tracing: Use NUMA allocation for per-cpu ring buffer pages
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 /*
27  * The ring buffer header is special. We must manually up keep it.
28  */
29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31         int ret;
32
33         ret = trace_seq_printf(s, "# compressed entry header\n");
34         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
35         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
36         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
37         ret = trace_seq_printf(s, "\n");
38         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
39                                RINGBUF_TYPE_PADDING);
40         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41                                RINGBUF_TYPE_TIME_EXTEND);
42         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
43                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44
45         return ret;
46 }
47
48 /*
49  * The ring buffer is made up of a list of pages. A separate list of pages is
50  * allocated for each CPU. A writer may only write to a buffer that is
51  * associated with the CPU it is currently executing on.  A reader may read
52  * from any per cpu buffer.
53  *
54  * The reader is special. For each per cpu buffer, the reader has its own
55  * reader page. When a reader has read the entire reader page, this reader
56  * page is swapped with another page in the ring buffer.
57  *
58  * Now, as long as the writer is off the reader page, the reader can do what
59  * ever it wants with that page. The writer will never write to that page
60  * again (as long as it is out of the ring buffer).
61  *
62  * Here's some silly ASCII art.
63  *
64  *   +------+
65  *   |reader|          RING BUFFER
66  *   |page  |
67  *   +------+        +---+   +---+   +---+
68  *                   |   |-->|   |-->|   |
69  *                   +---+   +---+   +---+
70  *                     ^               |
71  *                     |               |
72  *                     +---------------+
73  *
74  *
75  *   +------+
76  *   |reader|          RING BUFFER
77  *   |page  |------------------v
78  *   +------+        +---+   +---+   +---+
79  *                   |   |-->|   |-->|   |
80  *                   +---+   +---+   +---+
81  *                     ^               |
82  *                     |               |
83  *                     +---------------+
84  *
85  *
86  *   +------+
87  *   |reader|          RING BUFFER
88  *   |page  |------------------v
89  *   +------+        +---+   +---+   +---+
90  *      ^            |   |-->|   |-->|   |
91  *      |            +---+   +---+   +---+
92  *      |                              |
93  *      |                              |
94  *      +------------------------------+
95  *
96  *
97  *   +------+
98  *   |buffer|          RING BUFFER
99  *   |page  |------------------v
100  *   +------+        +---+   +---+   +---+
101  *      ^            |   |   |   |-->|   |
102  *      |   New      +---+   +---+   +---+
103  *      |  Reader------^               |
104  *      |   page                       |
105  *      +------------------------------+
106  *
107  *
108  * After we make this swap, the reader can hand this page off to the splice
109  * code and be done with it. It can even allocate a new page if it needs to
110  * and swap that into the ring buffer.
111  *
112  * We will be using cmpxchg soon to make all this lockless.
113  *
114  */
115
116 /*
117  * A fast way to enable or disable all ring buffers is to
118  * call tracing_on or tracing_off. Turning off the ring buffers
119  * prevents all ring buffers from being recorded to.
120  * Turning this switch on, makes it OK to write to the
121  * ring buffer, if the ring buffer is enabled itself.
122  *
123  * There's three layers that must be on in order to write
124  * to the ring buffer.
125  *
126  * 1) This global flag must be set.
127  * 2) The ring buffer must be enabled for recording.
128  * 3) The per cpu buffer must be enabled for recording.
129  *
130  * In case of an anomaly, this global flag has a bit set that
131  * will permantly disable all ring buffers.
132  */
133
134 /*
135  * Global flag to disable all recording to ring buffers
136  *  This has two bits: ON, DISABLED
137  *
138  *  ON   DISABLED
139  * ---- ----------
140  *   0      0        : ring buffers are off
141  *   1      0        : ring buffers are on
142  *   X      1        : ring buffers are permanently disabled
143  */
144
145 enum {
146         RB_BUFFERS_ON_BIT       = 0,
147         RB_BUFFERS_DISABLED_BIT = 1,
148 };
149
150 enum {
151         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
152         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158
159 /**
160  * tracing_on - enable all tracing buffers
161  *
162  * This function enables all tracing buffers that may have been
163  * disabled with tracing_off.
164  */
165 void tracing_on(void)
166 {
167         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 }
169 EXPORT_SYMBOL_GPL(tracing_on);
170
171 /**
172  * tracing_off - turn off all tracing buffers
173  *
174  * This function stops all tracing buffers from recording data.
175  * It does not disable any overhead the tracers themselves may
176  * be causing. This function simply causes all recording to
177  * the ring buffers to fail.
178  */
179 void tracing_off(void)
180 {
181         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 }
183 EXPORT_SYMBOL_GPL(tracing_off);
184
185 /**
186  * tracing_off_permanent - permanently disable ring buffers
187  *
188  * This function, once called, will disable all ring buffers
189  * permanently.
190  */
191 void tracing_off_permanent(void)
192 {
193         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
194 }
195
196 /**
197  * tracing_is_on - show state of ring buffers enabled
198  */
199 int tracing_is_on(void)
200 {
201         return ring_buffer_flags == RB_BUFFERS_ON;
202 }
203 EXPORT_SYMBOL_GPL(tracing_is_on);
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
209
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT       0
212 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT       1
215 # define RB_ARCH_ALIGNMENT              8U
216 #endif
217
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
220
221 enum {
222         RB_LEN_TIME_EXTEND = 8,
223         RB_LEN_TIME_STAMP = 16,
224 };
225
226 #define skip_time_extend(event) \
227         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228
229 static inline int rb_null_event(struct ring_buffer_event *event)
230 {
231         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 }
233
234 static void rb_event_set_padding(struct ring_buffer_event *event)
235 {
236         /* padding has a NULL time_delta */
237         event->type_len = RINGBUF_TYPE_PADDING;
238         event->time_delta = 0;
239 }
240
241 static unsigned
242 rb_event_data_length(struct ring_buffer_event *event)
243 {
244         unsigned length;
245
246         if (event->type_len)
247                 length = event->type_len * RB_ALIGNMENT;
248         else
249                 length = event->array[0];
250         return length + RB_EVNT_HDR_SIZE;
251 }
252
253 /*
254  * Return the length of the given event. Will return
255  * the length of the time extend if the event is a
256  * time extend.
257  */
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event *event)
260 {
261         switch (event->type_len) {
262         case RINGBUF_TYPE_PADDING:
263                 if (rb_null_event(event))
264                         /* undefined */
265                         return -1;
266                 return  event->array[0] + RB_EVNT_HDR_SIZE;
267
268         case RINGBUF_TYPE_TIME_EXTEND:
269                 return RB_LEN_TIME_EXTEND;
270
271         case RINGBUF_TYPE_TIME_STAMP:
272                 return RB_LEN_TIME_STAMP;
273
274         case RINGBUF_TYPE_DATA:
275                 return rb_event_data_length(event);
276         default:
277                 BUG();
278         }
279         /* not hit */
280         return 0;
281 }
282
283 /*
284  * Return total length of time extend and data,
285  *   or just the event length for all other events.
286  */
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event *event)
289 {
290         unsigned len = 0;
291
292         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293                 /* time extends include the data event after it */
294                 len = RB_LEN_TIME_EXTEND;
295                 event = skip_time_extend(event);
296         }
297         return len + rb_event_length(event);
298 }
299
300 /**
301  * ring_buffer_event_length - return the length of the event
302  * @event: the event to get the length of
303  *
304  * Returns the size of the data load of a data event.
305  * If the event is something other than a data event, it
306  * returns the size of the event itself. With the exception
307  * of a TIME EXTEND, where it still returns the size of the
308  * data load of the data event after it.
309  */
310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311 {
312         unsigned length;
313
314         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315                 event = skip_time_extend(event);
316
317         length = rb_event_length(event);
318         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319                 return length;
320         length -= RB_EVNT_HDR_SIZE;
321         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322                 length -= sizeof(event->array[0]);
323         return length;
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
326
327 /* inline for ring buffer fast paths */
328 static void *
329 rb_event_data(struct ring_buffer_event *event)
330 {
331         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332                 event = skip_time_extend(event);
333         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334         /* If length is in len field, then array[0] has the data */
335         if (event->type_len)
336                 return (void *)&event->array[0];
337         /* Otherwise length is in array[0] and array[1] has the data */
338         return (void *)&event->array[1];
339 }
340
341 /**
342  * ring_buffer_event_data - return the data of the event
343  * @event: the event to get the data from
344  */
345 void *ring_buffer_event_data(struct ring_buffer_event *event)
346 {
347         return rb_event_data(event);
348 }
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
350
351 #define for_each_buffer_cpu(buffer, cpu)                \
352         for_each_cpu(cpu, buffer->cpumask)
353
354 #define TS_SHIFT        27
355 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST   (~TS_MASK)
357
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS        (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED        (1 << 30)
362
363 struct buffer_data_page {
364         u64              time_stamp;    /* page time stamp */
365         local_t          commit;        /* write committed index */
366         unsigned char    data[];        /* data of buffer page */
367 };
368
369 /*
370  * Note, the buffer_page list must be first. The buffer pages
371  * are allocated in cache lines, which means that each buffer
372  * page will be at the beginning of a cache line, and thus
373  * the least significant bits will be zero. We use this to
374  * add flags in the list struct pointers, to make the ring buffer
375  * lockless.
376  */
377 struct buffer_page {
378         struct list_head list;          /* list of buffer pages */
379         local_t          write;         /* index for next write */
380         unsigned         read;          /* index for next read */
381         local_t          entries;       /* entries on this page */
382         unsigned long    real_end;      /* real end of data */
383         struct buffer_data_page *page;  /* Actual data page */
384 };
385
386 /*
387  * The buffer page counters, write and entries, must be reset
388  * atomically when crossing page boundaries. To synchronize this
389  * update, two counters are inserted into the number. One is
390  * the actual counter for the write position or count on the page.
391  *
392  * The other is a counter of updaters. Before an update happens
393  * the update partition of the counter is incremented. This will
394  * allow the updater to update the counter atomically.
395  *
396  * The counter is 20 bits, and the state data is 12.
397  */
398 #define RB_WRITE_MASK           0xfffff
399 #define RB_WRITE_INTCNT         (1 << 20)
400
401 static void rb_init_page(struct buffer_data_page *bpage)
402 {
403         local_set(&bpage->commit, 0);
404 }
405
406 /**
407  * ring_buffer_page_len - the size of data on the page.
408  * @page: The page to read
409  *
410  * Returns the amount of data on the page, including buffer page header.
411  */
412 size_t ring_buffer_page_len(void *page)
413 {
414         return local_read(&((struct buffer_data_page *)page)->commit)
415                 + BUF_PAGE_HDR_SIZE;
416 }
417
418 /*
419  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420  * this issue out.
421  */
422 static void free_buffer_page(struct buffer_page *bpage)
423 {
424         free_page((unsigned long)bpage->page);
425         kfree(bpage);
426 }
427
428 /*
429  * We need to fit the time_stamp delta into 27 bits.
430  */
431 static inline int test_time_stamp(u64 delta)
432 {
433         if (delta & TS_DELTA_TEST)
434                 return 1;
435         return 0;
436 }
437
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
439
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442
443 int ring_buffer_print_page_header(struct trace_seq *s)
444 {
445         struct buffer_data_page field;
446         int ret;
447
448         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449                                "offset:0;\tsize:%u;\tsigned:%u;\n",
450                                (unsigned int)sizeof(field.time_stamp),
451                                (unsigned int)is_signed_type(u64));
452
453         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
455                                (unsigned int)offsetof(typeof(field), commit),
456                                (unsigned int)sizeof(field.commit),
457                                (unsigned int)is_signed_type(long));
458
459         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
461                                (unsigned int)offsetof(typeof(field), commit),
462                                1,
463                                (unsigned int)is_signed_type(long));
464
465         ret = trace_seq_printf(s, "\tfield: char data;\t"
466                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
467                                (unsigned int)offsetof(typeof(field), data),
468                                (unsigned int)BUF_PAGE_SIZE,
469                                (unsigned int)is_signed_type(char));
470
471         return ret;
472 }
473
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478         int                             cpu;
479         atomic_t                        record_disabled;
480         struct ring_buffer              *buffer;
481         spinlock_t                      reader_lock;    /* serialize readers */
482         arch_spinlock_t                 lock;
483         struct lock_class_key           lock_key;
484         struct list_head                *pages;
485         struct buffer_page              *head_page;     /* read from head */
486         struct buffer_page              *tail_page;     /* write to tail */
487         struct buffer_page              *commit_page;   /* committed pages */
488         struct buffer_page              *reader_page;
489         unsigned long                   lost_events;
490         unsigned long                   last_overrun;
491         local_t                         commit_overrun;
492         local_t                         overrun;
493         local_t                         entries;
494         local_t                         committing;
495         local_t                         commits;
496         unsigned long                   read;
497         u64                             write_stamp;
498         u64                             read_stamp;
499 };
500
501 struct ring_buffer {
502         unsigned                        pages;
503         unsigned                        flags;
504         int                             cpus;
505         atomic_t                        record_disabled;
506         cpumask_var_t                   cpumask;
507
508         struct lock_class_key           *reader_lock_key;
509
510         struct mutex                    mutex;
511
512         struct ring_buffer_per_cpu      **buffers;
513
514 #ifdef CONFIG_HOTPLUG_CPU
515         struct notifier_block           cpu_notify;
516 #endif
517         u64                             (*clock)(void);
518 };
519
520 struct ring_buffer_iter {
521         struct ring_buffer_per_cpu      *cpu_buffer;
522         unsigned long                   head;
523         struct buffer_page              *head_page;
524         struct buffer_page              *cache_reader_page;
525         unsigned long                   cache_read;
526         u64                             read_stamp;
527 };
528
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond)                                             \
531         ({                                                              \
532                 int _____ret = unlikely(cond);                          \
533                 if (_____ret) {                                         \
534                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535                                 struct ring_buffer_per_cpu *__b =       \
536                                         (void *)b;                      \
537                                 atomic_inc(&__b->buffer->record_disabled); \
538                         } else                                          \
539                                 atomic_inc(&b->record_disabled);        \
540                         WARN_ON(1);                                     \
541                 }                                                       \
542                 _____ret;                                               \
543         })
544
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
547
548 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
549 {
550         /* shift to debug/test normalization and TIME_EXTENTS */
551         return buffer->clock() << DEBUG_SHIFT;
552 }
553
554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555 {
556         u64 time;
557
558         preempt_disable_notrace();
559         time = rb_time_stamp(buffer);
560         preempt_enable_no_resched_notrace();
561
562         return time;
563 }
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565
566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567                                       int cpu, u64 *ts)
568 {
569         /* Just stupid testing the normalize function and deltas */
570         *ts >>= DEBUG_SHIFT;
571 }
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573
574 /*
575  * Making the ring buffer lockless makes things tricky.
576  * Although writes only happen on the CPU that they are on,
577  * and they only need to worry about interrupts. Reads can
578  * happen on any CPU.
579  *
580  * The reader page is always off the ring buffer, but when the
581  * reader finishes with a page, it needs to swap its page with
582  * a new one from the buffer. The reader needs to take from
583  * the head (writes go to the tail). But if a writer is in overwrite
584  * mode and wraps, it must push the head page forward.
585  *
586  * Here lies the problem.
587  *
588  * The reader must be careful to replace only the head page, and
589  * not another one. As described at the top of the file in the
590  * ASCII art, the reader sets its old page to point to the next
591  * page after head. It then sets the page after head to point to
592  * the old reader page. But if the writer moves the head page
593  * during this operation, the reader could end up with the tail.
594  *
595  * We use cmpxchg to help prevent this race. We also do something
596  * special with the page before head. We set the LSB to 1.
597  *
598  * When the writer must push the page forward, it will clear the
599  * bit that points to the head page, move the head, and then set
600  * the bit that points to the new head page.
601  *
602  * We also don't want an interrupt coming in and moving the head
603  * page on another writer. Thus we use the second LSB to catch
604  * that too. Thus:
605  *
606  * head->list->prev->next        bit 1          bit 0
607  *                              -------        -------
608  * Normal page                     0              0
609  * Points to head page             0              1
610  * New head page                   1              0
611  *
612  * Note we can not trust the prev pointer of the head page, because:
613  *
614  * +----+       +-----+        +-----+
615  * |    |------>|  T  |---X--->|  N  |
616  * |    |<------|     |        |     |
617  * +----+       +-----+        +-----+
618  *   ^                           ^ |
619  *   |          +-----+          | |
620  *   +----------|  R  |----------+ |
621  *              |     |<-----------+
622  *              +-----+
623  *
624  * Key:  ---X-->  HEAD flag set in pointer
625  *         T      Tail page
626  *         R      Reader page
627  *         N      Next page
628  *
629  * (see __rb_reserve_next() to see where this happens)
630  *
631  *  What the above shows is that the reader just swapped out
632  *  the reader page with a page in the buffer, but before it
633  *  could make the new header point back to the new page added
634  *  it was preempted by a writer. The writer moved forward onto
635  *  the new page added by the reader and is about to move forward
636  *  again.
637  *
638  *  You can see, it is legitimate for the previous pointer of
639  *  the head (or any page) not to point back to itself. But only
640  *  temporarially.
641  */
642
643 #define RB_PAGE_NORMAL          0UL
644 #define RB_PAGE_HEAD            1UL
645 #define RB_PAGE_UPDATE          2UL
646
647
648 #define RB_FLAG_MASK            3UL
649
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED           4UL
652
653 /*
654  * rb_list_head - remove any bit
655  */
656 static struct list_head *rb_list_head(struct list_head *list)
657 {
658         unsigned long val = (unsigned long)list;
659
660         return (struct list_head *)(val & ~RB_FLAG_MASK);
661 }
662
663 /*
664  * rb_is_head_page - test if the given page is the head page
665  *
666  * Because the reader may move the head_page pointer, we can
667  * not trust what the head page is (it may be pointing to
668  * the reader page). But if the next page is a header page,
669  * its flags will be non zero.
670  */
671 static inline int
672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673                 struct buffer_page *page, struct list_head *list)
674 {
675         unsigned long val;
676
677         val = (unsigned long)list->next;
678
679         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680                 return RB_PAGE_MOVED;
681
682         return val & RB_FLAG_MASK;
683 }
684
685 /*
686  * rb_is_reader_page
687  *
688  * The unique thing about the reader page, is that, if the
689  * writer is ever on it, the previous pointer never points
690  * back to the reader page.
691  */
692 static int rb_is_reader_page(struct buffer_page *page)
693 {
694         struct list_head *list = page->list.prev;
695
696         return rb_list_head(list->next) != &page->list;
697 }
698
699 /*
700  * rb_set_list_to_head - set a list_head to be pointing to head.
701  */
702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703                                 struct list_head *list)
704 {
705         unsigned long *ptr;
706
707         ptr = (unsigned long *)&list->next;
708         *ptr |= RB_PAGE_HEAD;
709         *ptr &= ~RB_PAGE_UPDATE;
710 }
711
712 /*
713  * rb_head_page_activate - sets up head page
714  */
715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716 {
717         struct buffer_page *head;
718
719         head = cpu_buffer->head_page;
720         if (!head)
721                 return;
722
723         /*
724          * Set the previous list pointer to have the HEAD flag.
725          */
726         rb_set_list_to_head(cpu_buffer, head->list.prev);
727 }
728
729 static void rb_list_head_clear(struct list_head *list)
730 {
731         unsigned long *ptr = (unsigned long *)&list->next;
732
733         *ptr &= ~RB_FLAG_MASK;
734 }
735
736 /*
737  * rb_head_page_dactivate - clears head page ptr (for free list)
738  */
739 static void
740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741 {
742         struct list_head *hd;
743
744         /* Go through the whole list and clear any pointers found. */
745         rb_list_head_clear(cpu_buffer->pages);
746
747         list_for_each(hd, cpu_buffer->pages)
748                 rb_list_head_clear(hd);
749 }
750
751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752                             struct buffer_page *head,
753                             struct buffer_page *prev,
754                             int old_flag, int new_flag)
755 {
756         struct list_head *list;
757         unsigned long val = (unsigned long)&head->list;
758         unsigned long ret;
759
760         list = &prev->list;
761
762         val &= ~RB_FLAG_MASK;
763
764         ret = cmpxchg((unsigned long *)&list->next,
765                       val | old_flag, val | new_flag);
766
767         /* check if the reader took the page */
768         if ((ret & ~RB_FLAG_MASK) != val)
769                 return RB_PAGE_MOVED;
770
771         return ret & RB_FLAG_MASK;
772 }
773
774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775                                    struct buffer_page *head,
776                                    struct buffer_page *prev,
777                                    int old_flag)
778 {
779         return rb_head_page_set(cpu_buffer, head, prev,
780                                 old_flag, RB_PAGE_UPDATE);
781 }
782
783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784                                  struct buffer_page *head,
785                                  struct buffer_page *prev,
786                                  int old_flag)
787 {
788         return rb_head_page_set(cpu_buffer, head, prev,
789                                 old_flag, RB_PAGE_HEAD);
790 }
791
792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793                                    struct buffer_page *head,
794                                    struct buffer_page *prev,
795                                    int old_flag)
796 {
797         return rb_head_page_set(cpu_buffer, head, prev,
798                                 old_flag, RB_PAGE_NORMAL);
799 }
800
801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802                                struct buffer_page **bpage)
803 {
804         struct list_head *p = rb_list_head((*bpage)->list.next);
805
806         *bpage = list_entry(p, struct buffer_page, list);
807 }
808
809 static struct buffer_page *
810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811 {
812         struct buffer_page *head;
813         struct buffer_page *page;
814         struct list_head *list;
815         int i;
816
817         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818                 return NULL;
819
820         /* sanity check */
821         list = cpu_buffer->pages;
822         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823                 return NULL;
824
825         page = head = cpu_buffer->head_page;
826         /*
827          * It is possible that the writer moves the header behind
828          * where we started, and we miss in one loop.
829          * A second loop should grab the header, but we'll do
830          * three loops just because I'm paranoid.
831          */
832         for (i = 0; i < 3; i++) {
833                 do {
834                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835                                 cpu_buffer->head_page = page;
836                                 return page;
837                         }
838                         rb_inc_page(cpu_buffer, &page);
839                 } while (page != head);
840         }
841
842         RB_WARN_ON(cpu_buffer, 1);
843
844         return NULL;
845 }
846
847 static int rb_head_page_replace(struct buffer_page *old,
848                                 struct buffer_page *new)
849 {
850         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851         unsigned long val;
852         unsigned long ret;
853
854         val = *ptr & ~RB_FLAG_MASK;
855         val |= RB_PAGE_HEAD;
856
857         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
858
859         return ret == val;
860 }
861
862 /*
863  * rb_tail_page_update - move the tail page forward
864  *
865  * Returns 1 if moved tail page, 0 if someone else did.
866  */
867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868                                struct buffer_page *tail_page,
869                                struct buffer_page *next_page)
870 {
871         struct buffer_page *old_tail;
872         unsigned long old_entries;
873         unsigned long old_write;
874         int ret = 0;
875
876         /*
877          * The tail page now needs to be moved forward.
878          *
879          * We need to reset the tail page, but without messing
880          * with possible erasing of data brought in by interrupts
881          * that have moved the tail page and are currently on it.
882          *
883          * We add a counter to the write field to denote this.
884          */
885         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887
888         /*
889          * Just make sure we have seen our old_write and synchronize
890          * with any interrupts that come in.
891          */
892         barrier();
893
894         /*
895          * If the tail page is still the same as what we think
896          * it is, then it is up to us to update the tail
897          * pointer.
898          */
899         if (tail_page == cpu_buffer->tail_page) {
900                 /* Zero the write counter */
901                 unsigned long val = old_write & ~RB_WRITE_MASK;
902                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
903
904                 /*
905                  * This will only succeed if an interrupt did
906                  * not come in and change it. In which case, we
907                  * do not want to modify it.
908                  *
909                  * We add (void) to let the compiler know that we do not care
910                  * about the return value of these functions. We use the
911                  * cmpxchg to only update if an interrupt did not already
912                  * do it for us. If the cmpxchg fails, we don't care.
913                  */
914                 (void)local_cmpxchg(&next_page->write, old_write, val);
915                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
916
917                 /*
918                  * No need to worry about races with clearing out the commit.
919                  * it only can increment when a commit takes place. But that
920                  * only happens in the outer most nested commit.
921                  */
922                 local_set(&next_page->page->commit, 0);
923
924                 old_tail = cmpxchg(&cpu_buffer->tail_page,
925                                    tail_page, next_page);
926
927                 if (old_tail == tail_page)
928                         ret = 1;
929         }
930
931         return ret;
932 }
933
934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935                           struct buffer_page *bpage)
936 {
937         unsigned long val = (unsigned long)bpage;
938
939         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940                 return 1;
941
942         return 0;
943 }
944
945 /**
946  * rb_check_list - make sure a pointer to a list has the last bits zero
947  */
948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949                          struct list_head *list)
950 {
951         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952                 return 1;
953         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954                 return 1;
955         return 0;
956 }
957
958 /**
959  * check_pages - integrity check of buffer pages
960  * @cpu_buffer: CPU buffer with pages to test
961  *
962  * As a safety measure we check to make sure the data pages have not
963  * been corrupted.
964  */
965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966 {
967         struct list_head *head = cpu_buffer->pages;
968         struct buffer_page *bpage, *tmp;
969
970         rb_head_page_deactivate(cpu_buffer);
971
972         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973                 return -1;
974         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975                 return -1;
976
977         if (rb_check_list(cpu_buffer, head))
978                 return -1;
979
980         list_for_each_entry_safe(bpage, tmp, head, list) {
981                 if (RB_WARN_ON(cpu_buffer,
982                                bpage->list.next->prev != &bpage->list))
983                         return -1;
984                 if (RB_WARN_ON(cpu_buffer,
985                                bpage->list.prev->next != &bpage->list))
986                         return -1;
987                 if (rb_check_list(cpu_buffer, &bpage->list))
988                         return -1;
989         }
990
991         rb_head_page_activate(cpu_buffer);
992
993         return 0;
994 }
995
996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997                              unsigned nr_pages)
998 {
999         struct buffer_page *bpage, *tmp;
1000         LIST_HEAD(pages);
1001         unsigned i;
1002
1003         WARN_ON(!nr_pages);
1004
1005         for (i = 0; i < nr_pages; i++) {
1006                 struct page *page;
1007
1008                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1009                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1010                 if (!bpage)
1011                         goto free_pages;
1012
1013                 rb_check_bpage(cpu_buffer, bpage);
1014
1015                 list_add(&bpage->list, &pages);
1016
1017                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1018                                         GFP_KERNEL, 0);
1019                 if (!page)
1020                         goto free_pages;
1021                 bpage->page = page_address(page);
1022                 rb_init_page(bpage->page);
1023         }
1024
1025         /*
1026          * The ring buffer page list is a circular list that does not
1027          * start and end with a list head. All page list items point to
1028          * other pages.
1029          */
1030         cpu_buffer->pages = pages.next;
1031         list_del(&pages);
1032
1033         rb_check_pages(cpu_buffer);
1034
1035         return 0;
1036
1037  free_pages:
1038         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1039                 list_del_init(&bpage->list);
1040                 free_buffer_page(bpage);
1041         }
1042         return -ENOMEM;
1043 }
1044
1045 static struct ring_buffer_per_cpu *
1046 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1047 {
1048         struct ring_buffer_per_cpu *cpu_buffer;
1049         struct buffer_page *bpage;
1050         struct page *page;
1051         int ret;
1052
1053         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1054                                   GFP_KERNEL, cpu_to_node(cpu));
1055         if (!cpu_buffer)
1056                 return NULL;
1057
1058         cpu_buffer->cpu = cpu;
1059         cpu_buffer->buffer = buffer;
1060         spin_lock_init(&cpu_buffer->reader_lock);
1061         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1062         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1063
1064         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1065                             GFP_KERNEL, cpu_to_node(cpu));
1066         if (!bpage)
1067                 goto fail_free_buffer;
1068
1069         rb_check_bpage(cpu_buffer, bpage);
1070
1071         cpu_buffer->reader_page = bpage;
1072         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073         if (!page)
1074                 goto fail_free_reader;
1075         bpage->page = page_address(page);
1076         rb_init_page(bpage->page);
1077
1078         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1079
1080         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1081         if (ret < 0)
1082                 goto fail_free_reader;
1083
1084         cpu_buffer->head_page
1085                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1086         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088         rb_head_page_activate(cpu_buffer);
1089
1090         return cpu_buffer;
1091
1092  fail_free_reader:
1093         free_buffer_page(cpu_buffer->reader_page);
1094
1095  fail_free_buffer:
1096         kfree(cpu_buffer);
1097         return NULL;
1098 }
1099
1100 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102         struct list_head *head = cpu_buffer->pages;
1103         struct buffer_page *bpage, *tmp;
1104
1105         free_buffer_page(cpu_buffer->reader_page);
1106
1107         rb_head_page_deactivate(cpu_buffer);
1108
1109         if (head) {
1110                 list_for_each_entry_safe(bpage, tmp, head, list) {
1111                         list_del_init(&bpage->list);
1112                         free_buffer_page(bpage);
1113                 }
1114                 bpage = list_entry(head, struct buffer_page, list);
1115                 free_buffer_page(bpage);
1116         }
1117
1118         kfree(cpu_buffer);
1119 }
1120
1121 #ifdef CONFIG_HOTPLUG_CPU
1122 static int rb_cpu_notify(struct notifier_block *self,
1123                          unsigned long action, void *hcpu);
1124 #endif
1125
1126 /**
1127  * ring_buffer_alloc - allocate a new ring_buffer
1128  * @size: the size in bytes per cpu that is needed.
1129  * @flags: attributes to set for the ring buffer.
1130  *
1131  * Currently the only flag that is available is the RB_FL_OVERWRITE
1132  * flag. This flag means that the buffer will overwrite old data
1133  * when the buffer wraps. If this flag is not set, the buffer will
1134  * drop data when the tail hits the head.
1135  */
1136 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137                                         struct lock_class_key *key)
1138 {
1139         struct ring_buffer *buffer;
1140         int bsize;
1141         int cpu;
1142
1143         /* keep it in its own cache line */
1144         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145                          GFP_KERNEL);
1146         if (!buffer)
1147                 return NULL;
1148
1149         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150                 goto fail_free_buffer;
1151
1152         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153         buffer->flags = flags;
1154         buffer->clock = trace_clock_local;
1155         buffer->reader_lock_key = key;
1156
1157         /* need at least two pages */
1158         if (buffer->pages < 2)
1159                 buffer->pages = 2;
1160
1161         /*
1162          * In case of non-hotplug cpu, if the ring-buffer is allocated
1163          * in early initcall, it will not be notified of secondary cpus.
1164          * In that off case, we need to allocate for all possible cpus.
1165          */
1166 #ifdef CONFIG_HOTPLUG_CPU
1167         get_online_cpus();
1168         cpumask_copy(buffer->cpumask, cpu_online_mask);
1169 #else
1170         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171 #endif
1172         buffer->cpus = nr_cpu_ids;
1173
1174         bsize = sizeof(void *) * nr_cpu_ids;
1175         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176                                   GFP_KERNEL);
1177         if (!buffer->buffers)
1178                 goto fail_free_cpumask;
1179
1180         for_each_buffer_cpu(buffer, cpu) {
1181                 buffer->buffers[cpu] =
1182                         rb_allocate_cpu_buffer(buffer, cpu);
1183                 if (!buffer->buffers[cpu])
1184                         goto fail_free_buffers;
1185         }
1186
1187 #ifdef CONFIG_HOTPLUG_CPU
1188         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189         buffer->cpu_notify.priority = 0;
1190         register_cpu_notifier(&buffer->cpu_notify);
1191 #endif
1192
1193         put_online_cpus();
1194         mutex_init(&buffer->mutex);
1195
1196         return buffer;
1197
1198  fail_free_buffers:
1199         for_each_buffer_cpu(buffer, cpu) {
1200                 if (buffer->buffers[cpu])
1201                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1202         }
1203         kfree(buffer->buffers);
1204
1205  fail_free_cpumask:
1206         free_cpumask_var(buffer->cpumask);
1207         put_online_cpus();
1208
1209  fail_free_buffer:
1210         kfree(buffer);
1211         return NULL;
1212 }
1213 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215 /**
1216  * ring_buffer_free - free a ring buffer.
1217  * @buffer: the buffer to free.
1218  */
1219 void
1220 ring_buffer_free(struct ring_buffer *buffer)
1221 {
1222         int cpu;
1223
1224         get_online_cpus();
1225
1226 #ifdef CONFIG_HOTPLUG_CPU
1227         unregister_cpu_notifier(&buffer->cpu_notify);
1228 #endif
1229
1230         for_each_buffer_cpu(buffer, cpu)
1231                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233         put_online_cpus();
1234
1235         kfree(buffer->buffers);
1236         free_cpumask_var(buffer->cpumask);
1237
1238         kfree(buffer);
1239 }
1240 EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242 void ring_buffer_set_clock(struct ring_buffer *buffer,
1243                            u64 (*clock)(void))
1244 {
1245         buffer->clock = clock;
1246 }
1247
1248 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250 static void
1251 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1252 {
1253         struct buffer_page *bpage;
1254         struct list_head *p;
1255         unsigned i;
1256
1257         spin_lock_irq(&cpu_buffer->reader_lock);
1258         rb_head_page_deactivate(cpu_buffer);
1259
1260         for (i = 0; i < nr_pages; i++) {
1261                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1262                         goto out;
1263                 p = cpu_buffer->pages->next;
1264                 bpage = list_entry(p, struct buffer_page, list);
1265                 list_del_init(&bpage->list);
1266                 free_buffer_page(bpage);
1267         }
1268         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1269                 goto out;
1270
1271         rb_reset_cpu(cpu_buffer);
1272         rb_check_pages(cpu_buffer);
1273
1274 out:
1275         spin_unlock_irq(&cpu_buffer->reader_lock);
1276 }
1277
1278 static void
1279 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1280                 struct list_head *pages, unsigned nr_pages)
1281 {
1282         struct buffer_page *bpage;
1283         struct list_head *p;
1284         unsigned i;
1285
1286         spin_lock_irq(&cpu_buffer->reader_lock);
1287         rb_head_page_deactivate(cpu_buffer);
1288
1289         for (i = 0; i < nr_pages; i++) {
1290                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1291                         goto out;
1292                 p = pages->next;
1293                 bpage = list_entry(p, struct buffer_page, list);
1294                 list_del_init(&bpage->list);
1295                 list_add_tail(&bpage->list, cpu_buffer->pages);
1296         }
1297         rb_reset_cpu(cpu_buffer);
1298         rb_check_pages(cpu_buffer);
1299
1300 out:
1301         spin_unlock_irq(&cpu_buffer->reader_lock);
1302 }
1303
1304 /**
1305  * ring_buffer_resize - resize the ring buffer
1306  * @buffer: the buffer to resize.
1307  * @size: the new size.
1308  *
1309  * Minimum size is 2 * BUF_PAGE_SIZE.
1310  *
1311  * Returns -1 on failure.
1312  */
1313 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1314 {
1315         struct ring_buffer_per_cpu *cpu_buffer;
1316         unsigned nr_pages, rm_pages, new_pages;
1317         struct buffer_page *bpage, *tmp;
1318         unsigned long buffer_size;
1319         LIST_HEAD(pages);
1320         int i, cpu;
1321
1322         /*
1323          * Always succeed at resizing a non-existent buffer:
1324          */
1325         if (!buffer)
1326                 return size;
1327
1328         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1329         size *= BUF_PAGE_SIZE;
1330         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1331
1332         /* we need a minimum of two pages */
1333         if (size < BUF_PAGE_SIZE * 2)
1334                 size = BUF_PAGE_SIZE * 2;
1335
1336         if (size == buffer_size)
1337                 return size;
1338
1339         atomic_inc(&buffer->record_disabled);
1340
1341         /* Make sure all writers are done with this buffer. */
1342         synchronize_sched();
1343
1344         mutex_lock(&buffer->mutex);
1345         get_online_cpus();
1346
1347         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1348
1349         if (size < buffer_size) {
1350
1351                 /* easy case, just free pages */
1352                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1353                         goto out_fail;
1354
1355                 rm_pages = buffer->pages - nr_pages;
1356
1357                 for_each_buffer_cpu(buffer, cpu) {
1358                         cpu_buffer = buffer->buffers[cpu];
1359                         rb_remove_pages(cpu_buffer, rm_pages);
1360                 }
1361                 goto out;
1362         }
1363
1364         /*
1365          * This is a bit more difficult. We only want to add pages
1366          * when we can allocate enough for all CPUs. We do this
1367          * by allocating all the pages and storing them on a local
1368          * link list. If we succeed in our allocation, then we
1369          * add these pages to the cpu_buffers. Otherwise we just free
1370          * them all and return -ENOMEM;
1371          */
1372         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1373                 goto out_fail;
1374
1375         new_pages = nr_pages - buffer->pages;
1376
1377         for_each_buffer_cpu(buffer, cpu) {
1378                 for (i = 0; i < new_pages; i++) {
1379                         struct page *page;
1380                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1381                                                   cache_line_size()),
1382                                             GFP_KERNEL, cpu_to_node(cpu));
1383                         if (!bpage)
1384                                 goto free_pages;
1385                         list_add(&bpage->list, &pages);
1386                         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1387                         if (!page)
1388                                 goto free_pages;
1389                         bpage->page = page_address(page);
1390                         rb_init_page(bpage->page);
1391                 }
1392         }
1393
1394         for_each_buffer_cpu(buffer, cpu) {
1395                 cpu_buffer = buffer->buffers[cpu];
1396                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1397         }
1398
1399         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1400                 goto out_fail;
1401
1402  out:
1403         buffer->pages = nr_pages;
1404         put_online_cpus();
1405         mutex_unlock(&buffer->mutex);
1406
1407         atomic_dec(&buffer->record_disabled);
1408
1409         return size;
1410
1411  free_pages:
1412         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1413                 list_del_init(&bpage->list);
1414                 free_buffer_page(bpage);
1415         }
1416         put_online_cpus();
1417         mutex_unlock(&buffer->mutex);
1418         atomic_dec(&buffer->record_disabled);
1419         return -ENOMEM;
1420
1421         /*
1422          * Something went totally wrong, and we are too paranoid
1423          * to even clean up the mess.
1424          */
1425  out_fail:
1426         put_online_cpus();
1427         mutex_unlock(&buffer->mutex);
1428         atomic_dec(&buffer->record_disabled);
1429         return -1;
1430 }
1431 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1432
1433 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1434 {
1435         mutex_lock(&buffer->mutex);
1436         if (val)
1437                 buffer->flags |= RB_FL_OVERWRITE;
1438         else
1439                 buffer->flags &= ~RB_FL_OVERWRITE;
1440         mutex_unlock(&buffer->mutex);
1441 }
1442 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1443
1444 static inline void *
1445 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1446 {
1447         return bpage->data + index;
1448 }
1449
1450 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1451 {
1452         return bpage->page->data + index;
1453 }
1454
1455 static inline struct ring_buffer_event *
1456 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458         return __rb_page_index(cpu_buffer->reader_page,
1459                                cpu_buffer->reader_page->read);
1460 }
1461
1462 static inline struct ring_buffer_event *
1463 rb_iter_head_event(struct ring_buffer_iter *iter)
1464 {
1465         return __rb_page_index(iter->head_page, iter->head);
1466 }
1467
1468 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1469 {
1470         return local_read(&bpage->write) & RB_WRITE_MASK;
1471 }
1472
1473 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1474 {
1475         return local_read(&bpage->page->commit);
1476 }
1477
1478 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1479 {
1480         return local_read(&bpage->entries) & RB_WRITE_MASK;
1481 }
1482
1483 /* Size is determined by what has been committed */
1484 static inline unsigned rb_page_size(struct buffer_page *bpage)
1485 {
1486         return rb_page_commit(bpage);
1487 }
1488
1489 static inline unsigned
1490 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1491 {
1492         return rb_page_commit(cpu_buffer->commit_page);
1493 }
1494
1495 static inline unsigned
1496 rb_event_index(struct ring_buffer_event *event)
1497 {
1498         unsigned long addr = (unsigned long)event;
1499
1500         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1501 }
1502
1503 static inline int
1504 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1505                    struct ring_buffer_event *event)
1506 {
1507         unsigned long addr = (unsigned long)event;
1508         unsigned long index;
1509
1510         index = rb_event_index(event);
1511         addr &= PAGE_MASK;
1512
1513         return cpu_buffer->commit_page->page == (void *)addr &&
1514                 rb_commit_index(cpu_buffer) == index;
1515 }
1516
1517 static void
1518 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1519 {
1520         unsigned long max_count;
1521
1522         /*
1523          * We only race with interrupts and NMIs on this CPU.
1524          * If we own the commit event, then we can commit
1525          * all others that interrupted us, since the interruptions
1526          * are in stack format (they finish before they come
1527          * back to us). This allows us to do a simple loop to
1528          * assign the commit to the tail.
1529          */
1530  again:
1531         max_count = cpu_buffer->buffer->pages * 100;
1532
1533         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1534                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1535                         return;
1536                 if (RB_WARN_ON(cpu_buffer,
1537                                rb_is_reader_page(cpu_buffer->tail_page)))
1538                         return;
1539                 local_set(&cpu_buffer->commit_page->page->commit,
1540                           rb_page_write(cpu_buffer->commit_page));
1541                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1542                 cpu_buffer->write_stamp =
1543                         cpu_buffer->commit_page->page->time_stamp;
1544                 /* add barrier to keep gcc from optimizing too much */
1545                 barrier();
1546         }
1547         while (rb_commit_index(cpu_buffer) !=
1548                rb_page_write(cpu_buffer->commit_page)) {
1549
1550                 local_set(&cpu_buffer->commit_page->page->commit,
1551                           rb_page_write(cpu_buffer->commit_page));
1552                 RB_WARN_ON(cpu_buffer,
1553                            local_read(&cpu_buffer->commit_page->page->commit) &
1554                            ~RB_WRITE_MASK);
1555                 barrier();
1556         }
1557
1558         /* again, keep gcc from optimizing */
1559         barrier();
1560
1561         /*
1562          * If an interrupt came in just after the first while loop
1563          * and pushed the tail page forward, we will be left with
1564          * a dangling commit that will never go forward.
1565          */
1566         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1567                 goto again;
1568 }
1569
1570 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1571 {
1572         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1573         cpu_buffer->reader_page->read = 0;
1574 }
1575
1576 static void rb_inc_iter(struct ring_buffer_iter *iter)
1577 {
1578         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1579
1580         /*
1581          * The iterator could be on the reader page (it starts there).
1582          * But the head could have moved, since the reader was
1583          * found. Check for this case and assign the iterator
1584          * to the head page instead of next.
1585          */
1586         if (iter->head_page == cpu_buffer->reader_page)
1587                 iter->head_page = rb_set_head_page(cpu_buffer);
1588         else
1589                 rb_inc_page(cpu_buffer, &iter->head_page);
1590
1591         iter->read_stamp = iter->head_page->page->time_stamp;
1592         iter->head = 0;
1593 }
1594
1595 /* Slow path, do not inline */
1596 static noinline struct ring_buffer_event *
1597 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1598 {
1599         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1600
1601         /* Not the first event on the page? */
1602         if (rb_event_index(event)) {
1603                 event->time_delta = delta & TS_MASK;
1604                 event->array[0] = delta >> TS_SHIFT;
1605         } else {
1606                 /* nope, just zero it */
1607                 event->time_delta = 0;
1608                 event->array[0] = 0;
1609         }
1610
1611         return skip_time_extend(event);
1612 }
1613
1614 /**
1615  * ring_buffer_update_event - update event type and data
1616  * @event: the even to update
1617  * @type: the type of event
1618  * @length: the size of the event field in the ring buffer
1619  *
1620  * Update the type and data fields of the event. The length
1621  * is the actual size that is written to the ring buffer,
1622  * and with this, we can determine what to place into the
1623  * data field.
1624  */
1625 static void
1626 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1627                 struct ring_buffer_event *event, unsigned length,
1628                 int add_timestamp, u64 delta)
1629 {
1630         /* Only a commit updates the timestamp */
1631         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1632                 delta = 0;
1633
1634         /*
1635          * If we need to add a timestamp, then we
1636          * add it to the start of the resevered space.
1637          */
1638         if (unlikely(add_timestamp)) {
1639                 event = rb_add_time_stamp(event, delta);
1640                 length -= RB_LEN_TIME_EXTEND;
1641                 delta = 0;
1642         }
1643
1644         event->time_delta = delta;
1645         length -= RB_EVNT_HDR_SIZE;
1646         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1647                 event->type_len = 0;
1648                 event->array[0] = length;
1649         } else
1650                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1651 }
1652
1653 /*
1654  * rb_handle_head_page - writer hit the head page
1655  *
1656  * Returns: +1 to retry page
1657  *           0 to continue
1658  *          -1 on error
1659  */
1660 static int
1661 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1662                     struct buffer_page *tail_page,
1663                     struct buffer_page *next_page)
1664 {
1665         struct buffer_page *new_head;
1666         int entries;
1667         int type;
1668         int ret;
1669
1670         entries = rb_page_entries(next_page);
1671
1672         /*
1673          * The hard part is here. We need to move the head
1674          * forward, and protect against both readers on
1675          * other CPUs and writers coming in via interrupts.
1676          */
1677         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1678                                        RB_PAGE_HEAD);
1679
1680         /*
1681          * type can be one of four:
1682          *  NORMAL - an interrupt already moved it for us
1683          *  HEAD   - we are the first to get here.
1684          *  UPDATE - we are the interrupt interrupting
1685          *           a current move.
1686          *  MOVED  - a reader on another CPU moved the next
1687          *           pointer to its reader page. Give up
1688          *           and try again.
1689          */
1690
1691         switch (type) {
1692         case RB_PAGE_HEAD:
1693                 /*
1694                  * We changed the head to UPDATE, thus
1695                  * it is our responsibility to update
1696                  * the counters.
1697                  */
1698                 local_add(entries, &cpu_buffer->overrun);
1699
1700                 /*
1701                  * The entries will be zeroed out when we move the
1702                  * tail page.
1703                  */
1704
1705                 /* still more to do */
1706                 break;
1707
1708         case RB_PAGE_UPDATE:
1709                 /*
1710                  * This is an interrupt that interrupt the
1711                  * previous update. Still more to do.
1712                  */
1713                 break;
1714         case RB_PAGE_NORMAL:
1715                 /*
1716                  * An interrupt came in before the update
1717                  * and processed this for us.
1718                  * Nothing left to do.
1719                  */
1720                 return 1;
1721         case RB_PAGE_MOVED:
1722                 /*
1723                  * The reader is on another CPU and just did
1724                  * a swap with our next_page.
1725                  * Try again.
1726                  */
1727                 return 1;
1728         default:
1729                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1730                 return -1;
1731         }
1732
1733         /*
1734          * Now that we are here, the old head pointer is
1735          * set to UPDATE. This will keep the reader from
1736          * swapping the head page with the reader page.
1737          * The reader (on another CPU) will spin till
1738          * we are finished.
1739          *
1740          * We just need to protect against interrupts
1741          * doing the job. We will set the next pointer
1742          * to HEAD. After that, we set the old pointer
1743          * to NORMAL, but only if it was HEAD before.
1744          * otherwise we are an interrupt, and only
1745          * want the outer most commit to reset it.
1746          */
1747         new_head = next_page;
1748         rb_inc_page(cpu_buffer, &new_head);
1749
1750         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1751                                     RB_PAGE_NORMAL);
1752
1753         /*
1754          * Valid returns are:
1755          *  HEAD   - an interrupt came in and already set it.
1756          *  NORMAL - One of two things:
1757          *            1) We really set it.
1758          *            2) A bunch of interrupts came in and moved
1759          *               the page forward again.
1760          */
1761         switch (ret) {
1762         case RB_PAGE_HEAD:
1763         case RB_PAGE_NORMAL:
1764                 /* OK */
1765                 break;
1766         default:
1767                 RB_WARN_ON(cpu_buffer, 1);
1768                 return -1;
1769         }
1770
1771         /*
1772          * It is possible that an interrupt came in,
1773          * set the head up, then more interrupts came in
1774          * and moved it again. When we get back here,
1775          * the page would have been set to NORMAL but we
1776          * just set it back to HEAD.
1777          *
1778          * How do you detect this? Well, if that happened
1779          * the tail page would have moved.
1780          */
1781         if (ret == RB_PAGE_NORMAL) {
1782                 /*
1783                  * If the tail had moved passed next, then we need
1784                  * to reset the pointer.
1785                  */
1786                 if (cpu_buffer->tail_page != tail_page &&
1787                     cpu_buffer->tail_page != next_page)
1788                         rb_head_page_set_normal(cpu_buffer, new_head,
1789                                                 next_page,
1790                                                 RB_PAGE_HEAD);
1791         }
1792
1793         /*
1794          * If this was the outer most commit (the one that
1795          * changed the original pointer from HEAD to UPDATE),
1796          * then it is up to us to reset it to NORMAL.
1797          */
1798         if (type == RB_PAGE_HEAD) {
1799                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1800                                               tail_page,
1801                                               RB_PAGE_UPDATE);
1802                 if (RB_WARN_ON(cpu_buffer,
1803                                ret != RB_PAGE_UPDATE))
1804                         return -1;
1805         }
1806
1807         return 0;
1808 }
1809
1810 static unsigned rb_calculate_event_length(unsigned length)
1811 {
1812         struct ring_buffer_event event; /* Used only for sizeof array */
1813
1814         /* zero length can cause confusions */
1815         if (!length)
1816                 length = 1;
1817
1818         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1819                 length += sizeof(event.array[0]);
1820
1821         length += RB_EVNT_HDR_SIZE;
1822         length = ALIGN(length, RB_ARCH_ALIGNMENT);
1823
1824         return length;
1825 }
1826
1827 static inline void
1828 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1829               struct buffer_page *tail_page,
1830               unsigned long tail, unsigned long length)
1831 {
1832         struct ring_buffer_event *event;
1833
1834         /*
1835          * Only the event that crossed the page boundary
1836          * must fill the old tail_page with padding.
1837          */
1838         if (tail >= BUF_PAGE_SIZE) {
1839                 /*
1840                  * If the page was filled, then we still need
1841                  * to update the real_end. Reset it to zero
1842                  * and the reader will ignore it.
1843                  */
1844                 if (tail == BUF_PAGE_SIZE)
1845                         tail_page->real_end = 0;
1846
1847                 local_sub(length, &tail_page->write);
1848                 return;
1849         }
1850
1851         event = __rb_page_index(tail_page, tail);
1852         kmemcheck_annotate_bitfield(event, bitfield);
1853
1854         /*
1855          * Save the original length to the meta data.
1856          * This will be used by the reader to add lost event
1857          * counter.
1858          */
1859         tail_page->real_end = tail;
1860
1861         /*
1862          * If this event is bigger than the minimum size, then
1863          * we need to be careful that we don't subtract the
1864          * write counter enough to allow another writer to slip
1865          * in on this page.
1866          * We put in a discarded commit instead, to make sure
1867          * that this space is not used again.
1868          *
1869          * If we are less than the minimum size, we don't need to
1870          * worry about it.
1871          */
1872         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1873                 /* No room for any events */
1874
1875                 /* Mark the rest of the page with padding */
1876                 rb_event_set_padding(event);
1877
1878                 /* Set the write back to the previous setting */
1879                 local_sub(length, &tail_page->write);
1880                 return;
1881         }
1882
1883         /* Put in a discarded event */
1884         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1885         event->type_len = RINGBUF_TYPE_PADDING;
1886         /* time delta must be non zero */
1887         event->time_delta = 1;
1888
1889         /* Set write to end of buffer */
1890         length = (tail + length) - BUF_PAGE_SIZE;
1891         local_sub(length, &tail_page->write);
1892 }
1893
1894 /*
1895  * This is the slow path, force gcc not to inline it.
1896  */
1897 static noinline struct ring_buffer_event *
1898 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1899              unsigned long length, unsigned long tail,
1900              struct buffer_page *tail_page, u64 ts)
1901 {
1902         struct buffer_page *commit_page = cpu_buffer->commit_page;
1903         struct ring_buffer *buffer = cpu_buffer->buffer;
1904         struct buffer_page *next_page;
1905         int ret;
1906
1907         next_page = tail_page;
1908
1909         rb_inc_page(cpu_buffer, &next_page);
1910
1911         /*
1912          * If for some reason, we had an interrupt storm that made
1913          * it all the way around the buffer, bail, and warn
1914          * about it.
1915          */
1916         if (unlikely(next_page == commit_page)) {
1917                 local_inc(&cpu_buffer->commit_overrun);
1918                 goto out_reset;
1919         }
1920
1921         /*
1922          * This is where the fun begins!
1923          *
1924          * We are fighting against races between a reader that
1925          * could be on another CPU trying to swap its reader
1926          * page with the buffer head.
1927          *
1928          * We are also fighting against interrupts coming in and
1929          * moving the head or tail on us as well.
1930          *
1931          * If the next page is the head page then we have filled
1932          * the buffer, unless the commit page is still on the
1933          * reader page.
1934          */
1935         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1936
1937                 /*
1938                  * If the commit is not on the reader page, then
1939                  * move the header page.
1940                  */
1941                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1942                         /*
1943                          * If we are not in overwrite mode,
1944                          * this is easy, just stop here.
1945                          */
1946                         if (!(buffer->flags & RB_FL_OVERWRITE))
1947                                 goto out_reset;
1948
1949                         ret = rb_handle_head_page(cpu_buffer,
1950                                                   tail_page,
1951                                                   next_page);
1952                         if (ret < 0)
1953                                 goto out_reset;
1954                         if (ret)
1955                                 goto out_again;
1956                 } else {
1957                         /*
1958                          * We need to be careful here too. The
1959                          * commit page could still be on the reader
1960                          * page. We could have a small buffer, and
1961                          * have filled up the buffer with events
1962                          * from interrupts and such, and wrapped.
1963                          *
1964                          * Note, if the tail page is also the on the
1965                          * reader_page, we let it move out.
1966                          */
1967                         if (unlikely((cpu_buffer->commit_page !=
1968                                       cpu_buffer->tail_page) &&
1969                                      (cpu_buffer->commit_page ==
1970                                       cpu_buffer->reader_page))) {
1971                                 local_inc(&cpu_buffer->commit_overrun);
1972                                 goto out_reset;
1973                         }
1974                 }
1975         }
1976
1977         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1978         if (ret) {
1979                 /*
1980                  * Nested commits always have zero deltas, so
1981                  * just reread the time stamp
1982                  */
1983                 ts = rb_time_stamp(buffer);
1984                 next_page->page->time_stamp = ts;
1985         }
1986
1987  out_again:
1988
1989         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1990
1991         /* fail and let the caller try again */
1992         return ERR_PTR(-EAGAIN);
1993
1994  out_reset:
1995         /* reset write */
1996         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1997
1998         return NULL;
1999 }
2000
2001 static struct ring_buffer_event *
2002 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2003                   unsigned long length, u64 ts,
2004                   u64 delta, int add_timestamp)
2005 {
2006         struct buffer_page *tail_page;
2007         struct ring_buffer_event *event;
2008         unsigned long tail, write;
2009
2010         /*
2011          * If the time delta since the last event is too big to
2012          * hold in the time field of the event, then we append a
2013          * TIME EXTEND event ahead of the data event.
2014          */
2015         if (unlikely(add_timestamp))
2016                 length += RB_LEN_TIME_EXTEND;
2017
2018         tail_page = cpu_buffer->tail_page;
2019         write = local_add_return(length, &tail_page->write);
2020
2021         /* set write to only the index of the write */
2022         write &= RB_WRITE_MASK;
2023         tail = write - length;
2024
2025         /* See if we shot pass the end of this buffer page */
2026         if (unlikely(write > BUF_PAGE_SIZE))
2027                 return rb_move_tail(cpu_buffer, length, tail,
2028                                     tail_page, ts);
2029
2030         /* We reserved something on the buffer */
2031
2032         event = __rb_page_index(tail_page, tail);
2033         kmemcheck_annotate_bitfield(event, bitfield);
2034         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2035
2036         local_inc(&tail_page->entries);
2037
2038         /*
2039          * If this is the first commit on the page, then update
2040          * its timestamp.
2041          */
2042         if (!tail)
2043                 tail_page->page->time_stamp = ts;
2044
2045         return event;
2046 }
2047
2048 static inline int
2049 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2050                   struct ring_buffer_event *event)
2051 {
2052         unsigned long new_index, old_index;
2053         struct buffer_page *bpage;
2054         unsigned long index;
2055         unsigned long addr;
2056
2057         new_index = rb_event_index(event);
2058         old_index = new_index + rb_event_ts_length(event);
2059         addr = (unsigned long)event;
2060         addr &= PAGE_MASK;
2061
2062         bpage = cpu_buffer->tail_page;
2063
2064         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2065                 unsigned long write_mask =
2066                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2067                 /*
2068                  * This is on the tail page. It is possible that
2069                  * a write could come in and move the tail page
2070                  * and write to the next page. That is fine
2071                  * because we just shorten what is on this page.
2072                  */
2073                 old_index += write_mask;
2074                 new_index += write_mask;
2075                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2076                 if (index == old_index)
2077                         return 1;
2078         }
2079
2080         /* could not discard */
2081         return 0;
2082 }
2083
2084 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2085 {
2086         local_inc(&cpu_buffer->committing);
2087         local_inc(&cpu_buffer->commits);
2088 }
2089
2090 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2091 {
2092         unsigned long commits;
2093
2094         if (RB_WARN_ON(cpu_buffer,
2095                        !local_read(&cpu_buffer->committing)))
2096                 return;
2097
2098  again:
2099         commits = local_read(&cpu_buffer->commits);
2100         /* synchronize with interrupts */
2101         barrier();
2102         if (local_read(&cpu_buffer->committing) == 1)
2103                 rb_set_commit_to_write(cpu_buffer);
2104
2105         local_dec(&cpu_buffer->committing);
2106
2107         /* synchronize with interrupts */
2108         barrier();
2109
2110         /*
2111          * Need to account for interrupts coming in between the
2112          * updating of the commit page and the clearing of the
2113          * committing counter.
2114          */
2115         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2116             !local_read(&cpu_buffer->committing)) {
2117                 local_inc(&cpu_buffer->committing);
2118                 goto again;
2119         }
2120 }
2121
2122 static struct ring_buffer_event *
2123 rb_reserve_next_event(struct ring_buffer *buffer,
2124                       struct ring_buffer_per_cpu *cpu_buffer,
2125                       unsigned long length)
2126 {
2127         struct ring_buffer_event *event;
2128         u64 ts, delta;
2129         int nr_loops = 0;
2130         int add_timestamp;
2131         u64 diff;
2132
2133         rb_start_commit(cpu_buffer);
2134
2135 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2136         /*
2137          * Due to the ability to swap a cpu buffer from a buffer
2138          * it is possible it was swapped before we committed.
2139          * (committing stops a swap). We check for it here and
2140          * if it happened, we have to fail the write.
2141          */
2142         barrier();
2143         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2144                 local_dec(&cpu_buffer->committing);
2145                 local_dec(&cpu_buffer->commits);
2146                 return NULL;
2147         }
2148 #endif
2149
2150         length = rb_calculate_event_length(length);
2151  again:
2152         add_timestamp = 0;
2153         delta = 0;
2154
2155         /*
2156          * We allow for interrupts to reenter here and do a trace.
2157          * If one does, it will cause this original code to loop
2158          * back here. Even with heavy interrupts happening, this
2159          * should only happen a few times in a row. If this happens
2160          * 1000 times in a row, there must be either an interrupt
2161          * storm or we have something buggy.
2162          * Bail!
2163          */
2164         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2165                 goto out_fail;
2166
2167         ts = rb_time_stamp(cpu_buffer->buffer);
2168         diff = ts - cpu_buffer->write_stamp;
2169
2170         /* make sure this diff is calculated here */
2171         barrier();
2172
2173         /* Did the write stamp get updated already? */
2174         if (likely(ts >= cpu_buffer->write_stamp)) {
2175                 delta = diff;
2176                 if (unlikely(test_time_stamp(delta))) {
2177                         int local_clock_stable = 1;
2178 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2179                         local_clock_stable = sched_clock_stable;
2180 #endif
2181                         WARN_ONCE(delta > (1ULL << 59),
2182                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2183                                   (unsigned long long)delta,
2184                                   (unsigned long long)ts,
2185                                   (unsigned long long)cpu_buffer->write_stamp,
2186                                   local_clock_stable ? "" :
2187                                   "If you just came from a suspend/resume,\n"
2188                                   "please switch to the trace global clock:\n"
2189                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2190                         add_timestamp = 1;
2191                 }
2192         }
2193
2194         event = __rb_reserve_next(cpu_buffer, length, ts,
2195                                   delta, add_timestamp);
2196         if (unlikely(PTR_ERR(event) == -EAGAIN))
2197                 goto again;
2198
2199         if (!event)
2200                 goto out_fail;
2201
2202         return event;
2203
2204  out_fail:
2205         rb_end_commit(cpu_buffer);
2206         return NULL;
2207 }
2208
2209 #ifdef CONFIG_TRACING
2210
2211 #define TRACE_RECURSIVE_DEPTH 16
2212
2213 /* Keep this code out of the fast path cache */
2214 static noinline void trace_recursive_fail(void)
2215 {
2216         /* Disable all tracing before we do anything else */
2217         tracing_off_permanent();
2218
2219         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2220                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2221                     trace_recursion_buffer(),
2222                     hardirq_count() >> HARDIRQ_SHIFT,
2223                     softirq_count() >> SOFTIRQ_SHIFT,
2224                     in_nmi());
2225
2226         WARN_ON_ONCE(1);
2227 }
2228
2229 static inline int trace_recursive_lock(void)
2230 {
2231         trace_recursion_inc();
2232
2233         if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2234                 return 0;
2235
2236         trace_recursive_fail();
2237
2238         return -1;
2239 }
2240
2241 static inline void trace_recursive_unlock(void)
2242 {
2243         WARN_ON_ONCE(!trace_recursion_buffer());
2244
2245         trace_recursion_dec();
2246 }
2247
2248 #else
2249
2250 #define trace_recursive_lock()          (0)
2251 #define trace_recursive_unlock()        do { } while (0)
2252
2253 #endif
2254
2255 /**
2256  * ring_buffer_lock_reserve - reserve a part of the buffer
2257  * @buffer: the ring buffer to reserve from
2258  * @length: the length of the data to reserve (excluding event header)
2259  *
2260  * Returns a reseverd event on the ring buffer to copy directly to.
2261  * The user of this interface will need to get the body to write into
2262  * and can use the ring_buffer_event_data() interface.
2263  *
2264  * The length is the length of the data needed, not the event length
2265  * which also includes the event header.
2266  *
2267  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2268  * If NULL is returned, then nothing has been allocated or locked.
2269  */
2270 struct ring_buffer_event *
2271 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2272 {
2273         struct ring_buffer_per_cpu *cpu_buffer;
2274         struct ring_buffer_event *event;
2275         int cpu;
2276
2277         if (ring_buffer_flags != RB_BUFFERS_ON)
2278                 return NULL;
2279
2280         /* If we are tracing schedule, we don't want to recurse */
2281         preempt_disable_notrace();
2282
2283         if (atomic_read(&buffer->record_disabled))
2284                 goto out_nocheck;
2285
2286         if (trace_recursive_lock())
2287                 goto out_nocheck;
2288
2289         cpu = raw_smp_processor_id();
2290
2291         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2292                 goto out;
2293
2294         cpu_buffer = buffer->buffers[cpu];
2295
2296         if (atomic_read(&cpu_buffer->record_disabled))
2297                 goto out;
2298
2299         if (length > BUF_MAX_DATA_SIZE)
2300                 goto out;
2301
2302         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2303         if (!event)
2304                 goto out;
2305
2306         return event;
2307
2308  out:
2309         trace_recursive_unlock();
2310
2311  out_nocheck:
2312         preempt_enable_notrace();
2313         return NULL;
2314 }
2315 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2316
2317 static void
2318 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2319                       struct ring_buffer_event *event)
2320 {
2321         u64 delta;
2322
2323         /*
2324          * The event first in the commit queue updates the
2325          * time stamp.
2326          */
2327         if (rb_event_is_commit(cpu_buffer, event)) {
2328                 /*
2329                  * A commit event that is first on a page
2330                  * updates the write timestamp with the page stamp
2331                  */
2332                 if (!rb_event_index(event))
2333                         cpu_buffer->write_stamp =
2334                                 cpu_buffer->commit_page->page->time_stamp;
2335                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2336                         delta = event->array[0];
2337                         delta <<= TS_SHIFT;
2338                         delta += event->time_delta;
2339                         cpu_buffer->write_stamp += delta;
2340                 } else
2341                         cpu_buffer->write_stamp += event->time_delta;
2342         }
2343 }
2344
2345 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2346                       struct ring_buffer_event *event)
2347 {
2348         local_inc(&cpu_buffer->entries);
2349         rb_update_write_stamp(cpu_buffer, event);
2350         rb_end_commit(cpu_buffer);
2351 }
2352
2353 /**
2354  * ring_buffer_unlock_commit - commit a reserved
2355  * @buffer: The buffer to commit to
2356  * @event: The event pointer to commit.
2357  *
2358  * This commits the data to the ring buffer, and releases any locks held.
2359  *
2360  * Must be paired with ring_buffer_lock_reserve.
2361  */
2362 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2363                               struct ring_buffer_event *event)
2364 {
2365         struct ring_buffer_per_cpu *cpu_buffer;
2366         int cpu = raw_smp_processor_id();
2367
2368         cpu_buffer = buffer->buffers[cpu];
2369
2370         rb_commit(cpu_buffer, event);
2371
2372         trace_recursive_unlock();
2373
2374         preempt_enable_notrace();
2375
2376         return 0;
2377 }
2378 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2379
2380 static inline void rb_event_discard(struct ring_buffer_event *event)
2381 {
2382         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2383                 event = skip_time_extend(event);
2384
2385         /* array[0] holds the actual length for the discarded event */
2386         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2387         event->type_len = RINGBUF_TYPE_PADDING;
2388         /* time delta must be non zero */
2389         if (!event->time_delta)
2390                 event->time_delta = 1;
2391 }
2392
2393 /*
2394  * Decrement the entries to the page that an event is on.
2395  * The event does not even need to exist, only the pointer
2396  * to the page it is on. This may only be called before the commit
2397  * takes place.
2398  */
2399 static inline void
2400 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2401                    struct ring_buffer_event *event)
2402 {
2403         unsigned long addr = (unsigned long)event;
2404         struct buffer_page *bpage = cpu_buffer->commit_page;
2405         struct buffer_page *start;
2406
2407         addr &= PAGE_MASK;
2408
2409         /* Do the likely case first */
2410         if (likely(bpage->page == (void *)addr)) {
2411                 local_dec(&bpage->entries);
2412                 return;
2413         }
2414
2415         /*
2416          * Because the commit page may be on the reader page we
2417          * start with the next page and check the end loop there.
2418          */
2419         rb_inc_page(cpu_buffer, &bpage);
2420         start = bpage;
2421         do {
2422                 if (bpage->page == (void *)addr) {
2423                         local_dec(&bpage->entries);
2424                         return;
2425                 }
2426                 rb_inc_page(cpu_buffer, &bpage);
2427         } while (bpage != start);
2428
2429         /* commit not part of this buffer?? */
2430         RB_WARN_ON(cpu_buffer, 1);
2431 }
2432
2433 /**
2434  * ring_buffer_commit_discard - discard an event that has not been committed
2435  * @buffer: the ring buffer
2436  * @event: non committed event to discard
2437  *
2438  * Sometimes an event that is in the ring buffer needs to be ignored.
2439  * This function lets the user discard an event in the ring buffer
2440  * and then that event will not be read later.
2441  *
2442  * This function only works if it is called before the the item has been
2443  * committed. It will try to free the event from the ring buffer
2444  * if another event has not been added behind it.
2445  *
2446  * If another event has been added behind it, it will set the event
2447  * up as discarded, and perform the commit.
2448  *
2449  * If this function is called, do not call ring_buffer_unlock_commit on
2450  * the event.
2451  */
2452 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2453                                 struct ring_buffer_event *event)
2454 {
2455         struct ring_buffer_per_cpu *cpu_buffer;
2456         int cpu;
2457
2458         /* The event is discarded regardless */
2459         rb_event_discard(event);
2460
2461         cpu = smp_processor_id();
2462         cpu_buffer = buffer->buffers[cpu];
2463
2464         /*
2465          * This must only be called if the event has not been
2466          * committed yet. Thus we can assume that preemption
2467          * is still disabled.
2468          */
2469         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2470
2471         rb_decrement_entry(cpu_buffer, event);
2472         if (rb_try_to_discard(cpu_buffer, event))
2473                 goto out;
2474
2475         /*
2476          * The commit is still visible by the reader, so we
2477          * must still update the timestamp.
2478          */
2479         rb_update_write_stamp(cpu_buffer, event);
2480  out:
2481         rb_end_commit(cpu_buffer);
2482
2483         trace_recursive_unlock();
2484
2485         preempt_enable_notrace();
2486
2487 }
2488 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2489
2490 /**
2491  * ring_buffer_write - write data to the buffer without reserving
2492  * @buffer: The ring buffer to write to.
2493  * @length: The length of the data being written (excluding the event header)
2494  * @data: The data to write to the buffer.
2495  *
2496  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2497  * one function. If you already have the data to write to the buffer, it
2498  * may be easier to simply call this function.
2499  *
2500  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2501  * and not the length of the event which would hold the header.
2502  */
2503 int ring_buffer_write(struct ring_buffer *buffer,
2504                         unsigned long length,
2505                         void *data)
2506 {
2507         struct ring_buffer_per_cpu *cpu_buffer;
2508         struct ring_buffer_event *event;
2509         void *body;
2510         int ret = -EBUSY;
2511         int cpu;
2512
2513         if (ring_buffer_flags != RB_BUFFERS_ON)
2514                 return -EBUSY;
2515
2516         preempt_disable_notrace();
2517
2518         if (atomic_read(&buffer->record_disabled))
2519                 goto out;
2520
2521         cpu = raw_smp_processor_id();
2522
2523         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2524                 goto out;
2525
2526         cpu_buffer = buffer->buffers[cpu];
2527
2528         if (atomic_read(&cpu_buffer->record_disabled))
2529                 goto out;
2530
2531         if (length > BUF_MAX_DATA_SIZE)
2532                 goto out;
2533
2534         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2535         if (!event)
2536                 goto out;
2537
2538         body = rb_event_data(event);
2539
2540         memcpy(body, data, length);
2541
2542         rb_commit(cpu_buffer, event);
2543
2544         ret = 0;
2545  out:
2546         preempt_enable_notrace();
2547
2548         return ret;
2549 }
2550 EXPORT_SYMBOL_GPL(ring_buffer_write);
2551
2552 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2553 {
2554         struct buffer_page *reader = cpu_buffer->reader_page;
2555         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2556         struct buffer_page *commit = cpu_buffer->commit_page;
2557
2558         /* In case of error, head will be NULL */
2559         if (unlikely(!head))
2560                 return 1;
2561
2562         return reader->read == rb_page_commit(reader) &&
2563                 (commit == reader ||
2564                  (commit == head &&
2565                   head->read == rb_page_commit(commit)));
2566 }
2567
2568 /**
2569  * ring_buffer_record_disable - stop all writes into the buffer
2570  * @buffer: The ring buffer to stop writes to.
2571  *
2572  * This prevents all writes to the buffer. Any attempt to write
2573  * to the buffer after this will fail and return NULL.
2574  *
2575  * The caller should call synchronize_sched() after this.
2576  */
2577 void ring_buffer_record_disable(struct ring_buffer *buffer)
2578 {
2579         atomic_inc(&buffer->record_disabled);
2580 }
2581 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2582
2583 /**
2584  * ring_buffer_record_enable - enable writes to the buffer
2585  * @buffer: The ring buffer to enable writes
2586  *
2587  * Note, multiple disables will need the same number of enables
2588  * to truly enable the writing (much like preempt_disable).
2589  */
2590 void ring_buffer_record_enable(struct ring_buffer *buffer)
2591 {
2592         atomic_dec(&buffer->record_disabled);
2593 }
2594 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2595
2596 /**
2597  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2598  * @buffer: The ring buffer to stop writes to.
2599  * @cpu: The CPU buffer to stop
2600  *
2601  * This prevents all writes to the buffer. Any attempt to write
2602  * to the buffer after this will fail and return NULL.
2603  *
2604  * The caller should call synchronize_sched() after this.
2605  */
2606 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2607 {
2608         struct ring_buffer_per_cpu *cpu_buffer;
2609
2610         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2611                 return;
2612
2613         cpu_buffer = buffer->buffers[cpu];
2614         atomic_inc(&cpu_buffer->record_disabled);
2615 }
2616 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2617
2618 /**
2619  * ring_buffer_record_enable_cpu - enable writes to the buffer
2620  * @buffer: The ring buffer to enable writes
2621  * @cpu: The CPU to enable.
2622  *
2623  * Note, multiple disables will need the same number of enables
2624  * to truly enable the writing (much like preempt_disable).
2625  */
2626 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2627 {
2628         struct ring_buffer_per_cpu *cpu_buffer;
2629
2630         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2631                 return;
2632
2633         cpu_buffer = buffer->buffers[cpu];
2634         atomic_dec(&cpu_buffer->record_disabled);
2635 }
2636 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2637
2638 /*
2639  * The total entries in the ring buffer is the running counter
2640  * of entries entered into the ring buffer, minus the sum of
2641  * the entries read from the ring buffer and the number of
2642  * entries that were overwritten.
2643  */
2644 static inline unsigned long
2645 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2646 {
2647         return local_read(&cpu_buffer->entries) -
2648                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2649 }
2650
2651 /**
2652  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2653  * @buffer: The ring buffer
2654  * @cpu: The per CPU buffer to get the entries from.
2655  */
2656 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2657 {
2658         struct ring_buffer_per_cpu *cpu_buffer;
2659
2660         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2661                 return 0;
2662
2663         cpu_buffer = buffer->buffers[cpu];
2664
2665         return rb_num_of_entries(cpu_buffer);
2666 }
2667 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2668
2669 /**
2670  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2671  * @buffer: The ring buffer
2672  * @cpu: The per CPU buffer to get the number of overruns from
2673  */
2674 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2675 {
2676         struct ring_buffer_per_cpu *cpu_buffer;
2677         unsigned long ret;
2678
2679         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2680                 return 0;
2681
2682         cpu_buffer = buffer->buffers[cpu];
2683         ret = local_read(&cpu_buffer->overrun);
2684
2685         return ret;
2686 }
2687 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2688
2689 /**
2690  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2691  * @buffer: The ring buffer
2692  * @cpu: The per CPU buffer to get the number of overruns from
2693  */
2694 unsigned long
2695 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2696 {
2697         struct ring_buffer_per_cpu *cpu_buffer;
2698         unsigned long ret;
2699
2700         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2701                 return 0;
2702
2703         cpu_buffer = buffer->buffers[cpu];
2704         ret = local_read(&cpu_buffer->commit_overrun);
2705
2706         return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2709
2710 /**
2711  * ring_buffer_entries - get the number of entries in a buffer
2712  * @buffer: The ring buffer
2713  *
2714  * Returns the total number of entries in the ring buffer
2715  * (all CPU entries)
2716  */
2717 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2718 {
2719         struct ring_buffer_per_cpu *cpu_buffer;
2720         unsigned long entries = 0;
2721         int cpu;
2722
2723         /* if you care about this being correct, lock the buffer */
2724         for_each_buffer_cpu(buffer, cpu) {
2725                 cpu_buffer = buffer->buffers[cpu];
2726                 entries += rb_num_of_entries(cpu_buffer);
2727         }
2728
2729         return entries;
2730 }
2731 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2732
2733 /**
2734  * ring_buffer_overruns - get the number of overruns in buffer
2735  * @buffer: The ring buffer
2736  *
2737  * Returns the total number of overruns in the ring buffer
2738  * (all CPU entries)
2739  */
2740 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2741 {
2742         struct ring_buffer_per_cpu *cpu_buffer;
2743         unsigned long overruns = 0;
2744         int cpu;
2745
2746         /* if you care about this being correct, lock the buffer */
2747         for_each_buffer_cpu(buffer, cpu) {
2748                 cpu_buffer = buffer->buffers[cpu];
2749                 overruns += local_read(&cpu_buffer->overrun);
2750         }
2751
2752         return overruns;
2753 }
2754 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2755
2756 static void rb_iter_reset(struct ring_buffer_iter *iter)
2757 {
2758         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2759
2760         /* Iterator usage is expected to have record disabled */
2761         if (list_empty(&cpu_buffer->reader_page->list)) {
2762                 iter->head_page = rb_set_head_page(cpu_buffer);
2763                 if (unlikely(!iter->head_page))
2764                         return;
2765                 iter->head = iter->head_page->read;
2766         } else {
2767                 iter->head_page = cpu_buffer->reader_page;
2768                 iter->head = cpu_buffer->reader_page->read;
2769         }
2770         if (iter->head)
2771                 iter->read_stamp = cpu_buffer->read_stamp;
2772         else
2773                 iter->read_stamp = iter->head_page->page->time_stamp;
2774         iter->cache_reader_page = cpu_buffer->reader_page;
2775         iter->cache_read = cpu_buffer->read;
2776 }
2777
2778 /**
2779  * ring_buffer_iter_reset - reset an iterator
2780  * @iter: The iterator to reset
2781  *
2782  * Resets the iterator, so that it will start from the beginning
2783  * again.
2784  */
2785 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2786 {
2787         struct ring_buffer_per_cpu *cpu_buffer;
2788         unsigned long flags;
2789
2790         if (!iter)
2791                 return;
2792
2793         cpu_buffer = iter->cpu_buffer;
2794
2795         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2796         rb_iter_reset(iter);
2797         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2798 }
2799 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2800
2801 /**
2802  * ring_buffer_iter_empty - check if an iterator has no more to read
2803  * @iter: The iterator to check
2804  */
2805 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2806 {
2807         struct ring_buffer_per_cpu *cpu_buffer;
2808
2809         cpu_buffer = iter->cpu_buffer;
2810
2811         return iter->head_page == cpu_buffer->commit_page &&
2812                 iter->head == rb_commit_index(cpu_buffer);
2813 }
2814 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2815
2816 static void
2817 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2818                      struct ring_buffer_event *event)
2819 {
2820         u64 delta;
2821
2822         switch (event->type_len) {
2823         case RINGBUF_TYPE_PADDING:
2824                 return;
2825
2826         case RINGBUF_TYPE_TIME_EXTEND:
2827                 delta = event->array[0];
2828                 delta <<= TS_SHIFT;
2829                 delta += event->time_delta;
2830                 cpu_buffer->read_stamp += delta;
2831                 return;
2832
2833         case RINGBUF_TYPE_TIME_STAMP:
2834                 /* FIXME: not implemented */
2835                 return;
2836
2837         case RINGBUF_TYPE_DATA:
2838                 cpu_buffer->read_stamp += event->time_delta;
2839                 return;
2840
2841         default:
2842                 BUG();
2843         }
2844         return;
2845 }
2846
2847 static void
2848 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2849                           struct ring_buffer_event *event)
2850 {
2851         u64 delta;
2852
2853         switch (event->type_len) {
2854         case RINGBUF_TYPE_PADDING:
2855                 return;
2856
2857         case RINGBUF_TYPE_TIME_EXTEND:
2858                 delta = event->array[0];
2859                 delta <<= TS_SHIFT;
2860                 delta += event->time_delta;
2861                 iter->read_stamp += delta;
2862                 return;
2863
2864         case RINGBUF_TYPE_TIME_STAMP:
2865                 /* FIXME: not implemented */
2866                 return;
2867
2868         case RINGBUF_TYPE_DATA:
2869                 iter->read_stamp += event->time_delta;
2870                 return;
2871
2872         default:
2873                 BUG();
2874         }
2875         return;
2876 }
2877
2878 static struct buffer_page *
2879 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2880 {
2881         struct buffer_page *reader = NULL;
2882         unsigned long overwrite;
2883         unsigned long flags;
2884         int nr_loops = 0;
2885         int ret;
2886
2887         local_irq_save(flags);
2888         arch_spin_lock(&cpu_buffer->lock);
2889
2890  again:
2891         /*
2892          * This should normally only loop twice. But because the
2893          * start of the reader inserts an empty page, it causes
2894          * a case where we will loop three times. There should be no
2895          * reason to loop four times (that I know of).
2896          */
2897         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2898                 reader = NULL;
2899                 goto out;
2900         }
2901
2902         reader = cpu_buffer->reader_page;
2903
2904         /* If there's more to read, return this page */
2905         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2906                 goto out;
2907
2908         /* Never should we have an index greater than the size */
2909         if (RB_WARN_ON(cpu_buffer,
2910                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2911                 goto out;
2912
2913         /* check if we caught up to the tail */
2914         reader = NULL;
2915         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2916                 goto out;
2917
2918         /*
2919          * Reset the reader page to size zero.
2920          */
2921         local_set(&cpu_buffer->reader_page->write, 0);
2922         local_set(&cpu_buffer->reader_page->entries, 0);
2923         local_set(&cpu_buffer->reader_page->page->commit, 0);
2924         cpu_buffer->reader_page->real_end = 0;
2925
2926  spin:
2927         /*
2928          * Splice the empty reader page into the list around the head.
2929          */
2930         reader = rb_set_head_page(cpu_buffer);
2931         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2932         cpu_buffer->reader_page->list.prev = reader->list.prev;
2933
2934         /*
2935          * cpu_buffer->pages just needs to point to the buffer, it
2936          *  has no specific buffer page to point to. Lets move it out
2937          *  of our way so we don't accidentally swap it.
2938          */
2939         cpu_buffer->pages = reader->list.prev;
2940
2941         /* The reader page will be pointing to the new head */
2942         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2943
2944         /*
2945          * We want to make sure we read the overruns after we set up our
2946          * pointers to the next object. The writer side does a
2947          * cmpxchg to cross pages which acts as the mb on the writer
2948          * side. Note, the reader will constantly fail the swap
2949          * while the writer is updating the pointers, so this
2950          * guarantees that the overwrite recorded here is the one we
2951          * want to compare with the last_overrun.
2952          */
2953         smp_mb();
2954         overwrite = local_read(&(cpu_buffer->overrun));
2955
2956         /*
2957          * Here's the tricky part.
2958          *
2959          * We need to move the pointer past the header page.
2960          * But we can only do that if a writer is not currently
2961          * moving it. The page before the header page has the
2962          * flag bit '1' set if it is pointing to the page we want.
2963          * but if the writer is in the process of moving it
2964          * than it will be '2' or already moved '0'.
2965          */
2966
2967         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2968
2969         /*
2970          * If we did not convert it, then we must try again.
2971          */
2972         if (!ret)
2973                 goto spin;
2974
2975         /*
2976          * Yeah! We succeeded in replacing the page.
2977          *
2978          * Now make the new head point back to the reader page.
2979          */
2980         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2981         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2982
2983         /* Finally update the reader page to the new head */
2984         cpu_buffer->reader_page = reader;
2985         rb_reset_reader_page(cpu_buffer);
2986
2987         if (overwrite != cpu_buffer->last_overrun) {
2988                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2989                 cpu_buffer->last_overrun = overwrite;
2990         }
2991
2992         goto again;
2993
2994  out:
2995         arch_spin_unlock(&cpu_buffer->lock);
2996         local_irq_restore(flags);
2997
2998         return reader;
2999 }
3000
3001 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3002 {
3003         struct ring_buffer_event *event;
3004         struct buffer_page *reader;
3005         unsigned length;
3006
3007         reader = rb_get_reader_page(cpu_buffer);
3008
3009         /* This function should not be called when buffer is empty */
3010         if (RB_WARN_ON(cpu_buffer, !reader))
3011                 return;
3012
3013         event = rb_reader_event(cpu_buffer);
3014
3015         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3016                 cpu_buffer->read++;
3017
3018         rb_update_read_stamp(cpu_buffer, event);
3019
3020         length = rb_event_length(event);
3021         cpu_buffer->reader_page->read += length;
3022 }
3023
3024 static void rb_advance_iter(struct ring_buffer_iter *iter)
3025 {
3026         struct ring_buffer_per_cpu *cpu_buffer;
3027         struct ring_buffer_event *event;
3028         unsigned length;
3029
3030         cpu_buffer = iter->cpu_buffer;
3031
3032         /*
3033          * Check if we are at the end of the buffer.
3034          */
3035         if (iter->head >= rb_page_size(iter->head_page)) {
3036                 /* discarded commits can make the page empty */
3037                 if (iter->head_page == cpu_buffer->commit_page)
3038                         return;
3039                 rb_inc_iter(iter);
3040                 return;
3041         }
3042
3043         event = rb_iter_head_event(iter);
3044
3045         length = rb_event_length(event);
3046
3047         /*
3048          * This should not be called to advance the header if we are
3049          * at the tail of the buffer.
3050          */
3051         if (RB_WARN_ON(cpu_buffer,
3052                        (iter->head_page == cpu_buffer->commit_page) &&
3053                        (iter->head + length > rb_commit_index(cpu_buffer))))
3054                 return;
3055
3056         rb_update_iter_read_stamp(iter, event);
3057
3058         iter->head += length;
3059
3060         /* check for end of page padding */
3061         if ((iter->head >= rb_page_size(iter->head_page)) &&
3062             (iter->head_page != cpu_buffer->commit_page))
3063                 rb_advance_iter(iter);
3064 }
3065
3066 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3067 {
3068         return cpu_buffer->lost_events;
3069 }
3070
3071 static struct ring_buffer_event *
3072 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3073                unsigned long *lost_events)
3074 {
3075         struct ring_buffer_event *event;
3076         struct buffer_page *reader;
3077         int nr_loops = 0;
3078
3079  again:
3080         /*
3081          * We repeat when a time extend is encountered.
3082          * Since the time extend is always attached to a data event,
3083          * we should never loop more than once.
3084          * (We never hit the following condition more than twice).
3085          */
3086         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3087                 return NULL;
3088
3089         reader = rb_get_reader_page(cpu_buffer);
3090         if (!reader)
3091                 return NULL;
3092
3093         event = rb_reader_event(cpu_buffer);
3094
3095         switch (event->type_len) {
3096         case RINGBUF_TYPE_PADDING:
3097                 if (rb_null_event(event))
3098                         RB_WARN_ON(cpu_buffer, 1);
3099                 /*
3100                  * Because the writer could be discarding every
3101                  * event it creates (which would probably be bad)
3102                  * if we were to go back to "again" then we may never
3103                  * catch up, and will trigger the warn on, or lock
3104                  * the box. Return the padding, and we will release
3105                  * the current locks, and try again.
3106                  */
3107                 return event;
3108
3109         case RINGBUF_TYPE_TIME_EXTEND:
3110                 /* Internal data, OK to advance */
3111                 rb_advance_reader(cpu_buffer);
3112                 goto again;
3113
3114         case RINGBUF_TYPE_TIME_STAMP:
3115                 /* FIXME: not implemented */
3116                 rb_advance_reader(cpu_buffer);
3117                 goto again;
3118
3119         case RINGBUF_TYPE_DATA:
3120                 if (ts) {
3121                         *ts = cpu_buffer->read_stamp + event->time_delta;
3122                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3123                                                          cpu_buffer->cpu, ts);
3124                 }
3125                 if (lost_events)
3126                         *lost_events = rb_lost_events(cpu_buffer);
3127                 return event;
3128
3129         default:
3130                 BUG();
3131         }
3132
3133         return NULL;
3134 }
3135 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3136
3137 static struct ring_buffer_event *
3138 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3139 {
3140         struct ring_buffer *buffer;
3141         struct ring_buffer_per_cpu *cpu_buffer;
3142         struct ring_buffer_event *event;
3143         int nr_loops = 0;
3144
3145         cpu_buffer = iter->cpu_buffer;
3146         buffer = cpu_buffer->buffer;
3147
3148         /*
3149          * Check if someone performed a consuming read to
3150          * the buffer. A consuming read invalidates the iterator
3151          * and we need to reset the iterator in this case.
3152          */
3153         if (unlikely(iter->cache_read != cpu_buffer->read ||
3154                      iter->cache_reader_page != cpu_buffer->reader_page))
3155                 rb_iter_reset(iter);
3156
3157  again:
3158         if (ring_buffer_iter_empty(iter))
3159                 return NULL;
3160
3161         /*
3162          * We repeat when a time extend is encountered.
3163          * Since the time extend is always attached to a data event,
3164          * we should never loop more than once.
3165          * (We never hit the following condition more than twice).
3166          */
3167         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3168                 return NULL;
3169
3170         if (rb_per_cpu_empty(cpu_buffer))
3171                 return NULL;
3172
3173         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3174                 rb_inc_iter(iter);
3175                 goto again;
3176         }
3177
3178         event = rb_iter_head_event(iter);
3179
3180         switch (event->type_len) {
3181         case RINGBUF_TYPE_PADDING:
3182                 if (rb_null_event(event)) {
3183                         rb_inc_iter(iter);
3184                         goto again;
3185                 }
3186                 rb_advance_iter(iter);
3187                 return event;
3188
3189         case RINGBUF_TYPE_TIME_EXTEND:
3190                 /* Internal data, OK to advance */
3191                 rb_advance_iter(iter);
3192                 goto again;
3193
3194         case RINGBUF_TYPE_TIME_STAMP:
3195                 /* FIXME: not implemented */
3196                 rb_advance_iter(iter);
3197                 goto again;
3198
3199         case RINGBUF_TYPE_DATA:
3200                 if (ts) {
3201                         *ts = iter->read_stamp + event->time_delta;
3202                         ring_buffer_normalize_time_stamp(buffer,
3203                                                          cpu_buffer->cpu, ts);
3204                 }
3205                 return event;
3206
3207         default:
3208                 BUG();
3209         }
3210
3211         return NULL;
3212 }
3213 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3214
3215 static inline int rb_ok_to_lock(void)
3216 {
3217         /*
3218          * If an NMI die dumps out the content of the ring buffer
3219          * do not grab locks. We also permanently disable the ring
3220          * buffer too. A one time deal is all you get from reading
3221          * the ring buffer from an NMI.
3222          */
3223         if (likely(!in_nmi()))
3224                 return 1;
3225
3226         tracing_off_permanent();
3227         return 0;
3228 }
3229
3230 /**
3231  * ring_buffer_peek - peek at the next event to be read
3232  * @buffer: The ring buffer to read
3233  * @cpu: The cpu to peak at
3234  * @ts: The timestamp counter of this event.
3235  * @lost_events: a variable to store if events were lost (may be NULL)
3236  *
3237  * This will return the event that will be read next, but does
3238  * not consume the data.
3239  */
3240 struct ring_buffer_event *
3241 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3242                  unsigned long *lost_events)
3243 {
3244         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3245         struct ring_buffer_event *event;
3246         unsigned long flags;
3247         int dolock;
3248
3249         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3250                 return NULL;
3251
3252         dolock = rb_ok_to_lock();
3253  again:
3254         local_irq_save(flags);
3255         if (dolock)
3256                 spin_lock(&cpu_buffer->reader_lock);
3257         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3258         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3259                 rb_advance_reader(cpu_buffer);
3260         if (dolock)
3261                 spin_unlock(&cpu_buffer->reader_lock);
3262         local_irq_restore(flags);
3263
3264         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3265                 goto again;
3266
3267         return event;
3268 }
3269
3270 /**
3271  * ring_buffer_iter_peek - peek at the next event to be read
3272  * @iter: The ring buffer iterator
3273  * @ts: The timestamp counter of this event.
3274  *
3275  * This will return the event that will be read next, but does
3276  * not increment the iterator.
3277  */
3278 struct ring_buffer_event *
3279 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3280 {
3281         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3282         struct ring_buffer_event *event;
3283         unsigned long flags;
3284
3285  again:
3286         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3287         event = rb_iter_peek(iter, ts);
3288         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3289
3290         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3291                 goto again;
3292
3293         return event;
3294 }
3295
3296 /**
3297  * ring_buffer_consume - return an event and consume it
3298  * @buffer: The ring buffer to get the next event from
3299  * @cpu: the cpu to read the buffer from
3300  * @ts: a variable to store the timestamp (may be NULL)
3301  * @lost_events: a variable to store if events were lost (may be NULL)
3302  *
3303  * Returns the next event in the ring buffer, and that event is consumed.
3304  * Meaning, that sequential reads will keep returning a different event,
3305  * and eventually empty the ring buffer if the producer is slower.
3306  */
3307 struct ring_buffer_event *
3308 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3309                     unsigned long *lost_events)
3310 {
3311         struct ring_buffer_per_cpu *cpu_buffer;
3312         struct ring_buffer_event *event = NULL;
3313         unsigned long flags;
3314         int dolock;
3315
3316         dolock = rb_ok_to_lock();
3317
3318  again:
3319         /* might be called in atomic */
3320         preempt_disable();
3321
3322         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3323                 goto out;
3324
3325         cpu_buffer = buffer->buffers[cpu];
3326         local_irq_save(flags);
3327         if (dolock)
3328                 spin_lock(&cpu_buffer->reader_lock);
3329
3330         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3331         if (event) {
3332                 cpu_buffer->lost_events = 0;
3333                 rb_advance_reader(cpu_buffer);
3334         }
3335
3336         if (dolock)
3337                 spin_unlock(&cpu_buffer->reader_lock);
3338         local_irq_restore(flags);
3339
3340  out:
3341         preempt_enable();
3342
3343         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3344                 goto again;
3345
3346         return event;
3347 }
3348 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3349
3350 /**
3351  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3352  * @buffer: The ring buffer to read from
3353  * @cpu: The cpu buffer to iterate over
3354  *
3355  * This performs the initial preparations necessary to iterate
3356  * through the buffer.  Memory is allocated, buffer recording
3357  * is disabled, and the iterator pointer is returned to the caller.
3358  *
3359  * Disabling buffer recordng prevents the reading from being
3360  * corrupted. This is not a consuming read, so a producer is not
3361  * expected.
3362  *
3363  * After a sequence of ring_buffer_read_prepare calls, the user is
3364  * expected to make at least one call to ring_buffer_prepare_sync.
3365  * Afterwards, ring_buffer_read_start is invoked to get things going
3366  * for real.
3367  *
3368  * This overall must be paired with ring_buffer_finish.
3369  */
3370 struct ring_buffer_iter *
3371 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3372 {
3373         struct ring_buffer_per_cpu *cpu_buffer;
3374         struct ring_buffer_iter *iter;
3375
3376         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3377                 return NULL;
3378
3379         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3380         if (!iter)
3381                 return NULL;
3382
3383         cpu_buffer = buffer->buffers[cpu];
3384
3385         iter->cpu_buffer = cpu_buffer;
3386
3387         atomic_inc(&cpu_buffer->record_disabled);
3388
3389         return iter;
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3392
3393 /**
3394  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3395  *
3396  * All previously invoked ring_buffer_read_prepare calls to prepare
3397  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3398  * calls on those iterators are allowed.
3399  */
3400 void
3401 ring_buffer_read_prepare_sync(void)
3402 {
3403         synchronize_sched();
3404 }
3405 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3406
3407 /**
3408  * ring_buffer_read_start - start a non consuming read of the buffer
3409  * @iter: The iterator returned by ring_buffer_read_prepare
3410  *
3411  * This finalizes the startup of an iteration through the buffer.
3412  * The iterator comes from a call to ring_buffer_read_prepare and
3413  * an intervening ring_buffer_read_prepare_sync must have been
3414  * performed.
3415  *
3416  * Must be paired with ring_buffer_finish.
3417  */
3418 void
3419 ring_buffer_read_start(struct ring_buffer_iter *iter)
3420 {
3421         struct ring_buffer_per_cpu *cpu_buffer;
3422         unsigned long flags;
3423
3424         if (!iter)
3425                 return;
3426
3427         cpu_buffer = iter->cpu_buffer;
3428
3429         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3430         arch_spin_lock(&cpu_buffer->lock);
3431         rb_iter_reset(iter);
3432         arch_spin_unlock(&cpu_buffer->lock);
3433         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3434 }
3435 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3436
3437 /**
3438  * ring_buffer_finish - finish reading the iterator of the buffer
3439  * @iter: The iterator retrieved by ring_buffer_start
3440  *
3441  * This re-enables the recording to the buffer, and frees the
3442  * iterator.
3443  */
3444 void
3445 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3446 {
3447         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3448
3449         atomic_dec(&cpu_buffer->record_disabled);
3450         kfree(iter);
3451 }
3452 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3453
3454 /**
3455  * ring_buffer_read - read the next item in the ring buffer by the iterator
3456  * @iter: The ring buffer iterator
3457  * @ts: The time stamp of the event read.
3458  *
3459  * This reads the next event in the ring buffer and increments the iterator.
3460  */
3461 struct ring_buffer_event *
3462 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3463 {
3464         struct ring_buffer_event *event;
3465         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3466         unsigned long flags;
3467
3468         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3469  again:
3470         event = rb_iter_peek(iter, ts);
3471         if (!event)
3472                 goto out;
3473
3474         if (event->type_len == RINGBUF_TYPE_PADDING)
3475                 goto again;
3476
3477         rb_advance_iter(iter);
3478  out:
3479         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3480
3481         return event;
3482 }
3483 EXPORT_SYMBOL_GPL(ring_buffer_read);
3484
3485 /**
3486  * ring_buffer_size - return the size of the ring buffer (in bytes)
3487  * @buffer: The ring buffer.
3488  */
3489 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3490 {
3491         return BUF_PAGE_SIZE * buffer->pages;
3492 }
3493 EXPORT_SYMBOL_GPL(ring_buffer_size);
3494
3495 static void
3496 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3497 {
3498         rb_head_page_deactivate(cpu_buffer);
3499
3500         cpu_buffer->head_page
3501                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3502         local_set(&cpu_buffer->head_page->write, 0);
3503         local_set(&cpu_buffer->head_page->entries, 0);
3504         local_set(&cpu_buffer->head_page->page->commit, 0);
3505
3506         cpu_buffer->head_page->read = 0;
3507
3508         cpu_buffer->tail_page = cpu_buffer->head_page;
3509         cpu_buffer->commit_page = cpu_buffer->head_page;
3510
3511         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3512         local_set(&cpu_buffer->reader_page->write, 0);
3513         local_set(&cpu_buffer->reader_page->entries, 0);
3514         local_set(&cpu_buffer->reader_page->page->commit, 0);
3515         cpu_buffer->reader_page->read = 0;
3516
3517         local_set(&cpu_buffer->commit_overrun, 0);
3518         local_set(&cpu_buffer->overrun, 0);
3519         local_set(&cpu_buffer->entries, 0);
3520         local_set(&cpu_buffer->committing, 0);
3521         local_set(&cpu_buffer->commits, 0);
3522         cpu_buffer->read = 0;
3523
3524         cpu_buffer->write_stamp = 0;
3525         cpu_buffer->read_stamp = 0;
3526
3527         cpu_buffer->lost_events = 0;
3528         cpu_buffer->last_overrun = 0;
3529
3530         rb_head_page_activate(cpu_buffer);
3531 }
3532
3533 /**
3534  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3535  * @buffer: The ring buffer to reset a per cpu buffer of
3536  * @cpu: The CPU buffer to be reset
3537  */
3538 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3539 {
3540         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3541         unsigned long flags;
3542
3543         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3544                 return;
3545
3546         atomic_inc(&cpu_buffer->record_disabled);
3547
3548         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3549
3550         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3551                 goto out;
3552
3553         arch_spin_lock(&cpu_buffer->lock);
3554
3555         rb_reset_cpu(cpu_buffer);
3556
3557         arch_spin_unlock(&cpu_buffer->lock);
3558
3559  out:
3560         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3561
3562         atomic_dec(&cpu_buffer->record_disabled);
3563 }
3564 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3565
3566 /**
3567  * ring_buffer_reset - reset a ring buffer
3568  * @buffer: The ring buffer to reset all cpu buffers
3569  */
3570 void ring_buffer_reset(struct ring_buffer *buffer)
3571 {
3572         int cpu;
3573
3574         for_each_buffer_cpu(buffer, cpu)
3575                 ring_buffer_reset_cpu(buffer, cpu);
3576 }
3577 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3578
3579 /**
3580  * rind_buffer_empty - is the ring buffer empty?
3581  * @buffer: The ring buffer to test
3582  */
3583 int ring_buffer_empty(struct ring_buffer *buffer)
3584 {
3585         struct ring_buffer_per_cpu *cpu_buffer;
3586         unsigned long flags;
3587         int dolock;
3588         int cpu;
3589         int ret;
3590
3591         dolock = rb_ok_to_lock();
3592
3593         /* yes this is racy, but if you don't like the race, lock the buffer */
3594         for_each_buffer_cpu(buffer, cpu) {
3595                 cpu_buffer = buffer->buffers[cpu];
3596                 local_irq_save(flags);
3597                 if (dolock)
3598                         spin_lock(&cpu_buffer->reader_lock);
3599                 ret = rb_per_cpu_empty(cpu_buffer);
3600                 if (dolock)
3601                         spin_unlock(&cpu_buffer->reader_lock);
3602                 local_irq_restore(flags);
3603
3604                 if (!ret)
3605                         return 0;
3606         }
3607
3608         return 1;
3609 }
3610 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3611
3612 /**
3613  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3614  * @buffer: The ring buffer
3615  * @cpu: The CPU buffer to test
3616  */
3617 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3618 {
3619         struct ring_buffer_per_cpu *cpu_buffer;
3620         unsigned long flags;
3621         int dolock;
3622         int ret;
3623
3624         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3625                 return 1;
3626
3627         dolock = rb_ok_to_lock();
3628
3629         cpu_buffer = buffer->buffers[cpu];
3630         local_irq_save(flags);
3631         if (dolock)
3632                 spin_lock(&cpu_buffer->reader_lock);
3633         ret = rb_per_cpu_empty(cpu_buffer);
3634         if (dolock)
3635                 spin_unlock(&cpu_buffer->reader_lock);
3636         local_irq_restore(flags);
3637
3638         return ret;
3639 }
3640 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3641
3642 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3643 /**
3644  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3645  * @buffer_a: One buffer to swap with
3646  * @buffer_b: The other buffer to swap with
3647  *
3648  * This function is useful for tracers that want to take a "snapshot"
3649  * of a CPU buffer and has another back up buffer lying around.
3650  * it is expected that the tracer handles the cpu buffer not being
3651  * used at the moment.
3652  */
3653 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3654                          struct ring_buffer *buffer_b, int cpu)
3655 {
3656         struct ring_buffer_per_cpu *cpu_buffer_a;
3657         struct ring_buffer_per_cpu *cpu_buffer_b;
3658         int ret = -EINVAL;
3659
3660         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3661             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3662                 goto out;
3663
3664         /* At least make sure the two buffers are somewhat the same */
3665         if (buffer_a->pages != buffer_b->pages)
3666                 goto out;
3667
3668         ret = -EAGAIN;
3669
3670         if (ring_buffer_flags != RB_BUFFERS_ON)
3671                 goto out;
3672
3673         if (atomic_read(&buffer_a->record_disabled))
3674                 goto out;
3675
3676         if (atomic_read(&buffer_b->record_disabled))
3677                 goto out;
3678
3679         cpu_buffer_a = buffer_a->buffers[cpu];
3680         cpu_buffer_b = buffer_b->buffers[cpu];
3681
3682         if (atomic_read(&cpu_buffer_a->record_disabled))
3683                 goto out;
3684
3685         if (atomic_read(&cpu_buffer_b->record_disabled))
3686                 goto out;
3687
3688         /*
3689          * We can't do a synchronize_sched here because this
3690          * function can be called in atomic context.
3691          * Normally this will be called from the same CPU as cpu.
3692          * If not it's up to the caller to protect this.
3693          */
3694         atomic_inc(&cpu_buffer_a->record_disabled);
3695         atomic_inc(&cpu_buffer_b->record_disabled);
3696
3697         ret = -EBUSY;
3698         if (local_read(&cpu_buffer_a->committing))
3699                 goto out_dec;
3700         if (local_read(&cpu_buffer_b->committing))
3701                 goto out_dec;
3702
3703         buffer_a->buffers[cpu] = cpu_buffer_b;
3704         buffer_b->buffers[cpu] = cpu_buffer_a;
3705
3706         cpu_buffer_b->buffer = buffer_a;
3707         cpu_buffer_a->buffer = buffer_b;
3708
3709         ret = 0;
3710
3711 out_dec:
3712         atomic_dec(&cpu_buffer_a->record_disabled);
3713         atomic_dec(&cpu_buffer_b->record_disabled);
3714 out:
3715         return ret;
3716 }
3717 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3718 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3719
3720 /**
3721  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3722  * @buffer: the buffer to allocate for.
3723  *
3724  * This function is used in conjunction with ring_buffer_read_page.
3725  * When reading a full page from the ring buffer, these functions
3726  * can be used to speed up the process. The calling function should
3727  * allocate a few pages first with this function. Then when it
3728  * needs to get pages from the ring buffer, it passes the result
3729  * of this function into ring_buffer_read_page, which will swap
3730  * the page that was allocated, with the read page of the buffer.
3731  *
3732  * Returns:
3733  *  The page allocated, or NULL on error.
3734  */
3735 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3736 {
3737         struct buffer_data_page *bpage;
3738         struct page *page;
3739
3740         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
3741         if (!page)
3742                 return NULL;
3743
3744         bpage = page_address(page);
3745
3746         rb_init_page(bpage);
3747
3748         return bpage;
3749 }
3750 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3751
3752 /**
3753  * ring_buffer_free_read_page - free an allocated read page
3754  * @buffer: the buffer the page was allocate for
3755  * @data: the page to free
3756  *
3757  * Free a page allocated from ring_buffer_alloc_read_page.
3758  */
3759 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3760 {
3761         free_page((unsigned long)data);
3762 }
3763 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3764
3765 /**
3766  * ring_buffer_read_page - extract a page from the ring buffer
3767  * @buffer: buffer to extract from
3768  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3769  * @len: amount to extract
3770  * @cpu: the cpu of the buffer to extract
3771  * @full: should the extraction only happen when the page is full.
3772  *
3773  * This function will pull out a page from the ring buffer and consume it.
3774  * @data_page must be the address of the variable that was returned
3775  * from ring_buffer_alloc_read_page. This is because the page might be used
3776  * to swap with a page in the ring buffer.
3777  *
3778  * for example:
3779  *      rpage = ring_buffer_alloc_read_page(buffer);
3780  *      if (!rpage)
3781  *              return error;
3782  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3783  *      if (ret >= 0)
3784  *              process_page(rpage, ret);
3785  *
3786  * When @full is set, the function will not return true unless
3787  * the writer is off the reader page.
3788  *
3789  * Note: it is up to the calling functions to handle sleeps and wakeups.
3790  *  The ring buffer can be used anywhere in the kernel and can not
3791  *  blindly call wake_up. The layer that uses the ring buffer must be
3792  *  responsible for that.
3793  *
3794  * Returns:
3795  *  >=0 if data has been transferred, returns the offset of consumed data.
3796  *  <0 if no data has been transferred.
3797  */
3798 int ring_buffer_read_page(struct ring_buffer *buffer,
3799                           void **data_page, size_t len, int cpu, int full)
3800 {
3801         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3802         struct ring_buffer_event *event;
3803         struct buffer_data_page *bpage;
3804         struct buffer_page *reader;
3805         unsigned long missed_events;
3806         unsigned long flags;
3807         unsigned int commit;
3808         unsigned int read;
3809         u64 save_timestamp;
3810         int ret = -1;
3811
3812         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3813                 goto out;
3814
3815         /*
3816          * If len is not big enough to hold the page header, then
3817          * we can not copy anything.
3818          */
3819         if (len <= BUF_PAGE_HDR_SIZE)
3820                 goto out;
3821
3822         len -= BUF_PAGE_HDR_SIZE;
3823
3824         if (!data_page)
3825                 goto out;
3826
3827         bpage = *data_page;
3828         if (!bpage)
3829                 goto out;
3830
3831         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3832
3833         reader = rb_get_reader_page(cpu_buffer);
3834         if (!reader)
3835                 goto out_unlock;
3836
3837         event = rb_reader_event(cpu_buffer);
3838
3839         read = reader->read;
3840         commit = rb_page_commit(reader);
3841
3842         /* Check if any events were dropped */
3843         missed_events = cpu_buffer->lost_events;
3844
3845         /*
3846          * If this page has been partially read or
3847          * if len is not big enough to read the rest of the page or
3848          * a writer is still on the page, then
3849          * we must copy the data from the page to the buffer.
3850          * Otherwise, we can simply swap the page with the one passed in.
3851          */
3852         if (read || (len < (commit - read)) ||
3853             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3854                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3855                 unsigned int rpos = read;
3856                 unsigned int pos = 0;
3857                 unsigned int size;
3858
3859                 if (full)
3860                         goto out_unlock;
3861
3862                 if (len > (commit - read))
3863                         len = (commit - read);
3864
3865                 /* Always keep the time extend and data together */
3866                 size = rb_event_ts_length(event);
3867
3868                 if (len < size)
3869                         goto out_unlock;
3870
3871                 /* save the current timestamp, since the user will need it */
3872                 save_timestamp = cpu_buffer->read_stamp;
3873
3874                 /* Need to copy one event at a time */
3875                 do {
3876                         /* We need the size of one event, because
3877                          * rb_advance_reader only advances by one event,
3878                          * whereas rb_event_ts_length may include the size of
3879                          * one or two events.
3880                          * We have already ensured there's enough space if this
3881                          * is a time extend. */
3882                         size = rb_event_length(event);
3883                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3884
3885                         len -= size;
3886
3887                         rb_advance_reader(cpu_buffer);
3888                         rpos = reader->read;
3889                         pos += size;
3890
3891                         if (rpos >= commit)
3892                                 break;
3893
3894                         event = rb_reader_event(cpu_buffer);
3895                         /* Always keep the time extend and data together */
3896                         size = rb_event_ts_length(event);
3897                 } while (len >= size);
3898
3899                 /* update bpage */
3900                 local_set(&bpage->commit, pos);
3901                 bpage->time_stamp = save_timestamp;
3902
3903                 /* we copied everything to the beginning */
3904                 read = 0;
3905         } else {
3906                 /* update the entry counter */
3907                 cpu_buffer->read += rb_page_entries(reader);
3908
3909                 /* swap the pages */
3910                 rb_init_page(bpage);
3911                 bpage = reader->page;
3912                 reader->page = *data_page;
3913                 local_set(&reader->write, 0);
3914                 local_set(&reader->entries, 0);
3915                 reader->read = 0;
3916                 *data_page = bpage;
3917
3918                 /*
3919                  * Use the real_end for the data size,
3920                  * This gives us a chance to store the lost events
3921                  * on the page.
3922                  */
3923                 if (reader->real_end)
3924                         local_set(&bpage->commit, reader->real_end);
3925         }
3926         ret = read;
3927
3928         cpu_buffer->lost_events = 0;
3929
3930         commit = local_read(&bpage->commit);
3931         /*
3932          * Set a flag in the commit field if we lost events
3933          */
3934         if (missed_events) {
3935                 /* If there is room at the end of the page to save the
3936                  * missed events, then record it there.
3937                  */
3938                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3939                         memcpy(&bpage->data[commit], &missed_events,
3940                                sizeof(missed_events));
3941                         local_add(RB_MISSED_STORED, &bpage->commit);
3942                         commit += sizeof(missed_events);
3943                 }
3944                 local_add(RB_MISSED_EVENTS, &bpage->commit);
3945         }
3946
3947         /*
3948          * This page may be off to user land. Zero it out here.
3949          */
3950         if (commit < BUF_PAGE_SIZE)
3951                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3952
3953  out_unlock:
3954         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3955
3956  out:
3957         return ret;
3958 }
3959 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3960
3961 #ifdef CONFIG_TRACING
3962 static ssize_t
3963 rb_simple_read(struct file *filp, char __user *ubuf,
3964                size_t cnt, loff_t *ppos)
3965 {
3966         unsigned long *p = filp->private_data;
3967         char buf[64];
3968         int r;
3969
3970         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3971                 r = sprintf(buf, "permanently disabled\n");
3972         else
3973                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3974
3975         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3976 }
3977
3978 static ssize_t
3979 rb_simple_write(struct file *filp, const char __user *ubuf,
3980                 size_t cnt, loff_t *ppos)
3981 {
3982         unsigned long *p = filp->private_data;
3983         char buf[64];
3984         unsigned long val;
3985         int ret;
3986
3987         if (cnt >= sizeof(buf))
3988                 return -EINVAL;
3989
3990         if (copy_from_user(&buf, ubuf, cnt))
3991                 return -EFAULT;
3992
3993         buf[cnt] = 0;
3994
3995         ret = strict_strtoul(buf, 10, &val);
3996         if (ret < 0)
3997                 return ret;
3998
3999         if (val)
4000                 set_bit(RB_BUFFERS_ON_BIT, p);
4001         else
4002                 clear_bit(RB_BUFFERS_ON_BIT, p);
4003
4004         (*ppos)++;
4005
4006         return cnt;
4007 }
4008
4009 static const struct file_operations rb_simple_fops = {
4010         .open           = tracing_open_generic,
4011         .read           = rb_simple_read,
4012         .write          = rb_simple_write,
4013         .llseek         = default_llseek,
4014 };
4015
4016
4017 static __init int rb_init_debugfs(void)
4018 {
4019         struct dentry *d_tracer;
4020
4021         d_tracer = tracing_init_dentry();
4022
4023         trace_create_file("tracing_on", 0644, d_tracer,
4024                             &ring_buffer_flags, &rb_simple_fops);
4025
4026         return 0;
4027 }
4028
4029 fs_initcall(rb_init_debugfs);
4030 #endif
4031
4032 #ifdef CONFIG_HOTPLUG_CPU
4033 static int rb_cpu_notify(struct notifier_block *self,
4034                          unsigned long action, void *hcpu)
4035 {
4036         struct ring_buffer *buffer =
4037                 container_of(self, struct ring_buffer, cpu_notify);
4038         long cpu = (long)hcpu;
4039
4040         switch (action) {
4041         case CPU_UP_PREPARE:
4042         case CPU_UP_PREPARE_FROZEN:
4043                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4044                         return NOTIFY_OK;
4045
4046                 buffer->buffers[cpu] =
4047                         rb_allocate_cpu_buffer(buffer, cpu);
4048                 if (!buffer->buffers[cpu]) {
4049                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4050                              cpu);
4051                         return NOTIFY_OK;
4052                 }
4053                 smp_wmb();
4054                 cpumask_set_cpu(cpu, buffer->cpumask);
4055                 break;
4056         case CPU_DOWN_PREPARE:
4057         case CPU_DOWN_PREPARE_FROZEN:
4058                 /*
4059                  * Do nothing.
4060                  *  If we were to free the buffer, then the user would
4061                  *  lose any trace that was in the buffer.
4062                  */
4063                 break;
4064         default:
4065                 break;
4066         }
4067         return NOTIFY_OK;
4068 }
4069 #endif