ring-buffer: Fix infinite spin in reading buffer
[pandora-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_puts(s, "# compressed entry header\n");
40         ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_putc(s, '\n');
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561                         return -ENODEV;
562                 cpu_buffer = buffer->buffers[cpu];
563                 work = &cpu_buffer->irq_work;
564         }
565
566
567         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569         /*
570          * The events can happen in critical sections where
571          * checking a work queue can cause deadlocks.
572          * After adding a task to the queue, this flag is set
573          * only to notify events to try to wake up the queue
574          * using irq_work.
575          *
576          * We don't clear it even if the buffer is no longer
577          * empty. The flag only causes the next event to run
578          * irq_work to do the work queue wake up. The worse
579          * that can happen if we race with !trace_empty() is that
580          * an event will cause an irq_work to try to wake up
581          * an empty queue.
582          *
583          * There's no reason to protect this flag either, as
584          * the work queue and irq_work logic will do the necessary
585          * synchronization for the wake ups. The only thing
586          * that is necessary is that the wake up happens after
587          * a task has been queued. It's OK for spurious wake ups.
588          */
589         work->waiters_pending = true;
590
591         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593                 schedule();
594
595         finish_wait(&work->waiters, &wait);
596         return 0;
597 }
598
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614                           struct file *filp, poll_table *poll_table)
615 {
616         struct ring_buffer_per_cpu *cpu_buffer;
617         struct rb_irq_work *work;
618
619         if (cpu == RING_BUFFER_ALL_CPUS)
620                 work = &buffer->irq_work;
621         else {
622                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623                         return -EINVAL;
624
625                 cpu_buffer = buffer->buffers[cpu];
626                 work = &cpu_buffer->irq_work;
627         }
628
629         poll_wait(filp, &work->waiters, poll_table);
630         work->waiters_pending = true;
631         /*
632          * There's a tight race between setting the waiters_pending and
633          * checking if the ring buffer is empty.  Once the waiters_pending bit
634          * is set, the next event will wake the task up, but we can get stuck
635          * if there's only a single event in.
636          *
637          * FIXME: Ideally, we need a memory barrier on the writer side as well,
638          * but adding a memory barrier to all events will cause too much of a
639          * performance hit in the fast path.  We only need a memory barrier when
640          * the buffer goes from empty to having content.  But as this race is
641          * extremely small, and it's not a problem if another event comes in, we
642          * will fix it later.
643          */
644         smp_mb();
645
646         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
647             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
648                 return POLLIN | POLLRDNORM;
649         return 0;
650 }
651
652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
653 #define RB_WARN_ON(b, cond)                                             \
654         ({                                                              \
655                 int _____ret = unlikely(cond);                          \
656                 if (_____ret) {                                         \
657                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
658                                 struct ring_buffer_per_cpu *__b =       \
659                                         (void *)b;                      \
660                                 atomic_inc(&__b->buffer->record_disabled); \
661                         } else                                          \
662                                 atomic_inc(&b->record_disabled);        \
663                         WARN_ON(1);                                     \
664                 }                                                       \
665                 _____ret;                                               \
666         })
667
668 /* Up this if you want to test the TIME_EXTENTS and normalization */
669 #define DEBUG_SHIFT 0
670
671 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
672 {
673         /* shift to debug/test normalization and TIME_EXTENTS */
674         return buffer->clock() << DEBUG_SHIFT;
675 }
676
677 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
678 {
679         u64 time;
680
681         preempt_disable_notrace();
682         time = rb_time_stamp(buffer);
683         preempt_enable_no_resched_notrace();
684
685         return time;
686 }
687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
688
689 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
690                                       int cpu, u64 *ts)
691 {
692         /* Just stupid testing the normalize function and deltas */
693         *ts >>= DEBUG_SHIFT;
694 }
695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
696
697 /*
698  * Making the ring buffer lockless makes things tricky.
699  * Although writes only happen on the CPU that they are on,
700  * and they only need to worry about interrupts. Reads can
701  * happen on any CPU.
702  *
703  * The reader page is always off the ring buffer, but when the
704  * reader finishes with a page, it needs to swap its page with
705  * a new one from the buffer. The reader needs to take from
706  * the head (writes go to the tail). But if a writer is in overwrite
707  * mode and wraps, it must push the head page forward.
708  *
709  * Here lies the problem.
710  *
711  * The reader must be careful to replace only the head page, and
712  * not another one. As described at the top of the file in the
713  * ASCII art, the reader sets its old page to point to the next
714  * page after head. It then sets the page after head to point to
715  * the old reader page. But if the writer moves the head page
716  * during this operation, the reader could end up with the tail.
717  *
718  * We use cmpxchg to help prevent this race. We also do something
719  * special with the page before head. We set the LSB to 1.
720  *
721  * When the writer must push the page forward, it will clear the
722  * bit that points to the head page, move the head, and then set
723  * the bit that points to the new head page.
724  *
725  * We also don't want an interrupt coming in and moving the head
726  * page on another writer. Thus we use the second LSB to catch
727  * that too. Thus:
728  *
729  * head->list->prev->next        bit 1          bit 0
730  *                              -------        -------
731  * Normal page                     0              0
732  * Points to head page             0              1
733  * New head page                   1              0
734  *
735  * Note we can not trust the prev pointer of the head page, because:
736  *
737  * +----+       +-----+        +-----+
738  * |    |------>|  T  |---X--->|  N  |
739  * |    |<------|     |        |     |
740  * +----+       +-----+        +-----+
741  *   ^                           ^ |
742  *   |          +-----+          | |
743  *   +----------|  R  |----------+ |
744  *              |     |<-----------+
745  *              +-----+
746  *
747  * Key:  ---X-->  HEAD flag set in pointer
748  *         T      Tail page
749  *         R      Reader page
750  *         N      Next page
751  *
752  * (see __rb_reserve_next() to see where this happens)
753  *
754  *  What the above shows is that the reader just swapped out
755  *  the reader page with a page in the buffer, but before it
756  *  could make the new header point back to the new page added
757  *  it was preempted by a writer. The writer moved forward onto
758  *  the new page added by the reader and is about to move forward
759  *  again.
760  *
761  *  You can see, it is legitimate for the previous pointer of
762  *  the head (or any page) not to point back to itself. But only
763  *  temporarially.
764  */
765
766 #define RB_PAGE_NORMAL          0UL
767 #define RB_PAGE_HEAD            1UL
768 #define RB_PAGE_UPDATE          2UL
769
770
771 #define RB_FLAG_MASK            3UL
772
773 /* PAGE_MOVED is not part of the mask */
774 #define RB_PAGE_MOVED           4UL
775
776 /*
777  * rb_list_head - remove any bit
778  */
779 static struct list_head *rb_list_head(struct list_head *list)
780 {
781         unsigned long val = (unsigned long)list;
782
783         return (struct list_head *)(val & ~RB_FLAG_MASK);
784 }
785
786 /*
787  * rb_is_head_page - test if the given page is the head page
788  *
789  * Because the reader may move the head_page pointer, we can
790  * not trust what the head page is (it may be pointing to
791  * the reader page). But if the next page is a header page,
792  * its flags will be non zero.
793  */
794 static inline int
795 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
796                 struct buffer_page *page, struct list_head *list)
797 {
798         unsigned long val;
799
800         val = (unsigned long)list->next;
801
802         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
803                 return RB_PAGE_MOVED;
804
805         return val & RB_FLAG_MASK;
806 }
807
808 /*
809  * rb_is_reader_page
810  *
811  * The unique thing about the reader page, is that, if the
812  * writer is ever on it, the previous pointer never points
813  * back to the reader page.
814  */
815 static int rb_is_reader_page(struct buffer_page *page)
816 {
817         struct list_head *list = page->list.prev;
818
819         return rb_list_head(list->next) != &page->list;
820 }
821
822 /*
823  * rb_set_list_to_head - set a list_head to be pointing to head.
824  */
825 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
826                                 struct list_head *list)
827 {
828         unsigned long *ptr;
829
830         ptr = (unsigned long *)&list->next;
831         *ptr |= RB_PAGE_HEAD;
832         *ptr &= ~RB_PAGE_UPDATE;
833 }
834
835 /*
836  * rb_head_page_activate - sets up head page
837  */
838 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
839 {
840         struct buffer_page *head;
841
842         head = cpu_buffer->head_page;
843         if (!head)
844                 return;
845
846         /*
847          * Set the previous list pointer to have the HEAD flag.
848          */
849         rb_set_list_to_head(cpu_buffer, head->list.prev);
850 }
851
852 static void rb_list_head_clear(struct list_head *list)
853 {
854         unsigned long *ptr = (unsigned long *)&list->next;
855
856         *ptr &= ~RB_FLAG_MASK;
857 }
858
859 /*
860  * rb_head_page_dactivate - clears head page ptr (for free list)
861  */
862 static void
863 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
864 {
865         struct list_head *hd;
866
867         /* Go through the whole list and clear any pointers found. */
868         rb_list_head_clear(cpu_buffer->pages);
869
870         list_for_each(hd, cpu_buffer->pages)
871                 rb_list_head_clear(hd);
872 }
873
874 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
875                             struct buffer_page *head,
876                             struct buffer_page *prev,
877                             int old_flag, int new_flag)
878 {
879         struct list_head *list;
880         unsigned long val = (unsigned long)&head->list;
881         unsigned long ret;
882
883         list = &prev->list;
884
885         val &= ~RB_FLAG_MASK;
886
887         ret = cmpxchg((unsigned long *)&list->next,
888                       val | old_flag, val | new_flag);
889
890         /* check if the reader took the page */
891         if ((ret & ~RB_FLAG_MASK) != val)
892                 return RB_PAGE_MOVED;
893
894         return ret & RB_FLAG_MASK;
895 }
896
897 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
898                                    struct buffer_page *head,
899                                    struct buffer_page *prev,
900                                    int old_flag)
901 {
902         return rb_head_page_set(cpu_buffer, head, prev,
903                                 old_flag, RB_PAGE_UPDATE);
904 }
905
906 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
907                                  struct buffer_page *head,
908                                  struct buffer_page *prev,
909                                  int old_flag)
910 {
911         return rb_head_page_set(cpu_buffer, head, prev,
912                                 old_flag, RB_PAGE_HEAD);
913 }
914
915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
916                                    struct buffer_page *head,
917                                    struct buffer_page *prev,
918                                    int old_flag)
919 {
920         return rb_head_page_set(cpu_buffer, head, prev,
921                                 old_flag, RB_PAGE_NORMAL);
922 }
923
924 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
925                                struct buffer_page **bpage)
926 {
927         struct list_head *p = rb_list_head((*bpage)->list.next);
928
929         *bpage = list_entry(p, struct buffer_page, list);
930 }
931
932 static struct buffer_page *
933 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
934 {
935         struct buffer_page *head;
936         struct buffer_page *page;
937         struct list_head *list;
938         int i;
939
940         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
941                 return NULL;
942
943         /* sanity check */
944         list = cpu_buffer->pages;
945         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
946                 return NULL;
947
948         page = head = cpu_buffer->head_page;
949         /*
950          * It is possible that the writer moves the header behind
951          * where we started, and we miss in one loop.
952          * A second loop should grab the header, but we'll do
953          * three loops just because I'm paranoid.
954          */
955         for (i = 0; i < 3; i++) {
956                 do {
957                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
958                                 cpu_buffer->head_page = page;
959                                 return page;
960                         }
961                         rb_inc_page(cpu_buffer, &page);
962                 } while (page != head);
963         }
964
965         RB_WARN_ON(cpu_buffer, 1);
966
967         return NULL;
968 }
969
970 static int rb_head_page_replace(struct buffer_page *old,
971                                 struct buffer_page *new)
972 {
973         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
974         unsigned long val;
975         unsigned long ret;
976
977         val = *ptr & ~RB_FLAG_MASK;
978         val |= RB_PAGE_HEAD;
979
980         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
981
982         return ret == val;
983 }
984
985 /*
986  * rb_tail_page_update - move the tail page forward
987  *
988  * Returns 1 if moved tail page, 0 if someone else did.
989  */
990 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
991                                struct buffer_page *tail_page,
992                                struct buffer_page *next_page)
993 {
994         struct buffer_page *old_tail;
995         unsigned long old_entries;
996         unsigned long old_write;
997         int ret = 0;
998
999         /*
1000          * The tail page now needs to be moved forward.
1001          *
1002          * We need to reset the tail page, but without messing
1003          * with possible erasing of data brought in by interrupts
1004          * that have moved the tail page and are currently on it.
1005          *
1006          * We add a counter to the write field to denote this.
1007          */
1008         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1009         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1010
1011         /*
1012          * Just make sure we have seen our old_write and synchronize
1013          * with any interrupts that come in.
1014          */
1015         barrier();
1016
1017         /*
1018          * If the tail page is still the same as what we think
1019          * it is, then it is up to us to update the tail
1020          * pointer.
1021          */
1022         if (tail_page == cpu_buffer->tail_page) {
1023                 /* Zero the write counter */
1024                 unsigned long val = old_write & ~RB_WRITE_MASK;
1025                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1026
1027                 /*
1028                  * This will only succeed if an interrupt did
1029                  * not come in and change it. In which case, we
1030                  * do not want to modify it.
1031                  *
1032                  * We add (void) to let the compiler know that we do not care
1033                  * about the return value of these functions. We use the
1034                  * cmpxchg to only update if an interrupt did not already
1035                  * do it for us. If the cmpxchg fails, we don't care.
1036                  */
1037                 (void)local_cmpxchg(&next_page->write, old_write, val);
1038                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1039
1040                 /*
1041                  * No need to worry about races with clearing out the commit.
1042                  * it only can increment when a commit takes place. But that
1043                  * only happens in the outer most nested commit.
1044                  */
1045                 local_set(&next_page->page->commit, 0);
1046
1047                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1048                                    tail_page, next_page);
1049
1050                 if (old_tail == tail_page)
1051                         ret = 1;
1052         }
1053
1054         return ret;
1055 }
1056
1057 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1058                           struct buffer_page *bpage)
1059 {
1060         unsigned long val = (unsigned long)bpage;
1061
1062         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1063                 return 1;
1064
1065         return 0;
1066 }
1067
1068 /**
1069  * rb_check_list - make sure a pointer to a list has the last bits zero
1070  */
1071 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1072                          struct list_head *list)
1073 {
1074         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1075                 return 1;
1076         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1077                 return 1;
1078         return 0;
1079 }
1080
1081 /**
1082  * rb_check_pages - integrity check of buffer pages
1083  * @cpu_buffer: CPU buffer with pages to test
1084  *
1085  * As a safety measure we check to make sure the data pages have not
1086  * been corrupted.
1087  */
1088 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1089 {
1090         struct list_head *head = cpu_buffer->pages;
1091         struct buffer_page *bpage, *tmp;
1092
1093         /* Reset the head page if it exists */
1094         if (cpu_buffer->head_page)
1095                 rb_set_head_page(cpu_buffer);
1096
1097         rb_head_page_deactivate(cpu_buffer);
1098
1099         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1100                 return -1;
1101         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1102                 return -1;
1103
1104         if (rb_check_list(cpu_buffer, head))
1105                 return -1;
1106
1107         list_for_each_entry_safe(bpage, tmp, head, list) {
1108                 if (RB_WARN_ON(cpu_buffer,
1109                                bpage->list.next->prev != &bpage->list))
1110                         return -1;
1111                 if (RB_WARN_ON(cpu_buffer,
1112                                bpage->list.prev->next != &bpage->list))
1113                         return -1;
1114                 if (rb_check_list(cpu_buffer, &bpage->list))
1115                         return -1;
1116         }
1117
1118         rb_head_page_activate(cpu_buffer);
1119
1120         return 0;
1121 }
1122
1123 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1124 {
1125         int i;
1126         struct buffer_page *bpage, *tmp;
1127
1128         for (i = 0; i < nr_pages; i++) {
1129                 struct page *page;
1130                 /*
1131                  * __GFP_NORETRY flag makes sure that the allocation fails
1132                  * gracefully without invoking oom-killer and the system is
1133                  * not destabilized.
1134                  */
1135                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1136                                     GFP_KERNEL | __GFP_NORETRY,
1137                                     cpu_to_node(cpu));
1138                 if (!bpage)
1139                         goto free_pages;
1140
1141                 list_add(&bpage->list, pages);
1142
1143                 page = alloc_pages_node(cpu_to_node(cpu),
1144                                         GFP_KERNEL | __GFP_NORETRY, 0);
1145                 if (!page)
1146                         goto free_pages;
1147                 bpage->page = page_address(page);
1148                 rb_init_page(bpage->page);
1149         }
1150
1151         return 0;
1152
1153 free_pages:
1154         list_for_each_entry_safe(bpage, tmp, pages, list) {
1155                 list_del_init(&bpage->list);
1156                 free_buffer_page(bpage);
1157         }
1158
1159         return -ENOMEM;
1160 }
1161
1162 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1163                              unsigned nr_pages)
1164 {
1165         LIST_HEAD(pages);
1166
1167         WARN_ON(!nr_pages);
1168
1169         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1170                 return -ENOMEM;
1171
1172         /*
1173          * The ring buffer page list is a circular list that does not
1174          * start and end with a list head. All page list items point to
1175          * other pages.
1176          */
1177         cpu_buffer->pages = pages.next;
1178         list_del(&pages);
1179
1180         cpu_buffer->nr_pages = nr_pages;
1181
1182         rb_check_pages(cpu_buffer);
1183
1184         return 0;
1185 }
1186
1187 static struct ring_buffer_per_cpu *
1188 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1189 {
1190         struct ring_buffer_per_cpu *cpu_buffer;
1191         struct buffer_page *bpage;
1192         struct page *page;
1193         int ret;
1194
1195         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1196                                   GFP_KERNEL, cpu_to_node(cpu));
1197         if (!cpu_buffer)
1198                 return NULL;
1199
1200         cpu_buffer->cpu = cpu;
1201         cpu_buffer->buffer = buffer;
1202         raw_spin_lock_init(&cpu_buffer->reader_lock);
1203         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1204         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1205         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1206         init_completion(&cpu_buffer->update_done);
1207         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1208         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1209
1210         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1211                             GFP_KERNEL, cpu_to_node(cpu));
1212         if (!bpage)
1213                 goto fail_free_buffer;
1214
1215         rb_check_bpage(cpu_buffer, bpage);
1216
1217         cpu_buffer->reader_page = bpage;
1218         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1219         if (!page)
1220                 goto fail_free_reader;
1221         bpage->page = page_address(page);
1222         rb_init_page(bpage->page);
1223
1224         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1225         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1226
1227         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1228         if (ret < 0)
1229                 goto fail_free_reader;
1230
1231         cpu_buffer->head_page
1232                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1233         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1234
1235         rb_head_page_activate(cpu_buffer);
1236
1237         return cpu_buffer;
1238
1239  fail_free_reader:
1240         free_buffer_page(cpu_buffer->reader_page);
1241
1242  fail_free_buffer:
1243         kfree(cpu_buffer);
1244         return NULL;
1245 }
1246
1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1248 {
1249         struct list_head *head = cpu_buffer->pages;
1250         struct buffer_page *bpage, *tmp;
1251
1252         free_buffer_page(cpu_buffer->reader_page);
1253
1254         rb_head_page_deactivate(cpu_buffer);
1255
1256         if (head) {
1257                 list_for_each_entry_safe(bpage, tmp, head, list) {
1258                         list_del_init(&bpage->list);
1259                         free_buffer_page(bpage);
1260                 }
1261                 bpage = list_entry(head, struct buffer_page, list);
1262                 free_buffer_page(bpage);
1263         }
1264
1265         kfree(cpu_buffer);
1266 }
1267
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static int rb_cpu_notify(struct notifier_block *self,
1270                          unsigned long action, void *hcpu);
1271 #endif
1272
1273 /**
1274  * __ring_buffer_alloc - allocate a new ring_buffer
1275  * @size: the size in bytes per cpu that is needed.
1276  * @flags: attributes to set for the ring buffer.
1277  *
1278  * Currently the only flag that is available is the RB_FL_OVERWRITE
1279  * flag. This flag means that the buffer will overwrite old data
1280  * when the buffer wraps. If this flag is not set, the buffer will
1281  * drop data when the tail hits the head.
1282  */
1283 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1284                                         struct lock_class_key *key)
1285 {
1286         struct ring_buffer *buffer;
1287         int bsize;
1288         int cpu, nr_pages;
1289
1290         /* keep it in its own cache line */
1291         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1292                          GFP_KERNEL);
1293         if (!buffer)
1294                 return NULL;
1295
1296         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1297                 goto fail_free_buffer;
1298
1299         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300         buffer->flags = flags;
1301         buffer->clock = trace_clock_local;
1302         buffer->reader_lock_key = key;
1303
1304         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1305         init_waitqueue_head(&buffer->irq_work.waiters);
1306
1307         /* need at least two pages */
1308         if (nr_pages < 2)
1309                 nr_pages = 2;
1310
1311         /*
1312          * In case of non-hotplug cpu, if the ring-buffer is allocated
1313          * in early initcall, it will not be notified of secondary cpus.
1314          * In that off case, we need to allocate for all possible cpus.
1315          */
1316 #ifdef CONFIG_HOTPLUG_CPU
1317         cpu_notifier_register_begin();
1318         cpumask_copy(buffer->cpumask, cpu_online_mask);
1319 #else
1320         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1321 #endif
1322         buffer->cpus = nr_cpu_ids;
1323
1324         bsize = sizeof(void *) * nr_cpu_ids;
1325         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1326                                   GFP_KERNEL);
1327         if (!buffer->buffers)
1328                 goto fail_free_cpumask;
1329
1330         for_each_buffer_cpu(buffer, cpu) {
1331                 buffer->buffers[cpu] =
1332                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1333                 if (!buffer->buffers[cpu])
1334                         goto fail_free_buffers;
1335         }
1336
1337 #ifdef CONFIG_HOTPLUG_CPU
1338         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1339         buffer->cpu_notify.priority = 0;
1340         __register_cpu_notifier(&buffer->cpu_notify);
1341         cpu_notifier_register_done();
1342 #endif
1343
1344         mutex_init(&buffer->mutex);
1345
1346         return buffer;
1347
1348  fail_free_buffers:
1349         for_each_buffer_cpu(buffer, cpu) {
1350                 if (buffer->buffers[cpu])
1351                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1352         }
1353         kfree(buffer->buffers);
1354
1355  fail_free_cpumask:
1356         free_cpumask_var(buffer->cpumask);
1357 #ifdef CONFIG_HOTPLUG_CPU
1358         cpu_notifier_register_done();
1359 #endif
1360
1361  fail_free_buffer:
1362         kfree(buffer);
1363         return NULL;
1364 }
1365 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1366
1367 /**
1368  * ring_buffer_free - free a ring buffer.
1369  * @buffer: the buffer to free.
1370  */
1371 void
1372 ring_buffer_free(struct ring_buffer *buffer)
1373 {
1374         int cpu;
1375
1376 #ifdef CONFIG_HOTPLUG_CPU
1377         cpu_notifier_register_begin();
1378         __unregister_cpu_notifier(&buffer->cpu_notify);
1379 #endif
1380
1381         for_each_buffer_cpu(buffer, cpu)
1382                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1383
1384 #ifdef CONFIG_HOTPLUG_CPU
1385         cpu_notifier_register_done();
1386 #endif
1387
1388         kfree(buffer->buffers);
1389         free_cpumask_var(buffer->cpumask);
1390
1391         kfree(buffer);
1392 }
1393 EXPORT_SYMBOL_GPL(ring_buffer_free);
1394
1395 void ring_buffer_set_clock(struct ring_buffer *buffer,
1396                            u64 (*clock)(void))
1397 {
1398         buffer->clock = clock;
1399 }
1400
1401 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1402
1403 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1404 {
1405         return local_read(&bpage->entries) & RB_WRITE_MASK;
1406 }
1407
1408 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1409 {
1410         return local_read(&bpage->write) & RB_WRITE_MASK;
1411 }
1412
1413 static int
1414 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1415 {
1416         struct list_head *tail_page, *to_remove, *next_page;
1417         struct buffer_page *to_remove_page, *tmp_iter_page;
1418         struct buffer_page *last_page, *first_page;
1419         unsigned int nr_removed;
1420         unsigned long head_bit;
1421         int page_entries;
1422
1423         head_bit = 0;
1424
1425         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1426         atomic_inc(&cpu_buffer->record_disabled);
1427         /*
1428          * We don't race with the readers since we have acquired the reader
1429          * lock. We also don't race with writers after disabling recording.
1430          * This makes it easy to figure out the first and the last page to be
1431          * removed from the list. We unlink all the pages in between including
1432          * the first and last pages. This is done in a busy loop so that we
1433          * lose the least number of traces.
1434          * The pages are freed after we restart recording and unlock readers.
1435          */
1436         tail_page = &cpu_buffer->tail_page->list;
1437
1438         /*
1439          * tail page might be on reader page, we remove the next page
1440          * from the ring buffer
1441          */
1442         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1443                 tail_page = rb_list_head(tail_page->next);
1444         to_remove = tail_page;
1445
1446         /* start of pages to remove */
1447         first_page = list_entry(rb_list_head(to_remove->next),
1448                                 struct buffer_page, list);
1449
1450         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1451                 to_remove = rb_list_head(to_remove)->next;
1452                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1453         }
1454
1455         next_page = rb_list_head(to_remove)->next;
1456
1457         /*
1458          * Now we remove all pages between tail_page and next_page.
1459          * Make sure that we have head_bit value preserved for the
1460          * next page
1461          */
1462         tail_page->next = (struct list_head *)((unsigned long)next_page |
1463                                                 head_bit);
1464         next_page = rb_list_head(next_page);
1465         next_page->prev = tail_page;
1466
1467         /* make sure pages points to a valid page in the ring buffer */
1468         cpu_buffer->pages = next_page;
1469
1470         /* update head page */
1471         if (head_bit)
1472                 cpu_buffer->head_page = list_entry(next_page,
1473                                                 struct buffer_page, list);
1474
1475         /*
1476          * change read pointer to make sure any read iterators reset
1477          * themselves
1478          */
1479         cpu_buffer->read = 0;
1480
1481         /* pages are removed, resume tracing and then free the pages */
1482         atomic_dec(&cpu_buffer->record_disabled);
1483         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1484
1485         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1486
1487         /* last buffer page to remove */
1488         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1489                                 list);
1490         tmp_iter_page = first_page;
1491
1492         do {
1493                 to_remove_page = tmp_iter_page;
1494                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1495
1496                 /* update the counters */
1497                 page_entries = rb_page_entries(to_remove_page);
1498                 if (page_entries) {
1499                         /*
1500                          * If something was added to this page, it was full
1501                          * since it is not the tail page. So we deduct the
1502                          * bytes consumed in ring buffer from here.
1503                          * Increment overrun to account for the lost events.
1504                          */
1505                         local_add(page_entries, &cpu_buffer->overrun);
1506                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1507                 }
1508
1509                 /*
1510                  * We have already removed references to this list item, just
1511                  * free up the buffer_page and its page
1512                  */
1513                 free_buffer_page(to_remove_page);
1514                 nr_removed--;
1515
1516         } while (to_remove_page != last_page);
1517
1518         RB_WARN_ON(cpu_buffer, nr_removed);
1519
1520         return nr_removed == 0;
1521 }
1522
1523 static int
1524 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1525 {
1526         struct list_head *pages = &cpu_buffer->new_pages;
1527         int retries, success;
1528
1529         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1530         /*
1531          * We are holding the reader lock, so the reader page won't be swapped
1532          * in the ring buffer. Now we are racing with the writer trying to
1533          * move head page and the tail page.
1534          * We are going to adapt the reader page update process where:
1535          * 1. We first splice the start and end of list of new pages between
1536          *    the head page and its previous page.
1537          * 2. We cmpxchg the prev_page->next to point from head page to the
1538          *    start of new pages list.
1539          * 3. Finally, we update the head->prev to the end of new list.
1540          *
1541          * We will try this process 10 times, to make sure that we don't keep
1542          * spinning.
1543          */
1544         retries = 10;
1545         success = 0;
1546         while (retries--) {
1547                 struct list_head *head_page, *prev_page, *r;
1548                 struct list_head *last_page, *first_page;
1549                 struct list_head *head_page_with_bit;
1550
1551                 head_page = &rb_set_head_page(cpu_buffer)->list;
1552                 if (!head_page)
1553                         break;
1554                 prev_page = head_page->prev;
1555
1556                 first_page = pages->next;
1557                 last_page  = pages->prev;
1558
1559                 head_page_with_bit = (struct list_head *)
1560                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1561
1562                 last_page->next = head_page_with_bit;
1563                 first_page->prev = prev_page;
1564
1565                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1566
1567                 if (r == head_page_with_bit) {
1568                         /*
1569                          * yay, we replaced the page pointer to our new list,
1570                          * now, we just have to update to head page's prev
1571                          * pointer to point to end of list
1572                          */
1573                         head_page->prev = last_page;
1574                         success = 1;
1575                         break;
1576                 }
1577         }
1578
1579         if (success)
1580                 INIT_LIST_HEAD(pages);
1581         /*
1582          * If we weren't successful in adding in new pages, warn and stop
1583          * tracing
1584          */
1585         RB_WARN_ON(cpu_buffer, !success);
1586         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1587
1588         /* free pages if they weren't inserted */
1589         if (!success) {
1590                 struct buffer_page *bpage, *tmp;
1591                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1592                                          list) {
1593                         list_del_init(&bpage->list);
1594                         free_buffer_page(bpage);
1595                 }
1596         }
1597         return success;
1598 }
1599
1600 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1601 {
1602         int success;
1603
1604         if (cpu_buffer->nr_pages_to_update > 0)
1605                 success = rb_insert_pages(cpu_buffer);
1606         else
1607                 success = rb_remove_pages(cpu_buffer,
1608                                         -cpu_buffer->nr_pages_to_update);
1609
1610         if (success)
1611                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1612 }
1613
1614 static void update_pages_handler(struct work_struct *work)
1615 {
1616         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1617                         struct ring_buffer_per_cpu, update_pages_work);
1618         rb_update_pages(cpu_buffer);
1619         complete(&cpu_buffer->update_done);
1620 }
1621
1622 /**
1623  * ring_buffer_resize - resize the ring buffer
1624  * @buffer: the buffer to resize.
1625  * @size: the new size.
1626  * @cpu_id: the cpu buffer to resize
1627  *
1628  * Minimum size is 2 * BUF_PAGE_SIZE.
1629  *
1630  * Returns 0 on success and < 0 on failure.
1631  */
1632 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1633                         int cpu_id)
1634 {
1635         struct ring_buffer_per_cpu *cpu_buffer;
1636         unsigned nr_pages;
1637         int cpu, err = 0;
1638
1639         /*
1640          * Always succeed at resizing a non-existent buffer:
1641          */
1642         if (!buffer)
1643                 return size;
1644
1645         /* Make sure the requested buffer exists */
1646         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1647             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1648                 return size;
1649
1650         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1651         size *= BUF_PAGE_SIZE;
1652
1653         /* we need a minimum of two pages */
1654         if (size < BUF_PAGE_SIZE * 2)
1655                 size = BUF_PAGE_SIZE * 2;
1656
1657         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1658
1659         /*
1660          * Don't succeed if resizing is disabled, as a reader might be
1661          * manipulating the ring buffer and is expecting a sane state while
1662          * this is true.
1663          */
1664         if (atomic_read(&buffer->resize_disabled))
1665                 return -EBUSY;
1666
1667         /* prevent another thread from changing buffer sizes */
1668         mutex_lock(&buffer->mutex);
1669
1670         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1671                 /* calculate the pages to update */
1672                 for_each_buffer_cpu(buffer, cpu) {
1673                         cpu_buffer = buffer->buffers[cpu];
1674
1675                         cpu_buffer->nr_pages_to_update = nr_pages -
1676                                                         cpu_buffer->nr_pages;
1677                         /*
1678                          * nothing more to do for removing pages or no update
1679                          */
1680                         if (cpu_buffer->nr_pages_to_update <= 0)
1681                                 continue;
1682                         /*
1683                          * to add pages, make sure all new pages can be
1684                          * allocated without receiving ENOMEM
1685                          */
1686                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1687                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1688                                                 &cpu_buffer->new_pages, cpu)) {
1689                                 /* not enough memory for new pages */
1690                                 err = -ENOMEM;
1691                                 goto out_err;
1692                         }
1693                 }
1694
1695                 get_online_cpus();
1696                 /*
1697                  * Fire off all the required work handlers
1698                  * We can't schedule on offline CPUs, but it's not necessary
1699                  * since we can change their buffer sizes without any race.
1700                  */
1701                 for_each_buffer_cpu(buffer, cpu) {
1702                         cpu_buffer = buffer->buffers[cpu];
1703                         if (!cpu_buffer->nr_pages_to_update)
1704                                 continue;
1705
1706                         /* Can't run something on an offline CPU. */
1707                         if (!cpu_online(cpu)) {
1708                                 rb_update_pages(cpu_buffer);
1709                                 cpu_buffer->nr_pages_to_update = 0;
1710                         } else {
1711                                 schedule_work_on(cpu,
1712                                                 &cpu_buffer->update_pages_work);
1713                         }
1714                 }
1715
1716                 /* wait for all the updates to complete */
1717                 for_each_buffer_cpu(buffer, cpu) {
1718                         cpu_buffer = buffer->buffers[cpu];
1719                         if (!cpu_buffer->nr_pages_to_update)
1720                                 continue;
1721
1722                         if (cpu_online(cpu))
1723                                 wait_for_completion(&cpu_buffer->update_done);
1724                         cpu_buffer->nr_pages_to_update = 0;
1725                 }
1726
1727                 put_online_cpus();
1728         } else {
1729                 /* Make sure this CPU has been intitialized */
1730                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1731                         goto out;
1732
1733                 cpu_buffer = buffer->buffers[cpu_id];
1734
1735                 if (nr_pages == cpu_buffer->nr_pages)
1736                         goto out;
1737
1738                 cpu_buffer->nr_pages_to_update = nr_pages -
1739                                                 cpu_buffer->nr_pages;
1740
1741                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742                 if (cpu_buffer->nr_pages_to_update > 0 &&
1743                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1744                                             &cpu_buffer->new_pages, cpu_id)) {
1745                         err = -ENOMEM;
1746                         goto out_err;
1747                 }
1748
1749                 get_online_cpus();
1750
1751                 /* Can't run something on an offline CPU. */
1752                 if (!cpu_online(cpu_id))
1753                         rb_update_pages(cpu_buffer);
1754                 else {
1755                         schedule_work_on(cpu_id,
1756                                          &cpu_buffer->update_pages_work);
1757                         wait_for_completion(&cpu_buffer->update_done);
1758                 }
1759
1760                 cpu_buffer->nr_pages_to_update = 0;
1761                 put_online_cpus();
1762         }
1763
1764  out:
1765         /*
1766          * The ring buffer resize can happen with the ring buffer
1767          * enabled, so that the update disturbs the tracing as little
1768          * as possible. But if the buffer is disabled, we do not need
1769          * to worry about that, and we can take the time to verify
1770          * that the buffer is not corrupt.
1771          */
1772         if (atomic_read(&buffer->record_disabled)) {
1773                 atomic_inc(&buffer->record_disabled);
1774                 /*
1775                  * Even though the buffer was disabled, we must make sure
1776                  * that it is truly disabled before calling rb_check_pages.
1777                  * There could have been a race between checking
1778                  * record_disable and incrementing it.
1779                  */
1780                 synchronize_sched();
1781                 for_each_buffer_cpu(buffer, cpu) {
1782                         cpu_buffer = buffer->buffers[cpu];
1783                         rb_check_pages(cpu_buffer);
1784                 }
1785                 atomic_dec(&buffer->record_disabled);
1786         }
1787
1788         mutex_unlock(&buffer->mutex);
1789         return size;
1790
1791  out_err:
1792         for_each_buffer_cpu(buffer, cpu) {
1793                 struct buffer_page *bpage, *tmp;
1794
1795                 cpu_buffer = buffer->buffers[cpu];
1796                 cpu_buffer->nr_pages_to_update = 0;
1797
1798                 if (list_empty(&cpu_buffer->new_pages))
1799                         continue;
1800
1801                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802                                         list) {
1803                         list_del_init(&bpage->list);
1804                         free_buffer_page(bpage);
1805                 }
1806         }
1807         mutex_unlock(&buffer->mutex);
1808         return err;
1809 }
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811
1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813 {
1814         mutex_lock(&buffer->mutex);
1815         if (val)
1816                 buffer->flags |= RB_FL_OVERWRITE;
1817         else
1818                 buffer->flags &= ~RB_FL_OVERWRITE;
1819         mutex_unlock(&buffer->mutex);
1820 }
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825 {
1826         return bpage->data + index;
1827 }
1828
1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830 {
1831         return bpage->page->data + index;
1832 }
1833
1834 static inline struct ring_buffer_event *
1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836 {
1837         return __rb_page_index(cpu_buffer->reader_page,
1838                                cpu_buffer->reader_page->read);
1839 }
1840
1841 static inline struct ring_buffer_event *
1842 rb_iter_head_event(struct ring_buffer_iter *iter)
1843 {
1844         return __rb_page_index(iter->head_page, iter->head);
1845 }
1846
1847 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848 {
1849         return local_read(&bpage->page->commit);
1850 }
1851
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page *bpage)
1854 {
1855         return rb_page_commit(bpage);
1856 }
1857
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861         return rb_page_commit(cpu_buffer->commit_page);
1862 }
1863
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event *event)
1866 {
1867         unsigned long addr = (unsigned long)event;
1868
1869         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1870 }
1871
1872 static inline int
1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874                    struct ring_buffer_event *event)
1875 {
1876         unsigned long addr = (unsigned long)event;
1877         unsigned long index;
1878
1879         index = rb_event_index(event);
1880         addr &= PAGE_MASK;
1881
1882         return cpu_buffer->commit_page->page == (void *)addr &&
1883                 rb_commit_index(cpu_buffer) == index;
1884 }
1885
1886 static void
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888 {
1889         unsigned long max_count;
1890
1891         /*
1892          * We only race with interrupts and NMIs on this CPU.
1893          * If we own the commit event, then we can commit
1894          * all others that interrupted us, since the interruptions
1895          * are in stack format (they finish before they come
1896          * back to us). This allows us to do a simple loop to
1897          * assign the commit to the tail.
1898          */
1899  again:
1900         max_count = cpu_buffer->nr_pages * 100;
1901
1902         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904                         return;
1905                 if (RB_WARN_ON(cpu_buffer,
1906                                rb_is_reader_page(cpu_buffer->tail_page)))
1907                         return;
1908                 local_set(&cpu_buffer->commit_page->page->commit,
1909                           rb_page_write(cpu_buffer->commit_page));
1910                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911                 cpu_buffer->write_stamp =
1912                         cpu_buffer->commit_page->page->time_stamp;
1913                 /* add barrier to keep gcc from optimizing too much */
1914                 barrier();
1915         }
1916         while (rb_commit_index(cpu_buffer) !=
1917                rb_page_write(cpu_buffer->commit_page)) {
1918
1919                 local_set(&cpu_buffer->commit_page->page->commit,
1920                           rb_page_write(cpu_buffer->commit_page));
1921                 RB_WARN_ON(cpu_buffer,
1922                            local_read(&cpu_buffer->commit_page->page->commit) &
1923                            ~RB_WRITE_MASK);
1924                 barrier();
1925         }
1926
1927         /* again, keep gcc from optimizing */
1928         barrier();
1929
1930         /*
1931          * If an interrupt came in just after the first while loop
1932          * and pushed the tail page forward, we will be left with
1933          * a dangling commit that will never go forward.
1934          */
1935         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936                 goto again;
1937 }
1938
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940 {
1941         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942         cpu_buffer->reader_page->read = 0;
1943 }
1944
1945 static void rb_inc_iter(struct ring_buffer_iter *iter)
1946 {
1947         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1948
1949         /*
1950          * The iterator could be on the reader page (it starts there).
1951          * But the head could have moved, since the reader was
1952          * found. Check for this case and assign the iterator
1953          * to the head page instead of next.
1954          */
1955         if (iter->head_page == cpu_buffer->reader_page)
1956                 iter->head_page = rb_set_head_page(cpu_buffer);
1957         else
1958                 rb_inc_page(cpu_buffer, &iter->head_page);
1959
1960         iter->read_stamp = iter->head_page->page->time_stamp;
1961         iter->head = 0;
1962 }
1963
1964 /* Slow path, do not inline */
1965 static noinline struct ring_buffer_event *
1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967 {
1968         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969
1970         /* Not the first event on the page? */
1971         if (rb_event_index(event)) {
1972                 event->time_delta = delta & TS_MASK;
1973                 event->array[0] = delta >> TS_SHIFT;
1974         } else {
1975                 /* nope, just zero it */
1976                 event->time_delta = 0;
1977                 event->array[0] = 0;
1978         }
1979
1980         return skip_time_extend(event);
1981 }
1982
1983 /**
1984  * rb_update_event - update event type and data
1985  * @event: the event to update
1986  * @type: the type of event
1987  * @length: the size of the event field in the ring buffer
1988  *
1989  * Update the type and data fields of the event. The length
1990  * is the actual size that is written to the ring buffer,
1991  * and with this, we can determine what to place into the
1992  * data field.
1993  */
1994 static void
1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996                 struct ring_buffer_event *event, unsigned length,
1997                 int add_timestamp, u64 delta)
1998 {
1999         /* Only a commit updates the timestamp */
2000         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001                 delta = 0;
2002
2003         /*
2004          * If we need to add a timestamp, then we
2005          * add it to the start of the resevered space.
2006          */
2007         if (unlikely(add_timestamp)) {
2008                 event = rb_add_time_stamp(event, delta);
2009                 length -= RB_LEN_TIME_EXTEND;
2010                 delta = 0;
2011         }
2012
2013         event->time_delta = delta;
2014         length -= RB_EVNT_HDR_SIZE;
2015         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016                 event->type_len = 0;
2017                 event->array[0] = length;
2018         } else
2019                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2020 }
2021
2022 /*
2023  * rb_handle_head_page - writer hit the head page
2024  *
2025  * Returns: +1 to retry page
2026  *           0 to continue
2027  *          -1 on error
2028  */
2029 static int
2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031                     struct buffer_page *tail_page,
2032                     struct buffer_page *next_page)
2033 {
2034         struct buffer_page *new_head;
2035         int entries;
2036         int type;
2037         int ret;
2038
2039         entries = rb_page_entries(next_page);
2040
2041         /*
2042          * The hard part is here. We need to move the head
2043          * forward, and protect against both readers on
2044          * other CPUs and writers coming in via interrupts.
2045          */
2046         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047                                        RB_PAGE_HEAD);
2048
2049         /*
2050          * type can be one of four:
2051          *  NORMAL - an interrupt already moved it for us
2052          *  HEAD   - we are the first to get here.
2053          *  UPDATE - we are the interrupt interrupting
2054          *           a current move.
2055          *  MOVED  - a reader on another CPU moved the next
2056          *           pointer to its reader page. Give up
2057          *           and try again.
2058          */
2059
2060         switch (type) {
2061         case RB_PAGE_HEAD:
2062                 /*
2063                  * We changed the head to UPDATE, thus
2064                  * it is our responsibility to update
2065                  * the counters.
2066                  */
2067                 local_add(entries, &cpu_buffer->overrun);
2068                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2069
2070                 /*
2071                  * The entries will be zeroed out when we move the
2072                  * tail page.
2073                  */
2074
2075                 /* still more to do */
2076                 break;
2077
2078         case RB_PAGE_UPDATE:
2079                 /*
2080                  * This is an interrupt that interrupt the
2081                  * previous update. Still more to do.
2082                  */
2083                 break;
2084         case RB_PAGE_NORMAL:
2085                 /*
2086                  * An interrupt came in before the update
2087                  * and processed this for us.
2088                  * Nothing left to do.
2089                  */
2090                 return 1;
2091         case RB_PAGE_MOVED:
2092                 /*
2093                  * The reader is on another CPU and just did
2094                  * a swap with our next_page.
2095                  * Try again.
2096                  */
2097                 return 1;
2098         default:
2099                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100                 return -1;
2101         }
2102
2103         /*
2104          * Now that we are here, the old head pointer is
2105          * set to UPDATE. This will keep the reader from
2106          * swapping the head page with the reader page.
2107          * The reader (on another CPU) will spin till
2108          * we are finished.
2109          *
2110          * We just need to protect against interrupts
2111          * doing the job. We will set the next pointer
2112          * to HEAD. After that, we set the old pointer
2113          * to NORMAL, but only if it was HEAD before.
2114          * otherwise we are an interrupt, and only
2115          * want the outer most commit to reset it.
2116          */
2117         new_head = next_page;
2118         rb_inc_page(cpu_buffer, &new_head);
2119
2120         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121                                     RB_PAGE_NORMAL);
2122
2123         /*
2124          * Valid returns are:
2125          *  HEAD   - an interrupt came in and already set it.
2126          *  NORMAL - One of two things:
2127          *            1) We really set it.
2128          *            2) A bunch of interrupts came in and moved
2129          *               the page forward again.
2130          */
2131         switch (ret) {
2132         case RB_PAGE_HEAD:
2133         case RB_PAGE_NORMAL:
2134                 /* OK */
2135                 break;
2136         default:
2137                 RB_WARN_ON(cpu_buffer, 1);
2138                 return -1;
2139         }
2140
2141         /*
2142          * It is possible that an interrupt came in,
2143          * set the head up, then more interrupts came in
2144          * and moved it again. When we get back here,
2145          * the page would have been set to NORMAL but we
2146          * just set it back to HEAD.
2147          *
2148          * How do you detect this? Well, if that happened
2149          * the tail page would have moved.
2150          */
2151         if (ret == RB_PAGE_NORMAL) {
2152                 /*
2153                  * If the tail had moved passed next, then we need
2154                  * to reset the pointer.
2155                  */
2156                 if (cpu_buffer->tail_page != tail_page &&
2157                     cpu_buffer->tail_page != next_page)
2158                         rb_head_page_set_normal(cpu_buffer, new_head,
2159                                                 next_page,
2160                                                 RB_PAGE_HEAD);
2161         }
2162
2163         /*
2164          * If this was the outer most commit (the one that
2165          * changed the original pointer from HEAD to UPDATE),
2166          * then it is up to us to reset it to NORMAL.
2167          */
2168         if (type == RB_PAGE_HEAD) {
2169                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170                                               tail_page,
2171                                               RB_PAGE_UPDATE);
2172                 if (RB_WARN_ON(cpu_buffer,
2173                                ret != RB_PAGE_UPDATE))
2174                         return -1;
2175         }
2176
2177         return 0;
2178 }
2179
2180 static unsigned rb_calculate_event_length(unsigned length)
2181 {
2182         struct ring_buffer_event event; /* Used only for sizeof array */
2183
2184         /* zero length can cause confusions */
2185         if (!length)
2186                 length = 1;
2187
2188         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189                 length += sizeof(event.array[0]);
2190
2191         length += RB_EVNT_HDR_SIZE;
2192         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193
2194         return length;
2195 }
2196
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199               struct buffer_page *tail_page,
2200               unsigned long tail, unsigned long length)
2201 {
2202         struct ring_buffer_event *event;
2203
2204         /*
2205          * Only the event that crossed the page boundary
2206          * must fill the old tail_page with padding.
2207          */
2208         if (tail >= BUF_PAGE_SIZE) {
2209                 /*
2210                  * If the page was filled, then we still need
2211                  * to update the real_end. Reset it to zero
2212                  * and the reader will ignore it.
2213                  */
2214                 if (tail == BUF_PAGE_SIZE)
2215                         tail_page->real_end = 0;
2216
2217                 local_sub(length, &tail_page->write);
2218                 return;
2219         }
2220
2221         event = __rb_page_index(tail_page, tail);
2222         kmemcheck_annotate_bitfield(event, bitfield);
2223
2224         /* account for padding bytes */
2225         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226
2227         /*
2228          * Save the original length to the meta data.
2229          * This will be used by the reader to add lost event
2230          * counter.
2231          */
2232         tail_page->real_end = tail;
2233
2234         /*
2235          * If this event is bigger than the minimum size, then
2236          * we need to be careful that we don't subtract the
2237          * write counter enough to allow another writer to slip
2238          * in on this page.
2239          * We put in a discarded commit instead, to make sure
2240          * that this space is not used again.
2241          *
2242          * If we are less than the minimum size, we don't need to
2243          * worry about it.
2244          */
2245         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246                 /* No room for any events */
2247
2248                 /* Mark the rest of the page with padding */
2249                 rb_event_set_padding(event);
2250
2251                 /* Set the write back to the previous setting */
2252                 local_sub(length, &tail_page->write);
2253                 return;
2254         }
2255
2256         /* Put in a discarded event */
2257         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258         event->type_len = RINGBUF_TYPE_PADDING;
2259         /* time delta must be non zero */
2260         event->time_delta = 1;
2261
2262         /* Set write to end of buffer */
2263         length = (tail + length) - BUF_PAGE_SIZE;
2264         local_sub(length, &tail_page->write);
2265 }
2266
2267 /*
2268  * This is the slow path, force gcc not to inline it.
2269  */
2270 static noinline struct ring_buffer_event *
2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272              unsigned long length, unsigned long tail,
2273              struct buffer_page *tail_page, u64 ts)
2274 {
2275         struct buffer_page *commit_page = cpu_buffer->commit_page;
2276         struct ring_buffer *buffer = cpu_buffer->buffer;
2277         struct buffer_page *next_page;
2278         int ret;
2279
2280         next_page = tail_page;
2281
2282         rb_inc_page(cpu_buffer, &next_page);
2283
2284         /*
2285          * If for some reason, we had an interrupt storm that made
2286          * it all the way around the buffer, bail, and warn
2287          * about it.
2288          */
2289         if (unlikely(next_page == commit_page)) {
2290                 local_inc(&cpu_buffer->commit_overrun);
2291                 goto out_reset;
2292         }
2293
2294         /*
2295          * This is where the fun begins!
2296          *
2297          * We are fighting against races between a reader that
2298          * could be on another CPU trying to swap its reader
2299          * page with the buffer head.
2300          *
2301          * We are also fighting against interrupts coming in and
2302          * moving the head or tail on us as well.
2303          *
2304          * If the next page is the head page then we have filled
2305          * the buffer, unless the commit page is still on the
2306          * reader page.
2307          */
2308         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2309
2310                 /*
2311                  * If the commit is not on the reader page, then
2312                  * move the header page.
2313                  */
2314                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315                         /*
2316                          * If we are not in overwrite mode,
2317                          * this is easy, just stop here.
2318                          */
2319                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320                                 local_inc(&cpu_buffer->dropped_events);
2321                                 goto out_reset;
2322                         }
2323
2324                         ret = rb_handle_head_page(cpu_buffer,
2325                                                   tail_page,
2326                                                   next_page);
2327                         if (ret < 0)
2328                                 goto out_reset;
2329                         if (ret)
2330                                 goto out_again;
2331                 } else {
2332                         /*
2333                          * We need to be careful here too. The
2334                          * commit page could still be on the reader
2335                          * page. We could have a small buffer, and
2336                          * have filled up the buffer with events
2337                          * from interrupts and such, and wrapped.
2338                          *
2339                          * Note, if the tail page is also the on the
2340                          * reader_page, we let it move out.
2341                          */
2342                         if (unlikely((cpu_buffer->commit_page !=
2343                                       cpu_buffer->tail_page) &&
2344                                      (cpu_buffer->commit_page ==
2345                                       cpu_buffer->reader_page))) {
2346                                 local_inc(&cpu_buffer->commit_overrun);
2347                                 goto out_reset;
2348                         }
2349                 }
2350         }
2351
2352         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353         if (ret) {
2354                 /*
2355                  * Nested commits always have zero deltas, so
2356                  * just reread the time stamp
2357                  */
2358                 ts = rb_time_stamp(buffer);
2359                 next_page->page->time_stamp = ts;
2360         }
2361
2362  out_again:
2363
2364         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365
2366         /* fail and let the caller try again */
2367         return ERR_PTR(-EAGAIN);
2368
2369  out_reset:
2370         /* reset write */
2371         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372
2373         return NULL;
2374 }
2375
2376 static struct ring_buffer_event *
2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378                   unsigned long length, u64 ts,
2379                   u64 delta, int add_timestamp)
2380 {
2381         struct buffer_page *tail_page;
2382         struct ring_buffer_event *event;
2383         unsigned long tail, write;
2384
2385         /*
2386          * If the time delta since the last event is too big to
2387          * hold in the time field of the event, then we append a
2388          * TIME EXTEND event ahead of the data event.
2389          */
2390         if (unlikely(add_timestamp))
2391                 length += RB_LEN_TIME_EXTEND;
2392
2393         tail_page = cpu_buffer->tail_page;
2394         write = local_add_return(length, &tail_page->write);
2395
2396         /* set write to only the index of the write */
2397         write &= RB_WRITE_MASK;
2398         tail = write - length;
2399
2400         /*
2401          * If this is the first commit on the page, then it has the same
2402          * timestamp as the page itself.
2403          */
2404         if (!tail)
2405                 delta = 0;
2406
2407         /* See if we shot pass the end of this buffer page */
2408         if (unlikely(write > BUF_PAGE_SIZE))
2409                 return rb_move_tail(cpu_buffer, length, tail,
2410                                     tail_page, ts);
2411
2412         /* We reserved something on the buffer */
2413
2414         event = __rb_page_index(tail_page, tail);
2415         kmemcheck_annotate_bitfield(event, bitfield);
2416         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2417
2418         local_inc(&tail_page->entries);
2419
2420         /*
2421          * If this is the first commit on the page, then update
2422          * its timestamp.
2423          */
2424         if (!tail)
2425                 tail_page->page->time_stamp = ts;
2426
2427         /* account for these added bytes */
2428         local_add(length, &cpu_buffer->entries_bytes);
2429
2430         return event;
2431 }
2432
2433 static inline int
2434 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2435                   struct ring_buffer_event *event)
2436 {
2437         unsigned long new_index, old_index;
2438         struct buffer_page *bpage;
2439         unsigned long index;
2440         unsigned long addr;
2441
2442         new_index = rb_event_index(event);
2443         old_index = new_index + rb_event_ts_length(event);
2444         addr = (unsigned long)event;
2445         addr &= PAGE_MASK;
2446
2447         bpage = cpu_buffer->tail_page;
2448
2449         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2450                 unsigned long write_mask =
2451                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2452                 unsigned long event_length = rb_event_length(event);
2453                 /*
2454                  * This is on the tail page. It is possible that
2455                  * a write could come in and move the tail page
2456                  * and write to the next page. That is fine
2457                  * because we just shorten what is on this page.
2458                  */
2459                 old_index += write_mask;
2460                 new_index += write_mask;
2461                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2462                 if (index == old_index) {
2463                         /* update counters */
2464                         local_sub(event_length, &cpu_buffer->entries_bytes);
2465                         return 1;
2466                 }
2467         }
2468
2469         /* could not discard */
2470         return 0;
2471 }
2472
2473 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2474 {
2475         local_inc(&cpu_buffer->committing);
2476         local_inc(&cpu_buffer->commits);
2477 }
2478
2479 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2480 {
2481         unsigned long commits;
2482
2483         if (RB_WARN_ON(cpu_buffer,
2484                        !local_read(&cpu_buffer->committing)))
2485                 return;
2486
2487  again:
2488         commits = local_read(&cpu_buffer->commits);
2489         /* synchronize with interrupts */
2490         barrier();
2491         if (local_read(&cpu_buffer->committing) == 1)
2492                 rb_set_commit_to_write(cpu_buffer);
2493
2494         local_dec(&cpu_buffer->committing);
2495
2496         /* synchronize with interrupts */
2497         barrier();
2498
2499         /*
2500          * Need to account for interrupts coming in between the
2501          * updating of the commit page and the clearing of the
2502          * committing counter.
2503          */
2504         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2505             !local_read(&cpu_buffer->committing)) {
2506                 local_inc(&cpu_buffer->committing);
2507                 goto again;
2508         }
2509 }
2510
2511 static struct ring_buffer_event *
2512 rb_reserve_next_event(struct ring_buffer *buffer,
2513                       struct ring_buffer_per_cpu *cpu_buffer,
2514                       unsigned long length)
2515 {
2516         struct ring_buffer_event *event;
2517         u64 ts, delta;
2518         int nr_loops = 0;
2519         int add_timestamp;
2520         u64 diff;
2521
2522         rb_start_commit(cpu_buffer);
2523
2524 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2525         /*
2526          * Due to the ability to swap a cpu buffer from a buffer
2527          * it is possible it was swapped before we committed.
2528          * (committing stops a swap). We check for it here and
2529          * if it happened, we have to fail the write.
2530          */
2531         barrier();
2532         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2533                 local_dec(&cpu_buffer->committing);
2534                 local_dec(&cpu_buffer->commits);
2535                 return NULL;
2536         }
2537 #endif
2538
2539         length = rb_calculate_event_length(length);
2540  again:
2541         add_timestamp = 0;
2542         delta = 0;
2543
2544         /*
2545          * We allow for interrupts to reenter here and do a trace.
2546          * If one does, it will cause this original code to loop
2547          * back here. Even with heavy interrupts happening, this
2548          * should only happen a few times in a row. If this happens
2549          * 1000 times in a row, there must be either an interrupt
2550          * storm or we have something buggy.
2551          * Bail!
2552          */
2553         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2554                 goto out_fail;
2555
2556         ts = rb_time_stamp(cpu_buffer->buffer);
2557         diff = ts - cpu_buffer->write_stamp;
2558
2559         /* make sure this diff is calculated here */
2560         barrier();
2561
2562         /* Did the write stamp get updated already? */
2563         if (likely(ts >= cpu_buffer->write_stamp)) {
2564                 delta = diff;
2565                 if (unlikely(test_time_stamp(delta))) {
2566                         int local_clock_stable = 1;
2567 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2568                         local_clock_stable = sched_clock_stable();
2569 #endif
2570                         WARN_ONCE(delta > (1ULL << 59),
2571                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2572                                   (unsigned long long)delta,
2573                                   (unsigned long long)ts,
2574                                   (unsigned long long)cpu_buffer->write_stamp,
2575                                   local_clock_stable ? "" :
2576                                   "If you just came from a suspend/resume,\n"
2577                                   "please switch to the trace global clock:\n"
2578                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2579                         add_timestamp = 1;
2580                 }
2581         }
2582
2583         event = __rb_reserve_next(cpu_buffer, length, ts,
2584                                   delta, add_timestamp);
2585         if (unlikely(PTR_ERR(event) == -EAGAIN))
2586                 goto again;
2587
2588         if (!event)
2589                 goto out_fail;
2590
2591         return event;
2592
2593  out_fail:
2594         rb_end_commit(cpu_buffer);
2595         return NULL;
2596 }
2597
2598 #ifdef CONFIG_TRACING
2599
2600 /*
2601  * The lock and unlock are done within a preempt disable section.
2602  * The current_context per_cpu variable can only be modified
2603  * by the current task between lock and unlock. But it can
2604  * be modified more than once via an interrupt. To pass this
2605  * information from the lock to the unlock without having to
2606  * access the 'in_interrupt()' functions again (which do show
2607  * a bit of overhead in something as critical as function tracing,
2608  * we use a bitmask trick.
2609  *
2610  *  bit 0 =  NMI context
2611  *  bit 1 =  IRQ context
2612  *  bit 2 =  SoftIRQ context
2613  *  bit 3 =  normal context.
2614  *
2615  * This works because this is the order of contexts that can
2616  * preempt other contexts. A SoftIRQ never preempts an IRQ
2617  * context.
2618  *
2619  * When the context is determined, the corresponding bit is
2620  * checked and set (if it was set, then a recursion of that context
2621  * happened).
2622  *
2623  * On unlock, we need to clear this bit. To do so, just subtract
2624  * 1 from the current_context and AND it to itself.
2625  *
2626  * (binary)
2627  *  101 - 1 = 100
2628  *  101 & 100 = 100 (clearing bit zero)
2629  *
2630  *  1010 - 1 = 1001
2631  *  1010 & 1001 = 1000 (clearing bit 1)
2632  *
2633  * The least significant bit can be cleared this way, and it
2634  * just so happens that it is the same bit corresponding to
2635  * the current context.
2636  */
2637 static DEFINE_PER_CPU(unsigned int, current_context);
2638
2639 static __always_inline int trace_recursive_lock(void)
2640 {
2641         unsigned int val = this_cpu_read(current_context);
2642         int bit;
2643
2644         if (in_interrupt()) {
2645                 if (in_nmi())
2646                         bit = 0;
2647                 else if (in_irq())
2648                         bit = 1;
2649                 else
2650                         bit = 2;
2651         } else
2652                 bit = 3;
2653
2654         if (unlikely(val & (1 << bit)))
2655                 return 1;
2656
2657         val |= (1 << bit);
2658         this_cpu_write(current_context, val);
2659
2660         return 0;
2661 }
2662
2663 static __always_inline void trace_recursive_unlock(void)
2664 {
2665         unsigned int val = this_cpu_read(current_context);
2666
2667         val--;
2668         val &= this_cpu_read(current_context);
2669         this_cpu_write(current_context, val);
2670 }
2671
2672 #else
2673
2674 #define trace_recursive_lock()          (0)
2675 #define trace_recursive_unlock()        do { } while (0)
2676
2677 #endif
2678
2679 /**
2680  * ring_buffer_lock_reserve - reserve a part of the buffer
2681  * @buffer: the ring buffer to reserve from
2682  * @length: the length of the data to reserve (excluding event header)
2683  *
2684  * Returns a reseverd event on the ring buffer to copy directly to.
2685  * The user of this interface will need to get the body to write into
2686  * and can use the ring_buffer_event_data() interface.
2687  *
2688  * The length is the length of the data needed, not the event length
2689  * which also includes the event header.
2690  *
2691  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2692  * If NULL is returned, then nothing has been allocated or locked.
2693  */
2694 struct ring_buffer_event *
2695 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2696 {
2697         struct ring_buffer_per_cpu *cpu_buffer;
2698         struct ring_buffer_event *event;
2699         int cpu;
2700
2701         if (ring_buffer_flags != RB_BUFFERS_ON)
2702                 return NULL;
2703
2704         /* If we are tracing schedule, we don't want to recurse */
2705         preempt_disable_notrace();
2706
2707         if (atomic_read(&buffer->record_disabled))
2708                 goto out_nocheck;
2709
2710         if (trace_recursive_lock())
2711                 goto out_nocheck;
2712
2713         cpu = raw_smp_processor_id();
2714
2715         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2716                 goto out;
2717
2718         cpu_buffer = buffer->buffers[cpu];
2719
2720         if (atomic_read(&cpu_buffer->record_disabled))
2721                 goto out;
2722
2723         if (length > BUF_MAX_DATA_SIZE)
2724                 goto out;
2725
2726         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2727         if (!event)
2728                 goto out;
2729
2730         return event;
2731
2732  out:
2733         trace_recursive_unlock();
2734
2735  out_nocheck:
2736         preempt_enable_notrace();
2737         return NULL;
2738 }
2739 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2740
2741 static void
2742 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2743                       struct ring_buffer_event *event)
2744 {
2745         u64 delta;
2746
2747         /*
2748          * The event first in the commit queue updates the
2749          * time stamp.
2750          */
2751         if (rb_event_is_commit(cpu_buffer, event)) {
2752                 /*
2753                  * A commit event that is first on a page
2754                  * updates the write timestamp with the page stamp
2755                  */
2756                 if (!rb_event_index(event))
2757                         cpu_buffer->write_stamp =
2758                                 cpu_buffer->commit_page->page->time_stamp;
2759                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2760                         delta = event->array[0];
2761                         delta <<= TS_SHIFT;
2762                         delta += event->time_delta;
2763                         cpu_buffer->write_stamp += delta;
2764                 } else
2765                         cpu_buffer->write_stamp += event->time_delta;
2766         }
2767 }
2768
2769 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2770                       struct ring_buffer_event *event)
2771 {
2772         local_inc(&cpu_buffer->entries);
2773         rb_update_write_stamp(cpu_buffer, event);
2774         rb_end_commit(cpu_buffer);
2775 }
2776
2777 static __always_inline void
2778 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2779 {
2780         if (buffer->irq_work.waiters_pending) {
2781                 buffer->irq_work.waiters_pending = false;
2782                 /* irq_work_queue() supplies it's own memory barriers */
2783                 irq_work_queue(&buffer->irq_work.work);
2784         }
2785
2786         if (cpu_buffer->irq_work.waiters_pending) {
2787                 cpu_buffer->irq_work.waiters_pending = false;
2788                 /* irq_work_queue() supplies it's own memory barriers */
2789                 irq_work_queue(&cpu_buffer->irq_work.work);
2790         }
2791 }
2792
2793 /**
2794  * ring_buffer_unlock_commit - commit a reserved
2795  * @buffer: The buffer to commit to
2796  * @event: The event pointer to commit.
2797  *
2798  * This commits the data to the ring buffer, and releases any locks held.
2799  *
2800  * Must be paired with ring_buffer_lock_reserve.
2801  */
2802 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2803                               struct ring_buffer_event *event)
2804 {
2805         struct ring_buffer_per_cpu *cpu_buffer;
2806         int cpu = raw_smp_processor_id();
2807
2808         cpu_buffer = buffer->buffers[cpu];
2809
2810         rb_commit(cpu_buffer, event);
2811
2812         rb_wakeups(buffer, cpu_buffer);
2813
2814         trace_recursive_unlock();
2815
2816         preempt_enable_notrace();
2817
2818         return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2821
2822 static inline void rb_event_discard(struct ring_buffer_event *event)
2823 {
2824         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2825                 event = skip_time_extend(event);
2826
2827         /* array[0] holds the actual length for the discarded event */
2828         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2829         event->type_len = RINGBUF_TYPE_PADDING;
2830         /* time delta must be non zero */
2831         if (!event->time_delta)
2832                 event->time_delta = 1;
2833 }
2834
2835 /*
2836  * Decrement the entries to the page that an event is on.
2837  * The event does not even need to exist, only the pointer
2838  * to the page it is on. This may only be called before the commit
2839  * takes place.
2840  */
2841 static inline void
2842 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2843                    struct ring_buffer_event *event)
2844 {
2845         unsigned long addr = (unsigned long)event;
2846         struct buffer_page *bpage = cpu_buffer->commit_page;
2847         struct buffer_page *start;
2848
2849         addr &= PAGE_MASK;
2850
2851         /* Do the likely case first */
2852         if (likely(bpage->page == (void *)addr)) {
2853                 local_dec(&bpage->entries);
2854                 return;
2855         }
2856
2857         /*
2858          * Because the commit page may be on the reader page we
2859          * start with the next page and check the end loop there.
2860          */
2861         rb_inc_page(cpu_buffer, &bpage);
2862         start = bpage;
2863         do {
2864                 if (bpage->page == (void *)addr) {
2865                         local_dec(&bpage->entries);
2866                         return;
2867                 }
2868                 rb_inc_page(cpu_buffer, &bpage);
2869         } while (bpage != start);
2870
2871         /* commit not part of this buffer?? */
2872         RB_WARN_ON(cpu_buffer, 1);
2873 }
2874
2875 /**
2876  * ring_buffer_commit_discard - discard an event that has not been committed
2877  * @buffer: the ring buffer
2878  * @event: non committed event to discard
2879  *
2880  * Sometimes an event that is in the ring buffer needs to be ignored.
2881  * This function lets the user discard an event in the ring buffer
2882  * and then that event will not be read later.
2883  *
2884  * This function only works if it is called before the the item has been
2885  * committed. It will try to free the event from the ring buffer
2886  * if another event has not been added behind it.
2887  *
2888  * If another event has been added behind it, it will set the event
2889  * up as discarded, and perform the commit.
2890  *
2891  * If this function is called, do not call ring_buffer_unlock_commit on
2892  * the event.
2893  */
2894 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2895                                 struct ring_buffer_event *event)
2896 {
2897         struct ring_buffer_per_cpu *cpu_buffer;
2898         int cpu;
2899
2900         /* The event is discarded regardless */
2901         rb_event_discard(event);
2902
2903         cpu = smp_processor_id();
2904         cpu_buffer = buffer->buffers[cpu];
2905
2906         /*
2907          * This must only be called if the event has not been
2908          * committed yet. Thus we can assume that preemption
2909          * is still disabled.
2910          */
2911         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2912
2913         rb_decrement_entry(cpu_buffer, event);
2914         if (rb_try_to_discard(cpu_buffer, event))
2915                 goto out;
2916
2917         /*
2918          * The commit is still visible by the reader, so we
2919          * must still update the timestamp.
2920          */
2921         rb_update_write_stamp(cpu_buffer, event);
2922  out:
2923         rb_end_commit(cpu_buffer);
2924
2925         trace_recursive_unlock();
2926
2927         preempt_enable_notrace();
2928
2929 }
2930 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2931
2932 /**
2933  * ring_buffer_write - write data to the buffer without reserving
2934  * @buffer: The ring buffer to write to.
2935  * @length: The length of the data being written (excluding the event header)
2936  * @data: The data to write to the buffer.
2937  *
2938  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2939  * one function. If you already have the data to write to the buffer, it
2940  * may be easier to simply call this function.
2941  *
2942  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2943  * and not the length of the event which would hold the header.
2944  */
2945 int ring_buffer_write(struct ring_buffer *buffer,
2946                       unsigned long length,
2947                       void *data)
2948 {
2949         struct ring_buffer_per_cpu *cpu_buffer;
2950         struct ring_buffer_event *event;
2951         void *body;
2952         int ret = -EBUSY;
2953         int cpu;
2954
2955         if (ring_buffer_flags != RB_BUFFERS_ON)
2956                 return -EBUSY;
2957
2958         preempt_disable_notrace();
2959
2960         if (atomic_read(&buffer->record_disabled))
2961                 goto out;
2962
2963         cpu = raw_smp_processor_id();
2964
2965         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966                 goto out;
2967
2968         cpu_buffer = buffer->buffers[cpu];
2969
2970         if (atomic_read(&cpu_buffer->record_disabled))
2971                 goto out;
2972
2973         if (length > BUF_MAX_DATA_SIZE)
2974                 goto out;
2975
2976         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2977         if (!event)
2978                 goto out;
2979
2980         body = rb_event_data(event);
2981
2982         memcpy(body, data, length);
2983
2984         rb_commit(cpu_buffer, event);
2985
2986         rb_wakeups(buffer, cpu_buffer);
2987
2988         ret = 0;
2989  out:
2990         preempt_enable_notrace();
2991
2992         return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(ring_buffer_write);
2995
2996 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2997 {
2998         struct buffer_page *reader = cpu_buffer->reader_page;
2999         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3000         struct buffer_page *commit = cpu_buffer->commit_page;
3001
3002         /* In case of error, head will be NULL */
3003         if (unlikely(!head))
3004                 return 1;
3005
3006         return reader->read == rb_page_commit(reader) &&
3007                 (commit == reader ||
3008                  (commit == head &&
3009                   head->read == rb_page_commit(commit)));
3010 }
3011
3012 /**
3013  * ring_buffer_record_disable - stop all writes into the buffer
3014  * @buffer: The ring buffer to stop writes to.
3015  *
3016  * This prevents all writes to the buffer. Any attempt to write
3017  * to the buffer after this will fail and return NULL.
3018  *
3019  * The caller should call synchronize_sched() after this.
3020  */
3021 void ring_buffer_record_disable(struct ring_buffer *buffer)
3022 {
3023         atomic_inc(&buffer->record_disabled);
3024 }
3025 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3026
3027 /**
3028  * ring_buffer_record_enable - enable writes to the buffer
3029  * @buffer: The ring buffer to enable writes
3030  *
3031  * Note, multiple disables will need the same number of enables
3032  * to truly enable the writing (much like preempt_disable).
3033  */
3034 void ring_buffer_record_enable(struct ring_buffer *buffer)
3035 {
3036         atomic_dec(&buffer->record_disabled);
3037 }
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3039
3040 /**
3041  * ring_buffer_record_off - stop all writes into the buffer
3042  * @buffer: The ring buffer to stop writes to.
3043  *
3044  * This prevents all writes to the buffer. Any attempt to write
3045  * to the buffer after this will fail and return NULL.
3046  *
3047  * This is different than ring_buffer_record_disable() as
3048  * it works like an on/off switch, where as the disable() version
3049  * must be paired with a enable().
3050  */
3051 void ring_buffer_record_off(struct ring_buffer *buffer)
3052 {
3053         unsigned int rd;
3054         unsigned int new_rd;
3055
3056         do {
3057                 rd = atomic_read(&buffer->record_disabled);
3058                 new_rd = rd | RB_BUFFER_OFF;
3059         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3060 }
3061 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3062
3063 /**
3064  * ring_buffer_record_on - restart writes into the buffer
3065  * @buffer: The ring buffer to start writes to.
3066  *
3067  * This enables all writes to the buffer that was disabled by
3068  * ring_buffer_record_off().
3069  *
3070  * This is different than ring_buffer_record_enable() as
3071  * it works like an on/off switch, where as the enable() version
3072  * must be paired with a disable().
3073  */
3074 void ring_buffer_record_on(struct ring_buffer *buffer)
3075 {
3076         unsigned int rd;
3077         unsigned int new_rd;
3078
3079         do {
3080                 rd = atomic_read(&buffer->record_disabled);
3081                 new_rd = rd & ~RB_BUFFER_OFF;
3082         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3085
3086 /**
3087  * ring_buffer_record_is_on - return true if the ring buffer can write
3088  * @buffer: The ring buffer to see if write is enabled
3089  *
3090  * Returns true if the ring buffer is in a state that it accepts writes.
3091  */
3092 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3093 {
3094         return !atomic_read(&buffer->record_disabled);
3095 }
3096
3097 /**
3098  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3099  * @buffer: The ring buffer to stop writes to.
3100  * @cpu: The CPU buffer to stop
3101  *
3102  * This prevents all writes to the buffer. Any attempt to write
3103  * to the buffer after this will fail and return NULL.
3104  *
3105  * The caller should call synchronize_sched() after this.
3106  */
3107 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3108 {
3109         struct ring_buffer_per_cpu *cpu_buffer;
3110
3111         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3112                 return;
3113
3114         cpu_buffer = buffer->buffers[cpu];
3115         atomic_inc(&cpu_buffer->record_disabled);
3116 }
3117 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3118
3119 /**
3120  * ring_buffer_record_enable_cpu - enable writes to the buffer
3121  * @buffer: The ring buffer to enable writes
3122  * @cpu: The CPU to enable.
3123  *
3124  * Note, multiple disables will need the same number of enables
3125  * to truly enable the writing (much like preempt_disable).
3126  */
3127 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3128 {
3129         struct ring_buffer_per_cpu *cpu_buffer;
3130
3131         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3132                 return;
3133
3134         cpu_buffer = buffer->buffers[cpu];
3135         atomic_dec(&cpu_buffer->record_disabled);
3136 }
3137 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3138
3139 /*
3140  * The total entries in the ring buffer is the running counter
3141  * of entries entered into the ring buffer, minus the sum of
3142  * the entries read from the ring buffer and the number of
3143  * entries that were overwritten.
3144  */
3145 static inline unsigned long
3146 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3147 {
3148         return local_read(&cpu_buffer->entries) -
3149                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3150 }
3151
3152 /**
3153  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3154  * @buffer: The ring buffer
3155  * @cpu: The per CPU buffer to read from.
3156  */
3157 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3158 {
3159         unsigned long flags;
3160         struct ring_buffer_per_cpu *cpu_buffer;
3161         struct buffer_page *bpage;
3162         u64 ret = 0;
3163
3164         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165                 return 0;
3166
3167         cpu_buffer = buffer->buffers[cpu];
3168         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3169         /*
3170          * if the tail is on reader_page, oldest time stamp is on the reader
3171          * page
3172          */
3173         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3174                 bpage = cpu_buffer->reader_page;
3175         else
3176                 bpage = rb_set_head_page(cpu_buffer);
3177         if (bpage)
3178                 ret = bpage->page->time_stamp;
3179         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3180
3181         return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3184
3185 /**
3186  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3187  * @buffer: The ring buffer
3188  * @cpu: The per CPU buffer to read from.
3189  */
3190 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3191 {
3192         struct ring_buffer_per_cpu *cpu_buffer;
3193         unsigned long ret;
3194
3195         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3196                 return 0;
3197
3198         cpu_buffer = buffer->buffers[cpu];
3199         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3200
3201         return ret;
3202 }
3203 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3204
3205 /**
3206  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3207  * @buffer: The ring buffer
3208  * @cpu: The per CPU buffer to get the entries from.
3209  */
3210 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3211 {
3212         struct ring_buffer_per_cpu *cpu_buffer;
3213
3214         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3215                 return 0;
3216
3217         cpu_buffer = buffer->buffers[cpu];
3218
3219         return rb_num_of_entries(cpu_buffer);
3220 }
3221 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3222
3223 /**
3224  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3225  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3226  * @buffer: The ring buffer
3227  * @cpu: The per CPU buffer to get the number of overruns from
3228  */
3229 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3230 {
3231         struct ring_buffer_per_cpu *cpu_buffer;
3232         unsigned long ret;
3233
3234         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3235                 return 0;
3236
3237         cpu_buffer = buffer->buffers[cpu];
3238         ret = local_read(&cpu_buffer->overrun);
3239
3240         return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3243
3244 /**
3245  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3246  * commits failing due to the buffer wrapping around while there are uncommitted
3247  * events, such as during an interrupt storm.
3248  * @buffer: The ring buffer
3249  * @cpu: The per CPU buffer to get the number of overruns from
3250  */
3251 unsigned long
3252 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3253 {
3254         struct ring_buffer_per_cpu *cpu_buffer;
3255         unsigned long ret;
3256
3257         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3258                 return 0;
3259
3260         cpu_buffer = buffer->buffers[cpu];
3261         ret = local_read(&cpu_buffer->commit_overrun);
3262
3263         return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3266
3267 /**
3268  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3269  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3270  * @buffer: The ring buffer
3271  * @cpu: The per CPU buffer to get the number of overruns from
3272  */
3273 unsigned long
3274 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3275 {
3276         struct ring_buffer_per_cpu *cpu_buffer;
3277         unsigned long ret;
3278
3279         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280                 return 0;
3281
3282         cpu_buffer = buffer->buffers[cpu];
3283         ret = local_read(&cpu_buffer->dropped_events);
3284
3285         return ret;
3286 }
3287 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3288
3289 /**
3290  * ring_buffer_read_events_cpu - get the number of events successfully read
3291  * @buffer: The ring buffer
3292  * @cpu: The per CPU buffer to get the number of events read
3293  */
3294 unsigned long
3295 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3296 {
3297         struct ring_buffer_per_cpu *cpu_buffer;
3298
3299         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3300                 return 0;
3301
3302         cpu_buffer = buffer->buffers[cpu];
3303         return cpu_buffer->read;
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3306
3307 /**
3308  * ring_buffer_entries - get the number of entries in a buffer
3309  * @buffer: The ring buffer
3310  *
3311  * Returns the total number of entries in the ring buffer
3312  * (all CPU entries)
3313  */
3314 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3315 {
3316         struct ring_buffer_per_cpu *cpu_buffer;
3317         unsigned long entries = 0;
3318         int cpu;
3319
3320         /* if you care about this being correct, lock the buffer */
3321         for_each_buffer_cpu(buffer, cpu) {
3322                 cpu_buffer = buffer->buffers[cpu];
3323                 entries += rb_num_of_entries(cpu_buffer);
3324         }
3325
3326         return entries;
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3329
3330 /**
3331  * ring_buffer_overruns - get the number of overruns in buffer
3332  * @buffer: The ring buffer
3333  *
3334  * Returns the total number of overruns in the ring buffer
3335  * (all CPU entries)
3336  */
3337 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3338 {
3339         struct ring_buffer_per_cpu *cpu_buffer;
3340         unsigned long overruns = 0;
3341         int cpu;
3342
3343         /* if you care about this being correct, lock the buffer */
3344         for_each_buffer_cpu(buffer, cpu) {
3345                 cpu_buffer = buffer->buffers[cpu];
3346                 overruns += local_read(&cpu_buffer->overrun);
3347         }
3348
3349         return overruns;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3352
3353 static void rb_iter_reset(struct ring_buffer_iter *iter)
3354 {
3355         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3356
3357         /* Iterator usage is expected to have record disabled */
3358         iter->head_page = cpu_buffer->reader_page;
3359         iter->head = cpu_buffer->reader_page->read;
3360
3361         iter->cache_reader_page = iter->head_page;
3362         iter->cache_read = cpu_buffer->read;
3363
3364         if (iter->head)
3365                 iter->read_stamp = cpu_buffer->read_stamp;
3366         else
3367                 iter->read_stamp = iter->head_page->page->time_stamp;
3368 }
3369
3370 /**
3371  * ring_buffer_iter_reset - reset an iterator
3372  * @iter: The iterator to reset
3373  *
3374  * Resets the iterator, so that it will start from the beginning
3375  * again.
3376  */
3377 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3378 {
3379         struct ring_buffer_per_cpu *cpu_buffer;
3380         unsigned long flags;
3381
3382         if (!iter)
3383                 return;
3384
3385         cpu_buffer = iter->cpu_buffer;
3386
3387         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3388         rb_iter_reset(iter);
3389         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3392
3393 /**
3394  * ring_buffer_iter_empty - check if an iterator has no more to read
3395  * @iter: The iterator to check
3396  */
3397 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3398 {
3399         struct ring_buffer_per_cpu *cpu_buffer;
3400
3401         cpu_buffer = iter->cpu_buffer;
3402
3403         return iter->head_page == cpu_buffer->commit_page &&
3404                 iter->head == rb_commit_index(cpu_buffer);
3405 }
3406 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3407
3408 static void
3409 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3410                      struct ring_buffer_event *event)
3411 {
3412         u64 delta;
3413
3414         switch (event->type_len) {
3415         case RINGBUF_TYPE_PADDING:
3416                 return;
3417
3418         case RINGBUF_TYPE_TIME_EXTEND:
3419                 delta = event->array[0];
3420                 delta <<= TS_SHIFT;
3421                 delta += event->time_delta;
3422                 cpu_buffer->read_stamp += delta;
3423                 return;
3424
3425         case RINGBUF_TYPE_TIME_STAMP:
3426                 /* FIXME: not implemented */
3427                 return;
3428
3429         case RINGBUF_TYPE_DATA:
3430                 cpu_buffer->read_stamp += event->time_delta;
3431                 return;
3432
3433         default:
3434                 BUG();
3435         }
3436         return;
3437 }
3438
3439 static void
3440 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3441                           struct ring_buffer_event *event)
3442 {
3443         u64 delta;
3444
3445         switch (event->type_len) {
3446         case RINGBUF_TYPE_PADDING:
3447                 return;
3448
3449         case RINGBUF_TYPE_TIME_EXTEND:
3450                 delta = event->array[0];
3451                 delta <<= TS_SHIFT;
3452                 delta += event->time_delta;
3453                 iter->read_stamp += delta;
3454                 return;
3455
3456         case RINGBUF_TYPE_TIME_STAMP:
3457                 /* FIXME: not implemented */
3458                 return;
3459
3460         case RINGBUF_TYPE_DATA:
3461                 iter->read_stamp += event->time_delta;
3462                 return;
3463
3464         default:
3465                 BUG();
3466         }
3467         return;
3468 }
3469
3470 static struct buffer_page *
3471 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3472 {
3473         struct buffer_page *reader = NULL;
3474         unsigned long overwrite;
3475         unsigned long flags;
3476         int nr_loops = 0;
3477         int ret;
3478
3479         local_irq_save(flags);
3480         arch_spin_lock(&cpu_buffer->lock);
3481
3482  again:
3483         /*
3484          * This should normally only loop twice. But because the
3485          * start of the reader inserts an empty page, it causes
3486          * a case where we will loop three times. There should be no
3487          * reason to loop four times (that I know of).
3488          */
3489         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3490                 reader = NULL;
3491                 goto out;
3492         }
3493
3494         reader = cpu_buffer->reader_page;
3495
3496         /* If there's more to read, return this page */
3497         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3498                 goto out;
3499
3500         /* Never should we have an index greater than the size */
3501         if (RB_WARN_ON(cpu_buffer,
3502                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3503                 goto out;
3504
3505         /* check if we caught up to the tail */
3506         reader = NULL;
3507         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3508                 goto out;
3509
3510         /* Don't bother swapping if the ring buffer is empty */
3511         if (rb_num_of_entries(cpu_buffer) == 0)
3512                 goto out;
3513
3514         /*
3515          * Reset the reader page to size zero.
3516          */
3517         local_set(&cpu_buffer->reader_page->write, 0);
3518         local_set(&cpu_buffer->reader_page->entries, 0);
3519         local_set(&cpu_buffer->reader_page->page->commit, 0);
3520         cpu_buffer->reader_page->real_end = 0;
3521
3522  spin:
3523         /*
3524          * Splice the empty reader page into the list around the head.
3525          */
3526         reader = rb_set_head_page(cpu_buffer);
3527         if (!reader)
3528                 goto out;
3529         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3530         cpu_buffer->reader_page->list.prev = reader->list.prev;
3531
3532         /*
3533          * cpu_buffer->pages just needs to point to the buffer, it
3534          *  has no specific buffer page to point to. Lets move it out
3535          *  of our way so we don't accidentally swap it.
3536          */
3537         cpu_buffer->pages = reader->list.prev;
3538
3539         /* The reader page will be pointing to the new head */
3540         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3541
3542         /*
3543          * We want to make sure we read the overruns after we set up our
3544          * pointers to the next object. The writer side does a
3545          * cmpxchg to cross pages which acts as the mb on the writer
3546          * side. Note, the reader will constantly fail the swap
3547          * while the writer is updating the pointers, so this
3548          * guarantees that the overwrite recorded here is the one we
3549          * want to compare with the last_overrun.
3550          */
3551         smp_mb();
3552         overwrite = local_read(&(cpu_buffer->overrun));
3553
3554         /*
3555          * Here's the tricky part.
3556          *
3557          * We need to move the pointer past the header page.
3558          * But we can only do that if a writer is not currently
3559          * moving it. The page before the header page has the
3560          * flag bit '1' set if it is pointing to the page we want.
3561          * but if the writer is in the process of moving it
3562          * than it will be '2' or already moved '0'.
3563          */
3564
3565         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3566
3567         /*
3568          * If we did not convert it, then we must try again.
3569          */
3570         if (!ret)
3571                 goto spin;
3572
3573         /*
3574          * Yeah! We succeeded in replacing the page.
3575          *
3576          * Now make the new head point back to the reader page.
3577          */
3578         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3579         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3580
3581         /* Finally update the reader page to the new head */
3582         cpu_buffer->reader_page = reader;
3583         rb_reset_reader_page(cpu_buffer);
3584
3585         if (overwrite != cpu_buffer->last_overrun) {
3586                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3587                 cpu_buffer->last_overrun = overwrite;
3588         }
3589
3590         goto again;
3591
3592  out:
3593         arch_spin_unlock(&cpu_buffer->lock);
3594         local_irq_restore(flags);
3595
3596         return reader;
3597 }
3598
3599 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3600 {
3601         struct ring_buffer_event *event;
3602         struct buffer_page *reader;
3603         unsigned length;
3604
3605         reader = rb_get_reader_page(cpu_buffer);
3606
3607         /* This function should not be called when buffer is empty */
3608         if (RB_WARN_ON(cpu_buffer, !reader))
3609                 return;
3610
3611         event = rb_reader_event(cpu_buffer);
3612
3613         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3614                 cpu_buffer->read++;
3615
3616         rb_update_read_stamp(cpu_buffer, event);
3617
3618         length = rb_event_length(event);
3619         cpu_buffer->reader_page->read += length;
3620 }
3621
3622 static void rb_advance_iter(struct ring_buffer_iter *iter)
3623 {
3624         struct ring_buffer_per_cpu *cpu_buffer;
3625         struct ring_buffer_event *event;
3626         unsigned length;
3627
3628         cpu_buffer = iter->cpu_buffer;
3629
3630         /*
3631          * Check if we are at the end of the buffer.
3632          */
3633         if (iter->head >= rb_page_size(iter->head_page)) {
3634                 /* discarded commits can make the page empty */
3635                 if (iter->head_page == cpu_buffer->commit_page)
3636                         return;
3637                 rb_inc_iter(iter);
3638                 return;
3639         }
3640
3641         event = rb_iter_head_event(iter);
3642
3643         length = rb_event_length(event);
3644
3645         /*
3646          * This should not be called to advance the header if we are
3647          * at the tail of the buffer.
3648          */
3649         if (RB_WARN_ON(cpu_buffer,
3650                        (iter->head_page == cpu_buffer->commit_page) &&
3651                        (iter->head + length > rb_commit_index(cpu_buffer))))
3652                 return;
3653
3654         rb_update_iter_read_stamp(iter, event);
3655
3656         iter->head += length;
3657
3658         /* check for end of page padding */
3659         if ((iter->head >= rb_page_size(iter->head_page)) &&
3660             (iter->head_page != cpu_buffer->commit_page))
3661                 rb_inc_iter(iter);
3662 }
3663
3664 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3665 {
3666         return cpu_buffer->lost_events;
3667 }
3668
3669 static struct ring_buffer_event *
3670 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3671                unsigned long *lost_events)
3672 {
3673         struct ring_buffer_event *event;
3674         struct buffer_page *reader;
3675         int nr_loops = 0;
3676
3677  again:
3678         /*
3679          * We repeat when a time extend is encountered.
3680          * Since the time extend is always attached to a data event,
3681          * we should never loop more than once.
3682          * (We never hit the following condition more than twice).
3683          */
3684         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3685                 return NULL;
3686
3687         reader = rb_get_reader_page(cpu_buffer);
3688         if (!reader)
3689                 return NULL;
3690
3691         event = rb_reader_event(cpu_buffer);
3692
3693         switch (event->type_len) {
3694         case RINGBUF_TYPE_PADDING:
3695                 if (rb_null_event(event))
3696                         RB_WARN_ON(cpu_buffer, 1);
3697                 /*
3698                  * Because the writer could be discarding every
3699                  * event it creates (which would probably be bad)
3700                  * if we were to go back to "again" then we may never
3701                  * catch up, and will trigger the warn on, or lock
3702                  * the box. Return the padding, and we will release
3703                  * the current locks, and try again.
3704                  */
3705                 return event;
3706
3707         case RINGBUF_TYPE_TIME_EXTEND:
3708                 /* Internal data, OK to advance */
3709                 rb_advance_reader(cpu_buffer);
3710                 goto again;
3711
3712         case RINGBUF_TYPE_TIME_STAMP:
3713                 /* FIXME: not implemented */
3714                 rb_advance_reader(cpu_buffer);
3715                 goto again;
3716
3717         case RINGBUF_TYPE_DATA:
3718                 if (ts) {
3719                         *ts = cpu_buffer->read_stamp + event->time_delta;
3720                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3721                                                          cpu_buffer->cpu, ts);
3722                 }
3723                 if (lost_events)
3724                         *lost_events = rb_lost_events(cpu_buffer);
3725                 return event;
3726
3727         default:
3728                 BUG();
3729         }
3730
3731         return NULL;
3732 }
3733 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3734
3735 static struct ring_buffer_event *
3736 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3737 {
3738         struct ring_buffer *buffer;
3739         struct ring_buffer_per_cpu *cpu_buffer;
3740         struct ring_buffer_event *event;
3741         int nr_loops = 0;
3742
3743         cpu_buffer = iter->cpu_buffer;
3744         buffer = cpu_buffer->buffer;
3745
3746         /*
3747          * Check if someone performed a consuming read to
3748          * the buffer. A consuming read invalidates the iterator
3749          * and we need to reset the iterator in this case.
3750          */
3751         if (unlikely(iter->cache_read != cpu_buffer->read ||
3752                      iter->cache_reader_page != cpu_buffer->reader_page))
3753                 rb_iter_reset(iter);
3754
3755  again:
3756         if (ring_buffer_iter_empty(iter))
3757                 return NULL;
3758
3759         /*
3760          * We repeat when a time extend is encountered or we hit
3761          * the end of the page. Since the time extend is always attached
3762          * to a data event, we should never loop more than three times.
3763          * Once for going to next page, once on time extend, and
3764          * finally once to get the event.
3765          * (We never hit the following condition more than thrice).
3766          */
3767         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3768                 return NULL;
3769
3770         if (rb_per_cpu_empty(cpu_buffer))
3771                 return NULL;
3772
3773         if (iter->head >= rb_page_size(iter->head_page)) {
3774                 rb_inc_iter(iter);
3775                 goto again;
3776         }
3777
3778         event = rb_iter_head_event(iter);
3779
3780         switch (event->type_len) {
3781         case RINGBUF_TYPE_PADDING:
3782                 if (rb_null_event(event)) {
3783                         rb_inc_iter(iter);
3784                         goto again;
3785                 }
3786                 rb_advance_iter(iter);
3787                 return event;
3788
3789         case RINGBUF_TYPE_TIME_EXTEND:
3790                 /* Internal data, OK to advance */
3791                 rb_advance_iter(iter);
3792                 goto again;
3793
3794         case RINGBUF_TYPE_TIME_STAMP:
3795                 /* FIXME: not implemented */
3796                 rb_advance_iter(iter);
3797                 goto again;
3798
3799         case RINGBUF_TYPE_DATA:
3800                 if (ts) {
3801                         *ts = iter->read_stamp + event->time_delta;
3802                         ring_buffer_normalize_time_stamp(buffer,
3803                                                          cpu_buffer->cpu, ts);
3804                 }
3805                 return event;
3806
3807         default:
3808                 BUG();
3809         }
3810
3811         return NULL;
3812 }
3813 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3814
3815 static inline int rb_ok_to_lock(void)
3816 {
3817         /*
3818          * If an NMI die dumps out the content of the ring buffer
3819          * do not grab locks. We also permanently disable the ring
3820          * buffer too. A one time deal is all you get from reading
3821          * the ring buffer from an NMI.
3822          */
3823         if (likely(!in_nmi()))
3824                 return 1;
3825
3826         tracing_off_permanent();
3827         return 0;
3828 }
3829
3830 /**
3831  * ring_buffer_peek - peek at the next event to be read
3832  * @buffer: The ring buffer to read
3833  * @cpu: The cpu to peak at
3834  * @ts: The timestamp counter of this event.
3835  * @lost_events: a variable to store if events were lost (may be NULL)
3836  *
3837  * This will return the event that will be read next, but does
3838  * not consume the data.
3839  */
3840 struct ring_buffer_event *
3841 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3842                  unsigned long *lost_events)
3843 {
3844         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3845         struct ring_buffer_event *event;
3846         unsigned long flags;
3847         int dolock;
3848
3849         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3850                 return NULL;
3851
3852         dolock = rb_ok_to_lock();
3853  again:
3854         local_irq_save(flags);
3855         if (dolock)
3856                 raw_spin_lock(&cpu_buffer->reader_lock);
3857         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3858         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3859                 rb_advance_reader(cpu_buffer);
3860         if (dolock)
3861                 raw_spin_unlock(&cpu_buffer->reader_lock);
3862         local_irq_restore(flags);
3863
3864         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865                 goto again;
3866
3867         return event;
3868 }
3869
3870 /**
3871  * ring_buffer_iter_peek - peek at the next event to be read
3872  * @iter: The ring buffer iterator
3873  * @ts: The timestamp counter of this event.
3874  *
3875  * This will return the event that will be read next, but does
3876  * not increment the iterator.
3877  */
3878 struct ring_buffer_event *
3879 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3880 {
3881         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3882         struct ring_buffer_event *event;
3883         unsigned long flags;
3884
3885  again:
3886         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3887         event = rb_iter_peek(iter, ts);
3888         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3889
3890         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891                 goto again;
3892
3893         return event;
3894 }
3895
3896 /**
3897  * ring_buffer_consume - return an event and consume it
3898  * @buffer: The ring buffer to get the next event from
3899  * @cpu: the cpu to read the buffer from
3900  * @ts: a variable to store the timestamp (may be NULL)
3901  * @lost_events: a variable to store if events were lost (may be NULL)
3902  *
3903  * Returns the next event in the ring buffer, and that event is consumed.
3904  * Meaning, that sequential reads will keep returning a different event,
3905  * and eventually empty the ring buffer if the producer is slower.
3906  */
3907 struct ring_buffer_event *
3908 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3909                     unsigned long *lost_events)
3910 {
3911         struct ring_buffer_per_cpu *cpu_buffer;
3912         struct ring_buffer_event *event = NULL;
3913         unsigned long flags;
3914         int dolock;
3915
3916         dolock = rb_ok_to_lock();
3917
3918  again:
3919         /* might be called in atomic */
3920         preempt_disable();
3921
3922         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3923                 goto out;
3924
3925         cpu_buffer = buffer->buffers[cpu];
3926         local_irq_save(flags);
3927         if (dolock)
3928                 raw_spin_lock(&cpu_buffer->reader_lock);
3929
3930         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3931         if (event) {
3932                 cpu_buffer->lost_events = 0;
3933                 rb_advance_reader(cpu_buffer);
3934         }
3935
3936         if (dolock)
3937                 raw_spin_unlock(&cpu_buffer->reader_lock);
3938         local_irq_restore(flags);
3939
3940  out:
3941         preempt_enable();
3942
3943         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3944                 goto again;
3945
3946         return event;
3947 }
3948 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3949
3950 /**
3951  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3952  * @buffer: The ring buffer to read from
3953  * @cpu: The cpu buffer to iterate over
3954  *
3955  * This performs the initial preparations necessary to iterate
3956  * through the buffer.  Memory is allocated, buffer recording
3957  * is disabled, and the iterator pointer is returned to the caller.
3958  *
3959  * Disabling buffer recordng prevents the reading from being
3960  * corrupted. This is not a consuming read, so a producer is not
3961  * expected.
3962  *
3963  * After a sequence of ring_buffer_read_prepare calls, the user is
3964  * expected to make at least one call to ring_buffer_read_prepare_sync.
3965  * Afterwards, ring_buffer_read_start is invoked to get things going
3966  * for real.
3967  *
3968  * This overall must be paired with ring_buffer_read_finish.
3969  */
3970 struct ring_buffer_iter *
3971 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3972 {
3973         struct ring_buffer_per_cpu *cpu_buffer;
3974         struct ring_buffer_iter *iter;
3975
3976         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977                 return NULL;
3978
3979         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3980         if (!iter)
3981                 return NULL;
3982
3983         cpu_buffer = buffer->buffers[cpu];
3984
3985         iter->cpu_buffer = cpu_buffer;
3986
3987         atomic_inc(&buffer->resize_disabled);
3988         atomic_inc(&cpu_buffer->record_disabled);
3989
3990         return iter;
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3993
3994 /**
3995  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3996  *
3997  * All previously invoked ring_buffer_read_prepare calls to prepare
3998  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3999  * calls on those iterators are allowed.
4000  */
4001 void
4002 ring_buffer_read_prepare_sync(void)
4003 {
4004         synchronize_sched();
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4007
4008 /**
4009  * ring_buffer_read_start - start a non consuming read of the buffer
4010  * @iter: The iterator returned by ring_buffer_read_prepare
4011  *
4012  * This finalizes the startup of an iteration through the buffer.
4013  * The iterator comes from a call to ring_buffer_read_prepare and
4014  * an intervening ring_buffer_read_prepare_sync must have been
4015  * performed.
4016  *
4017  * Must be paired with ring_buffer_read_finish.
4018  */
4019 void
4020 ring_buffer_read_start(struct ring_buffer_iter *iter)
4021 {
4022         struct ring_buffer_per_cpu *cpu_buffer;
4023         unsigned long flags;
4024
4025         if (!iter)
4026                 return;
4027
4028         cpu_buffer = iter->cpu_buffer;
4029
4030         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4031         arch_spin_lock(&cpu_buffer->lock);
4032         rb_iter_reset(iter);
4033         arch_spin_unlock(&cpu_buffer->lock);
4034         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4035 }
4036 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4037
4038 /**
4039  * ring_buffer_read_finish - finish reading the iterator of the buffer
4040  * @iter: The iterator retrieved by ring_buffer_start
4041  *
4042  * This re-enables the recording to the buffer, and frees the
4043  * iterator.
4044  */
4045 void
4046 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4047 {
4048         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4049         unsigned long flags;
4050
4051         /*
4052          * Ring buffer is disabled from recording, here's a good place
4053          * to check the integrity of the ring buffer.
4054          * Must prevent readers from trying to read, as the check
4055          * clears the HEAD page and readers require it.
4056          */
4057         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058         rb_check_pages(cpu_buffer);
4059         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4060
4061         atomic_dec(&cpu_buffer->record_disabled);
4062         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4063         kfree(iter);
4064 }
4065 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4066
4067 /**
4068  * ring_buffer_read - read the next item in the ring buffer by the iterator
4069  * @iter: The ring buffer iterator
4070  * @ts: The time stamp of the event read.
4071  *
4072  * This reads the next event in the ring buffer and increments the iterator.
4073  */
4074 struct ring_buffer_event *
4075 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4076 {
4077         struct ring_buffer_event *event;
4078         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4079         unsigned long flags;
4080
4081         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082  again:
4083         event = rb_iter_peek(iter, ts);
4084         if (!event)
4085                 goto out;
4086
4087         if (event->type_len == RINGBUF_TYPE_PADDING)
4088                 goto again;
4089
4090         rb_advance_iter(iter);
4091  out:
4092         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4093
4094         return event;
4095 }
4096 EXPORT_SYMBOL_GPL(ring_buffer_read);
4097
4098 /**
4099  * ring_buffer_size - return the size of the ring buffer (in bytes)
4100  * @buffer: The ring buffer.
4101  */
4102 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4103 {
4104         /*
4105          * Earlier, this method returned
4106          *      BUF_PAGE_SIZE * buffer->nr_pages
4107          * Since the nr_pages field is now removed, we have converted this to
4108          * return the per cpu buffer value.
4109          */
4110         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4111                 return 0;
4112
4113         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4114 }
4115 EXPORT_SYMBOL_GPL(ring_buffer_size);
4116
4117 static void
4118 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4119 {
4120         rb_head_page_deactivate(cpu_buffer);
4121
4122         cpu_buffer->head_page
4123                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4124         local_set(&cpu_buffer->head_page->write, 0);
4125         local_set(&cpu_buffer->head_page->entries, 0);
4126         local_set(&cpu_buffer->head_page->page->commit, 0);
4127
4128         cpu_buffer->head_page->read = 0;
4129
4130         cpu_buffer->tail_page = cpu_buffer->head_page;
4131         cpu_buffer->commit_page = cpu_buffer->head_page;
4132
4133         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4134         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4135         local_set(&cpu_buffer->reader_page->write, 0);
4136         local_set(&cpu_buffer->reader_page->entries, 0);
4137         local_set(&cpu_buffer->reader_page->page->commit, 0);
4138         cpu_buffer->reader_page->read = 0;
4139
4140         local_set(&cpu_buffer->entries_bytes, 0);
4141         local_set(&cpu_buffer->overrun, 0);
4142         local_set(&cpu_buffer->commit_overrun, 0);
4143         local_set(&cpu_buffer->dropped_events, 0);
4144         local_set(&cpu_buffer->entries, 0);
4145         local_set(&cpu_buffer->committing, 0);
4146         local_set(&cpu_buffer->commits, 0);
4147         cpu_buffer->read = 0;
4148         cpu_buffer->read_bytes = 0;
4149
4150         cpu_buffer->write_stamp = 0;
4151         cpu_buffer->read_stamp = 0;
4152
4153         cpu_buffer->lost_events = 0;
4154         cpu_buffer->last_overrun = 0;
4155
4156         rb_head_page_activate(cpu_buffer);
4157 }
4158
4159 /**
4160  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4161  * @buffer: The ring buffer to reset a per cpu buffer of
4162  * @cpu: The CPU buffer to be reset
4163  */
4164 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4165 {
4166         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4167         unsigned long flags;
4168
4169         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4170                 return;
4171
4172         atomic_inc(&buffer->resize_disabled);
4173         atomic_inc(&cpu_buffer->record_disabled);
4174
4175         /* Make sure all commits have finished */
4176         synchronize_sched();
4177
4178         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4179
4180         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4181                 goto out;
4182
4183         arch_spin_lock(&cpu_buffer->lock);
4184
4185         rb_reset_cpu(cpu_buffer);
4186
4187         arch_spin_unlock(&cpu_buffer->lock);
4188
4189  out:
4190         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4191
4192         atomic_dec(&cpu_buffer->record_disabled);
4193         atomic_dec(&buffer->resize_disabled);
4194 }
4195 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4196
4197 /**
4198  * ring_buffer_reset - reset a ring buffer
4199  * @buffer: The ring buffer to reset all cpu buffers
4200  */
4201 void ring_buffer_reset(struct ring_buffer *buffer)
4202 {
4203         int cpu;
4204
4205         for_each_buffer_cpu(buffer, cpu)
4206                 ring_buffer_reset_cpu(buffer, cpu);
4207 }
4208 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4209
4210 /**
4211  * rind_buffer_empty - is the ring buffer empty?
4212  * @buffer: The ring buffer to test
4213  */
4214 int ring_buffer_empty(struct ring_buffer *buffer)
4215 {
4216         struct ring_buffer_per_cpu *cpu_buffer;
4217         unsigned long flags;
4218         int dolock;
4219         int cpu;
4220         int ret;
4221
4222         dolock = rb_ok_to_lock();
4223
4224         /* yes this is racy, but if you don't like the race, lock the buffer */
4225         for_each_buffer_cpu(buffer, cpu) {
4226                 cpu_buffer = buffer->buffers[cpu];
4227                 local_irq_save(flags);
4228                 if (dolock)
4229                         raw_spin_lock(&cpu_buffer->reader_lock);
4230                 ret = rb_per_cpu_empty(cpu_buffer);
4231                 if (dolock)
4232                         raw_spin_unlock(&cpu_buffer->reader_lock);
4233                 local_irq_restore(flags);
4234
4235                 if (!ret)
4236                         return 0;
4237         }
4238
4239         return 1;
4240 }
4241 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4242
4243 /**
4244  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4245  * @buffer: The ring buffer
4246  * @cpu: The CPU buffer to test
4247  */
4248 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4249 {
4250         struct ring_buffer_per_cpu *cpu_buffer;
4251         unsigned long flags;
4252         int dolock;
4253         int ret;
4254
4255         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4256                 return 1;
4257
4258         dolock = rb_ok_to_lock();
4259
4260         cpu_buffer = buffer->buffers[cpu];
4261         local_irq_save(flags);
4262         if (dolock)
4263                 raw_spin_lock(&cpu_buffer->reader_lock);
4264         ret = rb_per_cpu_empty(cpu_buffer);
4265         if (dolock)
4266                 raw_spin_unlock(&cpu_buffer->reader_lock);
4267         local_irq_restore(flags);
4268
4269         return ret;
4270 }
4271 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4272
4273 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4274 /**
4275  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4276  * @buffer_a: One buffer to swap with
4277  * @buffer_b: The other buffer to swap with
4278  *
4279  * This function is useful for tracers that want to take a "snapshot"
4280  * of a CPU buffer and has another back up buffer lying around.
4281  * it is expected that the tracer handles the cpu buffer not being
4282  * used at the moment.
4283  */
4284 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4285                          struct ring_buffer *buffer_b, int cpu)
4286 {
4287         struct ring_buffer_per_cpu *cpu_buffer_a;
4288         struct ring_buffer_per_cpu *cpu_buffer_b;
4289         int ret = -EINVAL;
4290
4291         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4292             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4293                 goto out;
4294
4295         cpu_buffer_a = buffer_a->buffers[cpu];
4296         cpu_buffer_b = buffer_b->buffers[cpu];
4297
4298         /* At least make sure the two buffers are somewhat the same */
4299         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4300                 goto out;
4301
4302         ret = -EAGAIN;
4303
4304         if (ring_buffer_flags != RB_BUFFERS_ON)
4305                 goto out;
4306
4307         if (atomic_read(&buffer_a->record_disabled))
4308                 goto out;
4309
4310         if (atomic_read(&buffer_b->record_disabled))
4311                 goto out;
4312
4313         if (atomic_read(&cpu_buffer_a->record_disabled))
4314                 goto out;
4315
4316         if (atomic_read(&cpu_buffer_b->record_disabled))
4317                 goto out;
4318
4319         /*
4320          * We can't do a synchronize_sched here because this
4321          * function can be called in atomic context.
4322          * Normally this will be called from the same CPU as cpu.
4323          * If not it's up to the caller to protect this.
4324          */
4325         atomic_inc(&cpu_buffer_a->record_disabled);
4326         atomic_inc(&cpu_buffer_b->record_disabled);
4327
4328         ret = -EBUSY;
4329         if (local_read(&cpu_buffer_a->committing))
4330                 goto out_dec;
4331         if (local_read(&cpu_buffer_b->committing))
4332                 goto out_dec;
4333
4334         buffer_a->buffers[cpu] = cpu_buffer_b;
4335         buffer_b->buffers[cpu] = cpu_buffer_a;
4336
4337         cpu_buffer_b->buffer = buffer_a;
4338         cpu_buffer_a->buffer = buffer_b;
4339
4340         ret = 0;
4341
4342 out_dec:
4343         atomic_dec(&cpu_buffer_a->record_disabled);
4344         atomic_dec(&cpu_buffer_b->record_disabled);
4345 out:
4346         return ret;
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4349 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4350
4351 /**
4352  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4353  * @buffer: the buffer to allocate for.
4354  * @cpu: the cpu buffer to allocate.
4355  *
4356  * This function is used in conjunction with ring_buffer_read_page.
4357  * When reading a full page from the ring buffer, these functions
4358  * can be used to speed up the process. The calling function should
4359  * allocate a few pages first with this function. Then when it
4360  * needs to get pages from the ring buffer, it passes the result
4361  * of this function into ring_buffer_read_page, which will swap
4362  * the page that was allocated, with the read page of the buffer.
4363  *
4364  * Returns:
4365  *  The page allocated, or NULL on error.
4366  */
4367 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4368 {
4369         struct buffer_data_page *bpage;
4370         struct page *page;
4371
4372         page = alloc_pages_node(cpu_to_node(cpu),
4373                                 GFP_KERNEL | __GFP_NORETRY, 0);
4374         if (!page)
4375                 return NULL;
4376
4377         bpage = page_address(page);
4378
4379         rb_init_page(bpage);
4380
4381         return bpage;
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4384
4385 /**
4386  * ring_buffer_free_read_page - free an allocated read page
4387  * @buffer: the buffer the page was allocate for
4388  * @data: the page to free
4389  *
4390  * Free a page allocated from ring_buffer_alloc_read_page.
4391  */
4392 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4393 {
4394         free_page((unsigned long)data);
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4397
4398 /**
4399  * ring_buffer_read_page - extract a page from the ring buffer
4400  * @buffer: buffer to extract from
4401  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4402  * @len: amount to extract
4403  * @cpu: the cpu of the buffer to extract
4404  * @full: should the extraction only happen when the page is full.
4405  *
4406  * This function will pull out a page from the ring buffer and consume it.
4407  * @data_page must be the address of the variable that was returned
4408  * from ring_buffer_alloc_read_page. This is because the page might be used
4409  * to swap with a page in the ring buffer.
4410  *
4411  * for example:
4412  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4413  *      if (!rpage)
4414  *              return error;
4415  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4416  *      if (ret >= 0)
4417  *              process_page(rpage, ret);
4418  *
4419  * When @full is set, the function will not return true unless
4420  * the writer is off the reader page.
4421  *
4422  * Note: it is up to the calling functions to handle sleeps and wakeups.
4423  *  The ring buffer can be used anywhere in the kernel and can not
4424  *  blindly call wake_up. The layer that uses the ring buffer must be
4425  *  responsible for that.
4426  *
4427  * Returns:
4428  *  >=0 if data has been transferred, returns the offset of consumed data.
4429  *  <0 if no data has been transferred.
4430  */
4431 int ring_buffer_read_page(struct ring_buffer *buffer,
4432                           void **data_page, size_t len, int cpu, int full)
4433 {
4434         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4435         struct ring_buffer_event *event;
4436         struct buffer_data_page *bpage;
4437         struct buffer_page *reader;
4438         unsigned long missed_events;
4439         unsigned long flags;
4440         unsigned int commit;
4441         unsigned int read;
4442         u64 save_timestamp;
4443         int ret = -1;
4444
4445         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4446                 goto out;
4447
4448         /*
4449          * If len is not big enough to hold the page header, then
4450          * we can not copy anything.
4451          */
4452         if (len <= BUF_PAGE_HDR_SIZE)
4453                 goto out;
4454
4455         len -= BUF_PAGE_HDR_SIZE;
4456
4457         if (!data_page)
4458                 goto out;
4459
4460         bpage = *data_page;
4461         if (!bpage)
4462                 goto out;
4463
4464         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4465
4466         reader = rb_get_reader_page(cpu_buffer);
4467         if (!reader)
4468                 goto out_unlock;
4469
4470         event = rb_reader_event(cpu_buffer);
4471
4472         read = reader->read;
4473         commit = rb_page_commit(reader);
4474
4475         /* Check if any events were dropped */
4476         missed_events = cpu_buffer->lost_events;
4477
4478         /*
4479          * If this page has been partially read or
4480          * if len is not big enough to read the rest of the page or
4481          * a writer is still on the page, then
4482          * we must copy the data from the page to the buffer.
4483          * Otherwise, we can simply swap the page with the one passed in.
4484          */
4485         if (read || (len < (commit - read)) ||
4486             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4487                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4488                 unsigned int rpos = read;
4489                 unsigned int pos = 0;
4490                 unsigned int size;
4491
4492                 if (full)
4493                         goto out_unlock;
4494
4495                 if (len > (commit - read))
4496                         len = (commit - read);
4497
4498                 /* Always keep the time extend and data together */
4499                 size = rb_event_ts_length(event);
4500
4501                 if (len < size)
4502                         goto out_unlock;
4503
4504                 /* save the current timestamp, since the user will need it */
4505                 save_timestamp = cpu_buffer->read_stamp;
4506
4507                 /* Need to copy one event at a time */
4508                 do {
4509                         /* We need the size of one event, because
4510                          * rb_advance_reader only advances by one event,
4511                          * whereas rb_event_ts_length may include the size of
4512                          * one or two events.
4513                          * We have already ensured there's enough space if this
4514                          * is a time extend. */
4515                         size = rb_event_length(event);
4516                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4517
4518                         len -= size;
4519
4520                         rb_advance_reader(cpu_buffer);
4521                         rpos = reader->read;
4522                         pos += size;
4523
4524                         if (rpos >= commit)
4525                                 break;
4526
4527                         event = rb_reader_event(cpu_buffer);
4528                         /* Always keep the time extend and data together */
4529                         size = rb_event_ts_length(event);
4530                 } while (len >= size);
4531
4532                 /* update bpage */
4533                 local_set(&bpage->commit, pos);
4534                 bpage->time_stamp = save_timestamp;
4535
4536                 /* we copied everything to the beginning */
4537                 read = 0;
4538         } else {
4539                 /* update the entry counter */
4540                 cpu_buffer->read += rb_page_entries(reader);
4541                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4542
4543                 /* swap the pages */
4544                 rb_init_page(bpage);
4545                 bpage = reader->page;
4546                 reader->page = *data_page;
4547                 local_set(&reader->write, 0);
4548                 local_set(&reader->entries, 0);
4549                 reader->read = 0;
4550                 *data_page = bpage;
4551
4552                 /*
4553                  * Use the real_end for the data size,
4554                  * This gives us a chance to store the lost events
4555                  * on the page.
4556                  */
4557                 if (reader->real_end)
4558                         local_set(&bpage->commit, reader->real_end);
4559         }
4560         ret = read;
4561
4562         cpu_buffer->lost_events = 0;
4563
4564         commit = local_read(&bpage->commit);
4565         /*
4566          * Set a flag in the commit field if we lost events
4567          */
4568         if (missed_events) {
4569                 /* If there is room at the end of the page to save the
4570                  * missed events, then record it there.
4571                  */
4572                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4573                         memcpy(&bpage->data[commit], &missed_events,
4574                                sizeof(missed_events));
4575                         local_add(RB_MISSED_STORED, &bpage->commit);
4576                         commit += sizeof(missed_events);
4577                 }
4578                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4579         }
4580
4581         /*
4582          * This page may be off to user land. Zero it out here.
4583          */
4584         if (commit < BUF_PAGE_SIZE)
4585                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4586
4587  out_unlock:
4588         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4589
4590  out:
4591         return ret;
4592 }
4593 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4594
4595 #ifdef CONFIG_HOTPLUG_CPU
4596 static int rb_cpu_notify(struct notifier_block *self,
4597                          unsigned long action, void *hcpu)
4598 {
4599         struct ring_buffer *buffer =
4600                 container_of(self, struct ring_buffer, cpu_notify);
4601         long cpu = (long)hcpu;
4602         int cpu_i, nr_pages_same;
4603         unsigned int nr_pages;
4604
4605         switch (action) {
4606         case CPU_UP_PREPARE:
4607         case CPU_UP_PREPARE_FROZEN:
4608                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4609                         return NOTIFY_OK;
4610
4611                 nr_pages = 0;
4612                 nr_pages_same = 1;
4613                 /* check if all cpu sizes are same */
4614                 for_each_buffer_cpu(buffer, cpu_i) {
4615                         /* fill in the size from first enabled cpu */
4616                         if (nr_pages == 0)
4617                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4618                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4619                                 nr_pages_same = 0;
4620                                 break;
4621                         }
4622                 }
4623                 /* allocate minimum pages, user can later expand it */
4624                 if (!nr_pages_same)
4625                         nr_pages = 2;
4626                 buffer->buffers[cpu] =
4627                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4628                 if (!buffer->buffers[cpu]) {
4629                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4630                              cpu);
4631                         return NOTIFY_OK;
4632                 }
4633                 smp_wmb();
4634                 cpumask_set_cpu(cpu, buffer->cpumask);
4635                 break;
4636         case CPU_DOWN_PREPARE:
4637         case CPU_DOWN_PREPARE_FROZEN:
4638                 /*
4639                  * Do nothing.
4640                  *  If we were to free the buffer, then the user would
4641                  *  lose any trace that was in the buffer.
4642                  */
4643                 break;
4644         default:
4645                 break;
4646         }
4647         return NOTIFY_OK;
4648 }
4649 #endif
4650
4651 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4652 /*
4653  * This is a basic integrity check of the ring buffer.
4654  * Late in the boot cycle this test will run when configured in.
4655  * It will kick off a thread per CPU that will go into a loop
4656  * writing to the per cpu ring buffer various sizes of data.
4657  * Some of the data will be large items, some small.
4658  *
4659  * Another thread is created that goes into a spin, sending out
4660  * IPIs to the other CPUs to also write into the ring buffer.
4661  * this is to test the nesting ability of the buffer.
4662  *
4663  * Basic stats are recorded and reported. If something in the
4664  * ring buffer should happen that's not expected, a big warning
4665  * is displayed and all ring buffers are disabled.
4666  */
4667 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4668
4669 struct rb_test_data {
4670         struct ring_buffer      *buffer;
4671         unsigned long           events;
4672         unsigned long           bytes_written;
4673         unsigned long           bytes_alloc;
4674         unsigned long           bytes_dropped;
4675         unsigned long           events_nested;
4676         unsigned long           bytes_written_nested;
4677         unsigned long           bytes_alloc_nested;
4678         unsigned long           bytes_dropped_nested;
4679         int                     min_size_nested;
4680         int                     max_size_nested;
4681         int                     max_size;
4682         int                     min_size;
4683         int                     cpu;
4684         int                     cnt;
4685 };
4686
4687 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4688
4689 /* 1 meg per cpu */
4690 #define RB_TEST_BUFFER_SIZE     1048576
4691
4692 static char rb_string[] __initdata =
4693         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4694         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4695         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4696
4697 static bool rb_test_started __initdata;
4698
4699 struct rb_item {
4700         int size;
4701         char str[];
4702 };
4703
4704 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4705 {
4706         struct ring_buffer_event *event;
4707         struct rb_item *item;
4708         bool started;
4709         int event_len;
4710         int size;
4711         int len;
4712         int cnt;
4713
4714         /* Have nested writes different that what is written */
4715         cnt = data->cnt + (nested ? 27 : 0);
4716
4717         /* Multiply cnt by ~e, to make some unique increment */
4718         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4719
4720         len = size + sizeof(struct rb_item);
4721
4722         started = rb_test_started;
4723         /* read rb_test_started before checking buffer enabled */
4724         smp_rmb();
4725
4726         event = ring_buffer_lock_reserve(data->buffer, len);
4727         if (!event) {
4728                 /* Ignore dropped events before test starts. */
4729                 if (started) {
4730                         if (nested)
4731                                 data->bytes_dropped += len;
4732                         else
4733                                 data->bytes_dropped_nested += len;
4734                 }
4735                 return len;
4736         }
4737
4738         event_len = ring_buffer_event_length(event);
4739
4740         if (RB_WARN_ON(data->buffer, event_len < len))
4741                 goto out;
4742
4743         item = ring_buffer_event_data(event);
4744         item->size = size;
4745         memcpy(item->str, rb_string, size);
4746
4747         if (nested) {
4748                 data->bytes_alloc_nested += event_len;
4749                 data->bytes_written_nested += len;
4750                 data->events_nested++;
4751                 if (!data->min_size_nested || len < data->min_size_nested)
4752                         data->min_size_nested = len;
4753                 if (len > data->max_size_nested)
4754                         data->max_size_nested = len;
4755         } else {
4756                 data->bytes_alloc += event_len;
4757                 data->bytes_written += len;
4758                 data->events++;
4759                 if (!data->min_size || len < data->min_size)
4760                         data->max_size = len;
4761                 if (len > data->max_size)
4762                         data->max_size = len;
4763         }
4764
4765  out:
4766         ring_buffer_unlock_commit(data->buffer, event);
4767
4768         return 0;
4769 }
4770
4771 static __init int rb_test(void *arg)
4772 {
4773         struct rb_test_data *data = arg;
4774
4775         while (!kthread_should_stop()) {
4776                 rb_write_something(data, false);
4777                 data->cnt++;
4778
4779                 set_current_state(TASK_INTERRUPTIBLE);
4780                 /* Now sleep between a min of 100-300us and a max of 1ms */
4781                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4782         }
4783
4784         return 0;
4785 }
4786
4787 static __init void rb_ipi(void *ignore)
4788 {
4789         struct rb_test_data *data;
4790         int cpu = smp_processor_id();
4791
4792         data = &rb_data[cpu];
4793         rb_write_something(data, true);
4794 }
4795
4796 static __init int rb_hammer_test(void *arg)
4797 {
4798         while (!kthread_should_stop()) {
4799
4800                 /* Send an IPI to all cpus to write data! */
4801                 smp_call_function(rb_ipi, NULL, 1);
4802                 /* No sleep, but for non preempt, let others run */
4803                 schedule();
4804         }
4805
4806         return 0;
4807 }
4808
4809 static __init int test_ringbuffer(void)
4810 {
4811         struct task_struct *rb_hammer;
4812         struct ring_buffer *buffer;
4813         int cpu;
4814         int ret = 0;
4815
4816         pr_info("Running ring buffer tests...\n");
4817
4818         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4819         if (WARN_ON(!buffer))
4820                 return 0;
4821
4822         /* Disable buffer so that threads can't write to it yet */
4823         ring_buffer_record_off(buffer);
4824
4825         for_each_online_cpu(cpu) {
4826                 rb_data[cpu].buffer = buffer;
4827                 rb_data[cpu].cpu = cpu;
4828                 rb_data[cpu].cnt = cpu;
4829                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4830                                                  "rbtester/%d", cpu);
4831                 if (WARN_ON(!rb_threads[cpu])) {
4832                         pr_cont("FAILED\n");
4833                         ret = -1;
4834                         goto out_free;
4835                 }
4836
4837                 kthread_bind(rb_threads[cpu], cpu);
4838                 wake_up_process(rb_threads[cpu]);
4839         }
4840
4841         /* Now create the rb hammer! */
4842         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4843         if (WARN_ON(!rb_hammer)) {
4844                 pr_cont("FAILED\n");
4845                 ret = -1;
4846                 goto out_free;
4847         }
4848
4849         ring_buffer_record_on(buffer);
4850         /*
4851          * Show buffer is enabled before setting rb_test_started.
4852          * Yes there's a small race window where events could be
4853          * dropped and the thread wont catch it. But when a ring
4854          * buffer gets enabled, there will always be some kind of
4855          * delay before other CPUs see it. Thus, we don't care about
4856          * those dropped events. We care about events dropped after
4857          * the threads see that the buffer is active.
4858          */
4859         smp_wmb();
4860         rb_test_started = true;
4861
4862         set_current_state(TASK_INTERRUPTIBLE);
4863         /* Just run for 10 seconds */;
4864         schedule_timeout(10 * HZ);
4865
4866         kthread_stop(rb_hammer);
4867
4868  out_free:
4869         for_each_online_cpu(cpu) {
4870                 if (!rb_threads[cpu])
4871                         break;
4872                 kthread_stop(rb_threads[cpu]);
4873         }
4874         if (ret) {
4875                 ring_buffer_free(buffer);
4876                 return ret;
4877         }
4878
4879         /* Report! */
4880         pr_info("finished\n");
4881         for_each_online_cpu(cpu) {
4882                 struct ring_buffer_event *event;
4883                 struct rb_test_data *data = &rb_data[cpu];
4884                 struct rb_item *item;
4885                 unsigned long total_events;
4886                 unsigned long total_dropped;
4887                 unsigned long total_written;
4888                 unsigned long total_alloc;
4889                 unsigned long total_read = 0;
4890                 unsigned long total_size = 0;
4891                 unsigned long total_len = 0;
4892                 unsigned long total_lost = 0;
4893                 unsigned long lost;
4894                 int big_event_size;
4895                 int small_event_size;
4896
4897                 ret = -1;
4898
4899                 total_events = data->events + data->events_nested;
4900                 total_written = data->bytes_written + data->bytes_written_nested;
4901                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4902                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4903
4904                 big_event_size = data->max_size + data->max_size_nested;
4905                 small_event_size = data->min_size + data->min_size_nested;
4906
4907                 pr_info("CPU %d:\n", cpu);
4908                 pr_info("              events:    %ld\n", total_events);
4909                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4910                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4911                 pr_info("       written bytes:    %ld\n", total_written);
4912                 pr_info("       biggest event:    %d\n", big_event_size);
4913                 pr_info("      smallest event:    %d\n", small_event_size);
4914
4915                 if (RB_WARN_ON(buffer, total_dropped))
4916                         break;
4917
4918                 ret = 0;
4919
4920                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4921                         total_lost += lost;
4922                         item = ring_buffer_event_data(event);
4923                         total_len += ring_buffer_event_length(event);
4924                         total_size += item->size + sizeof(struct rb_item);
4925                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4926                                 pr_info("FAILED!\n");
4927                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4928                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4929                                 RB_WARN_ON(buffer, 1);
4930                                 ret = -1;
4931                                 break;
4932                         }
4933                         total_read++;
4934                 }
4935                 if (ret)
4936                         break;
4937
4938                 ret = -1;
4939
4940                 pr_info("         read events:   %ld\n", total_read);
4941                 pr_info("         lost events:   %ld\n", total_lost);
4942                 pr_info("        total events:   %ld\n", total_lost + total_read);
4943                 pr_info("  recorded len bytes:   %ld\n", total_len);
4944                 pr_info(" recorded size bytes:   %ld\n", total_size);
4945                 if (total_lost)
4946                         pr_info(" With dropped events, record len and size may not match\n"
4947                                 " alloced and written from above\n");
4948                 if (!total_lost) {
4949                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4950                                        total_size != total_written))
4951                                 break;
4952                 }
4953                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4954                         break;
4955
4956                 ret = 0;
4957         }
4958         if (!ret)
4959                 pr_info("Ring buffer PASSED!\n");
4960
4961         ring_buffer_free(buffer);
4962         return 0;
4963 }
4964
4965 late_initcall(test_ringbuffer);
4966 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */