Merge branch 'samsung/cleanup-plat-s5p' into next/soc2
[pandora-kernel.git] / lib / mpi / mpih-div.c
1 /* mpihelp-div.c  -  MPI helper functions
2  *      Copyright (C) 1994, 1996 Free Software Foundation, Inc.
3  *      Copyright (C) 1998, 1999 Free Software Foundation, Inc.
4  *
5  * This file is part of GnuPG.
6  *
7  * GnuPG is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * GnuPG is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
20  *
21  * Note: This code is heavily based on the GNU MP Library.
22  *       Actually it's the same code with only minor changes in the
23  *       way the data is stored; this is to support the abstraction
24  *       of an optional secure memory allocation which may be used
25  *       to avoid revealing of sensitive data due to paging etc.
26  *       The GNU MP Library itself is published under the LGPL;
27  *       however I decided to publish this code under the plain GPL.
28  */
29
30 #include "mpi-internal.h"
31 #include "longlong.h"
32
33 #ifndef UMUL_TIME
34 #define UMUL_TIME 1
35 #endif
36 #ifndef UDIV_TIME
37 #define UDIV_TIME UMUL_TIME
38 #endif
39
40 /* FIXME: We should be using invert_limb (or invert_normalized_limb)
41  * here (not udiv_qrnnd).
42  */
43
44 mpi_limb_t
45 mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
46               mpi_limb_t divisor_limb)
47 {
48         mpi_size_t i;
49         mpi_limb_t n1, n0, r;
50         int dummy;
51
52         /* Botch: Should this be handled at all?  Rely on callers?  */
53         if (!dividend_size)
54                 return 0;
55
56         /* If multiplication is much faster than division, and the
57          * dividend is large, pre-invert the divisor, and use
58          * only multiplications in the inner loop.
59          *
60          * This test should be read:
61          *   Does it ever help to use udiv_qrnnd_preinv?
62          *     && Does what we save compensate for the inversion overhead?
63          */
64         if (UDIV_TIME > (2 * UMUL_TIME + 6)
65             && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
66                 int normalization_steps;
67
68                 count_leading_zeros(normalization_steps, divisor_limb);
69                 if (normalization_steps) {
70                         mpi_limb_t divisor_limb_inverted;
71
72                         divisor_limb <<= normalization_steps;
73
74                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
75                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
76                          * most significant bit (with weight 2**N) implicit.
77                          *
78                          * Special case for DIVISOR_LIMB == 100...000.
79                          */
80                         if (!(divisor_limb << 1))
81                                 divisor_limb_inverted = ~(mpi_limb_t) 0;
82                         else
83                                 udiv_qrnnd(divisor_limb_inverted, dummy,
84                                            -divisor_limb, 0, divisor_limb);
85
86                         n1 = dividend_ptr[dividend_size - 1];
87                         r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
88
89                         /* Possible optimization:
90                          * if (r == 0
91                          * && divisor_limb > ((n1 << normalization_steps)
92                          *                 | (dividend_ptr[dividend_size - 2] >> ...)))
93                          * ...one division less...
94                          */
95                         for (i = dividend_size - 2; i >= 0; i--) {
96                                 n0 = dividend_ptr[i];
97                                 UDIV_QRNND_PREINV(dummy, r, r,
98                                                   ((n1 << normalization_steps)
99                                                    | (n0 >>
100                                                       (BITS_PER_MPI_LIMB -
101                                                        normalization_steps))),
102                                                   divisor_limb,
103                                                   divisor_limb_inverted);
104                                 n1 = n0;
105                         }
106                         UDIV_QRNND_PREINV(dummy, r, r,
107                                           n1 << normalization_steps,
108                                           divisor_limb, divisor_limb_inverted);
109                         return r >> normalization_steps;
110                 } else {
111                         mpi_limb_t divisor_limb_inverted;
112
113                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
114                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
115                          * most significant bit (with weight 2**N) implicit.
116                          *
117                          * Special case for DIVISOR_LIMB == 100...000.
118                          */
119                         if (!(divisor_limb << 1))
120                                 divisor_limb_inverted = ~(mpi_limb_t) 0;
121                         else
122                                 udiv_qrnnd(divisor_limb_inverted, dummy,
123                                            -divisor_limb, 0, divisor_limb);
124
125                         i = dividend_size - 1;
126                         r = dividend_ptr[i];
127
128                         if (r >= divisor_limb)
129                                 r = 0;
130                         else
131                                 i--;
132
133                         for (; i >= 0; i--) {
134                                 n0 = dividend_ptr[i];
135                                 UDIV_QRNND_PREINV(dummy, r, r,
136                                                   n0, divisor_limb,
137                                                   divisor_limb_inverted);
138                         }
139                         return r;
140                 }
141         } else {
142                 if (UDIV_NEEDS_NORMALIZATION) {
143                         int normalization_steps;
144
145                         count_leading_zeros(normalization_steps, divisor_limb);
146                         if (normalization_steps) {
147                                 divisor_limb <<= normalization_steps;
148
149                                 n1 = dividend_ptr[dividend_size - 1];
150                                 r = n1 >> (BITS_PER_MPI_LIMB -
151                                            normalization_steps);
152
153                                 /* Possible optimization:
154                                  * if (r == 0
155                                  * && divisor_limb > ((n1 << normalization_steps)
156                                  *                 | (dividend_ptr[dividend_size - 2] >> ...)))
157                                  * ...one division less...
158                                  */
159                                 for (i = dividend_size - 2; i >= 0; i--) {
160                                         n0 = dividend_ptr[i];
161                                         udiv_qrnnd(dummy, r, r,
162                                                    ((n1 << normalization_steps)
163                                                     | (n0 >>
164                                                        (BITS_PER_MPI_LIMB -
165                                                         normalization_steps))),
166                                                    divisor_limb);
167                                         n1 = n0;
168                                 }
169                                 udiv_qrnnd(dummy, r, r,
170                                            n1 << normalization_steps,
171                                            divisor_limb);
172                                 return r >> normalization_steps;
173                         }
174                 }
175                 /* No normalization needed, either because udiv_qrnnd doesn't require
176                  * it, or because DIVISOR_LIMB is already normalized.  */
177                 i = dividend_size - 1;
178                 r = dividend_ptr[i];
179
180                 if (r >= divisor_limb)
181                         r = 0;
182                 else
183                         i--;
184
185                 for (; i >= 0; i--) {
186                         n0 = dividend_ptr[i];
187                         udiv_qrnnd(dummy, r, r, n0, divisor_limb);
188                 }
189                 return r;
190         }
191 }
192
193 /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
194  * the NSIZE-DSIZE least significant quotient limbs at QP
195  * and the DSIZE long remainder at NP.  If QEXTRA_LIMBS is
196  * non-zero, generate that many fraction bits and append them after the
197  * other quotient limbs.
198  * Return the most significant limb of the quotient, this is always 0 or 1.
199  *
200  * Preconditions:
201  * 0. NSIZE >= DSIZE.
202  * 1. The most significant bit of the divisor must be set.
203  * 2. QP must either not overlap with the input operands at all, or
204  *    QP + DSIZE >= NP must hold true.  (This means that it's
205  *    possible to put the quotient in the high part of NUM, right after the
206  *    remainder in NUM.
207  * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
208  */
209
210 mpi_limb_t
211 mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
212                mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
213 {
214         mpi_limb_t most_significant_q_limb = 0;
215
216         switch (dsize) {
217         case 0:
218                 /* We are asked to divide by zero, so go ahead and do it!  (To make
219                    the compiler not remove this statement, return the value.)  */
220                 /*
221                  * existing clients of this function have been modified
222                  * not to call it with dsize == 0, so this should not happen
223                  */
224                 return 1 / dsize;
225
226         case 1:
227                 {
228                         mpi_size_t i;
229                         mpi_limb_t n1;
230                         mpi_limb_t d;
231
232                         d = dp[0];
233                         n1 = np[nsize - 1];
234
235                         if (n1 >= d) {
236                                 n1 -= d;
237                                 most_significant_q_limb = 1;
238                         }
239
240                         qp += qextra_limbs;
241                         for (i = nsize - 2; i >= 0; i--)
242                                 udiv_qrnnd(qp[i], n1, n1, np[i], d);
243                         qp -= qextra_limbs;
244
245                         for (i = qextra_limbs - 1; i >= 0; i--)
246                                 udiv_qrnnd(qp[i], n1, n1, 0, d);
247
248                         np[0] = n1;
249                 }
250                 break;
251
252         case 2:
253                 {
254                         mpi_size_t i;
255                         mpi_limb_t n1, n0, n2;
256                         mpi_limb_t d1, d0;
257
258                         np += nsize - 2;
259                         d1 = dp[1];
260                         d0 = dp[0];
261                         n1 = np[1];
262                         n0 = np[0];
263
264                         if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
265                                 sub_ddmmss(n1, n0, n1, n0, d1, d0);
266                                 most_significant_q_limb = 1;
267                         }
268
269                         for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
270                                 mpi_limb_t q;
271                                 mpi_limb_t r;
272
273                                 if (i >= qextra_limbs)
274                                         np--;
275                                 else
276                                         np[0] = 0;
277
278                                 if (n1 == d1) {
279                                         /* Q should be either 111..111 or 111..110.  Need special
280                                          * treatment of this rare case as normal division would
281                                          * give overflow.  */
282                                         q = ~(mpi_limb_t) 0;
283
284                                         r = n0 + d1;
285                                         if (r < d1) {   /* Carry in the addition? */
286                                                 add_ssaaaa(n1, n0, r - d0,
287                                                            np[0], 0, d0);
288                                                 qp[i] = q;
289                                                 continue;
290                                         }
291                                         n1 = d0 - (d0 != 0 ? 1 : 0);
292                                         n0 = -d0;
293                                 } else {
294                                         udiv_qrnnd(q, r, n1, n0, d1);
295                                         umul_ppmm(n1, n0, d0, q);
296                                 }
297
298                                 n2 = np[0];
299 q_test:
300                                 if (n1 > r || (n1 == r && n0 > n2)) {
301                                         /* The estimated Q was too large.  */
302                                         q--;
303                                         sub_ddmmss(n1, n0, n1, n0, 0, d0);
304                                         r += d1;
305                                         if (r >= d1)    /* If not carry, test Q again.  */
306                                                 goto q_test;
307                                 }
308
309                                 qp[i] = q;
310                                 sub_ddmmss(n1, n0, r, n2, n1, n0);
311                         }
312                         np[1] = n1;
313                         np[0] = n0;
314                 }
315                 break;
316
317         default:
318                 {
319                         mpi_size_t i;
320                         mpi_limb_t dX, d1, n0;
321
322                         np += nsize - dsize;
323                         dX = dp[dsize - 1];
324                         d1 = dp[dsize - 2];
325                         n0 = np[dsize - 1];
326
327                         if (n0 >= dX) {
328                                 if (n0 > dX
329                                     || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
330                                         mpihelp_sub_n(np, np, dp, dsize);
331                                         n0 = np[dsize - 1];
332                                         most_significant_q_limb = 1;
333                                 }
334                         }
335
336                         for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
337                                 mpi_limb_t q;
338                                 mpi_limb_t n1, n2;
339                                 mpi_limb_t cy_limb;
340
341                                 if (i >= qextra_limbs) {
342                                         np--;
343                                         n2 = np[dsize];
344                                 } else {
345                                         n2 = np[dsize - 1];
346                                         MPN_COPY_DECR(np + 1, np, dsize - 1);
347                                         np[0] = 0;
348                                 }
349
350                                 if (n0 == dX) {
351                                         /* This might over-estimate q, but it's probably not worth
352                                          * the extra code here to find out.  */
353                                         q = ~(mpi_limb_t) 0;
354                                 } else {
355                                         mpi_limb_t r;
356
357                                         udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
358                                         umul_ppmm(n1, n0, d1, q);
359
360                                         while (n1 > r
361                                                || (n1 == r
362                                                    && n0 > np[dsize - 2])) {
363                                                 q--;
364                                                 r += dX;
365                                                 if (r < dX)     /* I.e. "carry in previous addition?" */
366                                                         break;
367                                                 n1 -= n0 < d1;
368                                                 n0 -= d1;
369                                         }
370                                 }
371
372                                 /* Possible optimization: We already have (q * n0) and (1 * n1)
373                                  * after the calculation of q.  Taking advantage of that, we
374                                  * could make this loop make two iterations less.  */
375                                 cy_limb = mpihelp_submul_1(np, dp, dsize, q);
376
377                                 if (n2 != cy_limb) {
378                                         mpihelp_add_n(np, np, dp, dsize);
379                                         q--;
380                                 }
381
382                                 qp[i] = q;
383                                 n0 = np[dsize - 1];
384                         }
385                 }
386         }
387
388         return most_significant_q_limb;
389 }
390
391 /****************
392  * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
393  * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
394  * Return the single-limb remainder.
395  * There are no constraints on the value of the divisor.
396  *
397  * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
398  */
399
400 mpi_limb_t
401 mpihelp_divmod_1(mpi_ptr_t quot_ptr,
402                  mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
403                  mpi_limb_t divisor_limb)
404 {
405         mpi_size_t i;
406         mpi_limb_t n1, n0, r;
407         int dummy;
408
409         if (!dividend_size)
410                 return 0;
411
412         /* If multiplication is much faster than division, and the
413          * dividend is large, pre-invert the divisor, and use
414          * only multiplications in the inner loop.
415          *
416          * This test should be read:
417          * Does it ever help to use udiv_qrnnd_preinv?
418          * && Does what we save compensate for the inversion overhead?
419          */
420         if (UDIV_TIME > (2 * UMUL_TIME + 6)
421             && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
422                 int normalization_steps;
423
424                 count_leading_zeros(normalization_steps, divisor_limb);
425                 if (normalization_steps) {
426                         mpi_limb_t divisor_limb_inverted;
427
428                         divisor_limb <<= normalization_steps;
429
430                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
431                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
432                          * most significant bit (with weight 2**N) implicit.
433                          */
434                         /* Special case for DIVISOR_LIMB == 100...000.  */
435                         if (!(divisor_limb << 1))
436                                 divisor_limb_inverted = ~(mpi_limb_t) 0;
437                         else
438                                 udiv_qrnnd(divisor_limb_inverted, dummy,
439                                            -divisor_limb, 0, divisor_limb);
440
441                         n1 = dividend_ptr[dividend_size - 1];
442                         r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
443
444                         /* Possible optimization:
445                          * if (r == 0
446                          * && divisor_limb > ((n1 << normalization_steps)
447                          *                 | (dividend_ptr[dividend_size - 2] >> ...)))
448                          * ...one division less...
449                          */
450                         for (i = dividend_size - 2; i >= 0; i--) {
451                                 n0 = dividend_ptr[i];
452                                 UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
453                                                   ((n1 << normalization_steps)
454                                                    | (n0 >>
455                                                       (BITS_PER_MPI_LIMB -
456                                                        normalization_steps))),
457                                                   divisor_limb,
458                                                   divisor_limb_inverted);
459                                 n1 = n0;
460                         }
461                         UDIV_QRNND_PREINV(quot_ptr[0], r, r,
462                                           n1 << normalization_steps,
463                                           divisor_limb, divisor_limb_inverted);
464                         return r >> normalization_steps;
465                 } else {
466                         mpi_limb_t divisor_limb_inverted;
467
468                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
469                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
470                          * most significant bit (with weight 2**N) implicit.
471                          */
472                         /* Special case for DIVISOR_LIMB == 100...000.  */
473                         if (!(divisor_limb << 1))
474                                 divisor_limb_inverted = ~(mpi_limb_t) 0;
475                         else
476                                 udiv_qrnnd(divisor_limb_inverted, dummy,
477                                            -divisor_limb, 0, divisor_limb);
478
479                         i = dividend_size - 1;
480                         r = dividend_ptr[i];
481
482                         if (r >= divisor_limb)
483                                 r = 0;
484                         else
485                                 quot_ptr[i--] = 0;
486
487                         for (; i >= 0; i--) {
488                                 n0 = dividend_ptr[i];
489                                 UDIV_QRNND_PREINV(quot_ptr[i], r, r,
490                                                   n0, divisor_limb,
491                                                   divisor_limb_inverted);
492                         }
493                         return r;
494                 }
495         } else {
496                 if (UDIV_NEEDS_NORMALIZATION) {
497                         int normalization_steps;
498
499                         count_leading_zeros(normalization_steps, divisor_limb);
500                         if (normalization_steps) {
501                                 divisor_limb <<= normalization_steps;
502
503                                 n1 = dividend_ptr[dividend_size - 1];
504                                 r = n1 >> (BITS_PER_MPI_LIMB -
505                                            normalization_steps);
506
507                                 /* Possible optimization:
508                                  * if (r == 0
509                                  * && divisor_limb > ((n1 << normalization_steps)
510                                  *                 | (dividend_ptr[dividend_size - 2] >> ...)))
511                                  * ...one division less...
512                                  */
513                                 for (i = dividend_size - 2; i >= 0; i--) {
514                                         n0 = dividend_ptr[i];
515                                         udiv_qrnnd(quot_ptr[i + 1], r, r,
516                                                    ((n1 << normalization_steps)
517                                                     | (n0 >>
518                                                        (BITS_PER_MPI_LIMB -
519                                                         normalization_steps))),
520                                                    divisor_limb);
521                                         n1 = n0;
522                                 }
523                                 udiv_qrnnd(quot_ptr[0], r, r,
524                                            n1 << normalization_steps,
525                                            divisor_limb);
526                                 return r >> normalization_steps;
527                         }
528                 }
529                 /* No normalization needed, either because udiv_qrnnd doesn't require
530                  * it, or because DIVISOR_LIMB is already normalized.  */
531                 i = dividend_size - 1;
532                 r = dividend_ptr[i];
533
534                 if (r >= divisor_limb)
535                         r = 0;
536                 else
537                         quot_ptr[i--] = 0;
538
539                 for (; i >= 0; i--) {
540                         n0 = dividend_ptr[i];
541                         udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
542                 }
543                 return r;
544         }
545 }