ALSA: hda - Fix wrong gpio_dir & gpio_mask hint setups for IDT/STAC codecs
[pandora-kernel.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15         return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20         return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25         return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34         return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39         return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44         struct task_struct *p = rt_task_of(rt_se);
45         struct rq *rq = task_rq(p);
46
47         return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56         return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61         if (!rq->online)
62                 return;
63
64         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65         /*
66          * Make sure the mask is visible before we set
67          * the overload count. That is checked to determine
68          * if we should look at the mask. It would be a shame
69          * if we looked at the mask, but the mask was not
70          * updated yet.
71          */
72         wmb();
73         atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78         if (!rq->online)
79                 return;
80
81         /* the order here really doesn't matter */
82         atomic_dec(&rq->rd->rto_count);
83         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89                 if (!rt_rq->overloaded) {
90                         rt_set_overload(rq_of_rt_rq(rt_rq));
91                         rt_rq->overloaded = 1;
92                 }
93         } else if (rt_rq->overloaded) {
94                 rt_clear_overload(rq_of_rt_rq(rt_rq));
95                 rt_rq->overloaded = 0;
96         }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101         if (!rt_entity_is_task(rt_se))
102                 return;
103
104         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106         rt_rq->rt_nr_total++;
107         if (rt_se->nr_cpus_allowed > 1)
108                 rt_rq->rt_nr_migratory++;
109
110         update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115         if (!rt_entity_is_task(rt_se))
116                 return;
117
118         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120         rt_rq->rt_nr_total--;
121         if (rt_se->nr_cpus_allowed > 1)
122                 rt_rq->rt_nr_migratory--;
123
124         update_rt_migration(rt_rq);
125 }
126
127 static inline int has_pushable_tasks(struct rq *rq)
128 {
129         return !plist_head_empty(&rq->rt.pushable_tasks);
130 }
131
132 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
133 {
134         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135         plist_node_init(&p->pushable_tasks, p->prio);
136         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
137
138         /* Update the highest prio pushable task */
139         if (p->prio < rq->rt.highest_prio.next)
140                 rq->rt.highest_prio.next = p->prio;
141 }
142
143 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
144 {
145         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
146
147         /* Update the new highest prio pushable task */
148         if (has_pushable_tasks(rq)) {
149                 p = plist_first_entry(&rq->rt.pushable_tasks,
150                                       struct task_struct, pushable_tasks);
151                 rq->rt.highest_prio.next = p->prio;
152         } else
153                 rq->rt.highest_prio.next = MAX_RT_PRIO;
154 }
155
156 #else
157
158 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
159 {
160 }
161
162 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
163 {
164 }
165
166 static inline
167 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
168 {
169 }
170
171 static inline
172 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
173 {
174 }
175
176 #endif /* CONFIG_SMP */
177
178 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
179 {
180         return !list_empty(&rt_se->run_list);
181 }
182
183 #ifdef CONFIG_RT_GROUP_SCHED
184
185 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
186 {
187         if (!rt_rq->tg)
188                 return RUNTIME_INF;
189
190         return rt_rq->rt_runtime;
191 }
192
193 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
194 {
195         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
196 }
197
198 typedef struct task_group *rt_rq_iter_t;
199
200 static inline struct task_group *next_task_group(struct task_group *tg)
201 {
202         do {
203                 tg = list_entry_rcu(tg->list.next,
204                         typeof(struct task_group), list);
205         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
206
207         if (&tg->list == &task_groups)
208                 tg = NULL;
209
210         return tg;
211 }
212
213 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
214         for (iter = container_of(&task_groups, typeof(*iter), list);    \
215                 (iter = next_task_group(iter)) &&                       \
216                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
217
218 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
219 {
220         list_add_rcu(&rt_rq->leaf_rt_rq_list,
221                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
222 }
223
224 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
225 {
226         list_del_rcu(&rt_rq->leaf_rt_rq_list);
227 }
228
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
231
232 #define for_each_sched_rt_entity(rt_se) \
233         for (; rt_se; rt_se = rt_se->parent)
234
235 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
236 {
237         return rt_se->my_q;
238 }
239
240 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
242
243 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
244 {
245         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246         struct sched_rt_entity *rt_se;
247
248         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
249
250         rt_se = rt_rq->tg->rt_se[cpu];
251
252         if (rt_rq->rt_nr_running) {
253                 if (rt_se && !on_rt_rq(rt_se))
254                         enqueue_rt_entity(rt_se, false);
255                 if (rt_rq->highest_prio.curr < curr->prio)
256                         resched_task(curr);
257         }
258 }
259
260 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
261 {
262         struct sched_rt_entity *rt_se;
263         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
264
265         rt_se = rt_rq->tg->rt_se[cpu];
266
267         if (rt_se && on_rt_rq(rt_se))
268                 dequeue_rt_entity(rt_se);
269 }
270
271 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
272 {
273         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
274 }
275
276 static int rt_se_boosted(struct sched_rt_entity *rt_se)
277 {
278         struct rt_rq *rt_rq = group_rt_rq(rt_se);
279         struct task_struct *p;
280
281         if (rt_rq)
282                 return !!rt_rq->rt_nr_boosted;
283
284         p = rt_task_of(rt_se);
285         return p->prio != p->normal_prio;
286 }
287
288 #ifdef CONFIG_SMP
289 static inline const struct cpumask *sched_rt_period_mask(void)
290 {
291         return cpu_rq(smp_processor_id())->rd->span;
292 }
293 #else
294 static inline const struct cpumask *sched_rt_period_mask(void)
295 {
296         return cpu_online_mask;
297 }
298 #endif
299
300 static inline
301 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
302 {
303         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
304 }
305
306 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
307 {
308         return &rt_rq->tg->rt_bandwidth;
309 }
310
311 #else /* !CONFIG_RT_GROUP_SCHED */
312
313 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
314 {
315         return rt_rq->rt_runtime;
316 }
317
318 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
319 {
320         return ktime_to_ns(def_rt_bandwidth.rt_period);
321 }
322
323 typedef struct rt_rq *rt_rq_iter_t;
324
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327
328 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
329 {
330 }
331
332 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
333 {
334 }
335
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
338
339 #define for_each_sched_rt_entity(rt_se) \
340         for (; rt_se; rt_se = NULL)
341
342 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
343 {
344         return NULL;
345 }
346
347 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
348 {
349         if (rt_rq->rt_nr_running)
350                 resched_task(rq_of_rt_rq(rt_rq)->curr);
351 }
352
353 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
354 {
355 }
356
357 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
358 {
359         return rt_rq->rt_throttled;
360 }
361
362 static inline const struct cpumask *sched_rt_period_mask(void)
363 {
364         return cpu_online_mask;
365 }
366
367 static inline
368 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
369 {
370         return &cpu_rq(cpu)->rt;
371 }
372
373 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
374 {
375         return &def_rt_bandwidth;
376 }
377
378 #endif /* CONFIG_RT_GROUP_SCHED */
379
380 #ifdef CONFIG_SMP
381 /*
382  * We ran out of runtime, see if we can borrow some from our neighbours.
383  */
384 static int do_balance_runtime(struct rt_rq *rt_rq)
385 {
386         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
388         int i, weight, more = 0;
389         u64 rt_period;
390
391         weight = cpumask_weight(rd->span);
392
393         raw_spin_lock(&rt_b->rt_runtime_lock);
394         rt_period = ktime_to_ns(rt_b->rt_period);
395         for_each_cpu(i, rd->span) {
396                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397                 s64 diff;
398
399                 if (iter == rt_rq)
400                         continue;
401
402                 raw_spin_lock(&iter->rt_runtime_lock);
403                 /*
404                  * Either all rqs have inf runtime and there's nothing to steal
405                  * or __disable_runtime() below sets a specific rq to inf to
406                  * indicate its been disabled and disalow stealing.
407                  */
408                 if (iter->rt_runtime == RUNTIME_INF)
409                         goto next;
410
411                 /*
412                  * From runqueues with spare time, take 1/n part of their
413                  * spare time, but no more than our period.
414                  */
415                 diff = iter->rt_runtime - iter->rt_time;
416                 if (diff > 0) {
417                         diff = div_u64((u64)diff, weight);
418                         if (rt_rq->rt_runtime + diff > rt_period)
419                                 diff = rt_period - rt_rq->rt_runtime;
420                         iter->rt_runtime -= diff;
421                         rt_rq->rt_runtime += diff;
422                         more = 1;
423                         if (rt_rq->rt_runtime == rt_period) {
424                                 raw_spin_unlock(&iter->rt_runtime_lock);
425                                 break;
426                         }
427                 }
428 next:
429                 raw_spin_unlock(&iter->rt_runtime_lock);
430         }
431         raw_spin_unlock(&rt_b->rt_runtime_lock);
432
433         return more;
434 }
435
436 /*
437  * Ensure this RQ takes back all the runtime it lend to its neighbours.
438  */
439 static void __disable_runtime(struct rq *rq)
440 {
441         struct root_domain *rd = rq->rd;
442         rt_rq_iter_t iter;
443         struct rt_rq *rt_rq;
444
445         if (unlikely(!scheduler_running))
446                 return;
447
448         for_each_rt_rq(rt_rq, iter, rq) {
449                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450                 s64 want;
451                 int i;
452
453                 raw_spin_lock(&rt_b->rt_runtime_lock);
454                 raw_spin_lock(&rt_rq->rt_runtime_lock);
455                 /*
456                  * Either we're all inf and nobody needs to borrow, or we're
457                  * already disabled and thus have nothing to do, or we have
458                  * exactly the right amount of runtime to take out.
459                  */
460                 if (rt_rq->rt_runtime == RUNTIME_INF ||
461                                 rt_rq->rt_runtime == rt_b->rt_runtime)
462                         goto balanced;
463                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
464
465                 /*
466                  * Calculate the difference between what we started out with
467                  * and what we current have, that's the amount of runtime
468                  * we lend and now have to reclaim.
469                  */
470                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
471
472                 /*
473                  * Greedy reclaim, take back as much as we can.
474                  */
475                 for_each_cpu(i, rd->span) {
476                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477                         s64 diff;
478
479                         /*
480                          * Can't reclaim from ourselves or disabled runqueues.
481                          */
482                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
483                                 continue;
484
485                         raw_spin_lock(&iter->rt_runtime_lock);
486                         if (want > 0) {
487                                 diff = min_t(s64, iter->rt_runtime, want);
488                                 iter->rt_runtime -= diff;
489                                 want -= diff;
490                         } else {
491                                 iter->rt_runtime -= want;
492                                 want -= want;
493                         }
494                         raw_spin_unlock(&iter->rt_runtime_lock);
495
496                         if (!want)
497                                 break;
498                 }
499
500                 raw_spin_lock(&rt_rq->rt_runtime_lock);
501                 /*
502                  * We cannot be left wanting - that would mean some runtime
503                  * leaked out of the system.
504                  */
505                 BUG_ON(want);
506 balanced:
507                 /*
508                  * Disable all the borrow logic by pretending we have inf
509                  * runtime - in which case borrowing doesn't make sense.
510                  */
511                 rt_rq->rt_runtime = RUNTIME_INF;
512                 rt_rq->rt_throttled = 0;
513                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
514                 raw_spin_unlock(&rt_b->rt_runtime_lock);
515         }
516 }
517
518 static void disable_runtime(struct rq *rq)
519 {
520         unsigned long flags;
521
522         raw_spin_lock_irqsave(&rq->lock, flags);
523         __disable_runtime(rq);
524         raw_spin_unlock_irqrestore(&rq->lock, flags);
525 }
526
527 static void __enable_runtime(struct rq *rq)
528 {
529         rt_rq_iter_t iter;
530         struct rt_rq *rt_rq;
531
532         if (unlikely(!scheduler_running))
533                 return;
534
535         /*
536          * Reset each runqueue's bandwidth settings
537          */
538         for_each_rt_rq(rt_rq, iter, rq) {
539                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
540
541                 raw_spin_lock(&rt_b->rt_runtime_lock);
542                 raw_spin_lock(&rt_rq->rt_runtime_lock);
543                 rt_rq->rt_runtime = rt_b->rt_runtime;
544                 rt_rq->rt_time = 0;
545                 rt_rq->rt_throttled = 0;
546                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
547                 raw_spin_unlock(&rt_b->rt_runtime_lock);
548         }
549 }
550
551 static void enable_runtime(struct rq *rq)
552 {
553         unsigned long flags;
554
555         raw_spin_lock_irqsave(&rq->lock, flags);
556         __enable_runtime(rq);
557         raw_spin_unlock_irqrestore(&rq->lock, flags);
558 }
559
560 static int balance_runtime(struct rt_rq *rt_rq)
561 {
562         int more = 0;
563
564         if (!sched_feat(RT_RUNTIME_SHARE))
565                 return more;
566
567         if (rt_rq->rt_time > rt_rq->rt_runtime) {
568                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
569                 more = do_balance_runtime(rt_rq);
570                 raw_spin_lock(&rt_rq->rt_runtime_lock);
571         }
572
573         return more;
574 }
575 #else /* !CONFIG_SMP */
576 static inline int balance_runtime(struct rt_rq *rt_rq)
577 {
578         return 0;
579 }
580 #endif /* CONFIG_SMP */
581
582 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
583 {
584         int i, idle = 1;
585         const struct cpumask *span;
586
587         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
588                 return 1;
589
590         span = sched_rt_period_mask();
591 #ifdef CONFIG_RT_GROUP_SCHED
592         /*
593          * FIXME: isolated CPUs should really leave the root task group,
594          * whether they are isolcpus or were isolated via cpusets, lest
595          * the timer run on a CPU which does not service all runqueues,
596          * potentially leaving other CPUs indefinitely throttled.  If
597          * isolation is really required, the user will turn the throttle
598          * off to kill the perturbations it causes anyway.  Meanwhile,
599          * this maintains functionality for boot and/or troubleshooting.
600          */
601         if (rt_b == &root_task_group.rt_bandwidth)
602                 span = cpu_online_mask;
603 #endif
604         for_each_cpu(i, span) {
605                 int enqueue = 0;
606                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
607                 struct rq *rq = rq_of_rt_rq(rt_rq);
608
609                 raw_spin_lock(&rq->lock);
610                 if (rt_rq->rt_time) {
611                         u64 runtime;
612
613                         raw_spin_lock(&rt_rq->rt_runtime_lock);
614                         if (rt_rq->rt_throttled)
615                                 balance_runtime(rt_rq);
616                         runtime = rt_rq->rt_runtime;
617                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
618                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
619                                 rt_rq->rt_throttled = 0;
620                                 enqueue = 1;
621
622                                 /*
623                                  * Force a clock update if the CPU was idle,
624                                  * lest wakeup -> unthrottle time accumulate.
625                                  */
626                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
627                                         rq->skip_clock_update = -1;
628                         }
629                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
630                                 idle = 0;
631                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
632                 } else if (rt_rq->rt_nr_running) {
633                         idle = 0;
634                         if (!rt_rq_throttled(rt_rq))
635                                 enqueue = 1;
636                 }
637
638                 if (enqueue)
639                         sched_rt_rq_enqueue(rt_rq);
640                 raw_spin_unlock(&rq->lock);
641         }
642
643         return idle;
644 }
645
646 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
647 {
648 #ifdef CONFIG_RT_GROUP_SCHED
649         struct rt_rq *rt_rq = group_rt_rq(rt_se);
650
651         if (rt_rq)
652                 return rt_rq->highest_prio.curr;
653 #endif
654
655         return rt_task_of(rt_se)->prio;
656 }
657
658 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
659 {
660         u64 runtime = sched_rt_runtime(rt_rq);
661
662         if (rt_rq->rt_throttled)
663                 return rt_rq_throttled(rt_rq);
664
665         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
666                 return 0;
667
668         balance_runtime(rt_rq);
669         runtime = sched_rt_runtime(rt_rq);
670         if (runtime == RUNTIME_INF)
671                 return 0;
672
673         if (rt_rq->rt_time > runtime) {
674                 rt_rq->rt_throttled = 1;
675                 printk_once(KERN_WARNING "sched: RT throttling activated\n");
676                 if (rt_rq_throttled(rt_rq)) {
677                         sched_rt_rq_dequeue(rt_rq);
678                         return 1;
679                 }
680         }
681
682         return 0;
683 }
684
685 /*
686  * Update the current task's runtime statistics. Skip current tasks that
687  * are not in our scheduling class.
688  */
689 static void update_curr_rt(struct rq *rq)
690 {
691         struct task_struct *curr = rq->curr;
692         struct sched_rt_entity *rt_se = &curr->rt;
693         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
694         u64 delta_exec;
695
696         if (curr->sched_class != &rt_sched_class)
697                 return;
698
699         delta_exec = rq->clock_task - curr->se.exec_start;
700         if (unlikely((s64)delta_exec < 0))
701                 delta_exec = 0;
702
703         schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
704
705         curr->se.sum_exec_runtime += delta_exec;
706         account_group_exec_runtime(curr, delta_exec);
707
708         curr->se.exec_start = rq->clock_task;
709         cpuacct_charge(curr, delta_exec);
710
711         sched_rt_avg_update(rq, delta_exec);
712
713         if (!rt_bandwidth_enabled())
714                 return;
715
716         for_each_sched_rt_entity(rt_se) {
717                 rt_rq = rt_rq_of_se(rt_se);
718
719                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
720                         raw_spin_lock(&rt_rq->rt_runtime_lock);
721                         rt_rq->rt_time += delta_exec;
722                         if (sched_rt_runtime_exceeded(rt_rq))
723                                 resched_task(curr);
724                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
725                 }
726         }
727 }
728
729 #if defined CONFIG_SMP
730
731 static void
732 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
733 {
734         struct rq *rq = rq_of_rt_rq(rt_rq);
735
736 #ifdef CONFIG_RT_GROUP_SCHED
737         /*
738          * Change rq's cpupri only if rt_rq is the top queue.
739          */
740         if (&rq->rt != rt_rq)
741                 return;
742 #endif
743         if (rq->online && prio < prev_prio)
744                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
745 }
746
747 static void
748 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
749 {
750         struct rq *rq = rq_of_rt_rq(rt_rq);
751
752 #ifdef CONFIG_RT_GROUP_SCHED
753         /*
754          * Change rq's cpupri only if rt_rq is the top queue.
755          */
756         if (&rq->rt != rt_rq)
757                 return;
758 #endif
759         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
760                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
761 }
762
763 #else /* CONFIG_SMP */
764
765 static inline
766 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
767 static inline
768 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
769
770 #endif /* CONFIG_SMP */
771
772 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
773 static void
774 inc_rt_prio(struct rt_rq *rt_rq, int prio)
775 {
776         int prev_prio = rt_rq->highest_prio.curr;
777
778         if (prio < prev_prio)
779                 rt_rq->highest_prio.curr = prio;
780
781         inc_rt_prio_smp(rt_rq, prio, prev_prio);
782 }
783
784 static void
785 dec_rt_prio(struct rt_rq *rt_rq, int prio)
786 {
787         int prev_prio = rt_rq->highest_prio.curr;
788
789         if (rt_rq->rt_nr_running) {
790
791                 WARN_ON(prio < prev_prio);
792
793                 /*
794                  * This may have been our highest task, and therefore
795                  * we may have some recomputation to do
796                  */
797                 if (prio == prev_prio) {
798                         struct rt_prio_array *array = &rt_rq->active;
799
800                         rt_rq->highest_prio.curr =
801                                 sched_find_first_bit(array->bitmap);
802                 }
803
804         } else
805                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
806
807         dec_rt_prio_smp(rt_rq, prio, prev_prio);
808 }
809
810 #else
811
812 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
813 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
814
815 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
816
817 #ifdef CONFIG_RT_GROUP_SCHED
818
819 static void
820 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
821 {
822         if (rt_se_boosted(rt_se))
823                 rt_rq->rt_nr_boosted++;
824
825         if (rt_rq->tg)
826                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
827 }
828
829 static void
830 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
831 {
832         if (rt_se_boosted(rt_se))
833                 rt_rq->rt_nr_boosted--;
834
835         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
836 }
837
838 #else /* CONFIG_RT_GROUP_SCHED */
839
840 static void
841 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
842 {
843         start_rt_bandwidth(&def_rt_bandwidth);
844 }
845
846 static inline
847 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
848
849 #endif /* CONFIG_RT_GROUP_SCHED */
850
851 static inline
852 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
853 {
854         int prio = rt_se_prio(rt_se);
855
856         WARN_ON(!rt_prio(prio));
857         rt_rq->rt_nr_running++;
858
859         inc_rt_prio(rt_rq, prio);
860         inc_rt_migration(rt_se, rt_rq);
861         inc_rt_group(rt_se, rt_rq);
862 }
863
864 static inline
865 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
866 {
867         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
868         WARN_ON(!rt_rq->rt_nr_running);
869         rt_rq->rt_nr_running--;
870
871         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
872         dec_rt_migration(rt_se, rt_rq);
873         dec_rt_group(rt_se, rt_rq);
874 }
875
876 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
877 {
878         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
879         struct rt_prio_array *array = &rt_rq->active;
880         struct rt_rq *group_rq = group_rt_rq(rt_se);
881         struct list_head *queue = array->queue + rt_se_prio(rt_se);
882
883         /*
884          * Don't enqueue the group if its throttled, or when empty.
885          * The latter is a consequence of the former when a child group
886          * get throttled and the current group doesn't have any other
887          * active members.
888          */
889         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
890                 return;
891
892         if (!rt_rq->rt_nr_running)
893                 list_add_leaf_rt_rq(rt_rq);
894
895         if (head)
896                 list_add(&rt_se->run_list, queue);
897         else
898                 list_add_tail(&rt_se->run_list, queue);
899         __set_bit(rt_se_prio(rt_se), array->bitmap);
900
901         inc_rt_tasks(rt_se, rt_rq);
902 }
903
904 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
905 {
906         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
907         struct rt_prio_array *array = &rt_rq->active;
908
909         list_del_init(&rt_se->run_list);
910         if (list_empty(array->queue + rt_se_prio(rt_se)))
911                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
912
913         dec_rt_tasks(rt_se, rt_rq);
914         if (!rt_rq->rt_nr_running)
915                 list_del_leaf_rt_rq(rt_rq);
916 }
917
918 /*
919  * Because the prio of an upper entry depends on the lower
920  * entries, we must remove entries top - down.
921  */
922 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
923 {
924         struct sched_rt_entity *back = NULL;
925
926         for_each_sched_rt_entity(rt_se) {
927                 rt_se->back = back;
928                 back = rt_se;
929         }
930
931         for (rt_se = back; rt_se; rt_se = rt_se->back) {
932                 if (on_rt_rq(rt_se))
933                         __dequeue_rt_entity(rt_se);
934         }
935 }
936
937 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
938 {
939         dequeue_rt_stack(rt_se);
940         for_each_sched_rt_entity(rt_se)
941                 __enqueue_rt_entity(rt_se, head);
942 }
943
944 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
945 {
946         dequeue_rt_stack(rt_se);
947
948         for_each_sched_rt_entity(rt_se) {
949                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
950
951                 if (rt_rq && rt_rq->rt_nr_running)
952                         __enqueue_rt_entity(rt_se, false);
953         }
954 }
955
956 /*
957  * Adding/removing a task to/from a priority array:
958  */
959 static void
960 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
961 {
962         struct sched_rt_entity *rt_se = &p->rt;
963
964         if (flags & ENQUEUE_WAKEUP)
965                 rt_se->timeout = 0;
966
967         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
968
969         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
970                 enqueue_pushable_task(rq, p);
971
972         inc_nr_running(rq);
973 }
974
975 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
976 {
977         struct sched_rt_entity *rt_se = &p->rt;
978
979         update_curr_rt(rq);
980         dequeue_rt_entity(rt_se);
981
982         dequeue_pushable_task(rq, p);
983
984         dec_nr_running(rq);
985 }
986
987 /*
988  * Put task to the end of the run list without the overhead of dequeue
989  * followed by enqueue.
990  */
991 static void
992 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
993 {
994         if (on_rt_rq(rt_se)) {
995                 struct rt_prio_array *array = &rt_rq->active;
996                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
997
998                 if (head)
999                         list_move(&rt_se->run_list, queue);
1000                 else
1001                         list_move_tail(&rt_se->run_list, queue);
1002         }
1003 }
1004
1005 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1006 {
1007         struct sched_rt_entity *rt_se = &p->rt;
1008         struct rt_rq *rt_rq;
1009
1010         for_each_sched_rt_entity(rt_se) {
1011                 rt_rq = rt_rq_of_se(rt_se);
1012                 requeue_rt_entity(rt_rq, rt_se, head);
1013         }
1014 }
1015
1016 static void yield_task_rt(struct rq *rq)
1017 {
1018         requeue_task_rt(rq, rq->curr, 0);
1019 }
1020
1021 #ifdef CONFIG_SMP
1022 static int find_lowest_rq(struct task_struct *task);
1023
1024 static int
1025 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1026 {
1027         struct task_struct *curr;
1028         struct rq *rq;
1029         int cpu;
1030
1031         cpu = task_cpu(p);
1032
1033         /* For anything but wake ups, just return the task_cpu */
1034         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1035                 goto out;
1036
1037         rq = cpu_rq(cpu);
1038
1039         rcu_read_lock();
1040         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1041
1042         /*
1043          * If the current task on @p's runqueue is an RT task, then
1044          * try to see if we can wake this RT task up on another
1045          * runqueue. Otherwise simply start this RT task
1046          * on its current runqueue.
1047          *
1048          * We want to avoid overloading runqueues. If the woken
1049          * task is a higher priority, then it will stay on this CPU
1050          * and the lower prio task should be moved to another CPU.
1051          * Even though this will probably make the lower prio task
1052          * lose its cache, we do not want to bounce a higher task
1053          * around just because it gave up its CPU, perhaps for a
1054          * lock?
1055          *
1056          * For equal prio tasks, we just let the scheduler sort it out.
1057          *
1058          * Otherwise, just let it ride on the affined RQ and the
1059          * post-schedule router will push the preempted task away
1060          *
1061          * This test is optimistic, if we get it wrong the load-balancer
1062          * will have to sort it out.
1063          */
1064         if (curr && unlikely(rt_task(curr)) &&
1065             (curr->rt.nr_cpus_allowed < 2 ||
1066              curr->prio <= p->prio) &&
1067             (p->rt.nr_cpus_allowed > 1)) {
1068                 int target = find_lowest_rq(p);
1069
1070                 if (target != -1)
1071                         cpu = target;
1072         }
1073         rcu_read_unlock();
1074
1075 out:
1076         return cpu;
1077 }
1078
1079 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1080 {
1081         if (rq->curr->rt.nr_cpus_allowed == 1)
1082                 return;
1083
1084         if (p->rt.nr_cpus_allowed != 1
1085             && cpupri_find(&rq->rd->cpupri, p, NULL))
1086                 return;
1087
1088         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1089                 return;
1090
1091         /*
1092          * There appears to be other cpus that can accept
1093          * current and none to run 'p', so lets reschedule
1094          * to try and push current away:
1095          */
1096         requeue_task_rt(rq, p, 1);
1097         resched_task(rq->curr);
1098 }
1099
1100 #endif /* CONFIG_SMP */
1101
1102 /*
1103  * Preempt the current task with a newly woken task if needed:
1104  */
1105 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1106 {
1107         if (p->prio < rq->curr->prio) {
1108                 resched_task(rq->curr);
1109                 return;
1110         }
1111
1112 #ifdef CONFIG_SMP
1113         /*
1114          * If:
1115          *
1116          * - the newly woken task is of equal priority to the current task
1117          * - the newly woken task is non-migratable while current is migratable
1118          * - current will be preempted on the next reschedule
1119          *
1120          * we should check to see if current can readily move to a different
1121          * cpu.  If so, we will reschedule to allow the push logic to try
1122          * to move current somewhere else, making room for our non-migratable
1123          * task.
1124          */
1125         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1126                 check_preempt_equal_prio(rq, p);
1127 #endif
1128 }
1129
1130 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1131                                                    struct rt_rq *rt_rq)
1132 {
1133         struct rt_prio_array *array = &rt_rq->active;
1134         struct sched_rt_entity *next = NULL;
1135         struct list_head *queue;
1136         int idx;
1137
1138         idx = sched_find_first_bit(array->bitmap);
1139         BUG_ON(idx >= MAX_RT_PRIO);
1140
1141         queue = array->queue + idx;
1142         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1143
1144         return next;
1145 }
1146
1147 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1148 {
1149         struct sched_rt_entity *rt_se;
1150         struct task_struct *p;
1151         struct rt_rq *rt_rq;
1152
1153         rt_rq = &rq->rt;
1154
1155         if (!rt_rq->rt_nr_running)
1156                 return NULL;
1157
1158         if (rt_rq_throttled(rt_rq))
1159                 return NULL;
1160
1161         do {
1162                 rt_se = pick_next_rt_entity(rq, rt_rq);
1163                 BUG_ON(!rt_se);
1164                 rt_rq = group_rt_rq(rt_se);
1165         } while (rt_rq);
1166
1167         p = rt_task_of(rt_se);
1168         p->se.exec_start = rq->clock_task;
1169
1170         return p;
1171 }
1172
1173 static struct task_struct *pick_next_task_rt(struct rq *rq)
1174 {
1175         struct task_struct *p = _pick_next_task_rt(rq);
1176
1177         /* The running task is never eligible for pushing */
1178         if (p)
1179                 dequeue_pushable_task(rq, p);
1180
1181 #ifdef CONFIG_SMP
1182         /*
1183          * We detect this state here so that we can avoid taking the RQ
1184          * lock again later if there is no need to push
1185          */
1186         rq->post_schedule = has_pushable_tasks(rq);
1187 #endif
1188
1189         return p;
1190 }
1191
1192 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1193 {
1194         update_curr_rt(rq);
1195
1196         /*
1197          * The previous task needs to be made eligible for pushing
1198          * if it is still active
1199          */
1200         if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1201                 enqueue_pushable_task(rq, p);
1202 }
1203
1204 #ifdef CONFIG_SMP
1205
1206 /* Only try algorithms three times */
1207 #define RT_MAX_TRIES 3
1208
1209 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1210
1211 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1212 {
1213         if (!task_running(rq, p) &&
1214             (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1215             (p->rt.nr_cpus_allowed > 1))
1216                 return 1;
1217         return 0;
1218 }
1219
1220 /* Return the second highest RT task, NULL otherwise */
1221 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1222 {
1223         struct task_struct *next = NULL;
1224         struct sched_rt_entity *rt_se;
1225         struct rt_prio_array *array;
1226         struct rt_rq *rt_rq;
1227         int idx;
1228
1229         for_each_leaf_rt_rq(rt_rq, rq) {
1230                 array = &rt_rq->active;
1231                 idx = sched_find_first_bit(array->bitmap);
1232 next_idx:
1233                 if (idx >= MAX_RT_PRIO)
1234                         continue;
1235                 if (next && next->prio < idx)
1236                         continue;
1237                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1238                         struct task_struct *p;
1239
1240                         if (!rt_entity_is_task(rt_se))
1241                                 continue;
1242
1243                         p = rt_task_of(rt_se);
1244                         if (pick_rt_task(rq, p, cpu)) {
1245                                 next = p;
1246                                 break;
1247                         }
1248                 }
1249                 if (!next) {
1250                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1251                         goto next_idx;
1252                 }
1253         }
1254
1255         return next;
1256 }
1257
1258 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1259
1260 static int find_lowest_rq(struct task_struct *task)
1261 {
1262         struct sched_domain *sd;
1263         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1264         int this_cpu = smp_processor_id();
1265         int cpu      = task_cpu(task);
1266
1267         /* Make sure the mask is initialized first */
1268         if (unlikely(!lowest_mask))
1269                 return -1;
1270
1271         if (task->rt.nr_cpus_allowed == 1)
1272                 return -1; /* No other targets possible */
1273
1274         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1275                 return -1; /* No targets found */
1276
1277         /*
1278          * At this point we have built a mask of cpus representing the
1279          * lowest priority tasks in the system.  Now we want to elect
1280          * the best one based on our affinity and topology.
1281          *
1282          * We prioritize the last cpu that the task executed on since
1283          * it is most likely cache-hot in that location.
1284          */
1285         if (cpumask_test_cpu(cpu, lowest_mask))
1286                 return cpu;
1287
1288         /*
1289          * Otherwise, we consult the sched_domains span maps to figure
1290          * out which cpu is logically closest to our hot cache data.
1291          */
1292         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1293                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1294
1295         rcu_read_lock();
1296         for_each_domain(cpu, sd) {
1297                 if (sd->flags & SD_WAKE_AFFINE) {
1298                         int best_cpu;
1299
1300                         /*
1301                          * "this_cpu" is cheaper to preempt than a
1302                          * remote processor.
1303                          */
1304                         if (this_cpu != -1 &&
1305                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1306                                 rcu_read_unlock();
1307                                 return this_cpu;
1308                         }
1309
1310                         best_cpu = cpumask_first_and(lowest_mask,
1311                                                      sched_domain_span(sd));
1312                         if (best_cpu < nr_cpu_ids) {
1313                                 rcu_read_unlock();
1314                                 return best_cpu;
1315                         }
1316                 }
1317         }
1318         rcu_read_unlock();
1319
1320         /*
1321          * And finally, if there were no matches within the domains
1322          * just give the caller *something* to work with from the compatible
1323          * locations.
1324          */
1325         if (this_cpu != -1)
1326                 return this_cpu;
1327
1328         cpu = cpumask_any(lowest_mask);
1329         if (cpu < nr_cpu_ids)
1330                 return cpu;
1331         return -1;
1332 }
1333
1334 /* Will lock the rq it finds */
1335 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1336 {
1337         struct rq *lowest_rq = NULL;
1338         int tries;
1339         int cpu;
1340
1341         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1342                 cpu = find_lowest_rq(task);
1343
1344                 if ((cpu == -1) || (cpu == rq->cpu))
1345                         break;
1346
1347                 lowest_rq = cpu_rq(cpu);
1348
1349                 /* if the prio of this runqueue changed, try again */
1350                 if (double_lock_balance(rq, lowest_rq)) {
1351                         /*
1352                          * We had to unlock the run queue. In
1353                          * the mean time, task could have
1354                          * migrated already or had its affinity changed.
1355                          * Also make sure that it wasn't scheduled on its rq.
1356                          */
1357                         if (unlikely(task_rq(task) != rq ||
1358                                      !cpumask_test_cpu(lowest_rq->cpu,
1359                                                        tsk_cpus_allowed(task)) ||
1360                                      task_running(rq, task) ||
1361                                      !task->on_rq)) {
1362
1363                                 raw_spin_unlock(&lowest_rq->lock);
1364                                 lowest_rq = NULL;
1365                                 break;
1366                         }
1367                 }
1368
1369                 /* If this rq is still suitable use it. */
1370                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1371                         break;
1372
1373                 /* try again */
1374                 double_unlock_balance(rq, lowest_rq);
1375                 lowest_rq = NULL;
1376         }
1377
1378         return lowest_rq;
1379 }
1380
1381 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1382 {
1383         struct task_struct *p;
1384
1385         if (!has_pushable_tasks(rq))
1386                 return NULL;
1387
1388         p = plist_first_entry(&rq->rt.pushable_tasks,
1389                               struct task_struct, pushable_tasks);
1390
1391         BUG_ON(rq->cpu != task_cpu(p));
1392         BUG_ON(task_current(rq, p));
1393         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1394
1395         BUG_ON(!p->on_rq);
1396         BUG_ON(!rt_task(p));
1397
1398         return p;
1399 }
1400
1401 /*
1402  * If the current CPU has more than one RT task, see if the non
1403  * running task can migrate over to a CPU that is running a task
1404  * of lesser priority.
1405  */
1406 static int push_rt_task(struct rq *rq)
1407 {
1408         struct task_struct *next_task;
1409         struct rq *lowest_rq;
1410         int ret = 0;
1411
1412         if (!rq->rt.overloaded)
1413                 return 0;
1414
1415         next_task = pick_next_pushable_task(rq);
1416         if (!next_task)
1417                 return 0;
1418
1419 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1420        if (unlikely(task_running(rq, next_task)))
1421                return 0;
1422 #endif
1423
1424 retry:
1425         if (unlikely(next_task == rq->curr)) {
1426                 WARN_ON(1);
1427                 return 0;
1428         }
1429
1430         /*
1431          * It's possible that the next_task slipped in of
1432          * higher priority than current. If that's the case
1433          * just reschedule current.
1434          */
1435         if (unlikely(next_task->prio < rq->curr->prio)) {
1436                 resched_task(rq->curr);
1437                 return 0;
1438         }
1439
1440         /* We might release rq lock */
1441         get_task_struct(next_task);
1442
1443         /* find_lock_lowest_rq locks the rq if found */
1444         lowest_rq = find_lock_lowest_rq(next_task, rq);
1445         if (!lowest_rq) {
1446                 struct task_struct *task;
1447                 /*
1448                  * find_lock_lowest_rq releases rq->lock
1449                  * so it is possible that next_task has migrated.
1450                  *
1451                  * We need to make sure that the task is still on the same
1452                  * run-queue and is also still the next task eligible for
1453                  * pushing.
1454                  */
1455                 task = pick_next_pushable_task(rq);
1456                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1457                         /*
1458                          * The task hasn't migrated, and is still the next
1459                          * eligible task, but we failed to find a run-queue
1460                          * to push it to.  Do not retry in this case, since
1461                          * other cpus will pull from us when ready.
1462                          */
1463                         goto out;
1464                 }
1465
1466                 if (!task)
1467                         /* No more tasks, just exit */
1468                         goto out;
1469
1470                 /*
1471                  * Something has shifted, try again.
1472                  */
1473                 put_task_struct(next_task);
1474                 next_task = task;
1475                 goto retry;
1476         }
1477
1478         deactivate_task(rq, next_task, 0);
1479         set_task_cpu(next_task, lowest_rq->cpu);
1480         activate_task(lowest_rq, next_task, 0);
1481         ret = 1;
1482
1483         resched_task(lowest_rq->curr);
1484
1485         double_unlock_balance(rq, lowest_rq);
1486
1487 out:
1488         put_task_struct(next_task);
1489
1490         return ret;
1491 }
1492
1493 static void push_rt_tasks(struct rq *rq)
1494 {
1495         /* push_rt_task will return true if it moved an RT */
1496         while (push_rt_task(rq))
1497                 ;
1498 }
1499
1500 static int pull_rt_task(struct rq *this_rq)
1501 {
1502         int this_cpu = this_rq->cpu, ret = 0, cpu;
1503         struct task_struct *p;
1504         struct rq *src_rq;
1505
1506         if (likely(!rt_overloaded(this_rq)))
1507                 return 0;
1508
1509         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1510                 if (this_cpu == cpu)
1511                         continue;
1512
1513                 src_rq = cpu_rq(cpu);
1514
1515                 /*
1516                  * Don't bother taking the src_rq->lock if the next highest
1517                  * task is known to be lower-priority than our current task.
1518                  * This may look racy, but if this value is about to go
1519                  * logically higher, the src_rq will push this task away.
1520                  * And if its going logically lower, we do not care
1521                  */
1522                 if (src_rq->rt.highest_prio.next >=
1523                     this_rq->rt.highest_prio.curr)
1524                         continue;
1525
1526                 /*
1527                  * We can potentially drop this_rq's lock in
1528                  * double_lock_balance, and another CPU could
1529                  * alter this_rq
1530                  */
1531                 double_lock_balance(this_rq, src_rq);
1532
1533                 /*
1534                  * Are there still pullable RT tasks?
1535                  */
1536                 if (src_rq->rt.rt_nr_running <= 1)
1537                         goto skip;
1538
1539                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1540
1541                 /*
1542                  * Do we have an RT task that preempts
1543                  * the to-be-scheduled task?
1544                  */
1545                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1546                         WARN_ON(p == src_rq->curr);
1547                         WARN_ON(!p->on_rq);
1548
1549                         /*
1550                          * There's a chance that p is higher in priority
1551                          * than what's currently running on its cpu.
1552                          * This is just that p is wakeing up and hasn't
1553                          * had a chance to schedule. We only pull
1554                          * p if it is lower in priority than the
1555                          * current task on the run queue
1556                          */
1557                         if (p->prio < src_rq->curr->prio)
1558                                 goto skip;
1559
1560                         ret = 1;
1561
1562                         deactivate_task(src_rq, p, 0);
1563                         set_task_cpu(p, this_cpu);
1564                         activate_task(this_rq, p, 0);
1565                         /*
1566                          * We continue with the search, just in
1567                          * case there's an even higher prio task
1568                          * in another runqueue. (low likelihood
1569                          * but possible)
1570                          */
1571                 }
1572 skip:
1573                 double_unlock_balance(this_rq, src_rq);
1574         }
1575
1576         return ret;
1577 }
1578
1579 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1580 {
1581         /* Try to pull RT tasks here if we lower this rq's prio */
1582         if (rq->rt.highest_prio.curr > prev->prio)
1583                 pull_rt_task(rq);
1584 }
1585
1586 static void post_schedule_rt(struct rq *rq)
1587 {
1588         push_rt_tasks(rq);
1589 }
1590
1591 /*
1592  * If we are not running and we are not going to reschedule soon, we should
1593  * try to push tasks away now
1594  */
1595 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1596 {
1597         if (!task_running(rq, p) &&
1598             !test_tsk_need_resched(rq->curr) &&
1599             has_pushable_tasks(rq) &&
1600             p->rt.nr_cpus_allowed > 1 &&
1601             rt_task(rq->curr) &&
1602             (rq->curr->rt.nr_cpus_allowed < 2 ||
1603              rq->curr->prio <= p->prio))
1604                 push_rt_tasks(rq);
1605 }
1606
1607 static void set_cpus_allowed_rt(struct task_struct *p,
1608                                 const struct cpumask *new_mask)
1609 {
1610         int weight = cpumask_weight(new_mask);
1611
1612         BUG_ON(!rt_task(p));
1613
1614         /*
1615          * Update the migration status of the RQ if we have an RT task
1616          * which is running AND changing its weight value.
1617          */
1618         if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1619                 struct rq *rq = task_rq(p);
1620
1621                 if (!task_current(rq, p)) {
1622                         /*
1623                          * Make sure we dequeue this task from the pushable list
1624                          * before going further.  It will either remain off of
1625                          * the list because we are no longer pushable, or it
1626                          * will be requeued.
1627                          */
1628                         if (p->rt.nr_cpus_allowed > 1)
1629                                 dequeue_pushable_task(rq, p);
1630
1631                         /*
1632                          * Requeue if our weight is changing and still > 1
1633                          */
1634                         if (weight > 1)
1635                                 enqueue_pushable_task(rq, p);
1636
1637                 }
1638
1639                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1640                         rq->rt.rt_nr_migratory++;
1641                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1642                         BUG_ON(!rq->rt.rt_nr_migratory);
1643                         rq->rt.rt_nr_migratory--;
1644                 }
1645
1646                 update_rt_migration(&rq->rt);
1647         }
1648 }
1649
1650 /* Assumes rq->lock is held */
1651 static void rq_online_rt(struct rq *rq)
1652 {
1653         if (rq->rt.overloaded)
1654                 rt_set_overload(rq);
1655
1656         __enable_runtime(rq);
1657
1658         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1659 }
1660
1661 /* Assumes rq->lock is held */
1662 static void rq_offline_rt(struct rq *rq)
1663 {
1664         if (rq->rt.overloaded)
1665                 rt_clear_overload(rq);
1666
1667         __disable_runtime(rq);
1668
1669         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1670 }
1671
1672 /*
1673  * When switch from the rt queue, we bring ourselves to a position
1674  * that we might want to pull RT tasks from other runqueues.
1675  */
1676 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1677 {
1678         /*
1679          * If there are other RT tasks then we will reschedule
1680          * and the scheduling of the other RT tasks will handle
1681          * the balancing. But if we are the last RT task
1682          * we may need to handle the pulling of RT tasks
1683          * now.
1684          */
1685         if (p->on_rq && !rq->rt.rt_nr_running)
1686                 pull_rt_task(rq);
1687 }
1688
1689 static inline void init_sched_rt_class(void)
1690 {
1691         unsigned int i;
1692
1693         for_each_possible_cpu(i)
1694                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1695                                         GFP_KERNEL, cpu_to_node(i));
1696 }
1697 #endif /* CONFIG_SMP */
1698
1699 /*
1700  * When switching a task to RT, we may overload the runqueue
1701  * with RT tasks. In this case we try to push them off to
1702  * other runqueues.
1703  */
1704 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1705 {
1706         int check_resched = 1;
1707
1708         /*
1709          * If we are already running, then there's nothing
1710          * that needs to be done. But if we are not running
1711          * we may need to preempt the current running task.
1712          * If that current running task is also an RT task
1713          * then see if we can move to another run queue.
1714          */
1715         if (p->on_rq && rq->curr != p) {
1716 #ifdef CONFIG_SMP
1717                 if (rq->rt.overloaded && push_rt_task(rq) &&
1718                     /* Don't resched if we changed runqueues */
1719                     rq != task_rq(p))
1720                         check_resched = 0;
1721 #endif /* CONFIG_SMP */
1722                 if (check_resched && p->prio < rq->curr->prio)
1723                         resched_task(rq->curr);
1724         }
1725 }
1726
1727 /*
1728  * Priority of the task has changed. This may cause
1729  * us to initiate a push or pull.
1730  */
1731 static void
1732 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1733 {
1734         if (!p->on_rq)
1735                 return;
1736
1737         if (rq->curr == p) {
1738 #ifdef CONFIG_SMP
1739                 /*
1740                  * If our priority decreases while running, we
1741                  * may need to pull tasks to this runqueue.
1742                  */
1743                 if (oldprio < p->prio)
1744                         pull_rt_task(rq);
1745                 /*
1746                  * If there's a higher priority task waiting to run
1747                  * then reschedule. Note, the above pull_rt_task
1748                  * can release the rq lock and p could migrate.
1749                  * Only reschedule if p is still on the same runqueue.
1750                  */
1751                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1752                         resched_task(p);
1753 #else
1754                 /* For UP simply resched on drop of prio */
1755                 if (oldprio < p->prio)
1756                         resched_task(p);
1757 #endif /* CONFIG_SMP */
1758         } else {
1759                 /*
1760                  * This task is not running, but if it is
1761                  * greater than the current running task
1762                  * then reschedule.
1763                  */
1764                 if (p->prio < rq->curr->prio)
1765                         resched_task(rq->curr);
1766         }
1767 }
1768
1769 static void watchdog(struct rq *rq, struct task_struct *p)
1770 {
1771         unsigned long soft, hard;
1772
1773         /* max may change after cur was read, this will be fixed next tick */
1774         soft = task_rlimit(p, RLIMIT_RTTIME);
1775         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1776
1777         if (soft != RLIM_INFINITY) {
1778                 unsigned long next;
1779
1780                 if (p->rt.watchdog_stamp != jiffies) {
1781                         p->rt.timeout++;
1782                         p->rt.watchdog_stamp = jiffies;
1783                 }
1784
1785                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1786                 if (p->rt.timeout > next)
1787                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1788         }
1789 }
1790
1791 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1792 {
1793         struct sched_rt_entity *rt_se = &p->rt;
1794
1795         update_curr_rt(rq);
1796
1797         watchdog(rq, p);
1798
1799         /*
1800          * RR tasks need a special form of timeslice management.
1801          * FIFO tasks have no timeslices.
1802          */
1803         if (p->policy != SCHED_RR)
1804                 return;
1805
1806         if (--p->rt.time_slice)
1807                 return;
1808
1809         p->rt.time_slice = DEF_TIMESLICE;
1810
1811         /*
1812          * Requeue to the end of queue if we (and all of our ancestors) are the
1813          * only element on the queue
1814          */
1815         for_each_sched_rt_entity(rt_se) {
1816                 if (rt_se->run_list.prev != rt_se->run_list.next) {
1817                         requeue_task_rt(rq, p, 0);
1818                         set_tsk_need_resched(p);
1819                         return;
1820                 }
1821         }
1822 }
1823
1824 static void set_curr_task_rt(struct rq *rq)
1825 {
1826         struct task_struct *p = rq->curr;
1827
1828         p->se.exec_start = rq->clock_task;
1829
1830         /* The running task is never eligible for pushing */
1831         dequeue_pushable_task(rq, p);
1832 }
1833
1834 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1835 {
1836         /*
1837          * Time slice is 0 for SCHED_FIFO tasks
1838          */
1839         if (task->policy == SCHED_RR)
1840                 return DEF_TIMESLICE;
1841         else
1842                 return 0;
1843 }
1844
1845 static const struct sched_class rt_sched_class = {
1846         .next                   = &fair_sched_class,
1847         .enqueue_task           = enqueue_task_rt,
1848         .dequeue_task           = dequeue_task_rt,
1849         .yield_task             = yield_task_rt,
1850
1851         .check_preempt_curr     = check_preempt_curr_rt,
1852
1853         .pick_next_task         = pick_next_task_rt,
1854         .put_prev_task          = put_prev_task_rt,
1855
1856 #ifdef CONFIG_SMP
1857         .select_task_rq         = select_task_rq_rt,
1858
1859         .set_cpus_allowed       = set_cpus_allowed_rt,
1860         .rq_online              = rq_online_rt,
1861         .rq_offline             = rq_offline_rt,
1862         .pre_schedule           = pre_schedule_rt,
1863         .post_schedule          = post_schedule_rt,
1864         .task_woken             = task_woken_rt,
1865         .switched_from          = switched_from_rt,
1866 #endif
1867
1868         .set_curr_task          = set_curr_task_rt,
1869         .task_tick              = task_tick_rt,
1870
1871         .get_rr_interval        = get_rr_interval_rt,
1872
1873         .prio_changed           = prio_changed_rt,
1874         .switched_to            = switched_to_rt,
1875 };
1876
1877 #ifdef CONFIG_SCHED_DEBUG
1878 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1879
1880 static void print_rt_stats(struct seq_file *m, int cpu)
1881 {
1882         rt_rq_iter_t iter;
1883         struct rt_rq *rt_rq;
1884
1885         rcu_read_lock();
1886         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1887                 print_rt_rq(m, cpu, rt_rq);
1888         rcu_read_unlock();
1889 }
1890 #endif /* CONFIG_SCHED_DEBUG */