sched/rt: Fix SCHED_RR across cgroups
[pandora-kernel.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15         return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20         return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25         return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34         return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39         return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44         struct task_struct *p = rt_task_of(rt_se);
45         struct rq *rq = task_rq(p);
46
47         return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56         return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61         if (!rq->online)
62                 return;
63
64         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65         /*
66          * Make sure the mask is visible before we set
67          * the overload count. That is checked to determine
68          * if we should look at the mask. It would be a shame
69          * if we looked at the mask, but the mask was not
70          * updated yet.
71          */
72         wmb();
73         atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78         if (!rq->online)
79                 return;
80
81         /* the order here really doesn't matter */
82         atomic_dec(&rq->rd->rto_count);
83         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89                 if (!rt_rq->overloaded) {
90                         rt_set_overload(rq_of_rt_rq(rt_rq));
91                         rt_rq->overloaded = 1;
92                 }
93         } else if (rt_rq->overloaded) {
94                 rt_clear_overload(rq_of_rt_rq(rt_rq));
95                 rt_rq->overloaded = 0;
96         }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101         if (!rt_entity_is_task(rt_se))
102                 return;
103
104         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106         rt_rq->rt_nr_total++;
107         if (rt_se->nr_cpus_allowed > 1)
108                 rt_rq->rt_nr_migratory++;
109
110         update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115         if (!rt_entity_is_task(rt_se))
116                 return;
117
118         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120         rt_rq->rt_nr_total--;
121         if (rt_se->nr_cpus_allowed > 1)
122                 rt_rq->rt_nr_migratory--;
123
124         update_rt_migration(rt_rq);
125 }
126
127 static inline int has_pushable_tasks(struct rq *rq)
128 {
129         return !plist_head_empty(&rq->rt.pushable_tasks);
130 }
131
132 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
133 {
134         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135         plist_node_init(&p->pushable_tasks, p->prio);
136         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
137
138         /* Update the highest prio pushable task */
139         if (p->prio < rq->rt.highest_prio.next)
140                 rq->rt.highest_prio.next = p->prio;
141 }
142
143 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
144 {
145         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
146
147         /* Update the new highest prio pushable task */
148         if (has_pushable_tasks(rq)) {
149                 p = plist_first_entry(&rq->rt.pushable_tasks,
150                                       struct task_struct, pushable_tasks);
151                 rq->rt.highest_prio.next = p->prio;
152         } else
153                 rq->rt.highest_prio.next = MAX_RT_PRIO;
154 }
155
156 #else
157
158 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
159 {
160 }
161
162 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
163 {
164 }
165
166 static inline
167 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
168 {
169 }
170
171 static inline
172 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
173 {
174 }
175
176 #endif /* CONFIG_SMP */
177
178 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
179 {
180         return !list_empty(&rt_se->run_list);
181 }
182
183 #ifdef CONFIG_RT_GROUP_SCHED
184
185 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
186 {
187         if (!rt_rq->tg)
188                 return RUNTIME_INF;
189
190         return rt_rq->rt_runtime;
191 }
192
193 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
194 {
195         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
196 }
197
198 typedef struct task_group *rt_rq_iter_t;
199
200 static inline struct task_group *next_task_group(struct task_group *tg)
201 {
202         do {
203                 tg = list_entry_rcu(tg->list.next,
204                         typeof(struct task_group), list);
205         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
206
207         if (&tg->list == &task_groups)
208                 tg = NULL;
209
210         return tg;
211 }
212
213 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
214         for (iter = container_of(&task_groups, typeof(*iter), list);    \
215                 (iter = next_task_group(iter)) &&                       \
216                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
217
218 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
219 {
220         list_add_rcu(&rt_rq->leaf_rt_rq_list,
221                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
222 }
223
224 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
225 {
226         list_del_rcu(&rt_rq->leaf_rt_rq_list);
227 }
228
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
231
232 #define for_each_sched_rt_entity(rt_se) \
233         for (; rt_se; rt_se = rt_se->parent)
234
235 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
236 {
237         return rt_se->my_q;
238 }
239
240 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
242
243 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
244 {
245         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246         struct sched_rt_entity *rt_se;
247
248         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
249
250         rt_se = rt_rq->tg->rt_se[cpu];
251
252         if (rt_rq->rt_nr_running) {
253                 if (rt_se && !on_rt_rq(rt_se))
254                         enqueue_rt_entity(rt_se, false);
255                 if (rt_rq->highest_prio.curr < curr->prio)
256                         resched_task(curr);
257         }
258 }
259
260 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
261 {
262         struct sched_rt_entity *rt_se;
263         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
264
265         rt_se = rt_rq->tg->rt_se[cpu];
266
267         if (rt_se && on_rt_rq(rt_se))
268                 dequeue_rt_entity(rt_se);
269 }
270
271 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
272 {
273         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
274 }
275
276 static int rt_se_boosted(struct sched_rt_entity *rt_se)
277 {
278         struct rt_rq *rt_rq = group_rt_rq(rt_se);
279         struct task_struct *p;
280
281         if (rt_rq)
282                 return !!rt_rq->rt_nr_boosted;
283
284         p = rt_task_of(rt_se);
285         return p->prio != p->normal_prio;
286 }
287
288 #ifdef CONFIG_SMP
289 static inline const struct cpumask *sched_rt_period_mask(void)
290 {
291         return cpu_rq(smp_processor_id())->rd->span;
292 }
293 #else
294 static inline const struct cpumask *sched_rt_period_mask(void)
295 {
296         return cpu_online_mask;
297 }
298 #endif
299
300 static inline
301 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
302 {
303         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
304 }
305
306 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
307 {
308         return &rt_rq->tg->rt_bandwidth;
309 }
310
311 #else /* !CONFIG_RT_GROUP_SCHED */
312
313 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
314 {
315         return rt_rq->rt_runtime;
316 }
317
318 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
319 {
320         return ktime_to_ns(def_rt_bandwidth.rt_period);
321 }
322
323 typedef struct rt_rq *rt_rq_iter_t;
324
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327
328 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
329 {
330 }
331
332 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
333 {
334 }
335
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
338
339 #define for_each_sched_rt_entity(rt_se) \
340         for (; rt_se; rt_se = NULL)
341
342 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
343 {
344         return NULL;
345 }
346
347 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
348 {
349         if (rt_rq->rt_nr_running)
350                 resched_task(rq_of_rt_rq(rt_rq)->curr);
351 }
352
353 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
354 {
355 }
356
357 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
358 {
359         return rt_rq->rt_throttled;
360 }
361
362 static inline const struct cpumask *sched_rt_period_mask(void)
363 {
364         return cpu_online_mask;
365 }
366
367 static inline
368 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
369 {
370         return &cpu_rq(cpu)->rt;
371 }
372
373 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
374 {
375         return &def_rt_bandwidth;
376 }
377
378 #endif /* CONFIG_RT_GROUP_SCHED */
379
380 #ifdef CONFIG_SMP
381 /*
382  * We ran out of runtime, see if we can borrow some from our neighbours.
383  */
384 static int do_balance_runtime(struct rt_rq *rt_rq)
385 {
386         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
388         int i, weight, more = 0;
389         u64 rt_period;
390
391         weight = cpumask_weight(rd->span);
392
393         raw_spin_lock(&rt_b->rt_runtime_lock);
394         rt_period = ktime_to_ns(rt_b->rt_period);
395         for_each_cpu(i, rd->span) {
396                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397                 s64 diff;
398
399                 if (iter == rt_rq)
400                         continue;
401
402                 raw_spin_lock(&iter->rt_runtime_lock);
403                 /*
404                  * Either all rqs have inf runtime and there's nothing to steal
405                  * or __disable_runtime() below sets a specific rq to inf to
406                  * indicate its been disabled and disalow stealing.
407                  */
408                 if (iter->rt_runtime == RUNTIME_INF)
409                         goto next;
410
411                 /*
412                  * From runqueues with spare time, take 1/n part of their
413                  * spare time, but no more than our period.
414                  */
415                 diff = iter->rt_runtime - iter->rt_time;
416                 if (diff > 0) {
417                         diff = div_u64((u64)diff, weight);
418                         if (rt_rq->rt_runtime + diff > rt_period)
419                                 diff = rt_period - rt_rq->rt_runtime;
420                         iter->rt_runtime -= diff;
421                         rt_rq->rt_runtime += diff;
422                         more = 1;
423                         if (rt_rq->rt_runtime == rt_period) {
424                                 raw_spin_unlock(&iter->rt_runtime_lock);
425                                 break;
426                         }
427                 }
428 next:
429                 raw_spin_unlock(&iter->rt_runtime_lock);
430         }
431         raw_spin_unlock(&rt_b->rt_runtime_lock);
432
433         return more;
434 }
435
436 /*
437  * Ensure this RQ takes back all the runtime it lend to its neighbours.
438  */
439 static void __disable_runtime(struct rq *rq)
440 {
441         struct root_domain *rd = rq->rd;
442         rt_rq_iter_t iter;
443         struct rt_rq *rt_rq;
444
445         if (unlikely(!scheduler_running))
446                 return;
447
448         for_each_rt_rq(rt_rq, iter, rq) {
449                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450                 s64 want;
451                 int i;
452
453                 raw_spin_lock(&rt_b->rt_runtime_lock);
454                 raw_spin_lock(&rt_rq->rt_runtime_lock);
455                 /*
456                  * Either we're all inf and nobody needs to borrow, or we're
457                  * already disabled and thus have nothing to do, or we have
458                  * exactly the right amount of runtime to take out.
459                  */
460                 if (rt_rq->rt_runtime == RUNTIME_INF ||
461                                 rt_rq->rt_runtime == rt_b->rt_runtime)
462                         goto balanced;
463                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
464
465                 /*
466                  * Calculate the difference between what we started out with
467                  * and what we current have, that's the amount of runtime
468                  * we lend and now have to reclaim.
469                  */
470                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
471
472                 /*
473                  * Greedy reclaim, take back as much as we can.
474                  */
475                 for_each_cpu(i, rd->span) {
476                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477                         s64 diff;
478
479                         /*
480                          * Can't reclaim from ourselves or disabled runqueues.
481                          */
482                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
483                                 continue;
484
485                         raw_spin_lock(&iter->rt_runtime_lock);
486                         if (want > 0) {
487                                 diff = min_t(s64, iter->rt_runtime, want);
488                                 iter->rt_runtime -= diff;
489                                 want -= diff;
490                         } else {
491                                 iter->rt_runtime -= want;
492                                 want -= want;
493                         }
494                         raw_spin_unlock(&iter->rt_runtime_lock);
495
496                         if (!want)
497                                 break;
498                 }
499
500                 raw_spin_lock(&rt_rq->rt_runtime_lock);
501                 /*
502                  * We cannot be left wanting - that would mean some runtime
503                  * leaked out of the system.
504                  */
505                 BUG_ON(want);
506 balanced:
507                 /*
508                  * Disable all the borrow logic by pretending we have inf
509                  * runtime - in which case borrowing doesn't make sense.
510                  */
511                 rt_rq->rt_runtime = RUNTIME_INF;
512                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513                 raw_spin_unlock(&rt_b->rt_runtime_lock);
514         }
515 }
516
517 static void disable_runtime(struct rq *rq)
518 {
519         unsigned long flags;
520
521         raw_spin_lock_irqsave(&rq->lock, flags);
522         __disable_runtime(rq);
523         raw_spin_unlock_irqrestore(&rq->lock, flags);
524 }
525
526 static void __enable_runtime(struct rq *rq)
527 {
528         rt_rq_iter_t iter;
529         struct rt_rq *rt_rq;
530
531         if (unlikely(!scheduler_running))
532                 return;
533
534         /*
535          * Reset each runqueue's bandwidth settings
536          */
537         for_each_rt_rq(rt_rq, iter, rq) {
538                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
539
540                 raw_spin_lock(&rt_b->rt_runtime_lock);
541                 raw_spin_lock(&rt_rq->rt_runtime_lock);
542                 rt_rq->rt_runtime = rt_b->rt_runtime;
543                 rt_rq->rt_time = 0;
544                 rt_rq->rt_throttled = 0;
545                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546                 raw_spin_unlock(&rt_b->rt_runtime_lock);
547         }
548 }
549
550 static void enable_runtime(struct rq *rq)
551 {
552         unsigned long flags;
553
554         raw_spin_lock_irqsave(&rq->lock, flags);
555         __enable_runtime(rq);
556         raw_spin_unlock_irqrestore(&rq->lock, flags);
557 }
558
559 static int balance_runtime(struct rt_rq *rt_rq)
560 {
561         int more = 0;
562
563         if (!sched_feat(RT_RUNTIME_SHARE))
564                 return more;
565
566         if (rt_rq->rt_time > rt_rq->rt_runtime) {
567                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
568                 more = do_balance_runtime(rt_rq);
569                 raw_spin_lock(&rt_rq->rt_runtime_lock);
570         }
571
572         return more;
573 }
574 #else /* !CONFIG_SMP */
575 static inline int balance_runtime(struct rt_rq *rt_rq)
576 {
577         return 0;
578 }
579 #endif /* CONFIG_SMP */
580
581 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
582 {
583         int i, idle = 1;
584         const struct cpumask *span;
585
586         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
587                 return 1;
588
589         span = sched_rt_period_mask();
590         for_each_cpu(i, span) {
591                 int enqueue = 0;
592                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
593                 struct rq *rq = rq_of_rt_rq(rt_rq);
594
595                 raw_spin_lock(&rq->lock);
596                 if (rt_rq->rt_time) {
597                         u64 runtime;
598
599                         raw_spin_lock(&rt_rq->rt_runtime_lock);
600                         if (rt_rq->rt_throttled)
601                                 balance_runtime(rt_rq);
602                         runtime = rt_rq->rt_runtime;
603                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
604                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
605                                 rt_rq->rt_throttled = 0;
606                                 enqueue = 1;
607
608                                 /*
609                                  * Force a clock update if the CPU was idle,
610                                  * lest wakeup -> unthrottle time accumulate.
611                                  */
612                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
613                                         rq->skip_clock_update = -1;
614                         }
615                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
616                                 idle = 0;
617                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
618                 } else if (rt_rq->rt_nr_running) {
619                         idle = 0;
620                         if (!rt_rq_throttled(rt_rq))
621                                 enqueue = 1;
622                 }
623
624                 if (enqueue)
625                         sched_rt_rq_enqueue(rt_rq);
626                 raw_spin_unlock(&rq->lock);
627         }
628
629         return idle;
630 }
631
632 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
633 {
634 #ifdef CONFIG_RT_GROUP_SCHED
635         struct rt_rq *rt_rq = group_rt_rq(rt_se);
636
637         if (rt_rq)
638                 return rt_rq->highest_prio.curr;
639 #endif
640
641         return rt_task_of(rt_se)->prio;
642 }
643
644 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
645 {
646         u64 runtime = sched_rt_runtime(rt_rq);
647
648         if (rt_rq->rt_throttled)
649                 return rt_rq_throttled(rt_rq);
650
651         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
652                 return 0;
653
654         balance_runtime(rt_rq);
655         runtime = sched_rt_runtime(rt_rq);
656         if (runtime == RUNTIME_INF)
657                 return 0;
658
659         if (rt_rq->rt_time > runtime) {
660                 rt_rq->rt_throttled = 1;
661                 printk_once(KERN_WARNING "sched: RT throttling activated\n");
662                 if (rt_rq_throttled(rt_rq)) {
663                         sched_rt_rq_dequeue(rt_rq);
664                         return 1;
665                 }
666         }
667
668         return 0;
669 }
670
671 /*
672  * Update the current task's runtime statistics. Skip current tasks that
673  * are not in our scheduling class.
674  */
675 static void update_curr_rt(struct rq *rq)
676 {
677         struct task_struct *curr = rq->curr;
678         struct sched_rt_entity *rt_se = &curr->rt;
679         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
680         u64 delta_exec;
681
682         if (curr->sched_class != &rt_sched_class)
683                 return;
684
685         delta_exec = rq->clock_task - curr->se.exec_start;
686         if (unlikely((s64)delta_exec < 0))
687                 delta_exec = 0;
688
689         schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
690
691         curr->se.sum_exec_runtime += delta_exec;
692         account_group_exec_runtime(curr, delta_exec);
693
694         curr->se.exec_start = rq->clock_task;
695         cpuacct_charge(curr, delta_exec);
696
697         sched_rt_avg_update(rq, delta_exec);
698
699         if (!rt_bandwidth_enabled())
700                 return;
701
702         for_each_sched_rt_entity(rt_se) {
703                 rt_rq = rt_rq_of_se(rt_se);
704
705                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
706                         raw_spin_lock(&rt_rq->rt_runtime_lock);
707                         rt_rq->rt_time += delta_exec;
708                         if (sched_rt_runtime_exceeded(rt_rq))
709                                 resched_task(curr);
710                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
711                 }
712         }
713 }
714
715 #if defined CONFIG_SMP
716
717 static void
718 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
719 {
720         struct rq *rq = rq_of_rt_rq(rt_rq);
721
722 #ifdef CONFIG_RT_GROUP_SCHED
723         /*
724          * Change rq's cpupri only if rt_rq is the top queue.
725          */
726         if (&rq->rt != rt_rq)
727                 return;
728 #endif
729         if (rq->online && prio < prev_prio)
730                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
731 }
732
733 static void
734 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
735 {
736         struct rq *rq = rq_of_rt_rq(rt_rq);
737
738 #ifdef CONFIG_RT_GROUP_SCHED
739         /*
740          * Change rq's cpupri only if rt_rq is the top queue.
741          */
742         if (&rq->rt != rt_rq)
743                 return;
744 #endif
745         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
746                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
747 }
748
749 #else /* CONFIG_SMP */
750
751 static inline
752 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
753 static inline
754 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
755
756 #endif /* CONFIG_SMP */
757
758 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
759 static void
760 inc_rt_prio(struct rt_rq *rt_rq, int prio)
761 {
762         int prev_prio = rt_rq->highest_prio.curr;
763
764         if (prio < prev_prio)
765                 rt_rq->highest_prio.curr = prio;
766
767         inc_rt_prio_smp(rt_rq, prio, prev_prio);
768 }
769
770 static void
771 dec_rt_prio(struct rt_rq *rt_rq, int prio)
772 {
773         int prev_prio = rt_rq->highest_prio.curr;
774
775         if (rt_rq->rt_nr_running) {
776
777                 WARN_ON(prio < prev_prio);
778
779                 /*
780                  * This may have been our highest task, and therefore
781                  * we may have some recomputation to do
782                  */
783                 if (prio == prev_prio) {
784                         struct rt_prio_array *array = &rt_rq->active;
785
786                         rt_rq->highest_prio.curr =
787                                 sched_find_first_bit(array->bitmap);
788                 }
789
790         } else
791                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
792
793         dec_rt_prio_smp(rt_rq, prio, prev_prio);
794 }
795
796 #else
797
798 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
799 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
800
801 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
802
803 #ifdef CONFIG_RT_GROUP_SCHED
804
805 static void
806 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
807 {
808         if (rt_se_boosted(rt_se))
809                 rt_rq->rt_nr_boosted++;
810
811         if (rt_rq->tg)
812                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
813 }
814
815 static void
816 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
817 {
818         if (rt_se_boosted(rt_se))
819                 rt_rq->rt_nr_boosted--;
820
821         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
822 }
823
824 #else /* CONFIG_RT_GROUP_SCHED */
825
826 static void
827 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
828 {
829         start_rt_bandwidth(&def_rt_bandwidth);
830 }
831
832 static inline
833 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
834
835 #endif /* CONFIG_RT_GROUP_SCHED */
836
837 static inline
838 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
839 {
840         int prio = rt_se_prio(rt_se);
841
842         WARN_ON(!rt_prio(prio));
843         rt_rq->rt_nr_running++;
844
845         inc_rt_prio(rt_rq, prio);
846         inc_rt_migration(rt_se, rt_rq);
847         inc_rt_group(rt_se, rt_rq);
848 }
849
850 static inline
851 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
852 {
853         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
854         WARN_ON(!rt_rq->rt_nr_running);
855         rt_rq->rt_nr_running--;
856
857         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
858         dec_rt_migration(rt_se, rt_rq);
859         dec_rt_group(rt_se, rt_rq);
860 }
861
862 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
863 {
864         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
865         struct rt_prio_array *array = &rt_rq->active;
866         struct rt_rq *group_rq = group_rt_rq(rt_se);
867         struct list_head *queue = array->queue + rt_se_prio(rt_se);
868
869         /*
870          * Don't enqueue the group if its throttled, or when empty.
871          * The latter is a consequence of the former when a child group
872          * get throttled and the current group doesn't have any other
873          * active members.
874          */
875         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
876                 return;
877
878         if (!rt_rq->rt_nr_running)
879                 list_add_leaf_rt_rq(rt_rq);
880
881         if (head)
882                 list_add(&rt_se->run_list, queue);
883         else
884                 list_add_tail(&rt_se->run_list, queue);
885         __set_bit(rt_se_prio(rt_se), array->bitmap);
886
887         inc_rt_tasks(rt_se, rt_rq);
888 }
889
890 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
891 {
892         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
893         struct rt_prio_array *array = &rt_rq->active;
894
895         list_del_init(&rt_se->run_list);
896         if (list_empty(array->queue + rt_se_prio(rt_se)))
897                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
898
899         dec_rt_tasks(rt_se, rt_rq);
900         if (!rt_rq->rt_nr_running)
901                 list_del_leaf_rt_rq(rt_rq);
902 }
903
904 /*
905  * Because the prio of an upper entry depends on the lower
906  * entries, we must remove entries top - down.
907  */
908 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
909 {
910         struct sched_rt_entity *back = NULL;
911
912         for_each_sched_rt_entity(rt_se) {
913                 rt_se->back = back;
914                 back = rt_se;
915         }
916
917         for (rt_se = back; rt_se; rt_se = rt_se->back) {
918                 if (on_rt_rq(rt_se))
919                         __dequeue_rt_entity(rt_se);
920         }
921 }
922
923 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
924 {
925         dequeue_rt_stack(rt_se);
926         for_each_sched_rt_entity(rt_se)
927                 __enqueue_rt_entity(rt_se, head);
928 }
929
930 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
931 {
932         dequeue_rt_stack(rt_se);
933
934         for_each_sched_rt_entity(rt_se) {
935                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
936
937                 if (rt_rq && rt_rq->rt_nr_running)
938                         __enqueue_rt_entity(rt_se, false);
939         }
940 }
941
942 /*
943  * Adding/removing a task to/from a priority array:
944  */
945 static void
946 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
947 {
948         struct sched_rt_entity *rt_se = &p->rt;
949
950         if (flags & ENQUEUE_WAKEUP)
951                 rt_se->timeout = 0;
952
953         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
954
955         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
956                 enqueue_pushable_task(rq, p);
957
958         inc_nr_running(rq);
959 }
960
961 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
962 {
963         struct sched_rt_entity *rt_se = &p->rt;
964
965         update_curr_rt(rq);
966         dequeue_rt_entity(rt_se);
967
968         dequeue_pushable_task(rq, p);
969
970         dec_nr_running(rq);
971 }
972
973 /*
974  * Put task to the end of the run list without the overhead of dequeue
975  * followed by enqueue.
976  */
977 static void
978 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
979 {
980         if (on_rt_rq(rt_se)) {
981                 struct rt_prio_array *array = &rt_rq->active;
982                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
983
984                 if (head)
985                         list_move(&rt_se->run_list, queue);
986                 else
987                         list_move_tail(&rt_se->run_list, queue);
988         }
989 }
990
991 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
992 {
993         struct sched_rt_entity *rt_se = &p->rt;
994         struct rt_rq *rt_rq;
995
996         for_each_sched_rt_entity(rt_se) {
997                 rt_rq = rt_rq_of_se(rt_se);
998                 requeue_rt_entity(rt_rq, rt_se, head);
999         }
1000 }
1001
1002 static void yield_task_rt(struct rq *rq)
1003 {
1004         requeue_task_rt(rq, rq->curr, 0);
1005 }
1006
1007 #ifdef CONFIG_SMP
1008 static int find_lowest_rq(struct task_struct *task);
1009
1010 static int
1011 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1012 {
1013         struct task_struct *curr;
1014         struct rq *rq;
1015         int cpu;
1016
1017         cpu = task_cpu(p);
1018
1019         /* For anything but wake ups, just return the task_cpu */
1020         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1021                 goto out;
1022
1023         rq = cpu_rq(cpu);
1024
1025         rcu_read_lock();
1026         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1027
1028         /*
1029          * If the current task on @p's runqueue is an RT task, then
1030          * try to see if we can wake this RT task up on another
1031          * runqueue. Otherwise simply start this RT task
1032          * on its current runqueue.
1033          *
1034          * We want to avoid overloading runqueues. If the woken
1035          * task is a higher priority, then it will stay on this CPU
1036          * and the lower prio task should be moved to another CPU.
1037          * Even though this will probably make the lower prio task
1038          * lose its cache, we do not want to bounce a higher task
1039          * around just because it gave up its CPU, perhaps for a
1040          * lock?
1041          *
1042          * For equal prio tasks, we just let the scheduler sort it out.
1043          *
1044          * Otherwise, just let it ride on the affined RQ and the
1045          * post-schedule router will push the preempted task away
1046          *
1047          * This test is optimistic, if we get it wrong the load-balancer
1048          * will have to sort it out.
1049          */
1050         if (curr && unlikely(rt_task(curr)) &&
1051             (curr->rt.nr_cpus_allowed < 2 ||
1052              curr->prio <= p->prio) &&
1053             (p->rt.nr_cpus_allowed > 1)) {
1054                 int target = find_lowest_rq(p);
1055
1056                 if (target != -1)
1057                         cpu = target;
1058         }
1059         rcu_read_unlock();
1060
1061 out:
1062         return cpu;
1063 }
1064
1065 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1066 {
1067         if (rq->curr->rt.nr_cpus_allowed == 1)
1068                 return;
1069
1070         if (p->rt.nr_cpus_allowed != 1
1071             && cpupri_find(&rq->rd->cpupri, p, NULL))
1072                 return;
1073
1074         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1075                 return;
1076
1077         /*
1078          * There appears to be other cpus that can accept
1079          * current and none to run 'p', so lets reschedule
1080          * to try and push current away:
1081          */
1082         requeue_task_rt(rq, p, 1);
1083         resched_task(rq->curr);
1084 }
1085
1086 #endif /* CONFIG_SMP */
1087
1088 /*
1089  * Preempt the current task with a newly woken task if needed:
1090  */
1091 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1092 {
1093         if (p->prio < rq->curr->prio) {
1094                 resched_task(rq->curr);
1095                 return;
1096         }
1097
1098 #ifdef CONFIG_SMP
1099         /*
1100          * If:
1101          *
1102          * - the newly woken task is of equal priority to the current task
1103          * - the newly woken task is non-migratable while current is migratable
1104          * - current will be preempted on the next reschedule
1105          *
1106          * we should check to see if current can readily move to a different
1107          * cpu.  If so, we will reschedule to allow the push logic to try
1108          * to move current somewhere else, making room for our non-migratable
1109          * task.
1110          */
1111         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1112                 check_preempt_equal_prio(rq, p);
1113 #endif
1114 }
1115
1116 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1117                                                    struct rt_rq *rt_rq)
1118 {
1119         struct rt_prio_array *array = &rt_rq->active;
1120         struct sched_rt_entity *next = NULL;
1121         struct list_head *queue;
1122         int idx;
1123
1124         idx = sched_find_first_bit(array->bitmap);
1125         BUG_ON(idx >= MAX_RT_PRIO);
1126
1127         queue = array->queue + idx;
1128         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1129
1130         return next;
1131 }
1132
1133 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1134 {
1135         struct sched_rt_entity *rt_se;
1136         struct task_struct *p;
1137         struct rt_rq *rt_rq;
1138
1139         rt_rq = &rq->rt;
1140
1141         if (!rt_rq->rt_nr_running)
1142                 return NULL;
1143
1144         if (rt_rq_throttled(rt_rq))
1145                 return NULL;
1146
1147         do {
1148                 rt_se = pick_next_rt_entity(rq, rt_rq);
1149                 BUG_ON(!rt_se);
1150                 rt_rq = group_rt_rq(rt_se);
1151         } while (rt_rq);
1152
1153         p = rt_task_of(rt_se);
1154         p->se.exec_start = rq->clock_task;
1155
1156         return p;
1157 }
1158
1159 static struct task_struct *pick_next_task_rt(struct rq *rq)
1160 {
1161         struct task_struct *p = _pick_next_task_rt(rq);
1162
1163         /* The running task is never eligible for pushing */
1164         if (p)
1165                 dequeue_pushable_task(rq, p);
1166
1167 #ifdef CONFIG_SMP
1168         /*
1169          * We detect this state here so that we can avoid taking the RQ
1170          * lock again later if there is no need to push
1171          */
1172         rq->post_schedule = has_pushable_tasks(rq);
1173 #endif
1174
1175         return p;
1176 }
1177
1178 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1179 {
1180         update_curr_rt(rq);
1181
1182         /*
1183          * The previous task needs to be made eligible for pushing
1184          * if it is still active
1185          */
1186         if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1187                 enqueue_pushable_task(rq, p);
1188 }
1189
1190 #ifdef CONFIG_SMP
1191
1192 /* Only try algorithms three times */
1193 #define RT_MAX_TRIES 3
1194
1195 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1196
1197 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1198 {
1199         if (!task_running(rq, p) &&
1200             (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1201             (p->rt.nr_cpus_allowed > 1))
1202                 return 1;
1203         return 0;
1204 }
1205
1206 /* Return the second highest RT task, NULL otherwise */
1207 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1208 {
1209         struct task_struct *next = NULL;
1210         struct sched_rt_entity *rt_se;
1211         struct rt_prio_array *array;
1212         struct rt_rq *rt_rq;
1213         int idx;
1214
1215         for_each_leaf_rt_rq(rt_rq, rq) {
1216                 array = &rt_rq->active;
1217                 idx = sched_find_first_bit(array->bitmap);
1218 next_idx:
1219                 if (idx >= MAX_RT_PRIO)
1220                         continue;
1221                 if (next && next->prio < idx)
1222                         continue;
1223                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1224                         struct task_struct *p;
1225
1226                         if (!rt_entity_is_task(rt_se))
1227                                 continue;
1228
1229                         p = rt_task_of(rt_se);
1230                         if (pick_rt_task(rq, p, cpu)) {
1231                                 next = p;
1232                                 break;
1233                         }
1234                 }
1235                 if (!next) {
1236                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1237                         goto next_idx;
1238                 }
1239         }
1240
1241         return next;
1242 }
1243
1244 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1245
1246 static int find_lowest_rq(struct task_struct *task)
1247 {
1248         struct sched_domain *sd;
1249         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1250         int this_cpu = smp_processor_id();
1251         int cpu      = task_cpu(task);
1252
1253         /* Make sure the mask is initialized first */
1254         if (unlikely(!lowest_mask))
1255                 return -1;
1256
1257         if (task->rt.nr_cpus_allowed == 1)
1258                 return -1; /* No other targets possible */
1259
1260         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1261                 return -1; /* No targets found */
1262
1263         /*
1264          * At this point we have built a mask of cpus representing the
1265          * lowest priority tasks in the system.  Now we want to elect
1266          * the best one based on our affinity and topology.
1267          *
1268          * We prioritize the last cpu that the task executed on since
1269          * it is most likely cache-hot in that location.
1270          */
1271         if (cpumask_test_cpu(cpu, lowest_mask))
1272                 return cpu;
1273
1274         /*
1275          * Otherwise, we consult the sched_domains span maps to figure
1276          * out which cpu is logically closest to our hot cache data.
1277          */
1278         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1279                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1280
1281         rcu_read_lock();
1282         for_each_domain(cpu, sd) {
1283                 if (sd->flags & SD_WAKE_AFFINE) {
1284                         int best_cpu;
1285
1286                         /*
1287                          * "this_cpu" is cheaper to preempt than a
1288                          * remote processor.
1289                          */
1290                         if (this_cpu != -1 &&
1291                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1292                                 rcu_read_unlock();
1293                                 return this_cpu;
1294                         }
1295
1296                         best_cpu = cpumask_first_and(lowest_mask,
1297                                                      sched_domain_span(sd));
1298                         if (best_cpu < nr_cpu_ids) {
1299                                 rcu_read_unlock();
1300                                 return best_cpu;
1301                         }
1302                 }
1303         }
1304         rcu_read_unlock();
1305
1306         /*
1307          * And finally, if there were no matches within the domains
1308          * just give the caller *something* to work with from the compatible
1309          * locations.
1310          */
1311         if (this_cpu != -1)
1312                 return this_cpu;
1313
1314         cpu = cpumask_any(lowest_mask);
1315         if (cpu < nr_cpu_ids)
1316                 return cpu;
1317         return -1;
1318 }
1319
1320 /* Will lock the rq it finds */
1321 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1322 {
1323         struct rq *lowest_rq = NULL;
1324         int tries;
1325         int cpu;
1326
1327         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1328                 cpu = find_lowest_rq(task);
1329
1330                 if ((cpu == -1) || (cpu == rq->cpu))
1331                         break;
1332
1333                 lowest_rq = cpu_rq(cpu);
1334
1335                 /* if the prio of this runqueue changed, try again */
1336                 if (double_lock_balance(rq, lowest_rq)) {
1337                         /*
1338                          * We had to unlock the run queue. In
1339                          * the mean time, task could have
1340                          * migrated already or had its affinity changed.
1341                          * Also make sure that it wasn't scheduled on its rq.
1342                          */
1343                         if (unlikely(task_rq(task) != rq ||
1344                                      !cpumask_test_cpu(lowest_rq->cpu,
1345                                                        tsk_cpus_allowed(task)) ||
1346                                      task_running(rq, task) ||
1347                                      !task->on_rq)) {
1348
1349                                 raw_spin_unlock(&lowest_rq->lock);
1350                                 lowest_rq = NULL;
1351                                 break;
1352                         }
1353                 }
1354
1355                 /* If this rq is still suitable use it. */
1356                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1357                         break;
1358
1359                 /* try again */
1360                 double_unlock_balance(rq, lowest_rq);
1361                 lowest_rq = NULL;
1362         }
1363
1364         return lowest_rq;
1365 }
1366
1367 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1368 {
1369         struct task_struct *p;
1370
1371         if (!has_pushable_tasks(rq))
1372                 return NULL;
1373
1374         p = plist_first_entry(&rq->rt.pushable_tasks,
1375                               struct task_struct, pushable_tasks);
1376
1377         BUG_ON(rq->cpu != task_cpu(p));
1378         BUG_ON(task_current(rq, p));
1379         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1380
1381         BUG_ON(!p->on_rq);
1382         BUG_ON(!rt_task(p));
1383
1384         return p;
1385 }
1386
1387 /*
1388  * If the current CPU has more than one RT task, see if the non
1389  * running task can migrate over to a CPU that is running a task
1390  * of lesser priority.
1391  */
1392 static int push_rt_task(struct rq *rq)
1393 {
1394         struct task_struct *next_task;
1395         struct rq *lowest_rq;
1396         int ret = 0;
1397
1398         if (!rq->rt.overloaded)
1399                 return 0;
1400
1401         next_task = pick_next_pushable_task(rq);
1402         if (!next_task)
1403                 return 0;
1404
1405 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1406        if (unlikely(task_running(rq, next_task)))
1407                return 0;
1408 #endif
1409
1410 retry:
1411         if (unlikely(next_task == rq->curr)) {
1412                 WARN_ON(1);
1413                 return 0;
1414         }
1415
1416         /*
1417          * It's possible that the next_task slipped in of
1418          * higher priority than current. If that's the case
1419          * just reschedule current.
1420          */
1421         if (unlikely(next_task->prio < rq->curr->prio)) {
1422                 resched_task(rq->curr);
1423                 return 0;
1424         }
1425
1426         /* We might release rq lock */
1427         get_task_struct(next_task);
1428
1429         /* find_lock_lowest_rq locks the rq if found */
1430         lowest_rq = find_lock_lowest_rq(next_task, rq);
1431         if (!lowest_rq) {
1432                 struct task_struct *task;
1433                 /*
1434                  * find_lock_lowest_rq releases rq->lock
1435                  * so it is possible that next_task has migrated.
1436                  *
1437                  * We need to make sure that the task is still on the same
1438                  * run-queue and is also still the next task eligible for
1439                  * pushing.
1440                  */
1441                 task = pick_next_pushable_task(rq);
1442                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1443                         /*
1444                          * The task hasn't migrated, and is still the next
1445                          * eligible task, but we failed to find a run-queue
1446                          * to push it to.  Do not retry in this case, since
1447                          * other cpus will pull from us when ready.
1448                          */
1449                         goto out;
1450                 }
1451
1452                 if (!task)
1453                         /* No more tasks, just exit */
1454                         goto out;
1455
1456                 /*
1457                  * Something has shifted, try again.
1458                  */
1459                 put_task_struct(next_task);
1460                 next_task = task;
1461                 goto retry;
1462         }
1463
1464         deactivate_task(rq, next_task, 0);
1465         set_task_cpu(next_task, lowest_rq->cpu);
1466         activate_task(lowest_rq, next_task, 0);
1467         ret = 1;
1468
1469         resched_task(lowest_rq->curr);
1470
1471         double_unlock_balance(rq, lowest_rq);
1472
1473 out:
1474         put_task_struct(next_task);
1475
1476         return ret;
1477 }
1478
1479 static void push_rt_tasks(struct rq *rq)
1480 {
1481         /* push_rt_task will return true if it moved an RT */
1482         while (push_rt_task(rq))
1483                 ;
1484 }
1485
1486 static int pull_rt_task(struct rq *this_rq)
1487 {
1488         int this_cpu = this_rq->cpu, ret = 0, cpu;
1489         struct task_struct *p;
1490         struct rq *src_rq;
1491
1492         if (likely(!rt_overloaded(this_rq)))
1493                 return 0;
1494
1495         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1496                 if (this_cpu == cpu)
1497                         continue;
1498
1499                 src_rq = cpu_rq(cpu);
1500
1501                 /*
1502                  * Don't bother taking the src_rq->lock if the next highest
1503                  * task is known to be lower-priority than our current task.
1504                  * This may look racy, but if this value is about to go
1505                  * logically higher, the src_rq will push this task away.
1506                  * And if its going logically lower, we do not care
1507                  */
1508                 if (src_rq->rt.highest_prio.next >=
1509                     this_rq->rt.highest_prio.curr)
1510                         continue;
1511
1512                 /*
1513                  * We can potentially drop this_rq's lock in
1514                  * double_lock_balance, and another CPU could
1515                  * alter this_rq
1516                  */
1517                 double_lock_balance(this_rq, src_rq);
1518
1519                 /*
1520                  * Are there still pullable RT tasks?
1521                  */
1522                 if (src_rq->rt.rt_nr_running <= 1)
1523                         goto skip;
1524
1525                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1526
1527                 /*
1528                  * Do we have an RT task that preempts
1529                  * the to-be-scheduled task?
1530                  */
1531                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1532                         WARN_ON(p == src_rq->curr);
1533                         WARN_ON(!p->on_rq);
1534
1535                         /*
1536                          * There's a chance that p is higher in priority
1537                          * than what's currently running on its cpu.
1538                          * This is just that p is wakeing up and hasn't
1539                          * had a chance to schedule. We only pull
1540                          * p if it is lower in priority than the
1541                          * current task on the run queue
1542                          */
1543                         if (p->prio < src_rq->curr->prio)
1544                                 goto skip;
1545
1546                         ret = 1;
1547
1548                         deactivate_task(src_rq, p, 0);
1549                         set_task_cpu(p, this_cpu);
1550                         activate_task(this_rq, p, 0);
1551                         /*
1552                          * We continue with the search, just in
1553                          * case there's an even higher prio task
1554                          * in another runqueue. (low likelihood
1555                          * but possible)
1556                          */
1557                 }
1558 skip:
1559                 double_unlock_balance(this_rq, src_rq);
1560         }
1561
1562         return ret;
1563 }
1564
1565 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1566 {
1567         /* Try to pull RT tasks here if we lower this rq's prio */
1568         if (rq->rt.highest_prio.curr > prev->prio)
1569                 pull_rt_task(rq);
1570 }
1571
1572 static void post_schedule_rt(struct rq *rq)
1573 {
1574         push_rt_tasks(rq);
1575 }
1576
1577 /*
1578  * If we are not running and we are not going to reschedule soon, we should
1579  * try to push tasks away now
1580  */
1581 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1582 {
1583         if (!task_running(rq, p) &&
1584             !test_tsk_need_resched(rq->curr) &&
1585             has_pushable_tasks(rq) &&
1586             p->rt.nr_cpus_allowed > 1 &&
1587             rt_task(rq->curr) &&
1588             (rq->curr->rt.nr_cpus_allowed < 2 ||
1589              rq->curr->prio <= p->prio))
1590                 push_rt_tasks(rq);
1591 }
1592
1593 static void set_cpus_allowed_rt(struct task_struct *p,
1594                                 const struct cpumask *new_mask)
1595 {
1596         int weight = cpumask_weight(new_mask);
1597
1598         BUG_ON(!rt_task(p));
1599
1600         /*
1601          * Update the migration status of the RQ if we have an RT task
1602          * which is running AND changing its weight value.
1603          */
1604         if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1605                 struct rq *rq = task_rq(p);
1606
1607                 if (!task_current(rq, p)) {
1608                         /*
1609                          * Make sure we dequeue this task from the pushable list
1610                          * before going further.  It will either remain off of
1611                          * the list because we are no longer pushable, or it
1612                          * will be requeued.
1613                          */
1614                         if (p->rt.nr_cpus_allowed > 1)
1615                                 dequeue_pushable_task(rq, p);
1616
1617                         /*
1618                          * Requeue if our weight is changing and still > 1
1619                          */
1620                         if (weight > 1)
1621                                 enqueue_pushable_task(rq, p);
1622
1623                 }
1624
1625                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1626                         rq->rt.rt_nr_migratory++;
1627                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1628                         BUG_ON(!rq->rt.rt_nr_migratory);
1629                         rq->rt.rt_nr_migratory--;
1630                 }
1631
1632                 update_rt_migration(&rq->rt);
1633         }
1634 }
1635
1636 /* Assumes rq->lock is held */
1637 static void rq_online_rt(struct rq *rq)
1638 {
1639         if (rq->rt.overloaded)
1640                 rt_set_overload(rq);
1641
1642         __enable_runtime(rq);
1643
1644         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1645 }
1646
1647 /* Assumes rq->lock is held */
1648 static void rq_offline_rt(struct rq *rq)
1649 {
1650         if (rq->rt.overloaded)
1651                 rt_clear_overload(rq);
1652
1653         __disable_runtime(rq);
1654
1655         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1656 }
1657
1658 /*
1659  * When switch from the rt queue, we bring ourselves to a position
1660  * that we might want to pull RT tasks from other runqueues.
1661  */
1662 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1663 {
1664         /*
1665          * If there are other RT tasks then we will reschedule
1666          * and the scheduling of the other RT tasks will handle
1667          * the balancing. But if we are the last RT task
1668          * we may need to handle the pulling of RT tasks
1669          * now.
1670          */
1671         if (p->on_rq && !rq->rt.rt_nr_running)
1672                 pull_rt_task(rq);
1673 }
1674
1675 static inline void init_sched_rt_class(void)
1676 {
1677         unsigned int i;
1678
1679         for_each_possible_cpu(i)
1680                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1681                                         GFP_KERNEL, cpu_to_node(i));
1682 }
1683 #endif /* CONFIG_SMP */
1684
1685 /*
1686  * When switching a task to RT, we may overload the runqueue
1687  * with RT tasks. In this case we try to push them off to
1688  * other runqueues.
1689  */
1690 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1691 {
1692         int check_resched = 1;
1693
1694         /*
1695          * If we are already running, then there's nothing
1696          * that needs to be done. But if we are not running
1697          * we may need to preempt the current running task.
1698          * If that current running task is also an RT task
1699          * then see if we can move to another run queue.
1700          */
1701         if (p->on_rq && rq->curr != p) {
1702 #ifdef CONFIG_SMP
1703                 if (rq->rt.overloaded && push_rt_task(rq) &&
1704                     /* Don't resched if we changed runqueues */
1705                     rq != task_rq(p))
1706                         check_resched = 0;
1707 #endif /* CONFIG_SMP */
1708                 if (check_resched && p->prio < rq->curr->prio)
1709                         resched_task(rq->curr);
1710         }
1711 }
1712
1713 /*
1714  * Priority of the task has changed. This may cause
1715  * us to initiate a push or pull.
1716  */
1717 static void
1718 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1719 {
1720         if (!p->on_rq)
1721                 return;
1722
1723         if (rq->curr == p) {
1724 #ifdef CONFIG_SMP
1725                 /*
1726                  * If our priority decreases while running, we
1727                  * may need to pull tasks to this runqueue.
1728                  */
1729                 if (oldprio < p->prio)
1730                         pull_rt_task(rq);
1731                 /*
1732                  * If there's a higher priority task waiting to run
1733                  * then reschedule. Note, the above pull_rt_task
1734                  * can release the rq lock and p could migrate.
1735                  * Only reschedule if p is still on the same runqueue.
1736                  */
1737                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1738                         resched_task(p);
1739 #else
1740                 /* For UP simply resched on drop of prio */
1741                 if (oldprio < p->prio)
1742                         resched_task(p);
1743 #endif /* CONFIG_SMP */
1744         } else {
1745                 /*
1746                  * This task is not running, but if it is
1747                  * greater than the current running task
1748                  * then reschedule.
1749                  */
1750                 if (p->prio < rq->curr->prio)
1751                         resched_task(rq->curr);
1752         }
1753 }
1754
1755 static void watchdog(struct rq *rq, struct task_struct *p)
1756 {
1757         unsigned long soft, hard;
1758
1759         /* max may change after cur was read, this will be fixed next tick */
1760         soft = task_rlimit(p, RLIMIT_RTTIME);
1761         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1762
1763         if (soft != RLIM_INFINITY) {
1764                 unsigned long next;
1765
1766                 p->rt.timeout++;
1767                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1768                 if (p->rt.timeout > next)
1769                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1770         }
1771 }
1772
1773 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1774 {
1775         struct sched_rt_entity *rt_se = &p->rt;
1776
1777         update_curr_rt(rq);
1778
1779         watchdog(rq, p);
1780
1781         /*
1782          * RR tasks need a special form of timeslice management.
1783          * FIFO tasks have no timeslices.
1784          */
1785         if (p->policy != SCHED_RR)
1786                 return;
1787
1788         if (--p->rt.time_slice)
1789                 return;
1790
1791         p->rt.time_slice = DEF_TIMESLICE;
1792
1793         /*
1794          * Requeue to the end of queue if we (and all of our ancestors) are the
1795          * only element on the queue
1796          */
1797         for_each_sched_rt_entity(rt_se) {
1798                 if (rt_se->run_list.prev != rt_se->run_list.next) {
1799                         requeue_task_rt(rq, p, 0);
1800                         set_tsk_need_resched(p);
1801                         return;
1802                 }
1803         }
1804 }
1805
1806 static void set_curr_task_rt(struct rq *rq)
1807 {
1808         struct task_struct *p = rq->curr;
1809
1810         p->se.exec_start = rq->clock_task;
1811
1812         /* The running task is never eligible for pushing */
1813         dequeue_pushable_task(rq, p);
1814 }
1815
1816 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1817 {
1818         /*
1819          * Time slice is 0 for SCHED_FIFO tasks
1820          */
1821         if (task->policy == SCHED_RR)
1822                 return DEF_TIMESLICE;
1823         else
1824                 return 0;
1825 }
1826
1827 static const struct sched_class rt_sched_class = {
1828         .next                   = &fair_sched_class,
1829         .enqueue_task           = enqueue_task_rt,
1830         .dequeue_task           = dequeue_task_rt,
1831         .yield_task             = yield_task_rt,
1832
1833         .check_preempt_curr     = check_preempt_curr_rt,
1834
1835         .pick_next_task         = pick_next_task_rt,
1836         .put_prev_task          = put_prev_task_rt,
1837
1838 #ifdef CONFIG_SMP
1839         .select_task_rq         = select_task_rq_rt,
1840
1841         .set_cpus_allowed       = set_cpus_allowed_rt,
1842         .rq_online              = rq_online_rt,
1843         .rq_offline             = rq_offline_rt,
1844         .pre_schedule           = pre_schedule_rt,
1845         .post_schedule          = post_schedule_rt,
1846         .task_woken             = task_woken_rt,
1847         .switched_from          = switched_from_rt,
1848 #endif
1849
1850         .set_curr_task          = set_curr_task_rt,
1851         .task_tick              = task_tick_rt,
1852
1853         .get_rr_interval        = get_rr_interval_rt,
1854
1855         .prio_changed           = prio_changed_rt,
1856         .switched_to            = switched_to_rt,
1857 };
1858
1859 #ifdef CONFIG_SCHED_DEBUG
1860 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1861
1862 static void print_rt_stats(struct seq_file *m, int cpu)
1863 {
1864         rt_rq_iter_t iter;
1865         struct rt_rq *rt_rq;
1866
1867         rcu_read_lock();
1868         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1869                 print_rt_rq(m, cpu, rt_rq);
1870         rcu_read_unlock();
1871 }
1872 #endif /* CONFIG_SCHED_DEBUG */