hugetlbfs: handle pages higher order than MAX_ORDER
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20
21 #include <asm/page.h>
22 #include <asm/pgtable.h>
23 #include <asm/io.h>
24
25 #include <linux/hugetlb.h>
26 #include "internal.h"
27
28 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
29 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
30 unsigned long hugepages_treat_as_movable;
31
32 static int max_hstate;
33 unsigned int default_hstate_idx;
34 struct hstate hstates[HUGE_MAX_HSTATE];
35
36 __initdata LIST_HEAD(huge_boot_pages);
37
38 /* for command line parsing */
39 static struct hstate * __initdata parsed_hstate;
40 static unsigned long __initdata default_hstate_max_huge_pages;
41 static unsigned long __initdata default_hstate_size;
42
43 #define for_each_hstate(h) \
44         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
45
46 /*
47  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
48  */
49 static DEFINE_SPINLOCK(hugetlb_lock);
50
51 /*
52  * Region tracking -- allows tracking of reservations and instantiated pages
53  *                    across the pages in a mapping.
54  *
55  * The region data structures are protected by a combination of the mmap_sem
56  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
57  * must either hold the mmap_sem for write, or the mmap_sem for read and
58  * the hugetlb_instantiation mutex:
59  *
60  *      down_write(&mm->mmap_sem);
61  * or
62  *      down_read(&mm->mmap_sem);
63  *      mutex_lock(&hugetlb_instantiation_mutex);
64  */
65 struct file_region {
66         struct list_head link;
67         long from;
68         long to;
69 };
70
71 static long region_add(struct list_head *head, long f, long t)
72 {
73         struct file_region *rg, *nrg, *trg;
74
75         /* Locate the region we are either in or before. */
76         list_for_each_entry(rg, head, link)
77                 if (f <= rg->to)
78                         break;
79
80         /* Round our left edge to the current segment if it encloses us. */
81         if (f > rg->from)
82                 f = rg->from;
83
84         /* Check for and consume any regions we now overlap with. */
85         nrg = rg;
86         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
87                 if (&rg->link == head)
88                         break;
89                 if (rg->from > t)
90                         break;
91
92                 /* If this area reaches higher then extend our area to
93                  * include it completely.  If this is not the first area
94                  * which we intend to reuse, free it. */
95                 if (rg->to > t)
96                         t = rg->to;
97                 if (rg != nrg) {
98                         list_del(&rg->link);
99                         kfree(rg);
100                 }
101         }
102         nrg->from = f;
103         nrg->to = t;
104         return 0;
105 }
106
107 static long region_chg(struct list_head *head, long f, long t)
108 {
109         struct file_region *rg, *nrg;
110         long chg = 0;
111
112         /* Locate the region we are before or in. */
113         list_for_each_entry(rg, head, link)
114                 if (f <= rg->to)
115                         break;
116
117         /* If we are below the current region then a new region is required.
118          * Subtle, allocate a new region at the position but make it zero
119          * size such that we can guarantee to record the reservation. */
120         if (&rg->link == head || t < rg->from) {
121                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
122                 if (!nrg)
123                         return -ENOMEM;
124                 nrg->from = f;
125                 nrg->to   = f;
126                 INIT_LIST_HEAD(&nrg->link);
127                 list_add(&nrg->link, rg->link.prev);
128
129                 return t - f;
130         }
131
132         /* Round our left edge to the current segment if it encloses us. */
133         if (f > rg->from)
134                 f = rg->from;
135         chg = t - f;
136
137         /* Check for and consume any regions we now overlap with. */
138         list_for_each_entry(rg, rg->link.prev, link) {
139                 if (&rg->link == head)
140                         break;
141                 if (rg->from > t)
142                         return chg;
143
144                 /* We overlap with this area, if it extends futher than
145                  * us then we must extend ourselves.  Account for its
146                  * existing reservation. */
147                 if (rg->to > t) {
148                         chg += rg->to - t;
149                         t = rg->to;
150                 }
151                 chg -= rg->to - rg->from;
152         }
153         return chg;
154 }
155
156 static long region_truncate(struct list_head *head, long end)
157 {
158         struct file_region *rg, *trg;
159         long chg = 0;
160
161         /* Locate the region we are either in or before. */
162         list_for_each_entry(rg, head, link)
163                 if (end <= rg->to)
164                         break;
165         if (&rg->link == head)
166                 return 0;
167
168         /* If we are in the middle of a region then adjust it. */
169         if (end > rg->from) {
170                 chg = rg->to - end;
171                 rg->to = end;
172                 rg = list_entry(rg->link.next, typeof(*rg), link);
173         }
174
175         /* Drop any remaining regions. */
176         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
177                 if (&rg->link == head)
178                         break;
179                 chg += rg->to - rg->from;
180                 list_del(&rg->link);
181                 kfree(rg);
182         }
183         return chg;
184 }
185
186 static long region_count(struct list_head *head, long f, long t)
187 {
188         struct file_region *rg;
189         long chg = 0;
190
191         /* Locate each segment we overlap with, and count that overlap. */
192         list_for_each_entry(rg, head, link) {
193                 int seg_from;
194                 int seg_to;
195
196                 if (rg->to <= f)
197                         continue;
198                 if (rg->from >= t)
199                         break;
200
201                 seg_from = max(rg->from, f);
202                 seg_to = min(rg->to, t);
203
204                 chg += seg_to - seg_from;
205         }
206
207         return chg;
208 }
209
210 /*
211  * Convert the address within this vma to the page offset within
212  * the mapping, in pagecache page units; huge pages here.
213  */
214 static pgoff_t vma_hugecache_offset(struct hstate *h,
215                         struct vm_area_struct *vma, unsigned long address)
216 {
217         return ((address - vma->vm_start) >> huge_page_shift(h)) +
218                         (vma->vm_pgoff >> huge_page_order(h));
219 }
220
221 /*
222  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
223  * bits of the reservation map pointer, which are always clear due to
224  * alignment.
225  */
226 #define HPAGE_RESV_OWNER    (1UL << 0)
227 #define HPAGE_RESV_UNMAPPED (1UL << 1)
228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229
230 /*
231  * These helpers are used to track how many pages are reserved for
232  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233  * is guaranteed to have their future faults succeed.
234  *
235  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236  * the reserve counters are updated with the hugetlb_lock held. It is safe
237  * to reset the VMA at fork() time as it is not in use yet and there is no
238  * chance of the global counters getting corrupted as a result of the values.
239  *
240  * The private mapping reservation is represented in a subtly different
241  * manner to a shared mapping.  A shared mapping has a region map associated
242  * with the underlying file, this region map represents the backing file
243  * pages which have ever had a reservation assigned which this persists even
244  * after the page is instantiated.  A private mapping has a region map
245  * associated with the original mmap which is attached to all VMAs which
246  * reference it, this region map represents those offsets which have consumed
247  * reservation ie. where pages have been instantiated.
248  */
249 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
250 {
251         return (unsigned long)vma->vm_private_data;
252 }
253
254 static void set_vma_private_data(struct vm_area_struct *vma,
255                                                         unsigned long value)
256 {
257         vma->vm_private_data = (void *)value;
258 }
259
260 struct resv_map {
261         struct kref refs;
262         struct list_head regions;
263 };
264
265 struct resv_map *resv_map_alloc(void)
266 {
267         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
268         if (!resv_map)
269                 return NULL;
270
271         kref_init(&resv_map->refs);
272         INIT_LIST_HEAD(&resv_map->regions);
273
274         return resv_map;
275 }
276
277 void resv_map_release(struct kref *ref)
278 {
279         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
280
281         /* Clear out any active regions before we release the map. */
282         region_truncate(&resv_map->regions, 0);
283         kfree(resv_map);
284 }
285
286 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
287 {
288         VM_BUG_ON(!is_vm_hugetlb_page(vma));
289         if (!(vma->vm_flags & VM_SHARED))
290                 return (struct resv_map *)(get_vma_private_data(vma) &
291                                                         ~HPAGE_RESV_MASK);
292         return 0;
293 }
294
295 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
296 {
297         VM_BUG_ON(!is_vm_hugetlb_page(vma));
298         VM_BUG_ON(vma->vm_flags & VM_SHARED);
299
300         set_vma_private_data(vma, (get_vma_private_data(vma) &
301                                 HPAGE_RESV_MASK) | (unsigned long)map);
302 }
303
304 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
305 {
306         VM_BUG_ON(!is_vm_hugetlb_page(vma));
307         VM_BUG_ON(vma->vm_flags & VM_SHARED);
308
309         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
310 }
311
312 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
313 {
314         VM_BUG_ON(!is_vm_hugetlb_page(vma));
315
316         return (get_vma_private_data(vma) & flag) != 0;
317 }
318
319 /* Decrement the reserved pages in the hugepage pool by one */
320 static void decrement_hugepage_resv_vma(struct hstate *h,
321                         struct vm_area_struct *vma)
322 {
323         if (vma->vm_flags & VM_NORESERVE)
324                 return;
325
326         if (vma->vm_flags & VM_SHARED) {
327                 /* Shared mappings always use reserves */
328                 h->resv_huge_pages--;
329         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
330                 /*
331                  * Only the process that called mmap() has reserves for
332                  * private mappings.
333                  */
334                 h->resv_huge_pages--;
335         }
336 }
337
338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
340 {
341         VM_BUG_ON(!is_vm_hugetlb_page(vma));
342         if (!(vma->vm_flags & VM_SHARED))
343                 vma->vm_private_data = (void *)0;
344 }
345
346 /* Returns true if the VMA has associated reserve pages */
347 static int vma_has_reserves(struct vm_area_struct *vma)
348 {
349         if (vma->vm_flags & VM_SHARED)
350                 return 1;
351         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
352                 return 1;
353         return 0;
354 }
355
356 static void clear_gigantic_page(struct page *page,
357                         unsigned long addr, unsigned long sz)
358 {
359         int i;
360         struct page *p = page;
361
362         might_sleep();
363         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
364                 cond_resched();
365                 clear_user_highpage(p, addr + i * PAGE_SIZE);
366         }
367 }
368 static void clear_huge_page(struct page *page,
369                         unsigned long addr, unsigned long sz)
370 {
371         int i;
372
373         if (unlikely(sz > MAX_ORDER_NR_PAGES))
374                 return clear_gigantic_page(page, addr, sz);
375
376         might_sleep();
377         for (i = 0; i < sz/PAGE_SIZE; i++) {
378                 cond_resched();
379                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
380         }
381 }
382
383 static void copy_gigantic_page(struct page *dst, struct page *src,
384                            unsigned long addr, struct vm_area_struct *vma)
385 {
386         int i;
387         struct hstate *h = hstate_vma(vma);
388         struct page *dst_base = dst;
389         struct page *src_base = src;
390         might_sleep();
391         for (i = 0; i < pages_per_huge_page(h); ) {
392                 cond_resched();
393                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
394
395                 i++;
396                 dst = mem_map_next(dst, dst_base, i);
397                 src = mem_map_next(src, src_base, i);
398         }
399 }
400 static void copy_huge_page(struct page *dst, struct page *src,
401                            unsigned long addr, struct vm_area_struct *vma)
402 {
403         int i;
404         struct hstate *h = hstate_vma(vma);
405
406         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
407                 return copy_gigantic_page(dst, src, addr, vma);
408
409         might_sleep();
410         for (i = 0; i < pages_per_huge_page(h); i++) {
411                 cond_resched();
412                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
413         }
414 }
415
416 static void enqueue_huge_page(struct hstate *h, struct page *page)
417 {
418         int nid = page_to_nid(page);
419         list_add(&page->lru, &h->hugepage_freelists[nid]);
420         h->free_huge_pages++;
421         h->free_huge_pages_node[nid]++;
422 }
423
424 static struct page *dequeue_huge_page(struct hstate *h)
425 {
426         int nid;
427         struct page *page = NULL;
428
429         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
430                 if (!list_empty(&h->hugepage_freelists[nid])) {
431                         page = list_entry(h->hugepage_freelists[nid].next,
432                                           struct page, lru);
433                         list_del(&page->lru);
434                         h->free_huge_pages--;
435                         h->free_huge_pages_node[nid]--;
436                         break;
437                 }
438         }
439         return page;
440 }
441
442 static struct page *dequeue_huge_page_vma(struct hstate *h,
443                                 struct vm_area_struct *vma,
444                                 unsigned long address, int avoid_reserve)
445 {
446         int nid;
447         struct page *page = NULL;
448         struct mempolicy *mpol;
449         nodemask_t *nodemask;
450         struct zonelist *zonelist = huge_zonelist(vma, address,
451                                         htlb_alloc_mask, &mpol, &nodemask);
452         struct zone *zone;
453         struct zoneref *z;
454
455         /*
456          * A child process with MAP_PRIVATE mappings created by their parent
457          * have no page reserves. This check ensures that reservations are
458          * not "stolen". The child may still get SIGKILLed
459          */
460         if (!vma_has_reserves(vma) &&
461                         h->free_huge_pages - h->resv_huge_pages == 0)
462                 return NULL;
463
464         /* If reserves cannot be used, ensure enough pages are in the pool */
465         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
466                 return NULL;
467
468         for_each_zone_zonelist_nodemask(zone, z, zonelist,
469                                                 MAX_NR_ZONES - 1, nodemask) {
470                 nid = zone_to_nid(zone);
471                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
472                     !list_empty(&h->hugepage_freelists[nid])) {
473                         page = list_entry(h->hugepage_freelists[nid].next,
474                                           struct page, lru);
475                         list_del(&page->lru);
476                         h->free_huge_pages--;
477                         h->free_huge_pages_node[nid]--;
478
479                         if (!avoid_reserve)
480                                 decrement_hugepage_resv_vma(h, vma);
481
482                         break;
483                 }
484         }
485         mpol_cond_put(mpol);
486         return page;
487 }
488
489 static void update_and_free_page(struct hstate *h, struct page *page)
490 {
491         int i;
492
493         VM_BUG_ON(h->order >= MAX_ORDER);
494
495         h->nr_huge_pages--;
496         h->nr_huge_pages_node[page_to_nid(page)]--;
497         for (i = 0; i < pages_per_huge_page(h); i++) {
498                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
499                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
500                                 1 << PG_private | 1<< PG_writeback);
501         }
502         set_compound_page_dtor(page, NULL);
503         set_page_refcounted(page);
504         arch_release_hugepage(page);
505         __free_pages(page, huge_page_order(h));
506 }
507
508 struct hstate *size_to_hstate(unsigned long size)
509 {
510         struct hstate *h;
511
512         for_each_hstate(h) {
513                 if (huge_page_size(h) == size)
514                         return h;
515         }
516         return NULL;
517 }
518
519 static void free_huge_page(struct page *page)
520 {
521         /*
522          * Can't pass hstate in here because it is called from the
523          * compound page destructor.
524          */
525         struct hstate *h = page_hstate(page);
526         int nid = page_to_nid(page);
527         struct address_space *mapping;
528
529         mapping = (struct address_space *) page_private(page);
530         set_page_private(page, 0);
531         BUG_ON(page_count(page));
532         INIT_LIST_HEAD(&page->lru);
533
534         spin_lock(&hugetlb_lock);
535         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
536                 update_and_free_page(h, page);
537                 h->surplus_huge_pages--;
538                 h->surplus_huge_pages_node[nid]--;
539         } else {
540                 enqueue_huge_page(h, page);
541         }
542         spin_unlock(&hugetlb_lock);
543         if (mapping)
544                 hugetlb_put_quota(mapping, 1);
545 }
546
547 /*
548  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
549  * balanced by operating on them in a round-robin fashion.
550  * Returns 1 if an adjustment was made.
551  */
552 static int adjust_pool_surplus(struct hstate *h, int delta)
553 {
554         static int prev_nid;
555         int nid = prev_nid;
556         int ret = 0;
557
558         VM_BUG_ON(delta != -1 && delta != 1);
559         do {
560                 nid = next_node(nid, node_online_map);
561                 if (nid == MAX_NUMNODES)
562                         nid = first_node(node_online_map);
563
564                 /* To shrink on this node, there must be a surplus page */
565                 if (delta < 0 && !h->surplus_huge_pages_node[nid])
566                         continue;
567                 /* Surplus cannot exceed the total number of pages */
568                 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
569                                                 h->nr_huge_pages_node[nid])
570                         continue;
571
572                 h->surplus_huge_pages += delta;
573                 h->surplus_huge_pages_node[nid] += delta;
574                 ret = 1;
575                 break;
576         } while (nid != prev_nid);
577
578         prev_nid = nid;
579         return ret;
580 }
581
582 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
583 {
584         set_compound_page_dtor(page, free_huge_page);
585         spin_lock(&hugetlb_lock);
586         h->nr_huge_pages++;
587         h->nr_huge_pages_node[nid]++;
588         spin_unlock(&hugetlb_lock);
589         put_page(page); /* free it into the hugepage allocator */
590 }
591
592 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
593 {
594         struct page *page;
595
596         if (h->order >= MAX_ORDER)
597                 return NULL;
598
599         page = alloc_pages_node(nid,
600                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
601                                                 __GFP_REPEAT|__GFP_NOWARN,
602                 huge_page_order(h));
603         if (page) {
604                 if (arch_prepare_hugepage(page)) {
605                         __free_pages(page, huge_page_order(h));
606                         return NULL;
607                 }
608                 prep_new_huge_page(h, page, nid);
609         }
610
611         return page;
612 }
613
614 /*
615  * Use a helper variable to find the next node and then
616  * copy it back to hugetlb_next_nid afterwards:
617  * otherwise there's a window in which a racer might
618  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
619  * But we don't need to use a spin_lock here: it really
620  * doesn't matter if occasionally a racer chooses the
621  * same nid as we do.  Move nid forward in the mask even
622  * if we just successfully allocated a hugepage so that
623  * the next caller gets hugepages on the next node.
624  */
625 static int hstate_next_node(struct hstate *h)
626 {
627         int next_nid;
628         next_nid = next_node(h->hugetlb_next_nid, node_online_map);
629         if (next_nid == MAX_NUMNODES)
630                 next_nid = first_node(node_online_map);
631         h->hugetlb_next_nid = next_nid;
632         return next_nid;
633 }
634
635 static int alloc_fresh_huge_page(struct hstate *h)
636 {
637         struct page *page;
638         int start_nid;
639         int next_nid;
640         int ret = 0;
641
642         start_nid = h->hugetlb_next_nid;
643
644         do {
645                 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
646                 if (page)
647                         ret = 1;
648                 next_nid = hstate_next_node(h);
649         } while (!page && h->hugetlb_next_nid != start_nid);
650
651         if (ret)
652                 count_vm_event(HTLB_BUDDY_PGALLOC);
653         else
654                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
655
656         return ret;
657 }
658
659 static struct page *alloc_buddy_huge_page(struct hstate *h,
660                         struct vm_area_struct *vma, unsigned long address)
661 {
662         struct page *page;
663         unsigned int nid;
664
665         if (h->order >= MAX_ORDER)
666                 return NULL;
667
668         /*
669          * Assume we will successfully allocate the surplus page to
670          * prevent racing processes from causing the surplus to exceed
671          * overcommit
672          *
673          * This however introduces a different race, where a process B
674          * tries to grow the static hugepage pool while alloc_pages() is
675          * called by process A. B will only examine the per-node
676          * counters in determining if surplus huge pages can be
677          * converted to normal huge pages in adjust_pool_surplus(). A
678          * won't be able to increment the per-node counter, until the
679          * lock is dropped by B, but B doesn't drop hugetlb_lock until
680          * no more huge pages can be converted from surplus to normal
681          * state (and doesn't try to convert again). Thus, we have a
682          * case where a surplus huge page exists, the pool is grown, and
683          * the surplus huge page still exists after, even though it
684          * should just have been converted to a normal huge page. This
685          * does not leak memory, though, as the hugepage will be freed
686          * once it is out of use. It also does not allow the counters to
687          * go out of whack in adjust_pool_surplus() as we don't modify
688          * the node values until we've gotten the hugepage and only the
689          * per-node value is checked there.
690          */
691         spin_lock(&hugetlb_lock);
692         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
693                 spin_unlock(&hugetlb_lock);
694                 return NULL;
695         } else {
696                 h->nr_huge_pages++;
697                 h->surplus_huge_pages++;
698         }
699         spin_unlock(&hugetlb_lock);
700
701         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
702                                         __GFP_REPEAT|__GFP_NOWARN,
703                                         huge_page_order(h));
704
705         if (page && arch_prepare_hugepage(page)) {
706                 __free_pages(page, huge_page_order(h));
707                 return NULL;
708         }
709
710         spin_lock(&hugetlb_lock);
711         if (page) {
712                 /*
713                  * This page is now managed by the hugetlb allocator and has
714                  * no users -- drop the buddy allocator's reference.
715                  */
716                 put_page_testzero(page);
717                 VM_BUG_ON(page_count(page));
718                 nid = page_to_nid(page);
719                 set_compound_page_dtor(page, free_huge_page);
720                 /*
721                  * We incremented the global counters already
722                  */
723                 h->nr_huge_pages_node[nid]++;
724                 h->surplus_huge_pages_node[nid]++;
725                 __count_vm_event(HTLB_BUDDY_PGALLOC);
726         } else {
727                 h->nr_huge_pages--;
728                 h->surplus_huge_pages--;
729                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
730         }
731         spin_unlock(&hugetlb_lock);
732
733         return page;
734 }
735
736 /*
737  * Increase the hugetlb pool such that it can accomodate a reservation
738  * of size 'delta'.
739  */
740 static int gather_surplus_pages(struct hstate *h, int delta)
741 {
742         struct list_head surplus_list;
743         struct page *page, *tmp;
744         int ret, i;
745         int needed, allocated;
746
747         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
748         if (needed <= 0) {
749                 h->resv_huge_pages += delta;
750                 return 0;
751         }
752
753         allocated = 0;
754         INIT_LIST_HEAD(&surplus_list);
755
756         ret = -ENOMEM;
757 retry:
758         spin_unlock(&hugetlb_lock);
759         for (i = 0; i < needed; i++) {
760                 page = alloc_buddy_huge_page(h, NULL, 0);
761                 if (!page) {
762                         /*
763                          * We were not able to allocate enough pages to
764                          * satisfy the entire reservation so we free what
765                          * we've allocated so far.
766                          */
767                         spin_lock(&hugetlb_lock);
768                         needed = 0;
769                         goto free;
770                 }
771
772                 list_add(&page->lru, &surplus_list);
773         }
774         allocated += needed;
775
776         /*
777          * After retaking hugetlb_lock, we need to recalculate 'needed'
778          * because either resv_huge_pages or free_huge_pages may have changed.
779          */
780         spin_lock(&hugetlb_lock);
781         needed = (h->resv_huge_pages + delta) -
782                         (h->free_huge_pages + allocated);
783         if (needed > 0)
784                 goto retry;
785
786         /*
787          * The surplus_list now contains _at_least_ the number of extra pages
788          * needed to accomodate the reservation.  Add the appropriate number
789          * of pages to the hugetlb pool and free the extras back to the buddy
790          * allocator.  Commit the entire reservation here to prevent another
791          * process from stealing the pages as they are added to the pool but
792          * before they are reserved.
793          */
794         needed += allocated;
795         h->resv_huge_pages += delta;
796         ret = 0;
797 free:
798         /* Free the needed pages to the hugetlb pool */
799         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
800                 if ((--needed) < 0)
801                         break;
802                 list_del(&page->lru);
803                 enqueue_huge_page(h, page);
804         }
805
806         /* Free unnecessary surplus pages to the buddy allocator */
807         if (!list_empty(&surplus_list)) {
808                 spin_unlock(&hugetlb_lock);
809                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
810                         list_del(&page->lru);
811                         /*
812                          * The page has a reference count of zero already, so
813                          * call free_huge_page directly instead of using
814                          * put_page.  This must be done with hugetlb_lock
815                          * unlocked which is safe because free_huge_page takes
816                          * hugetlb_lock before deciding how to free the page.
817                          */
818                         free_huge_page(page);
819                 }
820                 spin_lock(&hugetlb_lock);
821         }
822
823         return ret;
824 }
825
826 /*
827  * When releasing a hugetlb pool reservation, any surplus pages that were
828  * allocated to satisfy the reservation must be explicitly freed if they were
829  * never used.
830  */
831 static void return_unused_surplus_pages(struct hstate *h,
832                                         unsigned long unused_resv_pages)
833 {
834         static int nid = -1;
835         struct page *page;
836         unsigned long nr_pages;
837
838         /*
839          * We want to release as many surplus pages as possible, spread
840          * evenly across all nodes. Iterate across all nodes until we
841          * can no longer free unreserved surplus pages. This occurs when
842          * the nodes with surplus pages have no free pages.
843          */
844         unsigned long remaining_iterations = num_online_nodes();
845
846         /* Uncommit the reservation */
847         h->resv_huge_pages -= unused_resv_pages;
848
849         /* Cannot return gigantic pages currently */
850         if (h->order >= MAX_ORDER)
851                 return;
852
853         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
854
855         while (remaining_iterations-- && nr_pages) {
856                 nid = next_node(nid, node_online_map);
857                 if (nid == MAX_NUMNODES)
858                         nid = first_node(node_online_map);
859
860                 if (!h->surplus_huge_pages_node[nid])
861                         continue;
862
863                 if (!list_empty(&h->hugepage_freelists[nid])) {
864                         page = list_entry(h->hugepage_freelists[nid].next,
865                                           struct page, lru);
866                         list_del(&page->lru);
867                         update_and_free_page(h, page);
868                         h->free_huge_pages--;
869                         h->free_huge_pages_node[nid]--;
870                         h->surplus_huge_pages--;
871                         h->surplus_huge_pages_node[nid]--;
872                         nr_pages--;
873                         remaining_iterations = num_online_nodes();
874                 }
875         }
876 }
877
878 /*
879  * Determine if the huge page at addr within the vma has an associated
880  * reservation.  Where it does not we will need to logically increase
881  * reservation and actually increase quota before an allocation can occur.
882  * Where any new reservation would be required the reservation change is
883  * prepared, but not committed.  Once the page has been quota'd allocated
884  * an instantiated the change should be committed via vma_commit_reservation.
885  * No action is required on failure.
886  */
887 static int vma_needs_reservation(struct hstate *h,
888                         struct vm_area_struct *vma, unsigned long addr)
889 {
890         struct address_space *mapping = vma->vm_file->f_mapping;
891         struct inode *inode = mapping->host;
892
893         if (vma->vm_flags & VM_SHARED) {
894                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
895                 return region_chg(&inode->i_mapping->private_list,
896                                                         idx, idx + 1);
897
898         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
899                 return 1;
900
901         } else  {
902                 int err;
903                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
904                 struct resv_map *reservations = vma_resv_map(vma);
905
906                 err = region_chg(&reservations->regions, idx, idx + 1);
907                 if (err < 0)
908                         return err;
909                 return 0;
910         }
911 }
912 static void vma_commit_reservation(struct hstate *h,
913                         struct vm_area_struct *vma, unsigned long addr)
914 {
915         struct address_space *mapping = vma->vm_file->f_mapping;
916         struct inode *inode = mapping->host;
917
918         if (vma->vm_flags & VM_SHARED) {
919                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
920                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
921
922         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
923                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
924                 struct resv_map *reservations = vma_resv_map(vma);
925
926                 /* Mark this page used in the map. */
927                 region_add(&reservations->regions, idx, idx + 1);
928         }
929 }
930
931 static struct page *alloc_huge_page(struct vm_area_struct *vma,
932                                     unsigned long addr, int avoid_reserve)
933 {
934         struct hstate *h = hstate_vma(vma);
935         struct page *page;
936         struct address_space *mapping = vma->vm_file->f_mapping;
937         struct inode *inode = mapping->host;
938         unsigned int chg;
939
940         /*
941          * Processes that did not create the mapping will have no reserves and
942          * will not have accounted against quota. Check that the quota can be
943          * made before satisfying the allocation
944          * MAP_NORESERVE mappings may also need pages and quota allocated
945          * if no reserve mapping overlaps.
946          */
947         chg = vma_needs_reservation(h, vma, addr);
948         if (chg < 0)
949                 return ERR_PTR(chg);
950         if (chg)
951                 if (hugetlb_get_quota(inode->i_mapping, chg))
952                         return ERR_PTR(-ENOSPC);
953
954         spin_lock(&hugetlb_lock);
955         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
956         spin_unlock(&hugetlb_lock);
957
958         if (!page) {
959                 page = alloc_buddy_huge_page(h, vma, addr);
960                 if (!page) {
961                         hugetlb_put_quota(inode->i_mapping, chg);
962                         return ERR_PTR(-VM_FAULT_OOM);
963                 }
964         }
965
966         set_page_refcounted(page);
967         set_page_private(page, (unsigned long) mapping);
968
969         vma_commit_reservation(h, vma, addr);
970
971         return page;
972 }
973
974 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
975 {
976         struct huge_bootmem_page *m;
977         int nr_nodes = nodes_weight(node_online_map);
978
979         while (nr_nodes) {
980                 void *addr;
981
982                 addr = __alloc_bootmem_node_nopanic(
983                                 NODE_DATA(h->hugetlb_next_nid),
984                                 huge_page_size(h), huge_page_size(h), 0);
985
986                 if (addr) {
987                         /*
988                          * Use the beginning of the huge page to store the
989                          * huge_bootmem_page struct (until gather_bootmem
990                          * puts them into the mem_map).
991                          */
992                         m = addr;
993                         if (m)
994                                 goto found;
995                 }
996                 hstate_next_node(h);
997                 nr_nodes--;
998         }
999         return 0;
1000
1001 found:
1002         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1003         /* Put them into a private list first because mem_map is not up yet */
1004         list_add(&m->list, &huge_boot_pages);
1005         m->hstate = h;
1006         return 1;
1007 }
1008
1009 static void prep_compound_huge_page(struct page *page, int order)
1010 {
1011         if (unlikely(order > (MAX_ORDER - 1)))
1012                 prep_compound_gigantic_page(page, order);
1013         else
1014                 prep_compound_page(page, order);
1015 }
1016
1017 /* Put bootmem huge pages into the standard lists after mem_map is up */
1018 static void __init gather_bootmem_prealloc(void)
1019 {
1020         struct huge_bootmem_page *m;
1021
1022         list_for_each_entry(m, &huge_boot_pages, list) {
1023                 struct page *page = virt_to_page(m);
1024                 struct hstate *h = m->hstate;
1025                 __ClearPageReserved(page);
1026                 WARN_ON(page_count(page) != 1);
1027                 prep_compound_huge_page(page, h->order);
1028                 prep_new_huge_page(h, page, page_to_nid(page));
1029         }
1030 }
1031
1032 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1033 {
1034         unsigned long i;
1035
1036         for (i = 0; i < h->max_huge_pages; ++i) {
1037                 if (h->order >= MAX_ORDER) {
1038                         if (!alloc_bootmem_huge_page(h))
1039                                 break;
1040                 } else if (!alloc_fresh_huge_page(h))
1041                         break;
1042         }
1043         h->max_huge_pages = i;
1044 }
1045
1046 static void __init hugetlb_init_hstates(void)
1047 {
1048         struct hstate *h;
1049
1050         for_each_hstate(h) {
1051                 /* oversize hugepages were init'ed in early boot */
1052                 if (h->order < MAX_ORDER)
1053                         hugetlb_hstate_alloc_pages(h);
1054         }
1055 }
1056
1057 static char * __init memfmt(char *buf, unsigned long n)
1058 {
1059         if (n >= (1UL << 30))
1060                 sprintf(buf, "%lu GB", n >> 30);
1061         else if (n >= (1UL << 20))
1062                 sprintf(buf, "%lu MB", n >> 20);
1063         else
1064                 sprintf(buf, "%lu KB", n >> 10);
1065         return buf;
1066 }
1067
1068 static void __init report_hugepages(void)
1069 {
1070         struct hstate *h;
1071
1072         for_each_hstate(h) {
1073                 char buf[32];
1074                 printk(KERN_INFO "HugeTLB registered %s page size, "
1075                                  "pre-allocated %ld pages\n",
1076                         memfmt(buf, huge_page_size(h)),
1077                         h->free_huge_pages);
1078         }
1079 }
1080
1081 #ifdef CONFIG_HIGHMEM
1082 static void try_to_free_low(struct hstate *h, unsigned long count)
1083 {
1084         int i;
1085
1086         if (h->order >= MAX_ORDER)
1087                 return;
1088
1089         for (i = 0; i < MAX_NUMNODES; ++i) {
1090                 struct page *page, *next;
1091                 struct list_head *freel = &h->hugepage_freelists[i];
1092                 list_for_each_entry_safe(page, next, freel, lru) {
1093                         if (count >= h->nr_huge_pages)
1094                                 return;
1095                         if (PageHighMem(page))
1096                                 continue;
1097                         list_del(&page->lru);
1098                         update_and_free_page(h, page);
1099                         h->free_huge_pages--;
1100                         h->free_huge_pages_node[page_to_nid(page)]--;
1101                 }
1102         }
1103 }
1104 #else
1105 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1106 {
1107 }
1108 #endif
1109
1110 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1111 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1112 {
1113         unsigned long min_count, ret;
1114
1115         if (h->order >= MAX_ORDER)
1116                 return h->max_huge_pages;
1117
1118         /*
1119          * Increase the pool size
1120          * First take pages out of surplus state.  Then make up the
1121          * remaining difference by allocating fresh huge pages.
1122          *
1123          * We might race with alloc_buddy_huge_page() here and be unable
1124          * to convert a surplus huge page to a normal huge page. That is
1125          * not critical, though, it just means the overall size of the
1126          * pool might be one hugepage larger than it needs to be, but
1127          * within all the constraints specified by the sysctls.
1128          */
1129         spin_lock(&hugetlb_lock);
1130         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1131                 if (!adjust_pool_surplus(h, -1))
1132                         break;
1133         }
1134
1135         while (count > persistent_huge_pages(h)) {
1136                 /*
1137                  * If this allocation races such that we no longer need the
1138                  * page, free_huge_page will handle it by freeing the page
1139                  * and reducing the surplus.
1140                  */
1141                 spin_unlock(&hugetlb_lock);
1142                 ret = alloc_fresh_huge_page(h);
1143                 spin_lock(&hugetlb_lock);
1144                 if (!ret)
1145                         goto out;
1146
1147         }
1148
1149         /*
1150          * Decrease the pool size
1151          * First return free pages to the buddy allocator (being careful
1152          * to keep enough around to satisfy reservations).  Then place
1153          * pages into surplus state as needed so the pool will shrink
1154          * to the desired size as pages become free.
1155          *
1156          * By placing pages into the surplus state independent of the
1157          * overcommit value, we are allowing the surplus pool size to
1158          * exceed overcommit. There are few sane options here. Since
1159          * alloc_buddy_huge_page() is checking the global counter,
1160          * though, we'll note that we're not allowed to exceed surplus
1161          * and won't grow the pool anywhere else. Not until one of the
1162          * sysctls are changed, or the surplus pages go out of use.
1163          */
1164         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1165         min_count = max(count, min_count);
1166         try_to_free_low(h, min_count);
1167         while (min_count < persistent_huge_pages(h)) {
1168                 struct page *page = dequeue_huge_page(h);
1169                 if (!page)
1170                         break;
1171                 update_and_free_page(h, page);
1172         }
1173         while (count < persistent_huge_pages(h)) {
1174                 if (!adjust_pool_surplus(h, 1))
1175                         break;
1176         }
1177 out:
1178         ret = persistent_huge_pages(h);
1179         spin_unlock(&hugetlb_lock);
1180         return ret;
1181 }
1182
1183 #define HSTATE_ATTR_RO(_name) \
1184         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1185
1186 #define HSTATE_ATTR(_name) \
1187         static struct kobj_attribute _name##_attr = \
1188                 __ATTR(_name, 0644, _name##_show, _name##_store)
1189
1190 static struct kobject *hugepages_kobj;
1191 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1192
1193 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1194 {
1195         int i;
1196         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1197                 if (hstate_kobjs[i] == kobj)
1198                         return &hstates[i];
1199         BUG();
1200         return NULL;
1201 }
1202
1203 static ssize_t nr_hugepages_show(struct kobject *kobj,
1204                                         struct kobj_attribute *attr, char *buf)
1205 {
1206         struct hstate *h = kobj_to_hstate(kobj);
1207         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1208 }
1209 static ssize_t nr_hugepages_store(struct kobject *kobj,
1210                 struct kobj_attribute *attr, const char *buf, size_t count)
1211 {
1212         int err;
1213         unsigned long input;
1214         struct hstate *h = kobj_to_hstate(kobj);
1215
1216         err = strict_strtoul(buf, 10, &input);
1217         if (err)
1218                 return 0;
1219
1220         h->max_huge_pages = set_max_huge_pages(h, input);
1221
1222         return count;
1223 }
1224 HSTATE_ATTR(nr_hugepages);
1225
1226 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1227                                         struct kobj_attribute *attr, char *buf)
1228 {
1229         struct hstate *h = kobj_to_hstate(kobj);
1230         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1231 }
1232 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1233                 struct kobj_attribute *attr, const char *buf, size_t count)
1234 {
1235         int err;
1236         unsigned long input;
1237         struct hstate *h = kobj_to_hstate(kobj);
1238
1239         err = strict_strtoul(buf, 10, &input);
1240         if (err)
1241                 return 0;
1242
1243         spin_lock(&hugetlb_lock);
1244         h->nr_overcommit_huge_pages = input;
1245         spin_unlock(&hugetlb_lock);
1246
1247         return count;
1248 }
1249 HSTATE_ATTR(nr_overcommit_hugepages);
1250
1251 static ssize_t free_hugepages_show(struct kobject *kobj,
1252                                         struct kobj_attribute *attr, char *buf)
1253 {
1254         struct hstate *h = kobj_to_hstate(kobj);
1255         return sprintf(buf, "%lu\n", h->free_huge_pages);
1256 }
1257 HSTATE_ATTR_RO(free_hugepages);
1258
1259 static ssize_t resv_hugepages_show(struct kobject *kobj,
1260                                         struct kobj_attribute *attr, char *buf)
1261 {
1262         struct hstate *h = kobj_to_hstate(kobj);
1263         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1264 }
1265 HSTATE_ATTR_RO(resv_hugepages);
1266
1267 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1268                                         struct kobj_attribute *attr, char *buf)
1269 {
1270         struct hstate *h = kobj_to_hstate(kobj);
1271         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1272 }
1273 HSTATE_ATTR_RO(surplus_hugepages);
1274
1275 static struct attribute *hstate_attrs[] = {
1276         &nr_hugepages_attr.attr,
1277         &nr_overcommit_hugepages_attr.attr,
1278         &free_hugepages_attr.attr,
1279         &resv_hugepages_attr.attr,
1280         &surplus_hugepages_attr.attr,
1281         NULL,
1282 };
1283
1284 static struct attribute_group hstate_attr_group = {
1285         .attrs = hstate_attrs,
1286 };
1287
1288 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1289 {
1290         int retval;
1291
1292         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1293                                                         hugepages_kobj);
1294         if (!hstate_kobjs[h - hstates])
1295                 return -ENOMEM;
1296
1297         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1298                                                         &hstate_attr_group);
1299         if (retval)
1300                 kobject_put(hstate_kobjs[h - hstates]);
1301
1302         return retval;
1303 }
1304
1305 static void __init hugetlb_sysfs_init(void)
1306 {
1307         struct hstate *h;
1308         int err;
1309
1310         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1311         if (!hugepages_kobj)
1312                 return;
1313
1314         for_each_hstate(h) {
1315                 err = hugetlb_sysfs_add_hstate(h);
1316                 if (err)
1317                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1318                                                                 h->name);
1319         }
1320 }
1321
1322 static void __exit hugetlb_exit(void)
1323 {
1324         struct hstate *h;
1325
1326         for_each_hstate(h) {
1327                 kobject_put(hstate_kobjs[h - hstates]);
1328         }
1329
1330         kobject_put(hugepages_kobj);
1331 }
1332 module_exit(hugetlb_exit);
1333
1334 static int __init hugetlb_init(void)
1335 {
1336         /* Some platform decide whether they support huge pages at boot
1337          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1338          * there is no such support
1339          */
1340         if (HPAGE_SHIFT == 0)
1341                 return 0;
1342
1343         if (!size_to_hstate(default_hstate_size)) {
1344                 default_hstate_size = HPAGE_SIZE;
1345                 if (!size_to_hstate(default_hstate_size))
1346                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1347         }
1348         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1349         if (default_hstate_max_huge_pages)
1350                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1351
1352         hugetlb_init_hstates();
1353
1354         gather_bootmem_prealloc();
1355
1356         report_hugepages();
1357
1358         hugetlb_sysfs_init();
1359
1360         return 0;
1361 }
1362 module_init(hugetlb_init);
1363
1364 /* Should be called on processing a hugepagesz=... option */
1365 void __init hugetlb_add_hstate(unsigned order)
1366 {
1367         struct hstate *h;
1368         unsigned long i;
1369
1370         if (size_to_hstate(PAGE_SIZE << order)) {
1371                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1372                 return;
1373         }
1374         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1375         BUG_ON(order == 0);
1376         h = &hstates[max_hstate++];
1377         h->order = order;
1378         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1379         h->nr_huge_pages = 0;
1380         h->free_huge_pages = 0;
1381         for (i = 0; i < MAX_NUMNODES; ++i)
1382                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1383         h->hugetlb_next_nid = first_node(node_online_map);
1384         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1385                                         huge_page_size(h)/1024);
1386
1387         parsed_hstate = h;
1388 }
1389
1390 static int __init hugetlb_nrpages_setup(char *s)
1391 {
1392         unsigned long *mhp;
1393         static unsigned long *last_mhp;
1394
1395         /*
1396          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1397          * so this hugepages= parameter goes to the "default hstate".
1398          */
1399         if (!max_hstate)
1400                 mhp = &default_hstate_max_huge_pages;
1401         else
1402                 mhp = &parsed_hstate->max_huge_pages;
1403
1404         if (mhp == last_mhp) {
1405                 printk(KERN_WARNING "hugepages= specified twice without "
1406                         "interleaving hugepagesz=, ignoring\n");
1407                 return 1;
1408         }
1409
1410         if (sscanf(s, "%lu", mhp) <= 0)
1411                 *mhp = 0;
1412
1413         /*
1414          * Global state is always initialized later in hugetlb_init.
1415          * But we need to allocate >= MAX_ORDER hstates here early to still
1416          * use the bootmem allocator.
1417          */
1418         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1419                 hugetlb_hstate_alloc_pages(parsed_hstate);
1420
1421         last_mhp = mhp;
1422
1423         return 1;
1424 }
1425 __setup("hugepages=", hugetlb_nrpages_setup);
1426
1427 static int __init hugetlb_default_setup(char *s)
1428 {
1429         default_hstate_size = memparse(s, &s);
1430         return 1;
1431 }
1432 __setup("default_hugepagesz=", hugetlb_default_setup);
1433
1434 static unsigned int cpuset_mems_nr(unsigned int *array)
1435 {
1436         int node;
1437         unsigned int nr = 0;
1438
1439         for_each_node_mask(node, cpuset_current_mems_allowed)
1440                 nr += array[node];
1441
1442         return nr;
1443 }
1444
1445 #ifdef CONFIG_SYSCTL
1446 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1447                            struct file *file, void __user *buffer,
1448                            size_t *length, loff_t *ppos)
1449 {
1450         struct hstate *h = &default_hstate;
1451         unsigned long tmp;
1452
1453         if (!write)
1454                 tmp = h->max_huge_pages;
1455
1456         table->data = &tmp;
1457         table->maxlen = sizeof(unsigned long);
1458         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1459
1460         if (write)
1461                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1462
1463         return 0;
1464 }
1465
1466 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1467                         struct file *file, void __user *buffer,
1468                         size_t *length, loff_t *ppos)
1469 {
1470         proc_dointvec(table, write, file, buffer, length, ppos);
1471         if (hugepages_treat_as_movable)
1472                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1473         else
1474                 htlb_alloc_mask = GFP_HIGHUSER;
1475         return 0;
1476 }
1477
1478 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1479                         struct file *file, void __user *buffer,
1480                         size_t *length, loff_t *ppos)
1481 {
1482         struct hstate *h = &default_hstate;
1483         unsigned long tmp;
1484
1485         if (!write)
1486                 tmp = h->nr_overcommit_huge_pages;
1487
1488         table->data = &tmp;
1489         table->maxlen = sizeof(unsigned long);
1490         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1491
1492         if (write) {
1493                 spin_lock(&hugetlb_lock);
1494                 h->nr_overcommit_huge_pages = tmp;
1495                 spin_unlock(&hugetlb_lock);
1496         }
1497
1498         return 0;
1499 }
1500
1501 #endif /* CONFIG_SYSCTL */
1502
1503 int hugetlb_report_meminfo(char *buf)
1504 {
1505         struct hstate *h = &default_hstate;
1506         return sprintf(buf,
1507                         "HugePages_Total: %5lu\n"
1508                         "HugePages_Free:  %5lu\n"
1509                         "HugePages_Rsvd:  %5lu\n"
1510                         "HugePages_Surp:  %5lu\n"
1511                         "Hugepagesize:    %5lu kB\n",
1512                         h->nr_huge_pages,
1513                         h->free_huge_pages,
1514                         h->resv_huge_pages,
1515                         h->surplus_huge_pages,
1516                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1517 }
1518
1519 int hugetlb_report_node_meminfo(int nid, char *buf)
1520 {
1521         struct hstate *h = &default_hstate;
1522         return sprintf(buf,
1523                 "Node %d HugePages_Total: %5u\n"
1524                 "Node %d HugePages_Free:  %5u\n"
1525                 "Node %d HugePages_Surp:  %5u\n",
1526                 nid, h->nr_huge_pages_node[nid],
1527                 nid, h->free_huge_pages_node[nid],
1528                 nid, h->surplus_huge_pages_node[nid]);
1529 }
1530
1531 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1532 unsigned long hugetlb_total_pages(void)
1533 {
1534         struct hstate *h = &default_hstate;
1535         return h->nr_huge_pages * pages_per_huge_page(h);
1536 }
1537
1538 static int hugetlb_acct_memory(struct hstate *h, long delta)
1539 {
1540         int ret = -ENOMEM;
1541
1542         spin_lock(&hugetlb_lock);
1543         /*
1544          * When cpuset is configured, it breaks the strict hugetlb page
1545          * reservation as the accounting is done on a global variable. Such
1546          * reservation is completely rubbish in the presence of cpuset because
1547          * the reservation is not checked against page availability for the
1548          * current cpuset. Application can still potentially OOM'ed by kernel
1549          * with lack of free htlb page in cpuset that the task is in.
1550          * Attempt to enforce strict accounting with cpuset is almost
1551          * impossible (or too ugly) because cpuset is too fluid that
1552          * task or memory node can be dynamically moved between cpusets.
1553          *
1554          * The change of semantics for shared hugetlb mapping with cpuset is
1555          * undesirable. However, in order to preserve some of the semantics,
1556          * we fall back to check against current free page availability as
1557          * a best attempt and hopefully to minimize the impact of changing
1558          * semantics that cpuset has.
1559          */
1560         if (delta > 0) {
1561                 if (gather_surplus_pages(h, delta) < 0)
1562                         goto out;
1563
1564                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1565                         return_unused_surplus_pages(h, delta);
1566                         goto out;
1567                 }
1568         }
1569
1570         ret = 0;
1571         if (delta < 0)
1572                 return_unused_surplus_pages(h, (unsigned long) -delta);
1573
1574 out:
1575         spin_unlock(&hugetlb_lock);
1576         return ret;
1577 }
1578
1579 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1580 {
1581         struct resv_map *reservations = vma_resv_map(vma);
1582
1583         /*
1584          * This new VMA should share its siblings reservation map if present.
1585          * The VMA will only ever have a valid reservation map pointer where
1586          * it is being copied for another still existing VMA.  As that VMA
1587          * has a reference to the reservation map it cannot dissappear until
1588          * after this open call completes.  It is therefore safe to take a
1589          * new reference here without additional locking.
1590          */
1591         if (reservations)
1592                 kref_get(&reservations->refs);
1593 }
1594
1595 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1596 {
1597         struct hstate *h = hstate_vma(vma);
1598         struct resv_map *reservations = vma_resv_map(vma);
1599         unsigned long reserve;
1600         unsigned long start;
1601         unsigned long end;
1602
1603         if (reservations) {
1604                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1605                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1606
1607                 reserve = (end - start) -
1608                         region_count(&reservations->regions, start, end);
1609
1610                 kref_put(&reservations->refs, resv_map_release);
1611
1612                 if (reserve) {
1613                         hugetlb_acct_memory(h, -reserve);
1614                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1615                 }
1616         }
1617 }
1618
1619 /*
1620  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1621  * handle_mm_fault() to try to instantiate regular-sized pages in the
1622  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1623  * this far.
1624  */
1625 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1626 {
1627         BUG();
1628         return 0;
1629 }
1630
1631 struct vm_operations_struct hugetlb_vm_ops = {
1632         .fault = hugetlb_vm_op_fault,
1633         .open = hugetlb_vm_op_open,
1634         .close = hugetlb_vm_op_close,
1635 };
1636
1637 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1638                                 int writable)
1639 {
1640         pte_t entry;
1641
1642         if (writable) {
1643                 entry =
1644                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1645         } else {
1646                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1647         }
1648         entry = pte_mkyoung(entry);
1649         entry = pte_mkhuge(entry);
1650
1651         return entry;
1652 }
1653
1654 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1655                                    unsigned long address, pte_t *ptep)
1656 {
1657         pte_t entry;
1658
1659         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1660         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1661                 update_mmu_cache(vma, address, entry);
1662         }
1663 }
1664
1665
1666 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1667                             struct vm_area_struct *vma)
1668 {
1669         pte_t *src_pte, *dst_pte, entry;
1670         struct page *ptepage;
1671         unsigned long addr;
1672         int cow;
1673         struct hstate *h = hstate_vma(vma);
1674         unsigned long sz = huge_page_size(h);
1675
1676         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1677
1678         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1679                 src_pte = huge_pte_offset(src, addr);
1680                 if (!src_pte)
1681                         continue;
1682                 dst_pte = huge_pte_alloc(dst, addr, sz);
1683                 if (!dst_pte)
1684                         goto nomem;
1685
1686                 /* If the pagetables are shared don't copy or take references */
1687                 if (dst_pte == src_pte)
1688                         continue;
1689
1690                 spin_lock(&dst->page_table_lock);
1691                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1692                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1693                         if (cow)
1694                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1695                         entry = huge_ptep_get(src_pte);
1696                         ptepage = pte_page(entry);
1697                         get_page(ptepage);
1698                         set_huge_pte_at(dst, addr, dst_pte, entry);
1699                 }
1700                 spin_unlock(&src->page_table_lock);
1701                 spin_unlock(&dst->page_table_lock);
1702         }
1703         return 0;
1704
1705 nomem:
1706         return -ENOMEM;
1707 }
1708
1709 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1710                             unsigned long end, struct page *ref_page)
1711 {
1712         struct mm_struct *mm = vma->vm_mm;
1713         unsigned long address;
1714         pte_t *ptep;
1715         pte_t pte;
1716         struct page *page;
1717         struct page *tmp;
1718         struct hstate *h = hstate_vma(vma);
1719         unsigned long sz = huge_page_size(h);
1720
1721         /*
1722          * A page gathering list, protected by per file i_mmap_lock. The
1723          * lock is used to avoid list corruption from multiple unmapping
1724          * of the same page since we are using page->lru.
1725          */
1726         LIST_HEAD(page_list);
1727
1728         WARN_ON(!is_vm_hugetlb_page(vma));
1729         BUG_ON(start & ~huge_page_mask(h));
1730         BUG_ON(end & ~huge_page_mask(h));
1731
1732         mmu_notifier_invalidate_range_start(mm, start, end);
1733         spin_lock(&mm->page_table_lock);
1734         for (address = start; address < end; address += sz) {
1735                 ptep = huge_pte_offset(mm, address);
1736                 if (!ptep)
1737                         continue;
1738
1739                 if (huge_pmd_unshare(mm, &address, ptep))
1740                         continue;
1741
1742                 /*
1743                  * If a reference page is supplied, it is because a specific
1744                  * page is being unmapped, not a range. Ensure the page we
1745                  * are about to unmap is the actual page of interest.
1746                  */
1747                 if (ref_page) {
1748                         pte = huge_ptep_get(ptep);
1749                         if (huge_pte_none(pte))
1750                                 continue;
1751                         page = pte_page(pte);
1752                         if (page != ref_page)
1753                                 continue;
1754
1755                         /*
1756                          * Mark the VMA as having unmapped its page so that
1757                          * future faults in this VMA will fail rather than
1758                          * looking like data was lost
1759                          */
1760                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1761                 }
1762
1763                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1764                 if (huge_pte_none(pte))
1765                         continue;
1766
1767                 page = pte_page(pte);
1768                 if (pte_dirty(pte))
1769                         set_page_dirty(page);
1770                 list_add(&page->lru, &page_list);
1771         }
1772         spin_unlock(&mm->page_table_lock);
1773         flush_tlb_range(vma, start, end);
1774         mmu_notifier_invalidate_range_end(mm, start, end);
1775         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1776                 list_del(&page->lru);
1777                 put_page(page);
1778         }
1779 }
1780
1781 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1782                           unsigned long end, struct page *ref_page)
1783 {
1784         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1785         __unmap_hugepage_range(vma, start, end, ref_page);
1786         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1787 }
1788
1789 /*
1790  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1791  * mappping it owns the reserve page for. The intention is to unmap the page
1792  * from other VMAs and let the children be SIGKILLed if they are faulting the
1793  * same region.
1794  */
1795 int unmap_ref_private(struct mm_struct *mm,
1796                                         struct vm_area_struct *vma,
1797                                         struct page *page,
1798                                         unsigned long address)
1799 {
1800         struct vm_area_struct *iter_vma;
1801         struct address_space *mapping;
1802         struct prio_tree_iter iter;
1803         pgoff_t pgoff;
1804
1805         /*
1806          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1807          * from page cache lookup which is in HPAGE_SIZE units.
1808          */
1809         address = address & huge_page_mask(hstate_vma(vma));
1810         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1811                 + (vma->vm_pgoff >> PAGE_SHIFT);
1812         mapping = (struct address_space *)page_private(page);
1813
1814         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1815                 /* Do not unmap the current VMA */
1816                 if (iter_vma == vma)
1817                         continue;
1818
1819                 /*
1820                  * Unmap the page from other VMAs without their own reserves.
1821                  * They get marked to be SIGKILLed if they fault in these
1822                  * areas. This is because a future no-page fault on this VMA
1823                  * could insert a zeroed page instead of the data existing
1824                  * from the time of fork. This would look like data corruption
1825                  */
1826                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1827                         unmap_hugepage_range(iter_vma,
1828                                 address, address + HPAGE_SIZE,
1829                                 page);
1830         }
1831
1832         return 1;
1833 }
1834
1835 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1836                         unsigned long address, pte_t *ptep, pte_t pte,
1837                         struct page *pagecache_page)
1838 {
1839         struct hstate *h = hstate_vma(vma);
1840         struct page *old_page, *new_page;
1841         int avoidcopy;
1842         int outside_reserve = 0;
1843
1844         old_page = pte_page(pte);
1845
1846 retry_avoidcopy:
1847         /* If no-one else is actually using this page, avoid the copy
1848          * and just make the page writable */
1849         avoidcopy = (page_count(old_page) == 1);
1850         if (avoidcopy) {
1851                 set_huge_ptep_writable(vma, address, ptep);
1852                 return 0;
1853         }
1854
1855         /*
1856          * If the process that created a MAP_PRIVATE mapping is about to
1857          * perform a COW due to a shared page count, attempt to satisfy
1858          * the allocation without using the existing reserves. The pagecache
1859          * page is used to determine if the reserve at this address was
1860          * consumed or not. If reserves were used, a partial faulted mapping
1861          * at the time of fork() could consume its reserves on COW instead
1862          * of the full address range.
1863          */
1864         if (!(vma->vm_flags & VM_SHARED) &&
1865                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1866                         old_page != pagecache_page)
1867                 outside_reserve = 1;
1868
1869         page_cache_get(old_page);
1870         new_page = alloc_huge_page(vma, address, outside_reserve);
1871
1872         if (IS_ERR(new_page)) {
1873                 page_cache_release(old_page);
1874
1875                 /*
1876                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1877                  * it is due to references held by a child and an insufficient
1878                  * huge page pool. To guarantee the original mappers
1879                  * reliability, unmap the page from child processes. The child
1880                  * may get SIGKILLed if it later faults.
1881                  */
1882                 if (outside_reserve) {
1883                         BUG_ON(huge_pte_none(pte));
1884                         if (unmap_ref_private(mm, vma, old_page, address)) {
1885                                 BUG_ON(page_count(old_page) != 1);
1886                                 BUG_ON(huge_pte_none(pte));
1887                                 goto retry_avoidcopy;
1888                         }
1889                         WARN_ON_ONCE(1);
1890                 }
1891
1892                 return -PTR_ERR(new_page);
1893         }
1894
1895         spin_unlock(&mm->page_table_lock);
1896         copy_huge_page(new_page, old_page, address, vma);
1897         __SetPageUptodate(new_page);
1898         spin_lock(&mm->page_table_lock);
1899
1900         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1901         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1902                 /* Break COW */
1903                 huge_ptep_clear_flush(vma, address, ptep);
1904                 set_huge_pte_at(mm, address, ptep,
1905                                 make_huge_pte(vma, new_page, 1));
1906                 /* Make the old page be freed below */
1907                 new_page = old_page;
1908         }
1909         page_cache_release(new_page);
1910         page_cache_release(old_page);
1911         return 0;
1912 }
1913
1914 /* Return the pagecache page at a given address within a VMA */
1915 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1916                         struct vm_area_struct *vma, unsigned long address)
1917 {
1918         struct address_space *mapping;
1919         pgoff_t idx;
1920
1921         mapping = vma->vm_file->f_mapping;
1922         idx = vma_hugecache_offset(h, vma, address);
1923
1924         return find_lock_page(mapping, idx);
1925 }
1926
1927 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1928                         unsigned long address, pte_t *ptep, int write_access)
1929 {
1930         struct hstate *h = hstate_vma(vma);
1931         int ret = VM_FAULT_SIGBUS;
1932         pgoff_t idx;
1933         unsigned long size;
1934         struct page *page;
1935         struct address_space *mapping;
1936         pte_t new_pte;
1937
1938         /*
1939          * Currently, we are forced to kill the process in the event the
1940          * original mapper has unmapped pages from the child due to a failed
1941          * COW. Warn that such a situation has occured as it may not be obvious
1942          */
1943         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1944                 printk(KERN_WARNING
1945                         "PID %d killed due to inadequate hugepage pool\n",
1946                         current->pid);
1947                 return ret;
1948         }
1949
1950         mapping = vma->vm_file->f_mapping;
1951         idx = vma_hugecache_offset(h, vma, address);
1952
1953         /*
1954          * Use page lock to guard against racing truncation
1955          * before we get page_table_lock.
1956          */
1957 retry:
1958         page = find_lock_page(mapping, idx);
1959         if (!page) {
1960                 size = i_size_read(mapping->host) >> huge_page_shift(h);
1961                 if (idx >= size)
1962                         goto out;
1963                 page = alloc_huge_page(vma, address, 0);
1964                 if (IS_ERR(page)) {
1965                         ret = -PTR_ERR(page);
1966                         goto out;
1967                 }
1968                 clear_huge_page(page, address, huge_page_size(h));
1969                 __SetPageUptodate(page);
1970
1971                 if (vma->vm_flags & VM_SHARED) {
1972                         int err;
1973                         struct inode *inode = mapping->host;
1974
1975                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1976                         if (err) {
1977                                 put_page(page);
1978                                 if (err == -EEXIST)
1979                                         goto retry;
1980                                 goto out;
1981                         }
1982
1983                         spin_lock(&inode->i_lock);
1984                         inode->i_blocks += blocks_per_huge_page(h);
1985                         spin_unlock(&inode->i_lock);
1986                 } else
1987                         lock_page(page);
1988         }
1989
1990         /*
1991          * If we are going to COW a private mapping later, we examine the
1992          * pending reservations for this page now. This will ensure that
1993          * any allocations necessary to record that reservation occur outside
1994          * the spinlock.
1995          */
1996         if (write_access && !(vma->vm_flags & VM_SHARED))
1997                 if (vma_needs_reservation(h, vma, address) < 0) {
1998                         ret = VM_FAULT_OOM;
1999                         goto backout_unlocked;
2000                 }
2001
2002         spin_lock(&mm->page_table_lock);
2003         size = i_size_read(mapping->host) >> huge_page_shift(h);
2004         if (idx >= size)
2005                 goto backout;
2006
2007         ret = 0;
2008         if (!huge_pte_none(huge_ptep_get(ptep)))
2009                 goto backout;
2010
2011         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2012                                 && (vma->vm_flags & VM_SHARED)));
2013         set_huge_pte_at(mm, address, ptep, new_pte);
2014
2015         if (write_access && !(vma->vm_flags & VM_SHARED)) {
2016                 /* Optimization, do the COW without a second fault */
2017                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2018         }
2019
2020         spin_unlock(&mm->page_table_lock);
2021         unlock_page(page);
2022 out:
2023         return ret;
2024
2025 backout:
2026         spin_unlock(&mm->page_table_lock);
2027 backout_unlocked:
2028         unlock_page(page);
2029         put_page(page);
2030         goto out;
2031 }
2032
2033 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2034                         unsigned long address, int write_access)
2035 {
2036         pte_t *ptep;
2037         pte_t entry;
2038         int ret;
2039         struct page *pagecache_page = NULL;
2040         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2041         struct hstate *h = hstate_vma(vma);
2042
2043         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2044         if (!ptep)
2045                 return VM_FAULT_OOM;
2046
2047         /*
2048          * Serialize hugepage allocation and instantiation, so that we don't
2049          * get spurious allocation failures if two CPUs race to instantiate
2050          * the same page in the page cache.
2051          */
2052         mutex_lock(&hugetlb_instantiation_mutex);
2053         entry = huge_ptep_get(ptep);
2054         if (huge_pte_none(entry)) {
2055                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2056                 goto out_unlock;
2057         }
2058
2059         ret = 0;
2060
2061         /*
2062          * If we are going to COW the mapping later, we examine the pending
2063          * reservations for this page now. This will ensure that any
2064          * allocations necessary to record that reservation occur outside the
2065          * spinlock. For private mappings, we also lookup the pagecache
2066          * page now as it is used to determine if a reservation has been
2067          * consumed.
2068          */
2069         if (write_access && !pte_write(entry)) {
2070                 if (vma_needs_reservation(h, vma, address) < 0) {
2071                         ret = VM_FAULT_OOM;
2072                         goto out_unlock;
2073                 }
2074
2075                 if (!(vma->vm_flags & VM_SHARED))
2076                         pagecache_page = hugetlbfs_pagecache_page(h,
2077                                                                 vma, address);
2078         }
2079
2080         spin_lock(&mm->page_table_lock);
2081         /* Check for a racing update before calling hugetlb_cow */
2082         if (likely(pte_same(entry, huge_ptep_get(ptep))))
2083                 if (write_access && !pte_write(entry))
2084                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2085                                                         pagecache_page);
2086         spin_unlock(&mm->page_table_lock);
2087
2088         if (pagecache_page) {
2089                 unlock_page(pagecache_page);
2090                 put_page(pagecache_page);
2091         }
2092
2093 out_unlock:
2094         mutex_unlock(&hugetlb_instantiation_mutex);
2095
2096         return ret;
2097 }
2098
2099 /* Can be overriden by architectures */
2100 __attribute__((weak)) struct page *
2101 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2102                pud_t *pud, int write)
2103 {
2104         BUG();
2105         return NULL;
2106 }
2107
2108 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2109                         struct page **pages, struct vm_area_struct **vmas,
2110                         unsigned long *position, int *length, int i,
2111                         int write)
2112 {
2113         unsigned long pfn_offset;
2114         unsigned long vaddr = *position;
2115         int remainder = *length;
2116         struct hstate *h = hstate_vma(vma);
2117
2118         spin_lock(&mm->page_table_lock);
2119         while (vaddr < vma->vm_end && remainder) {
2120                 pte_t *pte;
2121                 struct page *page;
2122
2123                 /*
2124                  * Some archs (sparc64, sh*) have multiple pte_ts to
2125                  * each hugepage.  We have to make * sure we get the
2126                  * first, for the page indexing below to work.
2127                  */
2128                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2129
2130                 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2131                     (write && !pte_write(huge_ptep_get(pte)))) {
2132                         int ret;
2133
2134                         spin_unlock(&mm->page_table_lock);
2135                         ret = hugetlb_fault(mm, vma, vaddr, write);
2136                         spin_lock(&mm->page_table_lock);
2137                         if (!(ret & VM_FAULT_ERROR))
2138                                 continue;
2139
2140                         remainder = 0;
2141                         if (!i)
2142                                 i = -EFAULT;
2143                         break;
2144                 }
2145
2146                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2147                 page = pte_page(huge_ptep_get(pte));
2148 same_page:
2149                 if (pages) {
2150                         get_page(page);
2151                         pages[i] = mem_map_offset(page, pfn_offset);
2152                 }
2153
2154                 if (vmas)
2155                         vmas[i] = vma;
2156
2157                 vaddr += PAGE_SIZE;
2158                 ++pfn_offset;
2159                 --remainder;
2160                 ++i;
2161                 if (vaddr < vma->vm_end && remainder &&
2162                                 pfn_offset < pages_per_huge_page(h)) {
2163                         /*
2164                          * We use pfn_offset to avoid touching the pageframes
2165                          * of this compound page.
2166                          */
2167                         goto same_page;
2168                 }
2169         }
2170         spin_unlock(&mm->page_table_lock);
2171         *length = remainder;
2172         *position = vaddr;
2173
2174         return i;
2175 }
2176
2177 void hugetlb_change_protection(struct vm_area_struct *vma,
2178                 unsigned long address, unsigned long end, pgprot_t newprot)
2179 {
2180         struct mm_struct *mm = vma->vm_mm;
2181         unsigned long start = address;
2182         pte_t *ptep;
2183         pte_t pte;
2184         struct hstate *h = hstate_vma(vma);
2185
2186         BUG_ON(address >= end);
2187         flush_cache_range(vma, address, end);
2188
2189         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2190         spin_lock(&mm->page_table_lock);
2191         for (; address < end; address += huge_page_size(h)) {
2192                 ptep = huge_pte_offset(mm, address);
2193                 if (!ptep)
2194                         continue;
2195                 if (huge_pmd_unshare(mm, &address, ptep))
2196                         continue;
2197                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2198                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2199                         pte = pte_mkhuge(pte_modify(pte, newprot));
2200                         set_huge_pte_at(mm, address, ptep, pte);
2201                 }
2202         }
2203         spin_unlock(&mm->page_table_lock);
2204         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2205
2206         flush_tlb_range(vma, start, end);
2207 }
2208
2209 int hugetlb_reserve_pages(struct inode *inode,
2210                                         long from, long to,
2211                                         struct vm_area_struct *vma)
2212 {
2213         long ret, chg;
2214         struct hstate *h = hstate_inode(inode);
2215
2216         if (vma && vma->vm_flags & VM_NORESERVE)
2217                 return 0;
2218
2219         /*
2220          * Shared mappings base their reservation on the number of pages that
2221          * are already allocated on behalf of the file. Private mappings need
2222          * to reserve the full area even if read-only as mprotect() may be
2223          * called to make the mapping read-write. Assume !vma is a shm mapping
2224          */
2225         if (!vma || vma->vm_flags & VM_SHARED)
2226                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2227         else {
2228                 struct resv_map *resv_map = resv_map_alloc();
2229                 if (!resv_map)
2230                         return -ENOMEM;
2231
2232                 chg = to - from;
2233
2234                 set_vma_resv_map(vma, resv_map);
2235                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2236         }
2237
2238         if (chg < 0)
2239                 return chg;
2240
2241         if (hugetlb_get_quota(inode->i_mapping, chg))
2242                 return -ENOSPC;
2243         ret = hugetlb_acct_memory(h, chg);
2244         if (ret < 0) {
2245                 hugetlb_put_quota(inode->i_mapping, chg);
2246                 return ret;
2247         }
2248         if (!vma || vma->vm_flags & VM_SHARED)
2249                 region_add(&inode->i_mapping->private_list, from, to);
2250         return 0;
2251 }
2252
2253 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2254 {
2255         struct hstate *h = hstate_inode(inode);
2256         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2257
2258         spin_lock(&inode->i_lock);
2259         inode->i_blocks -= blocks_per_huge_page(h);
2260         spin_unlock(&inode->i_lock);
2261
2262         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2263         hugetlb_acct_memory(h, -(chg - freed));
2264 }