omap_hsmmc: pandora wifi hack
[pandora-kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 int seg_from;
277                 int seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_add(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_del(&page->lru);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         set_compound_page_dtor(page, NULL);
597         set_page_refcounted(page);
598         arch_release_hugepage(page);
599         __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604         struct hstate *h;
605
606         for_each_hstate(h) {
607                 if (huge_page_size(h) == size)
608                         return h;
609         }
610         return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615         /*
616          * Can't pass hstate in here because it is called from the
617          * compound page destructor.
618          */
619         struct hstate *h = page_hstate(page);
620         int nid = page_to_nid(page);
621         struct hugepage_subpool *spool =
622                 (struct hugepage_subpool *)page_private(page);
623
624         set_page_private(page, 0);
625         page->mapping = NULL;
626         BUG_ON(page_count(page));
627         BUG_ON(page_mapcount(page));
628         INIT_LIST_HEAD(&page->lru);
629
630         spin_lock(&hugetlb_lock);
631         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 arch_clear_hugepage_flags(page);
637                 enqueue_huge_page(h, page);
638         }
639         spin_unlock(&hugetlb_lock);
640         hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645         set_compound_page_dtor(page, free_huge_page);
646         spin_lock(&hugetlb_lock);
647         h->nr_huge_pages++;
648         h->nr_huge_pages_node[nid]++;
649         spin_unlock(&hugetlb_lock);
650         put_page(page); /* free it into the hugepage allocator */
651 }
652
653 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
654 {
655         int i;
656         int nr_pages = 1 << order;
657         struct page *p = page + 1;
658
659         /* we rely on prep_new_huge_page to set the destructor */
660         set_compound_order(page, order);
661         __SetPageHead(page);
662         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
663                 __SetPageTail(p);
664                 set_page_count(p, 0);
665                 p->first_page = page;
666         }
667 }
668
669 int PageHuge(struct page *page)
670 {
671         compound_page_dtor *dtor;
672
673         if (!PageCompound(page))
674                 return 0;
675
676         page = compound_head(page);
677         dtor = get_compound_page_dtor(page);
678
679         return dtor == free_huge_page;
680 }
681 EXPORT_SYMBOL_GPL(PageHuge);
682
683 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
684 {
685         struct page *page;
686
687         if (h->order >= MAX_ORDER)
688                 return NULL;
689
690         page = alloc_pages_exact_node(nid,
691                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
692                                                 __GFP_REPEAT|__GFP_NOWARN,
693                 huge_page_order(h));
694         if (page) {
695                 if (arch_prepare_hugepage(page)) {
696                         __free_pages(page, huge_page_order(h));
697                         return NULL;
698                 }
699                 prep_new_huge_page(h, page, nid);
700         }
701
702         return page;
703 }
704
705 /*
706  * common helper functions for hstate_next_node_to_{alloc|free}.
707  * We may have allocated or freed a huge page based on a different
708  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
709  * be outside of *nodes_allowed.  Ensure that we use an allowed
710  * node for alloc or free.
711  */
712 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
713 {
714         nid = next_node(nid, *nodes_allowed);
715         if (nid == MAX_NUMNODES)
716                 nid = first_node(*nodes_allowed);
717         VM_BUG_ON(nid >= MAX_NUMNODES);
718
719         return nid;
720 }
721
722 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
723 {
724         if (!node_isset(nid, *nodes_allowed))
725                 nid = next_node_allowed(nid, nodes_allowed);
726         return nid;
727 }
728
729 /*
730  * returns the previously saved node ["this node"] from which to
731  * allocate a persistent huge page for the pool and advance the
732  * next node from which to allocate, handling wrap at end of node
733  * mask.
734  */
735 static int hstate_next_node_to_alloc(struct hstate *h,
736                                         nodemask_t *nodes_allowed)
737 {
738         int nid;
739
740         VM_BUG_ON(!nodes_allowed);
741
742         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
743         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
744
745         return nid;
746 }
747
748 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
749 {
750         struct page *page;
751         int start_nid;
752         int next_nid;
753         int ret = 0;
754
755         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
756         next_nid = start_nid;
757
758         do {
759                 page = alloc_fresh_huge_page_node(h, next_nid);
760                 if (page) {
761                         ret = 1;
762                         break;
763                 }
764                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
765         } while (next_nid != start_nid);
766
767         if (ret)
768                 count_vm_event(HTLB_BUDDY_PGALLOC);
769         else
770                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
771
772         return ret;
773 }
774
775 /*
776  * helper for free_pool_huge_page() - return the previously saved
777  * node ["this node"] from which to free a huge page.  Advance the
778  * next node id whether or not we find a free huge page to free so
779  * that the next attempt to free addresses the next node.
780  */
781 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
782 {
783         int nid;
784
785         VM_BUG_ON(!nodes_allowed);
786
787         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
788         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
789
790         return nid;
791 }
792
793 /*
794  * Free huge page from pool from next node to free.
795  * Attempt to keep persistent huge pages more or less
796  * balanced over allowed nodes.
797  * Called with hugetlb_lock locked.
798  */
799 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
800                                                          bool acct_surplus)
801 {
802         int start_nid;
803         int next_nid;
804         int ret = 0;
805
806         start_nid = hstate_next_node_to_free(h, nodes_allowed);
807         next_nid = start_nid;
808
809         do {
810                 /*
811                  * If we're returning unused surplus pages, only examine
812                  * nodes with surplus pages.
813                  */
814                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
815                     !list_empty(&h->hugepage_freelists[next_nid])) {
816                         struct page *page =
817                                 list_entry(h->hugepage_freelists[next_nid].next,
818                                           struct page, lru);
819                         list_del(&page->lru);
820                         h->free_huge_pages--;
821                         h->free_huge_pages_node[next_nid]--;
822                         if (acct_surplus) {
823                                 h->surplus_huge_pages--;
824                                 h->surplus_huge_pages_node[next_nid]--;
825                         }
826                         update_and_free_page(h, page);
827                         ret = 1;
828                         break;
829                 }
830                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
831         } while (next_nid != start_nid);
832
833         return ret;
834 }
835
836 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
837 {
838         struct page *page;
839         unsigned int r_nid;
840
841         if (h->order >= MAX_ORDER)
842                 return NULL;
843
844         /*
845          * Assume we will successfully allocate the surplus page to
846          * prevent racing processes from causing the surplus to exceed
847          * overcommit
848          *
849          * This however introduces a different race, where a process B
850          * tries to grow the static hugepage pool while alloc_pages() is
851          * called by process A. B will only examine the per-node
852          * counters in determining if surplus huge pages can be
853          * converted to normal huge pages in adjust_pool_surplus(). A
854          * won't be able to increment the per-node counter, until the
855          * lock is dropped by B, but B doesn't drop hugetlb_lock until
856          * no more huge pages can be converted from surplus to normal
857          * state (and doesn't try to convert again). Thus, we have a
858          * case where a surplus huge page exists, the pool is grown, and
859          * the surplus huge page still exists after, even though it
860          * should just have been converted to a normal huge page. This
861          * does not leak memory, though, as the hugepage will be freed
862          * once it is out of use. It also does not allow the counters to
863          * go out of whack in adjust_pool_surplus() as we don't modify
864          * the node values until we've gotten the hugepage and only the
865          * per-node value is checked there.
866          */
867         spin_lock(&hugetlb_lock);
868         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
869                 spin_unlock(&hugetlb_lock);
870                 return NULL;
871         } else {
872                 h->nr_huge_pages++;
873                 h->surplus_huge_pages++;
874         }
875         spin_unlock(&hugetlb_lock);
876
877         if (nid == NUMA_NO_NODE)
878                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
879                                    __GFP_REPEAT|__GFP_NOWARN,
880                                    huge_page_order(h));
881         else
882                 page = alloc_pages_exact_node(nid,
883                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
884                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
885
886         if (page && arch_prepare_hugepage(page)) {
887                 __free_pages(page, huge_page_order(h));
888                 return NULL;
889         }
890
891         spin_lock(&hugetlb_lock);
892         if (page) {
893                 r_nid = page_to_nid(page);
894                 set_compound_page_dtor(page, free_huge_page);
895                 /*
896                  * We incremented the global counters already
897                  */
898                 h->nr_huge_pages_node[r_nid]++;
899                 h->surplus_huge_pages_node[r_nid]++;
900                 __count_vm_event(HTLB_BUDDY_PGALLOC);
901         } else {
902                 h->nr_huge_pages--;
903                 h->surplus_huge_pages--;
904                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
905         }
906         spin_unlock(&hugetlb_lock);
907
908         return page;
909 }
910
911 /*
912  * This allocation function is useful in the context where vma is irrelevant.
913  * E.g. soft-offlining uses this function because it only cares physical
914  * address of error page.
915  */
916 struct page *alloc_huge_page_node(struct hstate *h, int nid)
917 {
918         struct page *page;
919
920         spin_lock(&hugetlb_lock);
921         page = dequeue_huge_page_node(h, nid);
922         spin_unlock(&hugetlb_lock);
923
924         if (!page)
925                 page = alloc_buddy_huge_page(h, nid);
926
927         return page;
928 }
929
930 /*
931  * Increase the hugetlb pool such that it can accommodate a reservation
932  * of size 'delta'.
933  */
934 static int gather_surplus_pages(struct hstate *h, int delta)
935 {
936         struct list_head surplus_list;
937         struct page *page, *tmp;
938         int ret, i;
939         int needed, allocated;
940
941         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
942         if (needed <= 0) {
943                 h->resv_huge_pages += delta;
944                 return 0;
945         }
946
947         allocated = 0;
948         INIT_LIST_HEAD(&surplus_list);
949
950         ret = -ENOMEM;
951 retry:
952         spin_unlock(&hugetlb_lock);
953         for (i = 0; i < needed; i++) {
954                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
955                 if (!page)
956                         /*
957                          * We were not able to allocate enough pages to
958                          * satisfy the entire reservation so we free what
959                          * we've allocated so far.
960                          */
961                         goto free;
962
963                 list_add(&page->lru, &surplus_list);
964         }
965         allocated += needed;
966
967         /*
968          * After retaking hugetlb_lock, we need to recalculate 'needed'
969          * because either resv_huge_pages or free_huge_pages may have changed.
970          */
971         spin_lock(&hugetlb_lock);
972         needed = (h->resv_huge_pages + delta) -
973                         (h->free_huge_pages + allocated);
974         if (needed > 0)
975                 goto retry;
976
977         /*
978          * The surplus_list now contains _at_least_ the number of extra pages
979          * needed to accommodate the reservation.  Add the appropriate number
980          * of pages to the hugetlb pool and free the extras back to the buddy
981          * allocator.  Commit the entire reservation here to prevent another
982          * process from stealing the pages as they are added to the pool but
983          * before they are reserved.
984          */
985         needed += allocated;
986         h->resv_huge_pages += delta;
987         ret = 0;
988
989         /* Free the needed pages to the hugetlb pool */
990         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
991                 if ((--needed) < 0)
992                         break;
993                 list_del(&page->lru);
994                 /*
995                  * This page is now managed by the hugetlb allocator and has
996                  * no users -- drop the buddy allocator's reference.
997                  */
998                 put_page_testzero(page);
999                 VM_BUG_ON(page_count(page));
1000                 enqueue_huge_page(h, page);
1001         }
1002         spin_unlock(&hugetlb_lock);
1003
1004         /* Free unnecessary surplus pages to the buddy allocator */
1005 free:
1006         if (!list_empty(&surplus_list)) {
1007                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1008                         list_del(&page->lru);
1009                         put_page(page);
1010                 }
1011         }
1012         spin_lock(&hugetlb_lock);
1013
1014         return ret;
1015 }
1016
1017 /*
1018  * When releasing a hugetlb pool reservation, any surplus pages that were
1019  * allocated to satisfy the reservation must be explicitly freed if they were
1020  * never used.
1021  * Called with hugetlb_lock held.
1022  */
1023 static void return_unused_surplus_pages(struct hstate *h,
1024                                         unsigned long unused_resv_pages)
1025 {
1026         unsigned long nr_pages;
1027
1028         /* Uncommit the reservation */
1029         h->resv_huge_pages -= unused_resv_pages;
1030
1031         /* Cannot return gigantic pages currently */
1032         if (h->order >= MAX_ORDER)
1033                 return;
1034
1035         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1036
1037         /*
1038          * We want to release as many surplus pages as possible, spread
1039          * evenly across all nodes with memory. Iterate across these nodes
1040          * until we can no longer free unreserved surplus pages. This occurs
1041          * when the nodes with surplus pages have no free pages.
1042          * free_pool_huge_page() will balance the the freed pages across the
1043          * on-line nodes with memory and will handle the hstate accounting.
1044          */
1045         while (nr_pages--) {
1046                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1047                         break;
1048         }
1049 }
1050
1051 /*
1052  * Determine if the huge page at addr within the vma has an associated
1053  * reservation.  Where it does not we will need to logically increase
1054  * reservation and actually increase subpool usage before an allocation
1055  * can occur.  Where any new reservation would be required the
1056  * reservation change is prepared, but not committed.  Once the page
1057  * has been allocated from the subpool and instantiated the change should
1058  * be committed via vma_commit_reservation.  No action is required on
1059  * failure.
1060  */
1061 static long vma_needs_reservation(struct hstate *h,
1062                         struct vm_area_struct *vma, unsigned long addr)
1063 {
1064         struct address_space *mapping = vma->vm_file->f_mapping;
1065         struct inode *inode = mapping->host;
1066
1067         if (vma->vm_flags & VM_MAYSHARE) {
1068                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1069                 return region_chg(&inode->i_mapping->private_list,
1070                                                         idx, idx + 1);
1071
1072         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1073                 return 1;
1074
1075         } else  {
1076                 long err;
1077                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078                 struct resv_map *reservations = vma_resv_map(vma);
1079
1080                 err = region_chg(&reservations->regions, idx, idx + 1);
1081                 if (err < 0)
1082                         return err;
1083                 return 0;
1084         }
1085 }
1086 static void vma_commit_reservation(struct hstate *h,
1087                         struct vm_area_struct *vma, unsigned long addr)
1088 {
1089         struct address_space *mapping = vma->vm_file->f_mapping;
1090         struct inode *inode = mapping->host;
1091
1092         if (vma->vm_flags & VM_MAYSHARE) {
1093                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1094                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1095
1096         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1097                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1098                 struct resv_map *reservations = vma_resv_map(vma);
1099
1100                 /* Mark this page used in the map. */
1101                 region_add(&reservations->regions, idx, idx + 1);
1102         }
1103 }
1104
1105 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1106                                     unsigned long addr, int avoid_reserve)
1107 {
1108         struct hugepage_subpool *spool = subpool_vma(vma);
1109         struct hstate *h = hstate_vma(vma);
1110         struct page *page;
1111         long chg;
1112
1113         /*
1114          * Processes that did not create the mapping will have no
1115          * reserves and will not have accounted against subpool
1116          * limit. Check that the subpool limit can be made before
1117          * satisfying the allocation MAP_NORESERVE mappings may also
1118          * need pages and subpool limit allocated allocated if no reserve
1119          * mapping overlaps.
1120          */
1121         chg = vma_needs_reservation(h, vma, addr);
1122         if (chg < 0)
1123                 return ERR_PTR(-VM_FAULT_OOM);
1124         if (chg)
1125                 if (hugepage_subpool_get_pages(spool, chg))
1126                         return ERR_PTR(-VM_FAULT_SIGBUS);
1127
1128         spin_lock(&hugetlb_lock);
1129         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1130         spin_unlock(&hugetlb_lock);
1131
1132         if (!page) {
1133                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1134                 if (!page) {
1135                         hugepage_subpool_put_pages(spool, chg);
1136                         return ERR_PTR(-VM_FAULT_SIGBUS);
1137                 }
1138         }
1139
1140         set_page_private(page, (unsigned long)spool);
1141
1142         vma_commit_reservation(h, vma, addr);
1143
1144         return page;
1145 }
1146
1147 int __weak alloc_bootmem_huge_page(struct hstate *h)
1148 {
1149         struct huge_bootmem_page *m;
1150         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1151
1152         while (nr_nodes) {
1153                 void *addr;
1154
1155                 addr = __alloc_bootmem_node_nopanic(
1156                                 NODE_DATA(hstate_next_node_to_alloc(h,
1157                                                 &node_states[N_HIGH_MEMORY])),
1158                                 huge_page_size(h), huge_page_size(h), 0);
1159
1160                 if (addr) {
1161                         /*
1162                          * Use the beginning of the huge page to store the
1163                          * huge_bootmem_page struct (until gather_bootmem
1164                          * puts them into the mem_map).
1165                          */
1166                         m = addr;
1167                         goto found;
1168                 }
1169                 nr_nodes--;
1170         }
1171         return 0;
1172
1173 found:
1174         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1175         /* Put them into a private list first because mem_map is not up yet */
1176         list_add(&m->list, &huge_boot_pages);
1177         m->hstate = h;
1178         return 1;
1179 }
1180
1181 static void prep_compound_huge_page(struct page *page, int order)
1182 {
1183         if (unlikely(order > (MAX_ORDER - 1)))
1184                 prep_compound_gigantic_page(page, order);
1185         else
1186                 prep_compound_page(page, order);
1187 }
1188
1189 /* Put bootmem huge pages into the standard lists after mem_map is up */
1190 static void __init gather_bootmem_prealloc(void)
1191 {
1192         struct huge_bootmem_page *m;
1193
1194         list_for_each_entry(m, &huge_boot_pages, list) {
1195                 struct hstate *h = m->hstate;
1196                 struct page *page;
1197
1198 #ifdef CONFIG_HIGHMEM
1199                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1200                 free_bootmem_late((unsigned long)m,
1201                                   sizeof(struct huge_bootmem_page));
1202 #else
1203                 page = virt_to_page(m);
1204 #endif
1205                 __ClearPageReserved(page);
1206                 WARN_ON(page_count(page) != 1);
1207                 prep_compound_huge_page(page, h->order);
1208                 prep_new_huge_page(h, page, page_to_nid(page));
1209                 /*
1210                  * If we had gigantic hugepages allocated at boot time, we need
1211                  * to restore the 'stolen' pages to totalram_pages in order to
1212                  * fix confusing memory reports from free(1) and another
1213                  * side-effects, like CommitLimit going negative.
1214                  */
1215                 if (h->order > (MAX_ORDER - 1))
1216                         totalram_pages += 1 << h->order;
1217         }
1218 }
1219
1220 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1221 {
1222         unsigned long i;
1223
1224         for (i = 0; i < h->max_huge_pages; ++i) {
1225                 if (h->order >= MAX_ORDER) {
1226                         if (!alloc_bootmem_huge_page(h))
1227                                 break;
1228                 } else if (!alloc_fresh_huge_page(h,
1229                                          &node_states[N_HIGH_MEMORY]))
1230                         break;
1231         }
1232         h->max_huge_pages = i;
1233 }
1234
1235 static void __init hugetlb_init_hstates(void)
1236 {
1237         struct hstate *h;
1238
1239         for_each_hstate(h) {
1240                 /* oversize hugepages were init'ed in early boot */
1241                 if (h->order < MAX_ORDER)
1242                         hugetlb_hstate_alloc_pages(h);
1243         }
1244 }
1245
1246 static char * __init memfmt(char *buf, unsigned long n)
1247 {
1248         if (n >= (1UL << 30))
1249                 sprintf(buf, "%lu GB", n >> 30);
1250         else if (n >= (1UL << 20))
1251                 sprintf(buf, "%lu MB", n >> 20);
1252         else
1253                 sprintf(buf, "%lu KB", n >> 10);
1254         return buf;
1255 }
1256
1257 static void __init report_hugepages(void)
1258 {
1259         struct hstate *h;
1260
1261         for_each_hstate(h) {
1262                 char buf[32];
1263                 printk(KERN_INFO "HugeTLB registered %s page size, "
1264                                  "pre-allocated %ld pages\n",
1265                         memfmt(buf, huge_page_size(h)),
1266                         h->free_huge_pages);
1267         }
1268 }
1269
1270 #ifdef CONFIG_HIGHMEM
1271 static void try_to_free_low(struct hstate *h, unsigned long count,
1272                                                 nodemask_t *nodes_allowed)
1273 {
1274         int i;
1275
1276         if (h->order >= MAX_ORDER)
1277                 return;
1278
1279         for_each_node_mask(i, *nodes_allowed) {
1280                 struct page *page, *next;
1281                 struct list_head *freel = &h->hugepage_freelists[i];
1282                 list_for_each_entry_safe(page, next, freel, lru) {
1283                         if (count >= h->nr_huge_pages)
1284                                 return;
1285                         if (PageHighMem(page))
1286                                 continue;
1287                         list_del(&page->lru);
1288                         update_and_free_page(h, page);
1289                         h->free_huge_pages--;
1290                         h->free_huge_pages_node[page_to_nid(page)]--;
1291                 }
1292         }
1293 }
1294 #else
1295 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1296                                                 nodemask_t *nodes_allowed)
1297 {
1298 }
1299 #endif
1300
1301 /*
1302  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1303  * balanced by operating on them in a round-robin fashion.
1304  * Returns 1 if an adjustment was made.
1305  */
1306 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1307                                 int delta)
1308 {
1309         int start_nid, next_nid;
1310         int ret = 0;
1311
1312         VM_BUG_ON(delta != -1 && delta != 1);
1313
1314         if (delta < 0)
1315                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1316         else
1317                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1318         next_nid = start_nid;
1319
1320         do {
1321                 int nid = next_nid;
1322                 if (delta < 0)  {
1323                         /*
1324                          * To shrink on this node, there must be a surplus page
1325                          */
1326                         if (!h->surplus_huge_pages_node[nid]) {
1327                                 next_nid = hstate_next_node_to_alloc(h,
1328                                                                 nodes_allowed);
1329                                 continue;
1330                         }
1331                 }
1332                 if (delta > 0) {
1333                         /*
1334                          * Surplus cannot exceed the total number of pages
1335                          */
1336                         if (h->surplus_huge_pages_node[nid] >=
1337                                                 h->nr_huge_pages_node[nid]) {
1338                                 next_nid = hstate_next_node_to_free(h,
1339                                                                 nodes_allowed);
1340                                 continue;
1341                         }
1342                 }
1343
1344                 h->surplus_huge_pages += delta;
1345                 h->surplus_huge_pages_node[nid] += delta;
1346                 ret = 1;
1347                 break;
1348         } while (next_nid != start_nid);
1349
1350         return ret;
1351 }
1352
1353 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1354 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1355                                                 nodemask_t *nodes_allowed)
1356 {
1357         unsigned long min_count, ret;
1358
1359         if (h->order >= MAX_ORDER)
1360                 return h->max_huge_pages;
1361
1362         /*
1363          * Increase the pool size
1364          * First take pages out of surplus state.  Then make up the
1365          * remaining difference by allocating fresh huge pages.
1366          *
1367          * We might race with alloc_buddy_huge_page() here and be unable
1368          * to convert a surplus huge page to a normal huge page. That is
1369          * not critical, though, it just means the overall size of the
1370          * pool might be one hugepage larger than it needs to be, but
1371          * within all the constraints specified by the sysctls.
1372          */
1373         spin_lock(&hugetlb_lock);
1374         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1375                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1376                         break;
1377         }
1378
1379         while (count > persistent_huge_pages(h)) {
1380                 /*
1381                  * If this allocation races such that we no longer need the
1382                  * page, free_huge_page will handle it by freeing the page
1383                  * and reducing the surplus.
1384                  */
1385                 spin_unlock(&hugetlb_lock);
1386                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1387                 spin_lock(&hugetlb_lock);
1388                 if (!ret)
1389                         goto out;
1390
1391                 /* Bail for signals. Probably ctrl-c from user */
1392                 if (signal_pending(current))
1393                         goto out;
1394         }
1395
1396         /*
1397          * Decrease the pool size
1398          * First return free pages to the buddy allocator (being careful
1399          * to keep enough around to satisfy reservations).  Then place
1400          * pages into surplus state as needed so the pool will shrink
1401          * to the desired size as pages become free.
1402          *
1403          * By placing pages into the surplus state independent of the
1404          * overcommit value, we are allowing the surplus pool size to
1405          * exceed overcommit. There are few sane options here. Since
1406          * alloc_buddy_huge_page() is checking the global counter,
1407          * though, we'll note that we're not allowed to exceed surplus
1408          * and won't grow the pool anywhere else. Not until one of the
1409          * sysctls are changed, or the surplus pages go out of use.
1410          */
1411         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1412         min_count = max(count, min_count);
1413         try_to_free_low(h, min_count, nodes_allowed);
1414         while (min_count < persistent_huge_pages(h)) {
1415                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1416                         break;
1417         }
1418         while (count < persistent_huge_pages(h)) {
1419                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1420                         break;
1421         }
1422 out:
1423         ret = persistent_huge_pages(h);
1424         spin_unlock(&hugetlb_lock);
1425         return ret;
1426 }
1427
1428 #define HSTATE_ATTR_RO(_name) \
1429         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1430
1431 #define HSTATE_ATTR(_name) \
1432         static struct kobj_attribute _name##_attr = \
1433                 __ATTR(_name, 0644, _name##_show, _name##_store)
1434
1435 static struct kobject *hugepages_kobj;
1436 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1437
1438 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1439
1440 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1441 {
1442         int i;
1443
1444         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1445                 if (hstate_kobjs[i] == kobj) {
1446                         if (nidp)
1447                                 *nidp = NUMA_NO_NODE;
1448                         return &hstates[i];
1449                 }
1450
1451         return kobj_to_node_hstate(kobj, nidp);
1452 }
1453
1454 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1455                                         struct kobj_attribute *attr, char *buf)
1456 {
1457         struct hstate *h;
1458         unsigned long nr_huge_pages;
1459         int nid;
1460
1461         h = kobj_to_hstate(kobj, &nid);
1462         if (nid == NUMA_NO_NODE)
1463                 nr_huge_pages = h->nr_huge_pages;
1464         else
1465                 nr_huge_pages = h->nr_huge_pages_node[nid];
1466
1467         return sprintf(buf, "%lu\n", nr_huge_pages);
1468 }
1469
1470 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1471                         struct kobject *kobj, struct kobj_attribute *attr,
1472                         const char *buf, size_t len)
1473 {
1474         int err;
1475         int nid;
1476         unsigned long count;
1477         struct hstate *h;
1478         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1479
1480         err = strict_strtoul(buf, 10, &count);
1481         if (err)
1482                 goto out;
1483
1484         h = kobj_to_hstate(kobj, &nid);
1485         if (h->order >= MAX_ORDER) {
1486                 err = -EINVAL;
1487                 goto out;
1488         }
1489
1490         if (nid == NUMA_NO_NODE) {
1491                 /*
1492                  * global hstate attribute
1493                  */
1494                 if (!(obey_mempolicy &&
1495                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1496                         NODEMASK_FREE(nodes_allowed);
1497                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1498                 }
1499         } else if (nodes_allowed) {
1500                 /*
1501                  * per node hstate attribute: adjust count to global,
1502                  * but restrict alloc/free to the specified node.
1503                  */
1504                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1505                 init_nodemask_of_node(nodes_allowed, nid);
1506         } else
1507                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1508
1509         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1510
1511         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1512                 NODEMASK_FREE(nodes_allowed);
1513
1514         return len;
1515 out:
1516         NODEMASK_FREE(nodes_allowed);
1517         return err;
1518 }
1519
1520 static ssize_t nr_hugepages_show(struct kobject *kobj,
1521                                        struct kobj_attribute *attr, char *buf)
1522 {
1523         return nr_hugepages_show_common(kobj, attr, buf);
1524 }
1525
1526 static ssize_t nr_hugepages_store(struct kobject *kobj,
1527                struct kobj_attribute *attr, const char *buf, size_t len)
1528 {
1529         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1530 }
1531 HSTATE_ATTR(nr_hugepages);
1532
1533 #ifdef CONFIG_NUMA
1534
1535 /*
1536  * hstate attribute for optionally mempolicy-based constraint on persistent
1537  * huge page alloc/free.
1538  */
1539 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1540                                        struct kobj_attribute *attr, char *buf)
1541 {
1542         return nr_hugepages_show_common(kobj, attr, buf);
1543 }
1544
1545 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1546                struct kobj_attribute *attr, const char *buf, size_t len)
1547 {
1548         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1549 }
1550 HSTATE_ATTR(nr_hugepages_mempolicy);
1551 #endif
1552
1553
1554 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1555                                         struct kobj_attribute *attr, char *buf)
1556 {
1557         struct hstate *h = kobj_to_hstate(kobj, NULL);
1558         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1559 }
1560
1561 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1562                 struct kobj_attribute *attr, const char *buf, size_t count)
1563 {
1564         int err;
1565         unsigned long input;
1566         struct hstate *h = kobj_to_hstate(kobj, NULL);
1567
1568         if (h->order >= MAX_ORDER)
1569                 return -EINVAL;
1570
1571         err = strict_strtoul(buf, 10, &input);
1572         if (err)
1573                 return err;
1574
1575         spin_lock(&hugetlb_lock);
1576         h->nr_overcommit_huge_pages = input;
1577         spin_unlock(&hugetlb_lock);
1578
1579         return count;
1580 }
1581 HSTATE_ATTR(nr_overcommit_hugepages);
1582
1583 static ssize_t free_hugepages_show(struct kobject *kobj,
1584                                         struct kobj_attribute *attr, char *buf)
1585 {
1586         struct hstate *h;
1587         unsigned long free_huge_pages;
1588         int nid;
1589
1590         h = kobj_to_hstate(kobj, &nid);
1591         if (nid == NUMA_NO_NODE)
1592                 free_huge_pages = h->free_huge_pages;
1593         else
1594                 free_huge_pages = h->free_huge_pages_node[nid];
1595
1596         return sprintf(buf, "%lu\n", free_huge_pages);
1597 }
1598 HSTATE_ATTR_RO(free_hugepages);
1599
1600 static ssize_t resv_hugepages_show(struct kobject *kobj,
1601                                         struct kobj_attribute *attr, char *buf)
1602 {
1603         struct hstate *h = kobj_to_hstate(kobj, NULL);
1604         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1605 }
1606 HSTATE_ATTR_RO(resv_hugepages);
1607
1608 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1609                                         struct kobj_attribute *attr, char *buf)
1610 {
1611         struct hstate *h;
1612         unsigned long surplus_huge_pages;
1613         int nid;
1614
1615         h = kobj_to_hstate(kobj, &nid);
1616         if (nid == NUMA_NO_NODE)
1617                 surplus_huge_pages = h->surplus_huge_pages;
1618         else
1619                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1620
1621         return sprintf(buf, "%lu\n", surplus_huge_pages);
1622 }
1623 HSTATE_ATTR_RO(surplus_hugepages);
1624
1625 static struct attribute *hstate_attrs[] = {
1626         &nr_hugepages_attr.attr,
1627         &nr_overcommit_hugepages_attr.attr,
1628         &free_hugepages_attr.attr,
1629         &resv_hugepages_attr.attr,
1630         &surplus_hugepages_attr.attr,
1631 #ifdef CONFIG_NUMA
1632         &nr_hugepages_mempolicy_attr.attr,
1633 #endif
1634         NULL,
1635 };
1636
1637 static struct attribute_group hstate_attr_group = {
1638         .attrs = hstate_attrs,
1639 };
1640
1641 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1642                                     struct kobject **hstate_kobjs,
1643                                     struct attribute_group *hstate_attr_group)
1644 {
1645         int retval;
1646         int hi = h - hstates;
1647
1648         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1649         if (!hstate_kobjs[hi])
1650                 return -ENOMEM;
1651
1652         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1653         if (retval)
1654                 kobject_put(hstate_kobjs[hi]);
1655
1656         return retval;
1657 }
1658
1659 static void __init hugetlb_sysfs_init(void)
1660 {
1661         struct hstate *h;
1662         int err;
1663
1664         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1665         if (!hugepages_kobj)
1666                 return;
1667
1668         for_each_hstate(h) {
1669                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1670                                          hstate_kobjs, &hstate_attr_group);
1671                 if (err)
1672                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1673                                                                 h->name);
1674         }
1675 }
1676
1677 #ifdef CONFIG_NUMA
1678
1679 /*
1680  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1681  * with node devices in node_devices[] using a parallel array.  The array
1682  * index of a node device or _hstate == node id.
1683  * This is here to avoid any static dependency of the node device driver, in
1684  * the base kernel, on the hugetlb module.
1685  */
1686 struct node_hstate {
1687         struct kobject          *hugepages_kobj;
1688         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1689 };
1690 struct node_hstate node_hstates[MAX_NUMNODES];
1691
1692 /*
1693  * A subset of global hstate attributes for node devices
1694  */
1695 static struct attribute *per_node_hstate_attrs[] = {
1696         &nr_hugepages_attr.attr,
1697         &free_hugepages_attr.attr,
1698         &surplus_hugepages_attr.attr,
1699         NULL,
1700 };
1701
1702 static struct attribute_group per_node_hstate_attr_group = {
1703         .attrs = per_node_hstate_attrs,
1704 };
1705
1706 /*
1707  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1708  * Returns node id via non-NULL nidp.
1709  */
1710 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1711 {
1712         int nid;
1713
1714         for (nid = 0; nid < nr_node_ids; nid++) {
1715                 struct node_hstate *nhs = &node_hstates[nid];
1716                 int i;
1717                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1718                         if (nhs->hstate_kobjs[i] == kobj) {
1719                                 if (nidp)
1720                                         *nidp = nid;
1721                                 return &hstates[i];
1722                         }
1723         }
1724
1725         BUG();
1726         return NULL;
1727 }
1728
1729 /*
1730  * Unregister hstate attributes from a single node device.
1731  * No-op if no hstate attributes attached.
1732  */
1733 void hugetlb_unregister_node(struct node *node)
1734 {
1735         struct hstate *h;
1736         struct node_hstate *nhs = &node_hstates[node->dev.id];
1737
1738         if (!nhs->hugepages_kobj)
1739                 return;         /* no hstate attributes */
1740
1741         for_each_hstate(h)
1742                 if (nhs->hstate_kobjs[h - hstates]) {
1743                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1744                         nhs->hstate_kobjs[h - hstates] = NULL;
1745                 }
1746
1747         kobject_put(nhs->hugepages_kobj);
1748         nhs->hugepages_kobj = NULL;
1749 }
1750
1751 /*
1752  * hugetlb module exit:  unregister hstate attributes from node devices
1753  * that have them.
1754  */
1755 static void hugetlb_unregister_all_nodes(void)
1756 {
1757         int nid;
1758
1759         /*
1760          * disable node device registrations.
1761          */
1762         register_hugetlbfs_with_node(NULL, NULL);
1763
1764         /*
1765          * remove hstate attributes from any nodes that have them.
1766          */
1767         for (nid = 0; nid < nr_node_ids; nid++)
1768                 hugetlb_unregister_node(&node_devices[nid]);
1769 }
1770
1771 /*
1772  * Register hstate attributes for a single node device.
1773  * No-op if attributes already registered.
1774  */
1775 void hugetlb_register_node(struct node *node)
1776 {
1777         struct hstate *h;
1778         struct node_hstate *nhs = &node_hstates[node->dev.id];
1779         int err;
1780
1781         if (nhs->hugepages_kobj)
1782                 return;         /* already allocated */
1783
1784         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1785                                                         &node->dev.kobj);
1786         if (!nhs->hugepages_kobj)
1787                 return;
1788
1789         for_each_hstate(h) {
1790                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1791                                                 nhs->hstate_kobjs,
1792                                                 &per_node_hstate_attr_group);
1793                 if (err) {
1794                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1795                                         " for node %d\n",
1796                                                 h->name, node->dev.id);
1797                         hugetlb_unregister_node(node);
1798                         break;
1799                 }
1800         }
1801 }
1802
1803 /*
1804  * hugetlb init time:  register hstate attributes for all registered node
1805  * devices of nodes that have memory.  All on-line nodes should have
1806  * registered their associated device by this time.
1807  */
1808 static void hugetlb_register_all_nodes(void)
1809 {
1810         int nid;
1811
1812         for_each_node_state(nid, N_HIGH_MEMORY) {
1813                 struct node *node = &node_devices[nid];
1814                 if (node->dev.id == nid)
1815                         hugetlb_register_node(node);
1816         }
1817
1818         /*
1819          * Let the node device driver know we're here so it can
1820          * [un]register hstate attributes on node hotplug.
1821          */
1822         register_hugetlbfs_with_node(hugetlb_register_node,
1823                                      hugetlb_unregister_node);
1824 }
1825 #else   /* !CONFIG_NUMA */
1826
1827 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1828 {
1829         BUG();
1830         if (nidp)
1831                 *nidp = -1;
1832         return NULL;
1833 }
1834
1835 static void hugetlb_unregister_all_nodes(void) { }
1836
1837 static void hugetlb_register_all_nodes(void) { }
1838
1839 #endif
1840
1841 static void __exit hugetlb_exit(void)
1842 {
1843         struct hstate *h;
1844
1845         hugetlb_unregister_all_nodes();
1846
1847         for_each_hstate(h) {
1848                 kobject_put(hstate_kobjs[h - hstates]);
1849         }
1850
1851         kobject_put(hugepages_kobj);
1852 }
1853 module_exit(hugetlb_exit);
1854
1855 static int __init hugetlb_init(void)
1856 {
1857         /* Some platform decide whether they support huge pages at boot
1858          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1859          * there is no such support
1860          */
1861         if (HPAGE_SHIFT == 0)
1862                 return 0;
1863
1864         if (!size_to_hstate(default_hstate_size)) {
1865                 default_hstate_size = HPAGE_SIZE;
1866                 if (!size_to_hstate(default_hstate_size))
1867                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1868         }
1869         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1870         if (default_hstate_max_huge_pages)
1871                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1872
1873         hugetlb_init_hstates();
1874
1875         gather_bootmem_prealloc();
1876
1877         report_hugepages();
1878
1879         hugetlb_sysfs_init();
1880
1881         hugetlb_register_all_nodes();
1882
1883         return 0;
1884 }
1885 module_init(hugetlb_init);
1886
1887 /* Should be called on processing a hugepagesz=... option */
1888 void __init hugetlb_add_hstate(unsigned order)
1889 {
1890         struct hstate *h;
1891         unsigned long i;
1892
1893         if (size_to_hstate(PAGE_SIZE << order)) {
1894                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1895                 return;
1896         }
1897         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1898         BUG_ON(order == 0);
1899         h = &hstates[max_hstate++];
1900         h->order = order;
1901         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1902         h->nr_huge_pages = 0;
1903         h->free_huge_pages = 0;
1904         for (i = 0; i < MAX_NUMNODES; ++i)
1905                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1906         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1907         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1908         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1909                                         huge_page_size(h)/1024);
1910
1911         parsed_hstate = h;
1912 }
1913
1914 static int __init hugetlb_nrpages_setup(char *s)
1915 {
1916         unsigned long *mhp;
1917         static unsigned long *last_mhp;
1918
1919         /*
1920          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1921          * so this hugepages= parameter goes to the "default hstate".
1922          */
1923         if (!max_hstate)
1924                 mhp = &default_hstate_max_huge_pages;
1925         else
1926                 mhp = &parsed_hstate->max_huge_pages;
1927
1928         if (mhp == last_mhp) {
1929                 printk(KERN_WARNING "hugepages= specified twice without "
1930                         "interleaving hugepagesz=, ignoring\n");
1931                 return 1;
1932         }
1933
1934         if (sscanf(s, "%lu", mhp) <= 0)
1935                 *mhp = 0;
1936
1937         /*
1938          * Global state is always initialized later in hugetlb_init.
1939          * But we need to allocate >= MAX_ORDER hstates here early to still
1940          * use the bootmem allocator.
1941          */
1942         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1943                 hugetlb_hstate_alloc_pages(parsed_hstate);
1944
1945         last_mhp = mhp;
1946
1947         return 1;
1948 }
1949 __setup("hugepages=", hugetlb_nrpages_setup);
1950
1951 static int __init hugetlb_default_setup(char *s)
1952 {
1953         default_hstate_size = memparse(s, &s);
1954         return 1;
1955 }
1956 __setup("default_hugepagesz=", hugetlb_default_setup);
1957
1958 static unsigned int cpuset_mems_nr(unsigned int *array)
1959 {
1960         int node;
1961         unsigned int nr = 0;
1962
1963         for_each_node_mask(node, cpuset_current_mems_allowed)
1964                 nr += array[node];
1965
1966         return nr;
1967 }
1968
1969 #ifdef CONFIG_SYSCTL
1970 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1971                          struct ctl_table *table, int write,
1972                          void __user *buffer, size_t *length, loff_t *ppos)
1973 {
1974         struct hstate *h = &default_hstate;
1975         unsigned long tmp;
1976         int ret;
1977
1978         tmp = h->max_huge_pages;
1979
1980         if (write && h->order >= MAX_ORDER)
1981                 return -EINVAL;
1982
1983         table->data = &tmp;
1984         table->maxlen = sizeof(unsigned long);
1985         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1986         if (ret)
1987                 goto out;
1988
1989         if (write) {
1990                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1991                                                 GFP_KERNEL | __GFP_NORETRY);
1992                 if (!(obey_mempolicy &&
1993                                init_nodemask_of_mempolicy(nodes_allowed))) {
1994                         NODEMASK_FREE(nodes_allowed);
1995                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1996                 }
1997                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1998
1999                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2000                         NODEMASK_FREE(nodes_allowed);
2001         }
2002 out:
2003         return ret;
2004 }
2005
2006 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2007                           void __user *buffer, size_t *length, loff_t *ppos)
2008 {
2009
2010         return hugetlb_sysctl_handler_common(false, table, write,
2011                                                         buffer, length, ppos);
2012 }
2013
2014 #ifdef CONFIG_NUMA
2015 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2016                           void __user *buffer, size_t *length, loff_t *ppos)
2017 {
2018         return hugetlb_sysctl_handler_common(true, table, write,
2019                                                         buffer, length, ppos);
2020 }
2021 #endif /* CONFIG_NUMA */
2022
2023 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2024                         void __user *buffer,
2025                         size_t *length, loff_t *ppos)
2026 {
2027         proc_dointvec(table, write, buffer, length, ppos);
2028         if (hugepages_treat_as_movable)
2029                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2030         else
2031                 htlb_alloc_mask = GFP_HIGHUSER;
2032         return 0;
2033 }
2034
2035 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2036                         void __user *buffer,
2037                         size_t *length, loff_t *ppos)
2038 {
2039         struct hstate *h = &default_hstate;
2040         unsigned long tmp;
2041         int ret;
2042
2043         tmp = h->nr_overcommit_huge_pages;
2044
2045         if (write && h->order >= MAX_ORDER)
2046                 return -EINVAL;
2047
2048         table->data = &tmp;
2049         table->maxlen = sizeof(unsigned long);
2050         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2051         if (ret)
2052                 goto out;
2053
2054         if (write) {
2055                 spin_lock(&hugetlb_lock);
2056                 h->nr_overcommit_huge_pages = tmp;
2057                 spin_unlock(&hugetlb_lock);
2058         }
2059 out:
2060         return ret;
2061 }
2062
2063 #endif /* CONFIG_SYSCTL */
2064
2065 void hugetlb_report_meminfo(struct seq_file *m)
2066 {
2067         struct hstate *h = &default_hstate;
2068         seq_printf(m,
2069                         "HugePages_Total:   %5lu\n"
2070                         "HugePages_Free:    %5lu\n"
2071                         "HugePages_Rsvd:    %5lu\n"
2072                         "HugePages_Surp:    %5lu\n"
2073                         "Hugepagesize:   %8lu kB\n",
2074                         h->nr_huge_pages,
2075                         h->free_huge_pages,
2076                         h->resv_huge_pages,
2077                         h->surplus_huge_pages,
2078                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2079 }
2080
2081 int hugetlb_report_node_meminfo(int nid, char *buf)
2082 {
2083         struct hstate *h = &default_hstate;
2084         return sprintf(buf,
2085                 "Node %d HugePages_Total: %5u\n"
2086                 "Node %d HugePages_Free:  %5u\n"
2087                 "Node %d HugePages_Surp:  %5u\n",
2088                 nid, h->nr_huge_pages_node[nid],
2089                 nid, h->free_huge_pages_node[nid],
2090                 nid, h->surplus_huge_pages_node[nid]);
2091 }
2092
2093 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2094 unsigned long hugetlb_total_pages(void)
2095 {
2096         struct hstate *h;
2097         unsigned long nr_total_pages = 0;
2098
2099         for_each_hstate(h)
2100                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2101         return nr_total_pages;
2102 }
2103
2104 static int hugetlb_acct_memory(struct hstate *h, long delta)
2105 {
2106         int ret = -ENOMEM;
2107
2108         spin_lock(&hugetlb_lock);
2109         /*
2110          * When cpuset is configured, it breaks the strict hugetlb page
2111          * reservation as the accounting is done on a global variable. Such
2112          * reservation is completely rubbish in the presence of cpuset because
2113          * the reservation is not checked against page availability for the
2114          * current cpuset. Application can still potentially OOM'ed by kernel
2115          * with lack of free htlb page in cpuset that the task is in.
2116          * Attempt to enforce strict accounting with cpuset is almost
2117          * impossible (or too ugly) because cpuset is too fluid that
2118          * task or memory node can be dynamically moved between cpusets.
2119          *
2120          * The change of semantics for shared hugetlb mapping with cpuset is
2121          * undesirable. However, in order to preserve some of the semantics,
2122          * we fall back to check against current free page availability as
2123          * a best attempt and hopefully to minimize the impact of changing
2124          * semantics that cpuset has.
2125          */
2126         if (delta > 0) {
2127                 if (gather_surplus_pages(h, delta) < 0)
2128                         goto out;
2129
2130                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2131                         return_unused_surplus_pages(h, delta);
2132                         goto out;
2133                 }
2134         }
2135
2136         ret = 0;
2137         if (delta < 0)
2138                 return_unused_surplus_pages(h, (unsigned long) -delta);
2139
2140 out:
2141         spin_unlock(&hugetlb_lock);
2142         return ret;
2143 }
2144
2145 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2146 {
2147         struct resv_map *reservations = vma_resv_map(vma);
2148
2149         /*
2150          * This new VMA should share its siblings reservation map if present.
2151          * The VMA will only ever have a valid reservation map pointer where
2152          * it is being copied for another still existing VMA.  As that VMA
2153          * has a reference to the reservation map it cannot disappear until
2154          * after this open call completes.  It is therefore safe to take a
2155          * new reference here without additional locking.
2156          */
2157         if (reservations)
2158                 kref_get(&reservations->refs);
2159 }
2160
2161 static void resv_map_put(struct vm_area_struct *vma)
2162 {
2163         struct resv_map *reservations = vma_resv_map(vma);
2164
2165         if (!reservations)
2166                 return;
2167         kref_put(&reservations->refs, resv_map_release);
2168 }
2169
2170 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2171 {
2172         struct hstate *h = hstate_vma(vma);
2173         struct resv_map *reservations = vma_resv_map(vma);
2174         struct hugepage_subpool *spool = subpool_vma(vma);
2175         unsigned long reserve;
2176         unsigned long start;
2177         unsigned long end;
2178
2179         if (reservations) {
2180                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2181                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2182
2183                 reserve = (end - start) -
2184                         region_count(&reservations->regions, start, end);
2185
2186                 resv_map_put(vma);
2187
2188                 if (reserve) {
2189                         hugetlb_acct_memory(h, -reserve);
2190                         hugepage_subpool_put_pages(spool, reserve);
2191                 }
2192         }
2193 }
2194
2195 /*
2196  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2197  * handle_mm_fault() to try to instantiate regular-sized pages in the
2198  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2199  * this far.
2200  */
2201 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2202 {
2203         BUG();
2204         return 0;
2205 }
2206
2207 const struct vm_operations_struct hugetlb_vm_ops = {
2208         .fault = hugetlb_vm_op_fault,
2209         .open = hugetlb_vm_op_open,
2210         .close = hugetlb_vm_op_close,
2211 };
2212
2213 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2214                                 int writable)
2215 {
2216         pte_t entry;
2217
2218         if (writable) {
2219                 entry =
2220                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2221         } else {
2222                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2223         }
2224         entry = pte_mkyoung(entry);
2225         entry = pte_mkhuge(entry);
2226
2227         return entry;
2228 }
2229
2230 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2231                                    unsigned long address, pte_t *ptep)
2232 {
2233         pte_t entry;
2234
2235         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2236         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2237                 update_mmu_cache(vma, address, ptep);
2238 }
2239
2240
2241 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2242                             struct vm_area_struct *vma)
2243 {
2244         pte_t *src_pte, *dst_pte, entry;
2245         struct page *ptepage;
2246         unsigned long addr;
2247         int cow;
2248         struct hstate *h = hstate_vma(vma);
2249         unsigned long sz = huge_page_size(h);
2250
2251         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2252
2253         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2254                 src_pte = huge_pte_offset(src, addr);
2255                 if (!src_pte)
2256                         continue;
2257                 dst_pte = huge_pte_alloc(dst, addr, sz);
2258                 if (!dst_pte)
2259                         goto nomem;
2260
2261                 /* If the pagetables are shared don't copy or take references */
2262                 if (dst_pte == src_pte)
2263                         continue;
2264
2265                 spin_lock(&dst->page_table_lock);
2266                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2267                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2268                         if (cow)
2269                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2270                         entry = huge_ptep_get(src_pte);
2271                         ptepage = pte_page(entry);
2272                         get_page(ptepage);
2273                         page_dup_rmap(ptepage);
2274                         set_huge_pte_at(dst, addr, dst_pte, entry);
2275                 }
2276                 spin_unlock(&src->page_table_lock);
2277                 spin_unlock(&dst->page_table_lock);
2278         }
2279         return 0;
2280
2281 nomem:
2282         return -ENOMEM;
2283 }
2284
2285 static int is_hugetlb_entry_migration(pte_t pte)
2286 {
2287         swp_entry_t swp;
2288
2289         if (huge_pte_none(pte) || pte_present(pte))
2290                 return 0;
2291         swp = pte_to_swp_entry(pte);
2292         if (non_swap_entry(swp) && is_migration_entry(swp))
2293                 return 1;
2294         else
2295                 return 0;
2296 }
2297
2298 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2299 {
2300         swp_entry_t swp;
2301
2302         if (huge_pte_none(pte) || pte_present(pte))
2303                 return 0;
2304         swp = pte_to_swp_entry(pte);
2305         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2306                 return 1;
2307         else
2308                 return 0;
2309 }
2310
2311 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2312                             unsigned long end, struct page *ref_page)
2313 {
2314         struct mm_struct *mm = vma->vm_mm;
2315         unsigned long address;
2316         pte_t *ptep;
2317         pte_t pte;
2318         struct page *page;
2319         struct page *tmp;
2320         struct hstate *h = hstate_vma(vma);
2321         unsigned long sz = huge_page_size(h);
2322
2323         /*
2324          * A page gathering list, protected by per file i_mmap_mutex. The
2325          * lock is used to avoid list corruption from multiple unmapping
2326          * of the same page since we are using page->lru.
2327          */
2328         LIST_HEAD(page_list);
2329
2330         WARN_ON(!is_vm_hugetlb_page(vma));
2331         BUG_ON(start & ~huge_page_mask(h));
2332         BUG_ON(end & ~huge_page_mask(h));
2333
2334         mmu_notifier_invalidate_range_start(mm, start, end);
2335         spin_lock(&mm->page_table_lock);
2336         for (address = start; address < end; address += sz) {
2337                 ptep = huge_pte_offset(mm, address);
2338                 if (!ptep)
2339                         continue;
2340
2341                 if (huge_pmd_unshare(mm, &address, ptep))
2342                         continue;
2343
2344                 /*
2345                  * If a reference page is supplied, it is because a specific
2346                  * page is being unmapped, not a range. Ensure the page we
2347                  * are about to unmap is the actual page of interest.
2348                  */
2349                 if (ref_page) {
2350                         pte = huge_ptep_get(ptep);
2351                         if (huge_pte_none(pte))
2352                                 continue;
2353                         page = pte_page(pte);
2354                         if (page != ref_page)
2355                                 continue;
2356
2357                         /*
2358                          * Mark the VMA as having unmapped its page so that
2359                          * future faults in this VMA will fail rather than
2360                          * looking like data was lost
2361                          */
2362                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2363                 }
2364
2365                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2366                 if (huge_pte_none(pte))
2367                         continue;
2368
2369                 /*
2370                  * HWPoisoned hugepage is already unmapped and dropped reference
2371                  */
2372                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2373                         continue;
2374
2375                 page = pte_page(pte);
2376                 if (pte_dirty(pte))
2377                         set_page_dirty(page);
2378                 list_add(&page->lru, &page_list);
2379         }
2380         spin_unlock(&mm->page_table_lock);
2381         flush_tlb_range(vma, start, end);
2382         mmu_notifier_invalidate_range_end(mm, start, end);
2383         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2384                 page_remove_rmap(page);
2385                 list_del(&page->lru);
2386                 put_page(page);
2387         }
2388 }
2389
2390 void __unmap_hugepage_range_final(struct vm_area_struct *vma,
2391                           unsigned long start, unsigned long end,
2392                           struct page *ref_page)
2393 {
2394         __unmap_hugepage_range(vma, start, end, ref_page);
2395
2396         /*
2397          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2398          * test will fail on a vma being torn down, and not grab a page table
2399          * on its way out.  We're lucky that the flag has such an appropriate
2400          * name, and can in fact be safely cleared here. We could clear it
2401          * before the __unmap_hugepage_range above, but all that's necessary
2402          * is to clear it before releasing the i_mmap_mutex. This works
2403          * because in the context this is called, the VMA is about to be
2404          * destroyed and the i_mmap_mutex is held.
2405          */
2406         vma->vm_flags &= ~VM_MAYSHARE;
2407 }
2408
2409 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2410                           unsigned long end, struct page *ref_page)
2411 {
2412         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2413         __unmap_hugepage_range(vma, start, end, ref_page);
2414         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2415 }
2416
2417 /*
2418  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2419  * mappping it owns the reserve page for. The intention is to unmap the page
2420  * from other VMAs and let the children be SIGKILLed if they are faulting the
2421  * same region.
2422  */
2423 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2424                                 struct page *page, unsigned long address)
2425 {
2426         struct hstate *h = hstate_vma(vma);
2427         struct vm_area_struct *iter_vma;
2428         struct address_space *mapping;
2429         struct prio_tree_iter iter;
2430         pgoff_t pgoff;
2431
2432         /*
2433          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2434          * from page cache lookup which is in HPAGE_SIZE units.
2435          */
2436         address = address & huge_page_mask(h);
2437         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2438                         vma->vm_pgoff;
2439         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2440
2441         /*
2442          * Take the mapping lock for the duration of the table walk. As
2443          * this mapping should be shared between all the VMAs,
2444          * __unmap_hugepage_range() is called as the lock is already held
2445          */
2446         mutex_lock(&mapping->i_mmap_mutex);
2447         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2448                 /* Do not unmap the current VMA */
2449                 if (iter_vma == vma)
2450                         continue;
2451
2452                 /*
2453                  * Unmap the page from other VMAs without their own reserves.
2454                  * They get marked to be SIGKILLed if they fault in these
2455                  * areas. This is because a future no-page fault on this VMA
2456                  * could insert a zeroed page instead of the data existing
2457                  * from the time of fork. This would look like data corruption
2458                  */
2459                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2460                         __unmap_hugepage_range(iter_vma,
2461                                 address, address + huge_page_size(h),
2462                                 page);
2463         }
2464         mutex_unlock(&mapping->i_mmap_mutex);
2465
2466         return 1;
2467 }
2468
2469 /*
2470  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2471  */
2472 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2473                         unsigned long address, pte_t *ptep, pte_t pte,
2474                         struct page *pagecache_page)
2475 {
2476         struct hstate *h = hstate_vma(vma);
2477         struct page *old_page, *new_page;
2478         int avoidcopy;
2479         int outside_reserve = 0;
2480
2481         old_page = pte_page(pte);
2482
2483 retry_avoidcopy:
2484         /* If no-one else is actually using this page, avoid the copy
2485          * and just make the page writable */
2486         avoidcopy = (page_mapcount(old_page) == 1);
2487         if (avoidcopy) {
2488                 if (PageAnon(old_page))
2489                         page_move_anon_rmap(old_page, vma, address);
2490                 set_huge_ptep_writable(vma, address, ptep);
2491                 return 0;
2492         }
2493
2494         /*
2495          * If the process that created a MAP_PRIVATE mapping is about to
2496          * perform a COW due to a shared page count, attempt to satisfy
2497          * the allocation without using the existing reserves. The pagecache
2498          * page is used to determine if the reserve at this address was
2499          * consumed or not. If reserves were used, a partial faulted mapping
2500          * at the time of fork() could consume its reserves on COW instead
2501          * of the full address range.
2502          */
2503         if (!(vma->vm_flags & VM_MAYSHARE) &&
2504                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2505                         old_page != pagecache_page)
2506                 outside_reserve = 1;
2507
2508         page_cache_get(old_page);
2509
2510         /* Drop page_table_lock as buddy allocator may be called */
2511         spin_unlock(&mm->page_table_lock);
2512         new_page = alloc_huge_page(vma, address, outside_reserve);
2513
2514         if (IS_ERR(new_page)) {
2515                 page_cache_release(old_page);
2516
2517                 /*
2518                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2519                  * it is due to references held by a child and an insufficient
2520                  * huge page pool. To guarantee the original mappers
2521                  * reliability, unmap the page from child processes. The child
2522                  * may get SIGKILLed if it later faults.
2523                  */
2524                 if (outside_reserve) {
2525                         BUG_ON(huge_pte_none(pte));
2526                         if (unmap_ref_private(mm, vma, old_page, address)) {
2527                                 BUG_ON(huge_pte_none(pte));
2528                                 spin_lock(&mm->page_table_lock);
2529                                 goto retry_avoidcopy;
2530                         }
2531                         WARN_ON_ONCE(1);
2532                 }
2533
2534                 /* Caller expects lock to be held */
2535                 spin_lock(&mm->page_table_lock);
2536                 return -PTR_ERR(new_page);
2537         }
2538
2539         /*
2540          * When the original hugepage is shared one, it does not have
2541          * anon_vma prepared.
2542          */
2543         if (unlikely(anon_vma_prepare(vma))) {
2544                 page_cache_release(new_page);
2545                 page_cache_release(old_page);
2546                 /* Caller expects lock to be held */
2547                 spin_lock(&mm->page_table_lock);
2548                 return VM_FAULT_OOM;
2549         }
2550
2551         copy_user_huge_page(new_page, old_page, address, vma,
2552                             pages_per_huge_page(h));
2553         __SetPageUptodate(new_page);
2554
2555         /*
2556          * Retake the page_table_lock to check for racing updates
2557          * before the page tables are altered
2558          */
2559         spin_lock(&mm->page_table_lock);
2560         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2561         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2562                 /* Break COW */
2563                 mmu_notifier_invalidate_range_start(mm,
2564                         address & huge_page_mask(h),
2565                         (address & huge_page_mask(h)) + huge_page_size(h));
2566                 huge_ptep_clear_flush(vma, address, ptep);
2567                 set_huge_pte_at(mm, address, ptep,
2568                                 make_huge_pte(vma, new_page, 1));
2569                 page_remove_rmap(old_page);
2570                 hugepage_add_new_anon_rmap(new_page, vma, address);
2571                 /* Make the old page be freed below */
2572                 new_page = old_page;
2573                 mmu_notifier_invalidate_range_end(mm,
2574                         address & huge_page_mask(h),
2575                         (address & huge_page_mask(h)) + huge_page_size(h));
2576         }
2577         page_cache_release(new_page);
2578         page_cache_release(old_page);
2579         return 0;
2580 }
2581
2582 /* Return the pagecache page at a given address within a VMA */
2583 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2584                         struct vm_area_struct *vma, unsigned long address)
2585 {
2586         struct address_space *mapping;
2587         pgoff_t idx;
2588
2589         mapping = vma->vm_file->f_mapping;
2590         idx = vma_hugecache_offset(h, vma, address);
2591
2592         return find_lock_page(mapping, idx);
2593 }
2594
2595 /*
2596  * Return whether there is a pagecache page to back given address within VMA.
2597  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2598  */
2599 static bool hugetlbfs_pagecache_present(struct hstate *h,
2600                         struct vm_area_struct *vma, unsigned long address)
2601 {
2602         struct address_space *mapping;
2603         pgoff_t idx;
2604         struct page *page;
2605
2606         mapping = vma->vm_file->f_mapping;
2607         idx = vma_hugecache_offset(h, vma, address);
2608
2609         page = find_get_page(mapping, idx);
2610         if (page)
2611                 put_page(page);
2612         return page != NULL;
2613 }
2614
2615 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2616                         unsigned long address, pte_t *ptep, unsigned int flags)
2617 {
2618         struct hstate *h = hstate_vma(vma);
2619         int ret = VM_FAULT_SIGBUS;
2620         pgoff_t idx;
2621         unsigned long size;
2622         struct page *page;
2623         struct address_space *mapping;
2624         pte_t new_pte;
2625
2626         /*
2627          * Currently, we are forced to kill the process in the event the
2628          * original mapper has unmapped pages from the child due to a failed
2629          * COW. Warn that such a situation has occurred as it may not be obvious
2630          */
2631         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2632                 printk(KERN_WARNING
2633                         "PID %d killed due to inadequate hugepage pool\n",
2634                         current->pid);
2635                 return ret;
2636         }
2637
2638         mapping = vma->vm_file->f_mapping;
2639         idx = vma_hugecache_offset(h, vma, address);
2640
2641         /*
2642          * Use page lock to guard against racing truncation
2643          * before we get page_table_lock.
2644          */
2645 retry:
2646         page = find_lock_page(mapping, idx);
2647         if (!page) {
2648                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2649                 if (idx >= size)
2650                         goto out;
2651                 page = alloc_huge_page(vma, address, 0);
2652                 if (IS_ERR(page)) {
2653                         ret = -PTR_ERR(page);
2654                         goto out;
2655                 }
2656                 clear_huge_page(page, address, pages_per_huge_page(h));
2657                 __SetPageUptodate(page);
2658
2659                 if (vma->vm_flags & VM_MAYSHARE) {
2660                         int err;
2661                         struct inode *inode = mapping->host;
2662
2663                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2664                         if (err) {
2665                                 put_page(page);
2666                                 if (err == -EEXIST)
2667                                         goto retry;
2668                                 goto out;
2669                         }
2670
2671                         spin_lock(&inode->i_lock);
2672                         inode->i_blocks += blocks_per_huge_page(h);
2673                         spin_unlock(&inode->i_lock);
2674                         page_dup_rmap(page);
2675                 } else {
2676                         lock_page(page);
2677                         if (unlikely(anon_vma_prepare(vma))) {
2678                                 ret = VM_FAULT_OOM;
2679                                 goto backout_unlocked;
2680                         }
2681                         hugepage_add_new_anon_rmap(page, vma, address);
2682                 }
2683         } else {
2684                 /*
2685                  * If memory error occurs between mmap() and fault, some process
2686                  * don't have hwpoisoned swap entry for errored virtual address.
2687                  * So we need to block hugepage fault by PG_hwpoison bit check.
2688                  */
2689                 if (unlikely(PageHWPoison(page))) {
2690                         ret = VM_FAULT_HWPOISON |
2691                               VM_FAULT_SET_HINDEX(h - hstates);
2692                         goto backout_unlocked;
2693                 }
2694                 page_dup_rmap(page);
2695         }
2696
2697         /*
2698          * If we are going to COW a private mapping later, we examine the
2699          * pending reservations for this page now. This will ensure that
2700          * any allocations necessary to record that reservation occur outside
2701          * the spinlock.
2702          */
2703         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2704                 if (vma_needs_reservation(h, vma, address) < 0) {
2705                         ret = VM_FAULT_OOM;
2706                         goto backout_unlocked;
2707                 }
2708
2709         spin_lock(&mm->page_table_lock);
2710         size = i_size_read(mapping->host) >> huge_page_shift(h);
2711         if (idx >= size)
2712                 goto backout;
2713
2714         ret = 0;
2715         if (!huge_pte_none(huge_ptep_get(ptep)))
2716                 goto backout;
2717
2718         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2719                                 && (vma->vm_flags & VM_SHARED)));
2720         set_huge_pte_at(mm, address, ptep, new_pte);
2721
2722         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2723                 /* Optimization, do the COW without a second fault */
2724                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2725         }
2726
2727         spin_unlock(&mm->page_table_lock);
2728         unlock_page(page);
2729 out:
2730         return ret;
2731
2732 backout:
2733         spin_unlock(&mm->page_table_lock);
2734 backout_unlocked:
2735         unlock_page(page);
2736         put_page(page);
2737         goto out;
2738 }
2739
2740 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2741                         unsigned long address, unsigned int flags)
2742 {
2743         pte_t *ptep;
2744         pte_t entry;
2745         int ret;
2746         struct page *page = NULL;
2747         struct page *pagecache_page = NULL;
2748         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2749         struct hstate *h = hstate_vma(vma);
2750
2751         ptep = huge_pte_offset(mm, address);
2752         if (ptep) {
2753                 entry = huge_ptep_get(ptep);
2754                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2755                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2756                         return 0;
2757                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2758                         return VM_FAULT_HWPOISON_LARGE |
2759                                VM_FAULT_SET_HINDEX(h - hstates);
2760         }
2761
2762         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2763         if (!ptep)
2764                 return VM_FAULT_OOM;
2765
2766         /*
2767          * Serialize hugepage allocation and instantiation, so that we don't
2768          * get spurious allocation failures if two CPUs race to instantiate
2769          * the same page in the page cache.
2770          */
2771         mutex_lock(&hugetlb_instantiation_mutex);
2772         entry = huge_ptep_get(ptep);
2773         if (huge_pte_none(entry)) {
2774                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2775                 goto out_mutex;
2776         }
2777
2778         ret = 0;
2779
2780         /*
2781          * If we are going to COW the mapping later, we examine the pending
2782          * reservations for this page now. This will ensure that any
2783          * allocations necessary to record that reservation occur outside the
2784          * spinlock. For private mappings, we also lookup the pagecache
2785          * page now as it is used to determine if a reservation has been
2786          * consumed.
2787          */
2788         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2789                 if (vma_needs_reservation(h, vma, address) < 0) {
2790                         ret = VM_FAULT_OOM;
2791                         goto out_mutex;
2792                 }
2793
2794                 if (!(vma->vm_flags & VM_MAYSHARE))
2795                         pagecache_page = hugetlbfs_pagecache_page(h,
2796                                                                 vma, address);
2797         }
2798
2799         /*
2800          * hugetlb_cow() requires page locks of pte_page(entry) and
2801          * pagecache_page, so here we need take the former one
2802          * when page != pagecache_page or !pagecache_page.
2803          * Note that locking order is always pagecache_page -> page,
2804          * so no worry about deadlock.
2805          */
2806         page = pte_page(entry);
2807         get_page(page);
2808         if (page != pagecache_page)
2809                 lock_page(page);
2810
2811         spin_lock(&mm->page_table_lock);
2812         /* Check for a racing update before calling hugetlb_cow */
2813         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2814                 goto out_page_table_lock;
2815
2816
2817         if (flags & FAULT_FLAG_WRITE) {
2818                 if (!pte_write(entry)) {
2819                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2820                                                         pagecache_page);
2821                         goto out_page_table_lock;
2822                 }
2823                 entry = pte_mkdirty(entry);
2824         }
2825         entry = pte_mkyoung(entry);
2826         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2827                                                 flags & FAULT_FLAG_WRITE))
2828                 update_mmu_cache(vma, address, ptep);
2829
2830 out_page_table_lock:
2831         spin_unlock(&mm->page_table_lock);
2832
2833         if (pagecache_page) {
2834                 unlock_page(pagecache_page);
2835                 put_page(pagecache_page);
2836         }
2837         if (page != pagecache_page)
2838                 unlock_page(page);
2839         put_page(page);
2840
2841 out_mutex:
2842         mutex_unlock(&hugetlb_instantiation_mutex);
2843
2844         return ret;
2845 }
2846
2847 /* Can be overriden by architectures */
2848 __attribute__((weak)) struct page *
2849 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2850                pud_t *pud, int write)
2851 {
2852         BUG();
2853         return NULL;
2854 }
2855
2856 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2857                         struct page **pages, struct vm_area_struct **vmas,
2858                         unsigned long *position, int *length, int i,
2859                         unsigned int flags)
2860 {
2861         unsigned long pfn_offset;
2862         unsigned long vaddr = *position;
2863         int remainder = *length;
2864         struct hstate *h = hstate_vma(vma);
2865
2866         spin_lock(&mm->page_table_lock);
2867         while (vaddr < vma->vm_end && remainder) {
2868                 pte_t *pte;
2869                 int absent;
2870                 struct page *page;
2871
2872                 /*
2873                  * Some archs (sparc64, sh*) have multiple pte_ts to
2874                  * each hugepage.  We have to make sure we get the
2875                  * first, for the page indexing below to work.
2876                  */
2877                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2878                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2879
2880                 /*
2881                  * When coredumping, it suits get_dump_page if we just return
2882                  * an error where there's an empty slot with no huge pagecache
2883                  * to back it.  This way, we avoid allocating a hugepage, and
2884                  * the sparse dumpfile avoids allocating disk blocks, but its
2885                  * huge holes still show up with zeroes where they need to be.
2886                  */
2887                 if (absent && (flags & FOLL_DUMP) &&
2888                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2889                         remainder = 0;
2890                         break;
2891                 }
2892
2893                 /*
2894                  * We need call hugetlb_fault for both hugepages under migration
2895                  * (in which case hugetlb_fault waits for the migration,) and
2896                  * hwpoisoned hugepages (in which case we need to prevent the
2897                  * caller from accessing to them.) In order to do this, we use
2898                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2899                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2900                  * both cases, and because we can't follow correct pages
2901                  * directly from any kind of swap entries.
2902                  */
2903                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2904                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2905                         int ret;
2906
2907                         spin_unlock(&mm->page_table_lock);
2908                         ret = hugetlb_fault(mm, vma, vaddr,
2909                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2910                         spin_lock(&mm->page_table_lock);
2911                         if (!(ret & VM_FAULT_ERROR))
2912                                 continue;
2913
2914                         remainder = 0;
2915                         break;
2916                 }
2917
2918                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2919                 page = pte_page(huge_ptep_get(pte));
2920 same_page:
2921                 if (pages) {
2922                         pages[i] = mem_map_offset(page, pfn_offset);
2923                         get_page(pages[i]);
2924                 }
2925
2926                 if (vmas)
2927                         vmas[i] = vma;
2928
2929                 vaddr += PAGE_SIZE;
2930                 ++pfn_offset;
2931                 --remainder;
2932                 ++i;
2933                 if (vaddr < vma->vm_end && remainder &&
2934                                 pfn_offset < pages_per_huge_page(h)) {
2935                         /*
2936                          * We use pfn_offset to avoid touching the pageframes
2937                          * of this compound page.
2938                          */
2939                         goto same_page;
2940                 }
2941         }
2942         spin_unlock(&mm->page_table_lock);
2943         *length = remainder;
2944         *position = vaddr;
2945
2946         return i ? i : -EFAULT;
2947 }
2948
2949 void hugetlb_change_protection(struct vm_area_struct *vma,
2950                 unsigned long address, unsigned long end, pgprot_t newprot)
2951 {
2952         struct mm_struct *mm = vma->vm_mm;
2953         unsigned long start = address;
2954         pte_t *ptep;
2955         pte_t pte;
2956         struct hstate *h = hstate_vma(vma);
2957
2958         BUG_ON(address >= end);
2959         flush_cache_range(vma, address, end);
2960
2961         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2962         spin_lock(&mm->page_table_lock);
2963         for (; address < end; address += huge_page_size(h)) {
2964                 ptep = huge_pte_offset(mm, address);
2965                 if (!ptep)
2966                         continue;
2967                 if (huge_pmd_unshare(mm, &address, ptep))
2968                         continue;
2969                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2970                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2971                         pte = pte_mkhuge(pte_modify(pte, newprot));
2972                         set_huge_pte_at(mm, address, ptep, pte);
2973                 }
2974         }
2975         spin_unlock(&mm->page_table_lock);
2976         /*
2977          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
2978          * may have cleared our pud entry and done put_page on the page table:
2979          * once we release i_mmap_mutex, another task can do the final put_page
2980          * and that page table be reused and filled with junk.
2981          */
2982         flush_tlb_range(vma, start, end);
2983         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2984 }
2985
2986 int hugetlb_reserve_pages(struct inode *inode,
2987                                         long from, long to,
2988                                         struct vm_area_struct *vma,
2989                                         vm_flags_t vm_flags)
2990 {
2991         long ret, chg;
2992         struct hstate *h = hstate_inode(inode);
2993         struct hugepage_subpool *spool = subpool_inode(inode);
2994
2995         /*
2996          * Only apply hugepage reservation if asked. At fault time, an
2997          * attempt will be made for VM_NORESERVE to allocate a page
2998          * without using reserves
2999          */
3000         if (vm_flags & VM_NORESERVE)
3001                 return 0;
3002
3003         /*
3004          * Shared mappings base their reservation on the number of pages that
3005          * are already allocated on behalf of the file. Private mappings need
3006          * to reserve the full area even if read-only as mprotect() may be
3007          * called to make the mapping read-write. Assume !vma is a shm mapping
3008          */
3009         if (!vma || vma->vm_flags & VM_MAYSHARE)
3010                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3011         else {
3012                 struct resv_map *resv_map = resv_map_alloc();
3013                 if (!resv_map)
3014                         return -ENOMEM;
3015
3016                 chg = to - from;
3017
3018                 set_vma_resv_map(vma, resv_map);
3019                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3020         }
3021
3022         if (chg < 0) {
3023                 ret = chg;
3024                 goto out_err;
3025         }
3026
3027         /* There must be enough pages in the subpool for the mapping */
3028         if (hugepage_subpool_get_pages(spool, chg)) {
3029                 ret = -ENOSPC;
3030                 goto out_err;
3031         }
3032
3033         /*
3034          * Check enough hugepages are available for the reservation.
3035          * Hand the pages back to the subpool if there are not
3036          */
3037         ret = hugetlb_acct_memory(h, chg);
3038         if (ret < 0) {
3039                 hugepage_subpool_put_pages(spool, chg);
3040                 goto out_err;
3041         }
3042
3043         /*
3044          * Account for the reservations made. Shared mappings record regions
3045          * that have reservations as they are shared by multiple VMAs.
3046          * When the last VMA disappears, the region map says how much
3047          * the reservation was and the page cache tells how much of
3048          * the reservation was consumed. Private mappings are per-VMA and
3049          * only the consumed reservations are tracked. When the VMA
3050          * disappears, the original reservation is the VMA size and the
3051          * consumed reservations are stored in the map. Hence, nothing
3052          * else has to be done for private mappings here
3053          */
3054         if (!vma || vma->vm_flags & VM_MAYSHARE)
3055                 region_add(&inode->i_mapping->private_list, from, to);
3056         return 0;
3057 out_err:
3058         if (vma)
3059                 resv_map_put(vma);
3060         return ret;
3061 }
3062
3063 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3064 {
3065         struct hstate *h = hstate_inode(inode);
3066         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3067         struct hugepage_subpool *spool = subpool_inode(inode);
3068
3069         spin_lock(&inode->i_lock);
3070         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3071         spin_unlock(&inode->i_lock);
3072
3073         hugepage_subpool_put_pages(spool, (chg - freed));
3074         hugetlb_acct_memory(h, -(chg - freed));
3075 }
3076
3077 #ifdef CONFIG_MEMORY_FAILURE
3078
3079 /* Should be called in hugetlb_lock */
3080 static int is_hugepage_on_freelist(struct page *hpage)
3081 {
3082         struct page *page;
3083         struct page *tmp;
3084         struct hstate *h = page_hstate(hpage);
3085         int nid = page_to_nid(hpage);
3086
3087         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3088                 if (page == hpage)
3089                         return 1;
3090         return 0;
3091 }
3092
3093 /*
3094  * This function is called from memory failure code.
3095  * Assume the caller holds page lock of the head page.
3096  */
3097 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3098 {
3099         struct hstate *h = page_hstate(hpage);
3100         int nid = page_to_nid(hpage);
3101         int ret = -EBUSY;
3102
3103         spin_lock(&hugetlb_lock);
3104         if (is_hugepage_on_freelist(hpage)) {
3105                 list_del(&hpage->lru);
3106                 set_page_refcounted(hpage);
3107                 h->free_huge_pages--;
3108                 h->free_huge_pages_node[nid]--;
3109                 ret = 0;
3110         }
3111         spin_unlock(&hugetlb_lock);
3112         return ret;
3113 }
3114 #endif