Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
189
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192
193 enum {
194         RB_LEN_TIME_EXTEND = 8,
195         RB_LEN_TIME_STAMP = 16,
196 };
197
198 #define skip_time_extend(event) \
199         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208         /* padding has a NULL time_delta */
209         event->type_len = RINGBUF_TYPE_PADDING;
210         event->time_delta = 0;
211 }
212
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216         unsigned length;
217
218         if (event->type_len)
219                 length = event->type_len * RB_ALIGNMENT;
220         else
221                 length = event->array[0];
222         return length + RB_EVNT_HDR_SIZE;
223 }
224
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233         switch (event->type_len) {
234         case RINGBUF_TYPE_PADDING:
235                 if (rb_null_event(event))
236                         /* undefined */
237                         return -1;
238                 return  event->array[0] + RB_EVNT_HDR_SIZE;
239
240         case RINGBUF_TYPE_TIME_EXTEND:
241                 return RB_LEN_TIME_EXTEND;
242
243         case RINGBUF_TYPE_TIME_STAMP:
244                 return RB_LEN_TIME_STAMP;
245
246         case RINGBUF_TYPE_DATA:
247                 return rb_event_data_length(event);
248         default:
249                 BUG();
250         }
251         /* not hit */
252         return 0;
253 }
254
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262         unsigned len = 0;
263
264         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265                 /* time extends include the data event after it */
266                 len = RB_LEN_TIME_EXTEND;
267                 event = skip_time_extend(event);
268         }
269         return len + rb_event_length(event);
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284         unsigned length;
285
286         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287                 event = skip_time_extend(event);
288
289         length = rb_event_length(event);
290         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291                 return length;
292         length -= RB_EVNT_HDR_SIZE;
293         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295         return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304                 event = skip_time_extend(event);
305         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306         /* If length is in len field, then array[0] has the data */
307         if (event->type_len)
308                 return (void *)&event->array[0];
309         /* Otherwise length is in array[0] and array[1] has the data */
310         return (void *)&event->array[1];
311 }
312
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319         return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322
323 #define for_each_buffer_cpu(buffer, cpu)                \
324         for_each_cpu(cpu, buffer->cpumask)
325
326 #define TS_SHIFT        27
327 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST   (~TS_MASK)
329
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS        (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED        (1 << 30)
334
335 struct buffer_data_page {
336         u64              time_stamp;    /* page time stamp */
337         local_t          commit;        /* write committed index */
338         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
339 };
340
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350         struct list_head list;          /* list of buffer pages */
351         local_t          write;         /* index for next write */
352         unsigned         read;          /* index for next read */
353         local_t          entries;       /* entries on this page */
354         unsigned long    real_end;      /* real end of data */
355         struct buffer_data_page *page;  /* Actual data page */
356 };
357
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK           0xfffff
371 #define RB_WRITE_INTCNT         (1 << 20)
372
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375         local_set(&bpage->commit, 0);
376 }
377
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386         return local_read(&((struct buffer_data_page *)page)->commit)
387                 + BUF_PAGE_HDR_SIZE;
388 }
389
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396         free_page((unsigned long)bpage->page);
397         kfree(bpage);
398 }
399
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405         if (delta & TS_DELTA_TEST)
406                 return 1;
407         return 0;
408 }
409
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417         struct buffer_data_page field;
418
419         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420                          "offset:0;\tsize:%u;\tsigned:%u;\n",
421                          (unsigned int)sizeof(field.time_stamp),
422                          (unsigned int)is_signed_type(u64));
423
424         trace_seq_printf(s, "\tfield: local_t commit;\t"
425                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
426                          (unsigned int)offsetof(typeof(field), commit),
427                          (unsigned int)sizeof(field.commit),
428                          (unsigned int)is_signed_type(long));
429
430         trace_seq_printf(s, "\tfield: int overwrite;\t"
431                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
432                          (unsigned int)offsetof(typeof(field), commit),
433                          1,
434                          (unsigned int)is_signed_type(long));
435
436         trace_seq_printf(s, "\tfield: char data;\t"
437                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
438                          (unsigned int)offsetof(typeof(field), data),
439                          (unsigned int)BUF_PAGE_SIZE,
440                          (unsigned int)is_signed_type(char));
441
442         return !trace_seq_has_overflowed(s);
443 }
444
445 struct rb_irq_work {
446         struct irq_work                 work;
447         wait_queue_head_t               waiters;
448         wait_queue_head_t               full_waiters;
449         bool                            waiters_pending;
450         bool                            full_waiters_pending;
451         bool                            wakeup_full;
452 };
453
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458         int                             cpu;
459         atomic_t                        record_disabled;
460         struct ring_buffer              *buffer;
461         raw_spinlock_t                  reader_lock;    /* serialize readers */
462         arch_spinlock_t                 lock;
463         struct lock_class_key           lock_key;
464         unsigned int                    nr_pages;
465         struct list_head                *pages;
466         struct buffer_page              *head_page;     /* read from head */
467         struct buffer_page              *tail_page;     /* write to tail */
468         struct buffer_page              *commit_page;   /* committed pages */
469         struct buffer_page              *reader_page;
470         unsigned long                   lost_events;
471         unsigned long                   last_overrun;
472         local_t                         entries_bytes;
473         local_t                         entries;
474         local_t                         overrun;
475         local_t                         commit_overrun;
476         local_t                         dropped_events;
477         local_t                         committing;
478         local_t                         commits;
479         unsigned long                   read;
480         unsigned long                   read_bytes;
481         u64                             write_stamp;
482         u64                             read_stamp;
483         /* ring buffer pages to update, > 0 to add, < 0 to remove */
484         int                             nr_pages_to_update;
485         struct list_head                new_pages; /* new pages to add */
486         struct work_struct              update_pages_work;
487         struct completion               update_done;
488
489         struct rb_irq_work              irq_work;
490 };
491
492 struct ring_buffer {
493         unsigned                        flags;
494         int                             cpus;
495         atomic_t                        record_disabled;
496         atomic_t                        resize_disabled;
497         cpumask_var_t                   cpumask;
498
499         struct lock_class_key           *reader_lock_key;
500
501         struct mutex                    mutex;
502
503         struct ring_buffer_per_cpu      **buffers;
504
505 #ifdef CONFIG_HOTPLUG_CPU
506         struct notifier_block           cpu_notify;
507 #endif
508         u64                             (*clock)(void);
509
510         struct rb_irq_work              irq_work;
511 };
512
513 struct ring_buffer_iter {
514         struct ring_buffer_per_cpu      *cpu_buffer;
515         unsigned long                   head;
516         struct buffer_page              *head_page;
517         struct buffer_page              *cache_reader_page;
518         unsigned long                   cache_read;
519         u64                             read_stamp;
520 };
521
522 /*
523  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524  *
525  * Schedules a delayed work to wake up any task that is blocked on the
526  * ring buffer waiters queue.
527  */
528 static void rb_wake_up_waiters(struct irq_work *work)
529 {
530         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531
532         wake_up_all(&rbwork->waiters);
533         if (rbwork->wakeup_full) {
534                 rbwork->wakeup_full = false;
535                 wake_up_all(&rbwork->full_waiters);
536         }
537 }
538
539 /**
540  * ring_buffer_wait - wait for input to the ring buffer
541  * @buffer: buffer to wait on
542  * @cpu: the cpu buffer to wait on
543  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
544  *
545  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
546  * as data is added to any of the @buffer's cpu buffers. Otherwise
547  * it will wait for data to be added to a specific cpu buffer.
548  */
549 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
550 {
551         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
552         DEFINE_WAIT(wait);
553         struct rb_irq_work *work;
554         int ret = 0;
555
556         /*
557          * Depending on what the caller is waiting for, either any
558          * data in any cpu buffer, or a specific buffer, put the
559          * caller on the appropriate wait queue.
560          */
561         if (cpu == RING_BUFFER_ALL_CPUS) {
562                 work = &buffer->irq_work;
563                 /* Full only makes sense on per cpu reads */
564                 full = false;
565         } else {
566                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
567                         return -ENODEV;
568                 cpu_buffer = buffer->buffers[cpu];
569                 work = &cpu_buffer->irq_work;
570         }
571
572
573         while (true) {
574                 if (full)
575                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
576                 else
577                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
578
579                 /*
580                  * The events can happen in critical sections where
581                  * checking a work queue can cause deadlocks.
582                  * After adding a task to the queue, this flag is set
583                  * only to notify events to try to wake up the queue
584                  * using irq_work.
585                  *
586                  * We don't clear it even if the buffer is no longer
587                  * empty. The flag only causes the next event to run
588                  * irq_work to do the work queue wake up. The worse
589                  * that can happen if we race with !trace_empty() is that
590                  * an event will cause an irq_work to try to wake up
591                  * an empty queue.
592                  *
593                  * There's no reason to protect this flag either, as
594                  * the work queue and irq_work logic will do the necessary
595                  * synchronization for the wake ups. The only thing
596                  * that is necessary is that the wake up happens after
597                  * a task has been queued. It's OK for spurious wake ups.
598                  */
599                 if (full)
600                         work->full_waiters_pending = true;
601                 else
602                         work->waiters_pending = true;
603
604                 if (signal_pending(current)) {
605                         ret = -EINTR;
606                         break;
607                 }
608
609                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
610                         break;
611
612                 if (cpu != RING_BUFFER_ALL_CPUS &&
613                     !ring_buffer_empty_cpu(buffer, cpu)) {
614                         unsigned long flags;
615                         bool pagebusy;
616
617                         if (!full)
618                                 break;
619
620                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
621                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
622                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
623
624                         if (!pagebusy)
625                                 break;
626                 }
627
628                 schedule();
629         }
630
631         if (full)
632                 finish_wait(&work->full_waiters, &wait);
633         else
634                 finish_wait(&work->waiters, &wait);
635
636         return ret;
637 }
638
639 /**
640  * ring_buffer_poll_wait - poll on buffer input
641  * @buffer: buffer to wait on
642  * @cpu: the cpu buffer to wait on
643  * @filp: the file descriptor
644  * @poll_table: The poll descriptor
645  *
646  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
647  * as data is added to any of the @buffer's cpu buffers. Otherwise
648  * it will wait for data to be added to a specific cpu buffer.
649  *
650  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
651  * zero otherwise.
652  */
653 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
654                           struct file *filp, poll_table *poll_table)
655 {
656         struct ring_buffer_per_cpu *cpu_buffer;
657         struct rb_irq_work *work;
658
659         if (cpu == RING_BUFFER_ALL_CPUS)
660                 work = &buffer->irq_work;
661         else {
662                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
663                         return -EINVAL;
664
665                 cpu_buffer = buffer->buffers[cpu];
666                 work = &cpu_buffer->irq_work;
667         }
668
669         poll_wait(filp, &work->waiters, poll_table);
670         work->waiters_pending = true;
671         /*
672          * There's a tight race between setting the waiters_pending and
673          * checking if the ring buffer is empty.  Once the waiters_pending bit
674          * is set, the next event will wake the task up, but we can get stuck
675          * if there's only a single event in.
676          *
677          * FIXME: Ideally, we need a memory barrier on the writer side as well,
678          * but adding a memory barrier to all events will cause too much of a
679          * performance hit in the fast path.  We only need a memory barrier when
680          * the buffer goes from empty to having content.  But as this race is
681          * extremely small, and it's not a problem if another event comes in, we
682          * will fix it later.
683          */
684         smp_mb();
685
686         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
687             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
688                 return POLLIN | POLLRDNORM;
689         return 0;
690 }
691
692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
693 #define RB_WARN_ON(b, cond)                                             \
694         ({                                                              \
695                 int _____ret = unlikely(cond);                          \
696                 if (_____ret) {                                         \
697                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
698                                 struct ring_buffer_per_cpu *__b =       \
699                                         (void *)b;                      \
700                                 atomic_inc(&__b->buffer->record_disabled); \
701                         } else                                          \
702                                 atomic_inc(&b->record_disabled);        \
703                         WARN_ON(1);                                     \
704                 }                                                       \
705                 _____ret;                                               \
706         })
707
708 /* Up this if you want to test the TIME_EXTENTS and normalization */
709 #define DEBUG_SHIFT 0
710
711 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
712 {
713         /* shift to debug/test normalization and TIME_EXTENTS */
714         return buffer->clock() << DEBUG_SHIFT;
715 }
716
717 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
718 {
719         u64 time;
720
721         preempt_disable_notrace();
722         time = rb_time_stamp(buffer);
723         preempt_enable_no_resched_notrace();
724
725         return time;
726 }
727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
728
729 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
730                                       int cpu, u64 *ts)
731 {
732         /* Just stupid testing the normalize function and deltas */
733         *ts >>= DEBUG_SHIFT;
734 }
735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
736
737 /*
738  * Making the ring buffer lockless makes things tricky.
739  * Although writes only happen on the CPU that they are on,
740  * and they only need to worry about interrupts. Reads can
741  * happen on any CPU.
742  *
743  * The reader page is always off the ring buffer, but when the
744  * reader finishes with a page, it needs to swap its page with
745  * a new one from the buffer. The reader needs to take from
746  * the head (writes go to the tail). But if a writer is in overwrite
747  * mode and wraps, it must push the head page forward.
748  *
749  * Here lies the problem.
750  *
751  * The reader must be careful to replace only the head page, and
752  * not another one. As described at the top of the file in the
753  * ASCII art, the reader sets its old page to point to the next
754  * page after head. It then sets the page after head to point to
755  * the old reader page. But if the writer moves the head page
756  * during this operation, the reader could end up with the tail.
757  *
758  * We use cmpxchg to help prevent this race. We also do something
759  * special with the page before head. We set the LSB to 1.
760  *
761  * When the writer must push the page forward, it will clear the
762  * bit that points to the head page, move the head, and then set
763  * the bit that points to the new head page.
764  *
765  * We also don't want an interrupt coming in and moving the head
766  * page on another writer. Thus we use the second LSB to catch
767  * that too. Thus:
768  *
769  * head->list->prev->next        bit 1          bit 0
770  *                              -------        -------
771  * Normal page                     0              0
772  * Points to head page             0              1
773  * New head page                   1              0
774  *
775  * Note we can not trust the prev pointer of the head page, because:
776  *
777  * +----+       +-----+        +-----+
778  * |    |------>|  T  |---X--->|  N  |
779  * |    |<------|     |        |     |
780  * +----+       +-----+        +-----+
781  *   ^                           ^ |
782  *   |          +-----+          | |
783  *   +----------|  R  |----------+ |
784  *              |     |<-----------+
785  *              +-----+
786  *
787  * Key:  ---X-->  HEAD flag set in pointer
788  *         T      Tail page
789  *         R      Reader page
790  *         N      Next page
791  *
792  * (see __rb_reserve_next() to see where this happens)
793  *
794  *  What the above shows is that the reader just swapped out
795  *  the reader page with a page in the buffer, but before it
796  *  could make the new header point back to the new page added
797  *  it was preempted by a writer. The writer moved forward onto
798  *  the new page added by the reader and is about to move forward
799  *  again.
800  *
801  *  You can see, it is legitimate for the previous pointer of
802  *  the head (or any page) not to point back to itself. But only
803  *  temporarially.
804  */
805
806 #define RB_PAGE_NORMAL          0UL
807 #define RB_PAGE_HEAD            1UL
808 #define RB_PAGE_UPDATE          2UL
809
810
811 #define RB_FLAG_MASK            3UL
812
813 /* PAGE_MOVED is not part of the mask */
814 #define RB_PAGE_MOVED           4UL
815
816 /*
817  * rb_list_head - remove any bit
818  */
819 static struct list_head *rb_list_head(struct list_head *list)
820 {
821         unsigned long val = (unsigned long)list;
822
823         return (struct list_head *)(val & ~RB_FLAG_MASK);
824 }
825
826 /*
827  * rb_is_head_page - test if the given page is the head page
828  *
829  * Because the reader may move the head_page pointer, we can
830  * not trust what the head page is (it may be pointing to
831  * the reader page). But if the next page is a header page,
832  * its flags will be non zero.
833  */
834 static inline int
835 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
836                 struct buffer_page *page, struct list_head *list)
837 {
838         unsigned long val;
839
840         val = (unsigned long)list->next;
841
842         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
843                 return RB_PAGE_MOVED;
844
845         return val & RB_FLAG_MASK;
846 }
847
848 /*
849  * rb_is_reader_page
850  *
851  * The unique thing about the reader page, is that, if the
852  * writer is ever on it, the previous pointer never points
853  * back to the reader page.
854  */
855 static int rb_is_reader_page(struct buffer_page *page)
856 {
857         struct list_head *list = page->list.prev;
858
859         return rb_list_head(list->next) != &page->list;
860 }
861
862 /*
863  * rb_set_list_to_head - set a list_head to be pointing to head.
864  */
865 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
866                                 struct list_head *list)
867 {
868         unsigned long *ptr;
869
870         ptr = (unsigned long *)&list->next;
871         *ptr |= RB_PAGE_HEAD;
872         *ptr &= ~RB_PAGE_UPDATE;
873 }
874
875 /*
876  * rb_head_page_activate - sets up head page
877  */
878 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880         struct buffer_page *head;
881
882         head = cpu_buffer->head_page;
883         if (!head)
884                 return;
885
886         /*
887          * Set the previous list pointer to have the HEAD flag.
888          */
889         rb_set_list_to_head(cpu_buffer, head->list.prev);
890 }
891
892 static void rb_list_head_clear(struct list_head *list)
893 {
894         unsigned long *ptr = (unsigned long *)&list->next;
895
896         *ptr &= ~RB_FLAG_MASK;
897 }
898
899 /*
900  * rb_head_page_dactivate - clears head page ptr (for free list)
901  */
902 static void
903 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905         struct list_head *hd;
906
907         /* Go through the whole list and clear any pointers found. */
908         rb_list_head_clear(cpu_buffer->pages);
909
910         list_for_each(hd, cpu_buffer->pages)
911                 rb_list_head_clear(hd);
912 }
913
914 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
915                             struct buffer_page *head,
916                             struct buffer_page *prev,
917                             int old_flag, int new_flag)
918 {
919         struct list_head *list;
920         unsigned long val = (unsigned long)&head->list;
921         unsigned long ret;
922
923         list = &prev->list;
924
925         val &= ~RB_FLAG_MASK;
926
927         ret = cmpxchg((unsigned long *)&list->next,
928                       val | old_flag, val | new_flag);
929
930         /* check if the reader took the page */
931         if ((ret & ~RB_FLAG_MASK) != val)
932                 return RB_PAGE_MOVED;
933
934         return ret & RB_FLAG_MASK;
935 }
936
937 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
938                                    struct buffer_page *head,
939                                    struct buffer_page *prev,
940                                    int old_flag)
941 {
942         return rb_head_page_set(cpu_buffer, head, prev,
943                                 old_flag, RB_PAGE_UPDATE);
944 }
945
946 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
947                                  struct buffer_page *head,
948                                  struct buffer_page *prev,
949                                  int old_flag)
950 {
951         return rb_head_page_set(cpu_buffer, head, prev,
952                                 old_flag, RB_PAGE_HEAD);
953 }
954
955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
956                                    struct buffer_page *head,
957                                    struct buffer_page *prev,
958                                    int old_flag)
959 {
960         return rb_head_page_set(cpu_buffer, head, prev,
961                                 old_flag, RB_PAGE_NORMAL);
962 }
963
964 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
965                                struct buffer_page **bpage)
966 {
967         struct list_head *p = rb_list_head((*bpage)->list.next);
968
969         *bpage = list_entry(p, struct buffer_page, list);
970 }
971
972 static struct buffer_page *
973 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
974 {
975         struct buffer_page *head;
976         struct buffer_page *page;
977         struct list_head *list;
978         int i;
979
980         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
981                 return NULL;
982
983         /* sanity check */
984         list = cpu_buffer->pages;
985         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
986                 return NULL;
987
988         page = head = cpu_buffer->head_page;
989         /*
990          * It is possible that the writer moves the header behind
991          * where we started, and we miss in one loop.
992          * A second loop should grab the header, but we'll do
993          * three loops just because I'm paranoid.
994          */
995         for (i = 0; i < 3; i++) {
996                 do {
997                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
998                                 cpu_buffer->head_page = page;
999                                 return page;
1000                         }
1001                         rb_inc_page(cpu_buffer, &page);
1002                 } while (page != head);
1003         }
1004
1005         RB_WARN_ON(cpu_buffer, 1);
1006
1007         return NULL;
1008 }
1009
1010 static int rb_head_page_replace(struct buffer_page *old,
1011                                 struct buffer_page *new)
1012 {
1013         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1014         unsigned long val;
1015         unsigned long ret;
1016
1017         val = *ptr & ~RB_FLAG_MASK;
1018         val |= RB_PAGE_HEAD;
1019
1020         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1021
1022         return ret == val;
1023 }
1024
1025 /*
1026  * rb_tail_page_update - move the tail page forward
1027  *
1028  * Returns 1 if moved tail page, 0 if someone else did.
1029  */
1030 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1031                                struct buffer_page *tail_page,
1032                                struct buffer_page *next_page)
1033 {
1034         struct buffer_page *old_tail;
1035         unsigned long old_entries;
1036         unsigned long old_write;
1037         int ret = 0;
1038
1039         /*
1040          * The tail page now needs to be moved forward.
1041          *
1042          * We need to reset the tail page, but without messing
1043          * with possible erasing of data brought in by interrupts
1044          * that have moved the tail page and are currently on it.
1045          *
1046          * We add a counter to the write field to denote this.
1047          */
1048         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1049         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1050
1051         /*
1052          * Just make sure we have seen our old_write and synchronize
1053          * with any interrupts that come in.
1054          */
1055         barrier();
1056
1057         /*
1058          * If the tail page is still the same as what we think
1059          * it is, then it is up to us to update the tail
1060          * pointer.
1061          */
1062         if (tail_page == cpu_buffer->tail_page) {
1063                 /* Zero the write counter */
1064                 unsigned long val = old_write & ~RB_WRITE_MASK;
1065                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1066
1067                 /*
1068                  * This will only succeed if an interrupt did
1069                  * not come in and change it. In which case, we
1070                  * do not want to modify it.
1071                  *
1072                  * We add (void) to let the compiler know that we do not care
1073                  * about the return value of these functions. We use the
1074                  * cmpxchg to only update if an interrupt did not already
1075                  * do it for us. If the cmpxchg fails, we don't care.
1076                  */
1077                 (void)local_cmpxchg(&next_page->write, old_write, val);
1078                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1079
1080                 /*
1081                  * No need to worry about races with clearing out the commit.
1082                  * it only can increment when a commit takes place. But that
1083                  * only happens in the outer most nested commit.
1084                  */
1085                 local_set(&next_page->page->commit, 0);
1086
1087                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1088                                    tail_page, next_page);
1089
1090                 if (old_tail == tail_page)
1091                         ret = 1;
1092         }
1093
1094         return ret;
1095 }
1096
1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098                           struct buffer_page *bpage)
1099 {
1100         unsigned long val = (unsigned long)bpage;
1101
1102         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103                 return 1;
1104
1105         return 0;
1106 }
1107
1108 /**
1109  * rb_check_list - make sure a pointer to a list has the last bits zero
1110  */
1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112                          struct list_head *list)
1113 {
1114         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115                 return 1;
1116         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117                 return 1;
1118         return 0;
1119 }
1120
1121 /**
1122  * rb_check_pages - integrity check of buffer pages
1123  * @cpu_buffer: CPU buffer with pages to test
1124  *
1125  * As a safety measure we check to make sure the data pages have not
1126  * been corrupted.
1127  */
1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129 {
1130         struct list_head *head = cpu_buffer->pages;
1131         struct buffer_page *bpage, *tmp;
1132
1133         /* Reset the head page if it exists */
1134         if (cpu_buffer->head_page)
1135                 rb_set_head_page(cpu_buffer);
1136
1137         rb_head_page_deactivate(cpu_buffer);
1138
1139         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140                 return -1;
1141         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142                 return -1;
1143
1144         if (rb_check_list(cpu_buffer, head))
1145                 return -1;
1146
1147         list_for_each_entry_safe(bpage, tmp, head, list) {
1148                 if (RB_WARN_ON(cpu_buffer,
1149                                bpage->list.next->prev != &bpage->list))
1150                         return -1;
1151                 if (RB_WARN_ON(cpu_buffer,
1152                                bpage->list.prev->next != &bpage->list))
1153                         return -1;
1154                 if (rb_check_list(cpu_buffer, &bpage->list))
1155                         return -1;
1156         }
1157
1158         rb_head_page_activate(cpu_buffer);
1159
1160         return 0;
1161 }
1162
1163 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1164 {
1165         int i;
1166         struct buffer_page *bpage, *tmp;
1167
1168         for (i = 0; i < nr_pages; i++) {
1169                 struct page *page;
1170                 /*
1171                  * __GFP_NORETRY flag makes sure that the allocation fails
1172                  * gracefully without invoking oom-killer and the system is
1173                  * not destabilized.
1174                  */
1175                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1176                                     GFP_KERNEL | __GFP_NORETRY,
1177                                     cpu_to_node(cpu));
1178                 if (!bpage)
1179                         goto free_pages;
1180
1181                 list_add(&bpage->list, pages);
1182
1183                 page = alloc_pages_node(cpu_to_node(cpu),
1184                                         GFP_KERNEL | __GFP_NORETRY, 0);
1185                 if (!page)
1186                         goto free_pages;
1187                 bpage->page = page_address(page);
1188                 rb_init_page(bpage->page);
1189         }
1190
1191         return 0;
1192
1193 free_pages:
1194         list_for_each_entry_safe(bpage, tmp, pages, list) {
1195                 list_del_init(&bpage->list);
1196                 free_buffer_page(bpage);
1197         }
1198
1199         return -ENOMEM;
1200 }
1201
1202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1203                              unsigned nr_pages)
1204 {
1205         LIST_HEAD(pages);
1206
1207         WARN_ON(!nr_pages);
1208
1209         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1210                 return -ENOMEM;
1211
1212         /*
1213          * The ring buffer page list is a circular list that does not
1214          * start and end with a list head. All page list items point to
1215          * other pages.
1216          */
1217         cpu_buffer->pages = pages.next;
1218         list_del(&pages);
1219
1220         cpu_buffer->nr_pages = nr_pages;
1221
1222         rb_check_pages(cpu_buffer);
1223
1224         return 0;
1225 }
1226
1227 static struct ring_buffer_per_cpu *
1228 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1229 {
1230         struct ring_buffer_per_cpu *cpu_buffer;
1231         struct buffer_page *bpage;
1232         struct page *page;
1233         int ret;
1234
1235         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1236                                   GFP_KERNEL, cpu_to_node(cpu));
1237         if (!cpu_buffer)
1238                 return NULL;
1239
1240         cpu_buffer->cpu = cpu;
1241         cpu_buffer->buffer = buffer;
1242         raw_spin_lock_init(&cpu_buffer->reader_lock);
1243         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1244         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1245         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1246         init_completion(&cpu_buffer->update_done);
1247         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1248         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1249         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1250
1251         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1252                             GFP_KERNEL, cpu_to_node(cpu));
1253         if (!bpage)
1254                 goto fail_free_buffer;
1255
1256         rb_check_bpage(cpu_buffer, bpage);
1257
1258         cpu_buffer->reader_page = bpage;
1259         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1260         if (!page)
1261                 goto fail_free_reader;
1262         bpage->page = page_address(page);
1263         rb_init_page(bpage->page);
1264
1265         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1266         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1267
1268         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1269         if (ret < 0)
1270                 goto fail_free_reader;
1271
1272         cpu_buffer->head_page
1273                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1274         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1275
1276         rb_head_page_activate(cpu_buffer);
1277
1278         return cpu_buffer;
1279
1280  fail_free_reader:
1281         free_buffer_page(cpu_buffer->reader_page);
1282
1283  fail_free_buffer:
1284         kfree(cpu_buffer);
1285         return NULL;
1286 }
1287
1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1289 {
1290         struct list_head *head = cpu_buffer->pages;
1291         struct buffer_page *bpage, *tmp;
1292
1293         free_buffer_page(cpu_buffer->reader_page);
1294
1295         rb_head_page_deactivate(cpu_buffer);
1296
1297         if (head) {
1298                 list_for_each_entry_safe(bpage, tmp, head, list) {
1299                         list_del_init(&bpage->list);
1300                         free_buffer_page(bpage);
1301                 }
1302                 bpage = list_entry(head, struct buffer_page, list);
1303                 free_buffer_page(bpage);
1304         }
1305
1306         kfree(cpu_buffer);
1307 }
1308
1309 #ifdef CONFIG_HOTPLUG_CPU
1310 static int rb_cpu_notify(struct notifier_block *self,
1311                          unsigned long action, void *hcpu);
1312 #endif
1313
1314 /**
1315  * __ring_buffer_alloc - allocate a new ring_buffer
1316  * @size: the size in bytes per cpu that is needed.
1317  * @flags: attributes to set for the ring buffer.
1318  *
1319  * Currently the only flag that is available is the RB_FL_OVERWRITE
1320  * flag. This flag means that the buffer will overwrite old data
1321  * when the buffer wraps. If this flag is not set, the buffer will
1322  * drop data when the tail hits the head.
1323  */
1324 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1325                                         struct lock_class_key *key)
1326 {
1327         struct ring_buffer *buffer;
1328         int bsize;
1329         int cpu, nr_pages;
1330
1331         /* keep it in its own cache line */
1332         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1333                          GFP_KERNEL);
1334         if (!buffer)
1335                 return NULL;
1336
1337         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1338                 goto fail_free_buffer;
1339
1340         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1341         buffer->flags = flags;
1342         buffer->clock = trace_clock_local;
1343         buffer->reader_lock_key = key;
1344
1345         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1346         init_waitqueue_head(&buffer->irq_work.waiters);
1347
1348         /* need at least two pages */
1349         if (nr_pages < 2)
1350                 nr_pages = 2;
1351
1352         /*
1353          * In case of non-hotplug cpu, if the ring-buffer is allocated
1354          * in early initcall, it will not be notified of secondary cpus.
1355          * In that off case, we need to allocate for all possible cpus.
1356          */
1357 #ifdef CONFIG_HOTPLUG_CPU
1358         cpu_notifier_register_begin();
1359         cpumask_copy(buffer->cpumask, cpu_online_mask);
1360 #else
1361         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1362 #endif
1363         buffer->cpus = nr_cpu_ids;
1364
1365         bsize = sizeof(void *) * nr_cpu_ids;
1366         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1367                                   GFP_KERNEL);
1368         if (!buffer->buffers)
1369                 goto fail_free_cpumask;
1370
1371         for_each_buffer_cpu(buffer, cpu) {
1372                 buffer->buffers[cpu] =
1373                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1374                 if (!buffer->buffers[cpu])
1375                         goto fail_free_buffers;
1376         }
1377
1378 #ifdef CONFIG_HOTPLUG_CPU
1379         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1380         buffer->cpu_notify.priority = 0;
1381         __register_cpu_notifier(&buffer->cpu_notify);
1382         cpu_notifier_register_done();
1383 #endif
1384
1385         mutex_init(&buffer->mutex);
1386
1387         return buffer;
1388
1389  fail_free_buffers:
1390         for_each_buffer_cpu(buffer, cpu) {
1391                 if (buffer->buffers[cpu])
1392                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1393         }
1394         kfree(buffer->buffers);
1395
1396  fail_free_cpumask:
1397         free_cpumask_var(buffer->cpumask);
1398 #ifdef CONFIG_HOTPLUG_CPU
1399         cpu_notifier_register_done();
1400 #endif
1401
1402  fail_free_buffer:
1403         kfree(buffer);
1404         return NULL;
1405 }
1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1407
1408 /**
1409  * ring_buffer_free - free a ring buffer.
1410  * @buffer: the buffer to free.
1411  */
1412 void
1413 ring_buffer_free(struct ring_buffer *buffer)
1414 {
1415         int cpu;
1416
1417 #ifdef CONFIG_HOTPLUG_CPU
1418         cpu_notifier_register_begin();
1419         __unregister_cpu_notifier(&buffer->cpu_notify);
1420 #endif
1421
1422         for_each_buffer_cpu(buffer, cpu)
1423                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1424
1425 #ifdef CONFIG_HOTPLUG_CPU
1426         cpu_notifier_register_done();
1427 #endif
1428
1429         kfree(buffer->buffers);
1430         free_cpumask_var(buffer->cpumask);
1431
1432         kfree(buffer);
1433 }
1434 EXPORT_SYMBOL_GPL(ring_buffer_free);
1435
1436 void ring_buffer_set_clock(struct ring_buffer *buffer,
1437                            u64 (*clock)(void))
1438 {
1439         buffer->clock = clock;
1440 }
1441
1442 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1443
1444 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1445 {
1446         return local_read(&bpage->entries) & RB_WRITE_MASK;
1447 }
1448
1449 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1450 {
1451         return local_read(&bpage->write) & RB_WRITE_MASK;
1452 }
1453
1454 static int
1455 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1456 {
1457         struct list_head *tail_page, *to_remove, *next_page;
1458         struct buffer_page *to_remove_page, *tmp_iter_page;
1459         struct buffer_page *last_page, *first_page;
1460         unsigned int nr_removed;
1461         unsigned long head_bit;
1462         int page_entries;
1463
1464         head_bit = 0;
1465
1466         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1467         atomic_inc(&cpu_buffer->record_disabled);
1468         /*
1469          * We don't race with the readers since we have acquired the reader
1470          * lock. We also don't race with writers after disabling recording.
1471          * This makes it easy to figure out the first and the last page to be
1472          * removed from the list. We unlink all the pages in between including
1473          * the first and last pages. This is done in a busy loop so that we
1474          * lose the least number of traces.
1475          * The pages are freed after we restart recording and unlock readers.
1476          */
1477         tail_page = &cpu_buffer->tail_page->list;
1478
1479         /*
1480          * tail page might be on reader page, we remove the next page
1481          * from the ring buffer
1482          */
1483         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1484                 tail_page = rb_list_head(tail_page->next);
1485         to_remove = tail_page;
1486
1487         /* start of pages to remove */
1488         first_page = list_entry(rb_list_head(to_remove->next),
1489                                 struct buffer_page, list);
1490
1491         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1492                 to_remove = rb_list_head(to_remove)->next;
1493                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1494         }
1495
1496         next_page = rb_list_head(to_remove)->next;
1497
1498         /*
1499          * Now we remove all pages between tail_page and next_page.
1500          * Make sure that we have head_bit value preserved for the
1501          * next page
1502          */
1503         tail_page->next = (struct list_head *)((unsigned long)next_page |
1504                                                 head_bit);
1505         next_page = rb_list_head(next_page);
1506         next_page->prev = tail_page;
1507
1508         /* make sure pages points to a valid page in the ring buffer */
1509         cpu_buffer->pages = next_page;
1510
1511         /* update head page */
1512         if (head_bit)
1513                 cpu_buffer->head_page = list_entry(next_page,
1514                                                 struct buffer_page, list);
1515
1516         /*
1517          * change read pointer to make sure any read iterators reset
1518          * themselves
1519          */
1520         cpu_buffer->read = 0;
1521
1522         /* pages are removed, resume tracing and then free the pages */
1523         atomic_dec(&cpu_buffer->record_disabled);
1524         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1525
1526         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1527
1528         /* last buffer page to remove */
1529         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1530                                 list);
1531         tmp_iter_page = first_page;
1532
1533         do {
1534                 to_remove_page = tmp_iter_page;
1535                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1536
1537                 /* update the counters */
1538                 page_entries = rb_page_entries(to_remove_page);
1539                 if (page_entries) {
1540                         /*
1541                          * If something was added to this page, it was full
1542                          * since it is not the tail page. So we deduct the
1543                          * bytes consumed in ring buffer from here.
1544                          * Increment overrun to account for the lost events.
1545                          */
1546                         local_add(page_entries, &cpu_buffer->overrun);
1547                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1548                 }
1549
1550                 /*
1551                  * We have already removed references to this list item, just
1552                  * free up the buffer_page and its page
1553                  */
1554                 free_buffer_page(to_remove_page);
1555                 nr_removed--;
1556
1557         } while (to_remove_page != last_page);
1558
1559         RB_WARN_ON(cpu_buffer, nr_removed);
1560
1561         return nr_removed == 0;
1562 }
1563
1564 static int
1565 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1566 {
1567         struct list_head *pages = &cpu_buffer->new_pages;
1568         int retries, success;
1569
1570         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1571         /*
1572          * We are holding the reader lock, so the reader page won't be swapped
1573          * in the ring buffer. Now we are racing with the writer trying to
1574          * move head page and the tail page.
1575          * We are going to adapt the reader page update process where:
1576          * 1. We first splice the start and end of list of new pages between
1577          *    the head page and its previous page.
1578          * 2. We cmpxchg the prev_page->next to point from head page to the
1579          *    start of new pages list.
1580          * 3. Finally, we update the head->prev to the end of new list.
1581          *
1582          * We will try this process 10 times, to make sure that we don't keep
1583          * spinning.
1584          */
1585         retries = 10;
1586         success = 0;
1587         while (retries--) {
1588                 struct list_head *head_page, *prev_page, *r;
1589                 struct list_head *last_page, *first_page;
1590                 struct list_head *head_page_with_bit;
1591
1592                 head_page = &rb_set_head_page(cpu_buffer)->list;
1593                 if (!head_page)
1594                         break;
1595                 prev_page = head_page->prev;
1596
1597                 first_page = pages->next;
1598                 last_page  = pages->prev;
1599
1600                 head_page_with_bit = (struct list_head *)
1601                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1602
1603                 last_page->next = head_page_with_bit;
1604                 first_page->prev = prev_page;
1605
1606                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1607
1608                 if (r == head_page_with_bit) {
1609                         /*
1610                          * yay, we replaced the page pointer to our new list,
1611                          * now, we just have to update to head page's prev
1612                          * pointer to point to end of list
1613                          */
1614                         head_page->prev = last_page;
1615                         success = 1;
1616                         break;
1617                 }
1618         }
1619
1620         if (success)
1621                 INIT_LIST_HEAD(pages);
1622         /*
1623          * If we weren't successful in adding in new pages, warn and stop
1624          * tracing
1625          */
1626         RB_WARN_ON(cpu_buffer, !success);
1627         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1628
1629         /* free pages if they weren't inserted */
1630         if (!success) {
1631                 struct buffer_page *bpage, *tmp;
1632                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1633                                          list) {
1634                         list_del_init(&bpage->list);
1635                         free_buffer_page(bpage);
1636                 }
1637         }
1638         return success;
1639 }
1640
1641 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1642 {
1643         int success;
1644
1645         if (cpu_buffer->nr_pages_to_update > 0)
1646                 success = rb_insert_pages(cpu_buffer);
1647         else
1648                 success = rb_remove_pages(cpu_buffer,
1649                                         -cpu_buffer->nr_pages_to_update);
1650
1651         if (success)
1652                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1653 }
1654
1655 static void update_pages_handler(struct work_struct *work)
1656 {
1657         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1658                         struct ring_buffer_per_cpu, update_pages_work);
1659         rb_update_pages(cpu_buffer);
1660         complete(&cpu_buffer->update_done);
1661 }
1662
1663 /**
1664  * ring_buffer_resize - resize the ring buffer
1665  * @buffer: the buffer to resize.
1666  * @size: the new size.
1667  * @cpu_id: the cpu buffer to resize
1668  *
1669  * Minimum size is 2 * BUF_PAGE_SIZE.
1670  *
1671  * Returns 0 on success and < 0 on failure.
1672  */
1673 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1674                         int cpu_id)
1675 {
1676         struct ring_buffer_per_cpu *cpu_buffer;
1677         unsigned nr_pages;
1678         int cpu, err = 0;
1679
1680         /*
1681          * Always succeed at resizing a non-existent buffer:
1682          */
1683         if (!buffer)
1684                 return size;
1685
1686         /* Make sure the requested buffer exists */
1687         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1688             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1689                 return size;
1690
1691         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1692         size *= BUF_PAGE_SIZE;
1693
1694         /* we need a minimum of two pages */
1695         if (size < BUF_PAGE_SIZE * 2)
1696                 size = BUF_PAGE_SIZE * 2;
1697
1698         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1699
1700         /*
1701          * Don't succeed if resizing is disabled, as a reader might be
1702          * manipulating the ring buffer and is expecting a sane state while
1703          * this is true.
1704          */
1705         if (atomic_read(&buffer->resize_disabled))
1706                 return -EBUSY;
1707
1708         /* prevent another thread from changing buffer sizes */
1709         mutex_lock(&buffer->mutex);
1710
1711         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1712                 /* calculate the pages to update */
1713                 for_each_buffer_cpu(buffer, cpu) {
1714                         cpu_buffer = buffer->buffers[cpu];
1715
1716                         cpu_buffer->nr_pages_to_update = nr_pages -
1717                                                         cpu_buffer->nr_pages;
1718                         /*
1719                          * nothing more to do for removing pages or no update
1720                          */
1721                         if (cpu_buffer->nr_pages_to_update <= 0)
1722                                 continue;
1723                         /*
1724                          * to add pages, make sure all new pages can be
1725                          * allocated without receiving ENOMEM
1726                          */
1727                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1729                                                 &cpu_buffer->new_pages, cpu)) {
1730                                 /* not enough memory for new pages */
1731                                 err = -ENOMEM;
1732                                 goto out_err;
1733                         }
1734                 }
1735
1736                 get_online_cpus();
1737                 /*
1738                  * Fire off all the required work handlers
1739                  * We can't schedule on offline CPUs, but it's not necessary
1740                  * since we can change their buffer sizes without any race.
1741                  */
1742                 for_each_buffer_cpu(buffer, cpu) {
1743                         cpu_buffer = buffer->buffers[cpu];
1744                         if (!cpu_buffer->nr_pages_to_update)
1745                                 continue;
1746
1747                         /* Can't run something on an offline CPU. */
1748                         if (!cpu_online(cpu)) {
1749                                 rb_update_pages(cpu_buffer);
1750                                 cpu_buffer->nr_pages_to_update = 0;
1751                         } else {
1752                                 schedule_work_on(cpu,
1753                                                 &cpu_buffer->update_pages_work);
1754                         }
1755                 }
1756
1757                 /* wait for all the updates to complete */
1758                 for_each_buffer_cpu(buffer, cpu) {
1759                         cpu_buffer = buffer->buffers[cpu];
1760                         if (!cpu_buffer->nr_pages_to_update)
1761                                 continue;
1762
1763                         if (cpu_online(cpu))
1764                                 wait_for_completion(&cpu_buffer->update_done);
1765                         cpu_buffer->nr_pages_to_update = 0;
1766                 }
1767
1768                 put_online_cpus();
1769         } else {
1770                 /* Make sure this CPU has been intitialized */
1771                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1772                         goto out;
1773
1774                 cpu_buffer = buffer->buffers[cpu_id];
1775
1776                 if (nr_pages == cpu_buffer->nr_pages)
1777                         goto out;
1778
1779                 cpu_buffer->nr_pages_to_update = nr_pages -
1780                                                 cpu_buffer->nr_pages;
1781
1782                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1783                 if (cpu_buffer->nr_pages_to_update > 0 &&
1784                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1785                                             &cpu_buffer->new_pages, cpu_id)) {
1786                         err = -ENOMEM;
1787                         goto out_err;
1788                 }
1789
1790                 get_online_cpus();
1791
1792                 /* Can't run something on an offline CPU. */
1793                 if (!cpu_online(cpu_id))
1794                         rb_update_pages(cpu_buffer);
1795                 else {
1796                         schedule_work_on(cpu_id,
1797                                          &cpu_buffer->update_pages_work);
1798                         wait_for_completion(&cpu_buffer->update_done);
1799                 }
1800
1801                 cpu_buffer->nr_pages_to_update = 0;
1802                 put_online_cpus();
1803         }
1804
1805  out:
1806         /*
1807          * The ring buffer resize can happen with the ring buffer
1808          * enabled, so that the update disturbs the tracing as little
1809          * as possible. But if the buffer is disabled, we do not need
1810          * to worry about that, and we can take the time to verify
1811          * that the buffer is not corrupt.
1812          */
1813         if (atomic_read(&buffer->record_disabled)) {
1814                 atomic_inc(&buffer->record_disabled);
1815                 /*
1816                  * Even though the buffer was disabled, we must make sure
1817                  * that it is truly disabled before calling rb_check_pages.
1818                  * There could have been a race between checking
1819                  * record_disable and incrementing it.
1820                  */
1821                 synchronize_sched();
1822                 for_each_buffer_cpu(buffer, cpu) {
1823                         cpu_buffer = buffer->buffers[cpu];
1824                         rb_check_pages(cpu_buffer);
1825                 }
1826                 atomic_dec(&buffer->record_disabled);
1827         }
1828
1829         mutex_unlock(&buffer->mutex);
1830         return size;
1831
1832  out_err:
1833         for_each_buffer_cpu(buffer, cpu) {
1834                 struct buffer_page *bpage, *tmp;
1835
1836                 cpu_buffer = buffer->buffers[cpu];
1837                 cpu_buffer->nr_pages_to_update = 0;
1838
1839                 if (list_empty(&cpu_buffer->new_pages))
1840                         continue;
1841
1842                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1843                                         list) {
1844                         list_del_init(&bpage->list);
1845                         free_buffer_page(bpage);
1846                 }
1847         }
1848         mutex_unlock(&buffer->mutex);
1849         return err;
1850 }
1851 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1852
1853 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1854 {
1855         mutex_lock(&buffer->mutex);
1856         if (val)
1857                 buffer->flags |= RB_FL_OVERWRITE;
1858         else
1859                 buffer->flags &= ~RB_FL_OVERWRITE;
1860         mutex_unlock(&buffer->mutex);
1861 }
1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1863
1864 static inline void *
1865 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1866 {
1867         return bpage->data + index;
1868 }
1869
1870 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1871 {
1872         return bpage->page->data + index;
1873 }
1874
1875 static inline struct ring_buffer_event *
1876 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1877 {
1878         return __rb_page_index(cpu_buffer->reader_page,
1879                                cpu_buffer->reader_page->read);
1880 }
1881
1882 static inline struct ring_buffer_event *
1883 rb_iter_head_event(struct ring_buffer_iter *iter)
1884 {
1885         return __rb_page_index(iter->head_page, iter->head);
1886 }
1887
1888 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1889 {
1890         return local_read(&bpage->page->commit);
1891 }
1892
1893 /* Size is determined by what has been committed */
1894 static inline unsigned rb_page_size(struct buffer_page *bpage)
1895 {
1896         return rb_page_commit(bpage);
1897 }
1898
1899 static inline unsigned
1900 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1901 {
1902         return rb_page_commit(cpu_buffer->commit_page);
1903 }
1904
1905 static inline unsigned
1906 rb_event_index(struct ring_buffer_event *event)
1907 {
1908         unsigned long addr = (unsigned long)event;
1909
1910         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1911 }
1912
1913 static inline int
1914 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1915                    struct ring_buffer_event *event)
1916 {
1917         unsigned long addr = (unsigned long)event;
1918         unsigned long index;
1919
1920         index = rb_event_index(event);
1921         addr &= PAGE_MASK;
1922
1923         return cpu_buffer->commit_page->page == (void *)addr &&
1924                 rb_commit_index(cpu_buffer) == index;
1925 }
1926
1927 static void
1928 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1929 {
1930         unsigned long max_count;
1931
1932         /*
1933          * We only race with interrupts and NMIs on this CPU.
1934          * If we own the commit event, then we can commit
1935          * all others that interrupted us, since the interruptions
1936          * are in stack format (they finish before they come
1937          * back to us). This allows us to do a simple loop to
1938          * assign the commit to the tail.
1939          */
1940  again:
1941         max_count = cpu_buffer->nr_pages * 100;
1942
1943         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1944                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1945                         return;
1946                 if (RB_WARN_ON(cpu_buffer,
1947                                rb_is_reader_page(cpu_buffer->tail_page)))
1948                         return;
1949                 local_set(&cpu_buffer->commit_page->page->commit,
1950                           rb_page_write(cpu_buffer->commit_page));
1951                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1952                 cpu_buffer->write_stamp =
1953                         cpu_buffer->commit_page->page->time_stamp;
1954                 /* add barrier to keep gcc from optimizing too much */
1955                 barrier();
1956         }
1957         while (rb_commit_index(cpu_buffer) !=
1958                rb_page_write(cpu_buffer->commit_page)) {
1959
1960                 local_set(&cpu_buffer->commit_page->page->commit,
1961                           rb_page_write(cpu_buffer->commit_page));
1962                 RB_WARN_ON(cpu_buffer,
1963                            local_read(&cpu_buffer->commit_page->page->commit) &
1964                            ~RB_WRITE_MASK);
1965                 barrier();
1966         }
1967
1968         /* again, keep gcc from optimizing */
1969         barrier();
1970
1971         /*
1972          * If an interrupt came in just after the first while loop
1973          * and pushed the tail page forward, we will be left with
1974          * a dangling commit that will never go forward.
1975          */
1976         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1977                 goto again;
1978 }
1979
1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1981 {
1982         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1983         cpu_buffer->reader_page->read = 0;
1984 }
1985
1986 static void rb_inc_iter(struct ring_buffer_iter *iter)
1987 {
1988         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989
1990         /*
1991          * The iterator could be on the reader page (it starts there).
1992          * But the head could have moved, since the reader was
1993          * found. Check for this case and assign the iterator
1994          * to the head page instead of next.
1995          */
1996         if (iter->head_page == cpu_buffer->reader_page)
1997                 iter->head_page = rb_set_head_page(cpu_buffer);
1998         else
1999                 rb_inc_page(cpu_buffer, &iter->head_page);
2000
2001         iter->read_stamp = iter->head_page->page->time_stamp;
2002         iter->head = 0;
2003 }
2004
2005 /* Slow path, do not inline */
2006 static noinline struct ring_buffer_event *
2007 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2008 {
2009         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2010
2011         /* Not the first event on the page? */
2012         if (rb_event_index(event)) {
2013                 event->time_delta = delta & TS_MASK;
2014                 event->array[0] = delta >> TS_SHIFT;
2015         } else {
2016                 /* nope, just zero it */
2017                 event->time_delta = 0;
2018                 event->array[0] = 0;
2019         }
2020
2021         return skip_time_extend(event);
2022 }
2023
2024 /**
2025  * rb_update_event - update event type and data
2026  * @event: the event to update
2027  * @type: the type of event
2028  * @length: the size of the event field in the ring buffer
2029  *
2030  * Update the type and data fields of the event. The length
2031  * is the actual size that is written to the ring buffer,
2032  * and with this, we can determine what to place into the
2033  * data field.
2034  */
2035 static void
2036 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2037                 struct ring_buffer_event *event, unsigned length,
2038                 int add_timestamp, u64 delta)
2039 {
2040         /* Only a commit updates the timestamp */
2041         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2042                 delta = 0;
2043
2044         /*
2045          * If we need to add a timestamp, then we
2046          * add it to the start of the resevered space.
2047          */
2048         if (unlikely(add_timestamp)) {
2049                 event = rb_add_time_stamp(event, delta);
2050                 length -= RB_LEN_TIME_EXTEND;
2051                 delta = 0;
2052         }
2053
2054         event->time_delta = delta;
2055         length -= RB_EVNT_HDR_SIZE;
2056         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2057                 event->type_len = 0;
2058                 event->array[0] = length;
2059         } else
2060                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2061 }
2062
2063 /*
2064  * rb_handle_head_page - writer hit the head page
2065  *
2066  * Returns: +1 to retry page
2067  *           0 to continue
2068  *          -1 on error
2069  */
2070 static int
2071 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2072                     struct buffer_page *tail_page,
2073                     struct buffer_page *next_page)
2074 {
2075         struct buffer_page *new_head;
2076         int entries;
2077         int type;
2078         int ret;
2079
2080         entries = rb_page_entries(next_page);
2081
2082         /*
2083          * The hard part is here. We need to move the head
2084          * forward, and protect against both readers on
2085          * other CPUs and writers coming in via interrupts.
2086          */
2087         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2088                                        RB_PAGE_HEAD);
2089
2090         /*
2091          * type can be one of four:
2092          *  NORMAL - an interrupt already moved it for us
2093          *  HEAD   - we are the first to get here.
2094          *  UPDATE - we are the interrupt interrupting
2095          *           a current move.
2096          *  MOVED  - a reader on another CPU moved the next
2097          *           pointer to its reader page. Give up
2098          *           and try again.
2099          */
2100
2101         switch (type) {
2102         case RB_PAGE_HEAD:
2103                 /*
2104                  * We changed the head to UPDATE, thus
2105                  * it is our responsibility to update
2106                  * the counters.
2107                  */
2108                 local_add(entries, &cpu_buffer->overrun);
2109                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2110
2111                 /*
2112                  * The entries will be zeroed out when we move the
2113                  * tail page.
2114                  */
2115
2116                 /* still more to do */
2117                 break;
2118
2119         case RB_PAGE_UPDATE:
2120                 /*
2121                  * This is an interrupt that interrupt the
2122                  * previous update. Still more to do.
2123                  */
2124                 break;
2125         case RB_PAGE_NORMAL:
2126                 /*
2127                  * An interrupt came in before the update
2128                  * and processed this for us.
2129                  * Nothing left to do.
2130                  */
2131                 return 1;
2132         case RB_PAGE_MOVED:
2133                 /*
2134                  * The reader is on another CPU and just did
2135                  * a swap with our next_page.
2136                  * Try again.
2137                  */
2138                 return 1;
2139         default:
2140                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2141                 return -1;
2142         }
2143
2144         /*
2145          * Now that we are here, the old head pointer is
2146          * set to UPDATE. This will keep the reader from
2147          * swapping the head page with the reader page.
2148          * The reader (on another CPU) will spin till
2149          * we are finished.
2150          *
2151          * We just need to protect against interrupts
2152          * doing the job. We will set the next pointer
2153          * to HEAD. After that, we set the old pointer
2154          * to NORMAL, but only if it was HEAD before.
2155          * otherwise we are an interrupt, and only
2156          * want the outer most commit to reset it.
2157          */
2158         new_head = next_page;
2159         rb_inc_page(cpu_buffer, &new_head);
2160
2161         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2162                                     RB_PAGE_NORMAL);
2163
2164         /*
2165          * Valid returns are:
2166          *  HEAD   - an interrupt came in and already set it.
2167          *  NORMAL - One of two things:
2168          *            1) We really set it.
2169          *            2) A bunch of interrupts came in and moved
2170          *               the page forward again.
2171          */
2172         switch (ret) {
2173         case RB_PAGE_HEAD:
2174         case RB_PAGE_NORMAL:
2175                 /* OK */
2176                 break;
2177         default:
2178                 RB_WARN_ON(cpu_buffer, 1);
2179                 return -1;
2180         }
2181
2182         /*
2183          * It is possible that an interrupt came in,
2184          * set the head up, then more interrupts came in
2185          * and moved it again. When we get back here,
2186          * the page would have been set to NORMAL but we
2187          * just set it back to HEAD.
2188          *
2189          * How do you detect this? Well, if that happened
2190          * the tail page would have moved.
2191          */
2192         if (ret == RB_PAGE_NORMAL) {
2193                 /*
2194                  * If the tail had moved passed next, then we need
2195                  * to reset the pointer.
2196                  */
2197                 if (cpu_buffer->tail_page != tail_page &&
2198                     cpu_buffer->tail_page != next_page)
2199                         rb_head_page_set_normal(cpu_buffer, new_head,
2200                                                 next_page,
2201                                                 RB_PAGE_HEAD);
2202         }
2203
2204         /*
2205          * If this was the outer most commit (the one that
2206          * changed the original pointer from HEAD to UPDATE),
2207          * then it is up to us to reset it to NORMAL.
2208          */
2209         if (type == RB_PAGE_HEAD) {
2210                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2211                                               tail_page,
2212                                               RB_PAGE_UPDATE);
2213                 if (RB_WARN_ON(cpu_buffer,
2214                                ret != RB_PAGE_UPDATE))
2215                         return -1;
2216         }
2217
2218         return 0;
2219 }
2220
2221 static unsigned rb_calculate_event_length(unsigned length)
2222 {
2223         struct ring_buffer_event event; /* Used only for sizeof array */
2224
2225         /* zero length can cause confusions */
2226         if (!length)
2227                 length = 1;
2228
2229         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2230                 length += sizeof(event.array[0]);
2231
2232         length += RB_EVNT_HDR_SIZE;
2233         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2234
2235         return length;
2236 }
2237
2238 static inline void
2239 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2240               struct buffer_page *tail_page,
2241               unsigned long tail, unsigned long length)
2242 {
2243         struct ring_buffer_event *event;
2244
2245         /*
2246          * Only the event that crossed the page boundary
2247          * must fill the old tail_page with padding.
2248          */
2249         if (tail >= BUF_PAGE_SIZE) {
2250                 /*
2251                  * If the page was filled, then we still need
2252                  * to update the real_end. Reset it to zero
2253                  * and the reader will ignore it.
2254                  */
2255                 if (tail == BUF_PAGE_SIZE)
2256                         tail_page->real_end = 0;
2257
2258                 local_sub(length, &tail_page->write);
2259                 return;
2260         }
2261
2262         event = __rb_page_index(tail_page, tail);
2263         kmemcheck_annotate_bitfield(event, bitfield);
2264
2265         /* account for padding bytes */
2266         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2267
2268         /*
2269          * Save the original length to the meta data.
2270          * This will be used by the reader to add lost event
2271          * counter.
2272          */
2273         tail_page->real_end = tail;
2274
2275         /*
2276          * If this event is bigger than the minimum size, then
2277          * we need to be careful that we don't subtract the
2278          * write counter enough to allow another writer to slip
2279          * in on this page.
2280          * We put in a discarded commit instead, to make sure
2281          * that this space is not used again.
2282          *
2283          * If we are less than the minimum size, we don't need to
2284          * worry about it.
2285          */
2286         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2287                 /* No room for any events */
2288
2289                 /* Mark the rest of the page with padding */
2290                 rb_event_set_padding(event);
2291
2292                 /* Set the write back to the previous setting */
2293                 local_sub(length, &tail_page->write);
2294                 return;
2295         }
2296
2297         /* Put in a discarded event */
2298         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2299         event->type_len = RINGBUF_TYPE_PADDING;
2300         /* time delta must be non zero */
2301         event->time_delta = 1;
2302
2303         /* Set write to end of buffer */
2304         length = (tail + length) - BUF_PAGE_SIZE;
2305         local_sub(length, &tail_page->write);
2306 }
2307
2308 /*
2309  * This is the slow path, force gcc not to inline it.
2310  */
2311 static noinline struct ring_buffer_event *
2312 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2313              unsigned long length, unsigned long tail,
2314              struct buffer_page *tail_page, u64 ts)
2315 {
2316         struct buffer_page *commit_page = cpu_buffer->commit_page;
2317         struct ring_buffer *buffer = cpu_buffer->buffer;
2318         struct buffer_page *next_page;
2319         int ret;
2320
2321         next_page = tail_page;
2322
2323         rb_inc_page(cpu_buffer, &next_page);
2324
2325         /*
2326          * If for some reason, we had an interrupt storm that made
2327          * it all the way around the buffer, bail, and warn
2328          * about it.
2329          */
2330         if (unlikely(next_page == commit_page)) {
2331                 local_inc(&cpu_buffer->commit_overrun);
2332                 goto out_reset;
2333         }
2334
2335         /*
2336          * This is where the fun begins!
2337          *
2338          * We are fighting against races between a reader that
2339          * could be on another CPU trying to swap its reader
2340          * page with the buffer head.
2341          *
2342          * We are also fighting against interrupts coming in and
2343          * moving the head or tail on us as well.
2344          *
2345          * If the next page is the head page then we have filled
2346          * the buffer, unless the commit page is still on the
2347          * reader page.
2348          */
2349         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2350
2351                 /*
2352                  * If the commit is not on the reader page, then
2353                  * move the header page.
2354                  */
2355                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2356                         /*
2357                          * If we are not in overwrite mode,
2358                          * this is easy, just stop here.
2359                          */
2360                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2361                                 local_inc(&cpu_buffer->dropped_events);
2362                                 goto out_reset;
2363                         }
2364
2365                         ret = rb_handle_head_page(cpu_buffer,
2366                                                   tail_page,
2367                                                   next_page);
2368                         if (ret < 0)
2369                                 goto out_reset;
2370                         if (ret)
2371                                 goto out_again;
2372                 } else {
2373                         /*
2374                          * We need to be careful here too. The
2375                          * commit page could still be on the reader
2376                          * page. We could have a small buffer, and
2377                          * have filled up the buffer with events
2378                          * from interrupts and such, and wrapped.
2379                          *
2380                          * Note, if the tail page is also the on the
2381                          * reader_page, we let it move out.
2382                          */
2383                         if (unlikely((cpu_buffer->commit_page !=
2384                                       cpu_buffer->tail_page) &&
2385                                      (cpu_buffer->commit_page ==
2386                                       cpu_buffer->reader_page))) {
2387                                 local_inc(&cpu_buffer->commit_overrun);
2388                                 goto out_reset;
2389                         }
2390                 }
2391         }
2392
2393         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2394         if (ret) {
2395                 /*
2396                  * Nested commits always have zero deltas, so
2397                  * just reread the time stamp
2398                  */
2399                 ts = rb_time_stamp(buffer);
2400                 next_page->page->time_stamp = ts;
2401         }
2402
2403  out_again:
2404
2405         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2406
2407         /* fail and let the caller try again */
2408         return ERR_PTR(-EAGAIN);
2409
2410  out_reset:
2411         /* reset write */
2412         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2413
2414         return NULL;
2415 }
2416
2417 static struct ring_buffer_event *
2418 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2419                   unsigned long length, u64 ts,
2420                   u64 delta, int add_timestamp)
2421 {
2422         struct buffer_page *tail_page;
2423         struct ring_buffer_event *event;
2424         unsigned long tail, write;
2425
2426         /*
2427          * If the time delta since the last event is too big to
2428          * hold in the time field of the event, then we append a
2429          * TIME EXTEND event ahead of the data event.
2430          */
2431         if (unlikely(add_timestamp))
2432                 length += RB_LEN_TIME_EXTEND;
2433
2434         tail_page = cpu_buffer->tail_page;
2435         write = local_add_return(length, &tail_page->write);
2436
2437         /* set write to only the index of the write */
2438         write &= RB_WRITE_MASK;
2439         tail = write - length;
2440
2441         /*
2442          * If this is the first commit on the page, then it has the same
2443          * timestamp as the page itself.
2444          */
2445         if (!tail)
2446                 delta = 0;
2447
2448         /* See if we shot pass the end of this buffer page */
2449         if (unlikely(write > BUF_PAGE_SIZE))
2450                 return rb_move_tail(cpu_buffer, length, tail,
2451                                     tail_page, ts);
2452
2453         /* We reserved something on the buffer */
2454
2455         event = __rb_page_index(tail_page, tail);
2456         kmemcheck_annotate_bitfield(event, bitfield);
2457         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2458
2459         local_inc(&tail_page->entries);
2460
2461         /*
2462          * If this is the first commit on the page, then update
2463          * its timestamp.
2464          */
2465         if (!tail)
2466                 tail_page->page->time_stamp = ts;
2467
2468         /* account for these added bytes */
2469         local_add(length, &cpu_buffer->entries_bytes);
2470
2471         return event;
2472 }
2473
2474 static inline int
2475 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2476                   struct ring_buffer_event *event)
2477 {
2478         unsigned long new_index, old_index;
2479         struct buffer_page *bpage;
2480         unsigned long index;
2481         unsigned long addr;
2482
2483         new_index = rb_event_index(event);
2484         old_index = new_index + rb_event_ts_length(event);
2485         addr = (unsigned long)event;
2486         addr &= PAGE_MASK;
2487
2488         bpage = cpu_buffer->tail_page;
2489
2490         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2491                 unsigned long write_mask =
2492                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2493                 unsigned long event_length = rb_event_length(event);
2494                 /*
2495                  * This is on the tail page. It is possible that
2496                  * a write could come in and move the tail page
2497                  * and write to the next page. That is fine
2498                  * because we just shorten what is on this page.
2499                  */
2500                 old_index += write_mask;
2501                 new_index += write_mask;
2502                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2503                 if (index == old_index) {
2504                         /* update counters */
2505                         local_sub(event_length, &cpu_buffer->entries_bytes);
2506                         return 1;
2507                 }
2508         }
2509
2510         /* could not discard */
2511         return 0;
2512 }
2513
2514 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516         local_inc(&cpu_buffer->committing);
2517         local_inc(&cpu_buffer->commits);
2518 }
2519
2520 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522         unsigned long commits;
2523
2524         if (RB_WARN_ON(cpu_buffer,
2525                        !local_read(&cpu_buffer->committing)))
2526                 return;
2527
2528  again:
2529         commits = local_read(&cpu_buffer->commits);
2530         /* synchronize with interrupts */
2531         barrier();
2532         if (local_read(&cpu_buffer->committing) == 1)
2533                 rb_set_commit_to_write(cpu_buffer);
2534
2535         local_dec(&cpu_buffer->committing);
2536
2537         /* synchronize with interrupts */
2538         barrier();
2539
2540         /*
2541          * Need to account for interrupts coming in between the
2542          * updating of the commit page and the clearing of the
2543          * committing counter.
2544          */
2545         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2546             !local_read(&cpu_buffer->committing)) {
2547                 local_inc(&cpu_buffer->committing);
2548                 goto again;
2549         }
2550 }
2551
2552 static struct ring_buffer_event *
2553 rb_reserve_next_event(struct ring_buffer *buffer,
2554                       struct ring_buffer_per_cpu *cpu_buffer,
2555                       unsigned long length)
2556 {
2557         struct ring_buffer_event *event;
2558         u64 ts, delta;
2559         int nr_loops = 0;
2560         int add_timestamp;
2561         u64 diff;
2562
2563         rb_start_commit(cpu_buffer);
2564
2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2566         /*
2567          * Due to the ability to swap a cpu buffer from a buffer
2568          * it is possible it was swapped before we committed.
2569          * (committing stops a swap). We check for it here and
2570          * if it happened, we have to fail the write.
2571          */
2572         barrier();
2573         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2574                 local_dec(&cpu_buffer->committing);
2575                 local_dec(&cpu_buffer->commits);
2576                 return NULL;
2577         }
2578 #endif
2579
2580         length = rb_calculate_event_length(length);
2581  again:
2582         add_timestamp = 0;
2583         delta = 0;
2584
2585         /*
2586          * We allow for interrupts to reenter here and do a trace.
2587          * If one does, it will cause this original code to loop
2588          * back here. Even with heavy interrupts happening, this
2589          * should only happen a few times in a row. If this happens
2590          * 1000 times in a row, there must be either an interrupt
2591          * storm or we have something buggy.
2592          * Bail!
2593          */
2594         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2595                 goto out_fail;
2596
2597         ts = rb_time_stamp(cpu_buffer->buffer);
2598         diff = ts - cpu_buffer->write_stamp;
2599
2600         /* make sure this diff is calculated here */
2601         barrier();
2602
2603         /* Did the write stamp get updated already? */
2604         if (likely(ts >= cpu_buffer->write_stamp)) {
2605                 delta = diff;
2606                 if (unlikely(test_time_stamp(delta))) {
2607                         int local_clock_stable = 1;
2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2609                         local_clock_stable = sched_clock_stable();
2610 #endif
2611                         WARN_ONCE(delta > (1ULL << 59),
2612                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2613                                   (unsigned long long)delta,
2614                                   (unsigned long long)ts,
2615                                   (unsigned long long)cpu_buffer->write_stamp,
2616                                   local_clock_stable ? "" :
2617                                   "If you just came from a suspend/resume,\n"
2618                                   "please switch to the trace global clock:\n"
2619                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2620                         add_timestamp = 1;
2621                 }
2622         }
2623
2624         event = __rb_reserve_next(cpu_buffer, length, ts,
2625                                   delta, add_timestamp);
2626         if (unlikely(PTR_ERR(event) == -EAGAIN))
2627                 goto again;
2628
2629         if (!event)
2630                 goto out_fail;
2631
2632         return event;
2633
2634  out_fail:
2635         rb_end_commit(cpu_buffer);
2636         return NULL;
2637 }
2638
2639 #ifdef CONFIG_TRACING
2640
2641 /*
2642  * The lock and unlock are done within a preempt disable section.
2643  * The current_context per_cpu variable can only be modified
2644  * by the current task between lock and unlock. But it can
2645  * be modified more than once via an interrupt. To pass this
2646  * information from the lock to the unlock without having to
2647  * access the 'in_interrupt()' functions again (which do show
2648  * a bit of overhead in something as critical as function tracing,
2649  * we use a bitmask trick.
2650  *
2651  *  bit 0 =  NMI context
2652  *  bit 1 =  IRQ context
2653  *  bit 2 =  SoftIRQ context
2654  *  bit 3 =  normal context.
2655  *
2656  * This works because this is the order of contexts that can
2657  * preempt other contexts. A SoftIRQ never preempts an IRQ
2658  * context.
2659  *
2660  * When the context is determined, the corresponding bit is
2661  * checked and set (if it was set, then a recursion of that context
2662  * happened).
2663  *
2664  * On unlock, we need to clear this bit. To do so, just subtract
2665  * 1 from the current_context and AND it to itself.
2666  *
2667  * (binary)
2668  *  101 - 1 = 100
2669  *  101 & 100 = 100 (clearing bit zero)
2670  *
2671  *  1010 - 1 = 1001
2672  *  1010 & 1001 = 1000 (clearing bit 1)
2673  *
2674  * The least significant bit can be cleared this way, and it
2675  * just so happens that it is the same bit corresponding to
2676  * the current context.
2677  */
2678 static DEFINE_PER_CPU(unsigned int, current_context);
2679
2680 static __always_inline int trace_recursive_lock(void)
2681 {
2682         unsigned int val = this_cpu_read(current_context);
2683         int bit;
2684
2685         if (in_interrupt()) {
2686                 if (in_nmi())
2687                         bit = 0;
2688                 else if (in_irq())
2689                         bit = 1;
2690                 else
2691                         bit = 2;
2692         } else
2693                 bit = 3;
2694
2695         if (unlikely(val & (1 << bit)))
2696                 return 1;
2697
2698         val |= (1 << bit);
2699         this_cpu_write(current_context, val);
2700
2701         return 0;
2702 }
2703
2704 static __always_inline void trace_recursive_unlock(void)
2705 {
2706         unsigned int val = this_cpu_read(current_context);
2707
2708         val--;
2709         val &= this_cpu_read(current_context);
2710         this_cpu_write(current_context, val);
2711 }
2712
2713 #else
2714
2715 #define trace_recursive_lock()          (0)
2716 #define trace_recursive_unlock()        do { } while (0)
2717
2718 #endif
2719
2720 /**
2721  * ring_buffer_lock_reserve - reserve a part of the buffer
2722  * @buffer: the ring buffer to reserve from
2723  * @length: the length of the data to reserve (excluding event header)
2724  *
2725  * Returns a reseverd event on the ring buffer to copy directly to.
2726  * The user of this interface will need to get the body to write into
2727  * and can use the ring_buffer_event_data() interface.
2728  *
2729  * The length is the length of the data needed, not the event length
2730  * which also includes the event header.
2731  *
2732  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2733  * If NULL is returned, then nothing has been allocated or locked.
2734  */
2735 struct ring_buffer_event *
2736 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2737 {
2738         struct ring_buffer_per_cpu *cpu_buffer;
2739         struct ring_buffer_event *event;
2740         int cpu;
2741
2742         if (ring_buffer_flags != RB_BUFFERS_ON)
2743                 return NULL;
2744
2745         /* If we are tracing schedule, we don't want to recurse */
2746         preempt_disable_notrace();
2747
2748         if (atomic_read(&buffer->record_disabled))
2749                 goto out_nocheck;
2750
2751         if (trace_recursive_lock())
2752                 goto out_nocheck;
2753
2754         cpu = raw_smp_processor_id();
2755
2756         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2757                 goto out;
2758
2759         cpu_buffer = buffer->buffers[cpu];
2760
2761         if (atomic_read(&cpu_buffer->record_disabled))
2762                 goto out;
2763
2764         if (length > BUF_MAX_DATA_SIZE)
2765                 goto out;
2766
2767         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2768         if (!event)
2769                 goto out;
2770
2771         return event;
2772
2773  out:
2774         trace_recursive_unlock();
2775
2776  out_nocheck:
2777         preempt_enable_notrace();
2778         return NULL;
2779 }
2780 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2781
2782 static void
2783 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2784                       struct ring_buffer_event *event)
2785 {
2786         u64 delta;
2787
2788         /*
2789          * The event first in the commit queue updates the
2790          * time stamp.
2791          */
2792         if (rb_event_is_commit(cpu_buffer, event)) {
2793                 /*
2794                  * A commit event that is first on a page
2795                  * updates the write timestamp with the page stamp
2796                  */
2797                 if (!rb_event_index(event))
2798                         cpu_buffer->write_stamp =
2799                                 cpu_buffer->commit_page->page->time_stamp;
2800                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2801                         delta = event->array[0];
2802                         delta <<= TS_SHIFT;
2803                         delta += event->time_delta;
2804                         cpu_buffer->write_stamp += delta;
2805                 } else
2806                         cpu_buffer->write_stamp += event->time_delta;
2807         }
2808 }
2809
2810 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2811                       struct ring_buffer_event *event)
2812 {
2813         local_inc(&cpu_buffer->entries);
2814         rb_update_write_stamp(cpu_buffer, event);
2815         rb_end_commit(cpu_buffer);
2816 }
2817
2818 static __always_inline void
2819 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2820 {
2821         bool pagebusy;
2822
2823         if (buffer->irq_work.waiters_pending) {
2824                 buffer->irq_work.waiters_pending = false;
2825                 /* irq_work_queue() supplies it's own memory barriers */
2826                 irq_work_queue(&buffer->irq_work.work);
2827         }
2828
2829         if (cpu_buffer->irq_work.waiters_pending) {
2830                 cpu_buffer->irq_work.waiters_pending = false;
2831                 /* irq_work_queue() supplies it's own memory barriers */
2832                 irq_work_queue(&cpu_buffer->irq_work.work);
2833         }
2834
2835         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2836
2837         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2838                 cpu_buffer->irq_work.wakeup_full = true;
2839                 cpu_buffer->irq_work.full_waiters_pending = false;
2840                 /* irq_work_queue() supplies it's own memory barriers */
2841                 irq_work_queue(&cpu_buffer->irq_work.work);
2842         }
2843 }
2844
2845 /**
2846  * ring_buffer_unlock_commit - commit a reserved
2847  * @buffer: The buffer to commit to
2848  * @event: The event pointer to commit.
2849  *
2850  * This commits the data to the ring buffer, and releases any locks held.
2851  *
2852  * Must be paired with ring_buffer_lock_reserve.
2853  */
2854 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2855                               struct ring_buffer_event *event)
2856 {
2857         struct ring_buffer_per_cpu *cpu_buffer;
2858         int cpu = raw_smp_processor_id();
2859
2860         cpu_buffer = buffer->buffers[cpu];
2861
2862         rb_commit(cpu_buffer, event);
2863
2864         rb_wakeups(buffer, cpu_buffer);
2865
2866         trace_recursive_unlock();
2867
2868         preempt_enable_notrace();
2869
2870         return 0;
2871 }
2872 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2873
2874 static inline void rb_event_discard(struct ring_buffer_event *event)
2875 {
2876         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2877                 event = skip_time_extend(event);
2878
2879         /* array[0] holds the actual length for the discarded event */
2880         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2881         event->type_len = RINGBUF_TYPE_PADDING;
2882         /* time delta must be non zero */
2883         if (!event->time_delta)
2884                 event->time_delta = 1;
2885 }
2886
2887 /*
2888  * Decrement the entries to the page that an event is on.
2889  * The event does not even need to exist, only the pointer
2890  * to the page it is on. This may only be called before the commit
2891  * takes place.
2892  */
2893 static inline void
2894 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2895                    struct ring_buffer_event *event)
2896 {
2897         unsigned long addr = (unsigned long)event;
2898         struct buffer_page *bpage = cpu_buffer->commit_page;
2899         struct buffer_page *start;
2900
2901         addr &= PAGE_MASK;
2902
2903         /* Do the likely case first */
2904         if (likely(bpage->page == (void *)addr)) {
2905                 local_dec(&bpage->entries);
2906                 return;
2907         }
2908
2909         /*
2910          * Because the commit page may be on the reader page we
2911          * start with the next page and check the end loop there.
2912          */
2913         rb_inc_page(cpu_buffer, &bpage);
2914         start = bpage;
2915         do {
2916                 if (bpage->page == (void *)addr) {
2917                         local_dec(&bpage->entries);
2918                         return;
2919                 }
2920                 rb_inc_page(cpu_buffer, &bpage);
2921         } while (bpage != start);
2922
2923         /* commit not part of this buffer?? */
2924         RB_WARN_ON(cpu_buffer, 1);
2925 }
2926
2927 /**
2928  * ring_buffer_commit_discard - discard an event that has not been committed
2929  * @buffer: the ring buffer
2930  * @event: non committed event to discard
2931  *
2932  * Sometimes an event that is in the ring buffer needs to be ignored.
2933  * This function lets the user discard an event in the ring buffer
2934  * and then that event will not be read later.
2935  *
2936  * This function only works if it is called before the the item has been
2937  * committed. It will try to free the event from the ring buffer
2938  * if another event has not been added behind it.
2939  *
2940  * If another event has been added behind it, it will set the event
2941  * up as discarded, and perform the commit.
2942  *
2943  * If this function is called, do not call ring_buffer_unlock_commit on
2944  * the event.
2945  */
2946 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2947                                 struct ring_buffer_event *event)
2948 {
2949         struct ring_buffer_per_cpu *cpu_buffer;
2950         int cpu;
2951
2952         /* The event is discarded regardless */
2953         rb_event_discard(event);
2954
2955         cpu = smp_processor_id();
2956         cpu_buffer = buffer->buffers[cpu];
2957
2958         /*
2959          * This must only be called if the event has not been
2960          * committed yet. Thus we can assume that preemption
2961          * is still disabled.
2962          */
2963         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2964
2965         rb_decrement_entry(cpu_buffer, event);
2966         if (rb_try_to_discard(cpu_buffer, event))
2967                 goto out;
2968
2969         /*
2970          * The commit is still visible by the reader, so we
2971          * must still update the timestamp.
2972          */
2973         rb_update_write_stamp(cpu_buffer, event);
2974  out:
2975         rb_end_commit(cpu_buffer);
2976
2977         trace_recursive_unlock();
2978
2979         preempt_enable_notrace();
2980
2981 }
2982 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2983
2984 /**
2985  * ring_buffer_write - write data to the buffer without reserving
2986  * @buffer: The ring buffer to write to.
2987  * @length: The length of the data being written (excluding the event header)
2988  * @data: The data to write to the buffer.
2989  *
2990  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2991  * one function. If you already have the data to write to the buffer, it
2992  * may be easier to simply call this function.
2993  *
2994  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2995  * and not the length of the event which would hold the header.
2996  */
2997 int ring_buffer_write(struct ring_buffer *buffer,
2998                       unsigned long length,
2999                       void *data)
3000 {
3001         struct ring_buffer_per_cpu *cpu_buffer;
3002         struct ring_buffer_event *event;
3003         void *body;
3004         int ret = -EBUSY;
3005         int cpu;
3006
3007         if (ring_buffer_flags != RB_BUFFERS_ON)
3008                 return -EBUSY;
3009
3010         preempt_disable_notrace();
3011
3012         if (atomic_read(&buffer->record_disabled))
3013                 goto out;
3014
3015         cpu = raw_smp_processor_id();
3016
3017         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3018                 goto out;
3019
3020         cpu_buffer = buffer->buffers[cpu];
3021
3022         if (atomic_read(&cpu_buffer->record_disabled))
3023                 goto out;
3024
3025         if (length > BUF_MAX_DATA_SIZE)
3026                 goto out;
3027
3028         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3029         if (!event)
3030                 goto out;
3031
3032         body = rb_event_data(event);
3033
3034         memcpy(body, data, length);
3035
3036         rb_commit(cpu_buffer, event);
3037
3038         rb_wakeups(buffer, cpu_buffer);
3039
3040         ret = 0;
3041  out:
3042         preempt_enable_notrace();
3043
3044         return ret;
3045 }
3046 EXPORT_SYMBOL_GPL(ring_buffer_write);
3047
3048 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3049 {
3050         struct buffer_page *reader = cpu_buffer->reader_page;
3051         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3052         struct buffer_page *commit = cpu_buffer->commit_page;
3053
3054         /* In case of error, head will be NULL */
3055         if (unlikely(!head))
3056                 return 1;
3057
3058         return reader->read == rb_page_commit(reader) &&
3059                 (commit == reader ||
3060                  (commit == head &&
3061                   head->read == rb_page_commit(commit)));
3062 }
3063
3064 /**
3065  * ring_buffer_record_disable - stop all writes into the buffer
3066  * @buffer: The ring buffer to stop writes to.
3067  *
3068  * This prevents all writes to the buffer. Any attempt to write
3069  * to the buffer after this will fail and return NULL.
3070  *
3071  * The caller should call synchronize_sched() after this.
3072  */
3073 void ring_buffer_record_disable(struct ring_buffer *buffer)
3074 {
3075         atomic_inc(&buffer->record_disabled);
3076 }
3077 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3078
3079 /**
3080  * ring_buffer_record_enable - enable writes to the buffer
3081  * @buffer: The ring buffer to enable writes
3082  *
3083  * Note, multiple disables will need the same number of enables
3084  * to truly enable the writing (much like preempt_disable).
3085  */
3086 void ring_buffer_record_enable(struct ring_buffer *buffer)
3087 {
3088         atomic_dec(&buffer->record_disabled);
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3091
3092 /**
3093  * ring_buffer_record_off - stop all writes into the buffer
3094  * @buffer: The ring buffer to stop writes to.
3095  *
3096  * This prevents all writes to the buffer. Any attempt to write
3097  * to the buffer after this will fail and return NULL.
3098  *
3099  * This is different than ring_buffer_record_disable() as
3100  * it works like an on/off switch, where as the disable() version
3101  * must be paired with a enable().
3102  */
3103 void ring_buffer_record_off(struct ring_buffer *buffer)
3104 {
3105         unsigned int rd;
3106         unsigned int new_rd;
3107
3108         do {
3109                 rd = atomic_read(&buffer->record_disabled);
3110                 new_rd = rd | RB_BUFFER_OFF;
3111         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3114
3115 /**
3116  * ring_buffer_record_on - restart writes into the buffer
3117  * @buffer: The ring buffer to start writes to.
3118  *
3119  * This enables all writes to the buffer that was disabled by
3120  * ring_buffer_record_off().
3121  *
3122  * This is different than ring_buffer_record_enable() as
3123  * it works like an on/off switch, where as the enable() version
3124  * must be paired with a disable().
3125  */
3126 void ring_buffer_record_on(struct ring_buffer *buffer)
3127 {
3128         unsigned int rd;
3129         unsigned int new_rd;
3130
3131         do {
3132                 rd = atomic_read(&buffer->record_disabled);
3133                 new_rd = rd & ~RB_BUFFER_OFF;
3134         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3135 }
3136 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3137
3138 /**
3139  * ring_buffer_record_is_on - return true if the ring buffer can write
3140  * @buffer: The ring buffer to see if write is enabled
3141  *
3142  * Returns true if the ring buffer is in a state that it accepts writes.
3143  */
3144 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3145 {
3146         return !atomic_read(&buffer->record_disabled);
3147 }
3148
3149 /**
3150  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3151  * @buffer: The ring buffer to stop writes to.
3152  * @cpu: The CPU buffer to stop
3153  *
3154  * This prevents all writes to the buffer. Any attempt to write
3155  * to the buffer after this will fail and return NULL.
3156  *
3157  * The caller should call synchronize_sched() after this.
3158  */
3159 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3160 {
3161         struct ring_buffer_per_cpu *cpu_buffer;
3162
3163         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3164                 return;
3165
3166         cpu_buffer = buffer->buffers[cpu];
3167         atomic_inc(&cpu_buffer->record_disabled);
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3170
3171 /**
3172  * ring_buffer_record_enable_cpu - enable writes to the buffer
3173  * @buffer: The ring buffer to enable writes
3174  * @cpu: The CPU to enable.
3175  *
3176  * Note, multiple disables will need the same number of enables
3177  * to truly enable the writing (much like preempt_disable).
3178  */
3179 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3180 {
3181         struct ring_buffer_per_cpu *cpu_buffer;
3182
3183         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3184                 return;
3185
3186         cpu_buffer = buffer->buffers[cpu];
3187         atomic_dec(&cpu_buffer->record_disabled);
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3190
3191 /*
3192  * The total entries in the ring buffer is the running counter
3193  * of entries entered into the ring buffer, minus the sum of
3194  * the entries read from the ring buffer and the number of
3195  * entries that were overwritten.
3196  */
3197 static inline unsigned long
3198 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3199 {
3200         return local_read(&cpu_buffer->entries) -
3201                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3202 }
3203
3204 /**
3205  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3206  * @buffer: The ring buffer
3207  * @cpu: The per CPU buffer to read from.
3208  */
3209 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3210 {
3211         unsigned long flags;
3212         struct ring_buffer_per_cpu *cpu_buffer;
3213         struct buffer_page *bpage;
3214         u64 ret = 0;
3215
3216         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217                 return 0;
3218
3219         cpu_buffer = buffer->buffers[cpu];
3220         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3221         /*
3222          * if the tail is on reader_page, oldest time stamp is on the reader
3223          * page
3224          */
3225         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3226                 bpage = cpu_buffer->reader_page;
3227         else
3228                 bpage = rb_set_head_page(cpu_buffer);
3229         if (bpage)
3230                 ret = bpage->page->time_stamp;
3231         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3232
3233         return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3236
3237 /**
3238  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3239  * @buffer: The ring buffer
3240  * @cpu: The per CPU buffer to read from.
3241  */
3242 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3243 {
3244         struct ring_buffer_per_cpu *cpu_buffer;
3245         unsigned long ret;
3246
3247         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248                 return 0;
3249
3250         cpu_buffer = buffer->buffers[cpu];
3251         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3252
3253         return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3256
3257 /**
3258  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3259  * @buffer: The ring buffer
3260  * @cpu: The per CPU buffer to get the entries from.
3261  */
3262 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3263 {
3264         struct ring_buffer_per_cpu *cpu_buffer;
3265
3266         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267                 return 0;
3268
3269         cpu_buffer = buffer->buffers[cpu];
3270
3271         return rb_num_of_entries(cpu_buffer);
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3274
3275 /**
3276  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3277  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3278  * @buffer: The ring buffer
3279  * @cpu: The per CPU buffer to get the number of overruns from
3280  */
3281 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283         struct ring_buffer_per_cpu *cpu_buffer;
3284         unsigned long ret;
3285
3286         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287                 return 0;
3288
3289         cpu_buffer = buffer->buffers[cpu];
3290         ret = local_read(&cpu_buffer->overrun);
3291
3292         return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3295
3296 /**
3297  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3298  * commits failing due to the buffer wrapping around while there are uncommitted
3299  * events, such as during an interrupt storm.
3300  * @buffer: The ring buffer
3301  * @cpu: The per CPU buffer to get the number of overruns from
3302  */
3303 unsigned long
3304 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306         struct ring_buffer_per_cpu *cpu_buffer;
3307         unsigned long ret;
3308
3309         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3310                 return 0;
3311
3312         cpu_buffer = buffer->buffers[cpu];
3313         ret = local_read(&cpu_buffer->commit_overrun);
3314
3315         return ret;
3316 }
3317 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3318
3319 /**
3320  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3321  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3322  * @buffer: The ring buffer
3323  * @cpu: The per CPU buffer to get the number of overruns from
3324  */
3325 unsigned long
3326 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3327 {
3328         struct ring_buffer_per_cpu *cpu_buffer;
3329         unsigned long ret;
3330
3331         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3332                 return 0;
3333
3334         cpu_buffer = buffer->buffers[cpu];
3335         ret = local_read(&cpu_buffer->dropped_events);
3336
3337         return ret;
3338 }
3339 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3340
3341 /**
3342  * ring_buffer_read_events_cpu - get the number of events successfully read
3343  * @buffer: The ring buffer
3344  * @cpu: The per CPU buffer to get the number of events read
3345  */
3346 unsigned long
3347 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3348 {
3349         struct ring_buffer_per_cpu *cpu_buffer;
3350
3351         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3352                 return 0;
3353
3354         cpu_buffer = buffer->buffers[cpu];
3355         return cpu_buffer->read;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3358
3359 /**
3360  * ring_buffer_entries - get the number of entries in a buffer
3361  * @buffer: The ring buffer
3362  *
3363  * Returns the total number of entries in the ring buffer
3364  * (all CPU entries)
3365  */
3366 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3367 {
3368         struct ring_buffer_per_cpu *cpu_buffer;
3369         unsigned long entries = 0;
3370         int cpu;
3371
3372         /* if you care about this being correct, lock the buffer */
3373         for_each_buffer_cpu(buffer, cpu) {
3374                 cpu_buffer = buffer->buffers[cpu];
3375                 entries += rb_num_of_entries(cpu_buffer);
3376         }
3377
3378         return entries;
3379 }
3380 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3381
3382 /**
3383  * ring_buffer_overruns - get the number of overruns in buffer
3384  * @buffer: The ring buffer
3385  *
3386  * Returns the total number of overruns in the ring buffer
3387  * (all CPU entries)
3388  */
3389 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3390 {
3391         struct ring_buffer_per_cpu *cpu_buffer;
3392         unsigned long overruns = 0;
3393         int cpu;
3394
3395         /* if you care about this being correct, lock the buffer */
3396         for_each_buffer_cpu(buffer, cpu) {
3397                 cpu_buffer = buffer->buffers[cpu];
3398                 overruns += local_read(&cpu_buffer->overrun);
3399         }
3400
3401         return overruns;
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3404
3405 static void rb_iter_reset(struct ring_buffer_iter *iter)
3406 {
3407         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3408
3409         /* Iterator usage is expected to have record disabled */
3410         iter->head_page = cpu_buffer->reader_page;
3411         iter->head = cpu_buffer->reader_page->read;
3412
3413         iter->cache_reader_page = iter->head_page;
3414         iter->cache_read = cpu_buffer->read;
3415
3416         if (iter->head)
3417                 iter->read_stamp = cpu_buffer->read_stamp;
3418         else
3419                 iter->read_stamp = iter->head_page->page->time_stamp;
3420 }
3421
3422 /**
3423  * ring_buffer_iter_reset - reset an iterator
3424  * @iter: The iterator to reset
3425  *
3426  * Resets the iterator, so that it will start from the beginning
3427  * again.
3428  */
3429 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3430 {
3431         struct ring_buffer_per_cpu *cpu_buffer;
3432         unsigned long flags;
3433
3434         if (!iter)
3435                 return;
3436
3437         cpu_buffer = iter->cpu_buffer;
3438
3439         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3440         rb_iter_reset(iter);
3441         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3444
3445 /**
3446  * ring_buffer_iter_empty - check if an iterator has no more to read
3447  * @iter: The iterator to check
3448  */
3449 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3450 {
3451         struct ring_buffer_per_cpu *cpu_buffer;
3452
3453         cpu_buffer = iter->cpu_buffer;
3454
3455         return iter->head_page == cpu_buffer->commit_page &&
3456                 iter->head == rb_commit_index(cpu_buffer);
3457 }
3458 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3459
3460 static void
3461 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3462                      struct ring_buffer_event *event)
3463 {
3464         u64 delta;
3465
3466         switch (event->type_len) {
3467         case RINGBUF_TYPE_PADDING:
3468                 return;
3469
3470         case RINGBUF_TYPE_TIME_EXTEND:
3471                 delta = event->array[0];
3472                 delta <<= TS_SHIFT;
3473                 delta += event->time_delta;
3474                 cpu_buffer->read_stamp += delta;
3475                 return;
3476
3477         case RINGBUF_TYPE_TIME_STAMP:
3478                 /* FIXME: not implemented */
3479                 return;
3480
3481         case RINGBUF_TYPE_DATA:
3482                 cpu_buffer->read_stamp += event->time_delta;
3483                 return;
3484
3485         default:
3486                 BUG();
3487         }
3488         return;
3489 }
3490
3491 static void
3492 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3493                           struct ring_buffer_event *event)
3494 {
3495         u64 delta;
3496
3497         switch (event->type_len) {
3498         case RINGBUF_TYPE_PADDING:
3499                 return;
3500
3501         case RINGBUF_TYPE_TIME_EXTEND:
3502                 delta = event->array[0];
3503                 delta <<= TS_SHIFT;
3504                 delta += event->time_delta;
3505                 iter->read_stamp += delta;
3506                 return;
3507
3508         case RINGBUF_TYPE_TIME_STAMP:
3509                 /* FIXME: not implemented */
3510                 return;
3511
3512         case RINGBUF_TYPE_DATA:
3513                 iter->read_stamp += event->time_delta;
3514                 return;
3515
3516         default:
3517                 BUG();
3518         }
3519         return;
3520 }
3521
3522 static struct buffer_page *
3523 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3524 {
3525         struct buffer_page *reader = NULL;
3526         unsigned long overwrite;
3527         unsigned long flags;
3528         int nr_loops = 0;
3529         int ret;
3530
3531         local_irq_save(flags);
3532         arch_spin_lock(&cpu_buffer->lock);
3533
3534  again:
3535         /*
3536          * This should normally only loop twice. But because the
3537          * start of the reader inserts an empty page, it causes
3538          * a case where we will loop three times. There should be no
3539          * reason to loop four times (that I know of).
3540          */
3541         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3542                 reader = NULL;
3543                 goto out;
3544         }
3545
3546         reader = cpu_buffer->reader_page;
3547
3548         /* If there's more to read, return this page */
3549         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3550                 goto out;
3551
3552         /* Never should we have an index greater than the size */
3553         if (RB_WARN_ON(cpu_buffer,
3554                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3555                 goto out;
3556
3557         /* check if we caught up to the tail */
3558         reader = NULL;
3559         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3560                 goto out;
3561
3562         /* Don't bother swapping if the ring buffer is empty */
3563         if (rb_num_of_entries(cpu_buffer) == 0)
3564                 goto out;
3565
3566         /*
3567          * Reset the reader page to size zero.
3568          */
3569         local_set(&cpu_buffer->reader_page->write, 0);
3570         local_set(&cpu_buffer->reader_page->entries, 0);
3571         local_set(&cpu_buffer->reader_page->page->commit, 0);
3572         cpu_buffer->reader_page->real_end = 0;
3573
3574  spin:
3575         /*
3576          * Splice the empty reader page into the list around the head.
3577          */
3578         reader = rb_set_head_page(cpu_buffer);
3579         if (!reader)
3580                 goto out;
3581         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3582         cpu_buffer->reader_page->list.prev = reader->list.prev;
3583
3584         /*
3585          * cpu_buffer->pages just needs to point to the buffer, it
3586          *  has no specific buffer page to point to. Lets move it out
3587          *  of our way so we don't accidentally swap it.
3588          */
3589         cpu_buffer->pages = reader->list.prev;
3590
3591         /* The reader page will be pointing to the new head */
3592         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3593
3594         /*
3595          * We want to make sure we read the overruns after we set up our
3596          * pointers to the next object. The writer side does a
3597          * cmpxchg to cross pages which acts as the mb on the writer
3598          * side. Note, the reader will constantly fail the swap
3599          * while the writer is updating the pointers, so this
3600          * guarantees that the overwrite recorded here is the one we
3601          * want to compare with the last_overrun.
3602          */
3603         smp_mb();
3604         overwrite = local_read(&(cpu_buffer->overrun));
3605
3606         /*
3607          * Here's the tricky part.
3608          *
3609          * We need to move the pointer past the header page.
3610          * But we can only do that if a writer is not currently
3611          * moving it. The page before the header page has the
3612          * flag bit '1' set if it is pointing to the page we want.
3613          * but if the writer is in the process of moving it
3614          * than it will be '2' or already moved '0'.
3615          */
3616
3617         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3618
3619         /*
3620          * If we did not convert it, then we must try again.
3621          */
3622         if (!ret)
3623                 goto spin;
3624
3625         /*
3626          * Yeah! We succeeded in replacing the page.
3627          *
3628          * Now make the new head point back to the reader page.
3629          */
3630         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3631         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3632
3633         /* Finally update the reader page to the new head */
3634         cpu_buffer->reader_page = reader;
3635         rb_reset_reader_page(cpu_buffer);
3636
3637         if (overwrite != cpu_buffer->last_overrun) {
3638                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3639                 cpu_buffer->last_overrun = overwrite;
3640         }
3641
3642         goto again;
3643
3644  out:
3645         arch_spin_unlock(&cpu_buffer->lock);
3646         local_irq_restore(flags);
3647
3648         return reader;
3649 }
3650
3651 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3652 {
3653         struct ring_buffer_event *event;
3654         struct buffer_page *reader;
3655         unsigned length;
3656
3657         reader = rb_get_reader_page(cpu_buffer);
3658
3659         /* This function should not be called when buffer is empty */
3660         if (RB_WARN_ON(cpu_buffer, !reader))
3661                 return;
3662
3663         event = rb_reader_event(cpu_buffer);
3664
3665         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3666                 cpu_buffer->read++;
3667
3668         rb_update_read_stamp(cpu_buffer, event);
3669
3670         length = rb_event_length(event);
3671         cpu_buffer->reader_page->read += length;
3672 }
3673
3674 static void rb_advance_iter(struct ring_buffer_iter *iter)
3675 {
3676         struct ring_buffer_per_cpu *cpu_buffer;
3677         struct ring_buffer_event *event;
3678         unsigned length;
3679
3680         cpu_buffer = iter->cpu_buffer;
3681
3682         /*
3683          * Check if we are at the end of the buffer.
3684          */
3685         if (iter->head >= rb_page_size(iter->head_page)) {
3686                 /* discarded commits can make the page empty */
3687                 if (iter->head_page == cpu_buffer->commit_page)
3688                         return;
3689                 rb_inc_iter(iter);
3690                 return;
3691         }
3692
3693         event = rb_iter_head_event(iter);
3694
3695         length = rb_event_length(event);
3696
3697         /*
3698          * This should not be called to advance the header if we are
3699          * at the tail of the buffer.
3700          */
3701         if (RB_WARN_ON(cpu_buffer,
3702                        (iter->head_page == cpu_buffer->commit_page) &&
3703                        (iter->head + length > rb_commit_index(cpu_buffer))))
3704                 return;
3705
3706         rb_update_iter_read_stamp(iter, event);
3707
3708         iter->head += length;
3709
3710         /* check for end of page padding */
3711         if ((iter->head >= rb_page_size(iter->head_page)) &&
3712             (iter->head_page != cpu_buffer->commit_page))
3713                 rb_inc_iter(iter);
3714 }
3715
3716 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3717 {
3718         return cpu_buffer->lost_events;
3719 }
3720
3721 static struct ring_buffer_event *
3722 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3723                unsigned long *lost_events)
3724 {
3725         struct ring_buffer_event *event;
3726         struct buffer_page *reader;
3727         int nr_loops = 0;
3728
3729  again:
3730         /*
3731          * We repeat when a time extend is encountered.
3732          * Since the time extend is always attached to a data event,
3733          * we should never loop more than once.
3734          * (We never hit the following condition more than twice).
3735          */
3736         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3737                 return NULL;
3738
3739         reader = rb_get_reader_page(cpu_buffer);
3740         if (!reader)
3741                 return NULL;
3742
3743         event = rb_reader_event(cpu_buffer);
3744
3745         switch (event->type_len) {
3746         case RINGBUF_TYPE_PADDING:
3747                 if (rb_null_event(event))
3748                         RB_WARN_ON(cpu_buffer, 1);
3749                 /*
3750                  * Because the writer could be discarding every
3751                  * event it creates (which would probably be bad)
3752                  * if we were to go back to "again" then we may never
3753                  * catch up, and will trigger the warn on, or lock
3754                  * the box. Return the padding, and we will release
3755                  * the current locks, and try again.
3756                  */
3757                 return event;
3758
3759         case RINGBUF_TYPE_TIME_EXTEND:
3760                 /* Internal data, OK to advance */
3761                 rb_advance_reader(cpu_buffer);
3762                 goto again;
3763
3764         case RINGBUF_TYPE_TIME_STAMP:
3765                 /* FIXME: not implemented */
3766                 rb_advance_reader(cpu_buffer);
3767                 goto again;
3768
3769         case RINGBUF_TYPE_DATA:
3770                 if (ts) {
3771                         *ts = cpu_buffer->read_stamp + event->time_delta;
3772                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3773                                                          cpu_buffer->cpu, ts);
3774                 }
3775                 if (lost_events)
3776                         *lost_events = rb_lost_events(cpu_buffer);
3777                 return event;
3778
3779         default:
3780                 BUG();
3781         }
3782
3783         return NULL;
3784 }
3785 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3786
3787 static struct ring_buffer_event *
3788 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3789 {
3790         struct ring_buffer *buffer;
3791         struct ring_buffer_per_cpu *cpu_buffer;
3792         struct ring_buffer_event *event;
3793         int nr_loops = 0;
3794
3795         cpu_buffer = iter->cpu_buffer;
3796         buffer = cpu_buffer->buffer;
3797
3798         /*
3799          * Check if someone performed a consuming read to
3800          * the buffer. A consuming read invalidates the iterator
3801          * and we need to reset the iterator in this case.
3802          */
3803         if (unlikely(iter->cache_read != cpu_buffer->read ||
3804                      iter->cache_reader_page != cpu_buffer->reader_page))
3805                 rb_iter_reset(iter);
3806
3807  again:
3808         if (ring_buffer_iter_empty(iter))
3809                 return NULL;
3810
3811         /*
3812          * We repeat when a time extend is encountered or we hit
3813          * the end of the page. Since the time extend is always attached
3814          * to a data event, we should never loop more than three times.
3815          * Once for going to next page, once on time extend, and
3816          * finally once to get the event.
3817          * (We never hit the following condition more than thrice).
3818          */
3819         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3820                 return NULL;
3821
3822         if (rb_per_cpu_empty(cpu_buffer))
3823                 return NULL;
3824
3825         if (iter->head >= rb_page_size(iter->head_page)) {
3826                 rb_inc_iter(iter);
3827                 goto again;
3828         }
3829
3830         event = rb_iter_head_event(iter);
3831
3832         switch (event->type_len) {
3833         case RINGBUF_TYPE_PADDING:
3834                 if (rb_null_event(event)) {
3835                         rb_inc_iter(iter);
3836                         goto again;
3837                 }
3838                 rb_advance_iter(iter);
3839                 return event;
3840
3841         case RINGBUF_TYPE_TIME_EXTEND:
3842                 /* Internal data, OK to advance */
3843                 rb_advance_iter(iter);
3844                 goto again;
3845
3846         case RINGBUF_TYPE_TIME_STAMP:
3847                 /* FIXME: not implemented */
3848                 rb_advance_iter(iter);
3849                 goto again;
3850
3851         case RINGBUF_TYPE_DATA:
3852                 if (ts) {
3853                         *ts = iter->read_stamp + event->time_delta;
3854                         ring_buffer_normalize_time_stamp(buffer,
3855                                                          cpu_buffer->cpu, ts);
3856                 }
3857                 return event;
3858
3859         default:
3860                 BUG();
3861         }
3862
3863         return NULL;
3864 }
3865 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3866
3867 static inline int rb_ok_to_lock(void)
3868 {
3869         /*
3870          * If an NMI die dumps out the content of the ring buffer
3871          * do not grab locks. We also permanently disable the ring
3872          * buffer too. A one time deal is all you get from reading
3873          * the ring buffer from an NMI.
3874          */
3875         if (likely(!in_nmi()))
3876                 return 1;
3877
3878         tracing_off_permanent();
3879         return 0;
3880 }
3881
3882 /**
3883  * ring_buffer_peek - peek at the next event to be read
3884  * @buffer: The ring buffer to read
3885  * @cpu: The cpu to peak at
3886  * @ts: The timestamp counter of this event.
3887  * @lost_events: a variable to store if events were lost (may be NULL)
3888  *
3889  * This will return the event that will be read next, but does
3890  * not consume the data.
3891  */
3892 struct ring_buffer_event *
3893 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3894                  unsigned long *lost_events)
3895 {
3896         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3897         struct ring_buffer_event *event;
3898         unsigned long flags;
3899         int dolock;
3900
3901         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3902                 return NULL;
3903
3904         dolock = rb_ok_to_lock();
3905  again:
3906         local_irq_save(flags);
3907         if (dolock)
3908                 raw_spin_lock(&cpu_buffer->reader_lock);
3909         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3910         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3911                 rb_advance_reader(cpu_buffer);
3912         if (dolock)
3913                 raw_spin_unlock(&cpu_buffer->reader_lock);
3914         local_irq_restore(flags);
3915
3916         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3917                 goto again;
3918
3919         return event;
3920 }
3921
3922 /**
3923  * ring_buffer_iter_peek - peek at the next event to be read
3924  * @iter: The ring buffer iterator
3925  * @ts: The timestamp counter of this event.
3926  *
3927  * This will return the event that will be read next, but does
3928  * not increment the iterator.
3929  */
3930 struct ring_buffer_event *
3931 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3932 {
3933         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3934         struct ring_buffer_event *event;
3935         unsigned long flags;
3936
3937  again:
3938         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3939         event = rb_iter_peek(iter, ts);
3940         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3941
3942         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3943                 goto again;
3944
3945         return event;
3946 }
3947
3948 /**
3949  * ring_buffer_consume - return an event and consume it
3950  * @buffer: The ring buffer to get the next event from
3951  * @cpu: the cpu to read the buffer from
3952  * @ts: a variable to store the timestamp (may be NULL)
3953  * @lost_events: a variable to store if events were lost (may be NULL)
3954  *
3955  * Returns the next event in the ring buffer, and that event is consumed.
3956  * Meaning, that sequential reads will keep returning a different event,
3957  * and eventually empty the ring buffer if the producer is slower.
3958  */
3959 struct ring_buffer_event *
3960 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3961                     unsigned long *lost_events)
3962 {
3963         struct ring_buffer_per_cpu *cpu_buffer;
3964         struct ring_buffer_event *event = NULL;
3965         unsigned long flags;
3966         int dolock;
3967
3968         dolock = rb_ok_to_lock();
3969
3970  again:
3971         /* might be called in atomic */
3972         preempt_disable();
3973
3974         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975                 goto out;
3976
3977         cpu_buffer = buffer->buffers[cpu];
3978         local_irq_save(flags);
3979         if (dolock)
3980                 raw_spin_lock(&cpu_buffer->reader_lock);
3981
3982         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3983         if (event) {
3984                 cpu_buffer->lost_events = 0;
3985                 rb_advance_reader(cpu_buffer);
3986         }
3987
3988         if (dolock)
3989                 raw_spin_unlock(&cpu_buffer->reader_lock);
3990         local_irq_restore(flags);
3991
3992  out:
3993         preempt_enable();
3994
3995         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3996                 goto again;
3997
3998         return event;
3999 }
4000 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4001
4002 /**
4003  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004  * @buffer: The ring buffer to read from
4005  * @cpu: The cpu buffer to iterate over
4006  *
4007  * This performs the initial preparations necessary to iterate
4008  * through the buffer.  Memory is allocated, buffer recording
4009  * is disabled, and the iterator pointer is returned to the caller.
4010  *
4011  * Disabling buffer recordng prevents the reading from being
4012  * corrupted. This is not a consuming read, so a producer is not
4013  * expected.
4014  *
4015  * After a sequence of ring_buffer_read_prepare calls, the user is
4016  * expected to make at least one call to ring_buffer_read_prepare_sync.
4017  * Afterwards, ring_buffer_read_start is invoked to get things going
4018  * for real.
4019  *
4020  * This overall must be paired with ring_buffer_read_finish.
4021  */
4022 struct ring_buffer_iter *
4023 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4024 {
4025         struct ring_buffer_per_cpu *cpu_buffer;
4026         struct ring_buffer_iter *iter;
4027
4028         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029                 return NULL;
4030
4031         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4032         if (!iter)
4033                 return NULL;
4034
4035         cpu_buffer = buffer->buffers[cpu];
4036
4037         iter->cpu_buffer = cpu_buffer;
4038
4039         atomic_inc(&buffer->resize_disabled);
4040         atomic_inc(&cpu_buffer->record_disabled);
4041
4042         return iter;
4043 }
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4045
4046 /**
4047  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4048  *
4049  * All previously invoked ring_buffer_read_prepare calls to prepare
4050  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4051  * calls on those iterators are allowed.
4052  */
4053 void
4054 ring_buffer_read_prepare_sync(void)
4055 {
4056         synchronize_sched();
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4059
4060 /**
4061  * ring_buffer_read_start - start a non consuming read of the buffer
4062  * @iter: The iterator returned by ring_buffer_read_prepare
4063  *
4064  * This finalizes the startup of an iteration through the buffer.
4065  * The iterator comes from a call to ring_buffer_read_prepare and
4066  * an intervening ring_buffer_read_prepare_sync must have been
4067  * performed.
4068  *
4069  * Must be paired with ring_buffer_read_finish.
4070  */
4071 void
4072 ring_buffer_read_start(struct ring_buffer_iter *iter)
4073 {
4074         struct ring_buffer_per_cpu *cpu_buffer;
4075         unsigned long flags;
4076
4077         if (!iter)
4078                 return;
4079
4080         cpu_buffer = iter->cpu_buffer;
4081
4082         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4083         arch_spin_lock(&cpu_buffer->lock);
4084         rb_iter_reset(iter);
4085         arch_spin_unlock(&cpu_buffer->lock);
4086         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4089
4090 /**
4091  * ring_buffer_read_finish - finish reading the iterator of the buffer
4092  * @iter: The iterator retrieved by ring_buffer_start
4093  *
4094  * This re-enables the recording to the buffer, and frees the
4095  * iterator.
4096  */
4097 void
4098 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4099 {
4100         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101         unsigned long flags;
4102
4103         /*
4104          * Ring buffer is disabled from recording, here's a good place
4105          * to check the integrity of the ring buffer.
4106          * Must prevent readers from trying to read, as the check
4107          * clears the HEAD page and readers require it.
4108          */
4109         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110         rb_check_pages(cpu_buffer);
4111         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4112
4113         atomic_dec(&cpu_buffer->record_disabled);
4114         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4115         kfree(iter);
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4118
4119 /**
4120  * ring_buffer_read - read the next item in the ring buffer by the iterator
4121  * @iter: The ring buffer iterator
4122  * @ts: The time stamp of the event read.
4123  *
4124  * This reads the next event in the ring buffer and increments the iterator.
4125  */
4126 struct ring_buffer_event *
4127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4128 {
4129         struct ring_buffer_event *event;
4130         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4131         unsigned long flags;
4132
4133         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4134  again:
4135         event = rb_iter_peek(iter, ts);
4136         if (!event)
4137                 goto out;
4138
4139         if (event->type_len == RINGBUF_TYPE_PADDING)
4140                 goto again;
4141
4142         rb_advance_iter(iter);
4143  out:
4144         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4145
4146         return event;
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_read);
4149
4150 /**
4151  * ring_buffer_size - return the size of the ring buffer (in bytes)
4152  * @buffer: The ring buffer.
4153  */
4154 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4155 {
4156         /*
4157          * Earlier, this method returned
4158          *      BUF_PAGE_SIZE * buffer->nr_pages
4159          * Since the nr_pages field is now removed, we have converted this to
4160          * return the per cpu buffer value.
4161          */
4162         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163                 return 0;
4164
4165         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_size);
4168
4169 static void
4170 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4171 {
4172         rb_head_page_deactivate(cpu_buffer);
4173
4174         cpu_buffer->head_page
4175                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4176         local_set(&cpu_buffer->head_page->write, 0);
4177         local_set(&cpu_buffer->head_page->entries, 0);
4178         local_set(&cpu_buffer->head_page->page->commit, 0);
4179
4180         cpu_buffer->head_page->read = 0;
4181
4182         cpu_buffer->tail_page = cpu_buffer->head_page;
4183         cpu_buffer->commit_page = cpu_buffer->head_page;
4184
4185         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4186         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4187         local_set(&cpu_buffer->reader_page->write, 0);
4188         local_set(&cpu_buffer->reader_page->entries, 0);
4189         local_set(&cpu_buffer->reader_page->page->commit, 0);
4190         cpu_buffer->reader_page->read = 0;
4191
4192         local_set(&cpu_buffer->entries_bytes, 0);
4193         local_set(&cpu_buffer->overrun, 0);
4194         local_set(&cpu_buffer->commit_overrun, 0);
4195         local_set(&cpu_buffer->dropped_events, 0);
4196         local_set(&cpu_buffer->entries, 0);
4197         local_set(&cpu_buffer->committing, 0);
4198         local_set(&cpu_buffer->commits, 0);
4199         cpu_buffer->read = 0;
4200         cpu_buffer->read_bytes = 0;
4201
4202         cpu_buffer->write_stamp = 0;
4203         cpu_buffer->read_stamp = 0;
4204
4205         cpu_buffer->lost_events = 0;
4206         cpu_buffer->last_overrun = 0;
4207
4208         rb_head_page_activate(cpu_buffer);
4209 }
4210
4211 /**
4212  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213  * @buffer: The ring buffer to reset a per cpu buffer of
4214  * @cpu: The CPU buffer to be reset
4215  */
4216 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4217 {
4218         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4219         unsigned long flags;
4220
4221         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222                 return;
4223
4224         atomic_inc(&buffer->resize_disabled);
4225         atomic_inc(&cpu_buffer->record_disabled);
4226
4227         /* Make sure all commits have finished */
4228         synchronize_sched();
4229
4230         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4231
4232         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4233                 goto out;
4234
4235         arch_spin_lock(&cpu_buffer->lock);
4236
4237         rb_reset_cpu(cpu_buffer);
4238
4239         arch_spin_unlock(&cpu_buffer->lock);
4240
4241  out:
4242         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4243
4244         atomic_dec(&cpu_buffer->record_disabled);
4245         atomic_dec(&buffer->resize_disabled);
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4248
4249 /**
4250  * ring_buffer_reset - reset a ring buffer
4251  * @buffer: The ring buffer to reset all cpu buffers
4252  */
4253 void ring_buffer_reset(struct ring_buffer *buffer)
4254 {
4255         int cpu;
4256
4257         for_each_buffer_cpu(buffer, cpu)
4258                 ring_buffer_reset_cpu(buffer, cpu);
4259 }
4260 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4261
4262 /**
4263  * rind_buffer_empty - is the ring buffer empty?
4264  * @buffer: The ring buffer to test
4265  */
4266 int ring_buffer_empty(struct ring_buffer *buffer)
4267 {
4268         struct ring_buffer_per_cpu *cpu_buffer;
4269         unsigned long flags;
4270         int dolock;
4271         int cpu;
4272         int ret;
4273
4274         dolock = rb_ok_to_lock();
4275
4276         /* yes this is racy, but if you don't like the race, lock the buffer */
4277         for_each_buffer_cpu(buffer, cpu) {
4278                 cpu_buffer = buffer->buffers[cpu];
4279                 local_irq_save(flags);
4280                 if (dolock)
4281                         raw_spin_lock(&cpu_buffer->reader_lock);
4282                 ret = rb_per_cpu_empty(cpu_buffer);
4283                 if (dolock)
4284                         raw_spin_unlock(&cpu_buffer->reader_lock);
4285                 local_irq_restore(flags);
4286
4287                 if (!ret)
4288                         return 0;
4289         }
4290
4291         return 1;
4292 }
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4294
4295 /**
4296  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4297  * @buffer: The ring buffer
4298  * @cpu: The CPU buffer to test
4299  */
4300 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4301 {
4302         struct ring_buffer_per_cpu *cpu_buffer;
4303         unsigned long flags;
4304         int dolock;
4305         int ret;
4306
4307         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4308                 return 1;
4309
4310         dolock = rb_ok_to_lock();
4311
4312         cpu_buffer = buffer->buffers[cpu];
4313         local_irq_save(flags);
4314         if (dolock)
4315                 raw_spin_lock(&cpu_buffer->reader_lock);
4316         ret = rb_per_cpu_empty(cpu_buffer);
4317         if (dolock)
4318                 raw_spin_unlock(&cpu_buffer->reader_lock);
4319         local_irq_restore(flags);
4320
4321         return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4324
4325 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4326 /**
4327  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4328  * @buffer_a: One buffer to swap with
4329  * @buffer_b: The other buffer to swap with
4330  *
4331  * This function is useful for tracers that want to take a "snapshot"
4332  * of a CPU buffer and has another back up buffer lying around.
4333  * it is expected that the tracer handles the cpu buffer not being
4334  * used at the moment.
4335  */
4336 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4337                          struct ring_buffer *buffer_b, int cpu)
4338 {
4339         struct ring_buffer_per_cpu *cpu_buffer_a;
4340         struct ring_buffer_per_cpu *cpu_buffer_b;
4341         int ret = -EINVAL;
4342
4343         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4344             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4345                 goto out;
4346
4347         cpu_buffer_a = buffer_a->buffers[cpu];
4348         cpu_buffer_b = buffer_b->buffers[cpu];
4349
4350         /* At least make sure the two buffers are somewhat the same */
4351         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4352                 goto out;
4353
4354         ret = -EAGAIN;
4355
4356         if (ring_buffer_flags != RB_BUFFERS_ON)
4357                 goto out;
4358
4359         if (atomic_read(&buffer_a->record_disabled))
4360                 goto out;
4361
4362         if (atomic_read(&buffer_b->record_disabled))
4363                 goto out;
4364
4365         if (atomic_read(&cpu_buffer_a->record_disabled))
4366                 goto out;
4367
4368         if (atomic_read(&cpu_buffer_b->record_disabled))
4369                 goto out;
4370
4371         /*
4372          * We can't do a synchronize_sched here because this
4373          * function can be called in atomic context.
4374          * Normally this will be called from the same CPU as cpu.
4375          * If not it's up to the caller to protect this.
4376          */
4377         atomic_inc(&cpu_buffer_a->record_disabled);
4378         atomic_inc(&cpu_buffer_b->record_disabled);
4379
4380         ret = -EBUSY;
4381         if (local_read(&cpu_buffer_a->committing))
4382                 goto out_dec;
4383         if (local_read(&cpu_buffer_b->committing))
4384                 goto out_dec;
4385
4386         buffer_a->buffers[cpu] = cpu_buffer_b;
4387         buffer_b->buffers[cpu] = cpu_buffer_a;
4388
4389         cpu_buffer_b->buffer = buffer_a;
4390         cpu_buffer_a->buffer = buffer_b;
4391
4392         ret = 0;
4393
4394 out_dec:
4395         atomic_dec(&cpu_buffer_a->record_disabled);
4396         atomic_dec(&cpu_buffer_b->record_disabled);
4397 out:
4398         return ret;
4399 }
4400 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4401 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4402
4403 /**
4404  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4405  * @buffer: the buffer to allocate for.
4406  * @cpu: the cpu buffer to allocate.
4407  *
4408  * This function is used in conjunction with ring_buffer_read_page.
4409  * When reading a full page from the ring buffer, these functions
4410  * can be used to speed up the process. The calling function should
4411  * allocate a few pages first with this function. Then when it
4412  * needs to get pages from the ring buffer, it passes the result
4413  * of this function into ring_buffer_read_page, which will swap
4414  * the page that was allocated, with the read page of the buffer.
4415  *
4416  * Returns:
4417  *  The page allocated, or NULL on error.
4418  */
4419 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4420 {
4421         struct buffer_data_page *bpage;
4422         struct page *page;
4423
4424         page = alloc_pages_node(cpu_to_node(cpu),
4425                                 GFP_KERNEL | __GFP_NORETRY, 0);
4426         if (!page)
4427                 return NULL;
4428
4429         bpage = page_address(page);
4430
4431         rb_init_page(bpage);
4432
4433         return bpage;
4434 }
4435 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4436
4437 /**
4438  * ring_buffer_free_read_page - free an allocated read page
4439  * @buffer: the buffer the page was allocate for
4440  * @data: the page to free
4441  *
4442  * Free a page allocated from ring_buffer_alloc_read_page.
4443  */
4444 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4445 {
4446         free_page((unsigned long)data);
4447 }
4448 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4449
4450 /**
4451  * ring_buffer_read_page - extract a page from the ring buffer
4452  * @buffer: buffer to extract from
4453  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4454  * @len: amount to extract
4455  * @cpu: the cpu of the buffer to extract
4456  * @full: should the extraction only happen when the page is full.
4457  *
4458  * This function will pull out a page from the ring buffer and consume it.
4459  * @data_page must be the address of the variable that was returned
4460  * from ring_buffer_alloc_read_page. This is because the page might be used
4461  * to swap with a page in the ring buffer.
4462  *
4463  * for example:
4464  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4465  *      if (!rpage)
4466  *              return error;
4467  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4468  *      if (ret >= 0)
4469  *              process_page(rpage, ret);
4470  *
4471  * When @full is set, the function will not return true unless
4472  * the writer is off the reader page.
4473  *
4474  * Note: it is up to the calling functions to handle sleeps and wakeups.
4475  *  The ring buffer can be used anywhere in the kernel and can not
4476  *  blindly call wake_up. The layer that uses the ring buffer must be
4477  *  responsible for that.
4478  *
4479  * Returns:
4480  *  >=0 if data has been transferred, returns the offset of consumed data.
4481  *  <0 if no data has been transferred.
4482  */
4483 int ring_buffer_read_page(struct ring_buffer *buffer,
4484                           void **data_page, size_t len, int cpu, int full)
4485 {
4486         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4487         struct ring_buffer_event *event;
4488         struct buffer_data_page *bpage;
4489         struct buffer_page *reader;
4490         unsigned long missed_events;
4491         unsigned long flags;
4492         unsigned int commit;
4493         unsigned int read;
4494         u64 save_timestamp;
4495         int ret = -1;
4496
4497         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4498                 goto out;
4499
4500         /*
4501          * If len is not big enough to hold the page header, then
4502          * we can not copy anything.
4503          */
4504         if (len <= BUF_PAGE_HDR_SIZE)
4505                 goto out;
4506
4507         len -= BUF_PAGE_HDR_SIZE;
4508
4509         if (!data_page)
4510                 goto out;
4511
4512         bpage = *data_page;
4513         if (!bpage)
4514                 goto out;
4515
4516         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4517
4518         reader = rb_get_reader_page(cpu_buffer);
4519         if (!reader)
4520                 goto out_unlock;
4521
4522         event = rb_reader_event(cpu_buffer);
4523
4524         read = reader->read;
4525         commit = rb_page_commit(reader);
4526
4527         /* Check if any events were dropped */
4528         missed_events = cpu_buffer->lost_events;
4529
4530         /*
4531          * If this page has been partially read or
4532          * if len is not big enough to read the rest of the page or
4533          * a writer is still on the page, then
4534          * we must copy the data from the page to the buffer.
4535          * Otherwise, we can simply swap the page with the one passed in.
4536          */
4537         if (read || (len < (commit - read)) ||
4538             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4539                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4540                 unsigned int rpos = read;
4541                 unsigned int pos = 0;
4542                 unsigned int size;
4543
4544                 if (full)
4545                         goto out_unlock;
4546
4547                 if (len > (commit - read))
4548                         len = (commit - read);
4549
4550                 /* Always keep the time extend and data together */
4551                 size = rb_event_ts_length(event);
4552
4553                 if (len < size)
4554                         goto out_unlock;
4555
4556                 /* save the current timestamp, since the user will need it */
4557                 save_timestamp = cpu_buffer->read_stamp;
4558
4559                 /* Need to copy one event at a time */
4560                 do {
4561                         /* We need the size of one event, because
4562                          * rb_advance_reader only advances by one event,
4563                          * whereas rb_event_ts_length may include the size of
4564                          * one or two events.
4565                          * We have already ensured there's enough space if this
4566                          * is a time extend. */
4567                         size = rb_event_length(event);
4568                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4569
4570                         len -= size;
4571
4572                         rb_advance_reader(cpu_buffer);
4573                         rpos = reader->read;
4574                         pos += size;
4575
4576                         if (rpos >= commit)
4577                                 break;
4578
4579                         event = rb_reader_event(cpu_buffer);
4580                         /* Always keep the time extend and data together */
4581                         size = rb_event_ts_length(event);
4582                 } while (len >= size);
4583
4584                 /* update bpage */
4585                 local_set(&bpage->commit, pos);
4586                 bpage->time_stamp = save_timestamp;
4587
4588                 /* we copied everything to the beginning */
4589                 read = 0;
4590         } else {
4591                 /* update the entry counter */
4592                 cpu_buffer->read += rb_page_entries(reader);
4593                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4594
4595                 /* swap the pages */
4596                 rb_init_page(bpage);
4597                 bpage = reader->page;
4598                 reader->page = *data_page;
4599                 local_set(&reader->write, 0);
4600                 local_set(&reader->entries, 0);
4601                 reader->read = 0;
4602                 *data_page = bpage;
4603
4604                 /*
4605                  * Use the real_end for the data size,
4606                  * This gives us a chance to store the lost events
4607                  * on the page.
4608                  */
4609                 if (reader->real_end)
4610                         local_set(&bpage->commit, reader->real_end);
4611         }
4612         ret = read;
4613
4614         cpu_buffer->lost_events = 0;
4615
4616         commit = local_read(&bpage->commit);
4617         /*
4618          * Set a flag in the commit field if we lost events
4619          */
4620         if (missed_events) {
4621                 /* If there is room at the end of the page to save the
4622                  * missed events, then record it there.
4623                  */
4624                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4625                         memcpy(&bpage->data[commit], &missed_events,
4626                                sizeof(missed_events));
4627                         local_add(RB_MISSED_STORED, &bpage->commit);
4628                         commit += sizeof(missed_events);
4629                 }
4630                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4631         }
4632
4633         /*
4634          * This page may be off to user land. Zero it out here.
4635          */
4636         if (commit < BUF_PAGE_SIZE)
4637                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4638
4639  out_unlock:
4640         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4641
4642  out:
4643         return ret;
4644 }
4645 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4646
4647 #ifdef CONFIG_HOTPLUG_CPU
4648 static int rb_cpu_notify(struct notifier_block *self,
4649                          unsigned long action, void *hcpu)
4650 {
4651         struct ring_buffer *buffer =
4652                 container_of(self, struct ring_buffer, cpu_notify);
4653         long cpu = (long)hcpu;
4654         int cpu_i, nr_pages_same;
4655         unsigned int nr_pages;
4656
4657         switch (action) {
4658         case CPU_UP_PREPARE:
4659         case CPU_UP_PREPARE_FROZEN:
4660                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4661                         return NOTIFY_OK;
4662
4663                 nr_pages = 0;
4664                 nr_pages_same = 1;
4665                 /* check if all cpu sizes are same */
4666                 for_each_buffer_cpu(buffer, cpu_i) {
4667                         /* fill in the size from first enabled cpu */
4668                         if (nr_pages == 0)
4669                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4670                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4671                                 nr_pages_same = 0;
4672                                 break;
4673                         }
4674                 }
4675                 /* allocate minimum pages, user can later expand it */
4676                 if (!nr_pages_same)
4677                         nr_pages = 2;
4678                 buffer->buffers[cpu] =
4679                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4680                 if (!buffer->buffers[cpu]) {
4681                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4682                              cpu);
4683                         return NOTIFY_OK;
4684                 }
4685                 smp_wmb();
4686                 cpumask_set_cpu(cpu, buffer->cpumask);
4687                 break;
4688         case CPU_DOWN_PREPARE:
4689         case CPU_DOWN_PREPARE_FROZEN:
4690                 /*
4691                  * Do nothing.
4692                  *  If we were to free the buffer, then the user would
4693                  *  lose any trace that was in the buffer.
4694                  */
4695                 break;
4696         default:
4697                 break;
4698         }
4699         return NOTIFY_OK;
4700 }
4701 #endif
4702
4703 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4704 /*
4705  * This is a basic integrity check of the ring buffer.
4706  * Late in the boot cycle this test will run when configured in.
4707  * It will kick off a thread per CPU that will go into a loop
4708  * writing to the per cpu ring buffer various sizes of data.
4709  * Some of the data will be large items, some small.
4710  *
4711  * Another thread is created that goes into a spin, sending out
4712  * IPIs to the other CPUs to also write into the ring buffer.
4713  * this is to test the nesting ability of the buffer.
4714  *
4715  * Basic stats are recorded and reported. If something in the
4716  * ring buffer should happen that's not expected, a big warning
4717  * is displayed and all ring buffers are disabled.
4718  */
4719 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4720
4721 struct rb_test_data {
4722         struct ring_buffer      *buffer;
4723         unsigned long           events;
4724         unsigned long           bytes_written;
4725         unsigned long           bytes_alloc;
4726         unsigned long           bytes_dropped;
4727         unsigned long           events_nested;
4728         unsigned long           bytes_written_nested;
4729         unsigned long           bytes_alloc_nested;
4730         unsigned long           bytes_dropped_nested;
4731         int                     min_size_nested;
4732         int                     max_size_nested;
4733         int                     max_size;
4734         int                     min_size;
4735         int                     cpu;
4736         int                     cnt;
4737 };
4738
4739 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4740
4741 /* 1 meg per cpu */
4742 #define RB_TEST_BUFFER_SIZE     1048576
4743
4744 static char rb_string[] __initdata =
4745         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4746         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4747         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4748
4749 static bool rb_test_started __initdata;
4750
4751 struct rb_item {
4752         int size;
4753         char str[];
4754 };
4755
4756 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4757 {
4758         struct ring_buffer_event *event;
4759         struct rb_item *item;
4760         bool started;
4761         int event_len;
4762         int size;
4763         int len;
4764         int cnt;
4765
4766         /* Have nested writes different that what is written */
4767         cnt = data->cnt + (nested ? 27 : 0);
4768
4769         /* Multiply cnt by ~e, to make some unique increment */
4770         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4771
4772         len = size + sizeof(struct rb_item);
4773
4774         started = rb_test_started;
4775         /* read rb_test_started before checking buffer enabled */
4776         smp_rmb();
4777
4778         event = ring_buffer_lock_reserve(data->buffer, len);
4779         if (!event) {
4780                 /* Ignore dropped events before test starts. */
4781                 if (started) {
4782                         if (nested)
4783                                 data->bytes_dropped += len;
4784                         else
4785                                 data->bytes_dropped_nested += len;
4786                 }
4787                 return len;
4788         }
4789
4790         event_len = ring_buffer_event_length(event);
4791
4792         if (RB_WARN_ON(data->buffer, event_len < len))
4793                 goto out;
4794
4795         item = ring_buffer_event_data(event);
4796         item->size = size;
4797         memcpy(item->str, rb_string, size);
4798
4799         if (nested) {
4800                 data->bytes_alloc_nested += event_len;
4801                 data->bytes_written_nested += len;
4802                 data->events_nested++;
4803                 if (!data->min_size_nested || len < data->min_size_nested)
4804                         data->min_size_nested = len;
4805                 if (len > data->max_size_nested)
4806                         data->max_size_nested = len;
4807         } else {
4808                 data->bytes_alloc += event_len;
4809                 data->bytes_written += len;
4810                 data->events++;
4811                 if (!data->min_size || len < data->min_size)
4812                         data->max_size = len;
4813                 if (len > data->max_size)
4814                         data->max_size = len;
4815         }
4816
4817  out:
4818         ring_buffer_unlock_commit(data->buffer, event);
4819
4820         return 0;
4821 }
4822
4823 static __init int rb_test(void *arg)
4824 {
4825         struct rb_test_data *data = arg;
4826
4827         while (!kthread_should_stop()) {
4828                 rb_write_something(data, false);
4829                 data->cnt++;
4830
4831                 set_current_state(TASK_INTERRUPTIBLE);
4832                 /* Now sleep between a min of 100-300us and a max of 1ms */
4833                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4834         }
4835
4836         return 0;
4837 }
4838
4839 static __init void rb_ipi(void *ignore)
4840 {
4841         struct rb_test_data *data;
4842         int cpu = smp_processor_id();
4843
4844         data = &rb_data[cpu];
4845         rb_write_something(data, true);
4846 }
4847
4848 static __init int rb_hammer_test(void *arg)
4849 {
4850         while (!kthread_should_stop()) {
4851
4852                 /* Send an IPI to all cpus to write data! */
4853                 smp_call_function(rb_ipi, NULL, 1);
4854                 /* No sleep, but for non preempt, let others run */
4855                 schedule();
4856         }
4857
4858         return 0;
4859 }
4860
4861 static __init int test_ringbuffer(void)
4862 {
4863         struct task_struct *rb_hammer;
4864         struct ring_buffer *buffer;
4865         int cpu;
4866         int ret = 0;
4867
4868         pr_info("Running ring buffer tests...\n");
4869
4870         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4871         if (WARN_ON(!buffer))
4872                 return 0;
4873
4874         /* Disable buffer so that threads can't write to it yet */
4875         ring_buffer_record_off(buffer);
4876
4877         for_each_online_cpu(cpu) {
4878                 rb_data[cpu].buffer = buffer;
4879                 rb_data[cpu].cpu = cpu;
4880                 rb_data[cpu].cnt = cpu;
4881                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4882                                                  "rbtester/%d", cpu);
4883                 if (WARN_ON(!rb_threads[cpu])) {
4884                         pr_cont("FAILED\n");
4885                         ret = -1;
4886                         goto out_free;
4887                 }
4888
4889                 kthread_bind(rb_threads[cpu], cpu);
4890                 wake_up_process(rb_threads[cpu]);
4891         }
4892
4893         /* Now create the rb hammer! */
4894         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4895         if (WARN_ON(!rb_hammer)) {
4896                 pr_cont("FAILED\n");
4897                 ret = -1;
4898                 goto out_free;
4899         }
4900
4901         ring_buffer_record_on(buffer);
4902         /*
4903          * Show buffer is enabled before setting rb_test_started.
4904          * Yes there's a small race window where events could be
4905          * dropped and the thread wont catch it. But when a ring
4906          * buffer gets enabled, there will always be some kind of
4907          * delay before other CPUs see it. Thus, we don't care about
4908          * those dropped events. We care about events dropped after
4909          * the threads see that the buffer is active.
4910          */
4911         smp_wmb();
4912         rb_test_started = true;
4913
4914         set_current_state(TASK_INTERRUPTIBLE);
4915         /* Just run for 10 seconds */;
4916         schedule_timeout(10 * HZ);
4917
4918         kthread_stop(rb_hammer);
4919
4920  out_free:
4921         for_each_online_cpu(cpu) {
4922                 if (!rb_threads[cpu])
4923                         break;
4924                 kthread_stop(rb_threads[cpu]);
4925         }
4926         if (ret) {
4927                 ring_buffer_free(buffer);
4928                 return ret;
4929         }
4930
4931         /* Report! */
4932         pr_info("finished\n");
4933         for_each_online_cpu(cpu) {
4934                 struct ring_buffer_event *event;
4935                 struct rb_test_data *data = &rb_data[cpu];
4936                 struct rb_item *item;
4937                 unsigned long total_events;
4938                 unsigned long total_dropped;
4939                 unsigned long total_written;
4940                 unsigned long total_alloc;
4941                 unsigned long total_read = 0;
4942                 unsigned long total_size = 0;
4943                 unsigned long total_len = 0;
4944                 unsigned long total_lost = 0;
4945                 unsigned long lost;
4946                 int big_event_size;
4947                 int small_event_size;
4948
4949                 ret = -1;
4950
4951                 total_events = data->events + data->events_nested;
4952                 total_written = data->bytes_written + data->bytes_written_nested;
4953                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4954                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4955
4956                 big_event_size = data->max_size + data->max_size_nested;
4957                 small_event_size = data->min_size + data->min_size_nested;
4958
4959                 pr_info("CPU %d:\n", cpu);
4960                 pr_info("              events:    %ld\n", total_events);
4961                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4962                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4963                 pr_info("       written bytes:    %ld\n", total_written);
4964                 pr_info("       biggest event:    %d\n", big_event_size);
4965                 pr_info("      smallest event:    %d\n", small_event_size);
4966
4967                 if (RB_WARN_ON(buffer, total_dropped))
4968                         break;
4969
4970                 ret = 0;
4971
4972                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4973                         total_lost += lost;
4974                         item = ring_buffer_event_data(event);
4975                         total_len += ring_buffer_event_length(event);
4976                         total_size += item->size + sizeof(struct rb_item);
4977                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4978                                 pr_info("FAILED!\n");
4979                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4980                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4981                                 RB_WARN_ON(buffer, 1);
4982                                 ret = -1;
4983                                 break;
4984                         }
4985                         total_read++;
4986                 }
4987                 if (ret)
4988                         break;
4989
4990                 ret = -1;
4991
4992                 pr_info("         read events:   %ld\n", total_read);
4993                 pr_info("         lost events:   %ld\n", total_lost);
4994                 pr_info("        total events:   %ld\n", total_lost + total_read);
4995                 pr_info("  recorded len bytes:   %ld\n", total_len);
4996                 pr_info(" recorded size bytes:   %ld\n", total_size);
4997                 if (total_lost)
4998                         pr_info(" With dropped events, record len and size may not match\n"
4999                                 " alloced and written from above\n");
5000                 if (!total_lost) {
5001                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5002                                        total_size != total_written))
5003                                 break;
5004                 }
5005                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5006                         break;
5007
5008                 ret = 0;
5009         }
5010         if (!ret)
5011                 pr_info("Ring buffer PASSED!\n");
5012
5013         ring_buffer_free(buffer);
5014         return 0;
5015 }
5016
5017 late_initcall(test_ringbuffer);
5018 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */