Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86
87 /*
88  * Convert user-nice values [ -20 ... 0 ... 19 ]
89  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90  * and back.
91  */
92 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
95
96 /*
97  * 'User priority' is the nice value converted to something we
98  * can work with better when scaling various scheduler parameters,
99  * it's a [ 0 ... 39 ] range.
100  */
101 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
104
105 /*
106  * Helpers for converting nanosecond timing to jiffy resolution
107  */
108 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD             SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
112
113 /*
114  * These are the 'tuning knobs' of the scheduler:
115  *
116  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117  * Timeslices get refilled after they expire.
118  */
119 #define DEF_TIMESLICE           (100 * HZ / 1000)
120
121 /*
122  * single value that denotes runtime == period, ie unlimited time.
123  */
124 #define RUNTIME_INF     ((u64)~0ULL)
125
126 static inline int rt_policy(int policy)
127 {
128         if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129                 return 1;
130         return 0;
131 }
132
133 static inline int task_has_rt_policy(struct task_struct *p)
134 {
135         return rt_policy(p->policy);
136 }
137
138 /*
139  * This is the priority-queue data structure of the RT scheduling class:
140  */
141 struct rt_prio_array {
142         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143         struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147         /* nests inside the rq lock: */
148         raw_spinlock_t          rt_runtime_lock;
149         ktime_t                 rt_period;
150         u64                     rt_runtime;
151         struct hrtimer          rt_period_timer;
152 };
153
154 static struct rt_bandwidth def_rt_bandwidth;
155
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 {
160         struct rt_bandwidth *rt_b =
161                 container_of(timer, struct rt_bandwidth, rt_period_timer);
162         ktime_t now;
163         int overrun;
164         int idle = 0;
165
166         for (;;) {
167                 now = hrtimer_cb_get_time(timer);
168                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170                 if (!overrun)
171                         break;
172
173                 idle = do_sched_rt_period_timer(rt_b, overrun);
174         }
175
176         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 }
178
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 {
182         rt_b->rt_period = ns_to_ktime(period);
183         rt_b->rt_runtime = runtime;
184
185         raw_spin_lock_init(&rt_b->rt_runtime_lock);
186
187         hrtimer_init(&rt_b->rt_period_timer,
188                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189         rt_b->rt_period_timer.function = sched_rt_period_timer;
190 }
191
192 static inline int rt_bandwidth_enabled(void)
193 {
194         return sysctl_sched_rt_runtime >= 0;
195 }
196
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 {
199         ktime_t now;
200
201         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202                 return;
203
204         if (hrtimer_active(&rt_b->rt_period_timer))
205                 return;
206
207         raw_spin_lock(&rt_b->rt_runtime_lock);
208         for (;;) {
209                 unsigned long delta;
210                 ktime_t soft, hard;
211
212                 if (hrtimer_active(&rt_b->rt_period_timer))
213                         break;
214
215                 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216                 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217
218                 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219                 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220                 delta = ktime_to_ns(ktime_sub(hard, soft));
221                 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222                                 HRTIMER_MODE_ABS_PINNED, 0);
223         }
224         raw_spin_unlock(&rt_b->rt_runtime_lock);
225 }
226
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 {
230         hrtimer_cancel(&rt_b->rt_period_timer);
231 }
232 #endif
233
234 /*
235  * sched_domains_mutex serializes calls to arch_init_sched_domains,
236  * detach_destroy_domains and partition_sched_domains.
237  */
238 static DEFINE_MUTEX(sched_domains_mutex);
239
240 #ifdef CONFIG_CGROUP_SCHED
241
242 #include <linux/cgroup.h>
243
244 struct cfs_rq;
245
246 static LIST_HEAD(task_groups);
247
248 /* task group related information */
249 struct task_group {
250         struct cgroup_subsys_state css;
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253         /* schedulable entities of this group on each cpu */
254         struct sched_entity **se;
255         /* runqueue "owned" by this group on each cpu */
256         struct cfs_rq **cfs_rq;
257         unsigned long shares;
258
259         atomic_t load_weight;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263         struct sched_rt_entity **rt_se;
264         struct rt_rq **rt_rq;
265
266         struct rt_bandwidth rt_bandwidth;
267 #endif
268
269         struct rcu_head rcu;
270         struct list_head list;
271
272         struct task_group *parent;
273         struct list_head siblings;
274         struct list_head children;
275
276 #ifdef CONFIG_SCHED_AUTOGROUP
277         struct autogroup *autogroup;
278 #endif
279 };
280
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock);
283
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285
286 # define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
287
288 /*
289  * A weight of 0 or 1 can cause arithmetics problems.
290  * A weight of a cfs_rq is the sum of weights of which entities
291  * are queued on this cfs_rq, so a weight of a entity should not be
292  * too large, so as the shares value of a task group.
293  * (The default weight is 1024 - so there's no practical
294  *  limitation from this.)
295  */
296 #define MIN_SHARES      2
297 #define MAX_SHARES      (1UL << 18)
298
299 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 #endif
301
302 /* Default task group.
303  *      Every task in system belong to this group at bootup.
304  */
305 struct task_group root_task_group;
306
307 #endif  /* CONFIG_CGROUP_SCHED */
308
309 /* CFS-related fields in a runqueue */
310 struct cfs_rq {
311         struct load_weight load;
312         unsigned long nr_running;
313
314         u64 exec_clock;
315         u64 min_vruntime;
316
317         struct rb_root tasks_timeline;
318         struct rb_node *rb_leftmost;
319
320         struct list_head tasks;
321         struct list_head *balance_iterator;
322
323         /*
324          * 'curr' points to currently running entity on this cfs_rq.
325          * It is set to NULL otherwise (i.e when none are currently running).
326          */
327         struct sched_entity *curr, *next, *last;
328
329         unsigned int nr_spread_over;
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
333
334         /*
335          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
336          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337          * (like users, containers etc.)
338          *
339          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340          * list is used during load balance.
341          */
342         int on_list;
343         struct list_head leaf_cfs_rq_list;
344         struct task_group *tg;  /* group that "owns" this runqueue */
345
346 #ifdef CONFIG_SMP
347         /*
348          * the part of load.weight contributed by tasks
349          */
350         unsigned long task_weight;
351
352         /*
353          *   h_load = weight * f(tg)
354          *
355          * Where f(tg) is the recursive weight fraction assigned to
356          * this group.
357          */
358         unsigned long h_load;
359
360         /*
361          * Maintaining per-cpu shares distribution for group scheduling
362          *
363          * load_stamp is the last time we updated the load average
364          * load_last is the last time we updated the load average and saw load
365          * load_unacc_exec_time is currently unaccounted execution time
366          */
367         u64 load_avg;
368         u64 load_period;
369         u64 load_stamp, load_last, load_unacc_exec_time;
370
371         unsigned long load_contribution;
372 #endif
373 #endif
374 };
375
376 /* Real-Time classes' related field in a runqueue: */
377 struct rt_rq {
378         struct rt_prio_array active;
379         unsigned long rt_nr_running;
380 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381         struct {
382                 int curr; /* highest queued rt task prio */
383 #ifdef CONFIG_SMP
384                 int next; /* next highest */
385 #endif
386         } highest_prio;
387 #endif
388 #ifdef CONFIG_SMP
389         unsigned long rt_nr_migratory;
390         unsigned long rt_nr_total;
391         int overloaded;
392         struct plist_head pushable_tasks;
393 #endif
394         int rt_throttled;
395         u64 rt_time;
396         u64 rt_runtime;
397         /* Nests inside the rq lock: */
398         raw_spinlock_t rt_runtime_lock;
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401         unsigned long rt_nr_boosted;
402
403         struct rq *rq;
404         struct list_head leaf_rt_rq_list;
405         struct task_group *tg;
406 #endif
407 };
408
409 #ifdef CONFIG_SMP
410
411 /*
412  * We add the notion of a root-domain which will be used to define per-domain
413  * variables. Each exclusive cpuset essentially defines an island domain by
414  * fully partitioning the member cpus from any other cpuset. Whenever a new
415  * exclusive cpuset is created, we also create and attach a new root-domain
416  * object.
417  *
418  */
419 struct root_domain {
420         atomic_t refcount;
421         cpumask_var_t span;
422         cpumask_var_t online;
423
424         /*
425          * The "RT overload" flag: it gets set if a CPU has more than
426          * one runnable RT task.
427          */
428         cpumask_var_t rto_mask;
429         atomic_t rto_count;
430         struct cpupri cpupri;
431 };
432
433 /*
434  * By default the system creates a single root-domain with all cpus as
435  * members (mimicking the global state we have today).
436  */
437 static struct root_domain def_root_domain;
438
439 #endif /* CONFIG_SMP */
440
441 /*
442  * This is the main, per-CPU runqueue data structure.
443  *
444  * Locking rule: those places that want to lock multiple runqueues
445  * (such as the load balancing or the thread migration code), lock
446  * acquire operations must be ordered by ascending &runqueue.
447  */
448 struct rq {
449         /* runqueue lock: */
450         raw_spinlock_t lock;
451
452         /*
453          * nr_running and cpu_load should be in the same cacheline because
454          * remote CPUs use both these fields when doing load calculation.
455          */
456         unsigned long nr_running;
457         #define CPU_LOAD_IDX_MAX 5
458         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459         unsigned long last_load_update_tick;
460 #ifdef CONFIG_NO_HZ
461         u64 nohz_stamp;
462         unsigned char nohz_balance_kick;
463 #endif
464         unsigned int skip_clock_update;
465
466         /* capture load from *all* tasks on this cpu: */
467         struct load_weight load;
468         unsigned long nr_load_updates;
469         u64 nr_switches;
470
471         struct cfs_rq cfs;
472         struct rt_rq rt;
473
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475         /* list of leaf cfs_rq on this cpu: */
476         struct list_head leaf_cfs_rq_list;
477 #endif
478 #ifdef CONFIG_RT_GROUP_SCHED
479         struct list_head leaf_rt_rq_list;
480 #endif
481
482         /*
483          * This is part of a global counter where only the total sum
484          * over all CPUs matters. A task can increase this counter on
485          * one CPU and if it got migrated afterwards it may decrease
486          * it on another CPU. Always updated under the runqueue lock:
487          */
488         unsigned long nr_uninterruptible;
489
490         struct task_struct *curr, *idle, *stop;
491         unsigned long next_balance;
492         struct mm_struct *prev_mm;
493
494         u64 clock;
495         u64 clock_task;
496
497         atomic_t nr_iowait;
498
499 #ifdef CONFIG_SMP
500         struct root_domain *rd;
501         struct sched_domain *sd;
502
503         unsigned long cpu_power;
504
505         unsigned char idle_at_tick;
506         /* For active balancing */
507         int post_schedule;
508         int active_balance;
509         int push_cpu;
510         struct cpu_stop_work active_balance_work;
511         /* cpu of this runqueue: */
512         int cpu;
513         int online;
514
515         unsigned long avg_load_per_task;
516
517         u64 rt_avg;
518         u64 age_stamp;
519         u64 idle_stamp;
520         u64 avg_idle;
521 #endif
522
523 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
524         u64 prev_irq_time;
525 #endif
526
527         /* calc_load related fields */
528         unsigned long calc_load_update;
529         long calc_load_active;
530
531 #ifdef CONFIG_SCHED_HRTICK
532 #ifdef CONFIG_SMP
533         int hrtick_csd_pending;
534         struct call_single_data hrtick_csd;
535 #endif
536         struct hrtimer hrtick_timer;
537 #endif
538
539 #ifdef CONFIG_SCHEDSTATS
540         /* latency stats */
541         struct sched_info rq_sched_info;
542         unsigned long long rq_cpu_time;
543         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544
545         /* sys_sched_yield() stats */
546         unsigned int yld_count;
547
548         /* schedule() stats */
549         unsigned int sched_switch;
550         unsigned int sched_count;
551         unsigned int sched_goidle;
552
553         /* try_to_wake_up() stats */
554         unsigned int ttwu_count;
555         unsigned int ttwu_local;
556 #endif
557 };
558
559 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
560
561
562 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
563
564 static inline int cpu_of(struct rq *rq)
565 {
566 #ifdef CONFIG_SMP
567         return rq->cpu;
568 #else
569         return 0;
570 #endif
571 }
572
573 #define rcu_dereference_check_sched_domain(p) \
574         rcu_dereference_check((p), \
575                               rcu_read_lock_sched_held() || \
576                               lockdep_is_held(&sched_domains_mutex))
577
578 /*
579  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580  * See detach_destroy_domains: synchronize_sched for details.
581  *
582  * The domain tree of any CPU may only be accessed from within
583  * preempt-disabled sections.
584  */
585 #define for_each_domain(cpu, __sd) \
586         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
587
588 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
589 #define this_rq()               (&__get_cpu_var(runqueues))
590 #define task_rq(p)              cpu_rq(task_cpu(p))
591 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
592 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
593
594 #ifdef CONFIG_CGROUP_SCHED
595
596 /*
597  * Return the group to which this tasks belongs.
598  *
599  * We use task_subsys_state_check() and extend the RCU verification
600  * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601  * holds that lock for each task it moves into the cgroup. Therefore
602  * by holding that lock, we pin the task to the current cgroup.
603  */
604 static inline struct task_group *task_group(struct task_struct *p)
605 {
606         struct task_group *tg;
607         struct cgroup_subsys_state *css;
608
609         if (p->flags & PF_EXITING)
610                 return &root_task_group;
611
612         css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613                         lockdep_is_held(&task_rq(p)->lock));
614         tg = container_of(css, struct task_group, css);
615
616         return autogroup_task_group(p, tg);
617 }
618
619 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621 {
622 #ifdef CONFIG_FAIR_GROUP_SCHED
623         p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624         p->se.parent = task_group(p)->se[cpu];
625 #endif
626
627 #ifdef CONFIG_RT_GROUP_SCHED
628         p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
629         p->rt.parent = task_group(p)->rt_se[cpu];
630 #endif
631 }
632
633 #else /* CONFIG_CGROUP_SCHED */
634
635 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636 static inline struct task_group *task_group(struct task_struct *p)
637 {
638         return NULL;
639 }
640
641 #endif /* CONFIG_CGROUP_SCHED */
642
643 static void update_rq_clock_task(struct rq *rq, s64 delta);
644
645 static void update_rq_clock(struct rq *rq)
646 {
647         s64 delta;
648
649         if (rq->skip_clock_update)
650                 return;
651
652         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653         rq->clock += delta;
654         update_rq_clock_task(rq, delta);
655 }
656
657 /*
658  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659  */
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
662 #else
663 # define const_debug static const
664 #endif
665
666 /**
667  * runqueue_is_locked
668  * @cpu: the processor in question.
669  *
670  * Returns true if the current cpu runqueue is locked.
671  * This interface allows printk to be called with the runqueue lock
672  * held and know whether or not it is OK to wake up the klogd.
673  */
674 int runqueue_is_locked(int cpu)
675 {
676         return raw_spin_is_locked(&cpu_rq(cpu)->lock);
677 }
678
679 /*
680  * Debugging: various feature bits
681  */
682
683 #define SCHED_FEAT(name, enabled)       \
684         __SCHED_FEAT_##name ,
685
686 enum {
687 #include "sched_features.h"
688 };
689
690 #undef SCHED_FEAT
691
692 #define SCHED_FEAT(name, enabled)       \
693         (1UL << __SCHED_FEAT_##name) * enabled |
694
695 const_debug unsigned int sysctl_sched_features =
696 #include "sched_features.h"
697         0;
698
699 #undef SCHED_FEAT
700
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled)       \
703         #name ,
704
705 static __read_mostly char *sched_feat_names[] = {
706 #include "sched_features.h"
707         NULL
708 };
709
710 #undef SCHED_FEAT
711
712 static int sched_feat_show(struct seq_file *m, void *v)
713 {
714         int i;
715
716         for (i = 0; sched_feat_names[i]; i++) {
717                 if (!(sysctl_sched_features & (1UL << i)))
718                         seq_puts(m, "NO_");
719                 seq_printf(m, "%s ", sched_feat_names[i]);
720         }
721         seq_puts(m, "\n");
722
723         return 0;
724 }
725
726 static ssize_t
727 sched_feat_write(struct file *filp, const char __user *ubuf,
728                 size_t cnt, loff_t *ppos)
729 {
730         char buf[64];
731         char *cmp;
732         int neg = 0;
733         int i;
734
735         if (cnt > 63)
736                 cnt = 63;
737
738         if (copy_from_user(&buf, ubuf, cnt))
739                 return -EFAULT;
740
741         buf[cnt] = 0;
742         cmp = strstrip(buf);
743
744         if (strncmp(cmp, "NO_", 3) == 0) {
745                 neg = 1;
746                 cmp += 3;
747         }
748
749         for (i = 0; sched_feat_names[i]; i++) {
750                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
751                         if (neg)
752                                 sysctl_sched_features &= ~(1UL << i);
753                         else
754                                 sysctl_sched_features |= (1UL << i);
755                         break;
756                 }
757         }
758
759         if (!sched_feat_names[i])
760                 return -EINVAL;
761
762         *ppos += cnt;
763
764         return cnt;
765 }
766
767 static int sched_feat_open(struct inode *inode, struct file *filp)
768 {
769         return single_open(filp, sched_feat_show, NULL);
770 }
771
772 static const struct file_operations sched_feat_fops = {
773         .open           = sched_feat_open,
774         .write          = sched_feat_write,
775         .read           = seq_read,
776         .llseek         = seq_lseek,
777         .release        = single_release,
778 };
779
780 static __init int sched_init_debug(void)
781 {
782         debugfs_create_file("sched_features", 0644, NULL, NULL,
783                         &sched_feat_fops);
784
785         return 0;
786 }
787 late_initcall(sched_init_debug);
788
789 #endif
790
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
792
793 /*
794  * Number of tasks to iterate in a single balance run.
795  * Limited because this is done with IRQs disabled.
796  */
797 const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
799 /*
800  * period over which we average the RT time consumption, measured
801  * in ms.
802  *
803  * default: 1s
804  */
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
807 /*
808  * period over which we measure -rt task cpu usage in us.
809  * default: 1s
810  */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816  * part of the period that we allow rt tasks to run in us.
817  * default: 0.95s
818  */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828         if (sysctl_sched_rt_runtime < 0)
829                 return RUNTIME_INF;
830
831         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next)      do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev)       do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843         return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849         return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859         /* this is a valid case when another task releases the spinlock */
860         rq->lock.owner = current;
861 #endif
862         /*
863          * If we are tracking spinlock dependencies then we have to
864          * fix up the runqueue lock - which gets 'carried over' from
865          * prev into current:
866          */
867         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869         raw_spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876         return p->oncpu;
877 #else
878         return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885         /*
886          * We can optimise this out completely for !SMP, because the
887          * SMP rebalancing from interrupt is the only thing that cares
888          * here.
889          */
890         next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893         raw_spin_unlock_irq(&rq->lock);
894 #else
895         raw_spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902         /*
903          * After ->oncpu is cleared, the task can be moved to a different CPU.
904          * We must ensure this doesn't happen until the switch is completely
905          * finished.
906          */
907         smp_wmb();
908         prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911         local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917  * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918  * against ttwu().
919  */
920 static inline int task_is_waking(struct task_struct *p)
921 {
922         return unlikely(p->state == TASK_WAKING);
923 }
924
925 /*
926  * __task_rq_lock - lock the runqueue a given task resides on.
927  * Must be called interrupts disabled.
928  */
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
930         __acquires(rq->lock)
931 {
932         struct rq *rq;
933
934         for (;;) {
935                 rq = task_rq(p);
936                 raw_spin_lock(&rq->lock);
937                 if (likely(rq == task_rq(p)))
938                         return rq;
939                 raw_spin_unlock(&rq->lock);
940         }
941 }
942
943 /*
944  * task_rq_lock - lock the runqueue a given task resides on and disable
945  * interrupts. Note the ordering: we can safely lookup the task_rq without
946  * explicitly disabling preemption.
947  */
948 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
949         __acquires(rq->lock)
950 {
951         struct rq *rq;
952
953         for (;;) {
954                 local_irq_save(*flags);
955                 rq = task_rq(p);
956                 raw_spin_lock(&rq->lock);
957                 if (likely(rq == task_rq(p)))
958                         return rq;
959                 raw_spin_unlock_irqrestore(&rq->lock, *flags);
960         }
961 }
962
963 static void __task_rq_unlock(struct rq *rq)
964         __releases(rq->lock)
965 {
966         raw_spin_unlock(&rq->lock);
967 }
968
969 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
970         __releases(rq->lock)
971 {
972         raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 }
974
975 /*
976  * this_rq_lock - lock this runqueue and disable interrupts.
977  */
978 static struct rq *this_rq_lock(void)
979         __acquires(rq->lock)
980 {
981         struct rq *rq;
982
983         local_irq_disable();
984         rq = this_rq();
985         raw_spin_lock(&rq->lock);
986
987         return rq;
988 }
989
990 #ifdef CONFIG_SCHED_HRTICK
991 /*
992  * Use HR-timers to deliver accurate preemption points.
993  *
994  * Its all a bit involved since we cannot program an hrt while holding the
995  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996  * reschedule event.
997  *
998  * When we get rescheduled we reprogram the hrtick_timer outside of the
999  * rq->lock.
1000  */
1001
1002 /*
1003  * Use hrtick when:
1004  *  - enabled by features
1005  *  - hrtimer is actually high res
1006  */
1007 static inline int hrtick_enabled(struct rq *rq)
1008 {
1009         if (!sched_feat(HRTICK))
1010                 return 0;
1011         if (!cpu_active(cpu_of(rq)))
1012                 return 0;
1013         return hrtimer_is_hres_active(&rq->hrtick_timer);
1014 }
1015
1016 static void hrtick_clear(struct rq *rq)
1017 {
1018         if (hrtimer_active(&rq->hrtick_timer))
1019                 hrtimer_cancel(&rq->hrtick_timer);
1020 }
1021
1022 /*
1023  * High-resolution timer tick.
1024  * Runs from hardirq context with interrupts disabled.
1025  */
1026 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027 {
1028         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
1032         raw_spin_lock(&rq->lock);
1033         update_rq_clock(rq);
1034         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035         raw_spin_unlock(&rq->lock);
1036
1037         return HRTIMER_NORESTART;
1038 }
1039
1040 #ifdef CONFIG_SMP
1041 /*
1042  * called from hardirq (IPI) context
1043  */
1044 static void __hrtick_start(void *arg)
1045 {
1046         struct rq *rq = arg;
1047
1048         raw_spin_lock(&rq->lock);
1049         hrtimer_restart(&rq->hrtick_timer);
1050         rq->hrtick_csd_pending = 0;
1051         raw_spin_unlock(&rq->lock);
1052 }
1053
1054 /*
1055  * Called to set the hrtick timer state.
1056  *
1057  * called with rq->lock held and irqs disabled
1058  */
1059 static void hrtick_start(struct rq *rq, u64 delay)
1060 {
1061         struct hrtimer *timer = &rq->hrtick_timer;
1062         ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063
1064         hrtimer_set_expires(timer, time);
1065
1066         if (rq == this_rq()) {
1067                 hrtimer_restart(timer);
1068         } else if (!rq->hrtick_csd_pending) {
1069                 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070                 rq->hrtick_csd_pending = 1;
1071         }
1072 }
1073
1074 static int
1075 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076 {
1077         int cpu = (int)(long)hcpu;
1078
1079         switch (action) {
1080         case CPU_UP_CANCELED:
1081         case CPU_UP_CANCELED_FROZEN:
1082         case CPU_DOWN_PREPARE:
1083         case CPU_DOWN_PREPARE_FROZEN:
1084         case CPU_DEAD:
1085         case CPU_DEAD_FROZEN:
1086                 hrtick_clear(cpu_rq(cpu));
1087                 return NOTIFY_OK;
1088         }
1089
1090         return NOTIFY_DONE;
1091 }
1092
1093 static __init void init_hrtick(void)
1094 {
1095         hotcpu_notifier(hotplug_hrtick, 0);
1096 }
1097 #else
1098 /*
1099  * Called to set the hrtick timer state.
1100  *
1101  * called with rq->lock held and irqs disabled
1102  */
1103 static void hrtick_start(struct rq *rq, u64 delay)
1104 {
1105         __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106                         HRTIMER_MODE_REL_PINNED, 0);
1107 }
1108
1109 static inline void init_hrtick(void)
1110 {
1111 }
1112 #endif /* CONFIG_SMP */
1113
1114 static void init_rq_hrtick(struct rq *rq)
1115 {
1116 #ifdef CONFIG_SMP
1117         rq->hrtick_csd_pending = 0;
1118
1119         rq->hrtick_csd.flags = 0;
1120         rq->hrtick_csd.func = __hrtick_start;
1121         rq->hrtick_csd.info = rq;
1122 #endif
1123
1124         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125         rq->hrtick_timer.function = hrtick;
1126 }
1127 #else   /* CONFIG_SCHED_HRTICK */
1128 static inline void hrtick_clear(struct rq *rq)
1129 {
1130 }
1131
1132 static inline void init_rq_hrtick(struct rq *rq)
1133 {
1134 }
1135
1136 static inline void init_hrtick(void)
1137 {
1138 }
1139 #endif  /* CONFIG_SCHED_HRTICK */
1140
1141 /*
1142  * resched_task - mark a task 'to be rescheduled now'.
1143  *
1144  * On UP this means the setting of the need_resched flag, on SMP it
1145  * might also involve a cross-CPU call to trigger the scheduler on
1146  * the target CPU.
1147  */
1148 #ifdef CONFIG_SMP
1149
1150 #ifndef tsk_is_polling
1151 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152 #endif
1153
1154 static void resched_task(struct task_struct *p)
1155 {
1156         int cpu;
1157
1158         assert_raw_spin_locked(&task_rq(p)->lock);
1159
1160         if (test_tsk_need_resched(p))
1161                 return;
1162
1163         set_tsk_need_resched(p);
1164
1165         cpu = task_cpu(p);
1166         if (cpu == smp_processor_id())
1167                 return;
1168
1169         /* NEED_RESCHED must be visible before we test polling */
1170         smp_mb();
1171         if (!tsk_is_polling(p))
1172                 smp_send_reschedule(cpu);
1173 }
1174
1175 static void resched_cpu(int cpu)
1176 {
1177         struct rq *rq = cpu_rq(cpu);
1178         unsigned long flags;
1179
1180         if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1181                 return;
1182         resched_task(cpu_curr(cpu));
1183         raw_spin_unlock_irqrestore(&rq->lock, flags);
1184 }
1185
1186 #ifdef CONFIG_NO_HZ
1187 /*
1188  * In the semi idle case, use the nearest busy cpu for migrating timers
1189  * from an idle cpu.  This is good for power-savings.
1190  *
1191  * We don't do similar optimization for completely idle system, as
1192  * selecting an idle cpu will add more delays to the timers than intended
1193  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194  */
1195 int get_nohz_timer_target(void)
1196 {
1197         int cpu = smp_processor_id();
1198         int i;
1199         struct sched_domain *sd;
1200
1201         for_each_domain(cpu, sd) {
1202                 for_each_cpu(i, sched_domain_span(sd))
1203                         if (!idle_cpu(i))
1204                                 return i;
1205         }
1206         return cpu;
1207 }
1208 /*
1209  * When add_timer_on() enqueues a timer into the timer wheel of an
1210  * idle CPU then this timer might expire before the next timer event
1211  * which is scheduled to wake up that CPU. In case of a completely
1212  * idle system the next event might even be infinite time into the
1213  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214  * leaves the inner idle loop so the newly added timer is taken into
1215  * account when the CPU goes back to idle and evaluates the timer
1216  * wheel for the next timer event.
1217  */
1218 void wake_up_idle_cpu(int cpu)
1219 {
1220         struct rq *rq = cpu_rq(cpu);
1221
1222         if (cpu == smp_processor_id())
1223                 return;
1224
1225         /*
1226          * This is safe, as this function is called with the timer
1227          * wheel base lock of (cpu) held. When the CPU is on the way
1228          * to idle and has not yet set rq->curr to idle then it will
1229          * be serialized on the timer wheel base lock and take the new
1230          * timer into account automatically.
1231          */
1232         if (rq->curr != rq->idle)
1233                 return;
1234
1235         /*
1236          * We can set TIF_RESCHED on the idle task of the other CPU
1237          * lockless. The worst case is that the other CPU runs the
1238          * idle task through an additional NOOP schedule()
1239          */
1240         set_tsk_need_resched(rq->idle);
1241
1242         /* NEED_RESCHED must be visible before we test polling */
1243         smp_mb();
1244         if (!tsk_is_polling(rq->idle))
1245                 smp_send_reschedule(cpu);
1246 }
1247
1248 #endif /* CONFIG_NO_HZ */
1249
1250 static u64 sched_avg_period(void)
1251 {
1252         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 }
1254
1255 static void sched_avg_update(struct rq *rq)
1256 {
1257         s64 period = sched_avg_period();
1258
1259         while ((s64)(rq->clock - rq->age_stamp) > period) {
1260                 /*
1261                  * Inline assembly required to prevent the compiler
1262                  * optimising this loop into a divmod call.
1263                  * See __iter_div_u64_rem() for another example of this.
1264                  */
1265                 asm("" : "+rm" (rq->age_stamp));
1266                 rq->age_stamp += period;
1267                 rq->rt_avg /= 2;
1268         }
1269 }
1270
1271 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272 {
1273         rq->rt_avg += rt_delta;
1274         sched_avg_update(rq);
1275 }
1276
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct *p)
1279 {
1280         assert_raw_spin_locked(&task_rq(p)->lock);
1281         set_tsk_need_resched(p);
1282 }
1283
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 {
1286 }
1287
1288 static void sched_avg_update(struct rq *rq)
1289 {
1290 }
1291 #endif /* CONFIG_SMP */
1292
1293 #if BITS_PER_LONG == 32
1294 # define WMULT_CONST    (~0UL)
1295 #else
1296 # define WMULT_CONST    (1UL << 32)
1297 #endif
1298
1299 #define WMULT_SHIFT     32
1300
1301 /*
1302  * Shift right and round:
1303  */
1304 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1305
1306 /*
1307  * delta *= weight / lw
1308  */
1309 static unsigned long
1310 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311                 struct load_weight *lw)
1312 {
1313         u64 tmp;
1314
1315         if (!lw->inv_weight) {
1316                 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317                         lw->inv_weight = 1;
1318                 else
1319                         lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320                                 / (lw->weight+1);
1321         }
1322
1323         tmp = (u64)delta_exec * weight;
1324         /*
1325          * Check whether we'd overflow the 64-bit multiplication:
1326          */
1327         if (unlikely(tmp > WMULT_CONST))
1328                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329                         WMULT_SHIFT/2);
1330         else
1331                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332
1333         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 }
1335
1336 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 {
1338         lw->weight += inc;
1339         lw->inv_weight = 0;
1340 }
1341
1342 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 {
1344         lw->weight -= dec;
1345         lw->inv_weight = 0;
1346 }
1347
1348 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349 {
1350         lw->weight = w;
1351         lw->inv_weight = 0;
1352 }
1353
1354 /*
1355  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356  * of tasks with abnormal "nice" values across CPUs the contribution that
1357  * each task makes to its run queue's load is weighted according to its
1358  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359  * scaled version of the new time slice allocation that they receive on time
1360  * slice expiry etc.
1361  */
1362
1363 #define WEIGHT_IDLEPRIO                3
1364 #define WMULT_IDLEPRIO         1431655765
1365
1366 /*
1367  * Nice levels are multiplicative, with a gentle 10% change for every
1368  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370  * that remained on nice 0.
1371  *
1372  * The "10% effect" is relative and cumulative: from _any_ nice level,
1373  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375  * If a task goes up by ~10% and another task goes down by ~10% then
1376  * the relative distance between them is ~25%.)
1377  */
1378 static const int prio_to_weight[40] = {
1379  /* -20 */     88761,     71755,     56483,     46273,     36291,
1380  /* -15 */     29154,     23254,     18705,     14949,     11916,
1381  /* -10 */      9548,      7620,      6100,      4904,      3906,
1382  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1383  /*   0 */      1024,       820,       655,       526,       423,
1384  /*   5 */       335,       272,       215,       172,       137,
1385  /*  10 */       110,        87,        70,        56,        45,
1386  /*  15 */        36,        29,        23,        18,        15,
1387 };
1388
1389 /*
1390  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391  *
1392  * In cases where the weight does not change often, we can use the
1393  * precalculated inverse to speed up arithmetics by turning divisions
1394  * into multiplications:
1395  */
1396 static const u32 prio_to_wmult[40] = {
1397  /* -20 */     48388,     59856,     76040,     92818,    118348,
1398  /* -15 */    147320,    184698,    229616,    287308,    360437,
1399  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1400  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1401  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1402  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1403  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1404  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1405 };
1406
1407 /* Time spent by the tasks of the cpu accounting group executing in ... */
1408 enum cpuacct_stat_index {
1409         CPUACCT_STAT_USER,      /* ... user mode */
1410         CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
1411
1412         CPUACCT_STAT_NSTATS,
1413 };
1414
1415 #ifdef CONFIG_CGROUP_CPUACCT
1416 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 static void cpuacct_update_stats(struct task_struct *tsk,
1418                 enum cpuacct_stat_index idx, cputime_t val);
1419 #else
1420 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 static inline void cpuacct_update_stats(struct task_struct *tsk,
1422                 enum cpuacct_stat_index idx, cputime_t val) {}
1423 #endif
1424
1425 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427         update_load_add(&rq->load, load);
1428 }
1429
1430 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431 {
1432         update_load_sub(&rq->load, load);
1433 }
1434
1435 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436 typedef int (*tg_visitor)(struct task_group *, void *);
1437
1438 /*
1439  * Iterate the full tree, calling @down when first entering a node and @up when
1440  * leaving it for the final time.
1441  */
1442 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 {
1444         struct task_group *parent, *child;
1445         int ret;
1446
1447         rcu_read_lock();
1448         parent = &root_task_group;
1449 down:
1450         ret = (*down)(parent, data);
1451         if (ret)
1452                 goto out_unlock;
1453         list_for_each_entry_rcu(child, &parent->children, siblings) {
1454                 parent = child;
1455                 goto down;
1456
1457 up:
1458                 continue;
1459         }
1460         ret = (*up)(parent, data);
1461         if (ret)
1462                 goto out_unlock;
1463
1464         child = parent;
1465         parent = parent->parent;
1466         if (parent)
1467                 goto up;
1468 out_unlock:
1469         rcu_read_unlock();
1470
1471         return ret;
1472 }
1473
1474 static int tg_nop(struct task_group *tg, void *data)
1475 {
1476         return 0;
1477 }
1478 #endif
1479
1480 #ifdef CONFIG_SMP
1481 /* Used instead of source_load when we know the type == 0 */
1482 static unsigned long weighted_cpuload(const int cpu)
1483 {
1484         return cpu_rq(cpu)->load.weight;
1485 }
1486
1487 /*
1488  * Return a low guess at the load of a migration-source cpu weighted
1489  * according to the scheduling class and "nice" value.
1490  *
1491  * We want to under-estimate the load of migration sources, to
1492  * balance conservatively.
1493  */
1494 static unsigned long source_load(int cpu, int type)
1495 {
1496         struct rq *rq = cpu_rq(cpu);
1497         unsigned long total = weighted_cpuload(cpu);
1498
1499         if (type == 0 || !sched_feat(LB_BIAS))
1500                 return total;
1501
1502         return min(rq->cpu_load[type-1], total);
1503 }
1504
1505 /*
1506  * Return a high guess at the load of a migration-target cpu weighted
1507  * according to the scheduling class and "nice" value.
1508  */
1509 static unsigned long target_load(int cpu, int type)
1510 {
1511         struct rq *rq = cpu_rq(cpu);
1512         unsigned long total = weighted_cpuload(cpu);
1513
1514         if (type == 0 || !sched_feat(LB_BIAS))
1515                 return total;
1516
1517         return max(rq->cpu_load[type-1], total);
1518 }
1519
1520 static unsigned long power_of(int cpu)
1521 {
1522         return cpu_rq(cpu)->cpu_power;
1523 }
1524
1525 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527 static unsigned long cpu_avg_load_per_task(int cpu)
1528 {
1529         struct rq *rq = cpu_rq(cpu);
1530         unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1531
1532         if (nr_running)
1533                 rq->avg_load_per_task = rq->load.weight / nr_running;
1534         else
1535                 rq->avg_load_per_task = 0;
1536
1537         return rq->avg_load_per_task;
1538 }
1539
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1541
1542 /*
1543  * Compute the cpu's hierarchical load factor for each task group.
1544  * This needs to be done in a top-down fashion because the load of a child
1545  * group is a fraction of its parents load.
1546  */
1547 static int tg_load_down(struct task_group *tg, void *data)
1548 {
1549         unsigned long load;
1550         long cpu = (long)data;
1551
1552         if (!tg->parent) {
1553                 load = cpu_rq(cpu)->load.weight;
1554         } else {
1555                 load = tg->parent->cfs_rq[cpu]->h_load;
1556                 load *= tg->se[cpu]->load.weight;
1557                 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558         }
1559
1560         tg->cfs_rq[cpu]->h_load = load;
1561
1562         return 0;
1563 }
1564
1565 static void update_h_load(long cpu)
1566 {
1567         walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568 }
1569
1570 #endif
1571
1572 #ifdef CONFIG_PREEMPT
1573
1574 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
1576 /*
1577  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578  * way at the expense of forcing extra atomic operations in all
1579  * invocations.  This assures that the double_lock is acquired using the
1580  * same underlying policy as the spinlock_t on this architecture, which
1581  * reduces latency compared to the unfair variant below.  However, it
1582  * also adds more overhead and therefore may reduce throughput.
1583  */
1584 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585         __releases(this_rq->lock)
1586         __acquires(busiest->lock)
1587         __acquires(this_rq->lock)
1588 {
1589         raw_spin_unlock(&this_rq->lock);
1590         double_rq_lock(this_rq, busiest);
1591
1592         return 1;
1593 }
1594
1595 #else
1596 /*
1597  * Unfair double_lock_balance: Optimizes throughput at the expense of
1598  * latency by eliminating extra atomic operations when the locks are
1599  * already in proper order on entry.  This favors lower cpu-ids and will
1600  * grant the double lock to lower cpus over higher ids under contention,
1601  * regardless of entry order into the function.
1602  */
1603 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604         __releases(this_rq->lock)
1605         __acquires(busiest->lock)
1606         __acquires(this_rq->lock)
1607 {
1608         int ret = 0;
1609
1610         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611                 if (busiest < this_rq) {
1612                         raw_spin_unlock(&this_rq->lock);
1613                         raw_spin_lock(&busiest->lock);
1614                         raw_spin_lock_nested(&this_rq->lock,
1615                                               SINGLE_DEPTH_NESTING);
1616                         ret = 1;
1617                 } else
1618                         raw_spin_lock_nested(&busiest->lock,
1619                                               SINGLE_DEPTH_NESTING);
1620         }
1621         return ret;
1622 }
1623
1624 #endif /* CONFIG_PREEMPT */
1625
1626 /*
1627  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628  */
1629 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630 {
1631         if (unlikely(!irqs_disabled())) {
1632                 /* printk() doesn't work good under rq->lock */
1633                 raw_spin_unlock(&this_rq->lock);
1634                 BUG_ON(1);
1635         }
1636
1637         return _double_lock_balance(this_rq, busiest);
1638 }
1639
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641         __releases(busiest->lock)
1642 {
1643         raw_spin_unlock(&busiest->lock);
1644         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645 }
1646
1647 /*
1648  * double_rq_lock - safely lock two runqueues
1649  *
1650  * Note this does not disable interrupts like task_rq_lock,
1651  * you need to do so manually before calling.
1652  */
1653 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654         __acquires(rq1->lock)
1655         __acquires(rq2->lock)
1656 {
1657         BUG_ON(!irqs_disabled());
1658         if (rq1 == rq2) {
1659                 raw_spin_lock(&rq1->lock);
1660                 __acquire(rq2->lock);   /* Fake it out ;) */
1661         } else {
1662                 if (rq1 < rq2) {
1663                         raw_spin_lock(&rq1->lock);
1664                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665                 } else {
1666                         raw_spin_lock(&rq2->lock);
1667                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668                 }
1669         }
1670 }
1671
1672 /*
1673  * double_rq_unlock - safely unlock two runqueues
1674  *
1675  * Note this does not restore interrupts like task_rq_unlock,
1676  * you need to do so manually after calling.
1677  */
1678 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679         __releases(rq1->lock)
1680         __releases(rq2->lock)
1681 {
1682         raw_spin_unlock(&rq1->lock);
1683         if (rq1 != rq2)
1684                 raw_spin_unlock(&rq2->lock);
1685         else
1686                 __release(rq2->lock);
1687 }
1688
1689 #endif
1690
1691 static void calc_load_account_idle(struct rq *this_rq);
1692 static void update_sysctl(void);
1693 static int get_update_sysctl_factor(void);
1694 static void update_cpu_load(struct rq *this_rq);
1695
1696 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697 {
1698         set_task_rq(p, cpu);
1699 #ifdef CONFIG_SMP
1700         /*
1701          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702          * successfuly executed on another CPU. We must ensure that updates of
1703          * per-task data have been completed by this moment.
1704          */
1705         smp_wmb();
1706         task_thread_info(p)->cpu = cpu;
1707 #endif
1708 }
1709
1710 static const struct sched_class rt_sched_class;
1711
1712 #define sched_class_highest (&stop_sched_class)
1713 #define for_each_class(class) \
1714    for (class = sched_class_highest; class; class = class->next)
1715
1716 #include "sched_stats.h"
1717
1718 static void inc_nr_running(struct rq *rq)
1719 {
1720         rq->nr_running++;
1721 }
1722
1723 static void dec_nr_running(struct rq *rq)
1724 {
1725         rq->nr_running--;
1726 }
1727
1728 static void set_load_weight(struct task_struct *p)
1729 {
1730         /*
1731          * SCHED_IDLE tasks get minimal weight:
1732          */
1733         if (p->policy == SCHED_IDLE) {
1734                 p->se.load.weight = WEIGHT_IDLEPRIO;
1735                 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736                 return;
1737         }
1738
1739         p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740         p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741 }
1742
1743 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1744 {
1745         update_rq_clock(rq);
1746         sched_info_queued(p);
1747         p->sched_class->enqueue_task(rq, p, flags);
1748         p->se.on_rq = 1;
1749 }
1750
1751 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1752 {
1753         update_rq_clock(rq);
1754         sched_info_dequeued(p);
1755         p->sched_class->dequeue_task(rq, p, flags);
1756         p->se.on_rq = 0;
1757 }
1758
1759 /*
1760  * activate_task - move a task to the runqueue.
1761  */
1762 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1763 {
1764         if (task_contributes_to_load(p))
1765                 rq->nr_uninterruptible--;
1766
1767         enqueue_task(rq, p, flags);
1768         inc_nr_running(rq);
1769 }
1770
1771 /*
1772  * deactivate_task - remove a task from the runqueue.
1773  */
1774 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1775 {
1776         if (task_contributes_to_load(p))
1777                 rq->nr_uninterruptible++;
1778
1779         dequeue_task(rq, p, flags);
1780         dec_nr_running(rq);
1781 }
1782
1783 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
1785 /*
1786  * There are no locks covering percpu hardirq/softirq time.
1787  * They are only modified in account_system_vtime, on corresponding CPU
1788  * with interrupts disabled. So, writes are safe.
1789  * They are read and saved off onto struct rq in update_rq_clock().
1790  * This may result in other CPU reading this CPU's irq time and can
1791  * race with irq/account_system_vtime on this CPU. We would either get old
1792  * or new value with a side effect of accounting a slice of irq time to wrong
1793  * task when irq is in progress while we read rq->clock. That is a worthy
1794  * compromise in place of having locks on each irq in account_system_time.
1795  */
1796 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799 static DEFINE_PER_CPU(u64, irq_start_time);
1800 static int sched_clock_irqtime;
1801
1802 void enable_sched_clock_irqtime(void)
1803 {
1804         sched_clock_irqtime = 1;
1805 }
1806
1807 void disable_sched_clock_irqtime(void)
1808 {
1809         sched_clock_irqtime = 0;
1810 }
1811
1812 #ifndef CONFIG_64BIT
1813 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815 static inline void irq_time_write_begin(void)
1816 {
1817         __this_cpu_inc(irq_time_seq.sequence);
1818         smp_wmb();
1819 }
1820
1821 static inline void irq_time_write_end(void)
1822 {
1823         smp_wmb();
1824         __this_cpu_inc(irq_time_seq.sequence);
1825 }
1826
1827 static inline u64 irq_time_read(int cpu)
1828 {
1829         u64 irq_time;
1830         unsigned seq;
1831
1832         do {
1833                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834                 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835                            per_cpu(cpu_hardirq_time, cpu);
1836         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838         return irq_time;
1839 }
1840 #else /* CONFIG_64BIT */
1841 static inline void irq_time_write_begin(void)
1842 {
1843 }
1844
1845 static inline void irq_time_write_end(void)
1846 {
1847 }
1848
1849 static inline u64 irq_time_read(int cpu)
1850 {
1851         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852 }
1853 #endif /* CONFIG_64BIT */
1854
1855 /*
1856  * Called before incrementing preempt_count on {soft,}irq_enter
1857  * and before decrementing preempt_count on {soft,}irq_exit.
1858  */
1859 void account_system_vtime(struct task_struct *curr)
1860 {
1861         unsigned long flags;
1862         s64 delta;
1863         int cpu;
1864
1865         if (!sched_clock_irqtime)
1866                 return;
1867
1868         local_irq_save(flags);
1869
1870         cpu = smp_processor_id();
1871         delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872         __this_cpu_add(irq_start_time, delta);
1873
1874         irq_time_write_begin();
1875         /*
1876          * We do not account for softirq time from ksoftirqd here.
1877          * We want to continue accounting softirq time to ksoftirqd thread
1878          * in that case, so as not to confuse scheduler with a special task
1879          * that do not consume any time, but still wants to run.
1880          */
1881         if (hardirq_count())
1882                 __this_cpu_add(cpu_hardirq_time, delta);
1883         else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1884                 __this_cpu_add(cpu_softirq_time, delta);
1885
1886         irq_time_write_end();
1887         local_irq_restore(flags);
1888 }
1889 EXPORT_SYMBOL_GPL(account_system_vtime);
1890
1891 static void update_rq_clock_task(struct rq *rq, s64 delta)
1892 {
1893         s64 irq_delta;
1894
1895         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1896
1897         /*
1898          * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899          * this case when a previous update_rq_clock() happened inside a
1900          * {soft,}irq region.
1901          *
1902          * When this happens, we stop ->clock_task and only update the
1903          * prev_irq_time stamp to account for the part that fit, so that a next
1904          * update will consume the rest. This ensures ->clock_task is
1905          * monotonic.
1906          *
1907          * It does however cause some slight miss-attribution of {soft,}irq
1908          * time, a more accurate solution would be to update the irq_time using
1909          * the current rq->clock timestamp, except that would require using
1910          * atomic ops.
1911          */
1912         if (irq_delta > delta)
1913                 irq_delta = delta;
1914
1915         rq->prev_irq_time += irq_delta;
1916         delta -= irq_delta;
1917         rq->clock_task += delta;
1918
1919         if (irq_delta && sched_feat(NONIRQ_POWER))
1920                 sched_rt_avg_update(rq, irq_delta);
1921 }
1922
1923 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1924
1925 static void update_rq_clock_task(struct rq *rq, s64 delta)
1926 {
1927         rq->clock_task += delta;
1928 }
1929
1930 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1931
1932 #include "sched_idletask.c"
1933 #include "sched_fair.c"
1934 #include "sched_rt.c"
1935 #include "sched_autogroup.c"
1936 #include "sched_stoptask.c"
1937 #ifdef CONFIG_SCHED_DEBUG
1938 # include "sched_debug.c"
1939 #endif
1940
1941 void sched_set_stop_task(int cpu, struct task_struct *stop)
1942 {
1943         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1944         struct task_struct *old_stop = cpu_rq(cpu)->stop;
1945
1946         if (stop) {
1947                 /*
1948                  * Make it appear like a SCHED_FIFO task, its something
1949                  * userspace knows about and won't get confused about.
1950                  *
1951                  * Also, it will make PI more or less work without too
1952                  * much confusion -- but then, stop work should not
1953                  * rely on PI working anyway.
1954                  */
1955                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1956
1957                 stop->sched_class = &stop_sched_class;
1958         }
1959
1960         cpu_rq(cpu)->stop = stop;
1961
1962         if (old_stop) {
1963                 /*
1964                  * Reset it back to a normal scheduling class so that
1965                  * it can die in pieces.
1966                  */
1967                 old_stop->sched_class = &rt_sched_class;
1968         }
1969 }
1970
1971 /*
1972  * __normal_prio - return the priority that is based on the static prio
1973  */
1974 static inline int __normal_prio(struct task_struct *p)
1975 {
1976         return p->static_prio;
1977 }
1978
1979 /*
1980  * Calculate the expected normal priority: i.e. priority
1981  * without taking RT-inheritance into account. Might be
1982  * boosted by interactivity modifiers. Changes upon fork,
1983  * setprio syscalls, and whenever the interactivity
1984  * estimator recalculates.
1985  */
1986 static inline int normal_prio(struct task_struct *p)
1987 {
1988         int prio;
1989
1990         if (task_has_rt_policy(p))
1991                 prio = MAX_RT_PRIO-1 - p->rt_priority;
1992         else
1993                 prio = __normal_prio(p);
1994         return prio;
1995 }
1996
1997 /*
1998  * Calculate the current priority, i.e. the priority
1999  * taken into account by the scheduler. This value might
2000  * be boosted by RT tasks, or might be boosted by
2001  * interactivity modifiers. Will be RT if the task got
2002  * RT-boosted. If not then it returns p->normal_prio.
2003  */
2004 static int effective_prio(struct task_struct *p)
2005 {
2006         p->normal_prio = normal_prio(p);
2007         /*
2008          * If we are RT tasks or we were boosted to RT priority,
2009          * keep the priority unchanged. Otherwise, update priority
2010          * to the normal priority:
2011          */
2012         if (!rt_prio(p->prio))
2013                 return p->normal_prio;
2014         return p->prio;
2015 }
2016
2017 /**
2018  * task_curr - is this task currently executing on a CPU?
2019  * @p: the task in question.
2020  */
2021 inline int task_curr(const struct task_struct *p)
2022 {
2023         return cpu_curr(task_cpu(p)) == p;
2024 }
2025
2026 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2027                                        const struct sched_class *prev_class,
2028                                        int oldprio, int running)
2029 {
2030         if (prev_class != p->sched_class) {
2031                 if (prev_class->switched_from)
2032                         prev_class->switched_from(rq, p, running);
2033                 p->sched_class->switched_to(rq, p, running);
2034         } else
2035                 p->sched_class->prio_changed(rq, p, oldprio, running);
2036 }
2037
2038 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2039 {
2040         const struct sched_class *class;
2041
2042         if (p->sched_class == rq->curr->sched_class) {
2043                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2044         } else {
2045                 for_each_class(class) {
2046                         if (class == rq->curr->sched_class)
2047                                 break;
2048                         if (class == p->sched_class) {
2049                                 resched_task(rq->curr);
2050                                 break;
2051                         }
2052                 }
2053         }
2054
2055         /*
2056          * A queue event has occurred, and we're going to schedule.  In
2057          * this case, we can save a useless back to back clock update.
2058          */
2059         if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2060                 rq->skip_clock_update = 1;
2061 }
2062
2063 #ifdef CONFIG_SMP
2064 /*
2065  * Is this task likely cache-hot:
2066  */
2067 static int
2068 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2069 {
2070         s64 delta;
2071
2072         if (p->sched_class != &fair_sched_class)
2073                 return 0;
2074
2075         if (unlikely(p->policy == SCHED_IDLE))
2076                 return 0;
2077
2078         /*
2079          * Buddy candidates are cache hot:
2080          */
2081         if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2082                         (&p->se == cfs_rq_of(&p->se)->next ||
2083                          &p->se == cfs_rq_of(&p->se)->last))
2084                 return 1;
2085
2086         if (sysctl_sched_migration_cost == -1)
2087                 return 1;
2088         if (sysctl_sched_migration_cost == 0)
2089                 return 0;
2090
2091         delta = now - p->se.exec_start;
2092
2093         return delta < (s64)sysctl_sched_migration_cost;
2094 }
2095
2096 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2097 {
2098 #ifdef CONFIG_SCHED_DEBUG
2099         /*
2100          * We should never call set_task_cpu() on a blocked task,
2101          * ttwu() will sort out the placement.
2102          */
2103         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2104                         !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2105 #endif
2106
2107         trace_sched_migrate_task(p, new_cpu);
2108
2109         if (task_cpu(p) != new_cpu) {
2110                 p->se.nr_migrations++;
2111                 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2112         }
2113
2114         __set_task_cpu(p, new_cpu);
2115 }
2116
2117 struct migration_arg {
2118         struct task_struct *task;
2119         int dest_cpu;
2120 };
2121
2122 static int migration_cpu_stop(void *data);
2123
2124 /*
2125  * The task's runqueue lock must be held.
2126  * Returns true if you have to wait for migration thread.
2127  */
2128 static bool migrate_task(struct task_struct *p, struct rq *rq)
2129 {
2130         /*
2131          * If the task is not on a runqueue (and not running), then
2132          * the next wake-up will properly place the task.
2133          */
2134         return p->se.on_rq || task_running(rq, p);
2135 }
2136
2137 /*
2138  * wait_task_inactive - wait for a thread to unschedule.
2139  *
2140  * If @match_state is nonzero, it's the @p->state value just checked and
2141  * not expected to change.  If it changes, i.e. @p might have woken up,
2142  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2143  * we return a positive number (its total switch count).  If a second call
2144  * a short while later returns the same number, the caller can be sure that
2145  * @p has remained unscheduled the whole time.
2146  *
2147  * The caller must ensure that the task *will* unschedule sometime soon,
2148  * else this function might spin for a *long* time. This function can't
2149  * be called with interrupts off, or it may introduce deadlock with
2150  * smp_call_function() if an IPI is sent by the same process we are
2151  * waiting to become inactive.
2152  */
2153 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2154 {
2155         unsigned long flags;
2156         int running, on_rq;
2157         unsigned long ncsw;
2158         struct rq *rq;
2159
2160         for (;;) {
2161                 /*
2162                  * We do the initial early heuristics without holding
2163                  * any task-queue locks at all. We'll only try to get
2164                  * the runqueue lock when things look like they will
2165                  * work out!
2166                  */
2167                 rq = task_rq(p);
2168
2169                 /*
2170                  * If the task is actively running on another CPU
2171                  * still, just relax and busy-wait without holding
2172                  * any locks.
2173                  *
2174                  * NOTE! Since we don't hold any locks, it's not
2175                  * even sure that "rq" stays as the right runqueue!
2176                  * But we don't care, since "task_running()" will
2177                  * return false if the runqueue has changed and p
2178                  * is actually now running somewhere else!
2179                  */
2180                 while (task_running(rq, p)) {
2181                         if (match_state && unlikely(p->state != match_state))
2182                                 return 0;
2183                         cpu_relax();
2184                 }
2185
2186                 /*
2187                  * Ok, time to look more closely! We need the rq
2188                  * lock now, to be *sure*. If we're wrong, we'll
2189                  * just go back and repeat.
2190                  */
2191                 rq = task_rq_lock(p, &flags);
2192                 trace_sched_wait_task(p);
2193                 running = task_running(rq, p);
2194                 on_rq = p->se.on_rq;
2195                 ncsw = 0;
2196                 if (!match_state || p->state == match_state)
2197                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2198                 task_rq_unlock(rq, &flags);
2199
2200                 /*
2201                  * If it changed from the expected state, bail out now.
2202                  */
2203                 if (unlikely(!ncsw))
2204                         break;
2205
2206                 /*
2207                  * Was it really running after all now that we
2208                  * checked with the proper locks actually held?
2209                  *
2210                  * Oops. Go back and try again..
2211                  */
2212                 if (unlikely(running)) {
2213                         cpu_relax();
2214                         continue;
2215                 }
2216
2217                 /*
2218                  * It's not enough that it's not actively running,
2219                  * it must be off the runqueue _entirely_, and not
2220                  * preempted!
2221                  *
2222                  * So if it was still runnable (but just not actively
2223                  * running right now), it's preempted, and we should
2224                  * yield - it could be a while.
2225                  */
2226                 if (unlikely(on_rq)) {
2227                         schedule_timeout_uninterruptible(1);
2228                         continue;
2229                 }
2230
2231                 /*
2232                  * Ahh, all good. It wasn't running, and it wasn't
2233                  * runnable, which means that it will never become
2234                  * running in the future either. We're all done!
2235                  */
2236                 break;
2237         }
2238
2239         return ncsw;
2240 }
2241
2242 /***
2243  * kick_process - kick a running thread to enter/exit the kernel
2244  * @p: the to-be-kicked thread
2245  *
2246  * Cause a process which is running on another CPU to enter
2247  * kernel-mode, without any delay. (to get signals handled.)
2248  *
2249  * NOTE: this function doesnt have to take the runqueue lock,
2250  * because all it wants to ensure is that the remote task enters
2251  * the kernel. If the IPI races and the task has been migrated
2252  * to another CPU then no harm is done and the purpose has been
2253  * achieved as well.
2254  */
2255 void kick_process(struct task_struct *p)
2256 {
2257         int cpu;
2258
2259         preempt_disable();
2260         cpu = task_cpu(p);
2261         if ((cpu != smp_processor_id()) && task_curr(p))
2262                 smp_send_reschedule(cpu);
2263         preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(kick_process);
2266 #endif /* CONFIG_SMP */
2267
2268 /**
2269  * task_oncpu_function_call - call a function on the cpu on which a task runs
2270  * @p:          the task to evaluate
2271  * @func:       the function to be called
2272  * @info:       the function call argument
2273  *
2274  * Calls the function @func when the task is currently running. This might
2275  * be on the current CPU, which just calls the function directly
2276  */
2277 void task_oncpu_function_call(struct task_struct *p,
2278                               void (*func) (void *info), void *info)
2279 {
2280         int cpu;
2281
2282         preempt_disable();
2283         cpu = task_cpu(p);
2284         if (task_curr(p))
2285                 smp_call_function_single(cpu, func, info, 1);
2286         preempt_enable();
2287 }
2288
2289 #ifdef CONFIG_SMP
2290 /*
2291  * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2292  */
2293 static int select_fallback_rq(int cpu, struct task_struct *p)
2294 {
2295         int dest_cpu;
2296         const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2297
2298         /* Look for allowed, online CPU in same node. */
2299         for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2300                 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2301                         return dest_cpu;
2302
2303         /* Any allowed, online CPU? */
2304         dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2305         if (dest_cpu < nr_cpu_ids)
2306                 return dest_cpu;
2307
2308         /* No more Mr. Nice Guy. */
2309         dest_cpu = cpuset_cpus_allowed_fallback(p);
2310         /*
2311          * Don't tell them about moving exiting tasks or
2312          * kernel threads (both mm NULL), since they never
2313          * leave kernel.
2314          */
2315         if (p->mm && printk_ratelimit()) {
2316                 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2317                                 task_pid_nr(p), p->comm, cpu);
2318         }
2319
2320         return dest_cpu;
2321 }
2322
2323 /*
2324  * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2325  */
2326 static inline
2327 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2328 {
2329         int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2330
2331         /*
2332          * In order not to call set_task_cpu() on a blocking task we need
2333          * to rely on ttwu() to place the task on a valid ->cpus_allowed
2334          * cpu.
2335          *
2336          * Since this is common to all placement strategies, this lives here.
2337          *
2338          * [ this allows ->select_task() to simply return task_cpu(p) and
2339          *   not worry about this generic constraint ]
2340          */
2341         if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2342                      !cpu_online(cpu)))
2343                 cpu = select_fallback_rq(task_cpu(p), p);
2344
2345         return cpu;
2346 }
2347
2348 static void update_avg(u64 *avg, u64 sample)
2349 {
2350         s64 diff = sample - *avg;
2351         *avg += diff >> 3;
2352 }
2353 #endif
2354
2355 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2356                                  bool is_sync, bool is_migrate, bool is_local,
2357                                  unsigned long en_flags)
2358 {
2359         schedstat_inc(p, se.statistics.nr_wakeups);
2360         if (is_sync)
2361                 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2362         if (is_migrate)
2363                 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2364         if (is_local)
2365                 schedstat_inc(p, se.statistics.nr_wakeups_local);
2366         else
2367                 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2368
2369         activate_task(rq, p, en_flags);
2370 }
2371
2372 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2373                                         int wake_flags, bool success)
2374 {
2375         trace_sched_wakeup(p, success);
2376         check_preempt_curr(rq, p, wake_flags);
2377
2378         p->state = TASK_RUNNING;
2379 #ifdef CONFIG_SMP
2380         if (p->sched_class->task_woken)
2381                 p->sched_class->task_woken(rq, p);
2382
2383         if (unlikely(rq->idle_stamp)) {
2384                 u64 delta = rq->clock - rq->idle_stamp;
2385                 u64 max = 2*sysctl_sched_migration_cost;
2386
2387                 if (delta > max)
2388                         rq->avg_idle = max;
2389                 else
2390                         update_avg(&rq->avg_idle, delta);
2391                 rq->idle_stamp = 0;
2392         }
2393 #endif
2394         /* if a worker is waking up, notify workqueue */
2395         if ((p->flags & PF_WQ_WORKER) && success)
2396                 wq_worker_waking_up(p, cpu_of(rq));
2397 }
2398
2399 /**
2400  * try_to_wake_up - wake up a thread
2401  * @p: the thread to be awakened
2402  * @state: the mask of task states that can be woken
2403  * @wake_flags: wake modifier flags (WF_*)
2404  *
2405  * Put it on the run-queue if it's not already there. The "current"
2406  * thread is always on the run-queue (except when the actual
2407  * re-schedule is in progress), and as such you're allowed to do
2408  * the simpler "current->state = TASK_RUNNING" to mark yourself
2409  * runnable without the overhead of this.
2410  *
2411  * Returns %true if @p was woken up, %false if it was already running
2412  * or @state didn't match @p's state.
2413  */
2414 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2415                           int wake_flags)
2416 {
2417         int cpu, orig_cpu, this_cpu, success = 0;
2418         unsigned long flags;
2419         unsigned long en_flags = ENQUEUE_WAKEUP;
2420         struct rq *rq;
2421
2422         this_cpu = get_cpu();
2423
2424         smp_wmb();
2425         rq = task_rq_lock(p, &flags);
2426         if (!(p->state & state))
2427                 goto out;
2428
2429         if (p->se.on_rq)
2430                 goto out_running;
2431
2432         cpu = task_cpu(p);
2433         orig_cpu = cpu;
2434
2435 #ifdef CONFIG_SMP
2436         if (unlikely(task_running(rq, p)))
2437                 goto out_activate;
2438
2439         /*
2440          * In order to handle concurrent wakeups and release the rq->lock
2441          * we put the task in TASK_WAKING state.
2442          *
2443          * First fix up the nr_uninterruptible count:
2444          */
2445         if (task_contributes_to_load(p)) {
2446                 if (likely(cpu_online(orig_cpu)))
2447                         rq->nr_uninterruptible--;
2448                 else
2449                         this_rq()->nr_uninterruptible--;
2450         }
2451         p->state = TASK_WAKING;
2452
2453         if (p->sched_class->task_waking) {
2454                 p->sched_class->task_waking(rq, p);
2455                 en_flags |= ENQUEUE_WAKING;
2456         }
2457
2458         cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2459         if (cpu != orig_cpu)
2460                 set_task_cpu(p, cpu);
2461         __task_rq_unlock(rq);
2462
2463         rq = cpu_rq(cpu);
2464         raw_spin_lock(&rq->lock);
2465
2466         /*
2467          * We migrated the task without holding either rq->lock, however
2468          * since the task is not on the task list itself, nobody else
2469          * will try and migrate the task, hence the rq should match the
2470          * cpu we just moved it to.
2471          */
2472         WARN_ON(task_cpu(p) != cpu);
2473         WARN_ON(p->state != TASK_WAKING);
2474
2475 #ifdef CONFIG_SCHEDSTATS
2476         schedstat_inc(rq, ttwu_count);
2477         if (cpu == this_cpu)
2478                 schedstat_inc(rq, ttwu_local);
2479         else {
2480                 struct sched_domain *sd;
2481                 for_each_domain(this_cpu, sd) {
2482                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2483                                 schedstat_inc(sd, ttwu_wake_remote);
2484                                 break;
2485                         }
2486                 }
2487         }
2488 #endif /* CONFIG_SCHEDSTATS */
2489
2490 out_activate:
2491 #endif /* CONFIG_SMP */
2492         ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2493                       cpu == this_cpu, en_flags);
2494         success = 1;
2495 out_running:
2496         ttwu_post_activation(p, rq, wake_flags, success);
2497 out:
2498         task_rq_unlock(rq, &flags);
2499         put_cpu();
2500
2501         return success;
2502 }
2503
2504 /**
2505  * try_to_wake_up_local - try to wake up a local task with rq lock held
2506  * @p: the thread to be awakened
2507  *
2508  * Put @p on the run-queue if it's not already there.  The caller must
2509  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2510  * the current task.  this_rq() stays locked over invocation.
2511  */
2512 static void try_to_wake_up_local(struct task_struct *p)
2513 {
2514         struct rq *rq = task_rq(p);
2515         bool success = false;
2516
2517         BUG_ON(rq != this_rq());
2518         BUG_ON(p == current);
2519         lockdep_assert_held(&rq->lock);
2520
2521         if (!(p->state & TASK_NORMAL))
2522                 return;
2523
2524         if (!p->se.on_rq) {
2525                 if (likely(!task_running(rq, p))) {
2526                         schedstat_inc(rq, ttwu_count);
2527                         schedstat_inc(rq, ttwu_local);
2528                 }
2529                 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2530                 success = true;
2531         }
2532         ttwu_post_activation(p, rq, 0, success);
2533 }
2534
2535 /**
2536  * wake_up_process - Wake up a specific process
2537  * @p: The process to be woken up.
2538  *
2539  * Attempt to wake up the nominated process and move it to the set of runnable
2540  * processes.  Returns 1 if the process was woken up, 0 if it was already
2541  * running.
2542  *
2543  * It may be assumed that this function implies a write memory barrier before
2544  * changing the task state if and only if any tasks are woken up.
2545  */
2546 int wake_up_process(struct task_struct *p)
2547 {
2548         return try_to_wake_up(p, TASK_ALL, 0);
2549 }
2550 EXPORT_SYMBOL(wake_up_process);
2551
2552 int wake_up_state(struct task_struct *p, unsigned int state)
2553 {
2554         return try_to_wake_up(p, state, 0);
2555 }
2556
2557 /*
2558  * Perform scheduler related setup for a newly forked process p.
2559  * p is forked by current.
2560  *
2561  * __sched_fork() is basic setup used by init_idle() too:
2562  */
2563 static void __sched_fork(struct task_struct *p)
2564 {
2565         p->se.exec_start                = 0;
2566         p->se.sum_exec_runtime          = 0;
2567         p->se.prev_sum_exec_runtime     = 0;
2568         p->se.nr_migrations             = 0;
2569
2570 #ifdef CONFIG_SCHEDSTATS
2571         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2572 #endif
2573
2574         INIT_LIST_HEAD(&p->rt.run_list);
2575         p->se.on_rq = 0;
2576         INIT_LIST_HEAD(&p->se.group_node);
2577
2578 #ifdef CONFIG_PREEMPT_NOTIFIERS
2579         INIT_HLIST_HEAD(&p->preempt_notifiers);
2580 #endif
2581 }
2582
2583 /*
2584  * fork()/clone()-time setup:
2585  */
2586 void sched_fork(struct task_struct *p, int clone_flags)
2587 {
2588         int cpu = get_cpu();
2589
2590         __sched_fork(p);
2591         /*
2592          * We mark the process as running here. This guarantees that
2593          * nobody will actually run it, and a signal or other external
2594          * event cannot wake it up and insert it on the runqueue either.
2595          */
2596         p->state = TASK_RUNNING;
2597
2598         /*
2599          * Revert to default priority/policy on fork if requested.
2600          */
2601         if (unlikely(p->sched_reset_on_fork)) {
2602                 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2603                         p->policy = SCHED_NORMAL;
2604                         p->normal_prio = p->static_prio;
2605                 }
2606
2607                 if (PRIO_TO_NICE(p->static_prio) < 0) {
2608                         p->static_prio = NICE_TO_PRIO(0);
2609                         p->normal_prio = p->static_prio;
2610                         set_load_weight(p);
2611                 }
2612
2613                 /*
2614                  * We don't need the reset flag anymore after the fork. It has
2615                  * fulfilled its duty:
2616                  */
2617                 p->sched_reset_on_fork = 0;
2618         }
2619
2620         /*
2621          * Make sure we do not leak PI boosting priority to the child.
2622          */
2623         p->prio = current->normal_prio;
2624
2625         if (!rt_prio(p->prio))
2626                 p->sched_class = &fair_sched_class;
2627
2628         if (p->sched_class->task_fork)
2629                 p->sched_class->task_fork(p);
2630
2631         /*
2632          * The child is not yet in the pid-hash so no cgroup attach races,
2633          * and the cgroup is pinned to this child due to cgroup_fork()
2634          * is ran before sched_fork().
2635          *
2636          * Silence PROVE_RCU.
2637          */
2638         rcu_read_lock();
2639         set_task_cpu(p, cpu);
2640         rcu_read_unlock();
2641
2642 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2643         if (likely(sched_info_on()))
2644                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2645 #endif
2646 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2647         p->oncpu = 0;
2648 #endif
2649 #ifdef CONFIG_PREEMPT
2650         /* Want to start with kernel preemption disabled. */
2651         task_thread_info(p)->preempt_count = 1;
2652 #endif
2653 #ifdef CONFIG_SMP
2654         plist_node_init(&p->pushable_tasks, MAX_PRIO);
2655 #endif
2656
2657         put_cpu();
2658 }
2659
2660 /*
2661  * wake_up_new_task - wake up a newly created task for the first time.
2662  *
2663  * This function will do some initial scheduler statistics housekeeping
2664  * that must be done for every newly created context, then puts the task
2665  * on the runqueue and wakes it.
2666  */
2667 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2668 {
2669         unsigned long flags;
2670         struct rq *rq;
2671         int cpu __maybe_unused = get_cpu();
2672
2673 #ifdef CONFIG_SMP
2674         rq = task_rq_lock(p, &flags);
2675         p->state = TASK_WAKING;
2676
2677         /*
2678          * Fork balancing, do it here and not earlier because:
2679          *  - cpus_allowed can change in the fork path
2680          *  - any previously selected cpu might disappear through hotplug
2681          *
2682          * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2683          * without people poking at ->cpus_allowed.
2684          */
2685         cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2686         set_task_cpu(p, cpu);
2687
2688         p->state = TASK_RUNNING;
2689         task_rq_unlock(rq, &flags);
2690 #endif
2691
2692         rq = task_rq_lock(p, &flags);
2693         activate_task(rq, p, 0);
2694         trace_sched_wakeup_new(p, 1);
2695         check_preempt_curr(rq, p, WF_FORK);
2696 #ifdef CONFIG_SMP
2697         if (p->sched_class->task_woken)
2698                 p->sched_class->task_woken(rq, p);
2699 #endif
2700         task_rq_unlock(rq, &flags);
2701         put_cpu();
2702 }
2703
2704 #ifdef CONFIG_PREEMPT_NOTIFIERS
2705
2706 /**
2707  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2708  * @notifier: notifier struct to register
2709  */
2710 void preempt_notifier_register(struct preempt_notifier *notifier)
2711 {
2712         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2713 }
2714 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2715
2716 /**
2717  * preempt_notifier_unregister - no longer interested in preemption notifications
2718  * @notifier: notifier struct to unregister
2719  *
2720  * This is safe to call from within a preemption notifier.
2721  */
2722 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2723 {
2724         hlist_del(&notifier->link);
2725 }
2726 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2727
2728 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2729 {
2730         struct preempt_notifier *notifier;
2731         struct hlist_node *node;
2732
2733         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2734                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2735 }
2736
2737 static void
2738 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2739                                  struct task_struct *next)
2740 {
2741         struct preempt_notifier *notifier;
2742         struct hlist_node *node;
2743
2744         hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2745                 notifier->ops->sched_out(notifier, next);
2746 }
2747
2748 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2749
2750 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2751 {
2752 }
2753
2754 static void
2755 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2756                                  struct task_struct *next)
2757 {
2758 }
2759
2760 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2761
2762 /**
2763  * prepare_task_switch - prepare to switch tasks
2764  * @rq: the runqueue preparing to switch
2765  * @prev: the current task that is being switched out
2766  * @next: the task we are going to switch to.
2767  *
2768  * This is called with the rq lock held and interrupts off. It must
2769  * be paired with a subsequent finish_task_switch after the context
2770  * switch.
2771  *
2772  * prepare_task_switch sets up locking and calls architecture specific
2773  * hooks.
2774  */
2775 static inline void
2776 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2777                     struct task_struct *next)
2778 {
2779         fire_sched_out_preempt_notifiers(prev, next);
2780         prepare_lock_switch(rq, next);
2781         prepare_arch_switch(next);
2782 }
2783
2784 /**
2785  * finish_task_switch - clean up after a task-switch
2786  * @rq: runqueue associated with task-switch
2787  * @prev: the thread we just switched away from.
2788  *
2789  * finish_task_switch must be called after the context switch, paired
2790  * with a prepare_task_switch call before the context switch.
2791  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2792  * and do any other architecture-specific cleanup actions.
2793  *
2794  * Note that we may have delayed dropping an mm in context_switch(). If
2795  * so, we finish that here outside of the runqueue lock. (Doing it
2796  * with the lock held can cause deadlocks; see schedule() for
2797  * details.)
2798  */
2799 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2800         __releases(rq->lock)
2801 {
2802         struct mm_struct *mm = rq->prev_mm;
2803         long prev_state;
2804
2805         rq->prev_mm = NULL;
2806
2807         /*
2808          * A task struct has one reference for the use as "current".
2809          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2810          * schedule one last time. The schedule call will never return, and
2811          * the scheduled task must drop that reference.
2812          * The test for TASK_DEAD must occur while the runqueue locks are
2813          * still held, otherwise prev could be scheduled on another cpu, die
2814          * there before we look at prev->state, and then the reference would
2815          * be dropped twice.
2816          *              Manfred Spraul <manfred@colorfullife.com>
2817          */
2818         prev_state = prev->state;
2819         finish_arch_switch(prev);
2820 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821         local_irq_disable();
2822 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2823         perf_event_task_sched_in(current);
2824 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2825         local_irq_enable();
2826 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2827         finish_lock_switch(rq, prev);
2828
2829         fire_sched_in_preempt_notifiers(current);
2830         if (mm)
2831                 mmdrop(mm);
2832         if (unlikely(prev_state == TASK_DEAD)) {
2833                 /*
2834                  * Remove function-return probe instances associated with this
2835                  * task and put them back on the free list.
2836                  */
2837                 kprobe_flush_task(prev);
2838                 put_task_struct(prev);
2839         }
2840 }
2841
2842 #ifdef CONFIG_SMP
2843
2844 /* assumes rq->lock is held */
2845 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2846 {
2847         if (prev->sched_class->pre_schedule)
2848                 prev->sched_class->pre_schedule(rq, prev);
2849 }
2850
2851 /* rq->lock is NOT held, but preemption is disabled */
2852 static inline void post_schedule(struct rq *rq)
2853 {
2854         if (rq->post_schedule) {
2855                 unsigned long flags;
2856
2857                 raw_spin_lock_irqsave(&rq->lock, flags);
2858                 if (rq->curr->sched_class->post_schedule)
2859                         rq->curr->sched_class->post_schedule(rq);
2860                 raw_spin_unlock_irqrestore(&rq->lock, flags);
2861
2862                 rq->post_schedule = 0;
2863         }
2864 }
2865
2866 #else
2867
2868 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2869 {
2870 }
2871
2872 static inline void post_schedule(struct rq *rq)
2873 {
2874 }
2875
2876 #endif
2877
2878 /**
2879  * schedule_tail - first thing a freshly forked thread must call.
2880  * @prev: the thread we just switched away from.
2881  */
2882 asmlinkage void schedule_tail(struct task_struct *prev)
2883         __releases(rq->lock)
2884 {
2885         struct rq *rq = this_rq();
2886
2887         finish_task_switch(rq, prev);
2888
2889         /*
2890          * FIXME: do we need to worry about rq being invalidated by the
2891          * task_switch?
2892          */
2893         post_schedule(rq);
2894
2895 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2896         /* In this case, finish_task_switch does not reenable preemption */
2897         preempt_enable();
2898 #endif
2899         if (current->set_child_tid)
2900                 put_user(task_pid_vnr(current), current->set_child_tid);
2901 }
2902
2903 /*
2904  * context_switch - switch to the new MM and the new
2905  * thread's register state.
2906  */
2907 static inline void
2908 context_switch(struct rq *rq, struct task_struct *prev,
2909                struct task_struct *next)
2910 {
2911         struct mm_struct *mm, *oldmm;
2912
2913         prepare_task_switch(rq, prev, next);
2914         trace_sched_switch(prev, next);
2915         mm = next->mm;
2916         oldmm = prev->active_mm;
2917         /*
2918          * For paravirt, this is coupled with an exit in switch_to to
2919          * combine the page table reload and the switch backend into
2920          * one hypercall.
2921          */
2922         arch_start_context_switch(prev);
2923
2924         if (!mm) {
2925                 next->active_mm = oldmm;
2926                 atomic_inc(&oldmm->mm_count);
2927                 enter_lazy_tlb(oldmm, next);
2928         } else
2929                 switch_mm(oldmm, mm, next);
2930
2931         if (!prev->mm) {
2932                 prev->active_mm = NULL;
2933                 rq->prev_mm = oldmm;
2934         }
2935         /*
2936          * Since the runqueue lock will be released by the next
2937          * task (which is an invalid locking op but in the case
2938          * of the scheduler it's an obvious special-case), so we
2939          * do an early lockdep release here:
2940          */
2941 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2942         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2943 #endif
2944
2945         /* Here we just switch the register state and the stack. */
2946         switch_to(prev, next, prev);
2947
2948         barrier();
2949         /*
2950          * this_rq must be evaluated again because prev may have moved
2951          * CPUs since it called schedule(), thus the 'rq' on its stack
2952          * frame will be invalid.
2953          */
2954         finish_task_switch(this_rq(), prev);
2955 }
2956
2957 /*
2958  * nr_running, nr_uninterruptible and nr_context_switches:
2959  *
2960  * externally visible scheduler statistics: current number of runnable
2961  * threads, current number of uninterruptible-sleeping threads, total
2962  * number of context switches performed since bootup.
2963  */
2964 unsigned long nr_running(void)
2965 {
2966         unsigned long i, sum = 0;
2967
2968         for_each_online_cpu(i)
2969                 sum += cpu_rq(i)->nr_running;
2970
2971         return sum;
2972 }
2973
2974 unsigned long nr_uninterruptible(void)
2975 {
2976         unsigned long i, sum = 0;
2977
2978         for_each_possible_cpu(i)
2979                 sum += cpu_rq(i)->nr_uninterruptible;
2980
2981         /*
2982          * Since we read the counters lockless, it might be slightly
2983          * inaccurate. Do not allow it to go below zero though:
2984          */
2985         if (unlikely((long)sum < 0))
2986                 sum = 0;
2987
2988         return sum;
2989 }
2990
2991 unsigned long long nr_context_switches(void)
2992 {
2993         int i;
2994         unsigned long long sum = 0;
2995
2996         for_each_possible_cpu(i)
2997                 sum += cpu_rq(i)->nr_switches;
2998
2999         return sum;
3000 }
3001
3002 unsigned long nr_iowait(void)
3003 {
3004         unsigned long i, sum = 0;
3005
3006         for_each_possible_cpu(i)
3007                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3008
3009         return sum;
3010 }
3011
3012 unsigned long nr_iowait_cpu(int cpu)
3013 {
3014         struct rq *this = cpu_rq(cpu);
3015         return atomic_read(&this->nr_iowait);
3016 }
3017
3018 unsigned long this_cpu_load(void)
3019 {
3020         struct rq *this = this_rq();
3021         return this->cpu_load[0];
3022 }
3023
3024
3025 /* Variables and functions for calc_load */
3026 static atomic_long_t calc_load_tasks;
3027 static unsigned long calc_load_update;
3028 unsigned long avenrun[3];
3029 EXPORT_SYMBOL(avenrun);
3030
3031 static long calc_load_fold_active(struct rq *this_rq)
3032 {
3033         long nr_active, delta = 0;
3034
3035         nr_active = this_rq->nr_running;
3036         nr_active += (long) this_rq->nr_uninterruptible;
3037
3038         if (nr_active != this_rq->calc_load_active) {
3039                 delta = nr_active - this_rq->calc_load_active;
3040                 this_rq->calc_load_active = nr_active;
3041         }
3042
3043         return delta;
3044 }
3045
3046 static unsigned long
3047 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3048 {
3049         load *= exp;
3050         load += active * (FIXED_1 - exp);
3051         load += 1UL << (FSHIFT - 1);
3052         return load >> FSHIFT;
3053 }
3054
3055 #ifdef CONFIG_NO_HZ
3056 /*
3057  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3058  *
3059  * When making the ILB scale, we should try to pull this in as well.
3060  */
3061 static atomic_long_t calc_load_tasks_idle;
3062
3063 static void calc_load_account_idle(struct rq *this_rq)
3064 {
3065         long delta;
3066
3067         delta = calc_load_fold_active(this_rq);
3068         if (delta)
3069                 atomic_long_add(delta, &calc_load_tasks_idle);
3070 }
3071
3072 static long calc_load_fold_idle(void)
3073 {
3074         long delta = 0;
3075
3076         /*
3077          * Its got a race, we don't care...
3078          */
3079         if (atomic_long_read(&calc_load_tasks_idle))
3080                 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3081
3082         return delta;
3083 }
3084
3085 /**
3086  * fixed_power_int - compute: x^n, in O(log n) time
3087  *
3088  * @x:         base of the power
3089  * @frac_bits: fractional bits of @x
3090  * @n:         power to raise @x to.
3091  *
3092  * By exploiting the relation between the definition of the natural power
3093  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3094  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3095  * (where: n_i \elem {0, 1}, the binary vector representing n),
3096  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3097  * of course trivially computable in O(log_2 n), the length of our binary
3098  * vector.
3099  */
3100 static unsigned long
3101 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3102 {
3103         unsigned long result = 1UL << frac_bits;
3104
3105         if (n) for (;;) {
3106                 if (n & 1) {
3107                         result *= x;
3108                         result += 1UL << (frac_bits - 1);
3109                         result >>= frac_bits;
3110                 }
3111                 n >>= 1;
3112                 if (!n)
3113                         break;
3114                 x *= x;
3115                 x += 1UL << (frac_bits - 1);
3116                 x >>= frac_bits;
3117         }
3118
3119         return result;
3120 }
3121
3122 /*
3123  * a1 = a0 * e + a * (1 - e)
3124  *
3125  * a2 = a1 * e + a * (1 - e)
3126  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3127  *    = a0 * e^2 + a * (1 - e) * (1 + e)
3128  *
3129  * a3 = a2 * e + a * (1 - e)
3130  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3131  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3132  *
3133  *  ...
3134  *
3135  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3136  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3137  *    = a0 * e^n + a * (1 - e^n)
3138  *
3139  * [1] application of the geometric series:
3140  *
3141  *              n         1 - x^(n+1)
3142  *     S_n := \Sum x^i = -------------
3143  *             i=0          1 - x
3144  */
3145 static unsigned long
3146 calc_load_n(unsigned long load, unsigned long exp,
3147             unsigned long active, unsigned int n)
3148 {
3149
3150         return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3151 }
3152
3153 /*
3154  * NO_HZ can leave us missing all per-cpu ticks calling
3155  * calc_load_account_active(), but since an idle CPU folds its delta into
3156  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3157  * in the pending idle delta if our idle period crossed a load cycle boundary.
3158  *
3159  * Once we've updated the global active value, we need to apply the exponential
3160  * weights adjusted to the number of cycles missed.
3161  */
3162 static void calc_global_nohz(unsigned long ticks)
3163 {
3164         long delta, active, n;
3165
3166         if (time_before(jiffies, calc_load_update))
3167                 return;
3168
3169         /*
3170          * If we crossed a calc_load_update boundary, make sure to fold
3171          * any pending idle changes, the respective CPUs might have
3172          * missed the tick driven calc_load_account_active() update
3173          * due to NO_HZ.
3174          */
3175         delta = calc_load_fold_idle();
3176         if (delta)
3177                 atomic_long_add(delta, &calc_load_tasks);
3178
3179         /*
3180          * If we were idle for multiple load cycles, apply them.
3181          */
3182         if (ticks >= LOAD_FREQ) {
3183                 n = ticks / LOAD_FREQ;
3184
3185                 active = atomic_long_read(&calc_load_tasks);
3186                 active = active > 0 ? active * FIXED_1 : 0;
3187
3188                 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3189                 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3190                 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3191
3192                 calc_load_update += n * LOAD_FREQ;
3193         }
3194
3195         /*
3196          * Its possible the remainder of the above division also crosses
3197          * a LOAD_FREQ period, the regular check in calc_global_load()
3198          * which comes after this will take care of that.
3199          *
3200          * Consider us being 11 ticks before a cycle completion, and us
3201          * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3202          * age us 4 cycles, and the test in calc_global_load() will
3203          * pick up the final one.
3204          */
3205 }
3206 #else
3207 static void calc_load_account_idle(struct rq *this_rq)
3208 {
3209 }
3210
3211 static inline long calc_load_fold_idle(void)
3212 {
3213         return 0;
3214 }
3215
3216 static void calc_global_nohz(unsigned long ticks)
3217 {
3218 }
3219 #endif
3220
3221 /**
3222  * get_avenrun - get the load average array
3223  * @loads:      pointer to dest load array
3224  * @offset:     offset to add
3225  * @shift:      shift count to shift the result left
3226  *
3227  * These values are estimates at best, so no need for locking.
3228  */
3229 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3230 {
3231         loads[0] = (avenrun[0] + offset) << shift;
3232         loads[1] = (avenrun[1] + offset) << shift;
3233         loads[2] = (avenrun[2] + offset) << shift;
3234 }
3235
3236 /*
3237  * calc_load - update the avenrun load estimates 10 ticks after the
3238  * CPUs have updated calc_load_tasks.
3239  */
3240 void calc_global_load(unsigned long ticks)
3241 {
3242         long active;
3243
3244         calc_global_nohz(ticks);
3245
3246         if (time_before(jiffies, calc_load_update + 10))
3247                 return;
3248
3249         active = atomic_long_read(&calc_load_tasks);
3250         active = active > 0 ? active * FIXED_1 : 0;
3251
3252         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3253         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3254         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3255
3256         calc_load_update += LOAD_FREQ;
3257 }
3258
3259 /*
3260  * Called from update_cpu_load() to periodically update this CPU's
3261  * active count.
3262  */
3263 static void calc_load_account_active(struct rq *this_rq)
3264 {
3265         long delta;
3266
3267         if (time_before(jiffies, this_rq->calc_load_update))
3268                 return;
3269
3270         delta  = calc_load_fold_active(this_rq);
3271         delta += calc_load_fold_idle();
3272         if (delta)
3273                 atomic_long_add(delta, &calc_load_tasks);
3274
3275         this_rq->calc_load_update += LOAD_FREQ;
3276 }
3277
3278 /*
3279  * The exact cpuload at various idx values, calculated at every tick would be
3280  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3281  *
3282  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3283  * on nth tick when cpu may be busy, then we have:
3284  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3285  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3286  *
3287  * decay_load_missed() below does efficient calculation of
3288  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3289  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3290  *
3291  * The calculation is approximated on a 128 point scale.
3292  * degrade_zero_ticks is the number of ticks after which load at any
3293  * particular idx is approximated to be zero.
3294  * degrade_factor is a precomputed table, a row for each load idx.
3295  * Each column corresponds to degradation factor for a power of two ticks,
3296  * based on 128 point scale.
3297  * Example:
3298  * row 2, col 3 (=12) says that the degradation at load idx 2 after
3299  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3300  *
3301  * With this power of 2 load factors, we can degrade the load n times
3302  * by looking at 1 bits in n and doing as many mult/shift instead of
3303  * n mult/shifts needed by the exact degradation.
3304  */
3305 #define DEGRADE_SHIFT           7
3306 static const unsigned char
3307                 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3308 static const unsigned char
3309                 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3310                                         {0, 0, 0, 0, 0, 0, 0, 0},
3311                                         {64, 32, 8, 0, 0, 0, 0, 0},
3312                                         {96, 72, 40, 12, 1, 0, 0},
3313                                         {112, 98, 75, 43, 15, 1, 0},
3314                                         {120, 112, 98, 76, 45, 16, 2} };
3315
3316 /*
3317  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3318  * would be when CPU is idle and so we just decay the old load without
3319  * adding any new load.
3320  */
3321 static unsigned long
3322 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3323 {
3324         int j = 0;
3325
3326         if (!missed_updates)
3327                 return load;
3328
3329         if (missed_updates >= degrade_zero_ticks[idx])
3330                 return 0;
3331
3332         if (idx == 1)
3333                 return load >> missed_updates;
3334
3335         while (missed_updates) {
3336                 if (missed_updates % 2)
3337                         load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3338
3339                 missed_updates >>= 1;
3340                 j++;
3341         }
3342         return load;
3343 }
3344
3345 /*
3346  * Update rq->cpu_load[] statistics. This function is usually called every
3347  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3348  * every tick. We fix it up based on jiffies.
3349  */
3350 static void update_cpu_load(struct rq *this_rq)
3351 {
3352         unsigned long this_load = this_rq->load.weight;
3353         unsigned long curr_jiffies = jiffies;
3354         unsigned long pending_updates;
3355         int i, scale;
3356
3357         this_rq->nr_load_updates++;
3358
3359         /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3360         if (curr_jiffies == this_rq->last_load_update_tick)
3361                 return;
3362
3363         pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3364         this_rq->last_load_update_tick = curr_jiffies;
3365
3366         /* Update our load: */
3367         this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3368         for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3369                 unsigned long old_load, new_load;
3370
3371                 /* scale is effectively 1 << i now, and >> i divides by scale */
3372
3373                 old_load = this_rq->cpu_load[i];
3374                 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3375                 new_load = this_load;
3376                 /*
3377                  * Round up the averaging division if load is increasing. This
3378                  * prevents us from getting stuck on 9 if the load is 10, for
3379                  * example.
3380                  */
3381                 if (new_load > old_load)
3382                         new_load += scale - 1;
3383
3384                 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3385         }
3386
3387         sched_avg_update(this_rq);
3388 }
3389
3390 static void update_cpu_load_active(struct rq *this_rq)
3391 {
3392         update_cpu_load(this_rq);
3393
3394         calc_load_account_active(this_rq);
3395 }
3396
3397 #ifdef CONFIG_SMP
3398
3399 /*
3400  * sched_exec - execve() is a valuable balancing opportunity, because at
3401  * this point the task has the smallest effective memory and cache footprint.
3402  */
3403 void sched_exec(void)
3404 {
3405         struct task_struct *p = current;
3406         unsigned long flags;
3407         struct rq *rq;
3408         int dest_cpu;
3409
3410         rq = task_rq_lock(p, &flags);
3411         dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3412         if (dest_cpu == smp_processor_id())
3413                 goto unlock;
3414
3415         /*
3416          * select_task_rq() can race against ->cpus_allowed
3417          */
3418         if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3419             likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3420                 struct migration_arg arg = { p, dest_cpu };
3421
3422                 task_rq_unlock(rq, &flags);
3423                 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3424                 return;
3425         }
3426 unlock:
3427         task_rq_unlock(rq, &flags);
3428 }
3429
3430 #endif
3431
3432 DEFINE_PER_CPU(struct kernel_stat, kstat);
3433
3434 EXPORT_PER_CPU_SYMBOL(kstat);
3435
3436 /*
3437  * Return any ns on the sched_clock that have not yet been accounted in
3438  * @p in case that task is currently running.
3439  *
3440  * Called with task_rq_lock() held on @rq.
3441  */
3442 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3443 {
3444         u64 ns = 0;
3445
3446         if (task_current(rq, p)) {
3447                 update_rq_clock(rq);
3448                 ns = rq->clock_task - p->se.exec_start;
3449                 if ((s64)ns < 0)
3450                         ns = 0;
3451         }
3452
3453         return ns;
3454 }
3455
3456 unsigned long long task_delta_exec(struct task_struct *p)
3457 {
3458         unsigned long flags;
3459         struct rq *rq;
3460         u64 ns = 0;
3461
3462         rq = task_rq_lock(p, &flags);
3463         ns = do_task_delta_exec(p, rq);
3464         task_rq_unlock(rq, &flags);
3465
3466         return ns;
3467 }
3468
3469 /*
3470  * Return accounted runtime for the task.
3471  * In case the task is currently running, return the runtime plus current's
3472  * pending runtime that have not been accounted yet.
3473  */
3474 unsigned long long task_sched_runtime(struct task_struct *p)
3475 {
3476         unsigned long flags;
3477         struct rq *rq;
3478         u64 ns = 0;
3479
3480         rq = task_rq_lock(p, &flags);
3481         ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3482         task_rq_unlock(rq, &flags);
3483
3484         return ns;
3485 }
3486
3487 /*
3488  * Return sum_exec_runtime for the thread group.
3489  * In case the task is currently running, return the sum plus current's
3490  * pending runtime that have not been accounted yet.
3491  *
3492  * Note that the thread group might have other running tasks as well,
3493  * so the return value not includes other pending runtime that other
3494  * running tasks might have.
3495  */
3496 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3497 {
3498         struct task_cputime totals;
3499         unsigned long flags;
3500         struct rq *rq;
3501         u64 ns;
3502
3503         rq = task_rq_lock(p, &flags);
3504         thread_group_cputime(p, &totals);
3505         ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3506         task_rq_unlock(rq, &flags);
3507
3508         return ns;
3509 }
3510
3511 /*
3512  * Account user cpu time to a process.
3513  * @p: the process that the cpu time gets accounted to
3514  * @cputime: the cpu time spent in user space since the last update
3515  * @cputime_scaled: cputime scaled by cpu frequency
3516  */
3517 void account_user_time(struct task_struct *p, cputime_t cputime,
3518                        cputime_t cputime_scaled)
3519 {
3520         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3521         cputime64_t tmp;
3522
3523         /* Add user time to process. */
3524         p->utime = cputime_add(p->utime, cputime);
3525         p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3526         account_group_user_time(p, cputime);
3527
3528         /* Add user time to cpustat. */
3529         tmp = cputime_to_cputime64(cputime);
3530         if (TASK_NICE(p) > 0)
3531                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3532         else
3533                 cpustat->user = cputime64_add(cpustat->user, tmp);
3534
3535         cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3536         /* Account for user time used */
3537         acct_update_integrals(p);
3538 }
3539
3540 /*
3541  * Account guest cpu time to a process.
3542  * @p: the process that the cpu time gets accounted to
3543  * @cputime: the cpu time spent in virtual machine since the last update
3544  * @cputime_scaled: cputime scaled by cpu frequency
3545  */
3546 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3547                                cputime_t cputime_scaled)
3548 {
3549         cputime64_t tmp;
3550         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3551
3552         tmp = cputime_to_cputime64(cputime);
3553