hrtimer: Handle remaining time proper for TIME_LOW_RES
[pandora-kernel.git] / kernel / power / swap.c
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/buffer_head.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/pm.h>
27 #include <linux/slab.h>
28 #include <linux/lzo.h>
29 #include <linux/vmalloc.h>
30 #include <linux/cpumask.h>
31 #include <linux/atomic.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  *      The swap map is a data structure used for keeping track of each page
41  *      written to a swap partition.  It consists of many swap_map_page
42  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43  *      These structures are stored on the swap and linked together with the
44  *      help of the .next_swap member.
45  *
46  *      The swap map is created during suspend.  The swap map pages are
47  *      allocated and populated one at a time, so we only need one memory
48  *      page to set up the entire structure.
49  *
50  *      During resume we pick up all swap_map_page structures into a list.
51  */
52
53 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
54
55 /*
56  * Number of free pages that are not high.
57  */
58 static inline unsigned long low_free_pages(void)
59 {
60         return nr_free_pages() - nr_free_highpages();
61 }
62
63 /*
64  * Number of pages required to be kept free while writing the image. Always
65  * half of all available low pages before the writing starts.
66  */
67 static inline unsigned long reqd_free_pages(void)
68 {
69         return low_free_pages() / 2;
70 }
71
72 struct swap_map_page {
73         sector_t entries[MAP_PAGE_ENTRIES];
74         sector_t next_swap;
75 };
76
77 struct swap_map_page_list {
78         struct swap_map_page *map;
79         struct swap_map_page_list *next;
80 };
81
82 /**
83  *      The swap_map_handle structure is used for handling swap in
84  *      a file-alike way
85  */
86
87 struct swap_map_handle {
88         struct swap_map_page *cur;
89         struct swap_map_page_list *maps;
90         sector_t cur_swap;
91         sector_t first_sector;
92         unsigned int k;
93         unsigned long reqd_free_pages;
94         u32 crc32;
95 };
96
97 struct swsusp_header {
98         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99                       sizeof(u32)];
100         u32     crc32;
101         sector_t image;
102         unsigned int flags;     /* Flags to pass to the "boot" kernel */
103         char    orig_sig[10];
104         char    sig[10];
105 } __attribute__((packed));
106
107 static struct swsusp_header *swsusp_header;
108
109 /**
110  *      The following functions are used for tracing the allocated
111  *      swap pages, so that they can be freed in case of an error.
112  */
113
114 struct swsusp_extent {
115         struct rb_node node;
116         unsigned long start;
117         unsigned long end;
118 };
119
120 static struct rb_root swsusp_extents = RB_ROOT;
121
122 static int swsusp_extents_insert(unsigned long swap_offset)
123 {
124         struct rb_node **new = &(swsusp_extents.rb_node);
125         struct rb_node *parent = NULL;
126         struct swsusp_extent *ext;
127
128         /* Figure out where to put the new node */
129         while (*new) {
130                 ext = container_of(*new, struct swsusp_extent, node);
131                 parent = *new;
132                 if (swap_offset < ext->start) {
133                         /* Try to merge */
134                         if (swap_offset == ext->start - 1) {
135                                 ext->start--;
136                                 return 0;
137                         }
138                         new = &((*new)->rb_left);
139                 } else if (swap_offset > ext->end) {
140                         /* Try to merge */
141                         if (swap_offset == ext->end + 1) {
142                                 ext->end++;
143                                 return 0;
144                         }
145                         new = &((*new)->rb_right);
146                 } else {
147                         /* It already is in the tree */
148                         return -EINVAL;
149                 }
150         }
151         /* Add the new node and rebalance the tree. */
152         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153         if (!ext)
154                 return -ENOMEM;
155
156         ext->start = swap_offset;
157         ext->end = swap_offset;
158         rb_link_node(&ext->node, parent, new);
159         rb_insert_color(&ext->node, &swsusp_extents);
160         return 0;
161 }
162
163 /**
164  *      alloc_swapdev_block - allocate a swap page and register that it has
165  *      been allocated, so that it can be freed in case of an error.
166  */
167
168 sector_t alloc_swapdev_block(int swap)
169 {
170         unsigned long offset;
171
172         offset = swp_offset(get_swap_page_of_type(swap));
173         if (offset) {
174                 if (swsusp_extents_insert(offset))
175                         swap_free(swp_entry(swap, offset));
176                 else
177                         return swapdev_block(swap, offset);
178         }
179         return 0;
180 }
181
182 /**
183  *      free_all_swap_pages - free swap pages allocated for saving image data.
184  *      It also frees the extents used to register which swap entries had been
185  *      allocated.
186  */
187
188 void free_all_swap_pages(int swap)
189 {
190         struct rb_node *node;
191
192         while ((node = swsusp_extents.rb_node)) {
193                 struct swsusp_extent *ext;
194                 unsigned long offset;
195
196                 ext = container_of(node, struct swsusp_extent, node);
197                 rb_erase(node, &swsusp_extents);
198                 for (offset = ext->start; offset <= ext->end; offset++)
199                         swap_free(swp_entry(swap, offset));
200
201                 kfree(ext);
202         }
203 }
204
205 int swsusp_swap_in_use(void)
206 {
207         return (swsusp_extents.rb_node != NULL);
208 }
209
210 /*
211  * General things
212  */
213
214 static unsigned short root_swap = 0xffff;
215 struct block_device *hib_resume_bdev;
216
217 /*
218  * Saving part
219  */
220
221 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
222 {
223         int error;
224
225         hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
226         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
227             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
228                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
229                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
230                 swsusp_header->image = handle->first_sector;
231                 swsusp_header->flags = flags;
232                 if (flags & SF_CRC32_MODE)
233                         swsusp_header->crc32 = handle->crc32;
234                 error = hib_bio_write_page(swsusp_resume_block,
235                                         swsusp_header, NULL);
236         } else {
237                 printk(KERN_ERR "PM: Swap header not found!\n");
238                 error = -ENODEV;
239         }
240         return error;
241 }
242
243 /**
244  *      swsusp_swap_check - check if the resume device is a swap device
245  *      and get its index (if so)
246  *
247  *      This is called before saving image
248  */
249 static int swsusp_swap_check(void)
250 {
251         int res;
252
253         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
254                         &hib_resume_bdev);
255         if (res < 0)
256                 return res;
257
258         root_swap = res;
259         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
260         if (res)
261                 return res;
262
263         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
264         if (res < 0)
265                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
266
267         return res;
268 }
269
270 /**
271  *      write_page - Write one page to given swap location.
272  *      @buf:           Address we're writing.
273  *      @offset:        Offset of the swap page we're writing to.
274  *      @bio_chain:     Link the next write BIO here
275  */
276
277 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
278 {
279         void *src;
280         int ret;
281
282         if (!offset)
283                 return -ENOSPC;
284
285         if (bio_chain) {
286                 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
287                                               __GFP_NORETRY);
288                 if (src) {
289                         copy_page(src, buf);
290                 } else {
291                         ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
292                         if (ret)
293                                 return ret;
294                         src = (void *)__get_free_page(__GFP_WAIT |
295                                                       __GFP_NOWARN |
296                                                       __GFP_NORETRY);
297                         if (src) {
298                                 copy_page(src, buf);
299                         } else {
300                                 WARN_ON_ONCE(1);
301                                 bio_chain = NULL;       /* Go synchronous */
302                                 src = buf;
303                         }
304                 }
305         } else {
306                 src = buf;
307         }
308         return hib_bio_write_page(offset, src, bio_chain);
309 }
310
311 static void release_swap_writer(struct swap_map_handle *handle)
312 {
313         if (handle->cur)
314                 free_page((unsigned long)handle->cur);
315         handle->cur = NULL;
316 }
317
318 static int get_swap_writer(struct swap_map_handle *handle)
319 {
320         int ret;
321
322         ret = swsusp_swap_check();
323         if (ret) {
324                 if (ret != -ENOSPC)
325                         printk(KERN_ERR "PM: Cannot find swap device, try "
326                                         "swapon -a.\n");
327                 return ret;
328         }
329         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
330         if (!handle->cur) {
331                 ret = -ENOMEM;
332                 goto err_close;
333         }
334         handle->cur_swap = alloc_swapdev_block(root_swap);
335         if (!handle->cur_swap) {
336                 ret = -ENOSPC;
337                 goto err_rel;
338         }
339         handle->k = 0;
340         handle->reqd_free_pages = reqd_free_pages();
341         handle->first_sector = handle->cur_swap;
342         return 0;
343 err_rel:
344         release_swap_writer(handle);
345 err_close:
346         swsusp_close(FMODE_WRITE);
347         return ret;
348 }
349
350 static int swap_write_page(struct swap_map_handle *handle, void *buf,
351                                 struct bio **bio_chain)
352 {
353         int error = 0;
354         sector_t offset;
355
356         if (!handle->cur)
357                 return -EINVAL;
358         offset = alloc_swapdev_block(root_swap);
359         error = write_page(buf, offset, bio_chain);
360         if (error)
361                 return error;
362         handle->cur->entries[handle->k++] = offset;
363         if (handle->k >= MAP_PAGE_ENTRIES) {
364                 offset = alloc_swapdev_block(root_swap);
365                 if (!offset)
366                         return -ENOSPC;
367                 handle->cur->next_swap = offset;
368                 error = write_page(handle->cur, handle->cur_swap, bio_chain);
369                 if (error)
370                         goto out;
371                 clear_page(handle->cur);
372                 handle->cur_swap = offset;
373                 handle->k = 0;
374
375                 if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
376                         error = hib_wait_on_bio_chain(bio_chain);
377                         if (error)
378                                 goto out;
379                         /*
380                          * Recalculate the number of required free pages, to
381                          * make sure we never take more than half.
382                          */
383                         handle->reqd_free_pages = reqd_free_pages();
384                 }
385         }
386  out:
387         return error;
388 }
389
390 static int flush_swap_writer(struct swap_map_handle *handle)
391 {
392         if (handle->cur && handle->cur_swap)
393                 return write_page(handle->cur, handle->cur_swap, NULL);
394         else
395                 return -EINVAL;
396 }
397
398 static int swap_writer_finish(struct swap_map_handle *handle,
399                 unsigned int flags, int error)
400 {
401         if (!error) {
402                 flush_swap_writer(handle);
403                 printk(KERN_INFO "PM: S");
404                 error = mark_swapfiles(handle, flags);
405                 printk("|\n");
406         }
407
408         if (error)
409                 free_all_swap_pages(root_swap);
410         release_swap_writer(handle);
411         swsusp_close(FMODE_WRITE);
412
413         return error;
414 }
415
416 /* We need to remember how much compressed data we need to read. */
417 #define LZO_HEADER      sizeof(size_t)
418
419 /* Number of pages/bytes we'll compress at one time. */
420 #define LZO_UNC_PAGES   32
421 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
422
423 /* Number of pages/bytes we need for compressed data (worst case). */
424 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
425                                      LZO_HEADER, PAGE_SIZE)
426 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
427
428 /* Maximum number of threads for compression/decompression. */
429 #define LZO_THREADS     3
430
431 /* Minimum/maximum number of pages for read buffering. */
432 #define LZO_MIN_RD_PAGES        1024
433 #define LZO_MAX_RD_PAGES        8192
434
435
436 /**
437  *      save_image - save the suspend image data
438  */
439
440 static int save_image(struct swap_map_handle *handle,
441                       struct snapshot_handle *snapshot,
442                       unsigned int nr_to_write)
443 {
444         unsigned int m;
445         int ret;
446         int nr_pages;
447         int err2;
448         struct bio *bio;
449         struct timeval start;
450         struct timeval stop;
451
452         printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
453                 nr_to_write);
454         m = nr_to_write / 100;
455         if (!m)
456                 m = 1;
457         nr_pages = 0;
458         bio = NULL;
459         do_gettimeofday(&start);
460         while (1) {
461                 ret = snapshot_read_next(snapshot);
462                 if (ret <= 0)
463                         break;
464                 ret = swap_write_page(handle, data_of(*snapshot), &bio);
465                 if (ret)
466                         break;
467                 if (!(nr_pages % m))
468                         printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
469                 nr_pages++;
470         }
471         err2 = hib_wait_on_bio_chain(&bio);
472         do_gettimeofday(&stop);
473         if (!ret)
474                 ret = err2;
475         if (!ret)
476                 printk(KERN_CONT "\b\b\b\bdone\n");
477         else
478                 printk(KERN_CONT "\n");
479         swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
480         return ret;
481 }
482
483 /**
484  * Structure used for CRC32.
485  */
486 struct crc_data {
487         struct task_struct *thr;                  /* thread */
488         atomic_t ready;                           /* ready to start flag */
489         atomic_t stop;                            /* ready to stop flag */
490         unsigned run_threads;                     /* nr current threads */
491         wait_queue_head_t go;                     /* start crc update */
492         wait_queue_head_t done;                   /* crc update done */
493         u32 *crc32;                               /* points to handle's crc32 */
494         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
495         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
496 };
497
498 /**
499  * CRC32 update function that runs in its own thread.
500  */
501 static int crc32_threadfn(void *data)
502 {
503         struct crc_data *d = data;
504         unsigned i;
505
506         while (1) {
507                 wait_event(d->go, atomic_read(&d->ready) ||
508                                   kthread_should_stop());
509                 if (kthread_should_stop()) {
510                         d->thr = NULL;
511                         atomic_set(&d->stop, 1);
512                         wake_up(&d->done);
513                         break;
514                 }
515                 atomic_set(&d->ready, 0);
516
517                 for (i = 0; i < d->run_threads; i++)
518                         *d->crc32 = crc32_le(*d->crc32,
519                                              d->unc[i], *d->unc_len[i]);
520                 atomic_set(&d->stop, 1);
521                 wake_up(&d->done);
522         }
523         return 0;
524 }
525 /**
526  * Structure used for LZO data compression.
527  */
528 struct cmp_data {
529         struct task_struct *thr;                  /* thread */
530         atomic_t ready;                           /* ready to start flag */
531         atomic_t stop;                            /* ready to stop flag */
532         int ret;                                  /* return code */
533         wait_queue_head_t go;                     /* start compression */
534         wait_queue_head_t done;                   /* compression done */
535         size_t unc_len;                           /* uncompressed length */
536         size_t cmp_len;                           /* compressed length */
537         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
538         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
539         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
540 };
541
542 /**
543  * Compression function that runs in its own thread.
544  */
545 static int lzo_compress_threadfn(void *data)
546 {
547         struct cmp_data *d = data;
548
549         while (1) {
550                 wait_event(d->go, atomic_read(&d->ready) ||
551                                   kthread_should_stop());
552                 if (kthread_should_stop()) {
553                         d->thr = NULL;
554                         d->ret = -1;
555                         atomic_set(&d->stop, 1);
556                         wake_up(&d->done);
557                         break;
558                 }
559                 atomic_set(&d->ready, 0);
560
561                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
562                                           d->cmp + LZO_HEADER, &d->cmp_len,
563                                           d->wrk);
564                 atomic_set(&d->stop, 1);
565                 wake_up(&d->done);
566         }
567         return 0;
568 }
569
570 /**
571  * save_image_lzo - Save the suspend image data compressed with LZO.
572  * @handle: Swap mam handle to use for saving the image.
573  * @snapshot: Image to read data from.
574  * @nr_to_write: Number of pages to save.
575  */
576 static int save_image_lzo(struct swap_map_handle *handle,
577                           struct snapshot_handle *snapshot,
578                           unsigned int nr_to_write)
579 {
580         unsigned int m;
581         int ret = 0;
582         int nr_pages;
583         int err2;
584         struct bio *bio;
585         struct timeval start;
586         struct timeval stop;
587         size_t off;
588         unsigned thr, run_threads, nr_threads;
589         unsigned char *page = NULL;
590         struct cmp_data *data = NULL;
591         struct crc_data *crc = NULL;
592
593         /*
594          * We'll limit the number of threads for compression to limit memory
595          * footprint.
596          */
597         nr_threads = num_online_cpus() - 1;
598         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
599
600         page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
601         if (!page) {
602                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
603                 ret = -ENOMEM;
604                 goto out_clean;
605         }
606
607         data = vmalloc(sizeof(*data) * nr_threads);
608         if (!data) {
609                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
610                 ret = -ENOMEM;
611                 goto out_clean;
612         }
613         for (thr = 0; thr < nr_threads; thr++)
614                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
615
616         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
617         if (!crc) {
618                 printk(KERN_ERR "PM: Failed to allocate crc\n");
619                 ret = -ENOMEM;
620                 goto out_clean;
621         }
622         memset(crc, 0, offsetof(struct crc_data, go));
623
624         /*
625          * Start the compression threads.
626          */
627         for (thr = 0; thr < nr_threads; thr++) {
628                 init_waitqueue_head(&data[thr].go);
629                 init_waitqueue_head(&data[thr].done);
630
631                 data[thr].thr = kthread_run(lzo_compress_threadfn,
632                                             &data[thr],
633                                             "image_compress/%u", thr);
634                 if (IS_ERR(data[thr].thr)) {
635                         data[thr].thr = NULL;
636                         printk(KERN_ERR
637                                "PM: Cannot start compression threads\n");
638                         ret = -ENOMEM;
639                         goto out_clean;
640                 }
641         }
642
643         /*
644          * Start the CRC32 thread.
645          */
646         init_waitqueue_head(&crc->go);
647         init_waitqueue_head(&crc->done);
648
649         handle->crc32 = 0;
650         crc->crc32 = &handle->crc32;
651         for (thr = 0; thr < nr_threads; thr++) {
652                 crc->unc[thr] = data[thr].unc;
653                 crc->unc_len[thr] = &data[thr].unc_len;
654         }
655
656         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
657         if (IS_ERR(crc->thr)) {
658                 crc->thr = NULL;
659                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
660                 ret = -ENOMEM;
661                 goto out_clean;
662         }
663
664         /*
665          * Adjust the number of required free pages after all allocations have
666          * been done. We don't want to run out of pages when writing.
667          */
668         handle->reqd_free_pages = reqd_free_pages();
669
670         printk(KERN_INFO
671                 "PM: Using %u thread(s) for compression.\n"
672                 "PM: Compressing and saving image data (%u pages) ...     ",
673                 nr_threads, nr_to_write);
674         m = nr_to_write / 100;
675         if (!m)
676                 m = 1;
677         nr_pages = 0;
678         bio = NULL;
679         do_gettimeofday(&start);
680         for (;;) {
681                 for (thr = 0; thr < nr_threads; thr++) {
682                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
683                                 ret = snapshot_read_next(snapshot);
684                                 if (ret < 0)
685                                         goto out_finish;
686
687                                 if (!ret)
688                                         break;
689
690                                 memcpy(data[thr].unc + off,
691                                        data_of(*snapshot), PAGE_SIZE);
692
693                                 if (!(nr_pages % m))
694                                         printk(KERN_CONT "\b\b\b\b%3d%%",
695                                                nr_pages / m);
696                                 nr_pages++;
697                         }
698                         if (!off)
699                                 break;
700
701                         data[thr].unc_len = off;
702
703                         atomic_set(&data[thr].ready, 1);
704                         wake_up(&data[thr].go);
705                 }
706
707                 if (!thr)
708                         break;
709
710                 crc->run_threads = thr;
711                 atomic_set(&crc->ready, 1);
712                 wake_up(&crc->go);
713
714                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
715                         wait_event(data[thr].done,
716                                    atomic_read(&data[thr].stop));
717                         atomic_set(&data[thr].stop, 0);
718
719                         ret = data[thr].ret;
720
721                         if (ret < 0) {
722                                 printk(KERN_ERR "PM: LZO compression failed\n");
723                                 goto out_finish;
724                         }
725
726                         if (unlikely(!data[thr].cmp_len ||
727                                      data[thr].cmp_len >
728                                      lzo1x_worst_compress(data[thr].unc_len))) {
729                                 printk(KERN_ERR
730                                        "PM: Invalid LZO compressed length\n");
731                                 ret = -1;
732                                 goto out_finish;
733                         }
734
735                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
736
737                         /*
738                          * Given we are writing one page at a time to disk, we
739                          * copy that much from the buffer, although the last
740                          * bit will likely be smaller than full page. This is
741                          * OK - we saved the length of the compressed data, so
742                          * any garbage at the end will be discarded when we
743                          * read it.
744                          */
745                         for (off = 0;
746                              off < LZO_HEADER + data[thr].cmp_len;
747                              off += PAGE_SIZE) {
748                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
749
750                                 ret = swap_write_page(handle, page, &bio);
751                                 if (ret)
752                                         goto out_finish;
753                         }
754                 }
755
756                 wait_event(crc->done, atomic_read(&crc->stop));
757                 atomic_set(&crc->stop, 0);
758         }
759
760 out_finish:
761         err2 = hib_wait_on_bio_chain(&bio);
762         do_gettimeofday(&stop);
763         if (!ret)
764                 ret = err2;
765         if (!ret) {
766                 printk(KERN_CONT "\b\b\b\bdone\n");
767         } else {
768                 printk(KERN_CONT "\n");
769         }
770         swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
771 out_clean:
772         if (crc) {
773                 if (crc->thr)
774                         kthread_stop(crc->thr);
775                 kfree(crc);
776         }
777         if (data) {
778                 for (thr = 0; thr < nr_threads; thr++)
779                         if (data[thr].thr)
780                                 kthread_stop(data[thr].thr);
781                 vfree(data);
782         }
783         if (page) free_page((unsigned long)page);
784
785         return ret;
786 }
787
788 /**
789  *      enough_swap - Make sure we have enough swap to save the image.
790  *
791  *      Returns TRUE or FALSE after checking the total amount of swap
792  *      space avaiable from the resume partition.
793  */
794
795 static int enough_swap(unsigned int nr_pages, unsigned int flags)
796 {
797         unsigned int free_swap = count_swap_pages(root_swap, 1);
798         unsigned int required;
799
800         pr_debug("PM: Free swap pages: %u\n", free_swap);
801
802         required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
803                 nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
804         return free_swap > required;
805 }
806
807 /**
808  *      swsusp_write - Write entire image and metadata.
809  *      @flags: flags to pass to the "boot" kernel in the image header
810  *
811  *      It is important _NOT_ to umount filesystems at this point. We want
812  *      them synced (in case something goes wrong) but we DO not want to mark
813  *      filesystem clean: it is not. (And it does not matter, if we resume
814  *      correctly, we'll mark system clean, anyway.)
815  */
816
817 int swsusp_write(unsigned int flags)
818 {
819         struct swap_map_handle handle;
820         struct snapshot_handle snapshot;
821         struct swsusp_info *header;
822         unsigned long pages;
823         int error;
824
825         pages = snapshot_get_image_size();
826         error = get_swap_writer(&handle);
827         if (error) {
828                 printk(KERN_ERR "PM: Cannot get swap writer\n");
829                 return error;
830         }
831         if (!enough_swap(pages, flags)) {
832                 printk(KERN_ERR "PM: Not enough free swap\n");
833                 error = -ENOSPC;
834                 goto out_finish;
835         }
836         memset(&snapshot, 0, sizeof(struct snapshot_handle));
837         error = snapshot_read_next(&snapshot);
838         if (error < PAGE_SIZE) {
839                 if (error >= 0)
840                         error = -EFAULT;
841
842                 goto out_finish;
843         }
844         header = (struct swsusp_info *)data_of(snapshot);
845         error = swap_write_page(&handle, header, NULL);
846         if (!error) {
847                 error = (flags & SF_NOCOMPRESS_MODE) ?
848                         save_image(&handle, &snapshot, pages - 1) :
849                         save_image_lzo(&handle, &snapshot, pages - 1);
850         }
851 out_finish:
852         error = swap_writer_finish(&handle, flags, error);
853         return error;
854 }
855
856 /**
857  *      The following functions allow us to read data using a swap map
858  *      in a file-alike way
859  */
860
861 static void release_swap_reader(struct swap_map_handle *handle)
862 {
863         struct swap_map_page_list *tmp;
864
865         while (handle->maps) {
866                 if (handle->maps->map)
867                         free_page((unsigned long)handle->maps->map);
868                 tmp = handle->maps;
869                 handle->maps = handle->maps->next;
870                 kfree(tmp);
871         }
872         handle->cur = NULL;
873 }
874
875 static int get_swap_reader(struct swap_map_handle *handle,
876                 unsigned int *flags_p)
877 {
878         int error;
879         struct swap_map_page_list *tmp, *last;
880         sector_t offset;
881
882         *flags_p = swsusp_header->flags;
883
884         if (!swsusp_header->image) /* how can this happen? */
885                 return -EINVAL;
886
887         handle->cur = NULL;
888         last = handle->maps = NULL;
889         offset = swsusp_header->image;
890         while (offset) {
891                 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
892                 if (!tmp) {
893                         release_swap_reader(handle);
894                         return -ENOMEM;
895                 }
896                 memset(tmp, 0, sizeof(*tmp));
897                 if (!handle->maps)
898                         handle->maps = tmp;
899                 if (last)
900                         last->next = tmp;
901                 last = tmp;
902
903                 tmp->map = (struct swap_map_page *)
904                            __get_free_page(__GFP_WAIT | __GFP_HIGH);
905                 if (!tmp->map) {
906                         release_swap_reader(handle);
907                         return -ENOMEM;
908                 }
909
910                 error = hib_bio_read_page(offset, tmp->map, NULL);
911                 if (error) {
912                         release_swap_reader(handle);
913                         return error;
914                 }
915                 offset = tmp->map->next_swap;
916         }
917         handle->k = 0;
918         handle->cur = handle->maps->map;
919         return 0;
920 }
921
922 static int swap_read_page(struct swap_map_handle *handle, void *buf,
923                                 struct bio **bio_chain)
924 {
925         sector_t offset;
926         int error;
927         struct swap_map_page_list *tmp;
928
929         if (!handle->cur)
930                 return -EINVAL;
931         offset = handle->cur->entries[handle->k];
932         if (!offset)
933                 return -EFAULT;
934         error = hib_bio_read_page(offset, buf, bio_chain);
935         if (error)
936                 return error;
937         if (++handle->k >= MAP_PAGE_ENTRIES) {
938                 handle->k = 0;
939                 free_page((unsigned long)handle->maps->map);
940                 tmp = handle->maps;
941                 handle->maps = handle->maps->next;
942                 kfree(tmp);
943                 if (!handle->maps)
944                         release_swap_reader(handle);
945                 else
946                         handle->cur = handle->maps->map;
947         }
948         return error;
949 }
950
951 static int swap_reader_finish(struct swap_map_handle *handle)
952 {
953         release_swap_reader(handle);
954
955         return 0;
956 }
957
958 /**
959  *      load_image - load the image using the swap map handle
960  *      @handle and the snapshot handle @snapshot
961  *      (assume there are @nr_pages pages to load)
962  */
963
964 static int load_image(struct swap_map_handle *handle,
965                       struct snapshot_handle *snapshot,
966                       unsigned int nr_to_read)
967 {
968         unsigned int m;
969         int ret = 0;
970         struct timeval start;
971         struct timeval stop;
972         struct bio *bio;
973         int err2;
974         unsigned nr_pages;
975
976         printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
977                 nr_to_read);
978         m = nr_to_read / 100;
979         if (!m)
980                 m = 1;
981         nr_pages = 0;
982         bio = NULL;
983         do_gettimeofday(&start);
984         for ( ; ; ) {
985                 ret = snapshot_write_next(snapshot);
986                 if (ret <= 0)
987                         break;
988                 ret = swap_read_page(handle, data_of(*snapshot), &bio);
989                 if (ret)
990                         break;
991                 if (snapshot->sync_read)
992                         ret = hib_wait_on_bio_chain(&bio);
993                 if (ret)
994                         break;
995                 if (!(nr_pages % m))
996                         printk("\b\b\b\b%3d%%", nr_pages / m);
997                 nr_pages++;
998         }
999         err2 = hib_wait_on_bio_chain(&bio);
1000         do_gettimeofday(&stop);
1001         if (!ret)
1002                 ret = err2;
1003         if (!ret) {
1004                 printk("\b\b\b\bdone\n");
1005                 snapshot_write_finalize(snapshot);
1006                 if (!snapshot_image_loaded(snapshot))
1007                         ret = -ENODATA;
1008         } else
1009                 printk("\n");
1010         swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1011         return ret;
1012 }
1013
1014 /**
1015  * Structure used for LZO data decompression.
1016  */
1017 struct dec_data {
1018         struct task_struct *thr;                  /* thread */
1019         atomic_t ready;                           /* ready to start flag */
1020         atomic_t stop;                            /* ready to stop flag */
1021         int ret;                                  /* return code */
1022         wait_queue_head_t go;                     /* start decompression */
1023         wait_queue_head_t done;                   /* decompression done */
1024         size_t unc_len;                           /* uncompressed length */
1025         size_t cmp_len;                           /* compressed length */
1026         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1027         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1028 };
1029
1030 /**
1031  * Deompression function that runs in its own thread.
1032  */
1033 static int lzo_decompress_threadfn(void *data)
1034 {
1035         struct dec_data *d = data;
1036
1037         while (1) {
1038                 wait_event(d->go, atomic_read(&d->ready) ||
1039                                   kthread_should_stop());
1040                 if (kthread_should_stop()) {
1041                         d->thr = NULL;
1042                         d->ret = -1;
1043                         atomic_set(&d->stop, 1);
1044                         wake_up(&d->done);
1045                         break;
1046                 }
1047                 atomic_set(&d->ready, 0);
1048
1049                 d->unc_len = LZO_UNC_SIZE;
1050                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1051                                                d->unc, &d->unc_len);
1052                 atomic_set(&d->stop, 1);
1053                 wake_up(&d->done);
1054         }
1055         return 0;
1056 }
1057
1058 /**
1059  * load_image_lzo - Load compressed image data and decompress them with LZO.
1060  * @handle: Swap map handle to use for loading data.
1061  * @snapshot: Image to copy uncompressed data into.
1062  * @nr_to_read: Number of pages to load.
1063  */
1064 static int load_image_lzo(struct swap_map_handle *handle,
1065                           struct snapshot_handle *snapshot,
1066                           unsigned int nr_to_read)
1067 {
1068         unsigned int m;
1069         int ret = 0;
1070         int eof = 0;
1071         struct bio *bio;
1072         struct timeval start;
1073         struct timeval stop;
1074         unsigned nr_pages;
1075         size_t off;
1076         unsigned i, thr, run_threads, nr_threads;
1077         unsigned ring = 0, pg = 0, ring_size = 0,
1078                  have = 0, want, need, asked = 0;
1079         unsigned long read_pages = 0;
1080         unsigned char **page = NULL;
1081         struct dec_data *data = NULL;
1082         struct crc_data *crc = NULL;
1083
1084         /*
1085          * We'll limit the number of threads for decompression to limit memory
1086          * footprint.
1087          */
1088         nr_threads = num_online_cpus() - 1;
1089         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1090
1091         page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1092         if (!page) {
1093                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1094                 ret = -ENOMEM;
1095                 goto out_clean;
1096         }
1097
1098         data = vmalloc(sizeof(*data) * nr_threads);
1099         if (!data) {
1100                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1101                 ret = -ENOMEM;
1102                 goto out_clean;
1103         }
1104         for (thr = 0; thr < nr_threads; thr++)
1105                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1106
1107         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1108         if (!crc) {
1109                 printk(KERN_ERR "PM: Failed to allocate crc\n");
1110                 ret = -ENOMEM;
1111                 goto out_clean;
1112         }
1113         memset(crc, 0, offsetof(struct crc_data, go));
1114
1115         /*
1116          * Start the decompression threads.
1117          */
1118         for (thr = 0; thr < nr_threads; thr++) {
1119                 init_waitqueue_head(&data[thr].go);
1120                 init_waitqueue_head(&data[thr].done);
1121
1122                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1123                                             &data[thr],
1124                                             "image_decompress/%u", thr);
1125                 if (IS_ERR(data[thr].thr)) {
1126                         data[thr].thr = NULL;
1127                         printk(KERN_ERR
1128                                "PM: Cannot start decompression threads\n");
1129                         ret = -ENOMEM;
1130                         goto out_clean;
1131                 }
1132         }
1133
1134         /*
1135          * Start the CRC32 thread.
1136          */
1137         init_waitqueue_head(&crc->go);
1138         init_waitqueue_head(&crc->done);
1139
1140         handle->crc32 = 0;
1141         crc->crc32 = &handle->crc32;
1142         for (thr = 0; thr < nr_threads; thr++) {
1143                 crc->unc[thr] = data[thr].unc;
1144                 crc->unc_len[thr] = &data[thr].unc_len;
1145         }
1146
1147         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1148         if (IS_ERR(crc->thr)) {
1149                 crc->thr = NULL;
1150                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1151                 ret = -ENOMEM;
1152                 goto out_clean;
1153         }
1154
1155         /*
1156          * Set the number of pages for read buffering.
1157          * This is complete guesswork, because we'll only know the real
1158          * picture once prepare_image() is called, which is much later on
1159          * during the image load phase. We'll assume the worst case and
1160          * say that none of the image pages are from high memory.
1161          */
1162         if (low_free_pages() > snapshot_get_image_size())
1163                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1164         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1165
1166         for (i = 0; i < read_pages; i++) {
1167                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1168                                                   __GFP_WAIT | __GFP_HIGH :
1169                                                   __GFP_WAIT | __GFP_NOWARN |
1170                                                   __GFP_NORETRY);
1171
1172                 if (!page[i]) {
1173                         if (i < LZO_CMP_PAGES) {
1174                                 ring_size = i;
1175                                 printk(KERN_ERR
1176                                        "PM: Failed to allocate LZO pages\n");
1177                                 ret = -ENOMEM;
1178                                 goto out_clean;
1179                         } else {
1180                                 break;
1181                         }
1182                 }
1183         }
1184         want = ring_size = i;
1185
1186         printk(KERN_INFO
1187                 "PM: Using %u thread(s) for decompression.\n"
1188                 "PM: Loading and decompressing image data (%u pages) ...     ",
1189                 nr_threads, nr_to_read);
1190         m = nr_to_read / 100;
1191         if (!m)
1192                 m = 1;
1193         nr_pages = 0;
1194         bio = NULL;
1195         do_gettimeofday(&start);
1196
1197         ret = snapshot_write_next(snapshot);
1198         if (ret <= 0)
1199                 goto out_finish;
1200
1201         for(;;) {
1202                 for (i = 0; !eof && i < want; i++) {
1203                         ret = swap_read_page(handle, page[ring], &bio);
1204                         if (ret) {
1205                                 /*
1206                                  * On real read error, finish. On end of data,
1207                                  * set EOF flag and just exit the read loop.
1208                                  */
1209                                 if (handle->cur &&
1210                                     handle->cur->entries[handle->k]) {
1211                                         goto out_finish;
1212                                 } else {
1213                                         eof = 1;
1214                                         break;
1215                                 }
1216                         }
1217                         if (++ring >= ring_size)
1218                                 ring = 0;
1219                 }
1220                 asked += i;
1221                 want -= i;
1222
1223                 /*
1224                  * We are out of data, wait for some more.
1225                  */
1226                 if (!have) {
1227                         if (!asked)
1228                                 break;
1229
1230                         ret = hib_wait_on_bio_chain(&bio);
1231                         if (ret)
1232                                 goto out_finish;
1233                         have += asked;
1234                         asked = 0;
1235                         if (eof)
1236                                 eof = 2;
1237                 }
1238
1239                 if (crc->run_threads) {
1240                         wait_event(crc->done, atomic_read(&crc->stop));
1241                         atomic_set(&crc->stop, 0);
1242                         crc->run_threads = 0;
1243                 }
1244
1245                 for (thr = 0; have && thr < nr_threads; thr++) {
1246                         data[thr].cmp_len = *(size_t *)page[pg];
1247                         if (unlikely(!data[thr].cmp_len ||
1248                                      data[thr].cmp_len >
1249                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1250                                 printk(KERN_ERR
1251                                        "PM: Invalid LZO compressed length\n");
1252                                 ret = -1;
1253                                 goto out_finish;
1254                         }
1255
1256                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1257                                             PAGE_SIZE);
1258                         if (need > have) {
1259                                 if (eof > 1) {
1260                                         ret = -1;
1261                                         goto out_finish;
1262                                 }
1263                                 break;
1264                         }
1265
1266                         for (off = 0;
1267                              off < LZO_HEADER + data[thr].cmp_len;
1268                              off += PAGE_SIZE) {
1269                                 memcpy(data[thr].cmp + off,
1270                                        page[pg], PAGE_SIZE);
1271                                 have--;
1272                                 want++;
1273                                 if (++pg >= ring_size)
1274                                         pg = 0;
1275                         }
1276
1277                         atomic_set(&data[thr].ready, 1);
1278                         wake_up(&data[thr].go);
1279                 }
1280
1281                 /*
1282                  * Wait for more data while we are decompressing.
1283                  */
1284                 if (have < LZO_CMP_PAGES && asked) {
1285                         ret = hib_wait_on_bio_chain(&bio);
1286                         if (ret)
1287                                 goto out_finish;
1288                         have += asked;
1289                         asked = 0;
1290                         if (eof)
1291                                 eof = 2;
1292                 }
1293
1294                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1295                         wait_event(data[thr].done,
1296                                    atomic_read(&data[thr].stop));
1297                         atomic_set(&data[thr].stop, 0);
1298
1299                         ret = data[thr].ret;
1300
1301                         if (ret < 0) {
1302                                 printk(KERN_ERR
1303                                        "PM: LZO decompression failed\n");
1304                                 goto out_finish;
1305                         }
1306
1307                         if (unlikely(!data[thr].unc_len ||
1308                                      data[thr].unc_len > LZO_UNC_SIZE ||
1309                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1310                                 printk(KERN_ERR
1311                                        "PM: Invalid LZO uncompressed length\n");
1312                                 ret = -1;
1313                                 goto out_finish;
1314                         }
1315
1316                         for (off = 0;
1317                              off < data[thr].unc_len; off += PAGE_SIZE) {
1318                                 memcpy(data_of(*snapshot),
1319                                        data[thr].unc + off, PAGE_SIZE);
1320
1321                                 if (!(nr_pages % m))
1322                                         printk("\b\b\b\b%3d%%", nr_pages / m);
1323                                 nr_pages++;
1324
1325                                 ret = snapshot_write_next(snapshot);
1326                                 if (ret <= 0) {
1327                                         crc->run_threads = thr + 1;
1328                                         atomic_set(&crc->ready, 1);
1329                                         wake_up(&crc->go);
1330                                         goto out_finish;
1331                                 }
1332                         }
1333                 }
1334
1335                 crc->run_threads = thr;
1336                 atomic_set(&crc->ready, 1);
1337                 wake_up(&crc->go);
1338         }
1339
1340 out_finish:
1341         if (crc->run_threads) {
1342                 wait_event(crc->done, atomic_read(&crc->stop));
1343                 atomic_set(&crc->stop, 0);
1344         }
1345         do_gettimeofday(&stop);
1346         if (!ret) {
1347                 printk("\b\b\b\bdone\n");
1348                 snapshot_write_finalize(snapshot);
1349                 if (!snapshot_image_loaded(snapshot))
1350                         ret = -ENODATA;
1351                 if (!ret) {
1352                         if (swsusp_header->flags & SF_CRC32_MODE) {
1353                                 if(handle->crc32 != swsusp_header->crc32) {
1354                                         printk(KERN_ERR
1355                                                "PM: Invalid image CRC32!\n");
1356                                         ret = -ENODATA;
1357                                 }
1358                         }
1359                 }
1360         } else
1361                 printk("\n");
1362         swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363 out_clean:
1364         for (i = 0; i < ring_size; i++)
1365                 free_page((unsigned long)page[i]);
1366         if (crc) {
1367                 if (crc->thr)
1368                         kthread_stop(crc->thr);
1369                 kfree(crc);
1370         }
1371         if (data) {
1372                 for (thr = 0; thr < nr_threads; thr++)
1373                         if (data[thr].thr)
1374                                 kthread_stop(data[thr].thr);
1375                 vfree(data);
1376         }
1377         if (page) vfree(page);
1378
1379         return ret;
1380 }
1381
1382 /**
1383  *      swsusp_read - read the hibernation image.
1384  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1385  *                be written into this memory location
1386  */
1387
1388 int swsusp_read(unsigned int *flags_p)
1389 {
1390         int error;
1391         struct swap_map_handle handle;
1392         struct snapshot_handle snapshot;
1393         struct swsusp_info *header;
1394
1395         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396         error = snapshot_write_next(&snapshot);
1397         if (error < PAGE_SIZE)
1398                 return error < 0 ? error : -EFAULT;
1399         header = (struct swsusp_info *)data_of(snapshot);
1400         error = get_swap_reader(&handle, flags_p);
1401         if (error)
1402                 goto end;
1403         if (!error)
1404                 error = swap_read_page(&handle, header, NULL);
1405         if (!error) {
1406                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407                         load_image(&handle, &snapshot, header->pages - 1) :
1408                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1409         }
1410         swap_reader_finish(&handle);
1411 end:
1412         if (!error)
1413                 pr_debug("PM: Image successfully loaded\n");
1414         else
1415                 pr_debug("PM: Error %d resuming\n", error);
1416         return error;
1417 }
1418
1419 /**
1420  *      swsusp_check - Check for swsusp signature in the resume device
1421  */
1422
1423 int swsusp_check(void)
1424 {
1425         int error;
1426
1427         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428                                             FMODE_READ, NULL);
1429         if (!IS_ERR(hib_resume_bdev)) {
1430                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431                 clear_page(swsusp_header);
1432                 error = hib_bio_read_page(swsusp_resume_block,
1433                                         swsusp_header, NULL);
1434                 if (error)
1435                         goto put;
1436
1437                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439                         /* Reset swap signature now */
1440                         error = hib_bio_write_page(swsusp_resume_block,
1441                                                 swsusp_header, NULL);
1442                 } else {
1443                         error = -EINVAL;
1444                 }
1445
1446 put:
1447                 if (error)
1448                         blkdev_put(hib_resume_bdev, FMODE_READ);
1449                 else
1450                         pr_debug("PM: Image signature found, resuming\n");
1451         } else {
1452                 error = PTR_ERR(hib_resume_bdev);
1453         }
1454
1455         if (error)
1456                 pr_debug("PM: Image not found (code %d)\n", error);
1457
1458         return error;
1459 }
1460
1461 /**
1462  *      swsusp_close - close swap device.
1463  */
1464
1465 void swsusp_close(fmode_t mode)
1466 {
1467         if (IS_ERR(hib_resume_bdev)) {
1468                 pr_debug("PM: Image device not initialised\n");
1469                 return;
1470         }
1471
1472         blkdev_put(hib_resume_bdev, mode);
1473 }
1474
1475 static int swsusp_header_init(void)
1476 {
1477         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1478         if (!swsusp_header)
1479                 panic("Could not allocate memory for swsusp_header\n");
1480         return 0;
1481 }
1482
1483 core_initcall(swsusp_header_init);