[PATCH] sched: TASK_NONINTERACTIVE
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265  * See detach_destroy_domains: synchronize_sched for details.
266  *
267  * The domain tree of any CPU may only be accessed from within
268  * preempt-disabled sections.
269  */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
274 #define this_rq()               (&__get_cpu_var(runqueues))
275 #define task_rq(p)              cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next)      do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev)       do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288         return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297         spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304         return p->oncpu;
305 #else
306         return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313         /*
314          * We can optimise this out completely for !SMP, because the
315          * SMP rebalancing from interrupt is the only thing that cares
316          * here.
317          */
318         next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321         spin_unlock_irq(&rq->lock);
322 #else
323         spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330         /*
331          * After ->oncpu is cleared, the task can be moved to a different CPU.
332          * We must ensure this doesn't happen until the switch is completely
333          * finished.
334          */
335         smp_wmb();
336         prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339         local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345  * task_rq_lock - lock the runqueue a given task resides on and disable
346  * interrupts.  Note the ordering: we can safely lookup the task_rq without
347  * explicitly disabling preemption.
348  */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350         __acquires(rq->lock)
351 {
352         struct runqueue *rq;
353
354 repeat_lock_task:
355         local_irq_save(*flags);
356         rq = task_rq(p);
357         spin_lock(&rq->lock);
358         if (unlikely(rq != task_rq(p))) {
359                 spin_unlock_irqrestore(&rq->lock, *flags);
360                 goto repeat_lock_task;
361         }
362         return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366         __releases(rq->lock)
367 {
368         spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373  * bump this up when changing the output format or the meaning of an existing
374  * format, so that tools can adapt (or abort)
375  */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380         int cpu;
381
382         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383         seq_printf(seq, "timestamp %lu\n", jiffies);
384         for_each_online_cpu(cpu) {
385                 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387                 struct sched_domain *sd;
388                 int dcnt = 0;
389 #endif
390
391                 /* runqueue-specific stats */
392                 seq_printf(seq,
393                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394                     cpu, rq->yld_both_empty,
395                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397                     rq->ttwu_cnt, rq->ttwu_local,
398                     rq->rq_sched_info.cpu_time,
399                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401                 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404                 /* domain-specific stats */
405                 preempt_disable();
406                 for_each_domain(cpu, sd) {
407                         enum idle_type itype;
408                         char mask_str[NR_CPUS];
409
410                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413                                         itype++) {
414                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415                                     sd->lb_cnt[itype],
416                                     sd->lb_balanced[itype],
417                                     sd->lb_failed[itype],
418                                     sd->lb_imbalance[itype],
419                                     sd->lb_gained[itype],
420                                     sd->lb_hot_gained[itype],
421                                     sd->lb_nobusyq[itype],
422                                     sd->lb_nobusyg[itype]);
423                         }
424                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429                 }
430                 preempt_enable();
431 #endif
432         }
433         return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439         char *buf = kmalloc(size, GFP_KERNEL);
440         struct seq_file *m;
441         int res;
442
443         if (!buf)
444                 return -ENOMEM;
445         res = single_open(file, show_schedstat, NULL);
446         if (!res) {
447                 m = file->private_data;
448                 m->buf = buf;
449                 m->size = size;
450         } else
451                 kfree(buf);
452         return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456         .open    = schedstat_open,
457         .read    = seq_read,
458         .llseek  = seq_lseek,
459         .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field)       do { } while (0)
466 # define schedstat_add(rq, field, amt)  do { } while (0)
467 #endif
468
469 /*
470  * rq_lock - lock a given runqueue and disable interrupts.
471  */
472 static inline runqueue_t *this_rq_lock(void)
473         __acquires(rq->lock)
474 {
475         runqueue_t *rq;
476
477         local_irq_disable();
478         rq = this_rq();
479         spin_lock(&rq->lock);
480
481         return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486  * Called when a process is dequeued from the active array and given
487  * the cpu.  We should note that with the exception of interactive
488  * tasks, the expired queue will become the active queue after the active
489  * queue is empty, without explicitly dequeuing and requeuing tasks in the
490  * expired queue.  (Interactive tasks may be requeued directly to the
491  * active queue, thus delaying tasks in the expired queue from running;
492  * see scheduler_tick()).
493  *
494  * This function is only called from sched_info_arrive(), rather than
495  * dequeue_task(). Even though a task may be queued and dequeued multiple
496  * times as it is shuffled about, we're really interested in knowing how
497  * long it was from the *first* time it was queued to the time that it
498  * finally hit a cpu.
499  */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502         t->sched_info.last_queued = 0;
503 }
504
505 /*
506  * Called when a task finally hits the cpu.  We can now calculate how
507  * long it was waiting to run.  We also note when it began so that we
508  * can keep stats on how long its timeslice is.
509  */
510 static inline void sched_info_arrive(task_t *t)
511 {
512         unsigned long now = jiffies, diff = 0;
513         struct runqueue *rq = task_rq(t);
514
515         if (t->sched_info.last_queued)
516                 diff = now - t->sched_info.last_queued;
517         sched_info_dequeued(t);
518         t->sched_info.run_delay += diff;
519         t->sched_info.last_arrival = now;
520         t->sched_info.pcnt++;
521
522         if (!rq)
523                 return;
524
525         rq->rq_sched_info.run_delay += diff;
526         rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530  * Called when a process is queued into either the active or expired
531  * array.  The time is noted and later used to determine how long we
532  * had to wait for us to reach the cpu.  Since the expired queue will
533  * become the active queue after active queue is empty, without dequeuing
534  * and requeuing any tasks, we are interested in queuing to either. It
535  * is unusual but not impossible for tasks to be dequeued and immediately
536  * requeued in the same or another array: this can happen in sched_yield(),
537  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538  * to runqueue.
539  *
540  * This function is only called from enqueue_task(), but also only updates
541  * the timestamp if it is already not set.  It's assumed that
542  * sched_info_dequeued() will clear that stamp when appropriate.
543  */
544 static inline void sched_info_queued(task_t *t)
545 {
546         if (!t->sched_info.last_queued)
547                 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551  * Called when a process ceases being the active-running process, either
552  * voluntarily or involuntarily.  Now we can calculate how long we ran.
553  */
554 static inline void sched_info_depart(task_t *t)
555 {
556         struct runqueue *rq = task_rq(t);
557         unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559         t->sched_info.cpu_time += diff;
560
561         if (rq)
562                 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566  * Called when tasks are switched involuntarily due, typically, to expiring
567  * their time slice.  (This may also be called when switching to or from
568  * the idle task.)  We are only called when prev != next.
569  */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572         struct runqueue *rq = task_rq(prev);
573
574         /*
575          * prev now departs the cpu.  It's not interesting to record
576          * stats about how efficient we were at scheduling the idle
577          * process, however.
578          */
579         if (prev != rq->idle)
580                 sched_info_depart(prev);
581
582         if (next != rq->idle)
583                 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t)            do { } while (0)
587 #define sched_info_switch(t, next)      do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591  * Adding/removing a task to/from a priority array:
592  */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595         array->nr_active--;
596         list_del(&p->run_list);
597         if (list_empty(array->queue + p->prio))
598                 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603         sched_info_queued(p);
604         list_add_tail(&p->run_list, array->queue + p->prio);
605         __set_bit(p->prio, array->bitmap);
606         array->nr_active++;
607         p->array = array;
608 }
609
610 /*
611  * Put task to the end of the run list without the overhead of dequeue
612  * followed by enqueue.
613  */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616         list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621         list_add(&p->run_list, array->queue + p->prio);
622         __set_bit(p->prio, array->bitmap);
623         array->nr_active++;
624         p->array = array;
625 }
626
627 /*
628  * effective_prio - return the priority that is based on the static
629  * priority but is modified by bonuses/penalties.
630  *
631  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632  * into the -5 ... 0 ... +5 bonus/penalty range.
633  *
634  * We use 25% of the full 0...39 priority range so that:
635  *
636  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638  *
639  * Both properties are important to certain workloads.
640  */
641 static int effective_prio(task_t *p)
642 {
643         int bonus, prio;
644
645         if (rt_task(p))
646                 return p->prio;
647
648         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650         prio = p->static_prio - bonus;
651         if (prio < MAX_RT_PRIO)
652                 prio = MAX_RT_PRIO;
653         if (prio > MAX_PRIO-1)
654                 prio = MAX_PRIO-1;
655         return prio;
656 }
657
658 /*
659  * __activate_task - move a task to the runqueue.
660  */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task(p, rq->active);
664         rq->nr_running++;
665 }
666
667 /*
668  * __activate_idle_task - move idle task to the _front_ of runqueue.
669  */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672         enqueue_task_head(p, rq->active);
673         rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678         /* Caller must always ensure 'now >= p->timestamp' */
679         unsigned long long __sleep_time = now - p->timestamp;
680         unsigned long sleep_time;
681
682         if (__sleep_time > NS_MAX_SLEEP_AVG)
683                 sleep_time = NS_MAX_SLEEP_AVG;
684         else
685                 sleep_time = (unsigned long)__sleep_time;
686
687         if (likely(sleep_time > 0)) {
688                 /*
689                  * User tasks that sleep a long time are categorised as
690                  * idle and will get just interactive status to stay active &
691                  * prevent them suddenly becoming cpu hogs and starving
692                  * other processes.
693                  */
694                 if (p->mm && p->activated != -1 &&
695                         sleep_time > INTERACTIVE_SLEEP(p)) {
696                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697                                                 DEF_TIMESLICE);
698                 } else {
699                         /*
700                          * The lower the sleep avg a task has the more
701                          * rapidly it will rise with sleep time.
702                          */
703                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705                         /*
706                          * Tasks waking from uninterruptible sleep are
707                          * limited in their sleep_avg rise as they
708                          * are likely to be waiting on I/O
709                          */
710                         if (p->activated == -1 && p->mm) {
711                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712                                         sleep_time = 0;
713                                 else if (p->sleep_avg + sleep_time >=
714                                                 INTERACTIVE_SLEEP(p)) {
715                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
716                                         sleep_time = 0;
717                                 }
718                         }
719
720                         /*
721                          * This code gives a bonus to interactive tasks.
722                          *
723                          * The boost works by updating the 'average sleep time'
724                          * value here, based on ->timestamp. The more time a
725                          * task spends sleeping, the higher the average gets -
726                          * and the higher the priority boost gets as well.
727                          */
728                         p->sleep_avg += sleep_time;
729
730                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
732                 }
733         }
734
735         return effective_prio(p);
736 }
737
738 /*
739  * activate_task - move a task to the runqueue and do priority recalculation
740  *
741  * Update all the scheduling statistics stuff. (sleep average
742  * calculation, priority modifiers, etc.)
743  */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746         unsigned long long now;
747
748         now = sched_clock();
749 #ifdef CONFIG_SMP
750         if (!local) {
751                 /* Compensate for drifting sched_clock */
752                 runqueue_t *this_rq = this_rq();
753                 now = (now - this_rq->timestamp_last_tick)
754                         + rq->timestamp_last_tick;
755         }
756 #endif
757
758         p->prio = recalc_task_prio(p, now);
759
760         /*
761          * This checks to make sure it's not an uninterruptible task
762          * that is now waking up.
763          */
764         if (!p->activated) {
765                 /*
766                  * Tasks which were woken up by interrupts (ie. hw events)
767                  * are most likely of interactive nature. So we give them
768                  * the credit of extending their sleep time to the period
769                  * of time they spend on the runqueue, waiting for execution
770                  * on a CPU, first time around:
771                  */
772                 if (in_interrupt())
773                         p->activated = 2;
774                 else {
775                         /*
776                          * Normal first-time wakeups get a credit too for
777                          * on-runqueue time, but it will be weighted down:
778                          */
779                         p->activated = 1;
780                 }
781         }
782         p->timestamp = now;
783
784         __activate_task(p, rq);
785 }
786
787 /*
788  * deactivate_task - remove a task from the runqueue.
789  */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792         rq->nr_running--;
793         dequeue_task(p, p->array);
794         p->array = NULL;
795 }
796
797 /*
798  * resched_task - mark a task 'to be rescheduled now'.
799  *
800  * On UP this means the setting of the need_resched flag, on SMP it
801  * might also involve a cross-CPU call to trigger the scheduler on
802  * the target CPU.
803  */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807         int need_resched, nrpolling;
808
809         assert_spin_locked(&task_rq(p)->lock);
810
811         /* minimise the chance of sending an interrupt to poll_idle() */
812         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817                 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822         set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827  * task_curr - is this task currently executing on a CPU?
828  * @p: the task in question.
829  */
830 inline int task_curr(const task_t *p)
831 {
832         return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837         struct list_head list;
838
839         task_t *task;
840         int dest_cpu;
841
842         struct completion done;
843 } migration_req_t;
844
845 /*
846  * The task's runqueue lock must be held.
847  * Returns true if you have to wait for migration thread.
848  */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851         runqueue_t *rq = task_rq(p);
852
853         /*
854          * If the task is not on a runqueue (and not running), then
855          * it is sufficient to simply update the task's cpu field.
856          */
857         if (!p->array && !task_running(rq, p)) {
858                 set_task_cpu(p, dest_cpu);
859                 return 0;
860         }
861
862         init_completion(&req->done);
863         req->task = p;
864         req->dest_cpu = dest_cpu;
865         list_add(&req->list, &rq->migration_queue);
866         return 1;
867 }
868
869 /*
870  * wait_task_inactive - wait for a thread to unschedule.
871  *
872  * The caller must ensure that the task *will* unschedule sometime soon,
873  * else this function might spin for a *long* time. This function can't
874  * be called with interrupts off, or it may introduce deadlock with
875  * smp_call_function() if an IPI is sent by the same process we are
876  * waiting to become inactive.
877  */
878 void wait_task_inactive(task_t *p)
879 {
880         unsigned long flags;
881         runqueue_t *rq;
882         int preempted;
883
884 repeat:
885         rq = task_rq_lock(p, &flags);
886         /* Must be off runqueue entirely, not preempted. */
887         if (unlikely(p->array || task_running(rq, p))) {
888                 /* If it's preempted, we yield.  It could be a while. */
889                 preempted = !task_running(rq, p);
890                 task_rq_unlock(rq, &flags);
891                 cpu_relax();
892                 if (preempted)
893                         yield();
894                 goto repeat;
895         }
896         task_rq_unlock(rq, &flags);
897 }
898
899 /***
900  * kick_process - kick a running thread to enter/exit the kernel
901  * @p: the to-be-kicked thread
902  *
903  * Cause a process which is running on another CPU to enter
904  * kernel-mode, without any delay. (to get signals handled.)
905  *
906  * NOTE: this function doesnt have to take the runqueue lock,
907  * because all it wants to ensure is that the remote task enters
908  * the kernel. If the IPI races and the task has been migrated
909  * to another CPU then no harm is done and the purpose has been
910  * achieved as well.
911  */
912 void kick_process(task_t *p)
913 {
914         int cpu;
915
916         preempt_disable();
917         cpu = task_cpu(p);
918         if ((cpu != smp_processor_id()) && task_curr(p))
919                 smp_send_reschedule(cpu);
920         preempt_enable();
921 }
922
923 /*
924  * Return a low guess at the load of a migration-source cpu.
925  *
926  * We want to under-estimate the load of migration sources, to
927  * balance conservatively.
928  */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931         runqueue_t *rq = cpu_rq(cpu);
932         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933         if (type == 0)
934                 return load_now;
935
936         return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940  * Return a high guess at the load of a migration-target cpu
941  */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944         runqueue_t *rq = cpu_rq(cpu);
945         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946         if (type == 0)
947                 return load_now;
948
949         return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953  * find_idlest_group finds and returns the least busy CPU group within the
954  * domain.
955  */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960         unsigned long min_load = ULONG_MAX, this_load = 0;
961         int load_idx = sd->forkexec_idx;
962         int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964         do {
965                 unsigned long load, avg_load;
966                 int local_group;
967                 int i;
968
969                 /* Skip over this group if it has no CPUs allowed */
970                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971                         goto nextgroup;
972
973                 local_group = cpu_isset(this_cpu, group->cpumask);
974
975                 /* Tally up the load of all CPUs in the group */
976                 avg_load = 0;
977
978                 for_each_cpu_mask(i, group->cpumask) {
979                         /* Bias balancing toward cpus of our domain */
980                         if (local_group)
981                                 load = source_load(i, load_idx);
982                         else
983                                 load = target_load(i, load_idx);
984
985                         avg_load += load;
986                 }
987
988                 /* Adjust by relative CPU power of the group */
989                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991                 if (local_group) {
992                         this_load = avg_load;
993                         this = group;
994                 } else if (avg_load < min_load) {
995                         min_load = avg_load;
996                         idlest = group;
997                 }
998 nextgroup:
999                 group = group->next;
1000         } while (group != sd->groups);
1001
1002         if (!idlest || 100*this_load < imbalance*min_load)
1003                 return NULL;
1004         return idlest;
1005 }
1006
1007 /*
1008  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009  */
1010 static int
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1012 {
1013         cpumask_t tmp;
1014         unsigned long load, min_load = ULONG_MAX;
1015         int idlest = -1;
1016         int i;
1017
1018         /* Traverse only the allowed CPUs */
1019         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021         for_each_cpu_mask(i, tmp) {
1022                 load = source_load(i, 0);
1023
1024                 if (load < min_load || (load == min_load && i == this_cpu)) {
1025                         min_load = load;
1026                         idlest = i;
1027                 }
1028         }
1029
1030         return idlest;
1031 }
1032
1033 /*
1034  * sched_balance_self: balance the current task (running on cpu) in domains
1035  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036  * SD_BALANCE_EXEC.
1037  *
1038  * Balance, ie. select the least loaded group.
1039  *
1040  * Returns the target CPU number, or the same CPU if no balancing is needed.
1041  *
1042  * preempt must be disabled.
1043  */
1044 static int sched_balance_self(int cpu, int flag)
1045 {
1046         struct task_struct *t = current;
1047         struct sched_domain *tmp, *sd = NULL;
1048
1049         for_each_domain(cpu, tmp)
1050                 if (tmp->flags & flag)
1051                         sd = tmp;
1052
1053         while (sd) {
1054                 cpumask_t span;
1055                 struct sched_group *group;
1056                 int new_cpu;
1057                 int weight;
1058
1059                 span = sd->span;
1060                 group = find_idlest_group(sd, t, cpu);
1061                 if (!group)
1062                         goto nextlevel;
1063
1064                 new_cpu = find_idlest_cpu(group, t, cpu);
1065                 if (new_cpu == -1 || new_cpu == cpu)
1066                         goto nextlevel;
1067
1068                 /* Now try balancing at a lower domain level */
1069                 cpu = new_cpu;
1070 nextlevel:
1071                 sd = NULL;
1072                 weight = cpus_weight(span);
1073                 for_each_domain(cpu, tmp) {
1074                         if (weight <= cpus_weight(tmp->span))
1075                                 break;
1076                         if (tmp->flags & flag)
1077                                 sd = tmp;
1078                 }
1079                 /* while loop will break here if sd == NULL */
1080         }
1081
1082         return cpu;
1083 }
1084
1085 #endif /* CONFIG_SMP */
1086
1087 /*
1088  * wake_idle() will wake a task on an idle cpu if task->cpu is
1089  * not idle and an idle cpu is available.  The span of cpus to
1090  * search starts with cpus closest then further out as needed,
1091  * so we always favor a closer, idle cpu.
1092  *
1093  * Returns the CPU we should wake onto.
1094  */
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1097 {
1098         cpumask_t tmp;
1099         struct sched_domain *sd;
1100         int i;
1101
1102         if (idle_cpu(cpu))
1103                 return cpu;
1104
1105         for_each_domain(cpu, sd) {
1106                 if (sd->flags & SD_WAKE_IDLE) {
1107                         cpus_and(tmp, sd->span, p->cpus_allowed);
1108                         for_each_cpu_mask(i, tmp) {
1109                                 if (idle_cpu(i))
1110                                         return i;
1111                         }
1112                 }
1113                 else
1114                         break;
1115         }
1116         return cpu;
1117 }
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1120 {
1121         return cpu;
1122 }
1123 #endif
1124
1125 /***
1126  * try_to_wake_up - wake up a thread
1127  * @p: the to-be-woken-up thread
1128  * @state: the mask of task states that can be woken
1129  * @sync: do a synchronous wakeup?
1130  *
1131  * Put it on the run-queue if it's not already there. The "current"
1132  * thread is always on the run-queue (except when the actual
1133  * re-schedule is in progress), and as such you're allowed to do
1134  * the simpler "current->state = TASK_RUNNING" to mark yourself
1135  * runnable without the overhead of this.
1136  *
1137  * returns failure only if the task is already active.
1138  */
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1140 {
1141         int cpu, this_cpu, success = 0;
1142         unsigned long flags;
1143         long old_state;
1144         runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146         unsigned long load, this_load;
1147         struct sched_domain *sd, *this_sd = NULL;
1148         int new_cpu;
1149 #endif
1150
1151         rq = task_rq_lock(p, &flags);
1152         old_state = p->state;
1153         if (!(old_state & state))
1154                 goto out;
1155
1156         if (p->array)
1157                 goto out_running;
1158
1159         cpu = task_cpu(p);
1160         this_cpu = smp_processor_id();
1161
1162 #ifdef CONFIG_SMP
1163         if (unlikely(task_running(rq, p)))
1164                 goto out_activate;
1165
1166         new_cpu = cpu;
1167
1168         schedstat_inc(rq, ttwu_cnt);
1169         if (cpu == this_cpu) {
1170                 schedstat_inc(rq, ttwu_local);
1171                 goto out_set_cpu;
1172         }
1173
1174         for_each_domain(this_cpu, sd) {
1175                 if (cpu_isset(cpu, sd->span)) {
1176                         schedstat_inc(sd, ttwu_wake_remote);
1177                         this_sd = sd;
1178                         break;
1179                 }
1180         }
1181
1182         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183                 goto out_set_cpu;
1184
1185         /*
1186          * Check for affine wakeup and passive balancing possibilities.
1187          */
1188         if (this_sd) {
1189                 int idx = this_sd->wake_idx;
1190                 unsigned int imbalance;
1191
1192                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
1194                 load = source_load(cpu, idx);
1195                 this_load = target_load(this_cpu, idx);
1196
1197                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
1199                 if (this_sd->flags & SD_WAKE_AFFINE) {
1200                         unsigned long tl = this_load;
1201                         /*
1202                          * If sync wakeup then subtract the (maximum possible)
1203                          * effect of the currently running task from the load
1204                          * of the current CPU:
1205                          */
1206                         if (sync)
1207                                 tl -= SCHED_LOAD_SCALE;
1208
1209                         if ((tl <= load &&
1210                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212                                 /*
1213                                  * This domain has SD_WAKE_AFFINE and
1214                                  * p is cache cold in this domain, and
1215                                  * there is no bad imbalance.
1216                                  */
1217                                 schedstat_inc(this_sd, ttwu_move_affine);
1218                                 goto out_set_cpu;
1219                         }
1220                 }
1221
1222                 /*
1223                  * Start passive balancing when half the imbalance_pct
1224                  * limit is reached.
1225                  */
1226                 if (this_sd->flags & SD_WAKE_BALANCE) {
1227                         if (imbalance*this_load <= 100*load) {
1228                                 schedstat_inc(this_sd, ttwu_move_balance);
1229                                 goto out_set_cpu;
1230                         }
1231                 }
1232         }
1233
1234         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236         new_cpu = wake_idle(new_cpu, p);
1237         if (new_cpu != cpu) {
1238                 set_task_cpu(p, new_cpu);
1239                 task_rq_unlock(rq, &flags);
1240                 /* might preempt at this point */
1241                 rq = task_rq_lock(p, &flags);
1242                 old_state = p->state;
1243                 if (!(old_state & state))
1244                         goto out;
1245                 if (p->array)
1246                         goto out_running;
1247
1248                 this_cpu = smp_processor_id();
1249                 cpu = task_cpu(p);
1250         }
1251
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254         if (old_state == TASK_UNINTERRUPTIBLE) {
1255                 rq->nr_uninterruptible--;
1256                 /*
1257                  * Tasks on involuntary sleep don't earn
1258                  * sleep_avg beyond just interactive state.
1259                  */
1260                 p->activated = -1;
1261         }
1262
1263         /*
1264          * Tasks that have marked their sleep as noninteractive get
1265          * woken up without updating their sleep average. (i.e. their
1266          * sleep is handled in a priority-neutral manner, no priority
1267          * boost and no penalty.)
1268          */
1269         if (old_state & TASK_NONINTERACTIVE)
1270                 __activate_task(p, rq);
1271         else
1272                 activate_task(p, rq, cpu == this_cpu);
1273         /*
1274          * Sync wakeups (i.e. those types of wakeups where the waker
1275          * has indicated that it will leave the CPU in short order)
1276          * don't trigger a preemption, if the woken up task will run on
1277          * this cpu. (in this case the 'I will reschedule' promise of
1278          * the waker guarantees that the freshly woken up task is going
1279          * to be considered on this CPU.)
1280          */
1281         if (!sync || cpu != this_cpu) {
1282                 if (TASK_PREEMPTS_CURR(p, rq))
1283                         resched_task(rq->curr);
1284         }
1285         success = 1;
1286
1287 out_running:
1288         p->state = TASK_RUNNING;
1289 out:
1290         task_rq_unlock(rq, &flags);
1291
1292         return success;
1293 }
1294
1295 int fastcall wake_up_process(task_t *p)
1296 {
1297         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1299 }
1300
1301 EXPORT_SYMBOL(wake_up_process);
1302
1303 int fastcall wake_up_state(task_t *p, unsigned int state)
1304 {
1305         return try_to_wake_up(p, state, 0);
1306 }
1307
1308 /*
1309  * Perform scheduler related setup for a newly forked process p.
1310  * p is forked by current.
1311  */
1312 void fastcall sched_fork(task_t *p, int clone_flags)
1313 {
1314         int cpu = get_cpu();
1315
1316 #ifdef CONFIG_SMP
1317         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1318 #endif
1319         set_task_cpu(p, cpu);
1320
1321         /*
1322          * We mark the process as running here, but have not actually
1323          * inserted it onto the runqueue yet. This guarantees that
1324          * nobody will actually run it, and a signal or other external
1325          * event cannot wake it up and insert it on the runqueue either.
1326          */
1327         p->state = TASK_RUNNING;
1328         INIT_LIST_HEAD(&p->run_list);
1329         p->array = NULL;
1330 #ifdef CONFIG_SCHEDSTATS
1331         memset(&p->sched_info, 0, sizeof(p->sched_info));
1332 #endif
1333 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1334         p->oncpu = 0;
1335 #endif
1336 #ifdef CONFIG_PREEMPT
1337         /* Want to start with kernel preemption disabled. */
1338         p->thread_info->preempt_count = 1;
1339 #endif
1340         /*
1341          * Share the timeslice between parent and child, thus the
1342          * total amount of pending timeslices in the system doesn't change,
1343          * resulting in more scheduling fairness.
1344          */
1345         local_irq_disable();
1346         p->time_slice = (current->time_slice + 1) >> 1;
1347         /*
1348          * The remainder of the first timeslice might be recovered by
1349          * the parent if the child exits early enough.
1350          */
1351         p->first_time_slice = 1;
1352         current->time_slice >>= 1;
1353         p->timestamp = sched_clock();
1354         if (unlikely(!current->time_slice)) {
1355                 /*
1356                  * This case is rare, it happens when the parent has only
1357                  * a single jiffy left from its timeslice. Taking the
1358                  * runqueue lock is not a problem.
1359                  */
1360                 current->time_slice = 1;
1361                 scheduler_tick();
1362         }
1363         local_irq_enable();
1364         put_cpu();
1365 }
1366
1367 /*
1368  * wake_up_new_task - wake up a newly created task for the first time.
1369  *
1370  * This function will do some initial scheduler statistics housekeeping
1371  * that must be done for every newly created context, then puts the task
1372  * on the runqueue and wakes it.
1373  */
1374 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1375 {
1376         unsigned long flags;
1377         int this_cpu, cpu;
1378         runqueue_t *rq, *this_rq;
1379
1380         rq = task_rq_lock(p, &flags);
1381         BUG_ON(p->state != TASK_RUNNING);
1382         this_cpu = smp_processor_id();
1383         cpu = task_cpu(p);
1384
1385         /*
1386          * We decrease the sleep average of forking parents
1387          * and children as well, to keep max-interactive tasks
1388          * from forking tasks that are max-interactive. The parent
1389          * (current) is done further down, under its lock.
1390          */
1391         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1393
1394         p->prio = effective_prio(p);
1395
1396         if (likely(cpu == this_cpu)) {
1397                 if (!(clone_flags & CLONE_VM)) {
1398                         /*
1399                          * The VM isn't cloned, so we're in a good position to
1400                          * do child-runs-first in anticipation of an exec. This
1401                          * usually avoids a lot of COW overhead.
1402                          */
1403                         if (unlikely(!current->array))
1404                                 __activate_task(p, rq);
1405                         else {
1406                                 p->prio = current->prio;
1407                                 list_add_tail(&p->run_list, &current->run_list);
1408                                 p->array = current->array;
1409                                 p->array->nr_active++;
1410                                 rq->nr_running++;
1411                         }
1412                         set_need_resched();
1413                 } else
1414                         /* Run child last */
1415                         __activate_task(p, rq);
1416                 /*
1417                  * We skip the following code due to cpu == this_cpu
1418                  *
1419                  *   task_rq_unlock(rq, &flags);
1420                  *   this_rq = task_rq_lock(current, &flags);
1421                  */
1422                 this_rq = rq;
1423         } else {
1424                 this_rq = cpu_rq(this_cpu);
1425
1426                 /*
1427                  * Not the local CPU - must adjust timestamp. This should
1428                  * get optimised away in the !CONFIG_SMP case.
1429                  */
1430                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431                                         + rq->timestamp_last_tick;
1432                 __activate_task(p, rq);
1433                 if (TASK_PREEMPTS_CURR(p, rq))
1434                         resched_task(rq->curr);
1435
1436                 /*
1437                  * Parent and child are on different CPUs, now get the
1438                  * parent runqueue to update the parent's ->sleep_avg:
1439                  */
1440                 task_rq_unlock(rq, &flags);
1441                 this_rq = task_rq_lock(current, &flags);
1442         }
1443         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445         task_rq_unlock(this_rq, &flags);
1446 }
1447
1448 /*
1449  * Potentially available exiting-child timeslices are
1450  * retrieved here - this way the parent does not get
1451  * penalized for creating too many threads.
1452  *
1453  * (this cannot be used to 'generate' timeslices
1454  * artificially, because any timeslice recovered here
1455  * was given away by the parent in the first place.)
1456  */
1457 void fastcall sched_exit(task_t *p)
1458 {
1459         unsigned long flags;
1460         runqueue_t *rq;
1461
1462         /*
1463          * If the child was a (relative-) CPU hog then decrease
1464          * the sleep_avg of the parent as well.
1465          */
1466         rq = task_rq_lock(p->parent, &flags);
1467         if (p->first_time_slice) {
1468                 p->parent->time_slice += p->time_slice;
1469                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470                         p->parent->time_slice = task_timeslice(p);
1471         }
1472         if (p->sleep_avg < p->parent->sleep_avg)
1473                 p->parent->sleep_avg = p->parent->sleep_avg /
1474                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1475                 (EXIT_WEIGHT + 1);
1476         task_rq_unlock(rq, &flags);
1477 }
1478
1479 /**
1480  * prepare_task_switch - prepare to switch tasks
1481  * @rq: the runqueue preparing to switch
1482  * @next: the task we are going to switch to.
1483  *
1484  * This is called with the rq lock held and interrupts off. It must
1485  * be paired with a subsequent finish_task_switch after the context
1486  * switch.
1487  *
1488  * prepare_task_switch sets up locking and calls architecture specific
1489  * hooks.
1490  */
1491 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1492 {
1493         prepare_lock_switch(rq, next);
1494         prepare_arch_switch(next);
1495 }
1496
1497 /**
1498  * finish_task_switch - clean up after a task-switch
1499  * @rq: runqueue associated with task-switch
1500  * @prev: the thread we just switched away from.
1501  *
1502  * finish_task_switch must be called after the context switch, paired
1503  * with a prepare_task_switch call before the context switch.
1504  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505  * and do any other architecture-specific cleanup actions.
1506  *
1507  * Note that we may have delayed dropping an mm in context_switch(). If
1508  * so, we finish that here outside of the runqueue lock.  (Doing it
1509  * with the lock held can cause deadlocks; see schedule() for
1510  * details.)
1511  */
1512 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1513         __releases(rq->lock)
1514 {
1515         struct mm_struct *mm = rq->prev_mm;
1516         unsigned long prev_task_flags;
1517
1518         rq->prev_mm = NULL;
1519
1520         /*
1521          * A task struct has one reference for the use as "current".
1522          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523          * calls schedule one last time. The schedule call will never return,
1524          * and the scheduled task must drop that reference.
1525          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526          * still held, otherwise prev could be scheduled on another cpu, die
1527          * there before we look at prev->state, and then the reference would
1528          * be dropped twice.
1529          *              Manfred Spraul <manfred@colorfullife.com>
1530          */
1531         prev_task_flags = prev->flags;
1532 #ifdef CONFIG_DEBUG_SPINLOCK
1533         /* this is a valid case when another task releases the spinlock */
1534         rq->lock.owner = current;
1535 #endif
1536         finish_arch_switch(prev);
1537         finish_lock_switch(rq, prev);
1538         if (mm)
1539                 mmdrop(mm);
1540         if (unlikely(prev_task_flags & PF_DEAD))
1541                 put_task_struct(prev);
1542 }
1543
1544 /**
1545  * schedule_tail - first thing a freshly forked thread must call.
1546  * @prev: the thread we just switched away from.
1547  */
1548 asmlinkage void schedule_tail(task_t *prev)
1549         __releases(rq->lock)
1550 {
1551         runqueue_t *rq = this_rq();
1552         finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554         /* In this case, finish_task_switch does not reenable preemption */
1555         preempt_enable();
1556 #endif
1557         if (current->set_child_tid)
1558                 put_user(current->pid, current->set_child_tid);
1559 }
1560
1561 /*
1562  * context_switch - switch to the new MM and the new
1563  * thread's register state.
1564  */
1565 static inline
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567 {
1568         struct mm_struct *mm = next->mm;
1569         struct mm_struct *oldmm = prev->active_mm;
1570
1571         if (unlikely(!mm)) {
1572                 next->active_mm = oldmm;
1573                 atomic_inc(&oldmm->mm_count);
1574                 enter_lazy_tlb(oldmm, next);
1575         } else
1576                 switch_mm(oldmm, mm, next);
1577
1578         if (unlikely(!prev->mm)) {
1579                 prev->active_mm = NULL;
1580                 WARN_ON(rq->prev_mm);
1581                 rq->prev_mm = oldmm;
1582         }
1583
1584         /* Here we just switch the register state and the stack. */
1585         switch_to(prev, next, prev);
1586
1587         return prev;
1588 }
1589
1590 /*
1591  * nr_running, nr_uninterruptible and nr_context_switches:
1592  *
1593  * externally visible scheduler statistics: current number of runnable
1594  * threads, current number of uninterruptible-sleeping threads, total
1595  * number of context switches performed since bootup.
1596  */
1597 unsigned long nr_running(void)
1598 {
1599         unsigned long i, sum = 0;
1600
1601         for_each_online_cpu(i)
1602                 sum += cpu_rq(i)->nr_running;
1603
1604         return sum;
1605 }
1606
1607 unsigned long nr_uninterruptible(void)
1608 {
1609         unsigned long i, sum = 0;
1610
1611         for_each_cpu(i)
1612                 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614         /*
1615          * Since we read the counters lockless, it might be slightly
1616          * inaccurate. Do not allow it to go below zero though:
1617          */
1618         if (unlikely((long)sum < 0))
1619                 sum = 0;
1620
1621         return sum;
1622 }
1623
1624 unsigned long long nr_context_switches(void)
1625 {
1626         unsigned long long i, sum = 0;
1627
1628         for_each_cpu(i)
1629                 sum += cpu_rq(i)->nr_switches;
1630
1631         return sum;
1632 }
1633
1634 unsigned long nr_iowait(void)
1635 {
1636         unsigned long i, sum = 0;
1637
1638         for_each_cpu(i)
1639                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641         return sum;
1642 }
1643
1644 #ifdef CONFIG_SMP
1645
1646 /*
1647  * double_rq_lock - safely lock two runqueues
1648  *
1649  * Note this does not disable interrupts like task_rq_lock,
1650  * you need to do so manually before calling.
1651  */
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653         __acquires(rq1->lock)
1654         __acquires(rq2->lock)
1655 {
1656         if (rq1 == rq2) {
1657                 spin_lock(&rq1->lock);
1658                 __acquire(rq2->lock);   /* Fake it out ;) */
1659         } else {
1660                 if (rq1 < rq2) {
1661                         spin_lock(&rq1->lock);
1662                         spin_lock(&rq2->lock);
1663                 } else {
1664                         spin_lock(&rq2->lock);
1665                         spin_lock(&rq1->lock);
1666                 }
1667         }
1668 }
1669
1670 /*
1671  * double_rq_unlock - safely unlock two runqueues
1672  *
1673  * Note this does not restore interrupts like task_rq_unlock,
1674  * you need to do so manually after calling.
1675  */
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677         __releases(rq1->lock)
1678         __releases(rq2->lock)
1679 {
1680         spin_unlock(&rq1->lock);
1681         if (rq1 != rq2)
1682                 spin_unlock(&rq2->lock);
1683         else
1684                 __release(rq2->lock);
1685 }
1686
1687 /*
1688  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689  */
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691         __releases(this_rq->lock)
1692         __acquires(busiest->lock)
1693         __acquires(this_rq->lock)
1694 {
1695         if (unlikely(!spin_trylock(&busiest->lock))) {
1696                 if (busiest < this_rq) {
1697                         spin_unlock(&this_rq->lock);
1698                         spin_lock(&busiest->lock);
1699                         spin_lock(&this_rq->lock);
1700                 } else
1701                         spin_lock(&busiest->lock);
1702         }
1703 }
1704
1705 /*
1706  * If dest_cpu is allowed for this process, migrate the task to it.
1707  * This is accomplished by forcing the cpu_allowed mask to only
1708  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1709  * the cpu_allowed mask is restored.
1710  */
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1712 {
1713         migration_req_t req;
1714         runqueue_t *rq;
1715         unsigned long flags;
1716
1717         rq = task_rq_lock(p, &flags);
1718         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719             || unlikely(cpu_is_offline(dest_cpu)))
1720                 goto out;
1721
1722         /* force the process onto the specified CPU */
1723         if (migrate_task(p, dest_cpu, &req)) {
1724                 /* Need to wait for migration thread (might exit: take ref). */
1725                 struct task_struct *mt = rq->migration_thread;
1726                 get_task_struct(mt);
1727                 task_rq_unlock(rq, &flags);
1728                 wake_up_process(mt);
1729                 put_task_struct(mt);
1730                 wait_for_completion(&req.done);
1731                 return;
1732         }
1733 out:
1734         task_rq_unlock(rq, &flags);
1735 }
1736
1737 /*
1738  * sched_exec - execve() is a valuable balancing opportunity, because at
1739  * this point the task has the smallest effective memory and cache footprint.
1740  */
1741 void sched_exec(void)
1742 {
1743         int new_cpu, this_cpu = get_cpu();
1744         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1745         put_cpu();
1746         if (new_cpu != this_cpu)
1747                 sched_migrate_task(current, new_cpu);
1748 }
1749
1750 /*
1751  * pull_task - move a task from a remote runqueue to the local runqueue.
1752  * Both runqueues must be locked.
1753  */
1754 static inline
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757 {
1758         dequeue_task(p, src_array);
1759         src_rq->nr_running--;
1760         set_task_cpu(p, this_cpu);
1761         this_rq->nr_running++;
1762         enqueue_task(p, this_array);
1763         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764                                 + this_rq->timestamp_last_tick;
1765         /*
1766          * Note that idle threads have a prio of MAX_PRIO, for this test
1767          * to be always true for them.
1768          */
1769         if (TASK_PREEMPTS_CURR(p, this_rq))
1770                 resched_task(this_rq->curr);
1771 }
1772
1773 /*
1774  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775  */
1776 static inline
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778                      struct sched_domain *sd, enum idle_type idle,
1779                      int *all_pinned)
1780 {
1781         /*
1782          * We do not migrate tasks that are:
1783          * 1) running (obviously), or
1784          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785          * 3) are cache-hot on their current CPU.
1786          */
1787         if (!cpu_isset(this_cpu, p->cpus_allowed))
1788                 return 0;
1789         *all_pinned = 0;
1790
1791         if (task_running(rq, p))
1792                 return 0;
1793
1794         /*
1795          * Aggressive migration if:
1796          * 1) task is cache cold, or
1797          * 2) too many balance attempts have failed.
1798          */
1799
1800         if (sd->nr_balance_failed > sd->cache_nice_tries)
1801                 return 1;
1802
1803         if (task_hot(p, rq->timestamp_last_tick, sd))
1804                 return 0;
1805         return 1;
1806 }
1807
1808 /*
1809  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810  * as part of a balancing operation within "domain". Returns the number of
1811  * tasks moved.
1812  *
1813  * Called with both runqueues locked.
1814  */
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816                       unsigned long max_nr_move, struct sched_domain *sd,
1817                       enum idle_type idle, int *all_pinned)
1818 {
1819         prio_array_t *array, *dst_array;
1820         struct list_head *head, *curr;
1821         int idx, pulled = 0, pinned = 0;
1822         task_t *tmp;
1823
1824         if (max_nr_move == 0)
1825                 goto out;
1826
1827         pinned = 1;
1828
1829         /*
1830          * We first consider expired tasks. Those will likely not be
1831          * executed in the near future, and they are most likely to
1832          * be cache-cold, thus switching CPUs has the least effect
1833          * on them.
1834          */
1835         if (busiest->expired->nr_active) {
1836                 array = busiest->expired;
1837                 dst_array = this_rq->expired;
1838         } else {
1839                 array = busiest->active;
1840                 dst_array = this_rq->active;
1841         }
1842
1843 new_array:
1844         /* Start searching at priority 0: */
1845         idx = 0;
1846 skip_bitmap:
1847         if (!idx)
1848                 idx = sched_find_first_bit(array->bitmap);
1849         else
1850                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851         if (idx >= MAX_PRIO) {
1852                 if (array == busiest->expired && busiest->active->nr_active) {
1853                         array = busiest->active;
1854                         dst_array = this_rq->active;
1855                         goto new_array;
1856                 }
1857                 goto out;
1858         }
1859
1860         head = array->queue + idx;
1861         curr = head->prev;
1862 skip_queue:
1863         tmp = list_entry(curr, task_t, run_list);
1864
1865         curr = curr->prev;
1866
1867         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1868                 if (curr != head)
1869                         goto skip_queue;
1870                 idx++;
1871                 goto skip_bitmap;
1872         }
1873
1874 #ifdef CONFIG_SCHEDSTATS
1875         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876                 schedstat_inc(sd, lb_hot_gained[idle]);
1877 #endif
1878
1879         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880         pulled++;
1881
1882         /* We only want to steal up to the prescribed number of tasks. */
1883         if (pulled < max_nr_move) {
1884                 if (curr != head)
1885                         goto skip_queue;
1886                 idx++;
1887                 goto skip_bitmap;
1888         }
1889 out:
1890         /*
1891          * Right now, this is the only place pull_task() is called,
1892          * so we can safely collect pull_task() stats here rather than
1893          * inside pull_task().
1894          */
1895         schedstat_add(sd, lb_gained[idle], pulled);
1896
1897         if (all_pinned)
1898                 *all_pinned = pinned;
1899         return pulled;
1900 }
1901
1902 /*
1903  * find_busiest_group finds and returns the busiest CPU group within the
1904  * domain. It calculates and returns the number of tasks which should be
1905  * moved to restore balance via the imbalance parameter.
1906  */
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909                    unsigned long *imbalance, enum idle_type idle)
1910 {
1911         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1913         int load_idx;
1914
1915         max_load = this_load = total_load = total_pwr = 0;
1916         if (idle == NOT_IDLE)
1917                 load_idx = sd->busy_idx;
1918         else if (idle == NEWLY_IDLE)
1919                 load_idx = sd->newidle_idx;
1920         else
1921                 load_idx = sd->idle_idx;
1922
1923         do {
1924                 unsigned long load;
1925                 int local_group;
1926                 int i;
1927
1928                 local_group = cpu_isset(this_cpu, group->cpumask);
1929
1930                 /* Tally up the load of all CPUs in the group */
1931                 avg_load = 0;
1932
1933                 for_each_cpu_mask(i, group->cpumask) {
1934                         /* Bias balancing toward cpus of our domain */
1935                         if (local_group)
1936                                 load = target_load(i, load_idx);
1937                         else
1938                                 load = source_load(i, load_idx);
1939
1940                         avg_load += load;
1941                 }
1942
1943                 total_load += avg_load;
1944                 total_pwr += group->cpu_power;
1945
1946                 /* Adjust by relative CPU power of the group */
1947                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1948
1949                 if (local_group) {
1950                         this_load = avg_load;
1951                         this = group;
1952                 } else if (avg_load > max_load) {
1953                         max_load = avg_load;
1954                         busiest = group;
1955                 }
1956                 group = group->next;
1957         } while (group != sd->groups);
1958
1959         if (!busiest || this_load >= max_load)
1960                 goto out_balanced;
1961
1962         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1963
1964         if (this_load >= avg_load ||
1965                         100*max_load <= sd->imbalance_pct*this_load)
1966                 goto out_balanced;
1967
1968         /*
1969          * We're trying to get all the cpus to the average_load, so we don't
1970          * want to push ourselves above the average load, nor do we wish to
1971          * reduce the max loaded cpu below the average load, as either of these
1972          * actions would just result in more rebalancing later, and ping-pong
1973          * tasks around. Thus we look for the minimum possible imbalance.
1974          * Negative imbalances (*we* are more loaded than anyone else) will
1975          * be counted as no imbalance for these purposes -- we can't fix that
1976          * by pulling tasks to us.  Be careful of negative numbers as they'll
1977          * appear as very large values with unsigned longs.
1978          */
1979         /* How much load to actually move to equalise the imbalance */
1980         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1981                                 (avg_load - this_load) * this->cpu_power)
1982                         / SCHED_LOAD_SCALE;
1983
1984         if (*imbalance < SCHED_LOAD_SCALE) {
1985                 unsigned long pwr_now = 0, pwr_move = 0;
1986                 unsigned long tmp;
1987
1988                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1989                         *imbalance = 1;
1990                         return busiest;
1991                 }
1992
1993                 /*
1994                  * OK, we don't have enough imbalance to justify moving tasks,
1995                  * however we may be able to increase total CPU power used by
1996                  * moving them.
1997                  */
1998
1999                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2000                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2001                 pwr_now /= SCHED_LOAD_SCALE;
2002
2003                 /* Amount of load we'd subtract */
2004                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2005                 if (max_load > tmp)
2006                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2007                                                         max_load - tmp);
2008
2009                 /* Amount of load we'd add */
2010                 if (max_load*busiest->cpu_power <
2011                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2012                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2013                 else
2014                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2015                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2016                 pwr_move /= SCHED_LOAD_SCALE;
2017
2018                 /* Move if we gain throughput */
2019                 if (pwr_move <= pwr_now)
2020                         goto out_balanced;
2021
2022                 *imbalance = 1;
2023                 return busiest;
2024         }
2025
2026         /* Get rid of the scaling factor, rounding down as we divide */
2027         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2028         return busiest;
2029
2030 out_balanced:
2031
2032         *imbalance = 0;
2033         return NULL;
2034 }
2035
2036 /*
2037  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2038  */
2039 static runqueue_t *find_busiest_queue(struct sched_group *group)
2040 {
2041         unsigned long load, max_load = 0;
2042         runqueue_t *busiest = NULL;
2043         int i;
2044
2045         for_each_cpu_mask(i, group->cpumask) {
2046                 load = source_load(i, 0);
2047
2048                 if (load > max_load) {
2049                         max_load = load;
2050                         busiest = cpu_rq(i);
2051                 }
2052         }
2053
2054         return busiest;
2055 }
2056
2057 /*
2058  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2059  * so long as it is large enough.
2060  */
2061 #define MAX_PINNED_INTERVAL     512
2062
2063 /*
2064  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2065  * tasks if there is an imbalance.
2066  *
2067  * Called with this_rq unlocked.
2068  */
2069 static int load_balance(int this_cpu, runqueue_t *this_rq,
2070                         struct sched_domain *sd, enum idle_type idle)
2071 {
2072         struct sched_group *group;
2073         runqueue_t *busiest;
2074         unsigned long imbalance;
2075         int nr_moved, all_pinned = 0;
2076         int active_balance = 0;
2077
2078         spin_lock(&this_rq->lock);
2079         schedstat_inc(sd, lb_cnt[idle]);
2080
2081         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2082         if (!group) {
2083                 schedstat_inc(sd, lb_nobusyg[idle]);
2084                 goto out_balanced;
2085         }
2086
2087         busiest = find_busiest_queue(group);
2088         if (!busiest) {
2089                 schedstat_inc(sd, lb_nobusyq[idle]);
2090                 goto out_balanced;
2091         }
2092
2093         BUG_ON(busiest == this_rq);
2094
2095         schedstat_add(sd, lb_imbalance[idle], imbalance);
2096
2097         nr_moved = 0;
2098         if (busiest->nr_running > 1) {
2099                 /*
2100                  * Attempt to move tasks. If find_busiest_group has found
2101                  * an imbalance but busiest->nr_running <= 1, the group is
2102                  * still unbalanced. nr_moved simply stays zero, so it is
2103                  * correctly treated as an imbalance.
2104                  */
2105                 double_lock_balance(this_rq, busiest);
2106                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2107                                                 imbalance, sd, idle,
2108                                                 &all_pinned);
2109                 spin_unlock(&busiest->lock);
2110
2111                 /* All tasks on this runqueue were pinned by CPU affinity */
2112                 if (unlikely(all_pinned))
2113                         goto out_balanced;
2114         }
2115
2116         spin_unlock(&this_rq->lock);
2117
2118         if (!nr_moved) {
2119                 schedstat_inc(sd, lb_failed[idle]);
2120                 sd->nr_balance_failed++;
2121
2122                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2123
2124                         spin_lock(&busiest->lock);
2125                         if (!busiest->active_balance) {
2126                                 busiest->active_balance = 1;
2127                                 busiest->push_cpu = this_cpu;
2128                                 active_balance = 1;
2129                         }
2130                         spin_unlock(&busiest->lock);
2131                         if (active_balance)
2132                                 wake_up_process(busiest->migration_thread);
2133
2134                         /*
2135                          * We've kicked active balancing, reset the failure
2136                          * counter.
2137                          */
2138                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2139                 }
2140         } else
2141                 sd->nr_balance_failed = 0;
2142
2143         if (likely(!active_balance)) {
2144                 /* We were unbalanced, so reset the balancing interval */
2145                 sd->balance_interval = sd->min_interval;
2146         } else {
2147                 /*
2148                  * If we've begun active balancing, start to back off. This
2149                  * case may not be covered by the all_pinned logic if there
2150                  * is only 1 task on the busy runqueue (because we don't call
2151                  * move_tasks).
2152                  */
2153                 if (sd->balance_interval < sd->max_interval)
2154                         sd->balance_interval *= 2;
2155         }
2156
2157         return nr_moved;
2158
2159 out_balanced:
2160         spin_unlock(&this_rq->lock);
2161
2162         schedstat_inc(sd, lb_balanced[idle]);
2163
2164         sd->nr_balance_failed = 0;
2165         /* tune up the balancing interval */
2166         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2167                         (sd->balance_interval < sd->max_interval))
2168                 sd->balance_interval *= 2;
2169
2170         return 0;
2171 }
2172
2173 /*
2174  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2175  * tasks if there is an imbalance.
2176  *
2177  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2178  * this_rq is locked.
2179  */
2180 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2181                                 struct sched_domain *sd)
2182 {
2183         struct sched_group *group;
2184         runqueue_t *busiest = NULL;
2185         unsigned long imbalance;
2186         int nr_moved = 0;
2187
2188         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2189         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2190         if (!group) {
2191                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2192                 goto out_balanced;
2193         }
2194
2195         busiest = find_busiest_queue(group);
2196         if (!busiest) {
2197                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2198                 goto out_balanced;
2199         }
2200
2201         BUG_ON(busiest == this_rq);
2202
2203         /* Attempt to move tasks */
2204         double_lock_balance(this_rq, busiest);
2205
2206         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2207         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2208                                         imbalance, sd, NEWLY_IDLE, NULL);
2209         if (!nr_moved)
2210                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2211         else
2212                 sd->nr_balance_failed = 0;
2213
2214         spin_unlock(&busiest->lock);
2215         return nr_moved;
2216
2217 out_balanced:
2218         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2219         sd->nr_balance_failed = 0;
2220         return 0;
2221 }
2222
2223 /*
2224  * idle_balance is called by schedule() if this_cpu is about to become
2225  * idle. Attempts to pull tasks from other CPUs.
2226  */
2227 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2228 {
2229         struct sched_domain *sd;
2230
2231         for_each_domain(this_cpu, sd) {
2232                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2233                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2234                                 /* We've pulled tasks over so stop searching */
2235                                 break;
2236                         }
2237                 }
2238         }
2239 }
2240
2241 /*
2242  * active_load_balance is run by migration threads. It pushes running tasks
2243  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2244  * running on each physical CPU where possible, and avoids physical /
2245  * logical imbalances.
2246  *
2247  * Called with busiest_rq locked.
2248  */
2249 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2250 {
2251         struct sched_domain *sd;
2252         runqueue_t *target_rq;
2253         int target_cpu = busiest_rq->push_cpu;
2254
2255         if (busiest_rq->nr_running <= 1)
2256                 /* no task to move */
2257                 return;
2258
2259         target_rq = cpu_rq(target_cpu);
2260
2261         /*
2262          * This condition is "impossible", if it occurs
2263          * we need to fix it.  Originally reported by
2264          * Bjorn Helgaas on a 128-cpu setup.
2265          */
2266         BUG_ON(busiest_rq == target_rq);
2267
2268         /* move a task from busiest_rq to target_rq */
2269         double_lock_balance(busiest_rq, target_rq);
2270
2271         /* Search for an sd spanning us and the target CPU. */
2272         for_each_domain(target_cpu, sd)
2273                 if ((sd->flags & SD_LOAD_BALANCE) &&
2274                         cpu_isset(busiest_cpu, sd->span))
2275                                 break;
2276
2277         if (unlikely(sd == NULL))
2278                 goto out;
2279
2280         schedstat_inc(sd, alb_cnt);
2281
2282         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2283                 schedstat_inc(sd, alb_pushed);
2284         else
2285                 schedstat_inc(sd, alb_failed);
2286 out:
2287         spin_unlock(&target_rq->lock);
2288 }
2289
2290 /*
2291  * rebalance_tick will get called every timer tick, on every CPU.
2292  *
2293  * It checks each scheduling domain to see if it is due to be balanced,
2294  * and initiates a balancing operation if so.
2295  *
2296  * Balancing parameters are set up in arch_init_sched_domains.
2297  */
2298
2299 /* Don't have all balancing operations going off at once */
2300 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2301
2302 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2303                            enum idle_type idle)
2304 {
2305         unsigned long old_load, this_load;
2306         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2307         struct sched_domain *sd;
2308         int i;
2309
2310         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2311         /* Update our load */
2312         for (i = 0; i < 3; i++) {
2313                 unsigned long new_load = this_load;
2314                 int scale = 1 << i;
2315                 old_load = this_rq->cpu_load[i];
2316                 /*
2317                  * Round up the averaging division if load is increasing. This
2318                  * prevents us from getting stuck on 9 if the load is 10, for
2319                  * example.
2320                  */
2321                 if (new_load > old_load)
2322                         new_load += scale-1;
2323                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2324         }
2325
2326         for_each_domain(this_cpu, sd) {
2327                 unsigned long interval;
2328
2329                 if (!(sd->flags & SD_LOAD_BALANCE))
2330                         continue;
2331
2332                 interval = sd->balance_interval;
2333                 if (idle != SCHED_IDLE)
2334                         interval *= sd->busy_factor;
2335
2336                 /* scale ms to jiffies */
2337                 interval = msecs_to_jiffies(interval);
2338                 if (unlikely(!interval))
2339                         interval = 1;
2340
2341                 if (j - sd->last_balance >= interval) {
2342                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2343                                 /* We've pulled tasks over so no longer idle */
2344                                 idle = NOT_IDLE;
2345                         }
2346                         sd->last_balance += interval;
2347                 }
2348         }
2349 }
2350 #else
2351 /*
2352  * on UP we do not need to balance between CPUs:
2353  */
2354 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2355 {
2356 }
2357 static inline void idle_balance(int cpu, runqueue_t *rq)
2358 {
2359 }
2360 #endif
2361
2362 static inline int wake_priority_sleeper(runqueue_t *rq)
2363 {
2364         int ret = 0;
2365 #ifdef CONFIG_SCHED_SMT
2366         spin_lock(&rq->lock);
2367         /*
2368          * If an SMT sibling task has been put to sleep for priority
2369          * reasons reschedule the idle task to see if it can now run.
2370          */
2371         if (rq->nr_running) {
2372                 resched_task(rq->idle);
2373                 ret = 1;
2374         }
2375         spin_unlock(&rq->lock);
2376 #endif
2377         return ret;
2378 }
2379
2380 DEFINE_PER_CPU(struct kernel_stat, kstat);
2381
2382 EXPORT_PER_CPU_SYMBOL(kstat);
2383
2384 /*
2385  * This is called on clock ticks and on context switches.
2386  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2387  */
2388 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2389                                     unsigned long long now)
2390 {
2391         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2392         p->sched_time += now - last;
2393 }
2394
2395 /*
2396  * Return current->sched_time plus any more ns on the sched_clock
2397  * that have not yet been banked.
2398  */
2399 unsigned long long current_sched_time(const task_t *tsk)
2400 {
2401         unsigned long long ns;
2402         unsigned long flags;
2403         local_irq_save(flags);
2404         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2405         ns = tsk->sched_time + (sched_clock() - ns);
2406         local_irq_restore(flags);
2407         return ns;
2408 }
2409
2410 /*
2411  * We place interactive tasks back into the active array, if possible.
2412  *
2413  * To guarantee that this does not starve expired tasks we ignore the
2414  * interactivity of a task if the first expired task had to wait more
2415  * than a 'reasonable' amount of time. This deadline timeout is
2416  * load-dependent, as the frequency of array switched decreases with
2417  * increasing number of running tasks. We also ignore the interactivity
2418  * if a better static_prio task has expired:
2419  */
2420 #define EXPIRED_STARVING(rq) \
2421         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2422                 (jiffies - (rq)->expired_timestamp >= \
2423                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2424                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2425
2426 /*
2427  * Account user cpu time to a process.
2428  * @p: the process that the cpu time gets accounted to
2429  * @hardirq_offset: the offset to subtract from hardirq_count()
2430  * @cputime: the cpu time spent in user space since the last update
2431  */
2432 void account_user_time(struct task_struct *p, cputime_t cputime)
2433 {
2434         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2435         cputime64_t tmp;
2436
2437         p->utime = cputime_add(p->utime, cputime);
2438
2439         /* Add user time to cpustat. */
2440         tmp = cputime_to_cputime64(cputime);
2441         if (TASK_NICE(p) > 0)
2442                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2443         else
2444                 cpustat->user = cputime64_add(cpustat->user, tmp);
2445 }
2446
2447 /*
2448  * Account system cpu time to a process.
2449  * @p: the process that the cpu time gets accounted to
2450  * @hardirq_offset: the offset to subtract from hardirq_count()
2451  * @cputime: the cpu time spent in kernel space since the last update
2452  */
2453 void account_system_time(struct task_struct *p, int hardirq_offset,
2454                          cputime_t cputime)
2455 {
2456         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2457         runqueue_t *rq = this_rq();
2458         cputime64_t tmp;
2459
2460         p->stime = cputime_add(p->stime, cputime);
2461
2462         /* Add system time to cpustat. */
2463         tmp = cputime_to_cputime64(cputime);
2464         if (hardirq_count() - hardirq_offset)
2465                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2466         else if (softirq_count())
2467                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2468         else if (p != rq->idle)
2469                 cpustat->system = cputime64_add(cpustat->system, tmp);
2470         else if (atomic_read(&rq->nr_iowait) > 0)
2471                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2472         else
2473                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2474         /* Account for system time used */
2475         acct_update_integrals(p);
2476         /* Update rss highwater mark */
2477         update_mem_hiwater(p);
2478 }
2479
2480 /*
2481  * Account for involuntary wait time.
2482  * @p: the process from which the cpu time has been stolen
2483  * @steal: the cpu time spent in involuntary wait
2484  */
2485 void account_steal_time(struct task_struct *p, cputime_t steal)
2486 {
2487         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2488         cputime64_t tmp = cputime_to_cputime64(steal);
2489         runqueue_t *rq = this_rq();
2490
2491         if (p == rq->idle) {
2492                 p->stime = cputime_add(p->stime, steal);
2493                 if (atomic_read(&rq->nr_iowait) > 0)
2494                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2495                 else
2496                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2497         } else
2498                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2499 }
2500
2501 /*
2502  * This function gets called by the timer code, with HZ frequency.
2503  * We call it with interrupts disabled.
2504  *
2505  * It also gets called by the fork code, when changing the parent's
2506  * timeslices.
2507  */
2508 void scheduler_tick(void)
2509 {
2510         int cpu = smp_processor_id();
2511         runqueue_t *rq = this_rq();
2512         task_t *p = current;
2513         unsigned long long now = sched_clock();
2514
2515         update_cpu_clock(p, rq, now);
2516
2517         rq->timestamp_last_tick = now;
2518
2519         if (p == rq->idle) {
2520                 if (wake_priority_sleeper(rq))
2521                         goto out;
2522                 rebalance_tick(cpu, rq, SCHED_IDLE);
2523                 return;
2524         }
2525
2526         /* Task might have expired already, but not scheduled off yet */
2527         if (p->array != rq->active) {
2528                 set_tsk_need_resched(p);
2529                 goto out;
2530         }
2531         spin_lock(&rq->lock);
2532         /*
2533          * The task was running during this tick - update the
2534          * time slice counter. Note: we do not update a thread's
2535          * priority until it either goes to sleep or uses up its
2536          * timeslice. This makes it possible for interactive tasks
2537          * to use up their timeslices at their highest priority levels.
2538          */
2539         if (rt_task(p)) {
2540                 /*
2541                  * RR tasks need a special form of timeslice management.
2542                  * FIFO tasks have no timeslices.
2543                  */
2544                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2545                         p->time_slice = task_timeslice(p);
2546                         p->first_time_slice = 0;
2547                         set_tsk_need_resched(p);
2548
2549                         /* put it at the end of the queue: */
2550                         requeue_task(p, rq->active);
2551                 }
2552                 goto out_unlock;
2553         }
2554         if (!--p->time_slice) {
2555                 dequeue_task(p, rq->active);
2556                 set_tsk_need_resched(p);
2557                 p->prio = effective_prio(p);
2558                 p->time_slice = task_timeslice(p);
2559                 p->first_time_slice = 0;
2560
2561                 if (!rq->expired_timestamp)
2562                         rq->expired_timestamp = jiffies;
2563                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2564                         enqueue_task(p, rq->expired);
2565                         if (p->static_prio < rq->best_expired_prio)
2566                                 rq->best_expired_prio = p->static_prio;
2567                 } else
2568                         enqueue_task(p, rq->active);
2569         } else {
2570                 /*
2571                  * Prevent a too long timeslice allowing a task to monopolize
2572                  * the CPU. We do this by splitting up the timeslice into
2573                  * smaller pieces.
2574                  *
2575                  * Note: this does not mean the task's timeslices expire or
2576                  * get lost in any way, they just might be preempted by
2577                  * another task of equal priority. (one with higher
2578                  * priority would have preempted this task already.) We
2579                  * requeue this task to the end of the list on this priority
2580                  * level, which is in essence a round-robin of tasks with
2581                  * equal priority.
2582                  *
2583                  * This only applies to tasks in the interactive
2584                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2585                  */
2586                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2587                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2588                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2589                         (p->array == rq->active)) {
2590
2591                         requeue_task(p, rq->active);
2592                         set_tsk_need_resched(p);
2593                 }
2594         }
2595 out_unlock:
2596         spin_unlock(&rq->lock);
2597 out:
2598         rebalance_tick(cpu, rq, NOT_IDLE);
2599 }
2600
2601 #ifdef CONFIG_SCHED_SMT
2602 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2603 {
2604         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2605         if (rq->curr == rq->idle && rq->nr_running)
2606                 resched_task(rq->idle);
2607 }
2608
2609 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2610 {
2611         struct sched_domain *tmp, *sd = NULL;
2612         cpumask_t sibling_map;
2613         int i;
2614
2615         for_each_domain(this_cpu, tmp)
2616                 if (tmp->flags & SD_SHARE_CPUPOWER)
2617                         sd = tmp;
2618
2619         if (!sd)
2620                 return;
2621
2622         /*
2623          * Unlock the current runqueue because we have to lock in
2624          * CPU order to avoid deadlocks. Caller knows that we might
2625          * unlock. We keep IRQs disabled.
2626          */
2627         spin_unlock(&this_rq->lock);
2628
2629         sibling_map = sd->span;
2630
2631         for_each_cpu_mask(i, sibling_map)
2632                 spin_lock(&cpu_rq(i)->lock);
2633         /*
2634          * We clear this CPU from the mask. This both simplifies the
2635          * inner loop and keps this_rq locked when we exit:
2636          */
2637         cpu_clear(this_cpu, sibling_map);
2638
2639         for_each_cpu_mask(i, sibling_map) {
2640                 runqueue_t *smt_rq = cpu_rq(i);
2641
2642                 wakeup_busy_runqueue(smt_rq);
2643         }
2644
2645         for_each_cpu_mask(i, sibling_map)
2646                 spin_unlock(&cpu_rq(i)->lock);
2647         /*
2648          * We exit with this_cpu's rq still held and IRQs
2649          * still disabled:
2650          */
2651 }
2652
2653 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2654 {
2655         struct sched_domain *tmp, *sd = NULL;
2656         cpumask_t sibling_map;
2657         prio_array_t *array;
2658         int ret = 0, i;
2659         task_t *p;
2660
2661         for_each_domain(this_cpu, tmp)
2662                 if (tmp->flags & SD_SHARE_CPUPOWER)
2663                         sd = tmp;
2664
2665         if (!sd)
2666                 return 0;
2667
2668         /*
2669          * The same locking rules and details apply as for
2670          * wake_sleeping_dependent():
2671          */
2672         spin_unlock(&this_rq->lock);
2673         sibling_map = sd->span;
2674         for_each_cpu_mask(i, sibling_map)
2675                 spin_lock(&cpu_rq(i)->lock);
2676         cpu_clear(this_cpu, sibling_map);
2677
2678         /*
2679          * Establish next task to be run - it might have gone away because
2680          * we released the runqueue lock above:
2681          */
2682         if (!this_rq->nr_running)
2683                 goto out_unlock;
2684         array = this_rq->active;
2685         if (!array->nr_active)
2686                 array = this_rq->expired;
2687         BUG_ON(!array->nr_active);
2688
2689         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2690                 task_t, run_list);
2691
2692         for_each_cpu_mask(i, sibling_map) {
2693                 runqueue_t *smt_rq = cpu_rq(i);
2694                 task_t *smt_curr = smt_rq->curr;
2695
2696                 /* Kernel threads do not participate in dependent sleeping */
2697                 if (!p->mm || !smt_curr->mm || rt_task(p))
2698                         goto check_smt_task;
2699
2700                 /*
2701                  * If a user task with lower static priority than the
2702                  * running task on the SMT sibling is trying to schedule,
2703                  * delay it till there is proportionately less timeslice
2704                  * left of the sibling task to prevent a lower priority
2705                  * task from using an unfair proportion of the
2706                  * physical cpu's resources. -ck
2707                  */
2708                 if (rt_task(smt_curr)) {
2709                         /*
2710                          * With real time tasks we run non-rt tasks only
2711                          * per_cpu_gain% of the time.
2712                          */
2713                         if ((jiffies % DEF_TIMESLICE) >
2714                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2715                                         ret = 1;
2716                 } else
2717                         if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) /
2718                                 100) > task_timeslice(p)))
2719                                         ret = 1;
2720
2721 check_smt_task:
2722                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2723                         rt_task(smt_curr))
2724                                 continue;
2725                 if (!p->mm) {
2726                         wakeup_busy_runqueue(smt_rq);
2727                         continue;
2728                 }
2729
2730                 /*
2731                  * Reschedule a lower priority task on the SMT sibling for
2732                  * it to be put to sleep, or wake it up if it has been put to
2733                  * sleep for priority reasons to see if it should run now.
2734                  */
2735                 if (rt_task(p)) {
2736                         if ((jiffies % DEF_TIMESLICE) >
2737                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2738                                         resched_task(smt_curr);
2739                 } else {
2740                         if ((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2741                                 task_timeslice(smt_curr))
2742                                         resched_task(smt_curr);
2743                         else
2744                                 wakeup_busy_runqueue(smt_rq);
2745                 }
2746         }
2747 out_unlock:
2748         for_each_cpu_mask(i, sibling_map)
2749                 spin_unlock(&cpu_rq(i)->lock);
2750         return ret;
2751 }
2752 #else
2753 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2754 {
2755 }
2756
2757 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2758 {
2759         return 0;
2760 }
2761 #endif
2762
2763 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2764
2765 void fastcall add_preempt_count(int val)
2766 {
2767         /*
2768          * Underflow?
2769          */
2770         BUG_ON((preempt_count() < 0));
2771         preempt_count() += val;
2772         /*
2773          * Spinlock count overflowing soon?
2774          */
2775         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2776 }
2777 EXPORT_SYMBOL(add_preempt_count);
2778
2779 void fastcall sub_preempt_count(int val)
2780 {
2781         /*
2782          * Underflow?
2783          */
2784         BUG_ON(val > preempt_count());
2785         /*
2786          * Is the spinlock portion underflowing?
2787          */
2788         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2789         preempt_count() -= val;
2790 }
2791 EXPORT_SYMBOL(sub_preempt_count);
2792
2793 #endif
2794
2795 /*
2796  * schedule() is the main scheduler function.
2797  */
2798 asmlinkage void __sched schedule(void)
2799 {
2800         long *switch_count;
2801         task_t *prev, *next;
2802         runqueue_t *rq;
2803         prio_array_t *array;
2804         struct list_head *queue;
2805         unsigned long long now;
2806         unsigned long run_time;
2807         int cpu, idx, new_prio;
2808
2809         /*
2810          * Test if we are atomic.  Since do_exit() needs to call into
2811          * schedule() atomically, we ignore that path for now.
2812          * Otherwise, whine if we are scheduling when we should not be.
2813          */
2814         if (likely(!current->exit_state)) {
2815                 if (unlikely(in_atomic())) {
2816                         printk(KERN_ERR "scheduling while atomic: "
2817                                 "%s/0x%08x/%d\n",
2818                                 current->comm, preempt_count(), current->pid);
2819                         dump_stack();
2820                 }
2821         }
2822         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2823
2824 need_resched:
2825         preempt_disable();
2826         prev = current;
2827         release_kernel_lock(prev);
2828 need_resched_nonpreemptible:
2829         rq = this_rq();
2830
2831         /*
2832          * The idle thread is not allowed to schedule!
2833          * Remove this check after it has been exercised a bit.
2834          */
2835         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2836                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2837                 dump_stack();
2838         }
2839
2840         schedstat_inc(rq, sched_cnt);
2841         now = sched_clock();
2842         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2843                 run_time = now - prev->timestamp;
2844                 if (unlikely((long long)(now - prev->timestamp) < 0))
2845                         run_time = 0;
2846         } else
2847                 run_time = NS_MAX_SLEEP_AVG;
2848
2849         /*
2850          * Tasks charged proportionately less run_time at high sleep_avg to
2851          * delay them losing their interactive status
2852          */
2853         run_time /= (CURRENT_BONUS(prev) ? : 1);
2854
2855         spin_lock_irq(&rq->lock);
2856
2857         if (unlikely(prev->flags & PF_DEAD))
2858                 prev->state = EXIT_DEAD;
2859
2860         switch_count = &prev->nivcsw;
2861         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2862                 switch_count = &prev->nvcsw;
2863                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2864                                 unlikely(signal_pending(prev))))
2865                         prev->state = TASK_RUNNING;
2866                 else {
2867                         if (prev->state == TASK_UNINTERRUPTIBLE)
2868                                 rq->nr_uninterruptible++;
2869                         deactivate_task(prev, rq);
2870                 }
2871         }
2872
2873         cpu = smp_processor_id();
2874         if (unlikely(!rq->nr_running)) {
2875 go_idle:
2876                 idle_balance(cpu, rq);
2877                 if (!rq->nr_running) {
2878                         next = rq->idle;
2879                         rq->expired_timestamp = 0;
2880                         wake_sleeping_dependent(cpu, rq);
2881                         /*
2882                          * wake_sleeping_dependent() might have released
2883                          * the runqueue, so break out if we got new
2884                          * tasks meanwhile:
2885                          */
2886                         if (!rq->nr_running)
2887                                 goto switch_tasks;
2888                 }
2889         } else {
2890                 if (dependent_sleeper(cpu, rq)) {
2891                         next = rq->idle;
2892                         goto switch_tasks;
2893                 }
2894                 /*
2895                  * dependent_sleeper() releases and reacquires the runqueue
2896                  * lock, hence go into the idle loop if the rq went
2897                  * empty meanwhile:
2898                  */
2899                 if (unlikely(!rq->nr_running))
2900                         goto go_idle;
2901         }
2902
2903         array = rq->active;
2904         if (unlikely(!array->nr_active)) {
2905                 /*
2906                  * Switch the active and expired arrays.
2907                  */
2908                 schedstat_inc(rq, sched_switch);
2909                 rq->active = rq->expired;
2910                 rq->expired = array;
2911                 array = rq->active;
2912                 rq->expired_timestamp = 0;
2913                 rq->best_expired_prio = MAX_PRIO;
2914         }
2915
2916         idx = sched_find_first_bit(array->bitmap);
2917         queue = array->queue + idx;
2918         next = list_entry(queue->next, task_t, run_list);
2919
2920         if (!rt_task(next) && next->activated > 0) {
2921                 unsigned long long delta = now - next->timestamp;
2922                 if (unlikely((long long)(now - next->timestamp) < 0))
2923                         delta = 0;
2924
2925                 if (next->activated == 1)
2926                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2927
2928                 array = next->array;
2929                 new_prio = recalc_task_prio(next, next->timestamp + delta);
2930
2931                 if (unlikely(next->prio != new_prio)) {
2932                         dequeue_task(next, array);
2933                         next->prio = new_prio;
2934                         enqueue_task(next, array);
2935                 } else
2936                         requeue_task(next, array);
2937         }
2938         next->activated = 0;
2939 switch_tasks:
2940         if (next == rq->idle)
2941                 schedstat_inc(rq, sched_goidle);
2942         prefetch(next);
2943         prefetch_stack(next);
2944         clear_tsk_need_resched(prev);
2945         rcu_qsctr_inc(task_cpu(prev));
2946
2947         update_cpu_clock(prev, rq, now);
2948
2949         prev->sleep_avg -= run_time;
2950         if ((long)prev->sleep_avg <= 0)
2951                 prev->sleep_avg = 0;
2952         prev->timestamp = prev->last_ran = now;
2953
2954         sched_info_switch(prev, next);
2955         if (likely(prev != next)) {
2956                 next->timestamp = now;
2957                 rq->nr_switches++;
2958                 rq->curr = next;
2959                 ++*switch_count;
2960
2961                 prepare_task_switch(rq, next);
2962                 prev = context_switch(rq, prev, next);
2963                 barrier();
2964                 /*
2965                  * this_rq must be evaluated again because prev may have moved
2966                  * CPUs since it called schedule(), thus the 'rq' on its stack
2967                  * frame will be invalid.
2968                  */
2969                 finish_task_switch(this_rq(), prev);
2970         } else
2971                 spin_unlock_irq(&rq->lock);
2972
2973         prev = current;
2974         if (unlikely(reacquire_kernel_lock(prev) < 0))
2975                 goto need_resched_nonpreemptible;
2976         preempt_enable_no_resched();
2977         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2978                 goto need_resched;
2979 }
2980
2981 EXPORT_SYMBOL(schedule);
2982
2983 #ifdef CONFIG_PREEMPT
2984 /*
2985  * this is is the entry point to schedule() from in-kernel preemption
2986  * off of preempt_enable.  Kernel preemptions off return from interrupt
2987  * occur there and call schedule directly.
2988  */
2989 asmlinkage void __sched preempt_schedule(void)
2990 {
2991         struct thread_info *ti = current_thread_info();
2992 #ifdef CONFIG_PREEMPT_BKL
2993         struct task_struct *task = current;
2994         int saved_lock_depth;
2995 #endif
2996         /*
2997          * If there is a non-zero preempt_count or interrupts are disabled,
2998          * we do not want to preempt the current task.  Just return..
2999          */
3000         if (unlikely(ti->preempt_count || irqs_disabled()))
3001                 return;
3002
3003 need_resched:
3004         add_preempt_count(PREEMPT_ACTIVE);
3005         /*
3006          * We keep the big kernel semaphore locked, but we
3007          * clear ->lock_depth so that schedule() doesnt
3008          * auto-release the semaphore:
3009          */
3010 #ifdef CONFIG_PREEMPT_BKL
3011         saved_lock_depth = task->lock_depth;
3012         task->lock_depth = -1;
3013 #endif
3014         schedule();
3015 #ifdef CONFIG_PREEMPT_BKL
3016         task->lock_depth = saved_lock_depth;
3017 #endif
3018         sub_preempt_count(PREEMPT_ACTIVE);
3019
3020         /* we could miss a preemption opportunity between schedule and now */
3021         barrier();
3022         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3023                 goto need_resched;
3024 }
3025
3026 EXPORT_SYMBOL(preempt_schedule);
3027
3028 /*
3029  * this is is the entry point to schedule() from kernel preemption
3030  * off of irq context.
3031  * Note, that this is called and return with irqs disabled. This will
3032  * protect us against recursive calling from irq.
3033  */
3034 asmlinkage void __sched preempt_schedule_irq(void)
3035 {
3036         struct thread_info *ti = current_thread_info();
3037 #ifdef CONFIG_PREEMPT_BKL
3038         struct task_struct *task = current;
3039         int saved_lock_depth;
3040 #endif
3041         /* Catch callers which need to be fixed*/
3042         BUG_ON(ti->preempt_count || !irqs_disabled());
3043
3044 need_resched:
3045         add_preempt_count(PREEMPT_ACTIVE);
3046         /*
3047          * We keep the big kernel semaphore locked, but we
3048          * clear ->lock_depth so that schedule() doesnt
3049          * auto-release the semaphore:
3050          */
3051 #ifdef CONFIG_PREEMPT_BKL
3052         saved_lock_depth = task->lock_depth;
3053         task->lock_depth = -1;
3054 #endif
3055         local_irq_enable();
3056         schedule();
3057         local_irq_disable();
3058 #ifdef CONFIG_PREEMPT_BKL
3059         task->lock_depth = saved_lock_depth;
3060 #endif
3061         sub_preempt_count(PREEMPT_ACTIVE);
3062
3063         /* we could miss a preemption opportunity between schedule and now */
3064         barrier();
3065         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3066                 goto need_resched;
3067 }
3068
3069 #endif /* CONFIG_PREEMPT */
3070
3071 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3072                           void *key)
3073 {
3074         task_t *p = curr->private;
3075         return try_to_wake_up(p, mode, sync);
3076 }
3077
3078 EXPORT_SYMBOL(default_wake_function);
3079
3080 /*
3081  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3082  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3083  * number) then we wake all the non-exclusive tasks and one exclusive task.
3084  *
3085  * There are circumstances in which we can try to wake a task which has already
3086  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3087  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3088  */
3089 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3090                              int nr_exclusive, int sync, void *key)
3091 {
3092         struct list_head *tmp, *next;
3093
3094         list_for_each_safe(tmp, next, &q->task_list) {
3095                 wait_queue_t *curr;
3096                 unsigned flags;
3097                 curr = list_entry(tmp, wait_queue_t, task_list);
3098                 flags = curr->flags;
3099                 if (curr->func(curr, mode, sync, key) &&
3100                     (flags & WQ_FLAG_EXCLUSIVE) &&
3101                     !--nr_exclusive)
3102                         break;
3103         }
3104 }
3105
3106 /**
3107  * __wake_up - wake up threads blocked on a waitqueue.
3108  * @q: the waitqueue
3109  * @mode: which threads
3110  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3111  * @key: is directly passed to the wakeup function
3112  */
3113 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3114                         int nr_exclusive, void *key)
3115 {
3116         unsigned long flags;
3117
3118         spin_lock_irqsave(&q->lock, flags);
3119         __wake_up_common(q, mode, nr_exclusive, 0, key);
3120         spin_unlock_irqrestore(&q->lock, flags);
3121 }
3122
3123 EXPORT_SYMBOL(__wake_up);
3124
3125 /*
3126  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3127  */
3128 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3129 {
3130         __wake_up_common(q, mode, 1, 0, NULL);
3131 }
3132
3133 /**
3134  * __wake_up_sync - wake up threads blocked on a waitqueue.
3135  * @q: the waitqueue
3136  * @mode: which threads
3137  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3138  *
3139  * The sync wakeup differs that the waker knows that it will schedule
3140  * away soon, so while the target thread will be woken up, it will not
3141  * be migrated to another CPU - ie. the two threads are 'synchronized'
3142  * with each other. This can prevent needless bouncing between CPUs.
3143  *
3144  * On UP it can prevent extra preemption.
3145  */
3146 void fastcall
3147 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3148 {
3149         unsigned long flags;
3150         int sync = 1;
3151
3152         if (unlikely(!q))
3153                 return;
3154
3155         if (unlikely(!nr_exclusive))
3156                 sync = 0;
3157
3158         spin_lock_irqsave(&q->lock, flags);
3159         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3160         spin_unlock_irqrestore(&q->lock, flags);
3161 }
3162 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3163
3164 void fastcall complete(struct completion *x)
3165 {
3166         unsigned long flags;
3167
3168         spin_lock_irqsave(&x->wait.lock, flags);
3169         x->done++;
3170         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3171                          1, 0, NULL);
3172         spin_unlock_irqrestore(&x->wait.lock, flags);
3173 }
3174 EXPORT_SYMBOL(complete);
3175
3176 void fastcall complete_all(struct completion *x)
3177 {
3178         unsigned long flags;
3179
3180         spin_lock_irqsave(&x->wait.lock, flags);
3181         x->done += UINT_MAX/2;
3182         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3183                          0, 0, NULL);
3184         spin_unlock_irqrestore(&x->wait.lock, flags);
3185 }
3186 EXPORT_SYMBOL(complete_all);
3187
3188 void fastcall __sched wait_for_completion(struct completion *x)
3189 {
3190         might_sleep();
3191         spin_lock_irq(&x->wait.lock);
3192         if (!x->done) {
3193                 DECLARE_WAITQUEUE(wait, current);
3194
3195                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3196                 __add_wait_queue_tail(&x->wait, &wait);
3197                 do {
3198                         __set_current_state(TASK_UNINTERRUPTIBLE);
3199                         spin_unlock_irq(&x->wait.lock);
3200                         schedule();
3201                         spin_lock_irq(&x->wait.lock);
3202                 } while (!x->done);
3203                 __remove_wait_queue(&x->wait, &wait);
3204         }
3205         x->done--;
3206         spin_unlock_irq(&x->wait.lock);
3207 }
3208 EXPORT_SYMBOL(wait_for_completion);
3209
3210 unsigned long fastcall __sched
3211 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3212 {
3213         might_sleep();
3214
3215         spin_lock_irq(&x->wait.lock);
3216         if (!x->done) {
3217                 DECLARE_WAITQUEUE(wait, current);
3218
3219                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3220                 __add_wait_queue_tail(&x->wait, &wait);
3221                 do {
3222                         __set_current_state(TASK_UNINTERRUPTIBLE);
3223                         spin_unlock_irq(&x->wait.lock);
3224                         timeout = schedule_timeout(timeout);
3225                         spin_lock_irq(&x->wait.lock);
3226                         if (!timeout) {
3227                                 __remove_wait_queue(&x->wait, &wait);
3228                                 goto out;
3229                         }
3230                 } while (!x->done);
3231                 __remove_wait_queue(&x->wait, &wait);
3232         }
3233         x->done--;
3234 out:
3235         spin_unlock_irq(&x->wait.lock);
3236         return timeout;
3237 }
3238 EXPORT_SYMBOL(wait_for_completion_timeout);
3239
3240 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3241 {
3242         int ret = 0;
3243
3244         might_sleep();
3245
3246         spin_lock_irq(&x->wait.lock);
3247         if (!x->done) {
3248                 DECLARE_WAITQUEUE(wait, current);
3249
3250                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3251                 __add_wait_queue_tail(&x->wait, &wait);
3252                 do {
3253                         if (signal_pending(current)) {
3254                                 ret = -ERESTARTSYS;
3255                                 __remove_wait_queue(&x->wait, &wait);
3256                                 goto out;
3257                         }
3258                         __set_current_state(TASK_INTERRUPTIBLE);
3259                         spin_unlock_irq(&x->wait.lock);
3260                         schedule();
3261                         spin_lock_irq(&x->wait.lock);
3262                 } while (!x->done);
3263                 __remove_wait_queue(&x->wait, &wait);
3264         }
3265         x->done--;
3266 out:
3267         spin_unlock_irq(&x->wait.lock);
3268
3269         return ret;
3270 }
3271 EXPORT_SYMBOL(wait_for_completion_interruptible);
3272
3273 unsigned long fastcall __sched
3274 wait_for_completion_interruptible_timeout(struct completion *x,
3275                                           unsigned long timeout)
3276 {
3277         might_sleep();
3278
3279         spin_lock_irq(&x->wait.lock);
3280         if (!x->done) {
3281                 DECLARE_WAITQUEUE(wait, current);
3282
3283                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3284                 __add_wait_queue_tail(&x->wait, &wait);
3285                 do {
3286                         if (signal_pending(current)) {
3287                                 timeout = -ERESTARTSYS;
3288                                 __remove_wait_queue(&x->wait, &wait);
3289                                 goto out;
3290                         }
3291                         __set_current_state(TASK_INTERRUPTIBLE);
3292                         spin_unlock_irq(&x->wait.lock);
3293                         timeout = schedule_timeout(timeout);
3294                         spin_lock_irq(&x->wait.lock);
3295                         if (!timeout) {
3296                                 __remove_wait_queue(&x->wait, &wait);
3297                                 goto out;
3298                         }
3299                 } while (!x->done);
3300                 __remove_wait_queue(&x->wait, &wait);
3301         }
3302         x->done--;
3303 out:
3304         spin_unlock_irq(&x->wait.lock);
3305         return timeout;
3306 }
3307 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3308
3309
3310 #define SLEEP_ON_VAR                                    \
3311         unsigned long flags;                            \
3312         wait_queue_t wait;                              \
3313         init_waitqueue_entry(&wait, current);
3314
3315 #define SLEEP_ON_HEAD                                   \
3316         spin_lock_irqsave(&q->lock,flags);              \
3317         __add_wait_queue(q, &wait);                     \
3318         spin_unlock(&q->lock);
3319
3320 #define SLEEP_ON_TAIL                                   \
3321         spin_lock_irq(&q->lock);                        \
3322         __remove_wait_queue(q, &wait);                  \
3323         spin_unlock_irqrestore(&q->lock, flags);
3324
3325 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3326 {
3327         SLEEP_ON_VAR
3328
3329         current->state = TASK_INTERRUPTIBLE;
3330
3331         SLEEP_ON_HEAD
3332         schedule();
3333         SLEEP_ON_TAIL
3334 }
3335
3336 EXPORT_SYMBOL(interruptible_sleep_on);
3337
3338 long fastcall __sched
3339 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3340 {
3341         SLEEP_ON_VAR
3342
3343         current->state = TASK_INTERRUPTIBLE;
3344
3345         SLEEP_ON_HEAD
3346         timeout = schedule_timeout(timeout);
3347         SLEEP_ON_TAIL
3348
3349         return timeout;
3350 }
3351
3352 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3353
3354 void fastcall __sched sleep_on(wait_queue_head_t *q)
3355 {
3356         SLEEP_ON_VAR
3357
3358         current->state = TASK_UNINTERRUPTIBLE;
3359
3360         SLEEP_ON_HEAD
3361         schedule();
3362         SLEEP_ON_TAIL
3363 }
3364
3365 EXPORT_SYMBOL(sleep_on);
3366
3367 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3368 {
3369         SLEEP_ON_VAR
3370
3371         current->state = TASK_UNINTERRUPTIBLE;
3372
3373         SLEEP_ON_HEAD
3374         timeout = schedule_timeout(timeout);
3375         SLEEP_ON_TAIL
3376
3377         return timeout;
3378 }
3379
3380 EXPORT_SYMBOL(sleep_on_timeout);
3381
3382 void set_user_nice(task_t *p, long nice)
3383 {
3384         unsigned long flags;
3385         prio_array_t *array;
3386         runqueue_t *rq;
3387         int old_prio, new_prio, delta;
3388
3389         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3390                 return;
3391         /*
3392          * We have to be careful, if called from sys_setpriority(),
3393          * the task might be in the middle of scheduling on another CPU.
3394          */
3395         rq = task_rq_lock(p, &flags);
3396         /*
3397          * The RT priorities are set via sched_setscheduler(), but we still
3398          * allow the 'normal' nice value to be set - but as expected
3399          * it wont have any effect on scheduling until the task is
3400          * not SCHED_NORMAL:
3401          */
3402         if (rt_task(p)) {
3403                 p->static_prio = NICE_TO_PRIO(nice);
3404                 goto out_unlock;
3405         }
3406         array = p->array;
3407         if (array)
3408                 dequeue_task(p, array);
3409
3410         old_prio = p->prio;
3411         new_prio = NICE_TO_PRIO(nice);
3412         delta = new_prio - old_prio;
3413         p->static_prio = NICE_TO_PRIO(nice);
3414         p->prio += delta;
3415
3416         if (array) {
3417                 enqueue_task(p, array);
3418                 /*
3419                  * If the task increased its priority or is running and
3420                  * lowered its priority, then reschedule its CPU:
3421                  */
3422                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3423                         resched_task(rq->curr);
3424         }
3425 out_unlock:
3426         task_rq_unlock(rq, &flags);
3427 }
3428
3429 EXPORT_SYMBOL(set_user_nice);
3430
3431 /*
3432  * can_nice - check if a task can reduce its nice value
3433  * @p: task
3434  * @nice: nice value
3435  */
3436 int can_nice(const task_t *p, const int nice)
3437 {
3438         /* convert nice value [19,-20] to rlimit style value [1,40] */
3439         int nice_rlim = 20 - nice;
3440         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3441                 capable(CAP_SYS_NICE));
3442 }
3443
3444 #ifdef __ARCH_WANT_SYS_NICE
3445
3446 /*
3447  * sys_nice - change the priority of the current process.
3448  * @increment: priority increment
3449  *
3450  * sys_setpriority is a more generic, but much slower function that
3451  * does similar things.
3452  */
3453 asmlinkage long sys_nice(int increment)
3454 {
3455         int retval;
3456         long nice;
3457
3458         /*
3459          * Setpriority might change our priority at the same moment.
3460          * We don't have to worry. Conceptually one call occurs first
3461          * and we have a single winner.
3462          */
3463         if (increment < -40)
3464                 increment = -40;
3465         if (increment > 40)
3466                 increment = 40;
3467
3468         nice = PRIO_TO_NICE(current->static_prio) + increment;
3469         if (nice < -20)
3470                 nice = -20;
3471         if (nice > 19)
3472                 nice = 19;
3473
3474         if (increment < 0 && !can_nice(current, nice))
3475                 return -EPERM;
3476
3477         retval = security_task_setnice(current, nice);
3478         if (retval)
3479                 return retval;
3480
3481         set_user_nice(current, nice);
3482         return 0;
3483 }
3484
3485 #endif
3486
3487 /**
3488  * task_prio - return the priority value of a given task.
3489  * @p: the task in question.
3490  *
3491  * This is the priority value as seen by users in /proc.
3492  * RT tasks are offset by -200. Normal tasks are centered
3493  * around 0, value goes from -16 to +15.
3494  */
3495 int task_prio(const task_t *p)
3496 {
3497         return p->prio - MAX_RT_PRIO;
3498 }
3499
3500 /**
3501  * task_nice - return the nice value of a given task.
3502  * @p: the task in question.
3503  */
3504 int task_nice(const task_t *p)
3505 {
3506         return TASK_NICE(p);
3507 }
3508 EXPORT_SYMBOL_GPL(task_nice);
3509
3510 /**
3511  * idle_cpu - is a given cpu idle currently?
3512  * @cpu: the processor in question.
3513  */
3514 int idle_cpu(int cpu)
3515 {
3516         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3517 }
3518
3519 EXPORT_SYMBOL_GPL(idle_cpu);
3520
3521 /**
3522  * idle_task - return the idle task for a given cpu.
3523  * @cpu: the processor in question.
3524  */
3525 task_t *idle_task(int cpu)
3526 {
3527         return cpu_rq(cpu)->idle;
3528 }
3529
3530 /**
3531  * find_process_by_pid - find a process with a matching PID value.
3532  * @pid: the pid in question.
3533  */
3534 static inline task_t *find_process_by_pid(pid_t pid)
3535 {
3536         return pid ? find_task_by_pid(pid) : current;
3537 }
3538
3539 /* Actually do priority change: must hold rq lock. */
3540 static void __setscheduler(struct task_struct *p, int policy, int prio)
3541 {
3542         BUG_ON(p->array);
3543         p->policy = policy;
3544         p->rt_priority = prio;
3545         if (policy != SCHED_NORMAL)
3546                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3547         else
3548                 p->prio = p->static_prio;
3549 }
3550
3551 /**
3552  * sched_setscheduler - change the scheduling policy and/or RT priority of
3553  * a thread.
3554  * @p: the task in question.
3555  * @policy: new policy.
3556  * @param: structure containing the new RT priority.
3557  */
3558 int sched_setscheduler(struct task_struct *p, int policy,
3559                        struct sched_param *param)
3560 {
3561         int retval;
3562         int oldprio, oldpolicy = -1;
3563         prio_array_t *array;
3564         unsigned long flags;
3565         runqueue_t *rq;
3566
3567 recheck:
3568         /* double check policy once rq lock held */
3569         if (policy < 0)
3570                 policy = oldpolicy = p->policy;
3571         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3572                                 policy != SCHED_NORMAL)
3573                         return -EINVAL;
3574         /*
3575          * Valid priorities for SCHED_FIFO and SCHED_RR are
3576          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3577          */
3578         if (param->sched_priority < 0 ||
3579             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3580             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3581                 return -EINVAL;
3582         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3583                 return -EINVAL;
3584
3585         /*
3586          * Allow unprivileged RT tasks to decrease priority:
3587          */
3588         if (!capable(CAP_SYS_NICE)) {
3589                 /* can't change policy */
3590                 if (policy != p->policy &&
3591                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3592                         return -EPERM;
3593                 /* can't increase priority */
3594                 if (policy != SCHED_NORMAL &&
3595                     param->sched_priority > p->rt_priority &&
3596                     param->sched_priority >
3597                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3598                         return -EPERM;
3599                 /* can't change other user's priorities */
3600                 if ((current->euid != p->euid) &&
3601                     (current->euid != p->uid))
3602                         return -EPERM;
3603         }
3604
3605         retval = security_task_setscheduler(p, policy, param);
3606         if (retval)
3607                 return retval;
3608         /*
3609          * To be able to change p->policy safely, the apropriate
3610          * runqueue lock must be held.
3611          */
3612         rq = task_rq_lock(p, &flags);
3613         /* recheck policy now with rq lock held */
3614         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3615                 policy = oldpolicy = -1;
3616                 task_rq_unlock(rq, &flags);
3617                 goto recheck;
3618         }
3619         array = p->array;
3620         if (array)
3621                 deactivate_task(p, rq);
3622         oldprio = p->prio;
3623         __setscheduler(p, policy, param->sched_priority);
3624         if (array) {
3625                 __activate_task(p, rq);
3626                 /*
3627                  * Reschedule if we are currently running on this runqueue and
3628                  * our priority decreased, or if we are not currently running on
3629                  * this runqueue and our priority is higher than the current's
3630                  */
3631                 if (task_running(rq, p)) {
3632                         if (p->prio > oldprio)
3633                                 resched_task(rq->curr);
3634                 } else if (TASK_PREEMPTS_CURR(p, rq))
3635                         resched_task(rq->curr);
3636         }
3637         task_rq_unlock(rq, &flags);
3638         return 0;
3639 }
3640 EXPORT_SYMBOL_GPL(sched_setscheduler);
3641
3642 static int
3643 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3644 {
3645         int retval;
3646         struct sched_param lparam;
3647         struct task_struct *p;
3648
3649         if (!param || pid < 0)
3650                 return -EINVAL;
3651         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3652                 return -EFAULT;
3653         read_lock_irq(&tasklist_lock);
3654         p = find_process_by_pid(pid);
3655         if (!p) {
3656                 read_unlock_irq(&tasklist_lock);
3657                 return -ESRCH;
3658         }
3659         retval = sched_setscheduler(p, policy, &lparam);
3660         read_unlock_irq(&tasklist_lock);
3661         return retval;
3662 }
3663
3664 /**
3665  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3666  * @pid: the pid in question.
3667  * @policy: new policy.
3668  * @param: structure containing the new RT priority.
3669  */
3670 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3671                                        struct sched_param __user *param)
3672 {
3673         return do_sched_setscheduler(pid, policy, param);
3674 }
3675
3676 /**
3677  * sys_sched_setparam - set/change the RT priority of a thread
3678  * @pid: the pid in question.
3679  * @param: structure containing the new RT priority.
3680  */
3681 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3682 {
3683         return do_sched_setscheduler(pid, -1, param);
3684 }
3685
3686 /**
3687  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3688  * @pid: the pid in question.
3689  */
3690 asmlinkage long sys_sched_getscheduler(pid_t pid)
3691 {
3692         int retval = -EINVAL;
3693         task_t *p;
3694
3695         if (pid < 0)
3696                 goto out_nounlock;
3697
3698         retval = -ESRCH;
3699         read_lock(&tasklist_lock);
3700         p = find_process_by_pid(pid);
3701         if (p) {
3702                 retval = security_task_getscheduler(p);
3703                 if (!retval)
3704                         retval = p->policy;
3705         }
3706         read_unlock(&tasklist_lock);
3707
3708 out_nounlock:
3709         return retval;
3710 }
3711
3712 /**
3713  * sys_sched_getscheduler - get the RT priority of a thread
3714  * @pid: the pid in question.
3715  * @param: structure containing the RT priority.
3716  */
3717 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3718 {
3719         struct sched_param lp;
3720         int retval = -EINVAL;
3721         task_t *p;
3722
3723         if (!param || pid < 0)
3724                 goto out_nounlock;
3725
3726         read_lock(&tasklist_lock);
3727         p = find_process_by_pid(pid);
3728         retval = -ESRCH;
3729         if (!p)
3730                 goto out_unlock;
3731
3732         retval = security_task_getscheduler(p);
3733         if (retval)
3734                 goto out_unlock;
3735
3736         lp.sched_priority = p->rt_priority;
3737         read_unlock(&tasklist_lock);
3738
3739         /*
3740          * This one might sleep, we cannot do it with a spinlock held ...
3741          */
3742         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3743
3744 out_nounlock:
3745         return retval;
3746
3747 out_unlock:
3748         read_unlock(&tasklist_lock);
3749         return retval;
3750 }
3751
3752 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3753 {
3754         task_t *p;
3755         int retval;
3756         cpumask_t cpus_allowed;
3757
3758         lock_cpu_hotplug();
3759         read_lock(&tasklist_lock);
3760
3761         p = find_process_by_pid(pid);
3762         if (!p) {
3763                 read_unlock(&tasklist_lock);
3764                 unlock_cpu_hotplug();
3765                 return -ESRCH;
3766         }
3767
3768         /*
3769          * It is not safe to call set_cpus_allowed with the
3770          * tasklist_lock held.  We will bump the task_struct's
3771          * usage count and then drop tasklist_lock.
3772          */
3773         get_task_struct(p);
3774         read_unlock(&tasklist_lock);
3775
3776         retval = -EPERM;
3777         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3778                         !capable(CAP_SYS_NICE))
3779                 goto out_unlock;
3780
3781         cpus_allowed = cpuset_cpus_allowed(p);
3782         cpus_and(new_mask, new_mask, cpus_allowed);
3783         retval = set_cpus_allowed(p, new_mask);
3784
3785 out_unlock:
3786         put_task_struct(p);
3787         unlock_cpu_hotplug();
3788         return retval;
3789 }
3790
3791 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3792                              cpumask_t *new_mask)
3793 {
3794         if (len < sizeof(cpumask_t)) {
3795                 memset(new_mask, 0, sizeof(cpumask_t));
3796         } else if (len > sizeof(cpumask_t)) {
3797                 len = sizeof(cpumask_t);
3798         }
3799         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3800 }
3801
3802 /**
3803  * sys_sched_setaffinity - set the cpu affinity of a process
3804  * @pid: pid of the process
3805  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3806  * @user_mask_ptr: user-space pointer to the new cpu mask
3807  */
3808 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3809                                       unsigned long __user *user_mask_ptr)
3810 {
3811         cpumask_t new_mask;
3812         int retval;
3813
3814         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3815         if (retval)
3816                 return retval;
3817
3818         return sched_setaffinity(pid, new_mask);
3819 }
3820
3821 /*
3822  * Represents all cpu's present in the system
3823  * In systems capable of hotplug, this map could dynamically grow
3824  * as new cpu's are detected in the system via any platform specific
3825  * method, such as ACPI for e.g.
3826  */
3827
3828 cpumask_t cpu_present_map;
3829 EXPORT_SYMBOL(cpu_present_map);
3830
3831 #ifndef CONFIG_SMP
3832 cpumask_t cpu_online_map = CPU_MASK_ALL;
3833 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3834 #endif
3835
3836 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3837 {
3838         int retval;
3839         task_t *p;
3840
3841         lock_cpu_hotplug();
3842         read_lock(&tasklist_lock);
3843
3844         retval = -ESRCH;
3845         p = find_process_by_pid(pid);
3846         if (!p)
3847                 goto out_unlock;
3848
3849         retval = 0;
3850         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3851
3852 out_unlock:
3853         read_unlock(&tasklist_lock);
3854         unlock_cpu_hotplug();
3855         if (retval)
3856                 return retval;
3857
3858         return 0;
3859 }
3860
3861 /**
3862  * sys_sched_getaffinity - get the cpu affinity of a process
3863  * @pid: pid of the process
3864  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3865  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3866  */
3867 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3868                                       unsigned long __user *user_mask_ptr)
3869 {
3870         int ret;
3871         cpumask_t mask;
3872
3873         if (len < sizeof(cpumask_t))
3874                 return -EINVAL;
3875
3876         ret = sched_getaffinity(pid, &mask);
3877         if (ret < 0)
3878                 return ret;
3879
3880         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3881                 return -EFAULT;
3882
3883         return sizeof(cpumask_t);
3884 }
3885
3886 /**
3887  * sys_sched_yield - yield the current processor to other threads.
3888  *
3889  * this function yields the current CPU by moving the calling thread
3890  * to the expired array. If there are no other threads running on this
3891  * CPU then this function will return.
3892  */
3893 asmlinkage long sys_sched_yield(void)
3894 {
3895         runqueue_t *rq = this_rq_lock();
3896         prio_array_t *array = current->array;
3897         prio_array_t *target = rq->expired;
3898
3899         schedstat_inc(rq, yld_cnt);
3900         /*
3901          * We implement yielding by moving the task into the expired
3902          * queue.
3903          *
3904          * (special rule: RT tasks will just roundrobin in the active
3905          *  array.)
3906          */
3907         if (rt_task(current))
3908                 target = rq->active;
3909
3910         if (current->array->nr_active == 1) {
3911                 schedstat_inc(rq, yld_act_empty);
3912                 if (!rq->expired->nr_active)
3913                         schedstat_inc(rq, yld_both_empty);
3914         } else if (!rq->expired->nr_active)
3915                 schedstat_inc(rq, yld_exp_empty);
3916
3917         if (array != target) {
3918                 dequeue_task(current, array);
3919                 enqueue_task(current, target);
3920         } else
3921                 /*
3922                  * requeue_task is cheaper so perform that if possible.
3923                  */
3924                 requeue_task(current, array);
3925
3926         /*
3927          * Since we are going to call schedule() anyway, there's
3928          * no need to preempt or enable interrupts:
3929          */
3930         __release(rq->lock);
3931         _raw_spin_unlock(&rq->lock);
3932         preempt_enable_no_resched();
3933
3934         schedule();
3935
3936         return 0;
3937 }
3938
3939 static inline void __cond_resched(void)
3940 {
3941         /*
3942          * The BKS might be reacquired before we have dropped
3943          * PREEMPT_ACTIVE, which could trigger a second
3944          * cond_resched() call.
3945          */
3946         if (unlikely(preempt_count()))
3947                 return;
3948         do {
3949                 add_preempt_count(PREEMPT_ACTIVE);
3950                 schedule();
3951                 sub_preempt_count(PREEMPT_ACTIVE);
3952         } while (need_resched());
3953 }
3954
3955 int __sched cond_resched(void)
3956 {
3957         if (need_resched()) {
3958                 __cond_resched();
3959                 return 1;
3960         }
3961         return 0;
3962 }
3963
3964 EXPORT_SYMBOL(cond_resched);
3965
3966 /*
3967  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3968  * call schedule, and on return reacquire the lock.
3969  *
3970  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3971  * operations here to prevent schedule() from being called twice (once via
3972  * spin_unlock(), once by hand).
3973  */
3974 int cond_resched_lock(spinlock_t *lock)
3975 {
3976         int ret = 0;
3977
3978         if (need_lockbreak(lock)) {
3979                 spin_unlock(lock);
3980                 cpu_relax();
3981                 ret = 1;
3982                 spin_lock(lock);
3983         }
3984         if (need_resched()) {
3985                 _raw_spin_unlock(lock);
3986                 preempt_enable_no_resched();
3987                 __cond_resched();
3988                 ret = 1;
3989                 spin_lock(lock);
3990         }
3991         return ret;
3992 }
3993
3994 EXPORT_SYMBOL(cond_resched_lock);
3995
3996 int __sched cond_resched_softirq(void)
3997 {
3998         BUG_ON(!in_softirq());
3999
4000         if (need_resched()) {
4001                 __local_bh_enable();
4002                 __cond_resched();
4003                 local_bh_disable();
4004                 return 1;
4005         }
4006         return 0;
4007 }
4008
4009 EXPORT_SYMBOL(cond_resched_softirq);
4010
4011
4012 /**
4013  * yield - yield the current processor to other threads.
4014  *
4015  * this is a shortcut for kernel-space yielding - it marks the
4016  * thread runnable and calls sys_sched_yield().
4017  */
4018 void __sched yield(void)
4019 {
4020         set_current_state(TASK_RUNNING);
4021         sys_sched_yield();
4022 }
4023
4024 EXPORT_SYMBOL(yield);
4025
4026 /*
4027  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4028  * that process accounting knows that this is a task in IO wait state.
4029  *
4030  * But don't do that if it is a deliberate, throttling IO wait (this task
4031  * has set its backing_dev_info: the queue against which it should throttle)
4032  */
4033 void __sched io_schedule(void)
4034 {
4035         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4036
4037         atomic_inc(&rq->nr_iowait);
4038         schedule();
4039         atomic_dec(&rq->nr_iowait);
4040 }
4041
4042 EXPORT_SYMBOL(io_schedule);
4043
4044 long __sched io_schedule_timeout(long timeout)
4045 {
4046         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4047         long ret;
4048
4049         atomic_inc(&rq->nr_iowait);
4050         ret = schedule_timeout(timeout);
4051         atomic_dec(&rq->nr_iowait);
4052         return ret;
4053 }
4054
4055 /**
4056  * sys_sched_get_priority_max - return maximum RT priority.
4057  * @policy: scheduling class.
4058  *
4059  * this syscall returns the maximum rt_priority that can be used
4060  * by a given scheduling class.
4061  */
4062 asmlinkage long sys_sched_get_priority_max(int policy)
4063 {
4064         int ret = -EINVAL;
4065
4066         switch (policy) {
4067         case SCHED_FIFO:
4068         case SCHED_RR:
4069                 ret = MAX_USER_RT_PRIO-1;
4070                 break;
4071         case SCHED_NORMAL:
4072                 ret = 0;
4073                 break;
4074         }
4075         return ret;
4076 }
4077
4078 /**
4079  * sys_sched_get_priority_min - return minimum RT priority.
4080  * @policy: scheduling class.
4081  *
4082  * this syscall returns the minimum rt_priority that can be used
4083  * by a given scheduling class.
4084  */
4085 asmlinkage long sys_sched_get_priority_min(int policy)
4086 {
4087         int ret = -EINVAL;
4088
4089         switch (policy) {
4090         case SCHED_FIFO:
4091         case SCHED_RR:
4092                 ret = 1;
4093                 break;
4094         case SCHED_NORMAL:
4095                 ret = 0;
4096         }
4097         return ret;
4098 }
4099
4100 /**
4101  * sys_sched_rr_get_interval - return the default timeslice of a process.
4102  * @pid: pid of the process.
4103  * @interval: userspace pointer to the timeslice value.
4104  *
4105  * this syscall writes the default timeslice value of a given process
4106  * into the user-space timespec buffer. A value of '0' means infinity.
4107  */
4108 asmlinkage
4109 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4110 {
4111         int retval = -EINVAL;
4112         struct timespec t;
4113         task_t *p;
4114
4115         if (pid < 0)
4116                 goto out_nounlock;
4117
4118         retval = -ESRCH;
4119         read_lock(&tasklist_lock);
4120         p = find_process_by_pid(pid);
4121         if (!p)
4122                 goto out_unlock;
4123
4124         retval = security_task_getscheduler(p);
4125         if (retval)
4126                 goto out_unlock;
4127
4128         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4129                                 0 : task_timeslice(p), &t);
4130         read_unlock(&tasklist_lock);
4131         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4132 out_nounlock:
4133         return retval;
4134 out_unlock:
4135         read_unlock(&tasklist_lock);
4136         return retval;
4137 }
4138
4139 static inline struct task_struct *eldest_child(struct task_struct *p)
4140 {
4141         if (list_empty(&p->children)) return NULL;
4142         return list_entry(p->children.next,struct task_struct,sibling);
4143 }
4144
4145 static inline struct task_struct *older_sibling(struct task_struct *p)
4146 {
4147         if (p->sibling.prev==&p->parent->children) return NULL;
4148         return list_entry(p->sibling.prev,struct task_struct,sibling);
4149 }
4150
4151 static inline struct task_struct *younger_sibling(struct task_struct *p)
4152 {
4153         if (p->sibling.next==&p->parent->children) return NULL;
4154         return list_entry(p->sibling.next,struct task_struct,sibling);
4155 }
4156
4157 static void show_task(task_t *p)
4158 {
4159         task_t *relative;
4160         unsigned state;
4161         unsigned long free = 0;
4162         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4163
4164         printk("%-13.13s ", p->comm);
4165         state = p->state ? __ffs(p->state) + 1 : 0;
4166         if (state < ARRAY_SIZE(stat_nam))
4167                 printk(stat_nam[state]);
4168         else
4169                 printk("?");
4170 #if (BITS_PER_LONG == 32)
4171         if (state == TASK_RUNNING)
4172                 printk(" running ");
4173         else
4174                 printk(" %08lX ", thread_saved_pc(p));
4175 #else
4176         if (state == TASK_RUNNING)
4177                 printk("  running task   ");
4178         else
4179                 printk(" %016lx ", thread_saved_pc(p));
4180 #endif
4181 #ifdef CONFIG_DEBUG_STACK_USAGE
4182         {
4183                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4184                 while (!*n)
4185                         n++;
4186                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4187         }
4188 #endif
4189         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4190         if ((relative = eldest_child(p)))
4191                 printk("%5d ", relative->pid);
4192         else
4193                 printk("      ");
4194         if ((relative = younger_sibling(p)))
4195                 printk("%7d", relative->pid);
4196         else
4197                 printk("       ");
4198         if ((relative = older_sibling(p)))
4199                 printk(" %5d", relative->pid);
4200         else
4201                 printk("      ");
4202         if (!p->mm)
4203                 printk(" (L-TLB)\n");
4204         else
4205                 printk(" (NOTLB)\n");
4206
4207         if (state != TASK_RUNNING)
4208                 show_stack(p, NULL);
4209 }
4210
4211 void show_state(void)
4212 {
4213         task_t *g, *p;
4214
4215 #if (BITS_PER_LONG == 32)
4216         printk("\n"
4217                "                                               sibling\n");
4218         printk("  task             PC      pid father child younger older\n");
4219 #else
4220         printk("\n"
4221                "                                                       sibling\n");
4222         printk("  task                 PC          pid father child younger older\n");
4223 #endif
4224         read_lock(&tasklist_lock);
4225         do_each_thread(g, p) {
4226                 /*
4227                  * reset the NMI-timeout, listing all files on a slow
4228                  * console might take alot of time:
4229                  */
4230                 touch_nmi_watchdog();
4231                 show_task(p);
4232         } while_each_thread(g, p);
4233
4234         read_unlock(&tasklist_lock);
4235 }
4236
4237 /**
4238  * init_idle - set up an idle thread for a given CPU
4239  * @idle: task in question
4240  * @cpu: cpu the idle task belongs to
4241  *
4242  * NOTE: this function does not set the idle thread's NEED_RESCHED
4243  * flag, to make booting more robust.
4244  */
4245 void __devinit init_idle(task_t *idle, int cpu)
4246 {
4247         runqueue_t *rq = cpu_rq(cpu);
4248         unsigned long flags;
4249
4250         idle->sleep_avg = 0;
4251         idle->array = NULL;
4252         idle->prio = MAX_PRIO;
4253         idle->state = TASK_RUNNING;
4254         idle->cpus_allowed = cpumask_of_cpu(cpu);
4255         set_task_cpu(idle, cpu);
4256
4257         spin_lock_irqsave(&rq->lock, flags);
4258         rq->curr = rq->idle = idle;
4259 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4260         idle->oncpu = 1;
4261 #endif
4262         spin_unlock_irqrestore(&rq->lock, flags);
4263
4264         /* Set the preempt count _outside_ the spinlocks! */
4265 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4266         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4267 #else
4268         idle->thread_info->preempt_count = 0;
4269 #endif
4270 }
4271
4272 /*
4273  * In a system that switches off the HZ timer nohz_cpu_mask
4274  * indicates which cpus entered this state. This is used
4275  * in the rcu update to wait only for active cpus. For system
4276  * which do not switch off the HZ timer nohz_cpu_mask should
4277  * always be CPU_MASK_NONE.
4278  */
4279 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4280
4281 #ifdef CONFIG_SMP
4282 /*
4283  * This is how migration works:
4284  *
4285  * 1) we queue a migration_req_t structure in the source CPU's
4286  *    runqueue and wake up that CPU's migration thread.
4287  * 2) we down() the locked semaphore => thread blocks.
4288  * 3) migration thread wakes up (implicitly it forces the migrated
4289  *    thread off the CPU)
4290  * 4) it gets the migration request and checks whether the migrated
4291  *    task is still in the wrong runqueue.
4292  * 5) if it's in the wrong runqueue then the migration thread removes
4293  *    it and puts it into the right queue.
4294  * 6) migration thread up()s the semaphore.
4295  * 7) we wake up and the migration is done.
4296  */
4297
4298 /*
4299  * Change a given task's CPU affinity. Migrate the thread to a
4300  * proper CPU and schedule it away if the CPU it's executing on
4301  * is removed from the allowed bitmask.
4302  *
4303  * NOTE: the caller must have a valid reference to the task, the
4304  * task must not exit() & deallocate itself prematurely.  The
4305  * call is not atomic; no spinlocks may be held.
4306  */
4307 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4308 {
4309         unsigned long flags;
4310         int ret = 0;
4311         migration_req_t req;
4312         runqueue_t *rq;
4313
4314         rq = task_rq_lock(p, &flags);
4315         if (!cpus_intersects(new_mask, cpu_online_map)) {
4316                 ret = -EINVAL;
4317                 goto out;
4318         }
4319
4320         p->cpus_allowed = new_mask;
4321         /* Can the task run on the task's current CPU? If so, we're done */
4322         if (cpu_isset(task_cpu(p), new_mask))
4323                 goto out;
4324
4325         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4326                 /* Need help from migration thread: drop lock and wait. */
4327                 task_rq_unlock(rq, &flags);
4328                 wake_up_process(rq->migration_thread);
4329                 wait_for_completion(&req.done);
4330                 tlb_migrate_finish(p->mm);
4331                 return 0;
4332         }
4333 out:
4334         task_rq_unlock(rq, &flags);
4335         return ret;
4336 }
4337
4338 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4339
4340 /*
4341  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4342  * this because either it can't run here any more (set_cpus_allowed()
4343  * away from this CPU, or CPU going down), or because we're
4344  * attempting to rebalance this task on exec (sched_exec).
4345  *
4346  * So we race with normal scheduler movements, but that's OK, as long
4347  * as the task is no longer on this CPU.
4348  */
4349 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4350 {
4351         runqueue_t *rq_dest, *rq_src;
4352
4353         if (unlikely(cpu_is_offline(dest_cpu)))
4354                 return;
4355
4356         rq_src = cpu_rq(src_cpu);
4357         rq_dest = cpu_rq(dest_cpu);
4358
4359         double_rq_lock(rq_src, rq_dest);
4360         /* Already moved. */
4361         if (task_cpu(p) != src_cpu)
4362                 goto out;
4363         /* Affinity changed (again). */
4364         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4365                 goto out;
4366
4367         set_task_cpu(p, dest_cpu);
4368         if (p->array) {
4369                 /*
4370                  * Sync timestamp with rq_dest's before activating.
4371                  * The same thing could be achieved by doing this step
4372                  * afterwards, and pretending it was a local activate.
4373                  * This way is cleaner and logically correct.
4374                  */
4375                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4376                                 + rq_dest->timestamp_last_tick;
4377                 deactivate_task(p, rq_src);
4378                 activate_task(p, rq_dest, 0);
4379                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4380                         resched_task(rq_dest->curr);
4381         }
4382
4383 out:
4384         double_rq_unlock(rq_src, rq_dest);
4385 }
4386
4387 /*
4388  * migration_thread - this is a highprio system thread that performs
4389  * thread migration by bumping thread off CPU then 'pushing' onto
4390  * another runqueue.
4391  */
4392 static int migration_thread(void *data)
4393 {
4394         runqueue_t *rq;
4395         int cpu = (long)data;
4396
4397         rq = cpu_rq(cpu);
4398         BUG_ON(rq->migration_thread != current);
4399
4400         set_current_state(TASK_INTERRUPTIBLE);
4401         while (!kthread_should_stop()) {
4402                 struct list_head *head;
4403                 migration_req_t *req;
4404
4405                 try_to_freeze();
4406
4407                 spin_lock_irq(&rq->lock);
4408
4409                 if (cpu_is_offline(cpu)) {
4410                         spin_unlock_irq(&rq->lock);
4411                         goto wait_to_die;
4412                 }
4413
4414                 if (rq->active_balance) {
4415                         active_load_balance(rq, cpu);
4416                         rq->active_balance = 0;
4417                 }
4418
4419                 head = &rq->migration_queue;
4420
4421                 if (list_empty(head)) {
4422                         spin_unlock_irq(&rq->lock);
4423                         schedule();
4424                         set_current_state(TASK_INTERRUPTIBLE);
4425                         continue;
4426                 }
4427                 req = list_entry(head->next, migration_req_t, list);
4428                 list_del_init(head->next);
4429
4430                 spin_unlock(&rq->lock);
4431                 __migrate_task(req->task, cpu, req->dest_cpu);
4432                 local_irq_enable();
4433
4434                 complete(&req->done);
4435         }
4436         __set_current_state(TASK_RUNNING);
4437         return 0;
4438
4439 wait_to_die:
4440         /* Wait for kthread_stop */
4441         set_current_state(TASK_INTERRUPTIBLE);
4442         while (!kthread_should_stop()) {
4443                 schedule();
4444                 set_current_state(TASK_INTERRUPTIBLE);
4445         }
4446         __set_current_state(TASK_RUNNING);
4447         return 0;
4448 }
4449
4450 #ifdef CONFIG_HOTPLUG_CPU
4451 /* Figure out where task on dead CPU should go, use force if neccessary. */
4452 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4453 {
4454         int dest_cpu;
4455         cpumask_t mask;
4456
4457         /* On same node? */
4458         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4459         cpus_and(mask, mask, tsk->cpus_allowed);
4460         dest_cpu = any_online_cpu(mask);
4461
4462         /* On any allowed CPU? */
4463         if (dest_cpu == NR_CPUS)
4464                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4465
4466         /* No more Mr. Nice Guy. */
4467         if (dest_cpu == NR_CPUS) {
4468                 cpus_setall(tsk->cpus_allowed);
4469                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4470
4471                 /*
4472                  * Don't tell them about moving exiting tasks or
4473                  * kernel threads (both mm NULL), since they never
4474                  * leave kernel.
4475                  */
4476                 if (tsk->mm && printk_ratelimit())
4477                         printk(KERN_INFO "process %d (%s) no "
4478                                "longer affine to cpu%d\n",
4479                                tsk->pid, tsk->comm, dead_cpu);
4480         }
4481         __migrate_task(tsk, dead_cpu, dest_cpu);
4482 }
4483
4484 /*
4485  * While a dead CPU has no uninterruptible tasks queued at this point,
4486  * it might still have a nonzero ->nr_uninterruptible counter, because
4487  * for performance reasons the counter is not stricly tracking tasks to
4488  * their home CPUs. So we just add the counter to another CPU's counter,
4489  * to keep the global sum constant after CPU-down:
4490  */
4491 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4492 {
4493         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4494         unsigned long flags;
4495
4496         local_irq_save(flags);
4497         double_rq_lock(rq_src, rq_dest);
4498         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4499         rq_src->nr_uninterruptible = 0;
4500         double_rq_unlock(rq_src, rq_dest);
4501         local_irq_restore(flags);
4502 }
4503
4504 /* Run through task list and migrate tasks from the dead cpu. */
4505 static void migrate_live_tasks(int src_cpu)
4506 {
4507         struct task_struct *tsk, *t;
4508
4509         write_lock_irq(&tasklist_lock);
4510
4511         do_each_thread(t, tsk) {
4512                 if (tsk == current)
4513                         continue;
4514
4515                 if (task_cpu(tsk) == src_cpu)
4516                         move_task_off_dead_cpu(src_cpu, tsk);
4517         } while_each_thread(t, tsk);
4518
4519         write_unlock_irq(&tasklist_lock);
4520 }
4521
4522 /* Schedules idle task to be the next runnable task on current CPU.
4523  * It does so by boosting its priority to highest possible and adding it to
4524  * the _front_ of runqueue. Used by CPU offline code.
4525  */
4526 void sched_idle_next(void)
4527 {
4528         int cpu = smp_processor_id();
4529         runqueue_t *rq = this_rq();
4530         struct task_struct *p = rq->idle;
4531         unsigned long flags;
4532
4533         /* cpu has to be offline */
4534         BUG_ON(cpu_online(cpu));
4535
4536         /* Strictly not necessary since rest of the CPUs are stopped by now
4537          * and interrupts disabled on current cpu.
4538          */
4539         spin_lock_irqsave(&rq->lock, flags);
4540
4541         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4542         /* Add idle task to _front_ of it's priority queue */
4543         __activate_idle_task(p, rq);
4544
4545         spin_unlock_irqrestore(&rq->lock, flags);
4546 }
4547
4548 /* Ensures that the idle task is using init_mm right before its cpu goes
4549  * offline.
4550  */
4551 void idle_task_exit(void)
4552 {
4553         struct mm_struct *mm = current->active_mm;
4554
4555         BUG_ON(cpu_online(smp_processor_id()));
4556
4557         if (mm != &init_mm)
4558                 switch_mm(mm, &init_mm, current);
4559         mmdrop(mm);
4560 }
4561
4562 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4563 {
4564         struct runqueue *rq = cpu_rq(dead_cpu);
4565
4566         /* Must be exiting, otherwise would be on tasklist. */
4567         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4568
4569         /* Cannot have done final schedule yet: would have vanished. */
4570         BUG_ON(tsk->flags & PF_DEAD);
4571
4572         get_task_struct(tsk);
4573
4574         /*
4575          * Drop lock around migration; if someone else moves it,
4576          * that's OK.  No task can be added to this CPU, so iteration is
4577          * fine.
4578          */
4579         spin_unlock_irq(&rq->lock);
4580         move_task_off_dead_cpu(dead_cpu, tsk);
4581         spin_lock_irq(&rq->lock);
4582
4583         put_task_struct(tsk);
4584 }
4585
4586 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4587 static void migrate_dead_tasks(unsigned int dead_cpu)
4588 {
4589         unsigned arr, i;
4590         struct runqueue *rq = cpu_rq(dead_cpu);
4591
4592         for (arr = 0; arr < 2; arr++) {
4593                 for (i = 0; i < MAX_PRIO; i++) {
4594                         struct list_head *list = &rq->arrays[arr].queue[i];
4595                         while (!list_empty(list))
4596                                 migrate_dead(dead_cpu,
4597                                              list_entry(list->next, task_t,
4598                                                         run_list));
4599                 }
4600         }
4601 }
4602 #endif /* CONFIG_HOTPLUG_CPU */
4603
4604 /*
4605  * migration_call - callback that gets triggered when a CPU is added.
4606  * Here we can start up the necessary migration thread for the new CPU.
4607  */
4608 static int migration_call(struct notifier_block *nfb, unsigned long action,
4609                           void *hcpu)
4610 {
4611         int cpu = (long)hcpu;
4612         struct task_struct *p;
4613         struct runqueue *rq;
4614         unsigned long flags;
4615
4616         switch (action) {
4617         case CPU_UP_PREPARE:
4618                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4619                 if (IS_ERR(p))
4620                         return NOTIFY_BAD;
4621                 p->flags |= PF_NOFREEZE;
4622                 kthread_bind(p, cpu);
4623                 /* Must be high prio: stop_machine expects to yield to it. */
4624                 rq = task_rq_lock(p, &flags);
4625                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4626                 task_rq_unlock(rq, &flags);
4627                 cpu_rq(cpu)->migration_thread = p;
4628                 break;
4629         case CPU_ONLINE:
4630                 /* Strictly unneccessary, as first user will wake it. */
4631                 wake_up_process(cpu_rq(cpu)->migration_thread);
4632                 break;
4633 #ifdef CONFIG_HOTPLUG_CPU
4634         case CPU_UP_CANCELED:
4635                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4636                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4637                 kthread_stop(cpu_rq(cpu)->migration_thread);
4638                 cpu_rq(cpu)->migration_thread = NULL;
4639                 break;
4640         case CPU_DEAD:
4641                 migrate_live_tasks(cpu);
4642                 rq = cpu_rq(cpu);
4643                 kthread_stop(rq->migration_thread);
4644                 rq->migration_thread = NULL;
4645                 /* Idle task back to normal (off runqueue, low prio) */
4646                 rq = task_rq_lock(rq->idle, &flags);
4647                 deactivate_task(rq->idle, rq);
4648                 rq->idle->static_prio = MAX_PRIO;
4649                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4650                 migrate_dead_tasks(cpu);
4651                 task_rq_unlock(rq, &flags);
4652                 migrate_nr_uninterruptible(rq);
4653                 BUG_ON(rq->nr_running != 0);
4654
4655                 /* No need to migrate the tasks: it was best-effort if
4656                  * they didn't do lock_cpu_hotplug().  Just wake up
4657                  * the requestors. */
4658                 spin_lock_irq(&rq->lock);
4659                 while (!list_empty(&rq->migration_queue)) {
4660                         migration_req_t *req;
4661                         req = list_entry(rq->migration_queue.next,
4662                                          migration_req_t, list);
4663                         list_del_init(&req->list);
4664                         complete(&req->done);
4665                 }
4666                 spin_unlock_irq(&rq->lock);
4667                 break;
4668 #endif
4669         }
4670         return NOTIFY_OK;
4671 }
4672
4673 /* Register at highest priority so that task migration (migrate_all_tasks)
4674  * happens before everything else.
4675  */
4676 static struct notifier_block __devinitdata migration_notifier = {
4677         .notifier_call = migration_call,
4678         .priority = 10
4679 };
4680
4681 int __init migration_init(void)
4682 {
4683         void *cpu = (void *)(long)smp_processor_id();
4684         /* Start one for boot CPU. */
4685         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4686         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4687         register_cpu_notifier(&migration_notifier);
4688         return 0;
4689 }
4690 #endif
4691
4692 #ifdef CONFIG_SMP
4693 #undef SCHED_DOMAIN_DEBUG
4694 #ifdef SCHED_DOMAIN_DEBUG
4695 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4696 {
4697         int level = 0;
4698
4699         if (!sd) {
4700                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4701                 return;
4702         }
4703
4704         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4705
4706         do {
4707                 int i;
4708                 char str[NR_CPUS];
4709                 struct sched_group *group = sd->groups;
4710                 cpumask_t groupmask;
4711
4712                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4713                 cpus_clear(groupmask);
4714
4715                 printk(KERN_DEBUG);
4716                 for (i = 0; i < level + 1; i++)
4717                         printk(" ");
4718                 printk("domain %d: ", level);
4719
4720                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4721                         printk("does not load-balance\n");
4722                         if (sd->parent)
4723                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4724                         break;
4725                 }
4726
4727                 printk("span %s\n", str);
4728
4729                 if (!cpu_isset(cpu, sd->span))
4730                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4731                 if (!cpu_isset(cpu, group->cpumask))
4732                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4733
4734                 printk(KERN_DEBUG);
4735                 for (i = 0; i < level + 2; i++)
4736                         printk(" ");
4737                 printk("groups:");
4738                 do {
4739                         if (!group) {
4740                                 printk("\n");
4741                                 printk(KERN_ERR "ERROR: group is NULL\n");
4742                                 break;
4743                         }
4744
4745                         if (!group->cpu_power) {
4746                                 printk("\n");
4747                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4748                         }
4749
4750                         if (!cpus_weight(group->cpumask)) {
4751                                 printk("\n");
4752                                 printk(KERN_ERR "ERROR: empty group\n");
4753                         }
4754
4755                         if (cpus_intersects(groupmask, group->cpumask)) {
4756                                 printk("\n");
4757                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4758                         }
4759
4760                         cpus_or(groupmask, groupmask, group->cpumask);
4761
4762                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4763                         printk(" %s", str);
4764
4765                         group = group->next;
4766                 } while (group != sd->groups);
4767                 printk("\n");
4768
4769                 if (!cpus_equal(sd->span, groupmask))
4770                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4771
4772                 level++;
4773                 sd = sd->parent;
4774
4775                 if (sd) {
4776                         if (!cpus_subset(groupmask, sd->span))
4777                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4778                 }
4779
4780         } while (sd);
4781 }
4782 #else
4783 #define sched_domain_debug(sd, cpu) {}
4784 #endif
4785
4786 static int sd_degenerate(struct sched_domain *sd)
4787 {
4788         if (cpus_weight(sd->span) == 1)
4789                 return 1;
4790
4791         /* Following flags need at least 2 groups */
4792         if (sd->flags & (SD_LOAD_BALANCE |
4793                          SD_BALANCE_NEWIDLE |
4794                          SD_BALANCE_FORK |
4795                          SD_BALANCE_EXEC)) {
4796                 if (sd->groups != sd->groups->next)
4797                         return 0;
4798         }
4799
4800         /* Following flags don't use groups */
4801         if (sd->flags & (SD_WAKE_IDLE |
4802                          SD_WAKE_AFFINE |
4803                          SD_WAKE_BALANCE))
4804                 return 0;
4805
4806         return 1;
4807 }
4808
4809 static int sd_parent_degenerate(struct sched_domain *sd,
4810                                                 struct sched_domain *parent)
4811 {
4812         unsigned long cflags = sd->flags, pflags = parent->flags;
4813
4814         if (sd_degenerate(parent))
4815                 return 1;
4816
4817         if (!cpus_equal(sd->span, parent->span))
4818                 return 0;
4819
4820         /* Does parent contain flags not in child? */
4821         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4822         if (cflags & SD_WAKE_AFFINE)
4823                 pflags &= ~SD_WAKE_BALANCE;
4824         /* Flags needing groups don't count if only 1 group in parent */
4825         if (parent->groups == parent->groups->next) {
4826                 pflags &= ~(SD_LOAD_BALANCE |
4827                                 SD_BALANCE_NEWIDLE |
4828                                 SD_BALANCE_FORK |
4829                                 SD_BALANCE_EXEC);
4830         }
4831         if (~cflags & pflags)
4832                 return 0;
4833
4834         return 1;
4835 }
4836
4837 /*
4838  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4839  * hold the hotplug lock.
4840  */
4841 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4842 {
4843         runqueue_t *rq = cpu_rq(cpu);
4844         struct sched_domain *tmp;
4845
4846         /* Remove the sched domains which do not contribute to scheduling. */
4847         for (tmp = sd; tmp; tmp = tmp->parent) {
4848                 struct sched_domain *parent = tmp->parent;
4849                 if (!parent)
4850                         break;
4851                 if (sd_parent_degenerate(tmp, parent))
4852                         tmp->parent = parent->parent;
4853         }
4854
4855         if (sd && sd_degenerate(sd))
4856                 sd = sd->parent;
4857
4858         sched_domain_debug(sd, cpu);
4859
4860         rcu_assign_pointer(rq->sd, sd);
4861 }
4862
4863 /* cpus with isolated domains */
4864 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4865
4866 /* Setup the mask of cpus configured for isolated domains */
4867 static int __init isolated_cpu_setup(char *str)
4868 {
4869         int ints[NR_CPUS], i;
4870
4871         str = get_options(str, ARRAY_SIZE(ints), ints);
4872         cpus_clear(cpu_isolated_map);
4873         for (i = 1; i <= ints[0]; i++)
4874                 if (ints[i] < NR_CPUS)
4875                         cpu_set(ints[i], cpu_isolated_map);
4876         return 1;
4877 }
4878
4879 __setup ("isolcpus=", isolated_cpu_setup);
4880
4881 /*
4882  * init_sched_build_groups takes an array of groups, the cpumask we wish
4883  * to span, and a pointer to a function which identifies what group a CPU
4884  * belongs to. The return value of group_fn must be a valid index into the
4885  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4886  * keep track of groups covered with a cpumask_t).
4887  *
4888  * init_sched_build_groups will build a circular linked list of the groups
4889  * covered by the given span, and will set each group's ->cpumask correctly,
4890  * and ->cpu_power to 0.
4891  */
4892 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4893                                     int (*group_fn)(int cpu))
4894 {
4895         struct sched_group *first = NULL, *last = NULL;
4896         cpumask_t covered = CPU_MASK_NONE;
4897         int i;
4898
4899         for_each_cpu_mask(i, span) {
4900                 int group = group_fn(i);
4901                 struct sched_group *sg = &groups[group];
4902                 int j;
4903
4904                 if (cpu_isset(i, covered))
4905                         continue;
4906
4907                 sg->cpumask = CPU_MASK_NONE;
4908                 sg->cpu_power = 0;
4909
4910                 for_each_cpu_mask(j, span) {
4911                         if (group_fn(j) != group)
4912                                 continue;
4913
4914                         cpu_set(j, covered);
4915                         cpu_set(j, sg->cpumask);
4916                 }
4917                 if (!first)
4918                         first = sg;
4919                 if (last)
4920                         last->next = sg;
4921                 last = sg;
4922         }
4923         last->next = first;
4924 }
4925
4926 #define SD_NODES_PER_DOMAIN 16
4927
4928 #ifdef CONFIG_NUMA
4929 /**
4930  * find_next_best_node - find the next node to include in a sched_domain
4931  * @node: node whose sched_domain we're building
4932  * @used_nodes: nodes already in the sched_domain
4933  *
4934  * Find the next node to include in a given scheduling domain.  Simply
4935  * finds the closest node not already in the @used_nodes map.
4936  *
4937  * Should use nodemask_t.
4938  */
4939 static int find_next_best_node(int node, unsigned long *used_nodes)
4940 {
4941         int i, n, val, min_val, best_node = 0;
4942
4943         min_val = INT_MAX;
4944
4945         for (i = 0; i < MAX_NUMNODES; i++) {
4946                 /* Start at @node */
4947                 n = (node + i) % MAX_NUMNODES;
4948
4949                 if (!nr_cpus_node(n))
4950                         continue;
4951
4952                 /* Skip already used nodes */
4953                 if (test_bit(n, used_nodes))
4954                         continue;
4955
4956                 /* Simple min distance search */
4957                 val = node_distance(node, n);
4958
4959                 if (val < min_val) {
4960                         min_val = val;
4961                         best_node = n;
4962                 }
4963         }
4964
4965         set_bit(best_node, used_nodes);
4966         return best_node;
4967 }
4968
4969 /**
4970  * sched_domain_node_span - get a cpumask for a node's sched_domain
4971  * @node: node whose cpumask we're constructing
4972  * @size: number of nodes to include in this span
4973  *
4974  * Given a node, construct a good cpumask for its sched_domain to span.  It
4975  * should be one that prevents unnecessary balancing, but also spreads tasks
4976  * out optimally.
4977  */
4978 static cpumask_t sched_domain_node_span(int node)
4979 {
4980         int i;
4981         cpumask_t span, nodemask;
4982         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4983
4984         cpus_clear(span);
4985         bitmap_zero(used_nodes, MAX_NUMNODES);
4986
4987         nodemask = node_to_cpumask(node);
4988         cpus_or(span, span, nodemask);
4989         set_bit(node, used_nodes);
4990
4991         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4992                 int next_node = find_next_best_node(node, used_nodes);
4993                 nodemask = node_to_cpumask(next_node);
4994                 cpus_or(span, span, nodemask);
4995         }
4996
4997         return span;
4998 }
4999 #endif
5000
5001 /*
5002  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5003  * can switch it on easily if needed.
5004  */
5005 #ifdef CONFIG_SCHED_SMT
5006 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5007 static struct sched_group sched_group_cpus[NR_CPUS];
5008 static int cpu_to_cpu_group(int cpu)
5009 {
5010         return cpu;
5011 }
5012 #endif
5013
5014 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5015 static struct sched_group sched_group_phys[NR_CPUS];
5016 static int cpu_to_phys_group(int cpu)
5017 {
5018 #ifdef CONFIG_SCHED_SMT
5019         return first_cpu(cpu_sibling_map[cpu]);
5020 #else
5021         return cpu;
5022 #endif
5023 }
5024
5025 #ifdef CONFIG_NUMA
5026 /*
5027  * The init_sched_build_groups can't handle what we want to do with node
5028  * groups, so roll our own. Now each node has its own list of groups which
5029  * gets dynamically allocated.
5030  */
5031 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5032 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5033
5034 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5035 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5036
5037 static int cpu_to_allnodes_group(int cpu)
5038 {
5039         return cpu_to_node(cpu);
5040 }
5041 #endif
5042
5043 /*
5044  * Build sched domains for a given set of cpus and attach the sched domains
5045  * to the individual cpus
5046  */
5047 void build_sched_domains(const cpumask_t *cpu_map)
5048 {
5049         int i;
5050 #ifdef CONFIG_NUMA
5051         struct sched_group **sched_group_nodes = NULL;
5052         struct sched_group *sched_group_allnodes = NULL;
5053
5054         /*
5055          * Allocate the per-node list of sched groups
5056          */
5057         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5058                                            GFP_ATOMIC);
5059         if (!sched_group_nodes) {
5060                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5061                 return;
5062         }
5063         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5064 #endif
5065
5066         /*
5067          * Set up domains for cpus specified by the cpu_map.
5068          */
5069         for_each_cpu_mask(i, *cpu_map) {
5070                 int group;
5071                 struct sched_domain *sd = NULL, *p;
5072                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5073
5074                 cpus_and(nodemask, nodemask, *cpu_map);
5075
5076 #ifdef CONFIG_NUMA
5077                 if (cpus_weight(*cpu_map)
5078                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5079                         if (!sched_group_allnodes) {
5080                                 sched_group_allnodes
5081                                         = kmalloc(sizeof(struct sched_group)
5082                                                         * MAX_NUMNODES,
5083                                                   GFP_KERNEL);
5084                                 if (!sched_group_allnodes) {
5085                                         printk(KERN_WARNING
5086                                         "Can not alloc allnodes sched group\n");
5087                                         break;
5088                                 }
5089                                 sched_group_allnodes_bycpu[i]
5090                                                 = sched_group_allnodes;
5091                         }
5092                         sd = &per_cpu(allnodes_domains, i);
5093                         *sd = SD_ALLNODES_INIT;
5094                         sd->span = *cpu_map;
5095                         group = cpu_to_allnodes_group(i);
5096                         sd->groups = &sched_group_allnodes[group];
5097                         p = sd;
5098                 } else
5099                         p = NULL;
5100
5101                 sd = &per_cpu(node_domains, i);
5102                 *sd = SD_NODE_INIT;
5103                 sd->span = sched_domain_node_span(cpu_to_node(i));
5104                 sd->parent = p;
5105                 cpus_and(sd->span, sd->span, *cpu_map);
5106 #endif
5107
5108                 p = sd;
5109                 sd = &per_cpu(phys_domains, i);
5110                 group = cpu_to_phys_group(i);
5111                 *sd = SD_CPU_INIT;
5112                 sd->span = nodemask;
5113                 sd->parent = p;
5114                 sd->groups = &sched_group_phys[group];
5115
5116 #ifdef CONFIG_SCHED_SMT
5117                 p = sd;
5118                 sd = &per_cpu(cpu_domains, i);
5119                 group = cpu_to_cpu_group(i);
5120                 *sd = SD_SIBLING_INIT;
5121                 sd->span = cpu_sibling_map[i];
5122                 cpus_and(sd->span, sd->span, *cpu_map);
5123                 sd->parent = p;
5124                 sd->groups = &sched_group_cpus[group];
5125 #endif
5126         }
5127
5128 #ifdef CONFIG_SCHED_SMT
5129         /* Set up CPU (sibling) groups */
5130         for_each_cpu_mask(i, *cpu_map) {
5131                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5132                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5133                 if (i != first_cpu(this_sibling_map))
5134                         continue;
5135
5136                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5137                                                 &cpu_to_cpu_group);
5138         }
5139 #endif
5140
5141         /* Set up physical groups */
5142         for (i = 0; i < MAX_NUMNODES; i++) {
5143                 cpumask_t nodemask = node_to_cpumask(i);
5144
5145                 cpus_and(nodemask, nodemask, *cpu_map);
5146                 if (cpus_empty(nodemask))
5147                         continue;
5148
5149                 init_sched_build_groups(sched_group_phys, nodemask,
5150                                                 &cpu_to_phys_group);
5151         }
5152
5153 #ifdef CONFIG_NUMA
5154         /* Set up node groups */
5155         if (sched_group_allnodes)
5156                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5157                                         &cpu_to_allnodes_group);
5158
5159         for (i = 0; i < MAX_NUMNODES; i++) {
5160                 /* Set up node groups */
5161                 struct sched_group *sg, *prev;
5162                 cpumask_t nodemask = node_to_cpumask(i);
5163                 cpumask_t domainspan;
5164                 cpumask_t covered = CPU_MASK_NONE;
5165                 int j;
5166
5167                 cpus_and(nodemask, nodemask, *cpu_map);
5168                 if (cpus_empty(nodemask)) {
5169                         sched_group_nodes[i] = NULL;
5170                         continue;
5171                 }
5172
5173                 domainspan = sched_domain_node_span(i);
5174                 cpus_and(domainspan, domainspan, *cpu_map);
5175
5176                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5177                 sched_group_nodes[i] = sg;
5178                 for_each_cpu_mask(j, nodemask) {
5179                         struct sched_domain *sd;
5180                         sd = &per_cpu(node_domains, j);
5181                         sd->groups = sg;
5182                         if (sd->groups == NULL) {
5183                                 /* Turn off balancing if we have no groups */
5184                                 sd->flags = 0;
5185                         }
5186                 }
5187                 if (!sg) {
5188                         printk(KERN_WARNING
5189                         "Can not alloc domain group for node %d\n", i);
5190                         continue;
5191                 }
5192                 sg->cpu_power = 0;
5193                 sg->cpumask = nodemask;
5194                 cpus_or(covered, covered, nodemask);
5195                 prev = sg;
5196
5197                 for (j = 0; j < MAX_NUMNODES; j++) {
5198                         cpumask_t tmp, notcovered;
5199                         int n = (i + j) % MAX_NUMNODES;
5200
5201                         cpus_complement(notcovered, covered);
5202                         cpus_and(tmp, notcovered, *cpu_map);
5203                         cpus_and(tmp, tmp, domainspan);
5204                         if (cpus_empty(tmp))
5205                                 break;
5206
5207                         nodemask = node_to_cpumask(n);
5208                         cpus_and(tmp, tmp, nodemask);
5209                         if (cpus_empty(tmp))
5210                                 continue;
5211
5212                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5213                         if (!sg) {
5214                                 printk(KERN_WARNING
5215                                 "Can not alloc domain group for node %d\n", j);
5216                                 break;
5217                         }
5218                         sg->cpu_power = 0;
5219                         sg->cpumask = tmp;
5220                         cpus_or(covered, covered, tmp);
5221                         prev->next = sg;
5222                         prev = sg;
5223                 }
5224                 prev->next = sched_group_nodes[i];
5225         }
5226 #endif
5227
5228         /* Calculate CPU power for physical packages and nodes */
5229         for_each_cpu_mask(i, *cpu_map) {
5230                 int power;
5231                 struct sched_domain *sd;
5232 #ifdef CONFIG_SCHED_SMT
5233                 sd = &per_cpu(cpu_domains, i);
5234                 power = SCHED_LOAD_SCALE;
5235                 sd->groups->cpu_power = power;
5236 #endif
5237
5238                 sd = &per_cpu(phys_domains, i);
5239                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5240                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5241                 sd->groups->cpu_power = power;
5242
5243 #ifdef CONFIG_NUMA
5244                 sd = &per_cpu(allnodes_domains, i);
5245                 if (sd->groups) {
5246                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5247                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5248                         sd->groups->cpu_power = power;
5249                 }
5250 #endif
5251         }
5252
5253 #ifdef CONFIG_NUMA
5254         for (i = 0; i < MAX_NUMNODES; i++) {
5255                 struct sched_group *sg = sched_group_nodes[i];
5256                 int j;
5257
5258                 if (sg == NULL)
5259                         continue;
5260 next_sg:
5261                 for_each_cpu_mask(j, sg->cpumask) {
5262                         struct sched_domain *sd;
5263                         int power;
5264
5265                         sd = &per_cpu(phys_domains, j);
5266                         if (j != first_cpu(sd->groups->cpumask)) {
5267                                 /*
5268                                  * Only add "power" once for each
5269                                  * physical package.
5270                                  */
5271                                 continue;
5272                         }
5273                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5274                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5275
5276                         sg->cpu_power += power;
5277                 }
5278                 sg = sg->next;
5279                 if (sg != sched_group_nodes[i])
5280                         goto next_sg;
5281         }
5282 #endif
5283
5284         /* Attach the domains */
5285         for_each_cpu_mask(i, *cpu_map) {
5286                 struct sched_domain *sd;
5287 #ifdef CONFIG_SCHED_SMT
5288                 sd = &per_cpu(cpu_domains, i);
5289 #else
5290                 sd = &per_cpu(phys_domains, i);
5291 #endif
5292                 cpu_attach_domain(sd, i);
5293         }
5294 }
5295 /*
5296  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5297  */
5298 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5299 {
5300         cpumask_t cpu_default_map;
5301
5302         /*
5303          * Setup mask for cpus without special case scheduling requirements.
5304          * For now this just excludes isolated cpus, but could be used to
5305          * exclude other special cases in the future.
5306          */
5307         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5308
5309         build_sched_domains(&cpu_default_map);
5310 }
5311
5312 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5313 {
5314 #ifdef CONFIG_NUMA
5315         int i;
5316         int cpu;
5317
5318         for_each_cpu_mask(cpu, *cpu_map) {
5319                 struct sched_group *sched_group_allnodes
5320                         = sched_group_allnodes_bycpu[cpu];
5321                 struct sched_group **sched_group_nodes
5322                         = sched_group_nodes_bycpu[cpu];
5323
5324                 if (sched_group_allnodes) {
5325                         kfree(sched_group_allnodes);
5326                         sched_group_allnodes_bycpu[cpu] = NULL;
5327                 }
5328
5329                 if (!sched_group_nodes)
5330                         continue;
5331
5332                 for (i = 0; i < MAX_NUMNODES; i++) {
5333                         cpumask_t nodemask = node_to_cpumask(i);
5334                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5335
5336                         cpus_and(nodemask, nodemask, *cpu_map);
5337                         if (cpus_empty(nodemask))
5338                                 continue;
5339
5340                         if (sg == NULL)
5341                                 continue;
5342                         sg = sg->next;
5343 next_sg:
5344                         oldsg = sg;
5345                         sg = sg->next;
5346                         kfree(oldsg);
5347                         if (oldsg != sched_group_nodes[i])
5348                                 goto next_sg;
5349                 }
5350                 kfree(sched_group_nodes);
5351                 sched_group_nodes_bycpu[cpu] = NULL;
5352         }
5353 #endif
5354 }
5355
5356 /*
5357  * Detach sched domains from a group of cpus specified in cpu_map
5358  * These cpus will now be attached to the NULL domain
5359  */
5360 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5361 {
5362         int i;
5363
5364         for_each_cpu_mask(i, *cpu_map)
5365                 cpu_attach_domain(NULL, i);
5366         synchronize_sched();
5367         arch_destroy_sched_domains(cpu_map);
5368 }
5369
5370 /*
5371  * Partition sched domains as specified by the cpumasks below.
5372  * This attaches all cpus from the cpumasks to the NULL domain,
5373  * waits for a RCU quiescent period, recalculates sched
5374  * domain information and then attaches them back to the
5375  * correct sched domains
5376  * Call with hotplug lock held
5377  */
5378 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5379 {
5380         cpumask_t change_map;
5381
5382         cpus_and(*partition1, *partition1, cpu_online_map);
5383         cpus_and(*partition2, *partition2, cpu_online_map);
5384         cpus_or(change_map, *partition1, *partition2);
5385
5386         /* Detach sched domains from all of the affected cpus */
5387         detach_destroy_domains(&change_map);
5388         if (!cpus_empty(*partition1))
5389                 build_sched_domains(partition1);
5390         if (!cpus_empty(*partition2))
5391                 build_sched_domains(partition2);
5392 }
5393
5394 #ifdef CONFIG_HOTPLUG_CPU
5395 /*
5396  * Force a reinitialization of the sched domains hierarchy.  The domains
5397  * and groups cannot be updated in place without racing with the balancing
5398  * code, so we temporarily attach all running cpus to the NULL domain
5399  * which will prevent rebalancing while the sched domains are recalculated.
5400  */
5401 static int update_sched_domains(struct notifier_block *nfb,
5402                                 unsigned long action, void *hcpu)
5403 {
5404         switch (action) {
5405         case CPU_UP_PREPARE:
5406         case CPU_DOWN_PREPARE:
5407                 detach_destroy_domains(&cpu_online_map);
5408                 return NOTIFY_OK;
5409
5410         case CPU_UP_CANCELED:
5411         case CPU_DOWN_FAILED:
5412         case CPU_ONLINE:
5413         case CPU_DEAD:
5414                 /*
5415                  * Fall through and re-initialise the domains.
5416                  */
5417                 break;
5418         default:
5419                 return NOTIFY_DONE;
5420         }
5421
5422         /* The hotplug lock is already held by cpu_up/cpu_down */
5423         arch_init_sched_domains(&cpu_online_map);
5424
5425         return NOTIFY_OK;
5426 }
5427 #endif
5428
5429 void __init sched_init_smp(void)
5430 {
5431         lock_cpu_hotplug();
5432         arch_init_sched_domains(&cpu_online_map);
5433         unlock_cpu_hotplug();
5434         /* XXX: Theoretical race here - CPU may be hotplugged now */
5435         hotcpu_notifier(update_sched_domains, 0);
5436 }
5437 #else
5438 void __init sched_init_smp(void)
5439 {
5440 }
5441 #endif /* CONFIG_SMP */
5442
5443 int in_sched_functions(unsigned long addr)
5444 {
5445         /* Linker adds these: start and end of __sched functions */
5446         extern char __sched_text_start[], __sched_text_end[];
5447         return in_lock_functions(addr) ||
5448                 (addr >= (unsigned long)__sched_text_start
5449                 && addr < (unsigned long)__sched_text_end);
5450 }
5451
5452 void __init sched_init(void)
5453 {
5454         runqueue_t *rq;
5455         int i, j, k;
5456
5457         for (i = 0; i < NR_CPUS; i++) {
5458                 prio_array_t *array;
5459
5460                 rq = cpu_rq(i);
5461                 spin_lock_init(&rq->lock);
5462                 rq->nr_running = 0;
5463                 rq->active = rq->arrays;
5464                 rq->expired = rq->arrays + 1;
5465                 rq->best_expired_prio = MAX_PRIO;
5466
5467 #ifdef CONFIG_SMP
5468                 rq->sd = NULL;
5469                 for (j = 1; j < 3; j++)
5470                         rq->cpu_load[j] = 0;
5471                 rq->active_balance = 0;
5472                 rq->push_cpu = 0;
5473                 rq->migration_thread = NULL;
5474                 INIT_LIST_HEAD(&rq->migration_queue);
5475 #endif
5476                 atomic_set(&rq->nr_iowait, 0);
5477
5478                 for (j = 0; j < 2; j++) {
5479                         array = rq->arrays + j;
5480                         for (k = 0; k < MAX_PRIO; k++) {
5481                                 INIT_LIST_HEAD(array->queue + k);
5482                                 __clear_bit(k, array->bitmap);
5483                         }
5484                         // delimiter for bitsearch
5485                         __set_bit(MAX_PRIO, array->bitmap);
5486                 }
5487         }
5488
5489         /*
5490          * The boot idle thread does lazy MMU switching as well:
5491          */
5492         atomic_inc(&init_mm.mm_count);
5493         enter_lazy_tlb(&init_mm, current);
5494
5495         /*
5496          * Make us the idle thread. Technically, schedule() should not be
5497          * called from this thread, however somewhere below it might be,
5498          * but because we are the idle thread, we just pick up running again
5499          * when this runqueue becomes "idle".
5500          */
5501         init_idle(current, smp_processor_id());
5502 }
5503
5504 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5505 void __might_sleep(char *file, int line)
5506 {
5507 #if defined(in_atomic)
5508         static unsigned long prev_jiffy;        /* ratelimiting */
5509
5510         if ((in_atomic() || irqs_disabled()) &&
5511             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5512                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5513                         return;
5514                 prev_jiffy = jiffies;
5515                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5516                                 " context at %s:%d\n", file, line);
5517                 printk("in_atomic():%d, irqs_disabled():%d\n",
5518                         in_atomic(), irqs_disabled());
5519                 dump_stack();
5520         }
5521 #endif
5522 }
5523 EXPORT_SYMBOL(__might_sleep);
5524 #endif
5525
5526 #ifdef CONFIG_MAGIC_SYSRQ
5527 void normalize_rt_tasks(void)
5528 {
5529         struct task_struct *p;
5530         prio_array_t *array;
5531         unsigned long flags;
5532         runqueue_t *rq;
5533
5534         read_lock_irq(&tasklist_lock);
5535         for_each_process (p) {
5536                 if (!rt_task(p))
5537                         continue;
5538
5539                 rq = task_rq_lock(p, &flags);
5540
5541                 array = p->array;
5542                 if (array)
5543                         deactivate_task(p, task_rq(p));
5544                 __setscheduler(p, SCHED_NORMAL, 0);
5545                 if (array) {
5546                         __activate_task(p, task_rq(p));
5547                         resched_task(rq->curr);
5548                 }
5549
5550                 task_rq_unlock(rq, &flags);
5551         }
5552         read_unlock_irq(&tasklist_lock);
5553 }
5554
5555 #endif /* CONFIG_MAGIC_SYSRQ */