1347         VM_BUG_ON(delta != -1 && delta != 1);
1348
1349         if (delta < 0)
1350                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1351         else
1352                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1353         next_nid = start_nid;
1354
1355         do {
1356                 int nid = next_nid;
1357                 if (delta < 0)  {
1358                         /*
1359                          * To shrink on this node, there must be a surplus page
1360                          */
1361                         if (!h->surplus_huge_pages_node[nid]) {
1362                                 next_nid = hstate_next_node_to_alloc(h,
1363                                                                 nodes_allowed);
1364                                 continue;
1365                         }
1366                 }
1367                 if (delta > 0) {
1368                         /*
1369                          * Surplus cannot exceed the total number of pages
1370                          */
1371                         if (h->surplus_huge_pages_node[nid] >=
1372                                                 h->nr_huge_pages_node[nid]) {
1373                                 next_nid = hstate_next_node_to_free(h,
1374                                                                 nodes_allowed);
1375                                 continue;
1376                         }
1377                 }
1378
1379                 h->surplus_huge_pages += delta;
1380                 h->surplus_huge_pages_node[nid] += delta;
1381                 ret = 1;
1382                 break;
1383         } while (next_nid != start_nid);
1384
1385         return ret;
1386 }
1387
1388 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1389 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1390                                                 nodemask_t *nodes_allowed)
1391 {
1392         unsigned long min_count, ret;
1393
1394         if (h->order >= MAX_ORDER)
1395                 return h->max_huge_pages;
1396
1397         /*
1398          * Increase the pool size
1399          * First take pages out of surplus state.  Then make up the
1400          * remaining difference by allocating fresh huge pages.
1401          *
1402          * We might race with alloc_buddy_huge_page() here and be unable
1403          * to convert a surplus huge page to a normal huge page. That is
1404          * not critical, though, it just means the overall size of the
1405          * pool might be one hugepage larger than it needs to be, but
1406          * within all the constraints specified by the sysctls.
1407          */
1408         spin_lock(&hugetlb_lock);
1409         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1410                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1411                         break;
1412         }
1413
1414         while (count > persistent_huge_pages(h)) {
1415                 /*
1416                  * If this allocation races such that we no longer need the
1417                  * page, free_huge_page will handle it by freeing the page
1418                  * and reducing the surplus.
1419                  */
1420                 spin_unlock(&hugetlb_lock);
1421                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1422                 spin_lock(&hugetlb_lock);
1423                 if (!ret)
1424                         goto out;
1425
1426                 /* Bail for signals. Probably ctrl-c from user */
1427                 if (signal_pending(current))
1428                         goto out;
1429         }
1430
1431         /*
1432          * Decrease the pool size
1433          * First return free pages to the buddy allocator (being careful
1434          * to keep enough around to satisfy reservations).  Then place
1435          * pages into surplus state as needed so the pool will shrink
1436          * to the desired size as pages become free.
1437          *
1438          * By placing pages into the surplus state independent of the
1439          * overcommit value, we are allowing the surplus pool size to
1440          * exceed overcommit. There are few sane options here. Since
1441          * alloc_buddy_huge_page() is checking the global counter,
1442          * though, we'll note that we're not allowed to exceed surplus
1443          * and won't grow the pool anywhere else. Not until one of the
1444          * sysctls are changed, or the surplus pages go out of use.
1445          */
1446         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1447         min_count = max(count, min_count);
1448         try_to_free_low(h, min_count, nodes_allowed);
1449         while (min_count < persistent_huge_pages(h)) {
1450                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1451                         break;
1452                 cond_resched_lock(&hugetlb_lock);
1453         }
1454         while (count < persistent_huge_pages(h)) {
1455                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1456                         break;
1457         }
1458 out:
1459         ret = persistent_huge_pages(h);
1460         spin_unlock(&hugetlb_lock);
1461         return ret;
1462 }
1463
1464 #define HSTATE_ATTR_RO(_name) \
1465         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1466
1467 #define HSTATE_ATTR(_name) \
1468         static struct kobj_attribute _name##_attr = \
1469                 __ATTR(_name, 0644, _name##_show, _name##_store)
1470
1471 static struct kobject *hugepages_kobj;
1472 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1473
1474 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1475
1476 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1477 {
1478         int i;
1479
1480         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1481                 if (hstate_kobjs[i] == kobj) {
1482                         if (nidp)
1483                                 *nidp = NUMA_NO_NODE;
1484                         return &hstates[i];
1485                 }
1486
1487         return kobj_to_node_hstate(kobj, nidp);
1488 }
1489
1490 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1491                                         struct kobj_attribute *attr, char *buf)
1492 {
1493         struct hstate *h;
1494         unsigned long nr_huge_pages;
1495         int nid;
1496
1497         h = kobj_to_hstate(kobj, &nid);
1498         if (nid == NUMA_NO_NODE)
1499                 nr_huge_pages = h->nr_huge_pages;
1500         else
1501                 nr_huge_pages = h->nr_huge_pages_node[nid];
1502
1503         return sprintf(buf, "%lu\n", nr_huge_pages);
1504 }
1505
1506 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1507                         struct kobject *kobj, struct kobj_attribute *attr,
1508                         const char *buf, size_t len)
1509 {
1510         int err;
1511         int nid;
1512         unsigned long count;
1513         struct hstate *h;
1514         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1515
1516         err = strict_strtoul(buf, 10, &count);
1517         if (err)
1518                 goto out;
1519
1520         h = kobj_to_hstate(kobj, &nid);
1521         if (h->order >= MAX_ORDER) {
1522                 err = -EINVAL;
1523                 goto out;
1524         }
1525
1526         if (nid == NUMA_NO_NODE) {
1527                 /*
1528                  * global hstate attribute
1529                  */
1530                 if (!(obey_mempolicy &&
1531                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1532                         NODEMASK_FREE(nodes_allowed);
1533                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1534                 }
1535         } else if (nodes_allowed) {
1536                 /*
1537                  * per node hstate attribute: adjust count to global,
1538                  * but restrict alloc/free to the specified node.
1539                  */
1540                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1541                 init_nodemask_of_node(nodes_allowed, nid);
1542         } else
1543                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1544
1545         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1546
1547         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1548                 NODEMASK_FREE(nodes_allowed);
1549
1550         return len;
1551 out:
1552         NODEMASK_FREE(nodes_allowed);
1553         return err;
1554 }
1555
1556 static ssize_t nr_hugepages_show(struct kobject *kobj,
1557                                        struct kobj_attribute *attr, char *buf)
1558 {
1559         return nr_hugepages_show_common(kobj, attr, buf);
1560 }
1561
1562 static ssize_t nr_hugepages_store(struct kobject *kobj,
1563                struct kobj_attribute *attr, const char *buf, size_t len)
1564 {
1565         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1566 }
1567 HSTATE_ATTR(nr_hugepages);
1568
1569 #ifdef CONFIG_NUMA
1570
1571 /*
1572  * hstate attribute for optionally mempolicy-based constraint on persistent
1573  * huge page alloc/free.
1574  */
1575 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1576                                        struct kobj_attribute *attr, char *buf)
1577 {
1578         return nr_hugepages_show_common(kobj, attr, buf);
1579 }
1580
1581 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1582                struct kobj_attribute *attr, const char *buf, size_t len)
1583 {
1584         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1585 }
1586 HSTATE_ATTR(nr_hugepages_mempolicy);
1587 #endif
1588
1589
1590 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1591                                         struct kobj_attribute *attr, char *buf)
1592 {
1593         struct hstate *h = kobj_to_hstate(kobj, NULL);
1594         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1595 }
1596
1597 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1598                 struct kobj_attribute *attr, const char *buf, size_t count)
1599 {
1600         int err;
1601         unsigned long input;
1602         struct hstate *h = kobj_to_hstate(kobj, NULL);
1603
1604         if (h->order >= MAX_ORDER)
1605                 return -EINVAL;
1606
1607         err = strict_strtoul(buf, 10, &input);
1608         if (err)
1609                 return err;
1610
1611         spin_lock(&hugetlb_lock);
1612         h->nr_overcommit_huge_pages = input;
1613         spin_unlock(&hugetlb_lock);
1614
1615         return count;
1616 }
1617 HSTATE_ATTR(nr_overcommit_hugepages);
1618
1619 static ssize_t free_hugepages_show(struct kobject *kobj,
1620                                         struct kobj_attribute *attr, char *buf)
1621 {
1622         struct hstate *h;
1623         unsigned long free_huge_pages;
1624         int nid;
1625
1626         h = kobj_to_hstate(kobj, &nid);
1627         if (nid == NUMA_NO_NODE)
1628                 free_huge_pages = h->free_huge_pages;
1629         else
1630                 free_huge_pages = h->free_huge_pages_node[nid];
1631
1632         return sprintf(buf, "%lu\n", free_huge_pages);
1633 }
1634 HSTATE_ATTR_RO(free_hugepages);
1635
1636 static ssize_t resv_hugepages_show(struct kobject *kobj,
1637                                         struct kobj_attribute *attr, char *buf)
1638 {
1639         struct hstate *h = kobj_to_hstate(kobj, NULL);
1640         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1641 }
1642 HSTATE_ATTR_RO(resv_hugepages);
1643
1644 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1645                                         struct kobj_attribute *attr, char *buf)
1646 {
1647         struct hstate *h;
1648         unsigned long surplus_huge_pages;
1649         int nid;
1650
1651         h = kobj_to_hstate(kobj, &nid);
1652         if (nid == NUMA_NO_NODE)
1653                 surplus_huge_pages = h->surplus_huge_pages;
1654         else
1655                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1656
1657         return sprintf(buf, "%lu\n", surplus_huge_pages);
1658 }
1659 HSTATE_ATTR_RO(surplus_hugepages);
1660
1661 static struct attribute *hstate_attrs[] = {
1662         &nr_hugepages_attr.attr,
1663         &nr_overcommit_hugepages_attr.attr,
1664         &free_hugepages_attr.attr,
1665         &resv_hugepages_attr.attr,
1666         &surplus_hugepages_attr.attr,
1667 #ifdef CONFIG_NUMA
1668         &nr_hugepages_mempolicy_attr.attr,
1669 #endif
1670         NULL,
1671 };
1672
1673 static struct attribute_group hstate_attr_group = {
1674         .attrs = hstate_attrs,
1675 };
1676
1677 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1678                                     struct kobject **hstate_kobjs,
1679                                     struct attribute_group *hstate_attr_group)
1680 {
1681         int retval;
1682         int hi = h - hstates;
1683
1684         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1685         if (!hstate_kobjs[hi])
1686                 return -ENOMEM;
1687
1688         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1689         if (retval)
1690                 kobject_put(hstate_kobjs[hi]);
1691
1692         return retval;
1693 }
1694
1695 static void __init hugetlb_sysfs_init(void)
1696 {
1697         struct hstate *h;
1698         int err;
1699
1700         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1701         if (!hugepages_kobj)
1702                 return;
1703
1704         for_each_hstate(h) {
1705                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1706                                          hstate_kobjs, &hstate_attr_group);
1707                 if (err)
1708                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1709                                                                 h->name);
1710         }
1711 }
1712
1713 #ifdef CONFIG_NUMA
1714
1715 /*
1716  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1717  * with node devices in node_devices[] using a parallel array.  The array
1718  * index of a node device or _hstate == node id.
1719  * This is here to avoid any static dependency of the node device driver, in
1720  * the base kernel, on the hugetlb module.
1721  */
1722 struct node_hstate {
1723         struct kobject          *hugepages_kobj;
1724         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1725 };
1726 struct node_hstate node_hstates[MAX_NUMNODES];
1727
1728 /*
1729  * A subset of global hstate attributes for node devices
1730  */
1731 static struct attribute *per_node_hstate_attrs[] = {
1732         &nr_hugepages_attr.attr,
1733         &free_hugepages_attr.attr,
1734         &surplus_hugepages_attr.attr,
1735         NULL,
1736 };
1737
1738 static struct attribute_group per_node_hstate_attr_group = {
1739         .attrs = per_node_hstate_attrs,
1740 };
1741
1742 /*
1743  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1744  * Returns node id via non-NULL nidp.
1745  */
1746 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1747 {
1748         int nid;
1749
1750         for (nid = 0; nid < nr_node_ids; nid++) {
1751                 struct node_hstate *nhs = &node_hstates[nid];
1752                 int i;
1753                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1754                         if (nhs->hstate_kobjs[i] == kobj) {
1755                                 if (nidp)
1756                                         *nidp = nid;
1757                                 return &hstates[i];
1758                         }
1759         }
1760
1761         BUG();
1762         return NULL;
1763 }
1764
1765 /*
1766  * Unregister hstate attributes from a single node device.
1767  * No-op if no hstate attributes attached.
1768  */
1769 void hugetlb_unregister_node(struct node *node)
1770 {
1771         struct hstate *h;
1772         struct node_hstate *nhs = &node_hstates[node->dev.id];
1773
1774         if (!nhs->hugepages_kobj)
1775                 return;         /* no hstate attributes */
1776
1777         for_each_hstate(h)
1778                 if (nhs->hstate_kobjs[h - hstates]) {
1779                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1780                         nhs->hstate_kobjs[h - hstates] = NULL;
1781                 }
1782
1783         kobject_put(nhs->hugepages_kobj);
1784         nhs->hugepages_kobj = NULL;
1785 }
1786
1787 /*
1788  * hugetlb module exit:  unregister hstate attributes from node devices
1789  * that have them.
1790  */
1791 static void hugetlb_unregister_all_nodes(void)
1792 {
1793         int nid;
1794
1795         /*
1796          * disable node device registrations.
1797          */
1798         register_hugetlbfs_with_node(NULL, NULL);
1799
1800         /*
1801          * remove hstate attributes from any nodes that have them.
1802          */
1803         for (nid = 0; nid < nr_node_ids; nid++)
1804                 hugetlb_unregister_node(&node_devices[nid]);
1805 }
1806
1807 /*
1808  * Register hstate attributes for a single node device.
1809  * No-op if attributes already registered.
1810  */
1811 void hugetlb_register_node(struct node *node)
1812 {
1813         struct hstate *h;
1814         struct node_hstate *nhs = &node_hstates[node->dev.id];
1815         int err;
1816
1817         if (nhs->hugepages_kobj)
1818                 return;         /* already allocated */
1819
1820         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1821                                                         &node->dev.kobj);
1822         if (!nhs->hugepages_kobj)
1823                 return;
1824
1825         for_each_hstate(h) {
1826                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1827                                                 nhs->hstate_kobjs,
1828                                                 &per_node_hstate_attr_group);
1829                 if (err) {
1830                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1831                                         " for node %d\n",
1832                                                 h->name, node->dev.id);
1833                         hugetlb_unregister_node(node);
1834                         break;
1835                 }
1836         }
1837 }
1838
1839 /*
1840  * hugetlb init time:  register hstate attributes for all registered node
1841  * devices of nodes that have memory.  All on-line nodes should have
1842  * registered their associated device by this time.
1843  */
1844 static void hugetlb_register_all_nodes(void)
1845 {
1846         int nid;
1847
1848         for_each_node_state(nid, N_HIGH_MEMORY) {
1849                 struct node *node = &node_devices[nid];
1850                 if (node->dev.id == nid)
1851                         hugetlb_register_node(node);
1852         }
1853
1854         /*
1855          * Let the node device driver know we're here so it can
1856          * [un]register hstate attributes on node hotplug.
1857          */
1858         register_hugetlbfs_with_node(hugetlb_register_node,
1859                                      hugetlb_unregister_node);
1860 }
1861 #else   /* !CONFIG_NUMA */
1862
1863 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1864 {
1865         BUG();
1866         if (nidp)
1867                 *nidp = -1;
1868         return NULL;
1869 }
1870
1871 static void hugetlb_unregister_all_nodes(void) { }
1872
1873 static void hugetlb_register_all_nodes(void) { }
1874
1875 #endif
1876
1877 static void __exit hugetlb_exit(void)
1878 {
1879         struct hstate *h;
1880
1881         hugetlb_unregister_all_nodes();
1882
1883         for_each_hstate(h) {
1884                 kobject_put(hstate_kobjs[h - hstates]);
1885         }
1886
1887         kobject_put(hugepages_kobj);
1888 }
1889 module_exit(hugetlb_exit);
1890
1891 static int __init hugetlb_init(void)
1892 {
1893         /* Some platform decide whether they support huge pages at boot
1894          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1895          * there is no such support
1896          */
1897         if (HPAGE_SHIFT == 0)
1898                 return 0;
1899
1900         if (!size_to_hstate(default_hstate_size)) {
1901                 default_hstate_size = HPAGE_SIZE;
1902                 if (!size_to_hstate(default_hstate_size))
1903                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1904         }
1905         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1906         if (default_hstate_max_huge_pages)
1907                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1908
1909         hugetlb_init_hstates();
1910
1911         gather_bootmem_prealloc();
1912
1913         report_hugepages();
1914
1915         hugetlb_sysfs_init();
1916
1917         hugetlb_register_all_nodes();
1918
1919         return 0;
1920 }
1921 module_init(hugetlb_init);
1922
1923 /* Should be called on processing a hugepagesz=... option */
1924 void __init hugetlb_add_hstate(unsigned order)
1925 {
1926         struct hstate *h;
1927         unsigned long i;
1928
1929         if (size_to_hstate(PAGE_SIZE << order)) {
1930                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1931                 return;
1932         }
1933         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1934         BUG_ON(order == 0);
1935         h = &hstates[max_hstate++];
1936         h->order = order;
1937         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1938         h->nr_huge_pages = 0;
1939         h->free_huge_pages = 0;
1940         for (i = 0; i < MAX_NUMNODES; ++i)
1941                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1942         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1943         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1944         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1945                                         huge_page_size(h)/1024);
1946
1947         parsed_hstate = h;
1948 }
1949
1950 static int __init hugetlb_nrpages_setup(char *s)
1951 {
1952         unsigned long *mhp;
1953         static unsigned long *last_mhp;
1954
1955         /*
1956          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1957          * so this hugepages= parameter goes to the "default hstate".
1958          */
1959         if (!max_hstate)
1960                 mhp = &default_hstate_max_huge_pages;
1961         else
1962                 mhp = &parsed_hstate->max_huge_pages;
1963
1964         if (mhp == last_mhp) {
1965                 printk(KERN_WARNING "hugepages= specified twice without "
1966                         "interleaving hugepagesz=, ignoring\n");
1967                 return 1;
1968         }
1969
1970         if (sscanf(s, "%lu", mhp) <= 0)
1971                 *mhp = 0;
1972
1973         /*
1974          * Global state is always initialized later in hugetlb_init.
1975          * But we need to allocate >= MAX_ORDER hstates here early to still
1976          * use the bootmem allocator.
1977          */
1978         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1979                 hugetlb_hstate_alloc_pages(parsed_hstate);
1980
1981         last_mhp = mhp;
1982
1983         return 1;
1984 }
1985 __setup("hugepages=", hugetlb_nrpages_setup);
1986
1987 static int __init hugetlb_default_setup(char *s)
1988 {
1989         default_hstate_size = memparse(s, &s);
1990         return 1;
1991 }
1992 __setup("default_hugepagesz=", hugetlb_default_setup);
1993
1994 static unsigned int cpuset_mems_nr(unsigned int *array)
1995 {
1996         int node;
1997         unsigned int nr = 0;
1998
1999         for_each_node_mask(node, cpuset_current_mems_allowed)
2000                 nr += array[node];
2001
2002         return nr;
2003 }
2004
2005 #ifdef CONFIG_SYSCTL
2006 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2007                          struct ctl_table *table, int write,
2008                          void __user *buffer, size_t *length, loff_t *ppos)
2009 {
2010         struct hstate *h = &default_hstate;
2011         unsigned long tmp;
2012         int ret;
2013
2014         tmp = h->max_huge_pages;
2015
2016         if (write && h->order >= MAX_ORDER)
2017                 return -EINVAL;
2018
2019         table->data = &tmp;
2020         table->maxlen = sizeof(unsigned long);
2021         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2022         if (ret)
2023                 goto out;
2024
2025         if (write) {
2026                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2027                                                 GFP_KERNEL | __GFP_NORETRY);
2028                 if (!(obey_mempolicy &&
2029                                init_nodemask_of_mempolicy(nodes_allowed))) {
2030                         NODEMASK_FREE(nodes_allowed);
2031                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2032                 }
2033                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2034
2035                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2036                         NODEMASK_FREE(nodes_allowed);
2037         }
2038 out:
2039         return ret;
2040 }
2041
2042 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2043                           void __user *buffer, size_t *length, loff_t *ppos)
2044 {
2045
2046         return hugetlb_sysctl_handler_common(false, table, write,
2047                                                         buffer, length, ppos);
2048 }
2049
2050 #ifdef CONFIG_NUMA
2051 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2052                           void __user *buffer, size_t *length, loff_t *ppos)
2053 {
2054         return hugetlb_sysctl_handler_common(true, table, write,
2055                                                         buffer, length, ppos);
2056 }
2057 #endif /* CONFIG_NUMA */
2058
2059 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2060                         void __user *buffer,
2061                         size_t *length, loff_t *ppos)
2062 {
2063         proc_dointvec(table, write, buffer, length, ppos);
2064         if (hugepages_treat_as_movable)
2065                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2066         else
2067                 htlb_alloc_mask = GFP_HIGHUSER;
2068         return 0;
2069 }
2070
2071 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2072                         void __user *buffer,
2073                         size_t *length, loff_t *ppos)
2074 {
2075         struct hstate *h = &default_hstate;
2076         unsigned long tmp;
2077         int ret;
2078
2079         tmp = h->nr_overcommit_huge_pages;
2080
2081         if (write && h->order >= MAX_ORDER)
2082                 return -EINVAL;
2083
2084         table->data = &tmp;
2085         table->maxlen = sizeof(unsigned long);
2086         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2087         if (ret)
2088                 goto out;
2089
2090         if (write) {
2091                 spin_lock(&hugetlb_lock);
2092                 h->nr_overcommit_huge_pages = tmp;
2093                 spin_unlock(&hugetlb_lock);
2094         }
2095 out:
2096         return ret;
2097 }
2098
2099 #endif /* CONFIG_SYSCTL */
2100
2101 void hugetlb_report_meminfo(struct seq_file *m)
2102 {
2103         struct hstate *h = &default_hstate;
2104         seq_printf(m,
2105                         "HugePages_Total:   %5lu\n"
2106                         "HugePages_Free:    %5lu\n"
2107                         "HugePages_Rsvd:    %5lu\n"
2108                         "HugePages_Surp:    %5lu\n"
2109                         "Hugepagesize:   %8lu kB\n",
2110                         h->nr_huge_pages,
2111                         h->free_huge_pages,
2112                         h->resv_huge_pages,
2113                         h->surplus_huge_pages,
2114                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2115 }
2116
2117 int hugetlb_report_node_meminfo(int nid, char *buf)
2118 {
2119         struct hstate *h = &default_hstate;
2120         return sprintf(buf,
2121                 "Node %d HugePages_Total: %5u\n"
2122                 "Node %d HugePages_Free:  %5u\n"
2123                 "Node %d HugePages_Surp:  %5u\n",
2124                 nid, h->nr_huge_pages_node[nid],
2125                 nid, h->free_huge_pages_node[nid],
2126                 nid, h->surplus_huge_pages_node[nid]);
2127 }
2128
2129 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2130 unsigned long hugetlb_total_pages(void)
2131 {
2132         struct hstate *h;
2133         unsigned long nr_total_pages = 0;
2134
2135         for_each_hstate(h)
2136                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2137         return nr_total_pages;
2138 }
2139
2140 static int hugetlb_acct_memory(struct hstate *h, long delta)
2141 {
2142         int ret = -ENOMEM;
2143
2144         spin_lock(&hugetlb_lock);
2145         /*
2146          * When cpuset is configured, it breaks the strict hugetlb page
2147          * reservation as the accounting is done on a global variable. Such
2148          * reservation is completely rubbish in the presence of cpuset because
2149          * the reservation is not checked against page availability for the
2150          * current cpuset. Application can still potentially OOM'ed by kernel
2151          * with lack of free htlb page in cpuset that the task is in.
2152          * Attempt to enforce strict accounting with cpuset is almost
2153          * impossible (or too ugly) because cpuset is too fluid that
2154          * task or memory node can be dynamically moved between cpusets.
2155          *
2156          * The change of semantics for shared hugetlb mapping with cpuset is
2157          * undesirable. However, in order to preserve some of the semantics,
2158          * we fall back to check against current free page availability as
2159          * a best attempt and hopefully to minimize the impact of changing
2160          * semantics that cpuset has.
2161          */
2162         if (delta > 0) {
2163                 if (gather_surplus_pages(h, delta) < 0)
2164                         goto out;
2165
2166                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2167                         return_unused_surplus_pages(h, delta);
2168                         goto out;
2169                 }
2170         }
2171
2172         ret = 0;
2173         if (delta < 0)
2174                 return_unused_surplus_pages(h, (unsigned long) -delta);
2175
2176 out:
2177         spin_unlock(&hugetlb_lock);
2178         return ret;
2179 }
2180
2181 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2182 {
2183         struct resv_map *reservations = vma_resv_map(vma);
2184
2185         /*
2186          * This new VMA should share its siblings reservation map if present.
2187          * The VMA will only ever have a valid reservation map pointer where
2188          * it is being copied for another still existing VMA.  As that VMA
2189          * has a reference to the reservation map it cannot disappear until
2190          * after this open call completes.  It is therefore safe to take a
2191          * new reference here without additional locking.
2192          */
2193         if (reservations)
2194                 kref_get(&reservations->refs);
2195 }
2196
2197 static void resv_map_put(struct vm_area_struct *vma)
2198 {
2199         struct resv_map *reservations = vma_resv_map(vma);
2200
2201         if (!reservations)
2202                 return;
2203         kref_put(&reservations->refs, resv_map_release);
2204 }
2205
2206 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2207 {
2208         struct hstate *h = hstate_vma(vma);
2209         struct resv_map *reservations = vma_resv_map(vma);
2210         struct hugepage_subpool *spool = subpool_vma(vma);
2211         unsigned long reserve;
2212         unsigned long start;
2213         unsigned long end;
2214
2215         if (reservations) {
2216                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2217                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2218
2219                 reserve = (end - start) -
2220                         region_count(&reservations->regions, start, end);
2221
2222                 resv_map_put(vma);
2223
2224                 if (reserve) {
2225                         hugetlb_acct_memory(h, -reserve);
2226                         hugepage_subpool_put_pages(spool, reserve);
2227                 }
2228         }
2229 }
2230
2231 /*
2232  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2233  * handle_mm_fault() to try to instantiate regular-sized pages in the
2234  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2235  * this far.
2236  */
2237 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2238 {
2239         BUG();
2240         return 0;
2241 }
2242
2243 const struct vm_operations_struct hugetlb_vm_ops = {
2244         .fault = hugetlb_vm_op_fault,
2245         .open = hugetlb_vm_op_open,
2246         .close = hugetlb_vm_op_close,
2247 };
2248
2249 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2250                                 int writable)
2251 {
2252         pte_t entry;
2253
2254         if (writable) {
2255                 entry =
2256                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2257         } else {
2258                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2259         }
2260         entry = pte_mkyoung(entry);
2261         entry = pte_mkhuge(entry);
2262
2263         return entry;
2264 }
2265
2266 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2267                                    unsigned long address, pte_t *ptep)
2268 {
2269         pte_t entry;
2270
2271         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2272         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273                 update_mmu_cache(vma, address, ptep);
2274 }
2275
2276 static int is_hugetlb_entry_migration(pte_t pte)
2277 {
2278         swp_entry_t swp;
2279
2280         if (huge_pte_none(pte) || pte_present(pte))
2281                 return 0;
2282         swp = pte_to_swp_entry(pte);
2283         if (non_swap_entry(swp) && is_migration_entry(swp))
2284                 return 1;
2285         else
2286                 return 0;
2287 }
2288
2289 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2290 {
2291         swp_entry_t swp;
2292
2293         if (huge_pte_none(pte) || pte_present(pte))
2294                 return 0;
2295         swp = pte_to_swp_entry(pte);
2296         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2297                 return 1;
2298         else
2299                 return 0;
2300 }
2301
2302 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2303                             struct vm_area_struct *vma)
2304 {
2305         pte_t *src_pte, *dst_pte, entry;
2306         struct page *ptepage;
2307         unsigned long addr;
2308         int cow;
2309         struct hstate *h = hstate_vma(vma);
2310         unsigned long sz = huge_page_size(h);
2311
2312         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2313
2314         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2315                 src_pte = huge_pte_offset(src, addr);
2316                 if (!src_pte)
2317                         continue;
2318                 dst_pte = huge_pte_alloc(dst, addr, sz);
2319                 if (!dst_pte)
2320                         goto nomem;
2321
2322                 /* If the pagetables are shared don't copy or take references */
2323                 if (dst_pte == src_pte)
2324                         continue;
2325
2326                 spin_lock(&dst->page_table_lock);
2327                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2328                 entry = huge_ptep_get(src_pte);
2329                 if (huge_pte_none(entry)) { /* skip none entry */
2330                         ;
2331                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2332                                     is_hugetlb_entry_hwpoisoned(entry))) {
2333                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2334
2335                         if (is_write_migration_entry(swp_entry) && cow) {
2336                                 /*
2337                                  * COW mappings require pages in both
2338                                  * parent and child to be set to read.
2339                                  */
2340                                 make_migration_entry_read(&swp_entry);
2341                                 entry = swp_entry_to_pte(swp_entry);
2342                                 set_huge_pte_at(src, addr, src_pte, entry);
2343                         }
2344                         set_huge_pte_at(dst, addr, dst_pte, entry);
2345                 } else {
2346                         if (cow)
2347                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2348                         entry = huge_ptep_get(src_pte);
2349                         ptepage = pte_page(entry);
2350                         get_page(ptepage);
2351                         page_dup_rmap(ptepage);
2352                         set_huge_pte_at(dst, addr, dst_pte, entry);
2353                 }
2354                 spin_unlock(&src->page_table_lock);
2355                 spin_unlock(&dst->page_table_lock);
2356         }
2357         return 0;
2358
2359 nomem:
2360         return -ENOMEM;
2361 }
2362
2363 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2364                             unsigned long end, struct page *ref_page)
2365 {
2366         struct mm_struct *mm = vma->vm_mm;
2367         unsigned long address;
2368         pte_t *ptep;
2369         pte_t pte;
2370         struct page *page;
2371         struct page *tmp;
2372         struct hstate *h = hstate_vma(vma);
2373         unsigned long sz = huge_page_size(h);
2374
2375         /*
2376          * A page gathering list, protected by per file i_mmap_mutex. The
2377          * lock is used to avoid list corruption from multiple unmapping
2378          * of the same page since we are using page->lru.
2379          */
2380         LIST_HEAD(page_list);
2381
2382         WARN_ON(!is_vm_hugetlb_page(vma));
2383         BUG_ON(start & ~huge_page_mask(h));
2384         BUG_ON(end & ~huge_page_mask(h));
2385
2386         mmu_notifier_invalidate_range_start(mm, start, end);
2387         spin_lock(&mm->page_table_lock);
2388         for (address = start; address < end; address += sz) {
2389                 ptep = huge_pte_offset(mm, address);
2390                 if (!ptep)
2391                         continue;
2392
2393                 if (huge_pmd_unshare(mm, &address, ptep))
2394                         continue;
2395
2396                 /*
2397                  * If a reference page is supplied, it is because a specific
2398                  * page is being unmapped, not a range. Ensure the page we
2399                  * are about to unmap is the actual page of interest.
2400                  */
2401                 if (ref_page) {
2402                         pte = huge_ptep_get(ptep);
2403                         if (huge_pte_none(pte))
2404                                 continue;
2405                         page = pte_page(pte);
2406                         if (page != ref_page)
2407                                 continue;
2408
2409                         /*
2410                          * Mark the VMA as having unmapped its page so that
2411                          * future faults in this VMA will fail rather than
2412                          * looking like data was lost
2413                          */
2414                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2415                 }
2416
2417                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2418                 if (huge_pte_none(pte))
2419                         continue;
2420
2421                 /*
2422                  * Migrating hugepage or HWPoisoned hugepage is already
2423                  * unmapped and its refcount is dropped
2424                  */
2425                 if (unlikely(!pte_present(pte)))
2426                         continue;
2427
2428                 page = pte_page(pte);
2429                 if (pte_dirty(pte))
2430                         set_page_dirty(page);
2431                 list_add(&page->lru, &page_list);
2432         }
2433         spin_unlock(&mm->page_table_lock);
2434         flush_tlb_range(vma, start, end);
2435         mmu_notifier_invalidate_range_end(mm, start, end);
2436         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2437                 page_remove_rmap(page);
2438                 list_del(&page->lru);
2439                 put_page(page);
2440         }
2441 }
2442
2443 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2444                           unsigned long start, unsigned long end,
2445                           struct page *ref_page)
2446 {
2447         __unmap_hugepage_range(vma, start, end, ref_page);
2448
2449         /*
2450          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2451          * test will fail on a vma being torn down, and not grab a page table
2452          * on its way out.  We're lucky that the flag has such an appropriate
2453          * name, and can in fact be safely cleared here. We could clear it
2454          * before the __unmap_hugepage_range above, but all that's necessary
2455          * is to clear it before releasing the i_mmap_mutex. This works
2456          * because in the context this is called, the VMA is about to be
2457          * destroyed and the i_mmap_mutex is held.
2458          */
2459         vma->vm_flags &= ~VM_MAYSHARE;
2460 }
2461
2462 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2463                           unsigned long end, struct page *ref_page)
2464 {
2465         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2466         __unmap_hugepage_range(vma, start, end, ref_page);
2467         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2468 }
2469
2470 /*
2471  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2472  * mappping it owns the reserve page for. The intention is to unmap the page
2473  * from other VMAs and let the children be SIGKILLed if they are faulting the
2474  * same region.
2475  */
2476 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2477                                 struct page *page, unsigned long address)
2478 {
2479         struct hstate *h = hstate_vma(vma);
2480         struct vm_area_struct *iter_vma;
2481         struct address_space *mapping;
2482         struct prio_tree_iter iter;
2483         pgoff_t pgoff;
2484
2485         /*
2486          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2487          * from page cache lookup which is in HPAGE_SIZE units.
2488          */
2489         address = address & huge_page_mask(h);
2490         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2491                         vma->vm_pgoff;
2492         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2493
2494         /*
2495          * Take the mapping lock for the duration of the table walk. As
2496          * this mapping should be shared between all the VMAs,
2497          * __unmap_hugepage_range() is called as the lock is already held
2498          */
2499         mutex_lock(&mapping->i_mmap_mutex);
2500         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2501                 /* Do not unmap the current VMA */
2502                 if (iter_vma == vma)
2503                         continue;
2504
2505                 /*
2506                  * Unmap the page from other VMAs without their own reserves.
2507                  * They get marked to be SIGKILLed if they fault in these
2508                  * areas. This is because a future no-page fault on this VMA
2509                  * could insert a zeroed page instead of the data existing
2510                  * from the time of fork. This would look like data corruption
2511                  */
2512                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2513                         __unmap_hugepage_range(iter_vma,
2514                                 address, address + huge_page_size(h),
2515                                 page);
2516         }
2517         mutex_unlock(&mapping->i_mmap_mutex);
2518
2519         return 1;
2520 }
2521
2522 /*
2523  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2524  */
2525 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2526                         unsigned long address, pte_t *ptep, pte_t pte,
2527                         struct page *pagecache_page)
2528 {
2529         struct hstate *h = hstate_vma(vma);
2530         struct page *old_page, *new_page;
2531         int avoidcopy;
2532         int outside_reserve = 0;
2533
2534         old_page = pte_page(pte);
2535
2536 retry_avoidcopy:
2537         /* If no-one else is actually using this page, avoid the copy
2538          * and just make the page writable */
2539         avoidcopy = (page_mapcount(old_page) == 1);
2540         if (avoidcopy) {
2541                 if (PageAnon(old_page))
2542                         page_move_anon_rmap(old_page, vma, address);
2543                 set_huge_ptep_writable(vma, address, ptep);
2544                 return 0;
2545         }
2546
2547         /*
2548          * If the process that created a MAP_PRIVATE mapping is about to
2549          * perform a COW due to a shared page count, attempt to satisfy
2550          * the allocation without using the existing reserves. The pagecache
2551          * page is used to determine if the reserve at this address was
2552          * consumed or not. If reserves were used, a partial faulted mapping
2553          * at the time of fork() could consume its reserves on COW instead
2554          * of the full address range.
2555          */
2556         if (!(vma->vm_flags & VM_MAYSHARE) &&
2557                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2558                         old_page != pagecache_page)
2559                 outside_reserve = 1;
2560
2561         page_cache_get(old_page);
2562
2563         /* Drop page_table_lock as buddy allocator may be called */
2564         spin_unlock(&mm->page_table_lock);
2565         new_page = alloc_huge_page(vma, address, outside_reserve);
2566
2567         if (IS_ERR(new_page)) {
2568                 page_cache_release(old_page);
2569
2570                 /*
2571                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2572                  * it is due to references held by a child and an insufficient
2573                  * huge page pool. To guarantee the original mappers
2574                  * reliability, unmap the page from child processes. The child
2575                  * may get SIGKILLed if it later faults.
2576                  */
2577                 if (outside_reserve) {
2578                         BUG_ON(huge_pte_none(pte));
2579                         if (unmap_ref_private(mm, vma, old_page, address)) {
2580                                 BUG_ON(huge_pte_none(pte));
2581                                 spin_lock(&mm->page_table_lock);
2582                                 goto retry_avoidcopy;
2583                         }
2584                         WARN_ON_ONCE(1);
2585                 }
2586
2587                 /* Caller expects lock to be held */
2588                 spin_lock(&mm->page_table_lock);
2589                 return -PTR_ERR(new_page);
2590         }
2591
2592         /*
2593          * When the original hugepage is shared one, it does not have
2594          * anon_vma prepared.
2595          */
2596         if (unlikely(anon_vma_prepare(vma))) {
2597                 page_cache_release(new_page);
2598                 page_cache_release(old_page);
2599                 /* Caller expects lock to be held */
2600                 spin_lock(&mm->page_table_lock);
2601                 return VM_FAULT_OOM;
2602         }
2603
2604         copy_user_huge_page(new_page, old_page, address, vma,
2605                             pages_per_huge_page(h));
2606         __SetPageUptodate(new_page);
2607
2608         /*
2609          * Retake the page_table_lock to check for racing updates
2610          * before the page tables are altered
2611          */
2612         spin_lock(&mm->page_table_lock);
2613         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2614         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2615                 /* Break COW */
2616                 mmu_notifier_invalidate_range_start(mm,
2617                         address & huge_page_mask(h),
2618                         (address & huge_page_mask(h)) + huge_page_size(h));
2619                 huge_ptep_clear_flush(vma, address, ptep);
2620                 set_huge_pte_at(mm, address, ptep,
2621                                 make_huge_pte(vma, new_page, 1));
2622                 page_remove_rmap(old_page);
2623                 hugepage_add_new_anon_rmap(new_page, vma, address);
2624                 /* Make the old page be freed below */
2625                 new_page = old_page;
2626                 mmu_notifier_invalidate_range_end(mm,
2627                         address & huge_page_mask(h),
2628                         (address & huge_page_mask(h)) + huge_page_size(h));
2629         }
2630         page_cache_release(new_page);
2631         page_cache_release(old_page);
2632         return 0;
2633 }
2634
2635 /* Return the pagecache page at a given address within a VMA */
2636 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2637                         struct vm_area_struct *vma, unsigned long address)
2638 {
2639         struct address_space *mapping;
2640         pgoff_t idx;
2641
2642         mapping = vma->vm_file->f_mapping;
2643         idx = vma_hugecache_offset(h, vma, address);
2644
2645         return find_lock_page(mapping, idx);
2646 }
2647
2648 /*
2649  * Return whether there is a pagecache page to back given address within VMA.
2650  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2651  */
2652 static bool hugetlbfs_pagecache_present(struct hstate *h,
2653                         struct vm_area_struct *vma, unsigned long address)
2654 {
2655         struct address_space *mapping;
2656         pgoff_t idx;
2657         struct page *page;
2658
2659         mapping = vma->vm_file->f_mapping;
2660         idx = vma_hugecache_offset(h, vma, address);
2661
2662         page = find_get_page(mapping, idx);
2663         if (page)
2664                 put_page(page);
2665         return page != NULL;
2666 }
2667
2668 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2669                         unsigned long address, pte_t *ptep, unsigned int flags)
2670 {
2671         struct hstate *h = hstate_vma(vma);
2672         int ret = VM_FAULT_SIGBUS;
2673         pgoff_t idx;
2674         unsigned long size;
2675         struct page *page;
2676         struct address_space *mapping;
2677         pte_t new_pte;
2678
2679         /*
2680          * Currently, we are forced to kill the process in the event the
2681          * original mapper has unmapped pages from the child due to a failed
2682          * COW. Warn that such a situation has occurred as it may not be obvious
2683          */
2684         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2685                 printk(KERN_WARNING
2686                         "PID %d killed due to inadequate hugepage pool\n",
2687                         current->pid);
2688                 return ret;
2689         }
2690
2691         mapping = vma->vm_file->f_mapping;
2692         idx = vma_hugecache_offset(h, vma, address);
2693
2694         /*
2695          * Use page lock to guard against racing truncation
2696          * before we get page_table_lock.
2697          */
2698 retry:
2699         page = find_lock_page(mapping, idx);
2700         if (!page) {
2701                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2702                 if (idx >= size)
2703                         goto out;
2704                 page = alloc_huge_page(vma, address, 0);
2705                 if (IS_ERR(page)) {
2706                         ret = -PTR_ERR(page);
2707                         goto out;
2708                 }
2709                 clear_huge_page(page, address, pages_per_huge_page(h));
2710                 __SetPageUptodate(page);
2711
2712                 if (vma->vm_flags & VM_MAYSHARE) {
2713                         int err;
2714                         struct inode *inode = mapping->host;
2715
2716                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2717                         if (err) {
2718                                 put_page(page);
2719                                 if (err == -EEXIST)
2720                                         goto retry;
2721                                 goto out;
2722                         }
2723
2724                         spin_lock(&inode->i_lock);
2725                         inode->i_blocks += blocks_per_huge_page(h);
2726                         spin_unlock(&inode->i_lock);
2727                         page_dup_rmap(page);
2728                 } else {
2729                         lock_page(page);
2730                         if (unlikely(anon_vma_prepare(vma))) {
2731                                 ret = VM_FAULT_OOM;
2732                                 goto backout_unlocked;
2733                         }
2734                         hugepage_add_new_anon_rmap(page, vma, address);
2735                 }
2736         } else {
2737                 /*
2738                  * If memory error occurs between mmap() and fault, some process
2739                  * don't have hwpoisoned swap entry for errored virtual address.
2740                  * So we need to block hugepage fault by PG_hwpoison bit check.
2741                  */
2742                 if (unlikely(PageHWPoison(page))) {
2743                         ret = VM_FAULT_HWPOISON |
2744                               VM_FAULT_SET_HINDEX(h - hstates);
2745                         goto backout_unlocked;
2746                 }
2747                 page_dup_rmap(page);
2748         }
2749
2750         /*
2751          * If we are going to COW a private mapping later, we examine the
2752          * pending reservations for this page now. This will ensure that
2753          * any allocations necessary to record that reservation occur outside
2754          * the spinlock.
2755          */
2756         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2757                 if (vma_needs_reservation(h, vma, address) < 0) {
2758                         ret = VM_FAULT_OOM;
2759                         goto backout_unlocked;
2760                 }
2761
2762         spin_lock(&mm->page_table_lock);
2763         size = i_size_read(mapping->host) >> huge_page_shift(h);
2764         if (idx >= size)
2765                 goto backout;
2766
2767         ret = 0;
2768         if (!huge_pte_none(huge_ptep_get(ptep)))
2769                 goto backout;
2770
2771         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2772                                 && (vma->vm_flags & VM_SHARED)));
2773         set_huge_pte_at(mm, address, ptep, new_pte);
2774
2775         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2776                 /* Optimization, do the COW without a second fault */
2777                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2778         }
2779
2780         spin_unlock(&mm->page_table_lock);
2781         unlock_page(page);
2782 out:
2783         return ret;
2784
2785 backout:
2786         spin_unlock(&mm->page_table_lock);
2787 backout_unlocked:
2788         unlock_page(page);
2789         put_page(page);
2790         goto out;
2791 }
2792
2793 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2794                         unsigned long address, unsigned int flags)
2795 {
2796         pte_t *ptep;
2797         pte_t entry;
2798         int ret;
2799         struct page *page = NULL;
2800         struct page *pagecache_page = NULL;
2801         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2802         struct hstate *h = hstate_vma(vma);
2803         int need_wait_lock = 0;
2804
2805         ptep = huge_pte_offset(mm, address);
2806         if (ptep) {
2807                 entry = huge_ptep_get(ptep);
2808                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2809                         migration_entry_wait_huge(mm, ptep);
2810                         return 0;
2811                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2812                         return VM_FAULT_HWPOISON_LARGE |
2813                                VM_FAULT_SET_HINDEX(h - hstates);
2814         }
2815
2816         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2817         if (!ptep)
2818                 return VM_FAULT_OOM;
2819
2820         /*
2821          * Serialize hugepage allocation and instantiation, so that we don't
2822          * get spurious allocation failures if two CPUs race to instantiate
2823          * the same page in the page cache.
2824          */
2825         mutex_lock(&hugetlb_instantiation_mutex);
2826         entry = huge_ptep_get(ptep);
2827         if (huge_pte_none(entry)) {
2828                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2829                 goto out_mutex;
2830         }
2831
2832         ret = 0;
2833
2834         /*
2835          * entry could be a migration/hwpoison entry at this point, so this
2836          * check prevents the kernel from going below assuming that we have
2837          * a active hugepage in pagecache. This goto expects the 2nd page fault,
2838          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2839          * handle it.
2840          */
2841         if (!pte_present(entry))
2842                 goto out_mutex;
2843
2844         /*
2845          * If we are going to COW the mapping later, we examine the pending
2846          * reservations for this page now. This will ensure that any
2847          * allocations necessary to record that reservation occur outside the
2848          * spinlock. For private mappings, we also lookup the pagecache
2849          * page now as it is used to determine if a reservation has been
2850          * consumed.
2851          */
2852         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2853                 if (vma_needs_reservation(h, vma, address) < 0) {
2854                         ret = VM_FAULT_OOM;
2855                         goto out_mutex;
2856                 }
2857
2858                 if (!(vma->vm_flags & VM_MAYSHARE))
2859                         pagecache_page = hugetlbfs_pagecache_page(h,
2860                                                                 vma, address);
2861         }
2862
2863         spin_lock(&mm->page_table_lock);
2864         /* Check for a racing update before calling hugetlb_cow */
2865         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2866                 goto out_page_table_lock;
2867
2868         /*
2869          * hugetlb_cow() requires page locks of pte_page(entry) and
2870          * pagecache_page, so here we need take the former one
2871          * when page != pagecache_page or !pagecache_page.
2872          */
2873         page = pte_page(entry);
2874         if (page != pagecache_page)
2875                 if (!trylock_page(page)) {
2876                         need_wait_lock = 1;
2877                         goto out_page_table_lock;
2878                 }
2879
2880         get_page(page);
2881
2882         if (flags & FAULT_FLAG_WRITE) {
2883                 if (!pte_write(entry)) {
2884                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2885                                                         pagecache_page);
2886                         goto out_put_page;
2887                 }
2888                 entry = pte_mkdirty(entry);
2889         }
2890         entry = pte_mkyoung(entry);
2891         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2892                                                 flags & FAULT_FLAG_WRITE))
2893                 update_mmu_cache(vma, address, ptep);
2894 out_put_page:
2895         if (page != pagecache_page)
2896                 unlock_page(page);
2897         put_page(page);
2898 out_page_table_lock:
2899         spin_unlock(&mm->page_table_lock);
2900
2901         if (pagecache_page) {
2902                 unlock_page(pagecache_page);
2903                 put_page(pagecache_page);
2904         }
2905 out_mutex:
2906         mutex_unlock(&hugetlb_instantiation_mutex);
2907
2908         /*
2909          * Generally it's safe to hold refcount during waiting page lock. But
2910          * here we just wait to defer the next page fault to avoid busy loop and
2911          * the page is not used after unlocked before returning from the current
2912          * page fault. So we are safe from accessing freed page, even if we wait
2913          * here without taking refcount.
2914          */
2915         if (need_wait_lock)
2916                 wait_on_page_locked(page);
2917         return ret;
2918 }
2919
2920 /* Can be overriden by architectures */
2921 __attribute__((weak)) struct page *
2922 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2923                pud_t *pud, int write)
2924 {
2925         BUG();
2926         return NULL;
2927 }
2928
2929 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930                         struct page **pages, struct vm_area_struct **vmas,
2931                         unsigned long *position, int *length, int i,
2932                         unsigned int flags)
2933 {
2934         unsigned long pfn_offset;
2935         unsigned long vaddr = *position;
2936         int remainder = *length;
2937         struct hstate *h = hstate_vma(vma);
2938
2939         spin_lock(&mm->page_table_lock);
2940         while (vaddr < vma->vm_end && remainder) {
2941                 pte_t *pte;
2942                 int absent;
2943                 struct page *page;
2944
2945                 /*
2946                  * Some archs (sparc64, sh*) have multiple pte_ts to
2947                  * each hugepage.  We have to make sure we get the
2948                  * first, for the page indexing below to work.
2949                  */
2950                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2951                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2952
2953                 /*
2954                  * When coredumping, it suits get_dump_page if we just return
2955                  * an error where there's an empty slot with no huge pagecache
2956                  * to back it.  This way, we avoid allocating a hugepage, and
2957                  * the sparse dumpfile avoids allocating disk blocks, but its
2958                  * huge holes still show up with zeroes where they need to be.
2959                  */
2960                 if (absent && (flags & FOLL_DUMP) &&
2961                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2962                         remainder = 0;
2963                         break;
2964                 }
2965
2966                 /*
2967                  * We need call hugetlb_fault for both hugepages under migration
2968                  * (in which case hugetlb_fault waits for the migration,) and
2969                  * hwpoisoned hugepages (in which case we need to prevent the
2970                  * caller from accessing to them.) In order to do this, we use
2971                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2972                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2973                  * both cases, and because we can't follow correct pages
2974                  * directly from any kind of swap entries.
2975                  */
2976                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2977                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2978                         int ret;
2979
2980                         spin_unlock(&mm->page_table_lock);
2981                         ret = hugetlb_fault(mm, vma, vaddr,
2982                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2983                         spin_lock(&mm->page_table_lock);
2984                         if (!(ret & VM_FAULT_ERROR))
2985                                 continue;
2986
2987                         remainder = 0;
2988                         break;
2989                 }
2990
2991                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2992                 page = pte_page(huge_ptep_get(pte));
2993 same_page:
2994                 if (pages) {
2995                         pages[i] = mem_map_offset(page, pfn_offset);
2996                         get_page(pages[i]);
2997                 }
2998
2999                 if (vmas)
3000                         vmas[i] = vma;
3001
3002                 vaddr += PAGE_SIZE;
3003                 ++pfn_offset;
3004                 --remainder;
3005                 ++i;
3006                 if (vaddr < vma->vm_end && remainder &&
3007                                 pfn_offset < pages_per_huge_page(h)) {
3008                         /*
3009                          * We use pfn_offset to avoid touching the pageframes
3010                          * of this compound page.
3011                          */
3012                         goto same_page;
3013                 }
3014         }
3015         spin_unlock(&mm->page_table_lock);
3016         *length = remainder;
3017         *position = vaddr;
3018
3019         return i ? i : -EFAULT;
3020 }
3021
3022 void hugetlb_change_protection(struct vm_area_struct *vma,
3023                 unsigned long address, unsigned long end, pgprot_t newprot)
3024 {
3025         struct mm_struct *mm = vma->vm_mm;
3026         unsigned long start = address;
3027         pte_t *ptep;
3028         pte_t pte;
3029         struct hstate *h = hstate_vma(vma);
3030
3031         BUG_ON(address >= end);
3032         flush_cache_range(vma, address, end);
3033
3034         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3035         spin_lock(&mm->page_table_lock);
3036         for (; address < end; address += huge_page_size(h)) {
3037                 ptep = huge_pte_offset(mm, address);
3038                 if (!ptep)
3039                         continue;
3040                 if (huge_pmd_unshare(mm, &address, ptep))
3041                         continue;
3042                 pte = huge_ptep_get(ptep);
3043                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
3044                         continue;
3045                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3046                         swp_entry_t entry = pte_to_swp_entry(pte);
3047
3048                         if (is_write_migration_entry(entry)) {
3049                                 pte_t newpte;
3050
3051                                 make_migration_entry_read(&entry);
3052                                 newpte = swp_entry_to_pte(entry);
3053                                 set_huge_pte_at(mm, address, ptep, newpte);
3054                         }
3055                         continue;
3056                 }
3057                 if (!huge_pte_none(pte)) {
3058                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3059                         pte = pte_mkhuge(pte_modify(pte, newprot));
3060                         set_huge_pte_at(mm, address, ptep, pte);
3061                 }
3062         }
3063         spin_unlock(&mm->page_table_lock);
3064         /*
3065          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3066          * may have cleared our pud entry and done put_page on the page table:
3067          * once we release i_mmap_mutex, another task can do the final put_page
3068          * and that page table be reused and filled with junk.
3069          */
3070         flush_tlb_range(vma, start, end);
3071         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3072 }
3073
3074 int hugetlb_reserve_pages(struct inode *inode,
3075                                         long from, long to,
3076                                         struct vm_area_struct *vma,
3077                                         vm_flags_t vm_flags)
3078 {
3079         long ret, chg;
3080         struct hstate *h = hstate_inode(inode);
3081         struct hugepage_subpool *spool = subpool_inode(inode);
3082
3083         /*
3084          * Only apply hugepage reservation if asked. At fault time, an
3085          * attempt will be made for VM_NORESERVE to allocate a page
3086          * without using reserves
3087          */
3088         if (vm_flags & VM_NORESERVE)
3089                 return 0;
3090
3091         /*
3092          * Shared mappings base their reservation on the number of pages that
3093          * are already allocated on behalf of the file. Private mappings need
3094          * to reserve the full area even if read-only as mprotect() may be
3095          * called to make the mapping read-write. Assume !vma is a shm mapping
3096          */
3097         if (!vma || vma->vm_flags & VM_MAYSHARE)
3098                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3099         else {
3100                 struct resv_map *resv_map = resv_map_alloc();
3101                 if (!resv_map)
3102                         return -ENOMEM;
3103
3104                 chg = to - from;
3105
3106                 set_vma_resv_map(vma, resv_map);
3107                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3108         }
3109
3110         if (chg < 0) {
3111                 ret = chg;
3112                 goto out_err;
3113         }
3114
3115         /* There must be enough pages in the subpool for the mapping */
3116         if (hugepage_subpool_get_pages(spool, chg)) {
3117                 ret = -ENOSPC;
3118                 goto out_err;
3119         }
3120
3121         /*
3122          * Check enough hugepages are available for the reservation.
3123          * Hand the pages back to the subpool if there are not
3124          */
3125         ret = hugetlb_acct_memory(h, chg);
3126         if (ret < 0) {
3127                 hugepage_subpool_put_pages(spool, chg);
3128                 goto out_err;
3129         }
3130
3131         /*
3132          * Account for the reservations made. Shared mappings record regions
3133          * that have reservations as they are shared by multiple VMAs.
3134          * When the last VMA disappears, the region map says how much
3135          * the reservation was and the page cache tells how much of
3136          * the reservation was consumed. Private mappings are per-VMA and
3137          * only the consumed reservations are tracked. When the VMA
3138          * disappears, the original reservation is the VMA size and the
3139          * consumed reservations are stored in the map. Hence, nothing
3140          * else has to be done for private mappings here
3141          */
3142         if (!vma || vma->vm_flags & VM_MAYSHARE)
3143                 region_add(&inode->i_mapping->private_list, from, to);
3144         return 0;
3145 out_err:
3146         if (vma)
3147                 resv_map_put(vma);
3148         return ret;
3149 }
3150
3151 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3152 {
3153         struct hstate *h = hstate_inode(inode);
3154         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3155         struct hugepage_subpool *spool = subpool_inode(inode);
3156
3157         spin_lock(&inode->i_lock);
3158         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3159         spin_unlock(&inode->i_lock);
3160
3161         hugepage_subpool_put_pages(spool, (chg - freed));
3162         hugetlb_acct_memory(h, -(chg - freed));
3163 }
3164
3165 #ifdef CONFIG_MEMORY_FAILURE
3166
3167 /* Should be called in hugetlb_lock */
3168 static int is_hugepage_on_freelist(struct page *hpage)
3169 {
3170         struct page *page;
3171         struct page *tmp;
3172         struct hstate *h = page_hstate(hpage);
3173         int nid = page_to_nid(hpage);
3174
3175         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3176                 if (page == hpage)
3177                         return 1;
3178         return 0;
3179 }
3180
3181 /*
3182  * This function is called from memory failure code.
3183  * Assume the caller holds page lock of the head page.
3184  */
3185 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3186 {
3187         struct hstate *h = page_hstate(hpage);
3188         int nid = page_to_nid(hpage);
3189         int ret = -EBUSY;
3190
3191         spin_lock(&hugetlb_lock);
3192         if (is_hugepage_on_freelist(hpage)) {
3193                 list_del(&hpage->lru);
3194                 set_page_refcounted(hpage);
3195                 h->free_huge_pages--;
3196                 h->free_huge_pages_node[nid]--;
3197                 ret = 0;
3198         }
3199         spin_unlock(&hugetlb_lock);
3200         return ret;
3201 }
3202 #endif