Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 #ifdef CONFIG_FB
69 extern const struct file_operations fb_fops;
70
71 #define is_fb_vma(vma) \
72         (vma->vm_file && vma->vm_file->f_op == &fb_fops)
73 #else
74 #define is_fb_vma(vma) 0
75 #endif
76
77 static void split_fb_pmd(struct vm_area_struct *vma, pmd_t *pmd);
78
79 /**
80  * struct mm_slot - hash lookup from mm to mm_slot
81  * @hash: hash collision list
82  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86         struct hlist_node hash;
87         struct list_head mm_node;
88         struct mm_struct *mm;
89 };
90
91 /**
92  * struct khugepaged_scan - cursor for scanning
93  * @mm_head: the head of the mm list to scan
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  *
97  * There is only the one khugepaged_scan instance of this cursor structure.
98  */
99 struct khugepaged_scan {
100         struct list_head mm_head;
101         struct mm_slot *mm_slot;
102         unsigned long address;
103 };
104 static struct khugepaged_scan khugepaged_scan = {
105         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 };
107
108
109 static int set_recommended_min_free_kbytes(void)
110 {
111         struct zone *zone;
112         int nr_zones = 0;
113         unsigned long recommended_min;
114         extern int min_free_kbytes;
115
116         if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
117                       &transparent_hugepage_flags) &&
118             !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
119                       &transparent_hugepage_flags))
120                 return 0;
121
122         for_each_populated_zone(zone)
123                 nr_zones++;
124
125         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
126         recommended_min = pageblock_nr_pages * nr_zones * 2;
127
128         /*
129          * Make sure that on average at least two pageblocks are almost free
130          * of another type, one for a migratetype to fall back to and a
131          * second to avoid subsequent fallbacks of other types There are 3
132          * MIGRATE_TYPES we care about.
133          */
134         recommended_min += pageblock_nr_pages * nr_zones *
135                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
136
137         /* don't ever allow to reserve more than 5% of the lowmem */
138         recommended_min = min(recommended_min,
139                               (unsigned long) nr_free_buffer_pages() / 20);
140         recommended_min <<= (PAGE_SHIFT-10);
141
142         if (recommended_min > min_free_kbytes)
143                 min_free_kbytes = recommended_min;
144         setup_per_zone_wmarks();
145         return 0;
146 }
147 late_initcall(set_recommended_min_free_kbytes);
148
149 static int start_khugepaged(void)
150 {
151         int err = 0;
152         if (khugepaged_enabled()) {
153                 int wakeup;
154                 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
155                         err = -ENOMEM;
156                         goto out;
157                 }
158                 mutex_lock(&khugepaged_mutex);
159                 if (!khugepaged_thread)
160                         khugepaged_thread = kthread_run(khugepaged, NULL,
161                                                         "khugepaged");
162                 if (unlikely(IS_ERR(khugepaged_thread))) {
163                         printk(KERN_ERR
164                                "khugepaged: kthread_run(khugepaged) failed\n");
165                         err = PTR_ERR(khugepaged_thread);
166                         khugepaged_thread = NULL;
167                 }
168                 wakeup = !list_empty(&khugepaged_scan.mm_head);
169                 mutex_unlock(&khugepaged_mutex);
170                 if (wakeup)
171                         wake_up_interruptible(&khugepaged_wait);
172
173                 set_recommended_min_free_kbytes();
174         } else
175                 /* wakeup to exit */
176                 wake_up_interruptible(&khugepaged_wait);
177 out:
178         return err;
179 }
180
181 #ifdef CONFIG_SYSFS
182
183 static ssize_t double_flag_show(struct kobject *kobj,
184                                 struct kobj_attribute *attr, char *buf,
185                                 enum transparent_hugepage_flag enabled,
186                                 enum transparent_hugepage_flag req_madv)
187 {
188         if (test_bit(enabled, &transparent_hugepage_flags)) {
189                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
190                 return sprintf(buf, "[always] madvise never\n");
191         } else if (test_bit(req_madv, &transparent_hugepage_flags))
192                 return sprintf(buf, "always [madvise] never\n");
193         else
194                 return sprintf(buf, "always madvise [never]\n");
195 }
196 static ssize_t double_flag_store(struct kobject *kobj,
197                                  struct kobj_attribute *attr,
198                                  const char *buf, size_t count,
199                                  enum transparent_hugepage_flag enabled,
200                                  enum transparent_hugepage_flag req_madv)
201 {
202         if (!memcmp("always", buf,
203                     min(sizeof("always")-1, count))) {
204                 set_bit(enabled, &transparent_hugepage_flags);
205                 clear_bit(req_madv, &transparent_hugepage_flags);
206         } else if (!memcmp("madvise", buf,
207                            min(sizeof("madvise")-1, count))) {
208                 clear_bit(enabled, &transparent_hugepage_flags);
209                 set_bit(req_madv, &transparent_hugepage_flags);
210         } else if (!memcmp("never", buf,
211                            min(sizeof("never")-1, count))) {
212                 clear_bit(enabled, &transparent_hugepage_flags);
213                 clear_bit(req_madv, &transparent_hugepage_flags);
214         } else
215                 return -EINVAL;
216
217         return count;
218 }
219
220 static ssize_t enabled_show(struct kobject *kobj,
221                             struct kobj_attribute *attr, char *buf)
222 {
223         return double_flag_show(kobj, attr, buf,
224                                 TRANSPARENT_HUGEPAGE_FLAG,
225                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
226 }
227 static ssize_t enabled_store(struct kobject *kobj,
228                              struct kobj_attribute *attr,
229                              const char *buf, size_t count)
230 {
231         ssize_t ret;
232
233         ret = double_flag_store(kobj, attr, buf, count,
234                                 TRANSPARENT_HUGEPAGE_FLAG,
235                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
236
237         if (ret > 0) {
238                 int err = start_khugepaged();
239                 if (err)
240                         ret = err;
241         }
242
243         if (ret > 0 &&
244             (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
245                       &transparent_hugepage_flags) ||
246              test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247                       &transparent_hugepage_flags)))
248                 set_recommended_min_free_kbytes();
249
250         return ret;
251 }
252 static struct kobj_attribute enabled_attr =
253         __ATTR(enabled, 0644, enabled_show, enabled_store);
254
255 static ssize_t single_flag_show(struct kobject *kobj,
256                                 struct kobj_attribute *attr, char *buf,
257                                 enum transparent_hugepage_flag flag)
258 {
259         return sprintf(buf, "%d\n",
260                        !!test_bit(flag, &transparent_hugepage_flags));
261 }
262
263 static ssize_t single_flag_store(struct kobject *kobj,
264                                  struct kobj_attribute *attr,
265                                  const char *buf, size_t count,
266                                  enum transparent_hugepage_flag flag)
267 {
268         unsigned long value;
269         int ret;
270
271         ret = kstrtoul(buf, 10, &value);
272         if (ret < 0)
273                 return ret;
274         if (value > 1)
275                 return -EINVAL;
276
277         if (value)
278                 set_bit(flag, &transparent_hugepage_flags);
279         else
280                 clear_bit(flag, &transparent_hugepage_flags);
281
282         return count;
283 }
284
285 /*
286  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
287  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
288  * memory just to allocate one more hugepage.
289  */
290 static ssize_t defrag_show(struct kobject *kobj,
291                            struct kobj_attribute *attr, char *buf)
292 {
293         return double_flag_show(kobj, attr, buf,
294                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
295                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
296 }
297 static ssize_t defrag_store(struct kobject *kobj,
298                             struct kobj_attribute *attr,
299                             const char *buf, size_t count)
300 {
301         return double_flag_store(kobj, attr, buf, count,
302                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
303                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
304 }
305 static struct kobj_attribute defrag_attr =
306         __ATTR(defrag, 0644, defrag_show, defrag_store);
307
308 #ifdef CONFIG_DEBUG_VM
309 static ssize_t debug_cow_show(struct kobject *kobj,
310                                 struct kobj_attribute *attr, char *buf)
311 {
312         return single_flag_show(kobj, attr, buf,
313                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
314 }
315 static ssize_t debug_cow_store(struct kobject *kobj,
316                                struct kobj_attribute *attr,
317                                const char *buf, size_t count)
318 {
319         return single_flag_store(kobj, attr, buf, count,
320                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
321 }
322 static struct kobj_attribute debug_cow_attr =
323         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
324 #endif /* CONFIG_DEBUG_VM */
325
326 static struct attribute *hugepage_attr[] = {
327         &enabled_attr.attr,
328         &defrag_attr.attr,
329 #ifdef CONFIG_DEBUG_VM
330         &debug_cow_attr.attr,
331 #endif
332         NULL,
333 };
334
335 static struct attribute_group hugepage_attr_group = {
336         .attrs = hugepage_attr,
337 };
338
339 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
340                                          struct kobj_attribute *attr,
341                                          char *buf)
342 {
343         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
344 }
345
346 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
347                                           struct kobj_attribute *attr,
348                                           const char *buf, size_t count)
349 {
350         unsigned long msecs;
351         int err;
352
353         err = strict_strtoul(buf, 10, &msecs);
354         if (err || msecs > UINT_MAX)
355                 return -EINVAL;
356
357         khugepaged_scan_sleep_millisecs = msecs;
358         wake_up_interruptible(&khugepaged_wait);
359
360         return count;
361 }
362 static struct kobj_attribute scan_sleep_millisecs_attr =
363         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
364                scan_sleep_millisecs_store);
365
366 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
367                                           struct kobj_attribute *attr,
368                                           char *buf)
369 {
370         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
371 }
372
373 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
374                                            struct kobj_attribute *attr,
375                                            const char *buf, size_t count)
376 {
377         unsigned long msecs;
378         int err;
379
380         err = strict_strtoul(buf, 10, &msecs);
381         if (err || msecs > UINT_MAX)
382                 return -EINVAL;
383
384         khugepaged_alloc_sleep_millisecs = msecs;
385         wake_up_interruptible(&khugepaged_wait);
386
387         return count;
388 }
389 static struct kobj_attribute alloc_sleep_millisecs_attr =
390         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
391                alloc_sleep_millisecs_store);
392
393 static ssize_t pages_to_scan_show(struct kobject *kobj,
394                                   struct kobj_attribute *attr,
395                                   char *buf)
396 {
397         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
398 }
399 static ssize_t pages_to_scan_store(struct kobject *kobj,
400                                    struct kobj_attribute *attr,
401                                    const char *buf, size_t count)
402 {
403         int err;
404         unsigned long pages;
405
406         err = strict_strtoul(buf, 10, &pages);
407         if (err || !pages || pages > UINT_MAX)
408                 return -EINVAL;
409
410         khugepaged_pages_to_scan = pages;
411
412         return count;
413 }
414 static struct kobj_attribute pages_to_scan_attr =
415         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
416                pages_to_scan_store);
417
418 static ssize_t pages_collapsed_show(struct kobject *kobj,
419                                     struct kobj_attribute *attr,
420                                     char *buf)
421 {
422         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
423 }
424 static struct kobj_attribute pages_collapsed_attr =
425         __ATTR_RO(pages_collapsed);
426
427 static ssize_t full_scans_show(struct kobject *kobj,
428                                struct kobj_attribute *attr,
429                                char *buf)
430 {
431         return sprintf(buf, "%u\n", khugepaged_full_scans);
432 }
433 static struct kobj_attribute full_scans_attr =
434         __ATTR_RO(full_scans);
435
436 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
437                                       struct kobj_attribute *attr, char *buf)
438 {
439         return single_flag_show(kobj, attr, buf,
440                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
441 }
442 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
443                                        struct kobj_attribute *attr,
444                                        const char *buf, size_t count)
445 {
446         return single_flag_store(kobj, attr, buf, count,
447                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
448 }
449 static struct kobj_attribute khugepaged_defrag_attr =
450         __ATTR(defrag, 0644, khugepaged_defrag_show,
451                khugepaged_defrag_store);
452
453 /*
454  * max_ptes_none controls if khugepaged should collapse hugepages over
455  * any unmapped ptes in turn potentially increasing the memory
456  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
457  * reduce the available free memory in the system as it
458  * runs. Increasing max_ptes_none will instead potentially reduce the
459  * free memory in the system during the khugepaged scan.
460  */
461 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
462                                              struct kobj_attribute *attr,
463                                              char *buf)
464 {
465         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
466 }
467 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
468                                               struct kobj_attribute *attr,
469                                               const char *buf, size_t count)
470 {
471         int err;
472         unsigned long max_ptes_none;
473
474         err = strict_strtoul(buf, 10, &max_ptes_none);
475         if (err || max_ptes_none > HPAGE_PMD_NR-1)
476                 return -EINVAL;
477
478         khugepaged_max_ptes_none = max_ptes_none;
479
480         return count;
481 }
482 static struct kobj_attribute khugepaged_max_ptes_none_attr =
483         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
484                khugepaged_max_ptes_none_store);
485
486 static struct attribute *khugepaged_attr[] = {
487         &khugepaged_defrag_attr.attr,
488         &khugepaged_max_ptes_none_attr.attr,
489         &pages_to_scan_attr.attr,
490         &pages_collapsed_attr.attr,
491         &full_scans_attr.attr,
492         &scan_sleep_millisecs_attr.attr,
493         &alloc_sleep_millisecs_attr.attr,
494         NULL,
495 };
496
497 static struct attribute_group khugepaged_attr_group = {
498         .attrs = khugepaged_attr,
499         .name = "khugepaged",
500 };
501 #endif /* CONFIG_SYSFS */
502
503 static int __init hugepage_init(void)
504 {
505         int err;
506 #ifdef CONFIG_SYSFS
507         static struct kobject *hugepage_kobj;
508 #endif
509
510         err = -EINVAL;
511         if (!has_transparent_hugepage()) {
512                 transparent_hugepage_flags = 0;
513                 goto out;
514         }
515
516 #ifdef CONFIG_SYSFS
517         err = -ENOMEM;
518         hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
519         if (unlikely(!hugepage_kobj)) {
520                 printk(KERN_ERR "hugepage: failed kobject create\n");
521                 goto out;
522         }
523
524         err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
525         if (err) {
526                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
527                 goto out;
528         }
529
530         err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
531         if (err) {
532                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
533                 goto out;
534         }
535 #endif
536
537         err = khugepaged_slab_init();
538         if (err)
539                 goto out;
540
541         err = mm_slots_hash_init();
542         if (err) {
543                 khugepaged_slab_free();
544                 goto out;
545         }
546
547         /*
548          * By default disable transparent hugepages on smaller systems,
549          * where the extra memory used could hurt more than TLB overhead
550          * is likely to save.  The admin can still enable it through /sys.
551          */
552         if (totalram_pages < (200 << (20 - PAGE_SHIFT)))
553                 transparent_hugepage_flags = 0;
554
555         start_khugepaged();
556
557         set_recommended_min_free_kbytes();
558
559 out:
560         return err;
561 }
562 module_init(hugepage_init)
563
564 static int __init setup_transparent_hugepage(char *str)
565 {
566         int ret = 0;
567         if (!str)
568                 goto out;
569         if (!strcmp(str, "always")) {
570                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
571                         &transparent_hugepage_flags);
572                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573                           &transparent_hugepage_flags);
574                 ret = 1;
575         } else if (!strcmp(str, "madvise")) {
576                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
577                           &transparent_hugepage_flags);
578                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
579                         &transparent_hugepage_flags);
580                 ret = 1;
581         } else if (!strcmp(str, "never")) {
582                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
583                           &transparent_hugepage_flags);
584                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
585                           &transparent_hugepage_flags);
586                 ret = 1;
587         }
588 out:
589         if (!ret)
590                 printk(KERN_WARNING
591                        "transparent_hugepage= cannot parse, ignored\n");
592         return ret;
593 }
594 __setup("transparent_hugepage=", setup_transparent_hugepage);
595
596 static void prepare_pmd_huge_pte(pgtable_t pgtable,
597                                  struct mm_struct *mm)
598 {
599         assert_spin_locked(&mm->page_table_lock);
600
601         /* FIFO */
602         if (!mm->pmd_huge_pte)
603                 INIT_LIST_HEAD(&pgtable->lru);
604         else
605                 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
606         mm->pmd_huge_pte = pgtable;
607 }
608
609 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
610 {
611         if (likely(vma->vm_flags & VM_WRITE))
612                 pmd = pmd_mkwrite(pmd);
613         return pmd;
614 }
615
616 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
617                                         struct vm_area_struct *vma,
618                                         unsigned long haddr, pmd_t *pmd,
619                                         struct page *page)
620 {
621         int ret = 0;
622         pgtable_t pgtable;
623
624         VM_BUG_ON(!PageCompound(page));
625         pgtable = pte_alloc_one(mm, haddr);
626         if (unlikely(!pgtable)) {
627                 mem_cgroup_uncharge_page(page);
628                 put_page(page);
629                 return VM_FAULT_OOM;
630         }
631
632         clear_huge_page(page, haddr, HPAGE_PMD_NR);
633         __SetPageUptodate(page);
634
635         spin_lock(&mm->page_table_lock);
636         if (unlikely(!pmd_none(*pmd))) {
637                 spin_unlock(&mm->page_table_lock);
638                 mem_cgroup_uncharge_page(page);
639                 put_page(page);
640                 pte_free(mm, pgtable);
641         } else {
642                 pmd_t entry;
643                 entry = mk_pmd(page, vma->vm_page_prot);
644                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
645                 entry = pmd_mkhuge(entry);
646                 /*
647                  * The spinlocking to take the lru_lock inside
648                  * page_add_new_anon_rmap() acts as a full memory
649                  * barrier to be sure clear_huge_page writes become
650                  * visible after the set_pmd_at() write.
651                  */
652                 page_add_new_anon_rmap(page, vma, haddr);
653                 set_pmd_at(mm, haddr, pmd, entry);
654                 prepare_pmd_huge_pte(pgtable, mm);
655                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
656                 mm->nr_ptes++;
657                 spin_unlock(&mm->page_table_lock);
658         }
659
660         return ret;
661 }
662
663 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
664 {
665         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
666 }
667
668 static inline struct page *alloc_hugepage_vma(int defrag,
669                                               struct vm_area_struct *vma,
670                                               unsigned long haddr, int nd,
671                                               gfp_t extra_gfp)
672 {
673         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
674                                HPAGE_PMD_ORDER, vma, haddr, nd);
675 }
676
677 #ifndef CONFIG_NUMA
678 static inline struct page *alloc_hugepage(int defrag)
679 {
680         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
681                            HPAGE_PMD_ORDER);
682 }
683 #endif
684
685 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
686                                unsigned long address, pmd_t *pmd,
687                                unsigned int flags)
688 {
689         struct page *page;
690         unsigned long haddr = address & HPAGE_PMD_MASK;
691         pte_t *pte;
692
693         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
694                 if (unlikely(anon_vma_prepare(vma)))
695                         return VM_FAULT_OOM;
696                 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
697                         return VM_FAULT_OOM;
698                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
699                                           vma, haddr, numa_node_id(), 0);
700                 if (unlikely(!page)) {
701                         count_vm_event(THP_FAULT_FALLBACK);
702                         goto out;
703                 }
704                 count_vm_event(THP_FAULT_ALLOC);
705                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
706                         put_page(page);
707                         goto out;
708                 }
709
710                 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
711         }
712 out:
713         /*
714          * Use __pte_alloc instead of pte_alloc_map, because we can't
715          * run pte_offset_map on the pmd, if an huge pmd could
716          * materialize from under us from a different thread.
717          */
718         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
719                 return VM_FAULT_OOM;
720         /* if an huge pmd materialized from under us just retry later */
721         if (unlikely(pmd_trans_huge(*pmd)))
722                 return 0;
723         /*
724          * A regular pmd is established and it can't morph into a huge pmd
725          * from under us anymore at this point because we hold the mmap_sem
726          * read mode and khugepaged takes it in write mode. So now it's
727          * safe to run pte_offset_map().
728          */
729         pte = pte_offset_map(pmd, address);
730         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
731 }
732
733 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
734                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
735                   struct vm_area_struct *vma)
736 {
737         struct page *src_page;
738         pmd_t pmd;
739         pgtable_t pgtable;
740         int ret;
741
742         ret = -ENOMEM;
743         pgtable = pte_alloc_one(dst_mm, addr);
744         if (unlikely(!pgtable))
745                 goto out;
746
747         spin_lock(&dst_mm->page_table_lock);
748         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
749
750         ret = -EAGAIN;
751         pmd = *src_pmd;
752         if (unlikely(!pmd_trans_huge(pmd))) {
753                 pte_free(dst_mm, pgtable);
754                 goto out_unlock;
755         }
756         if (unlikely(pmd_trans_splitting(pmd))) {
757                 /* split huge page running from under us */
758                 spin_unlock(&src_mm->page_table_lock);
759                 spin_unlock(&dst_mm->page_table_lock);
760                 pte_free(dst_mm, pgtable);
761
762                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
763                 goto out;
764         }
765         src_page = pmd_page(pmd);
766         VM_BUG_ON(!PageHead(src_page));
767         get_page(src_page);
768         page_dup_rmap(src_page);
769         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
770
771         pmdp_set_wrprotect(src_mm, addr, src_pmd);
772         pmd = pmd_mkold(pmd_wrprotect(pmd));
773         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
774         prepare_pmd_huge_pte(pgtable, dst_mm);
775         dst_mm->nr_ptes++;
776
777         ret = 0;
778 out_unlock:
779         spin_unlock(&src_mm->page_table_lock);
780         spin_unlock(&dst_mm->page_table_lock);
781 out:
782         return ret;
783 }
784
785 /* no "address" argument so destroys page coloring of some arch */
786 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
787 {
788         pgtable_t pgtable;
789
790         assert_spin_locked(&mm->page_table_lock);
791
792         /* FIFO */
793         pgtable = mm->pmd_huge_pte;
794         if (list_empty(&pgtable->lru))
795                 mm->pmd_huge_pte = NULL;
796         else {
797                 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
798                                               struct page, lru);
799                 list_del(&pgtable->lru);
800         }
801         return pgtable;
802 }
803
804 void huge_pmd_set_accessed(struct mm_struct *mm,
805                            struct vm_area_struct *vma,
806                            unsigned long address,
807                            pmd_t *pmd, pmd_t orig_pmd,
808                            int dirty)
809 {
810         pmd_t entry;
811         unsigned long haddr;
812
813         spin_lock(&mm->page_table_lock);
814         if (unlikely(!pmd_same(*pmd, orig_pmd)))
815                 goto unlock;
816
817         entry = pmd_mkyoung(orig_pmd);
818         haddr = address & HPAGE_PMD_MASK;
819         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
820                 update_mmu_cache_pmd(vma, address, pmd);
821
822 unlock:
823         spin_unlock(&mm->page_table_lock);
824 }
825
826 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
827                                         struct vm_area_struct *vma,
828                                         unsigned long address,
829                                         pmd_t *pmd, pmd_t orig_pmd,
830                                         struct page *page,
831                                         unsigned long haddr)
832 {
833         pgtable_t pgtable;
834         pmd_t _pmd;
835         int ret = 0, i;
836         struct page **pages;
837
838         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
839                         GFP_KERNEL);
840         if (unlikely(!pages)) {
841                 ret |= VM_FAULT_OOM;
842                 goto out;
843         }
844
845         for (i = 0; i < HPAGE_PMD_NR; i++) {
846                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
847                                                __GFP_OTHER_NODE,
848                                                vma, address, page_to_nid(page));
849                 if (unlikely(!pages[i] ||
850                              mem_cgroup_newpage_charge(pages[i], mm,
851                                                        GFP_KERNEL))) {
852                         if (pages[i])
853                                 put_page(pages[i]);
854                         mem_cgroup_uncharge_start();
855                         while (--i >= 0) {
856                                 mem_cgroup_uncharge_page(pages[i]);
857                                 put_page(pages[i]);
858                         }
859                         mem_cgroup_uncharge_end();
860                         kfree(pages);
861                         ret |= VM_FAULT_OOM;
862                         goto out;
863                 }
864         }
865
866         for (i = 0; i < HPAGE_PMD_NR; i++) {
867                 copy_user_highpage(pages[i], page + i,
868                                    haddr + PAGE_SIZE * i, vma);
869                 __SetPageUptodate(pages[i]);
870                 cond_resched();
871         }
872
873         spin_lock(&mm->page_table_lock);
874         if (unlikely(!pmd_same(*pmd, orig_pmd)))
875                 goto out_free_pages;
876         VM_BUG_ON(!PageHead(page));
877
878         pmdp_clear_flush_notify(vma, haddr, pmd);
879         /* leave pmd empty until pte is filled */
880
881         pgtable = get_pmd_huge_pte(mm);
882         pmd_populate(mm, &_pmd, pgtable);
883
884         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
885                 pte_t *pte, entry;
886                 entry = mk_pte(pages[i], vma->vm_page_prot);
887                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
888                 page_add_new_anon_rmap(pages[i], vma, haddr);
889                 pte = pte_offset_map(&_pmd, haddr);
890                 VM_BUG_ON(!pte_none(*pte));
891                 set_pte_at(mm, haddr, pte, entry);
892                 pte_unmap(pte);
893         }
894         kfree(pages);
895
896         smp_wmb(); /* make pte visible before pmd */
897         pmd_populate(mm, pmd, pgtable);
898         page_remove_rmap(page);
899         spin_unlock(&mm->page_table_lock);
900
901         ret |= VM_FAULT_WRITE;
902         put_page(page);
903
904 out:
905         return ret;
906
907 out_free_pages:
908         spin_unlock(&mm->page_table_lock);
909         mem_cgroup_uncharge_start();
910         for (i = 0; i < HPAGE_PMD_NR; i++) {
911                 mem_cgroup_uncharge_page(pages[i]);
912                 put_page(pages[i]);
913         }
914         mem_cgroup_uncharge_end();
915         kfree(pages);
916         goto out;
917 }
918
919 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
920                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
921 {
922         int ret = 0;
923         struct page *page, *new_page;
924         unsigned long haddr;
925
926         VM_BUG_ON(!vma->anon_vma);
927         spin_lock(&mm->page_table_lock);
928         if (unlikely(!pmd_same(*pmd, orig_pmd)))
929                 goto out_unlock;
930
931         page = pmd_page(orig_pmd);
932         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
933         haddr = address & HPAGE_PMD_MASK;
934         if (page_mapcount(page) == 1) {
935                 pmd_t entry;
936                 entry = pmd_mkyoung(orig_pmd);
937                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
938                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
939                         update_mmu_cache(vma, address, pmd);
940                 ret |= VM_FAULT_WRITE;
941                 goto out_unlock;
942         }
943         get_page(page);
944         spin_unlock(&mm->page_table_lock);
945
946         if (transparent_hugepage_enabled(vma) &&
947             !transparent_hugepage_debug_cow())
948                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
949                                               vma, haddr, numa_node_id(), 0);
950         else
951                 new_page = NULL;
952
953         if (unlikely(!new_page)) {
954                 count_vm_event(THP_FAULT_FALLBACK);
955                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
956                                                    pmd, orig_pmd, page, haddr);
957                 if (ret & VM_FAULT_OOM)
958                         split_huge_page(page);
959                 put_page(page);
960                 goto out;
961         }
962         count_vm_event(THP_FAULT_ALLOC);
963
964         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
965                 put_page(new_page);
966                 split_huge_page(page);
967                 put_page(page);
968                 ret |= VM_FAULT_OOM;
969                 goto out;
970         }
971
972         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
973         __SetPageUptodate(new_page);
974
975         spin_lock(&mm->page_table_lock);
976         put_page(page);
977         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
978                 mem_cgroup_uncharge_page(new_page);
979                 put_page(new_page);
980         } else {
981                 pmd_t entry;
982                 VM_BUG_ON(!PageHead(page));
983                 entry = mk_pmd(new_page, vma->vm_page_prot);
984                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
985                 entry = pmd_mkhuge(entry);
986                 pmdp_clear_flush_notify(vma, haddr, pmd);
987                 page_add_new_anon_rmap(new_page, vma, haddr);
988                 set_pmd_at(mm, haddr, pmd, entry);
989                 update_mmu_cache(vma, address, pmd);
990                 page_remove_rmap(page);
991                 put_page(page);
992                 ret |= VM_FAULT_WRITE;
993         }
994 out_unlock:
995         spin_unlock(&mm->page_table_lock);
996 out:
997         return ret;
998 }
999
1000 /*
1001  * FOLL_FORCE can write to even unwritable pmd's, but only
1002  * after we've gone through a COW cycle and they are dirty.
1003  */
1004 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1005                                         unsigned int flags)
1006 {
1007         return pmd_write(pmd) ||
1008                 ((flags & FOLL_FORCE) && (flags & FOLL_COW) &&
1009                  page && PageAnon(page));
1010 }
1011
1012 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1013                                    unsigned long addr,
1014                                    pmd_t *pmd,
1015                                    unsigned int flags)
1016 {
1017         struct page *page = NULL;
1018
1019         assert_spin_locked(&mm->page_table_lock);
1020
1021         page = pmd_page(*pmd);
1022         VM_BUG_ON(!PageHead(page));
1023
1024         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, page, flags))
1025                 return NULL;
1026
1027         if (flags & FOLL_TOUCH) {
1028                 pmd_t _pmd;
1029                 /*
1030                  * We should set the dirty bit only for FOLL_WRITE but
1031                  * for now the dirty bit in the pmd is meaningless.
1032                  * And if the dirty bit will become meaningful and
1033                  * we'll only set it with FOLL_WRITE, an atomic
1034                  * set_bit will be required on the pmd to set the
1035                  * young bit, instead of the current set_pmd_at.
1036                  */
1037                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1038                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1039         }
1040         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1041         VM_BUG_ON(!PageCompound(page));
1042         if (flags & FOLL_GET)
1043                 get_page_foll(page);
1044
1045 out:
1046         return page;
1047 }
1048
1049 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1050                  pmd_t *pmd)
1051 {
1052         int ret = 0;
1053
1054         spin_lock(&tlb->mm->page_table_lock);
1055         if (likely(pmd_trans_huge(*pmd))) {
1056                 if (is_fb_vma(vma)) {
1057                         split_fb_pmd(vma, pmd);
1058                         return 0;
1059                 }
1060
1061                 if (unlikely(pmd_trans_splitting(*pmd))) {
1062                         spin_unlock(&tlb->mm->page_table_lock);
1063                         wait_split_huge_page(vma->anon_vma,
1064                                              pmd);
1065                 } else {
1066                         struct page *page;
1067                         pgtable_t pgtable;
1068                         pgtable = get_pmd_huge_pte(tlb->mm);
1069                         page = pmd_page(*pmd);
1070                         pmd_clear(pmd);
1071                         page_remove_rmap(page);
1072                         VM_BUG_ON(page_mapcount(page) < 0);
1073                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1074                         VM_BUG_ON(!PageHead(page));
1075                         tlb->mm->nr_ptes--;
1076                         spin_unlock(&tlb->mm->page_table_lock);
1077                         tlb_remove_page(tlb, page);
1078                         pte_free(tlb->mm, pgtable);
1079                         ret = 1;
1080                 }
1081         } else
1082                 spin_unlock(&tlb->mm->page_table_lock);
1083
1084         return ret;
1085 }
1086
1087 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1088                 unsigned long addr, unsigned long end,
1089                 unsigned char *vec)
1090 {
1091         int ret = 0;
1092
1093         spin_lock(&vma->vm_mm->page_table_lock);
1094         if (likely(pmd_trans_huge(*pmd))) {
1095                 ret = !pmd_trans_splitting(*pmd);
1096                 spin_unlock(&vma->vm_mm->page_table_lock);
1097                 if (unlikely(!ret))
1098                         wait_split_huge_page(vma->anon_vma, pmd);
1099                 else {
1100                         /*
1101                          * All logical pages in the range are present
1102                          * if backed by a huge page.
1103                          */
1104                         memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1105                 }
1106         } else
1107                 spin_unlock(&vma->vm_mm->page_table_lock);
1108
1109         return ret;
1110 }
1111
1112 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1113                   unsigned long old_addr,
1114                   unsigned long new_addr, unsigned long old_end,
1115                   pmd_t *old_pmd, pmd_t *new_pmd)
1116 {
1117         int ret = 0;
1118         pmd_t pmd;
1119
1120         struct mm_struct *mm = vma->vm_mm;
1121
1122         if ((old_addr & ~HPAGE_PMD_MASK) ||
1123             (new_addr & ~HPAGE_PMD_MASK) ||
1124             old_end - old_addr < HPAGE_PMD_SIZE ||
1125             (new_vma->vm_flags & VM_NOHUGEPAGE))
1126                 goto out;
1127
1128         /*
1129          * The destination pmd shouldn't be established, free_pgtables()
1130          * should have release it.
1131          */
1132         if (WARN_ON(!pmd_none(*new_pmd))) {
1133                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1134                 goto out;
1135         }
1136
1137         spin_lock(&mm->page_table_lock);
1138         if (likely(pmd_trans_huge(*old_pmd))) {
1139                 if (pmd_trans_splitting(*old_pmd)) {
1140                         spin_unlock(&mm->page_table_lock);
1141                         wait_split_huge_page(vma->anon_vma, old_pmd);
1142                         ret = -1;
1143                 } else {
1144                         pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1145                         VM_BUG_ON(!pmd_none(*new_pmd));
1146                         set_pmd_at(mm, new_addr, new_pmd, pmd);
1147                         spin_unlock(&mm->page_table_lock);
1148                         ret = 1;
1149                 }
1150         } else {
1151                 spin_unlock(&mm->page_table_lock);
1152         }
1153 out:
1154         return ret;
1155 }
1156
1157 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1158                 unsigned long addr, pgprot_t newprot)
1159 {
1160         struct mm_struct *mm = vma->vm_mm;
1161         int ret = 0;
1162
1163         spin_lock(&mm->page_table_lock);
1164         if (likely(pmd_trans_huge(*pmd))) {
1165                 if (unlikely(pmd_trans_splitting(*pmd))) {
1166                         spin_unlock(&mm->page_table_lock);
1167                         wait_split_huge_page(vma->anon_vma, pmd);
1168                 } else {
1169                         pmd_t entry;
1170
1171                         entry = pmdp_get_and_clear(mm, addr, pmd);
1172                         entry = pmd_modify(entry, newprot);
1173                         set_pmd_at(mm, addr, pmd, entry);
1174                         spin_unlock(&vma->vm_mm->page_table_lock);
1175                         flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1176                         ret = 1;
1177                 }
1178         } else
1179                 spin_unlock(&vma->vm_mm->page_table_lock);
1180
1181         return ret;
1182 }
1183
1184 pmd_t *page_check_address_pmd(struct page *page,
1185                               struct mm_struct *mm,
1186                               unsigned long address,
1187                               enum page_check_address_pmd_flag flag)
1188 {
1189         pgd_t *pgd;
1190         pud_t *pud;
1191         pmd_t *pmd, *ret = NULL;
1192
1193         if (address & ~HPAGE_PMD_MASK)
1194                 goto out;
1195
1196         pgd = pgd_offset(mm, address);
1197         if (!pgd_present(*pgd))
1198                 goto out;
1199
1200         pud = pud_offset(pgd, address);
1201         if (!pud_present(*pud))
1202                 goto out;
1203
1204         pmd = pmd_offset(pud, address);
1205         if (pmd_none(*pmd))
1206                 goto out;
1207         if (pmd_page(*pmd) != page)
1208                 goto out;
1209         /*
1210          * split_vma() may create temporary aliased mappings. There is
1211          * no risk as long as all huge pmd are found and have their
1212          * splitting bit set before __split_huge_page_refcount
1213          * runs. Finding the same huge pmd more than once during the
1214          * same rmap walk is not a problem.
1215          */
1216         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1217             pmd_trans_splitting(*pmd))
1218                 goto out;
1219         if (pmd_trans_huge(*pmd)) {
1220                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1221                           !pmd_trans_splitting(*pmd));
1222                 ret = pmd;
1223         }
1224 out:
1225         return ret;
1226 }
1227
1228 static int __split_huge_page_splitting(struct page *page,
1229                                        struct vm_area_struct *vma,
1230                                        unsigned long address)
1231 {
1232         struct mm_struct *mm = vma->vm_mm;
1233         pmd_t *pmd;
1234         int ret = 0;
1235
1236         spin_lock(&mm->page_table_lock);
1237         pmd = page_check_address_pmd(page, mm, address,
1238                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1239         if (pmd) {
1240                 /*
1241                  * We can't temporarily set the pmd to null in order
1242                  * to split it, the pmd must remain marked huge at all
1243                  * times or the VM won't take the pmd_trans_huge paths
1244                  * and it won't wait on the anon_vma->root->mutex to
1245                  * serialize against split_huge_page*.
1246                  */
1247                 pmdp_splitting_flush_notify(vma, address, pmd);
1248                 ret = 1;
1249         }
1250         spin_unlock(&mm->page_table_lock);
1251
1252         return ret;
1253 }
1254
1255 static void __split_huge_page_refcount(struct page *page)
1256 {
1257         int i;
1258         unsigned long head_index = page->index;
1259         struct zone *zone = page_zone(page);
1260         int zonestat;
1261         int tail_count = 0;
1262
1263         /* prevent PageLRU to go away from under us, and freeze lru stats */
1264         spin_lock_irq(&zone->lru_lock);
1265         compound_lock(page);
1266
1267         for (i = 1; i < HPAGE_PMD_NR; i++) {
1268                 struct page *page_tail = page + i;
1269
1270                 /* tail_page->_mapcount cannot change */
1271                 BUG_ON(page_mapcount(page_tail) < 0);
1272                 tail_count += page_mapcount(page_tail);
1273                 /* check for overflow */
1274                 BUG_ON(tail_count < 0);
1275                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1276                 /*
1277                  * tail_page->_count is zero and not changing from
1278                  * under us. But get_page_unless_zero() may be running
1279                  * from under us on the tail_page. If we used
1280                  * atomic_set() below instead of atomic_add(), we
1281                  * would then run atomic_set() concurrently with
1282                  * get_page_unless_zero(), and atomic_set() is
1283                  * implemented in C not using locked ops. spin_unlock
1284                  * on x86 sometime uses locked ops because of PPro
1285                  * errata 66, 92, so unless somebody can guarantee
1286                  * atomic_set() here would be safe on all archs (and
1287                  * not only on x86), it's safer to use atomic_add().
1288                  */
1289                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1290                            &page_tail->_count);
1291
1292                 /* after clearing PageTail the gup refcount can be released */
1293                 smp_mb();
1294
1295                 /*
1296                  * retain hwpoison flag of the poisoned tail page:
1297                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1298                  *   by the memory-failure.
1299                  */
1300                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1301                 page_tail->flags |= (page->flags &
1302                                      ((1L << PG_referenced) |
1303                                       (1L << PG_swapbacked) |
1304                                       (1L << PG_mlocked) |
1305                                       (1L << PG_uptodate)));
1306                 page_tail->flags |= (1L << PG_dirty);
1307
1308                 /* clear PageTail before overwriting first_page */
1309                 smp_wmb();
1310
1311                 /*
1312                  * __split_huge_page_splitting() already set the
1313                  * splitting bit in all pmd that could map this
1314                  * hugepage, that will ensure no CPU can alter the
1315                  * mapcount on the head page. The mapcount is only
1316                  * accounted in the head page and it has to be
1317                  * transferred to all tail pages in the below code. So
1318                  * for this code to be safe, the split the mapcount
1319                  * can't change. But that doesn't mean userland can't
1320                  * keep changing and reading the page contents while
1321                  * we transfer the mapcount, so the pmd splitting
1322                  * status is achieved setting a reserved bit in the
1323                  * pmd, not by clearing the present bit.
1324                 */
1325                 page_tail->_mapcount = page->_mapcount;
1326
1327                 BUG_ON(page_tail->mapping);
1328                 page_tail->mapping = page->mapping;
1329
1330                 page_tail->index = ++head_index;
1331
1332                 BUG_ON(!PageAnon(page_tail));
1333                 BUG_ON(!PageUptodate(page_tail));
1334                 BUG_ON(!PageDirty(page_tail));
1335                 BUG_ON(!PageSwapBacked(page_tail));
1336
1337                 mem_cgroup_split_huge_fixup(page, page_tail);
1338
1339                 lru_add_page_tail(zone, page, page_tail);
1340         }
1341         atomic_sub(tail_count, &page->_count);
1342         BUG_ON(atomic_read(&page->_count) <= 0);
1343
1344         __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1345         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1346
1347         /*
1348          * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1349          * so adjust those appropriately if this page is on the LRU.
1350          */
1351         if (PageLRU(page)) {
1352                 zonestat = NR_LRU_BASE + page_lru(page);
1353                 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1354         }
1355
1356         ClearPageCompound(page);
1357         compound_unlock(page);
1358         spin_unlock_irq(&zone->lru_lock);
1359
1360         for (i = 1; i < HPAGE_PMD_NR; i++) {
1361                 struct page *page_tail = page + i;
1362                 BUG_ON(page_count(page_tail) <= 0);
1363                 /*
1364                  * Tail pages may be freed if there wasn't any mapping
1365                  * like if add_to_swap() is running on a lru page that
1366                  * had its mapping zapped. And freeing these pages
1367                  * requires taking the lru_lock so we do the put_page
1368                  * of the tail pages after the split is complete.
1369                  */
1370                 put_page(page_tail);
1371         }
1372
1373         /*
1374          * Only the head page (now become a regular page) is required
1375          * to be pinned by the caller.
1376          */
1377         BUG_ON(page_count(page) <= 0);
1378 }
1379
1380 static int __split_huge_page_map(struct page *page,
1381                                  struct vm_area_struct *vma,
1382                                  unsigned long address)
1383 {
1384         struct mm_struct *mm = vma->vm_mm;
1385         pmd_t *pmd, _pmd;
1386         int ret = 0, i;
1387         pgtable_t pgtable;
1388         unsigned long haddr;
1389
1390         spin_lock(&mm->page_table_lock);
1391         pmd = page_check_address_pmd(page, mm, address,
1392                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1393         if (pmd) {
1394                 pgtable = get_pmd_huge_pte(mm);
1395                 pmd_populate(mm, &_pmd, pgtable);
1396
1397                 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1398                      i++, haddr += PAGE_SIZE) {
1399                         pte_t *pte, entry;
1400                         BUG_ON(PageCompound(page+i));
1401                         entry = mk_pte(page + i, vma->vm_page_prot);
1402                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1403                         if (!pmd_write(*pmd))
1404                                 entry = pte_wrprotect(entry);
1405                         else
1406                                 BUG_ON(page_mapcount(page) != 1);
1407                         if (!pmd_young(*pmd))
1408                                 entry = pte_mkold(entry);
1409                         pte = pte_offset_map(&_pmd, haddr);
1410                         BUG_ON(!pte_none(*pte));
1411                         set_pte_at(mm, haddr, pte, entry);
1412                         pte_unmap(pte);
1413                 }
1414
1415                 smp_wmb(); /* make pte visible before pmd */
1416                 /*
1417                  * Up to this point the pmd is present and huge and
1418                  * userland has the whole access to the hugepage
1419                  * during the split (which happens in place). If we
1420                  * overwrite the pmd with the not-huge version
1421                  * pointing to the pte here (which of course we could
1422                  * if all CPUs were bug free), userland could trigger
1423                  * a small page size TLB miss on the small sized TLB
1424                  * while the hugepage TLB entry is still established
1425                  * in the huge TLB. Some CPU doesn't like that. See
1426                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1427                  * Erratum 383 on page 93. Intel should be safe but is
1428                  * also warns that it's only safe if the permission
1429                  * and cache attributes of the two entries loaded in
1430                  * the two TLB is identical (which should be the case
1431                  * here). But it is generally safer to never allow
1432                  * small and huge TLB entries for the same virtual
1433                  * address to be loaded simultaneously. So instead of
1434                  * doing "pmd_populate(); flush_tlb_range();" we first
1435                  * mark the current pmd notpresent (atomically because
1436                  * here the pmd_trans_huge and pmd_trans_splitting
1437                  * must remain set at all times on the pmd until the
1438                  * split is complete for this pmd), then we flush the
1439                  * SMP TLB and finally we write the non-huge version
1440                  * of the pmd entry with pmd_populate.
1441                  */
1442                 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1443                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1444                 pmd_populate(mm, pmd, pgtable);
1445                 ret = 1;
1446         }
1447         spin_unlock(&mm->page_table_lock);
1448
1449         return ret;
1450 }
1451
1452 /* must be called with anon_vma->root->mutex hold */
1453 static void __split_huge_page(struct page *page,
1454                               struct anon_vma *anon_vma)
1455 {
1456         int mapcount, mapcount2;
1457         struct anon_vma_chain *avc;
1458
1459         BUG_ON(!PageHead(page));
1460         BUG_ON(PageTail(page));
1461
1462         mapcount = 0;
1463         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1464                 struct vm_area_struct *vma = avc->vma;
1465                 unsigned long addr = vma_address(page, vma);
1466                 BUG_ON(is_vma_temporary_stack(vma));
1467                 if (addr == -EFAULT)
1468                         continue;
1469                 mapcount += __split_huge_page_splitting(page, vma, addr);
1470         }
1471         /*
1472          * It is critical that new vmas are added to the tail of the
1473          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1474          * and establishes a child pmd before
1475          * __split_huge_page_splitting() freezes the parent pmd (so if
1476          * we fail to prevent copy_huge_pmd() from running until the
1477          * whole __split_huge_page() is complete), we will still see
1478          * the newly established pmd of the child later during the
1479          * walk, to be able to set it as pmd_trans_splitting too.
1480          */
1481         if (mapcount != page_mapcount(page))
1482                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1483                        mapcount, page_mapcount(page));
1484         BUG_ON(mapcount != page_mapcount(page));
1485
1486         __split_huge_page_refcount(page);
1487
1488         mapcount2 = 0;
1489         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1490                 struct vm_area_struct *vma = avc->vma;
1491                 unsigned long addr = vma_address(page, vma);
1492                 BUG_ON(is_vma_temporary_stack(vma));
1493                 if (addr == -EFAULT)
1494                         continue;
1495                 mapcount2 += __split_huge_page_map(page, vma, addr);
1496         }
1497         if (mapcount != mapcount2)
1498                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1499                        mapcount, mapcount2, page_mapcount(page));
1500         BUG_ON(mapcount != mapcount2);
1501 }
1502
1503 int split_huge_page(struct page *page)
1504 {
1505         struct anon_vma *anon_vma;
1506         int ret = 1;
1507
1508         BUG_ON(!PageAnon(page));
1509         anon_vma = page_lock_anon_vma(page);
1510         if (!anon_vma)
1511                 goto out;
1512         ret = 0;
1513         if (!PageCompound(page))
1514                 goto out_unlock;
1515
1516         BUG_ON(!PageSwapBacked(page));
1517         __split_huge_page(page, anon_vma);
1518         count_vm_event(THP_SPLIT);
1519
1520         BUG_ON(PageCompound(page));
1521 out_unlock:
1522         page_unlock_anon_vma(anon_vma);
1523 out:
1524         return ret;
1525 }
1526
1527 /* callers must hold mmap_sem (madvise() does) */
1528 static int collapse_fb_pmd(struct mm_struct *mm, pmd_t *pmd,
1529         unsigned long addr, struct vm_area_struct *vma)
1530 {
1531         unsigned long _addr;
1532         struct page *page;
1533         pgtable_t pgtable;
1534         pte_t *pte, *_pte;
1535         pmd_t _pmd;
1536         u32 pa;
1537
1538         pte = pte_offset_map(pmd, addr);
1539         page = pte_page(*pte);
1540         pa = __pfn_to_phys(page_to_pfn(page));
1541         _pmd = pmdp_clear_flush_notify(vma, addr, pmd);
1542
1543         if ((addr | pa) & ~HPAGE_PMD_MASK) {
1544                 printk(KERN_ERR "collapse_fb: bad alignment: %08lx->%08x\n",
1545                         addr, pa);
1546                 pte_unmap(pte);
1547                 return -EINVAL;
1548         }
1549
1550         for (_pte = pte, _addr = addr; _pte < pte + HPAGE_PMD_NR; _pte++) {
1551                 pte_t pteval = *_pte;
1552                 struct page *src_page;
1553
1554                 if (!pte_none(pteval)) {
1555                         src_page = pte_page(pteval);
1556
1557                         pte_clear(vma->vm_mm, _addr, _pte);
1558                         if (pte_present(pteval))
1559                                 page_remove_rmap(src_page);
1560                 }
1561
1562                 _addr += PAGE_SIZE;
1563         }
1564
1565         pte_unmap(pte);
1566         pgtable = pmd_pgtable(_pmd);
1567         VM_BUG_ON(page_count(pgtable) != 1);
1568         VM_BUG_ON(page_mapcount(pgtable) != 0);
1569
1570         _pmd = mk_pmd(page, vma->vm_page_prot);
1571         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1572         _pmd = pmd_mkhuge(_pmd);
1573
1574         smp_wmb();
1575
1576         spin_lock(&mm->page_table_lock);
1577         BUG_ON(!pmd_none(*pmd));
1578         set_pmd_at(mm, addr, pmd, _pmd);
1579         update_mmu_cache(vma, addr, pmd);
1580         prepare_pmd_huge_pte(pgtable, mm);
1581         spin_unlock(&mm->page_table_lock);
1582
1583         return 0;
1584 }
1585
1586 static int try_collapse_fb(struct vm_area_struct *vma)
1587 {
1588         struct mm_struct *mm = vma->vm_mm;
1589         unsigned long hstart, hend, addr;
1590         int ret = 0;
1591         pgd_t *pgd;
1592         pud_t *pud;
1593         pmd_t *pmd;
1594
1595         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1596         hend = vma->vm_end & HPAGE_PMD_MASK;
1597         if (hstart >= hend)
1598                 return -EINVAL;
1599
1600         for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
1601                 pgd = pgd_offset(mm, addr);
1602                 if (!pgd_present(*pgd))
1603                         return -EINVAL;
1604
1605                 pud = pud_offset(pgd, addr);
1606                 if (!pud_present(*pud))
1607                         return -EINVAL;
1608
1609                 pmd = pmd_offset(pud, addr);
1610                 if (!pmd_present(*pmd))
1611                         return -EINVAL;
1612                 if (pmd_trans_huge(*pmd))
1613                         continue;
1614
1615                 ret = collapse_fb_pmd(mm, pmd, addr, vma);
1616                 if (ret)
1617                         break;
1618         }
1619
1620         return ret;
1621 }
1622
1623 /* undo collapse_fb_pmd(), restore pages so that mm subsys can release them
1624  * page_table_lock() should be held */
1625 static void split_fb_pmd(struct vm_area_struct *vma, pmd_t *pmd)
1626 {
1627         struct mm_struct *mm = vma->vm_mm;
1628         unsigned long addr, haddr, pfn;
1629         struct page *page;
1630         pgtable_t pgtable;
1631         pmd_t _pmd;
1632         int i;
1633
1634         page = pmd_page(*pmd);
1635         pgtable = get_pmd_huge_pte(mm);
1636         pfn = page_to_pfn(page);
1637         addr = pfn << PAGE_SHIFT;
1638
1639         pmd_populate(mm, &_pmd, pgtable);
1640
1641         for (i = 0, haddr = addr; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1642                 pte_t *pte, entry;
1643                 BUG_ON(PageCompound(page + i));
1644                 entry = mk_pte(page + i, vma->vm_page_prot);
1645                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1646                 if (!pmd_young(*pmd))
1647                         entry = pte_mkold(entry);
1648                 atomic_set(&page[i]._mapcount, 0); // hack?
1649                 pte = pte_offset_map(&_pmd, haddr);
1650                 BUG_ON(!pte_none(*pte));
1651                 set_pte_at(mm, haddr, pte, entry);
1652                 pte_unmap(pte);
1653         }
1654
1655         set_pmd_at(mm, addr, pmd, pmd_mknotpresent(*pmd));
1656         flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1657         pmd_populate(mm, pmd, pgtable);
1658 }
1659
1660 #ifndef __arm__
1661 #error arm only..
1662 #endif
1663 static u32 pmd_to_va(struct mm_struct *mm, pmd_t *pmd)
1664 {
1665         pgd_t *pgd;
1666         pud_t *pud;
1667         pmd_t *pmd0;
1668         u32 ret;
1669
1670         pgd = pgd_offset(mm, 0);
1671         pud = pud_offset(pgd, 0);
1672         pmd0 = pmd_offset(pud, 0);
1673
1674         ret = (pmd - pmd0) << SECTION_SHIFT;
1675         return ret;
1676 }
1677
1678 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1679                    VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1680
1681 int hugepage_madvise(struct vm_area_struct *vma,
1682                      unsigned long *vm_flags, int advice)
1683 {
1684         switch (advice) {
1685         case MADV_HUGEPAGE:
1686                 if (is_fb_vma(vma))
1687                         return try_collapse_fb(vma);
1688
1689                 /*
1690                  * Be somewhat over-protective like KSM for now!
1691                  */
1692                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1693                         return -EINVAL;
1694                 *vm_flags &= ~VM_NOHUGEPAGE;
1695                 *vm_flags |= VM_HUGEPAGE;
1696                 /*
1697                  * If the vma become good for khugepaged to scan,
1698                  * register it here without waiting a page fault that
1699                  * may not happen any time soon.
1700                  */
1701                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1702                         return -ENOMEM;
1703                 break;
1704         case MADV_NOHUGEPAGE:
1705                 /*
1706                  * Be somewhat over-protective like KSM for now!
1707                  */
1708                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1709                         return -EINVAL;
1710                 *vm_flags &= ~VM_HUGEPAGE;
1711                 *vm_flags |= VM_NOHUGEPAGE;
1712                 /*
1713                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1714                  * this vma even if we leave the mm registered in khugepaged if
1715                  * it got registered before VM_NOHUGEPAGE was set.
1716                  */
1717                 break;
1718         }
1719
1720         return 0;
1721 }
1722
1723 static int __init khugepaged_slab_init(void)
1724 {
1725         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1726                                           sizeof(struct mm_slot),
1727                                           __alignof__(struct mm_slot), 0, NULL);
1728         if (!mm_slot_cache)
1729                 return -ENOMEM;
1730
1731         return 0;
1732 }
1733
1734 static void __init khugepaged_slab_free(void)
1735 {
1736         kmem_cache_destroy(mm_slot_cache);
1737         mm_slot_cache = NULL;
1738 }
1739
1740 static inline struct mm_slot *alloc_mm_slot(void)
1741 {
1742         if (!mm_slot_cache)     /* initialization failed */
1743                 return NULL;
1744         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1745 }
1746
1747 static inline void free_mm_slot(struct mm_slot *mm_slot)
1748 {
1749         kmem_cache_free(mm_slot_cache, mm_slot);
1750 }
1751
1752 static int __init mm_slots_hash_init(void)
1753 {
1754         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1755                                 GFP_KERNEL);
1756         if (!mm_slots_hash)
1757                 return -ENOMEM;
1758         return 0;
1759 }
1760
1761 #if 0
1762 static void __init mm_slots_hash_free(void)
1763 {
1764         kfree(mm_slots_hash);
1765         mm_slots_hash = NULL;
1766 }
1767 #endif
1768
1769 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1770 {
1771         struct mm_slot *mm_slot;
1772         struct hlist_head *bucket;
1773         struct hlist_node *node;
1774
1775         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1776                                 % MM_SLOTS_HASH_HEADS];
1777         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1778                 if (mm == mm_slot->mm)
1779                         return mm_slot;
1780         }
1781         return NULL;
1782 }
1783
1784 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1785                                     struct mm_slot *mm_slot)
1786 {
1787         struct hlist_head *bucket;
1788
1789         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1790                                 % MM_SLOTS_HASH_HEADS];
1791         mm_slot->mm = mm;
1792         hlist_add_head(&mm_slot->hash, bucket);
1793 }
1794
1795 static inline int khugepaged_test_exit(struct mm_struct *mm)
1796 {
1797         return atomic_read(&mm->mm_users) == 0;
1798 }
1799
1800 int __khugepaged_enter(struct mm_struct *mm)
1801 {
1802         struct mm_slot *mm_slot;
1803         int wakeup;
1804
1805         mm_slot = alloc_mm_slot();
1806         if (!mm_slot)
1807                 return -ENOMEM;
1808
1809         /* __khugepaged_exit() must not run from under us */
1810         VM_BUG_ON(khugepaged_test_exit(mm));
1811         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1812                 free_mm_slot(mm_slot);
1813                 return 0;
1814         }
1815
1816         spin_lock(&khugepaged_mm_lock);
1817         insert_to_mm_slots_hash(mm, mm_slot);
1818         /*
1819          * Insert just behind the scanning cursor, to let the area settle
1820          * down a little.
1821          */
1822         wakeup = list_empty(&khugepaged_scan.mm_head);
1823         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1824         spin_unlock(&khugepaged_mm_lock);
1825
1826         atomic_inc(&mm->mm_count);
1827         if (wakeup)
1828                 wake_up_interruptible(&khugepaged_wait);
1829
1830         return 0;
1831 }
1832
1833 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1834                                unsigned long vm_flags)
1835 {
1836         unsigned long hstart, hend;
1837         if (!vma->anon_vma)
1838                 /*
1839                  * Not yet faulted in so we will register later in the
1840                  * page fault if needed.
1841                  */
1842                 return 0;
1843         if (vma->vm_ops || (vm_flags & VM_NO_THP))
1844                 /* khugepaged not yet working on file or special mappings */
1845                 return 0;
1846         /*
1847          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1848          * true too, verify it here.
1849          */
1850         VM_BUG_ON(is_linear_pfn_mapping(vma));
1851         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1852         hend = vma->vm_end & HPAGE_PMD_MASK;
1853         if (hstart < hend)
1854                 return khugepaged_enter(vma, vm_flags);
1855         return 0;
1856 }
1857
1858 void __khugepaged_exit(struct mm_struct *mm)
1859 {
1860         struct mm_slot *mm_slot;
1861         int free = 0;
1862
1863         spin_lock(&khugepaged_mm_lock);
1864         mm_slot = get_mm_slot(mm);
1865         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1866                 hlist_del(&mm_slot->hash);
1867                 list_del(&mm_slot->mm_node);
1868                 free = 1;
1869         }
1870         spin_unlock(&khugepaged_mm_lock);
1871
1872         if (free) {
1873                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1874                 free_mm_slot(mm_slot);
1875                 mmdrop(mm);
1876         } else if (mm_slot) {
1877                 /*
1878                  * This is required to serialize against
1879                  * khugepaged_test_exit() (which is guaranteed to run
1880                  * under mmap sem read mode). Stop here (after we
1881                  * return all pagetables will be destroyed) until
1882                  * khugepaged has finished working on the pagetables
1883                  * under the mmap_sem.
1884                  */
1885                 down_write(&mm->mmap_sem);
1886                 up_write(&mm->mmap_sem);
1887         }
1888 }
1889
1890 static void release_pte_page(struct page *page)
1891 {
1892         /* 0 stands for page_is_file_cache(page) == false */
1893         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1894         unlock_page(page);
1895         putback_lru_page(page);
1896 }
1897
1898 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1899 {
1900         while (--_pte >= pte) {
1901                 pte_t pteval = *_pte;
1902                 if (!pte_none(pteval))
1903                         release_pte_page(pte_page(pteval));
1904         }
1905 }
1906
1907 static void release_all_pte_pages(pte_t *pte)
1908 {
1909         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1910 }
1911
1912 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1913                                         unsigned long address,
1914                                         pte_t *pte)
1915 {
1916         struct page *page;
1917         pte_t *_pte;
1918         int referenced = 0, isolated = 0, none = 0;
1919         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1920              _pte++, address += PAGE_SIZE) {
1921                 pte_t pteval = *_pte;
1922                 if (pte_none(pteval)) {
1923                         if (++none <= khugepaged_max_ptes_none)
1924                                 continue;
1925                         else {
1926                                 release_pte_pages(pte, _pte);
1927                                 goto out;
1928                         }
1929                 }
1930                 if (!pte_present(pteval) || !pte_write(pteval)) {
1931                         release_pte_pages(pte, _pte);
1932                         goto out;
1933                 }
1934                 page = vm_normal_page(vma, address, pteval);
1935                 if (unlikely(!page)) {
1936                         release_pte_pages(pte, _pte);
1937                         goto out;
1938                 }
1939                 VM_BUG_ON(PageCompound(page));
1940                 BUG_ON(!PageAnon(page));
1941                 VM_BUG_ON(!PageSwapBacked(page));
1942
1943                 /* cannot use mapcount: can't collapse if there's a gup pin */
1944                 if (page_count(page) != 1) {
1945                         release_pte_pages(pte, _pte);
1946                         goto out;
1947                 }
1948                 /*
1949                  * We can do it before isolate_lru_page because the
1950                  * page can't be freed from under us. NOTE: PG_lock
1951                  * is needed to serialize against split_huge_page
1952                  * when invoked from the VM.
1953                  */
1954                 if (!trylock_page(page)) {
1955                         release_pte_pages(pte, _pte);
1956                         goto out;
1957                 }
1958                 /*
1959                  * Isolate the page to avoid collapsing an hugepage
1960                  * currently in use by the VM.
1961                  */
1962                 if (isolate_lru_page(page)) {
1963                         unlock_page(page);
1964                         release_pte_pages(pte, _pte);
1965                         goto out;
1966                 }
1967                 /* 0 stands for page_is_file_cache(page) == false */
1968                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1969                 VM_BUG_ON(!PageLocked(page));
1970                 VM_BUG_ON(PageLRU(page));
1971
1972                 /* If there is no mapped pte young don't collapse the page */
1973                 if (pte_young(pteval) || PageReferenced(page) ||
1974                     mmu_notifier_test_young(vma->vm_mm, address))
1975                         referenced = 1;
1976         }
1977         if (unlikely(!referenced))
1978                 release_all_pte_pages(pte);
1979         else
1980                 isolated = 1;
1981 out:
1982         return isolated;
1983 }
1984
1985 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1986                                       struct vm_area_struct *vma,
1987                                       unsigned long address,
1988                                       spinlock_t *ptl)
1989 {
1990         pte_t *_pte;
1991         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1992                 pte_t pteval = *_pte;
1993                 struct page *src_page;
1994
1995                 if (pte_none(pteval)) {
1996                         clear_user_highpage(page, address);
1997                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1998                 } else {
1999                         src_page = pte_page(pteval);
2000                         copy_user_highpage(page, src_page, address, vma);
2001                         VM_BUG_ON(page_mapcount(src_page) != 1);
2002                         VM_BUG_ON(page_count(src_page) != 2);
2003                         release_pte_page(src_page);
2004                         /*
2005                          * ptl mostly unnecessary, but preempt has to
2006                          * be disabled to update the per-cpu stats
2007                          * inside page_remove_rmap().
2008                          */
2009                         spin_lock(ptl);
2010                         /*
2011                          * paravirt calls inside pte_clear here are
2012                          * superfluous.
2013                          */
2014                         pte_clear(vma->vm_mm, address, _pte);
2015                         page_remove_rmap(src_page);
2016                         spin_unlock(ptl);
2017                         free_page_and_swap_cache(src_page);
2018                 }
2019
2020                 address += PAGE_SIZE;
2021                 page++;
2022         }
2023 }
2024
2025 static bool hugepage_vma_check(struct vm_area_struct *vma)
2026 {
2027         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2028             (vma->vm_flags & VM_NOHUGEPAGE))
2029                 return false;
2030
2031         if (!vma->anon_vma || vma->vm_ops)
2032                 return false;
2033         if (is_vma_temporary_stack(vma))
2034                 return false;
2035         /*
2036          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
2037          * true too, verify it here.
2038          */
2039         VM_BUG_ON(is_linear_pfn_mapping(vma));
2040         return !(vma->vm_flags & VM_NO_THP);
2041 }
2042
2043 static void collapse_huge_page(struct mm_struct *mm,
2044                                unsigned long address,
2045                                struct page **hpage,
2046                                struct vm_area_struct *vma,
2047                                int node)
2048 {
2049         pgd_t *pgd;
2050         pud_t *pud;
2051         pmd_t *pmd, _pmd;
2052         pte_t *pte;
2053         pgtable_t pgtable;
2054         struct page *new_page;
2055         spinlock_t *ptl;
2056         int isolated;
2057         unsigned long hstart, hend;
2058
2059         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2060 #ifndef CONFIG_NUMA
2061         up_read(&mm->mmap_sem);
2062         VM_BUG_ON(!*hpage);
2063         new_page = *hpage;
2064 #else
2065         VM_BUG_ON(*hpage);
2066         /*
2067          * Allocate the page while the vma is still valid and under
2068          * the mmap_sem read mode so there is no memory allocation
2069          * later when we take the mmap_sem in write mode. This is more
2070          * friendly behavior (OTOH it may actually hide bugs) to
2071          * filesystems in userland with daemons allocating memory in
2072          * the userland I/O paths.  Allocating memory with the
2073          * mmap_sem in read mode is good idea also to allow greater
2074          * scalability.
2075          */
2076         new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2077                                       node, __GFP_OTHER_NODE);
2078
2079         /*
2080          * After allocating the hugepage, release the mmap_sem read lock in
2081          * preparation for taking it in write mode.
2082          */
2083         up_read(&mm->mmap_sem);
2084         if (unlikely(!new_page)) {
2085                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2086                 *hpage = ERR_PTR(-ENOMEM);
2087                 return;
2088         }
2089 #endif
2090
2091         count_vm_event(THP_COLLAPSE_ALLOC);
2092         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
2093 #ifdef CONFIG_NUMA
2094                 put_page(new_page);
2095 #endif
2096                 return;
2097         }
2098
2099         /*
2100          * Prevent all access to pagetables with the exception of
2101          * gup_fast later hanlded by the ptep_clear_flush and the VM
2102          * handled by the anon_vma lock + PG_lock.
2103          */
2104         down_write(&mm->mmap_sem);
2105         if (unlikely(khugepaged_test_exit(mm)))
2106                 goto out;
2107
2108         vma = find_vma(mm, address);
2109         if (!vma)
2110                 goto out;
2111         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2112         hend = vma->vm_end & HPAGE_PMD_MASK;
2113         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2114                 goto out;
2115         if (!hugepage_vma_check(vma))
2116                 goto out;
2117         pgd = pgd_offset(mm, address);
2118         if (!pgd_present(*pgd))
2119                 goto out;
2120
2121         pud = pud_offset(pgd, address);
2122         if (!pud_present(*pud))
2123                 goto out;
2124
2125         pmd = pmd_offset(pud, address);
2126         /* pmd can't go away or become huge under us */
2127         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2128                 goto out;
2129
2130         anon_vma_lock(vma->anon_vma);
2131
2132         pte = pte_offset_map(pmd, address);
2133         ptl = pte_lockptr(mm, pmd);
2134
2135         spin_lock(&mm->page_table_lock); /* probably unnecessary */
2136         /*
2137          * After this gup_fast can't run anymore. This also removes
2138          * any huge TLB entry from the CPU so we won't allow
2139          * huge and small TLB entries for the same virtual address
2140          * to avoid the risk of CPU bugs in that area.
2141          */
2142         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
2143         spin_unlock(&mm->page_table_lock);
2144
2145         spin_lock(ptl);
2146         isolated = __collapse_huge_page_isolate(vma, address, pte);
2147         spin_unlock(ptl);
2148
2149         if (unlikely(!isolated)) {
2150                 pte_unmap(pte);
2151                 spin_lock(&mm->page_table_lock);
2152                 BUG_ON(!pmd_none(*pmd));
2153                 /*
2154                  * We can only use set_pmd_at when establishing
2155                  * hugepmds and never for establishing regular pmds that
2156                  * points to regular pagetables. Use pmd_populate for that
2157                  */
2158                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2159                 spin_unlock(&mm->page_table_lock);
2160                 anon_vma_unlock(vma->anon_vma);
2161                 goto out;
2162         }
2163
2164         /*
2165          * All pages are isolated and locked so anon_vma rmap
2166          * can't run anymore.
2167          */
2168         anon_vma_unlock(vma->anon_vma);
2169
2170         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2171         pte_unmap(pte);
2172         __SetPageUptodate(new_page);
2173         pgtable = pmd_pgtable(_pmd);
2174         VM_BUG_ON(page_count(pgtable) != 1);
2175         VM_BUG_ON(page_mapcount(pgtable) != 0);
2176
2177         _pmd = mk_pmd(new_page, vma->vm_page_prot);
2178         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2179         _pmd = pmd_mkhuge(_pmd);
2180
2181         /*
2182          * spin_lock() below is not the equivalent of smp_wmb(), so
2183          * this is needed to avoid the copy_huge_page writes to become
2184          * visible after the set_pmd_at() write.
2185          */
2186         smp_wmb();
2187
2188         spin_lock(&mm->page_table_lock);
2189         BUG_ON(!pmd_none(*pmd));
2190         page_add_new_anon_rmap(new_page, vma, address);
2191         set_pmd_at(mm, address, pmd, _pmd);
2192         update_mmu_cache(vma, address, pmd);
2193         prepare_pmd_huge_pte(pgtable, mm);
2194         spin_unlock(&mm->page_table_lock);
2195
2196 #ifndef CONFIG_NUMA
2197         *hpage = NULL;
2198 #endif
2199         khugepaged_pages_collapsed++;
2200 out_up_write:
2201         up_write(&mm->mmap_sem);
2202         return;
2203
2204 out:
2205         mem_cgroup_uncharge_page(new_page);
2206 #ifdef CONFIG_NUMA
2207         put_page(new_page);
2208 #endif
2209         goto out_up_write;
2210 }
2211
2212 static int khugepaged_scan_pmd(struct mm_struct *mm,
2213                                struct vm_area_struct *vma,
2214                                unsigned long address,
2215                                struct page **hpage)
2216 {
2217         pgd_t *pgd;
2218         pud_t *pud;
2219         pmd_t *pmd;
2220         pte_t *pte, *_pte;
2221         int ret = 0, referenced = 0, none = 0;
2222         struct page *page;
2223         unsigned long _address;
2224         spinlock_t *ptl;
2225         int node = -1;
2226
2227         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2228
2229         pgd = pgd_offset(mm, address);
2230         if (!pgd_present(*pgd))
2231                 goto out;
2232
2233         pud = pud_offset(pgd, address);
2234         if (!pud_present(*pud))
2235                 goto out;
2236
2237         pmd = pmd_offset(pud, address);
2238         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2239                 goto out;
2240
2241         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2242         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2243              _pte++, _address += PAGE_SIZE) {
2244                 pte_t pteval = *_pte;
2245                 if (pte_none(pteval)) {
2246                         if (++none <= khugepaged_max_ptes_none)
2247                                 continue;
2248                         else
2249                                 goto out_unmap;
2250                 }
2251                 if (!pte_present(pteval) || !pte_write(pteval))
2252                         goto out_unmap;
2253                 page = vm_normal_page(vma, _address, pteval);
2254                 if (unlikely(!page))
2255                         goto out_unmap;
2256                 /*
2257                  * Chose the node of the first page. This could
2258                  * be more sophisticated and look at more pages,
2259                  * but isn't for now.
2260                  */
2261                 if (node == -1)
2262                         node = page_to_nid(page);
2263                 VM_BUG_ON(PageCompound(page));
2264                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2265                         goto out_unmap;
2266                 /* cannot use mapcount: can't collapse if there's a gup pin */
2267                 if (page_count(page) != 1)
2268                         goto out_unmap;
2269                 if (pte_young(pteval) || PageReferenced(page) ||
2270                     mmu_notifier_test_young(vma->vm_mm, address))
2271                         referenced = 1;
2272         }
2273         if (referenced)
2274                 ret = 1;
2275 out_unmap:
2276         pte_unmap_unlock(pte, ptl);
2277         if (ret)
2278                 /* collapse_huge_page will return with the mmap_sem released */
2279                 collapse_huge_page(mm, address, hpage, vma, node);
2280 out:
2281         return ret;
2282 }
2283
2284 static void collect_mm_slot(struct mm_slot *mm_slot)
2285 {
2286         struct mm_struct *mm = mm_slot->mm;
2287
2288         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2289
2290         if (khugepaged_test_exit(mm)) {
2291                 /* free mm_slot */
2292                 hlist_del(&mm_slot->hash);
2293                 list_del(&mm_slot->mm_node);
2294
2295                 /*
2296                  * Not strictly needed because the mm exited already.
2297                  *
2298                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2299                  */
2300
2301                 /* khugepaged_mm_lock actually not necessary for the below */
2302                 free_mm_slot(mm_slot);
2303                 mmdrop(mm);
2304         }
2305 }
2306
2307 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2308                                             struct page **hpage)
2309         __releases(&khugepaged_mm_lock)
2310         __acquires(&khugepaged_mm_lock)
2311 {
2312         struct mm_slot *mm_slot;
2313         struct mm_struct *mm;
2314         struct vm_area_struct *vma;
2315         int progress = 0;
2316
2317         VM_BUG_ON(!pages);
2318         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2319
2320         if (khugepaged_scan.mm_slot)
2321                 mm_slot = khugepaged_scan.mm_slot;
2322         else {
2323                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2324                                      struct mm_slot, mm_node);
2325                 khugepaged_scan.address = 0;
2326                 khugepaged_scan.mm_slot = mm_slot;
2327         }
2328         spin_unlock(&khugepaged_mm_lock);
2329
2330         mm = mm_slot->mm;
2331         down_read(&mm->mmap_sem);
2332         if (unlikely(khugepaged_test_exit(mm)))
2333                 vma = NULL;
2334         else
2335                 vma = find_vma(mm, khugepaged_scan.address);
2336
2337         progress++;
2338         for (; vma; vma = vma->vm_next) {
2339                 unsigned long hstart, hend;
2340
2341                 cond_resched();
2342                 if (unlikely(khugepaged_test_exit(mm))) {
2343                         progress++;
2344                         break;
2345                 }
2346                 if (!hugepage_vma_check(vma)) {
2347 skip:
2348                         progress++;
2349                         continue;
2350                 }
2351                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2352                 hend = vma->vm_end & HPAGE_PMD_MASK;
2353                 if (hstart >= hend)
2354                         goto skip;
2355                 if (khugepaged_scan.address > hend)
2356                         goto skip;
2357                 if (khugepaged_scan.address < hstart)
2358                         khugepaged_scan.address = hstart;
2359                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2360
2361                 while (khugepaged_scan.address < hend) {
2362                         int ret;
2363                         cond_resched();
2364                         if (unlikely(khugepaged_test_exit(mm)))
2365                                 goto breakouterloop;
2366
2367                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2368                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2369                                   hend);
2370                         ret = khugepaged_scan_pmd(mm, vma,
2371                                                   khugepaged_scan.address,
2372                                                   hpage);
2373                         /* move to next address */
2374                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2375                         progress += HPAGE_PMD_NR;
2376                         if (ret)
2377                                 /* we released mmap_sem so break loop */
2378                                 goto breakouterloop_mmap_sem;
2379                         if (progress >= pages)
2380                                 goto breakouterloop;
2381                 }
2382         }
2383 breakouterloop:
2384         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2385 breakouterloop_mmap_sem:
2386
2387         spin_lock(&khugepaged_mm_lock);
2388         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2389         /*
2390          * Release the current mm_slot if this mm is about to die, or
2391          * if we scanned all vmas of this mm.
2392          */
2393         if (khugepaged_test_exit(mm) || !vma) {
2394                 /*
2395                  * Make sure that if mm_users is reaching zero while
2396                  * khugepaged runs here, khugepaged_exit will find
2397                  * mm_slot not pointing to the exiting mm.
2398                  */
2399                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2400                         khugepaged_scan.mm_slot = list_entry(
2401                                 mm_slot->mm_node.next,
2402                                 struct mm_slot, mm_node);
2403                         khugepaged_scan.address = 0;
2404                 } else {
2405                         khugepaged_scan.mm_slot = NULL;
2406                         khugepaged_full_scans++;
2407                 }
2408
2409                 collect_mm_slot(mm_slot);
2410         }
2411
2412         return progress;
2413 }
2414
2415 static int khugepaged_has_work(void)
2416 {
2417         return !list_empty(&khugepaged_scan.mm_head) &&
2418                 khugepaged_enabled();
2419 }
2420
2421 static int khugepaged_wait_event(void)
2422 {
2423         return !list_empty(&khugepaged_scan.mm_head) ||
2424                 !khugepaged_enabled();
2425 }
2426
2427 static void khugepaged_do_scan(struct page **hpage)
2428 {
2429         unsigned int progress = 0, pass_through_head = 0;
2430         unsigned int pages = khugepaged_pages_to_scan;
2431
2432         barrier(); /* write khugepaged_pages_to_scan to local stack */
2433
2434         while (progress < pages) {
2435                 cond_resched();
2436
2437 #ifndef CONFIG_NUMA
2438                 if (!*hpage) {
2439                         *hpage = alloc_hugepage(khugepaged_defrag());
2440                         if (unlikely(!*hpage)) {
2441                                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2442                                 break;
2443                         }
2444                         count_vm_event(THP_COLLAPSE_ALLOC);
2445                 }
2446 #else
2447                 if (IS_ERR(*hpage))
2448                         break;
2449 #endif
2450
2451                 if (unlikely(kthread_should_stop() || freezing(current)))
2452                         break;
2453
2454                 spin_lock(&khugepaged_mm_lock);
2455                 if (!khugepaged_scan.mm_slot)
2456                         pass_through_head++;
2457                 if (khugepaged_has_work() &&
2458                     pass_through_head < 2)
2459                         progress += khugepaged_scan_mm_slot(pages - progress,
2460                                                             hpage);
2461                 else
2462                         progress = pages;
2463                 spin_unlock(&khugepaged_mm_lock);
2464         }
2465 }
2466
2467 static void khugepaged_alloc_sleep(void)
2468 {
2469         wait_event_freezable_timeout(khugepaged_wait, false,
2470                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2471 }
2472
2473 #ifndef CONFIG_NUMA
2474 static struct page *khugepaged_alloc_hugepage(void)
2475 {
2476         struct page *hpage;
2477
2478         do {
2479                 hpage = alloc_hugepage(khugepaged_defrag());
2480                 if (!hpage) {
2481                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2482                         khugepaged_alloc_sleep();
2483                 } else
2484                         count_vm_event(THP_COLLAPSE_ALLOC);
2485         } while (unlikely(!hpage) &&
2486                  likely(khugepaged_enabled()));
2487         return hpage;
2488 }
2489 #endif
2490
2491 static void khugepaged_loop(void)
2492 {
2493         struct page *hpage;
2494
2495 #ifdef CONFIG_NUMA
2496         hpage = NULL;
2497 #endif
2498         while (likely(khugepaged_enabled())) {
2499 #ifndef CONFIG_NUMA
2500                 hpage = khugepaged_alloc_hugepage();
2501                 if (unlikely(!hpage))
2502                         break;
2503 #else
2504                 if (IS_ERR(hpage)) {
2505                         khugepaged_alloc_sleep();
2506                         hpage = NULL;
2507                 }
2508 #endif
2509
2510                 khugepaged_do_scan(&hpage);
2511 #ifndef CONFIG_NUMA
2512                 if (hpage)
2513                         put_page(hpage);
2514 #endif
2515                 try_to_freeze();
2516                 if (unlikely(kthread_should_stop()))
2517                         break;
2518                 if (khugepaged_has_work()) {
2519                         if (!khugepaged_scan_sleep_millisecs)
2520                                 continue;
2521                         wait_event_freezable_timeout(khugepaged_wait, false,
2522                             msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2523                 } else if (khugepaged_enabled())
2524                         wait_event_freezable(khugepaged_wait,
2525                                              khugepaged_wait_event());
2526         }
2527 }
2528
2529 static int khugepaged(void *none)
2530 {
2531         struct mm_slot *mm_slot;
2532
2533         set_freezable();
2534         set_user_nice(current, 19);
2535
2536         /* serialize with start_khugepaged() */
2537         mutex_lock(&khugepaged_mutex);
2538
2539         for (;;) {
2540                 mutex_unlock(&khugepaged_mutex);
2541                 VM_BUG_ON(khugepaged_thread != current);
2542                 khugepaged_loop();
2543                 VM_BUG_ON(khugepaged_thread != current);
2544
2545                 mutex_lock(&khugepaged_mutex);
2546                 if (!khugepaged_enabled())
2547                         break;
2548                 if (unlikely(kthread_should_stop()))
2549                         break;
2550         }
2551
2552         spin_lock(&khugepaged_mm_lock);
2553         mm_slot = khugepaged_scan.mm_slot;
2554         khugepaged_scan.mm_slot = NULL;
2555         if (mm_slot)
2556                 collect_mm_slot(mm_slot);
2557         spin_unlock(&khugepaged_mm_lock);
2558
2559         khugepaged_thread = NULL;
2560         mutex_unlock(&khugepaged_mutex);
2561
2562         return 0;
2563 }
2564
2565 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2566 {
2567         struct vm_area_struct *vma;
2568         struct page *page;
2569
2570         spin_lock(&mm->page_table_lock);
2571         if (unlikely(!pmd_trans_huge(*pmd))) {
2572                 spin_unlock(&mm->page_table_lock);
2573                 return;
2574         }
2575         vma = find_vma(mm, pmd_to_va(mm, pmd));
2576         if (vma && is_fb_vma(vma)) {
2577                 split_fb_pmd(vma, pmd);
2578                 spin_unlock(&mm->page_table_lock);
2579                 return;
2580         }
2581         page = pmd_page(*pmd);
2582         VM_BUG_ON(!page_count(page));
2583         get_page(page);
2584         spin_unlock(&mm->page_table_lock);
2585
2586         split_huge_page(page);
2587
2588         put_page(page);
2589         BUG_ON(pmd_trans_huge(*pmd));
2590 }
2591
2592 static void split_huge_page_address(struct mm_struct *mm,
2593                                     unsigned long address)
2594 {
2595         pgd_t *pgd;
2596         pud_t *pud;
2597         pmd_t *pmd;
2598
2599         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2600
2601         pgd = pgd_offset(mm, address);
2602         if (!pgd_present(*pgd))
2603                 return;
2604
2605         pud = pud_offset(pgd, address);
2606         if (!pud_present(*pud))
2607                 return;
2608
2609         pmd = pmd_offset(pud, address);
2610         if (!pmd_present(*pmd))
2611                 return;
2612         /*
2613          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2614          * materialize from under us.
2615          */
2616         split_huge_page_pmd(mm, pmd);
2617 }
2618
2619 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2620                              unsigned long start,
2621                              unsigned long end,
2622                              long adjust_next)
2623 {
2624         /*
2625          * If the new start address isn't hpage aligned and it could
2626          * previously contain an hugepage: check if we need to split
2627          * an huge pmd.
2628          */
2629         if (start & ~HPAGE_PMD_MASK &&
2630             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2631             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2632                 split_huge_page_address(vma->vm_mm, start);
2633
2634         /*
2635          * If the new end address isn't hpage aligned and it could
2636          * previously contain an hugepage: check if we need to split
2637          * an huge pmd.
2638          */
2639         if (end & ~HPAGE_PMD_MASK &&
2640             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2641             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2642                 split_huge_page_address(vma->vm_mm, end);
2643
2644         /*
2645          * If we're also updating the vma->vm_next->vm_start, if the new
2646          * vm_next->vm_start isn't page aligned and it could previously
2647          * contain an hugepage: check if we need to split an huge pmd.
2648          */
2649         if (adjust_next > 0) {
2650                 struct vm_area_struct *next = vma->vm_next;
2651                 unsigned long nstart = next->vm_start;
2652                 nstart += adjust_next << PAGE_SHIFT;
2653                 if (nstart & ~HPAGE_PMD_MASK &&
2654                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2655                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2656                         split_huge_page_address(next->vm_mm, nstart);
2657         }
2658 }