can: sja1000: fix define conflict on SH
[pandora-kernel.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13
14 /*
15  * Called after updating RLIMIT_CPU to run cpu timer and update
16  * tsk->signal->cputime_expires expiration cache if necessary. Needs
17  * siglock protection since other code may update expiration cache as
18  * well.
19  */
20 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
21 {
22         cputime_t cputime = secs_to_cputime(rlim_new);
23
24         spin_lock_irq(&task->sighand->siglock);
25         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
26         spin_unlock_irq(&task->sighand->siglock);
27 }
28
29 static int check_clock(const clockid_t which_clock)
30 {
31         int error = 0;
32         struct task_struct *p;
33         const pid_t pid = CPUCLOCK_PID(which_clock);
34
35         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36                 return -EINVAL;
37
38         if (pid == 0)
39                 return 0;
40
41         rcu_read_lock();
42         p = find_task_by_vpid(pid);
43         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
44                    same_thread_group(p, current) : has_group_leader_pid(p))) {
45                 error = -EINVAL;
46         }
47         rcu_read_unlock();
48
49         return error;
50 }
51
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54 {
55         union cpu_time_count ret;
56         ret.sched = 0;          /* high half always zero when .cpu used */
57         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
58                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
59         } else {
60                 ret.cpu = timespec_to_cputime(tp);
61         }
62         return ret;
63 }
64
65 static void sample_to_timespec(const clockid_t which_clock,
66                                union cpu_time_count cpu,
67                                struct timespec *tp)
68 {
69         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70                 *tp = ns_to_timespec(cpu.sched);
71         else
72                 cputime_to_timespec(cpu.cpu, tp);
73 }
74
75 static inline int cpu_time_before(const clockid_t which_clock,
76                                   union cpu_time_count now,
77                                   union cpu_time_count then)
78 {
79         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80                 return now.sched < then.sched;
81         }  else {
82                 return now.cpu < then.cpu;
83         }
84 }
85 static inline void cpu_time_add(const clockid_t which_clock,
86                                 union cpu_time_count *acc,
87                                 union cpu_time_count val)
88 {
89         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90                 acc->sched += val.sched;
91         }  else {
92                 acc->cpu += val.cpu;
93         }
94 }
95 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
96                                                 union cpu_time_count a,
97                                                 union cpu_time_count b)
98 {
99         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100                 a.sched -= b.sched;
101         }  else {
102                 a.cpu -= b.cpu;
103         }
104         return a;
105 }
106
107 /*
108  * Update expiry time from increment, and increase overrun count,
109  * given the current clock sample.
110  */
111 static void bump_cpu_timer(struct k_itimer *timer,
112                                   union cpu_time_count now)
113 {
114         int i;
115
116         if (timer->it.cpu.incr.sched == 0)
117                 return;
118
119         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
120                 unsigned long long delta, incr;
121
122                 if (now.sched < timer->it.cpu.expires.sched)
123                         return;
124                 incr = timer->it.cpu.incr.sched;
125                 delta = now.sched + incr - timer->it.cpu.expires.sched;
126                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
127                 for (i = 0; incr < delta - incr; i++)
128                         incr = incr << 1;
129                 for (; i >= 0; incr >>= 1, i--) {
130                         if (delta < incr)
131                                 continue;
132                         timer->it.cpu.expires.sched += incr;
133                         timer->it_overrun += 1 << i;
134                         delta -= incr;
135                 }
136         } else {
137                 cputime_t delta, incr;
138
139                 if (now.cpu < timer->it.cpu.expires.cpu)
140                         return;
141                 incr = timer->it.cpu.incr.cpu;
142                 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
143                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
144                 for (i = 0; incr < delta - incr; i++)
145                              incr += incr;
146                 for (; i >= 0; incr = incr >> 1, i--) {
147                         if (delta < incr)
148                                 continue;
149                         timer->it.cpu.expires.cpu += incr;
150                         timer->it_overrun += 1 << i;
151                         delta -= incr;
152                 }
153         }
154 }
155
156 static inline cputime_t prof_ticks(struct task_struct *p)
157 {
158         cputime_t utime, stime;
159
160         task_cputime(p, &utime, &stime);
161
162         return utime + stime;
163 }
164 static inline cputime_t virt_ticks(struct task_struct *p)
165 {
166         cputime_t utime;
167
168         task_cputime(p, &utime, NULL);
169
170         return utime;
171 }
172
173 static int
174 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
175 {
176         int error = check_clock(which_clock);
177         if (!error) {
178                 tp->tv_sec = 0;
179                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
180                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
181                         /*
182                          * If sched_clock is using a cycle counter, we
183                          * don't have any idea of its true resolution
184                          * exported, but it is much more than 1s/HZ.
185                          */
186                         tp->tv_nsec = 1;
187                 }
188         }
189         return error;
190 }
191
192 static int
193 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
194 {
195         /*
196          * You can never reset a CPU clock, but we check for other errors
197          * in the call before failing with EPERM.
198          */
199         int error = check_clock(which_clock);
200         if (error == 0) {
201                 error = -EPERM;
202         }
203         return error;
204 }
205
206
207 /*
208  * Sample a per-thread clock for the given task.
209  */
210 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
211                             union cpu_time_count *cpu)
212 {
213         switch (CPUCLOCK_WHICH(which_clock)) {
214         default:
215                 return -EINVAL;
216         case CPUCLOCK_PROF:
217                 cpu->cpu = prof_ticks(p);
218                 break;
219         case CPUCLOCK_VIRT:
220                 cpu->cpu = virt_ticks(p);
221                 break;
222         case CPUCLOCK_SCHED:
223                 cpu->sched = task_sched_runtime(p);
224                 break;
225         }
226         return 0;
227 }
228
229 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
230 {
231         if (b->utime > a->utime)
232                 a->utime = b->utime;
233
234         if (b->stime > a->stime)
235                 a->stime = b->stime;
236
237         if (b->sum_exec_runtime > a->sum_exec_runtime)
238                 a->sum_exec_runtime = b->sum_exec_runtime;
239 }
240
241 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
242 {
243         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244         struct task_cputime sum;
245         unsigned long flags;
246
247         if (!cputimer->running) {
248                 /*
249                  * The POSIX timer interface allows for absolute time expiry
250                  * values through the TIMER_ABSTIME flag, therefore we have
251                  * to synchronize the timer to the clock every time we start
252                  * it.
253                  */
254                 thread_group_cputime(tsk, &sum);
255                 raw_spin_lock_irqsave(&cputimer->lock, flags);
256                 cputimer->running = 1;
257                 update_gt_cputime(&cputimer->cputime, &sum);
258         } else
259                 raw_spin_lock_irqsave(&cputimer->lock, flags);
260         *times = cputimer->cputime;
261         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
262 }
263
264 /*
265  * Sample a process (thread group) clock for the given group_leader task.
266  * Must be called with tasklist_lock held for reading.
267  */
268 static int cpu_clock_sample_group(const clockid_t which_clock,
269                                   struct task_struct *p,
270                                   union cpu_time_count *cpu)
271 {
272         struct task_cputime cputime;
273
274         switch (CPUCLOCK_WHICH(which_clock)) {
275         default:
276                 return -EINVAL;
277         case CPUCLOCK_PROF:
278                 thread_group_cputime(p, &cputime);
279                 cpu->cpu = cputime.utime + cputime.stime;
280                 break;
281         case CPUCLOCK_VIRT:
282                 thread_group_cputime(p, &cputime);
283                 cpu->cpu = cputime.utime;
284                 break;
285         case CPUCLOCK_SCHED:
286                 thread_group_cputime(p, &cputime);
287                 cpu->sched = cputime.sum_exec_runtime;
288                 break;
289         }
290         return 0;
291 }
292
293
294 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
295 {
296         const pid_t pid = CPUCLOCK_PID(which_clock);
297         int error = -EINVAL;
298         union cpu_time_count rtn;
299
300         if (pid == 0) {
301                 /*
302                  * Special case constant value for our own clocks.
303                  * We don't have to do any lookup to find ourselves.
304                  */
305                 if (CPUCLOCK_PERTHREAD(which_clock)) {
306                         /*
307                          * Sampling just ourselves we can do with no locking.
308                          */
309                         error = cpu_clock_sample(which_clock,
310                                                  current, &rtn);
311                 } else {
312                         read_lock(&tasklist_lock);
313                         error = cpu_clock_sample_group(which_clock,
314                                                        current, &rtn);
315                         read_unlock(&tasklist_lock);
316                 }
317         } else {
318                 /*
319                  * Find the given PID, and validate that the caller
320                  * should be able to see it.
321                  */
322                 struct task_struct *p;
323                 rcu_read_lock();
324                 p = find_task_by_vpid(pid);
325                 if (p) {
326                         if (CPUCLOCK_PERTHREAD(which_clock)) {
327                                 if (same_thread_group(p, current)) {
328                                         error = cpu_clock_sample(which_clock,
329                                                                  p, &rtn);
330                                 }
331                         } else {
332                                 read_lock(&tasklist_lock);
333                                 if (thread_group_leader(p) && p->sighand) {
334                                         error =
335                                             cpu_clock_sample_group(which_clock,
336                                                                    p, &rtn);
337                                 }
338                                 read_unlock(&tasklist_lock);
339                         }
340                 }
341                 rcu_read_unlock();
342         }
343
344         if (error)
345                 return error;
346         sample_to_timespec(which_clock, rtn, tp);
347         return 0;
348 }
349
350
351 /*
352  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
353  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
354  * new timer already all-zeros initialized.
355  */
356 static int posix_cpu_timer_create(struct k_itimer *new_timer)
357 {
358         int ret = 0;
359         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
360         struct task_struct *p;
361
362         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
363                 return -EINVAL;
364
365         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
366
367         rcu_read_lock();
368         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
369                 if (pid == 0) {
370                         p = current;
371                 } else {
372                         p = find_task_by_vpid(pid);
373                         if (p && !same_thread_group(p, current))
374                                 p = NULL;
375                 }
376         } else {
377                 if (pid == 0) {
378                         p = current->group_leader;
379                 } else {
380                         p = find_task_by_vpid(pid);
381                         if (p && !has_group_leader_pid(p))
382                                 p = NULL;
383                 }
384         }
385         new_timer->it.cpu.task = p;
386         if (p) {
387                 get_task_struct(p);
388         } else {
389                 ret = -EINVAL;
390         }
391         rcu_read_unlock();
392
393         return ret;
394 }
395
396 /*
397  * Clean up a CPU-clock timer that is about to be destroyed.
398  * This is called from timer deletion with the timer already locked.
399  * If we return TIMER_RETRY, it's necessary to release the timer's lock
400  * and try again.  (This happens when the timer is in the middle of firing.)
401  */
402 static int posix_cpu_timer_del(struct k_itimer *timer)
403 {
404         struct task_struct *p = timer->it.cpu.task;
405         int ret = 0;
406
407         if (likely(p != NULL)) {
408                 read_lock(&tasklist_lock);
409                 if (unlikely(p->sighand == NULL)) {
410                         /*
411                          * We raced with the reaping of the task.
412                          * The deletion should have cleared us off the list.
413                          */
414                         BUG_ON(!list_empty(&timer->it.cpu.entry));
415                 } else {
416                         spin_lock(&p->sighand->siglock);
417                         if (timer->it.cpu.firing)
418                                 ret = TIMER_RETRY;
419                         else
420                                 list_del(&timer->it.cpu.entry);
421                         spin_unlock(&p->sighand->siglock);
422                 }
423                 read_unlock(&tasklist_lock);
424
425                 if (!ret)
426                         put_task_struct(p);
427         }
428
429         return ret;
430 }
431
432 /*
433  * Clean out CPU timers still ticking when a thread exited.  The task
434  * pointer is cleared, and the expiry time is replaced with the residual
435  * time for later timer_gettime calls to return.
436  * This must be called with the siglock held.
437  */
438 static void cleanup_timers(struct list_head *head,
439                            cputime_t utime, cputime_t stime,
440                            unsigned long long sum_exec_runtime)
441 {
442         struct cpu_timer_list *timer, *next;
443         cputime_t ptime = utime + stime;
444
445         list_for_each_entry_safe(timer, next, head, entry) {
446                 list_del_init(&timer->entry);
447                 if (timer->expires.cpu < ptime) {
448                         timer->expires.cpu = 0;
449                 } else {
450                         timer->expires.cpu -= ptime;
451                 }
452         }
453
454         ++head;
455         list_for_each_entry_safe(timer, next, head, entry) {
456                 list_del_init(&timer->entry);
457                 if (timer->expires.cpu < utime) {
458                         timer->expires.cpu = 0;
459                 } else {
460                         timer->expires.cpu -= utime;
461                 }
462         }
463
464         ++head;
465         list_for_each_entry_safe(timer, next, head, entry) {
466                 list_del_init(&timer->entry);
467                 if (timer->expires.sched < sum_exec_runtime) {
468                         timer->expires.sched = 0;
469                 } else {
470                         timer->expires.sched -= sum_exec_runtime;
471                 }
472         }
473 }
474
475 /*
476  * These are both called with the siglock held, when the current thread
477  * is being reaped.  When the final (leader) thread in the group is reaped,
478  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
479  */
480 void posix_cpu_timers_exit(struct task_struct *tsk)
481 {
482         cputime_t utime, stime;
483
484         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
485                                                 sizeof(unsigned long long));
486         task_cputime(tsk, &utime, &stime);
487         cleanup_timers(tsk->cpu_timers,
488                        utime, stime, tsk->se.sum_exec_runtime);
489
490 }
491 void posix_cpu_timers_exit_group(struct task_struct *tsk)
492 {
493         struct signal_struct *const sig = tsk->signal;
494         cputime_t utime, stime;
495
496         task_cputime(tsk, &utime, &stime);
497         cleanup_timers(tsk->signal->cpu_timers,
498                        utime + sig->utime, stime + sig->stime,
499                        tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
500 }
501
502 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
503 {
504         /*
505          * That's all for this thread or process.
506          * We leave our residual in expires to be reported.
507          */
508         put_task_struct(timer->it.cpu.task);
509         timer->it.cpu.task = NULL;
510         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
511                                              timer->it.cpu.expires,
512                                              now);
513 }
514
515 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
516 {
517         return expires == 0 || expires > new_exp;
518 }
519
520 /*
521  * Insert the timer on the appropriate list before any timers that
522  * expire later.  This must be called with the tasklist_lock held
523  * for reading, interrupts disabled and p->sighand->siglock taken.
524  */
525 static void arm_timer(struct k_itimer *timer)
526 {
527         struct task_struct *p = timer->it.cpu.task;
528         struct list_head *head, *listpos;
529         struct task_cputime *cputime_expires;
530         struct cpu_timer_list *const nt = &timer->it.cpu;
531         struct cpu_timer_list *next;
532
533         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
534                 head = p->cpu_timers;
535                 cputime_expires = &p->cputime_expires;
536         } else {
537                 head = p->signal->cpu_timers;
538                 cputime_expires = &p->signal->cputime_expires;
539         }
540         head += CPUCLOCK_WHICH(timer->it_clock);
541
542         listpos = head;
543         list_for_each_entry(next, head, entry) {
544                 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
545                         break;
546                 listpos = &next->entry;
547         }
548         list_add(&nt->entry, listpos);
549
550         if (listpos == head) {
551                 union cpu_time_count *exp = &nt->expires;
552
553                 /*
554                  * We are the new earliest-expiring POSIX 1.b timer, hence
555                  * need to update expiration cache. Take into account that
556                  * for process timers we share expiration cache with itimers
557                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
558                  */
559
560                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
561                 case CPUCLOCK_PROF:
562                         if (expires_gt(cputime_expires->prof_exp, exp->cpu))
563                                 cputime_expires->prof_exp = exp->cpu;
564                         break;
565                 case CPUCLOCK_VIRT:
566                         if (expires_gt(cputime_expires->virt_exp, exp->cpu))
567                                 cputime_expires->virt_exp = exp->cpu;
568                         break;
569                 case CPUCLOCK_SCHED:
570                         if (cputime_expires->sched_exp == 0 ||
571                             cputime_expires->sched_exp > exp->sched)
572                                 cputime_expires->sched_exp = exp->sched;
573                         break;
574                 }
575         }
576 }
577
578 /*
579  * The timer is locked, fire it and arrange for its reload.
580  */
581 static void cpu_timer_fire(struct k_itimer *timer)
582 {
583         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
584                 /*
585                  * User don't want any signal.
586                  */
587                 timer->it.cpu.expires.sched = 0;
588         } else if (unlikely(timer->sigq == NULL)) {
589                 /*
590                  * This a special case for clock_nanosleep,
591                  * not a normal timer from sys_timer_create.
592                  */
593                 wake_up_process(timer->it_process);
594                 timer->it.cpu.expires.sched = 0;
595         } else if (timer->it.cpu.incr.sched == 0) {
596                 /*
597                  * One-shot timer.  Clear it as soon as it's fired.
598                  */
599                 posix_timer_event(timer, 0);
600                 timer->it.cpu.expires.sched = 0;
601         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
602                 /*
603                  * The signal did not get queued because the signal
604                  * was ignored, so we won't get any callback to
605                  * reload the timer.  But we need to keep it
606                  * ticking in case the signal is deliverable next time.
607                  */
608                 posix_cpu_timer_schedule(timer);
609         }
610 }
611
612 /*
613  * Sample a process (thread group) timer for the given group_leader task.
614  * Must be called with tasklist_lock held for reading.
615  */
616 static int cpu_timer_sample_group(const clockid_t which_clock,
617                                   struct task_struct *p,
618                                   union cpu_time_count *cpu)
619 {
620         struct task_cputime cputime;
621
622         thread_group_cputimer(p, &cputime);
623         switch (CPUCLOCK_WHICH(which_clock)) {
624         default:
625                 return -EINVAL;
626         case CPUCLOCK_PROF:
627                 cpu->cpu = cputime.utime + cputime.stime;
628                 break;
629         case CPUCLOCK_VIRT:
630                 cpu->cpu = cputime.utime;
631                 break;
632         case CPUCLOCK_SCHED:
633                 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
634                 break;
635         }
636         return 0;
637 }
638
639 /*
640  * Guts of sys_timer_settime for CPU timers.
641  * This is called with the timer locked and interrupts disabled.
642  * If we return TIMER_RETRY, it's necessary to release the timer's lock
643  * and try again.  (This happens when the timer is in the middle of firing.)
644  */
645 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
646                                struct itimerspec *new, struct itimerspec *old)
647 {
648         struct task_struct *p = timer->it.cpu.task;
649         union cpu_time_count old_expires, new_expires, old_incr, val;
650         int ret;
651
652         if (unlikely(p == NULL)) {
653                 /*
654                  * Timer refers to a dead task's clock.
655                  */
656                 return -ESRCH;
657         }
658
659         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
660
661         read_lock(&tasklist_lock);
662         /*
663          * We need the tasklist_lock to protect against reaping that
664          * clears p->sighand.  If p has just been reaped, we can no
665          * longer get any information about it at all.
666          */
667         if (unlikely(p->sighand == NULL)) {
668                 read_unlock(&tasklist_lock);
669                 put_task_struct(p);
670                 timer->it.cpu.task = NULL;
671                 return -ESRCH;
672         }
673
674         /*
675          * Disarm any old timer after extracting its expiry time.
676          */
677         BUG_ON(!irqs_disabled());
678
679         ret = 0;
680         old_incr = timer->it.cpu.incr;
681         spin_lock(&p->sighand->siglock);
682         old_expires = timer->it.cpu.expires;
683         if (unlikely(timer->it.cpu.firing)) {
684                 timer->it.cpu.firing = -1;
685                 ret = TIMER_RETRY;
686         } else
687                 list_del_init(&timer->it.cpu.entry);
688
689         /*
690          * We need to sample the current value to convert the new
691          * value from to relative and absolute, and to convert the
692          * old value from absolute to relative.  To set a process
693          * timer, we need a sample to balance the thread expiry
694          * times (in arm_timer).  With an absolute time, we must
695          * check if it's already passed.  In short, we need a sample.
696          */
697         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
698                 cpu_clock_sample(timer->it_clock, p, &val);
699         } else {
700                 cpu_timer_sample_group(timer->it_clock, p, &val);
701         }
702
703         if (old) {
704                 if (old_expires.sched == 0) {
705                         old->it_value.tv_sec = 0;
706                         old->it_value.tv_nsec = 0;
707                 } else {
708                         /*
709                          * Update the timer in case it has
710                          * overrun already.  If it has,
711                          * we'll report it as having overrun
712                          * and with the next reloaded timer
713                          * already ticking, though we are
714                          * swallowing that pending
715                          * notification here to install the
716                          * new setting.
717                          */
718                         bump_cpu_timer(timer, val);
719                         if (cpu_time_before(timer->it_clock, val,
720                                             timer->it.cpu.expires)) {
721                                 old_expires = cpu_time_sub(
722                                         timer->it_clock,
723                                         timer->it.cpu.expires, val);
724                                 sample_to_timespec(timer->it_clock,
725                                                    old_expires,
726                                                    &old->it_value);
727                         } else {
728                                 old->it_value.tv_nsec = 1;
729                                 old->it_value.tv_sec = 0;
730                         }
731                 }
732         }
733
734         if (unlikely(ret)) {
735                 /*
736                  * We are colliding with the timer actually firing.
737                  * Punt after filling in the timer's old value, and
738                  * disable this firing since we are already reporting
739                  * it as an overrun (thanks to bump_cpu_timer above).
740                  */
741                 spin_unlock(&p->sighand->siglock);
742                 read_unlock(&tasklist_lock);
743                 goto out;
744         }
745
746         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
747                 cpu_time_add(timer->it_clock, &new_expires, val);
748         }
749
750         /*
751          * Install the new expiry time (or zero).
752          * For a timer with no notification action, we don't actually
753          * arm the timer (we'll just fake it for timer_gettime).
754          */
755         timer->it.cpu.expires = new_expires;
756         if (new_expires.sched != 0 &&
757             cpu_time_before(timer->it_clock, val, new_expires)) {
758                 arm_timer(timer);
759         }
760
761         spin_unlock(&p->sighand->siglock);
762         read_unlock(&tasklist_lock);
763
764         /*
765          * Install the new reload setting, and
766          * set up the signal and overrun bookkeeping.
767          */
768         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
769                                                 &new->it_interval);
770
771         /*
772          * This acts as a modification timestamp for the timer,
773          * so any automatic reload attempt will punt on seeing
774          * that we have reset the timer manually.
775          */
776         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
777                 ~REQUEUE_PENDING;
778         timer->it_overrun_last = 0;
779         timer->it_overrun = -1;
780
781         if (new_expires.sched != 0 &&
782             !cpu_time_before(timer->it_clock, val, new_expires)) {
783                 /*
784                  * The designated time already passed, so we notify
785                  * immediately, even if the thread never runs to
786                  * accumulate more time on this clock.
787                  */
788                 cpu_timer_fire(timer);
789         }
790
791         ret = 0;
792  out:
793         if (old) {
794                 sample_to_timespec(timer->it_clock,
795                                    old_incr, &old->it_interval);
796         }
797         return ret;
798 }
799
800 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
801 {
802         union cpu_time_count now;
803         struct task_struct *p = timer->it.cpu.task;
804         int clear_dead;
805
806         /*
807          * Easy part: convert the reload time.
808          */
809         sample_to_timespec(timer->it_clock,
810                            timer->it.cpu.incr, &itp->it_interval);
811
812         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
813                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
814                 return;
815         }
816
817         if (unlikely(p == NULL)) {
818                 /*
819                  * This task already died and the timer will never fire.
820                  * In this case, expires is actually the dead value.
821                  */
822         dead:
823                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
824                                    &itp->it_value);
825                 return;
826         }
827
828         /*
829          * Sample the clock to take the difference with the expiry time.
830          */
831         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
832                 cpu_clock_sample(timer->it_clock, p, &now);
833                 clear_dead = p->exit_state;
834         } else {
835                 read_lock(&tasklist_lock);
836                 if (unlikely(p->sighand == NULL)) {
837                         /*
838                          * The process has been reaped.
839                          * We can't even collect a sample any more.
840                          * Call the timer disarmed, nothing else to do.
841                          */
842                         put_task_struct(p);
843                         timer->it.cpu.task = NULL;
844                         timer->it.cpu.expires.sched = 0;
845                         read_unlock(&tasklist_lock);
846                         goto dead;
847                 } else {
848                         cpu_timer_sample_group(timer->it_clock, p, &now);
849                         clear_dead = (unlikely(p->exit_state) &&
850                                       thread_group_empty(p));
851                 }
852                 read_unlock(&tasklist_lock);
853         }
854
855         if (unlikely(clear_dead)) {
856                 /*
857                  * We've noticed that the thread is dead, but
858                  * not yet reaped.  Take this opportunity to
859                  * drop our task ref.
860                  */
861                 clear_dead_task(timer, now);
862                 goto dead;
863         }
864
865         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
866                 sample_to_timespec(timer->it_clock,
867                                    cpu_time_sub(timer->it_clock,
868                                                 timer->it.cpu.expires, now),
869                                    &itp->it_value);
870         } else {
871                 /*
872                  * The timer should have expired already, but the firing
873                  * hasn't taken place yet.  Say it's just about to expire.
874                  */
875                 itp->it_value.tv_nsec = 1;
876                 itp->it_value.tv_sec = 0;
877         }
878 }
879
880 /*
881  * Check for any per-thread CPU timers that have fired and move them off
882  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
883  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
884  */
885 static void check_thread_timers(struct task_struct *tsk,
886                                 struct list_head *firing)
887 {
888         int maxfire;
889         struct list_head *timers = tsk->cpu_timers;
890         struct signal_struct *const sig = tsk->signal;
891         unsigned long soft;
892
893         maxfire = 20;
894         tsk->cputime_expires.prof_exp = 0;
895         while (!list_empty(timers)) {
896                 struct cpu_timer_list *t = list_first_entry(timers,
897                                                       struct cpu_timer_list,
898                                                       entry);
899                 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
900                         tsk->cputime_expires.prof_exp = t->expires.cpu;
901                         break;
902                 }
903                 t->firing = 1;
904                 list_move_tail(&t->entry, firing);
905         }
906
907         ++timers;
908         maxfire = 20;
909         tsk->cputime_expires.virt_exp = 0;
910         while (!list_empty(timers)) {
911                 struct cpu_timer_list *t = list_first_entry(timers,
912                                                       struct cpu_timer_list,
913                                                       entry);
914                 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
915                         tsk->cputime_expires.virt_exp = t->expires.cpu;
916                         break;
917                 }
918                 t->firing = 1;
919                 list_move_tail(&t->entry, firing);
920         }
921
922         ++timers;
923         maxfire = 20;
924         tsk->cputime_expires.sched_exp = 0;
925         while (!list_empty(timers)) {
926                 struct cpu_timer_list *t = list_first_entry(timers,
927                                                       struct cpu_timer_list,
928                                                       entry);
929                 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
930                         tsk->cputime_expires.sched_exp = t->expires.sched;
931                         break;
932                 }
933                 t->firing = 1;
934                 list_move_tail(&t->entry, firing);
935         }
936
937         /*
938          * Check for the special case thread timers.
939          */
940         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
941         if (soft != RLIM_INFINITY) {
942                 unsigned long hard =
943                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
944
945                 if (hard != RLIM_INFINITY &&
946                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
947                         /*
948                          * At the hard limit, we just die.
949                          * No need to calculate anything else now.
950                          */
951                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
952                         return;
953                 }
954                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
955                         /*
956                          * At the soft limit, send a SIGXCPU every second.
957                          */
958                         if (soft < hard) {
959                                 soft += USEC_PER_SEC;
960                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
961                         }
962                         printk(KERN_INFO
963                                 "RT Watchdog Timeout: %s[%d]\n",
964                                 tsk->comm, task_pid_nr(tsk));
965                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
966                 }
967         }
968 }
969
970 static void stop_process_timers(struct signal_struct *sig)
971 {
972         struct thread_group_cputimer *cputimer = &sig->cputimer;
973         unsigned long flags;
974
975         raw_spin_lock_irqsave(&cputimer->lock, flags);
976         cputimer->running = 0;
977         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
978 }
979
980 static u32 onecputick;
981
982 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
983                              cputime_t *expires, cputime_t cur_time, int signo)
984 {
985         if (!it->expires)
986                 return;
987
988         if (cur_time >= it->expires) {
989                 if (it->incr) {
990                         it->expires += it->incr;
991                         it->error += it->incr_error;
992                         if (it->error >= onecputick) {
993                                 it->expires -= cputime_one_jiffy;
994                                 it->error -= onecputick;
995                         }
996                 } else {
997                         it->expires = 0;
998                 }
999
1000                 trace_itimer_expire(signo == SIGPROF ?
1001                                     ITIMER_PROF : ITIMER_VIRTUAL,
1002                                     tsk->signal->leader_pid, cur_time);
1003                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1004         }
1005
1006         if (it->expires && (!*expires || it->expires < *expires)) {
1007                 *expires = it->expires;
1008         }
1009 }
1010
1011 /**
1012  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1013  *
1014  * @cputime:    The struct to compare.
1015  *
1016  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1017  * are zero, false if any field is nonzero.
1018  */
1019 static inline int task_cputime_zero(const struct task_cputime *cputime)
1020 {
1021         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
1022                 return 1;
1023         return 0;
1024 }
1025
1026 /*
1027  * Check for any per-thread CPU timers that have fired and move them
1028  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1029  * have already been taken off.
1030  */
1031 static void check_process_timers(struct task_struct *tsk,
1032                                  struct list_head *firing)
1033 {
1034         int maxfire;
1035         struct signal_struct *const sig = tsk->signal;
1036         cputime_t utime, ptime, virt_expires, prof_expires;
1037         unsigned long long sum_sched_runtime, sched_expires;
1038         struct list_head *timers = sig->cpu_timers;
1039         struct task_cputime cputime;
1040         unsigned long soft;
1041
1042         /*
1043          * Collect the current process totals.
1044          */
1045         thread_group_cputimer(tsk, &cputime);
1046         utime = cputime.utime;
1047         ptime = utime + cputime.stime;
1048         sum_sched_runtime = cputime.sum_exec_runtime;
1049         maxfire = 20;
1050         prof_expires = 0;
1051         while (!list_empty(timers)) {
1052                 struct cpu_timer_list *tl = list_first_entry(timers,
1053                                                       struct cpu_timer_list,
1054                                                       entry);
1055                 if (!--maxfire || ptime < tl->expires.cpu) {
1056                         prof_expires = tl->expires.cpu;
1057                         break;
1058                 }
1059                 tl->firing = 1;
1060                 list_move_tail(&tl->entry, firing);
1061         }
1062
1063         ++timers;
1064         maxfire = 20;
1065         virt_expires = 0;
1066         while (!list_empty(timers)) {
1067                 struct cpu_timer_list *tl = list_first_entry(timers,
1068                                                       struct cpu_timer_list,
1069                                                       entry);
1070                 if (!--maxfire || utime < tl->expires.cpu) {
1071                         virt_expires = tl->expires.cpu;
1072                         break;
1073                 }
1074                 tl->firing = 1;
1075                 list_move_tail(&tl->entry, firing);
1076         }
1077
1078         ++timers;
1079         maxfire = 20;
1080         sched_expires = 0;
1081         while (!list_empty(timers)) {
1082                 struct cpu_timer_list *tl = list_first_entry(timers,
1083                                                       struct cpu_timer_list,
1084                                                       entry);
1085                 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1086                         sched_expires = tl->expires.sched;
1087                         break;
1088                 }
1089                 tl->firing = 1;
1090                 list_move_tail(&tl->entry, firing);
1091         }
1092
1093         /*
1094          * Check for the special case process timers.
1095          */
1096         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1097                          SIGPROF);
1098         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1099                          SIGVTALRM);
1100         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1101         if (soft != RLIM_INFINITY) {
1102                 unsigned long psecs = cputime_to_secs(ptime);
1103                 unsigned long hard =
1104                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1105                 cputime_t x;
1106                 if (psecs >= hard) {
1107                         /*
1108                          * At the hard limit, we just die.
1109                          * No need to calculate anything else now.
1110                          */
1111                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1112                         return;
1113                 }
1114                 if (psecs >= soft) {
1115                         /*
1116                          * At the soft limit, send a SIGXCPU every second.
1117                          */
1118                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1119                         if (soft < hard) {
1120                                 soft++;
1121                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1122                         }
1123                 }
1124                 x = secs_to_cputime(soft);
1125                 if (!prof_expires || x < prof_expires) {
1126                         prof_expires = x;
1127                 }
1128         }
1129
1130         sig->cputime_expires.prof_exp = prof_expires;
1131         sig->cputime_expires.virt_exp = virt_expires;
1132         sig->cputime_expires.sched_exp = sched_expires;
1133         if (task_cputime_zero(&sig->cputime_expires))
1134                 stop_process_timers(sig);
1135 }
1136
1137 /*
1138  * This is called from the signal code (via do_schedule_next_timer)
1139  * when the last timer signal was delivered and we have to reload the timer.
1140  */
1141 void posix_cpu_timer_schedule(struct k_itimer *timer)
1142 {
1143         struct task_struct *p = timer->it.cpu.task;
1144         union cpu_time_count now;
1145
1146         if (unlikely(p == NULL))
1147                 /*
1148                  * The task was cleaned up already, no future firings.
1149                  */
1150                 goto out;
1151
1152         /*
1153          * Fetch the current sample and update the timer's expiry time.
1154          */
1155         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1156                 cpu_clock_sample(timer->it_clock, p, &now);
1157                 bump_cpu_timer(timer, now);
1158                 if (unlikely(p->exit_state)) {
1159                         clear_dead_task(timer, now);
1160                         goto out;
1161                 }
1162                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1163                 spin_lock(&p->sighand->siglock);
1164         } else {
1165                 read_lock(&tasklist_lock);
1166                 if (unlikely(p->sighand == NULL)) {
1167                         /*
1168                          * The process has been reaped.
1169                          * We can't even collect a sample any more.
1170                          */
1171                         put_task_struct(p);
1172                         timer->it.cpu.task = p = NULL;
1173                         timer->it.cpu.expires.sched = 0;
1174                         goto out_unlock;
1175                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1176                         /*
1177                          * We've noticed that the thread is dead, but
1178                          * not yet reaped.  Take this opportunity to
1179                          * drop our task ref.
1180                          */
1181                         clear_dead_task(timer, now);
1182                         goto out_unlock;
1183                 }
1184                 spin_lock(&p->sighand->siglock);
1185                 cpu_timer_sample_group(timer->it_clock, p, &now);
1186                 bump_cpu_timer(timer, now);
1187                 /* Leave the tasklist_lock locked for the call below.  */
1188         }
1189
1190         /*
1191          * Now re-arm for the new expiry time.
1192          */
1193         BUG_ON(!irqs_disabled());
1194         arm_timer(timer);
1195         spin_unlock(&p->sighand->siglock);
1196
1197 out_unlock:
1198         read_unlock(&tasklist_lock);
1199
1200 out:
1201         timer->it_overrun_last = timer->it_overrun;
1202         timer->it_overrun = -1;
1203         ++timer->it_requeue_pending;
1204 }
1205
1206 /**
1207  * task_cputime_expired - Compare two task_cputime entities.
1208  *
1209  * @sample:     The task_cputime structure to be checked for expiration.
1210  * @expires:    Expiration times, against which @sample will be checked.
1211  *
1212  * Checks @sample against @expires to see if any field of @sample has expired.
1213  * Returns true if any field of the former is greater than the corresponding
1214  * field of the latter if the latter field is set.  Otherwise returns false.
1215  */
1216 static inline int task_cputime_expired(const struct task_cputime *sample,
1217                                         const struct task_cputime *expires)
1218 {
1219         if (expires->utime && sample->utime >= expires->utime)
1220                 return 1;
1221         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1222                 return 1;
1223         if (expires->sum_exec_runtime != 0 &&
1224             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1225                 return 1;
1226         return 0;
1227 }
1228
1229 /**
1230  * fastpath_timer_check - POSIX CPU timers fast path.
1231  *
1232  * @tsk:        The task (thread) being checked.
1233  *
1234  * Check the task and thread group timers.  If both are zero (there are no
1235  * timers set) return false.  Otherwise snapshot the task and thread group
1236  * timers and compare them with the corresponding expiration times.  Return
1237  * true if a timer has expired, else return false.
1238  */
1239 static inline int fastpath_timer_check(struct task_struct *tsk)
1240 {
1241         struct signal_struct *sig;
1242         cputime_t utime, stime;
1243
1244         task_cputime(tsk, &utime, &stime);
1245
1246         if (!task_cputime_zero(&tsk->cputime_expires)) {
1247                 struct task_cputime task_sample = {
1248                         .utime = utime,
1249                         .stime = stime,
1250                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1251                 };
1252
1253                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1254                         return 1;
1255         }
1256
1257         sig = tsk->signal;
1258         if (sig->cputimer.running) {
1259                 struct task_cputime group_sample;
1260
1261                 raw_spin_lock(&sig->cputimer.lock);
1262                 group_sample = sig->cputimer.cputime;
1263                 raw_spin_unlock(&sig->cputimer.lock);
1264
1265                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1266                         return 1;
1267         }
1268
1269         return 0;
1270 }
1271
1272 /*
1273  * This is called from the timer interrupt handler.  The irq handler has
1274  * already updated our counts.  We need to check if any timers fire now.
1275  * Interrupts are disabled.
1276  */
1277 void run_posix_cpu_timers(struct task_struct *tsk)
1278 {
1279         LIST_HEAD(firing);
1280         struct k_itimer *timer, *next;
1281         unsigned long flags;
1282
1283         BUG_ON(!irqs_disabled());
1284
1285         /*
1286          * The fast path checks that there are no expired thread or thread
1287          * group timers.  If that's so, just return.
1288          */
1289         if (!fastpath_timer_check(tsk))
1290                 return;
1291
1292         if (!lock_task_sighand(tsk, &flags))
1293                 return;
1294         /*
1295          * Here we take off tsk->signal->cpu_timers[N] and
1296          * tsk->cpu_timers[N] all the timers that are firing, and
1297          * put them on the firing list.
1298          */
1299         check_thread_timers(tsk, &firing);
1300         /*
1301          * If there are any active process wide timers (POSIX 1.b, itimers,
1302          * RLIMIT_CPU) cputimer must be running.
1303          */
1304         if (tsk->signal->cputimer.running)
1305                 check_process_timers(tsk, &firing);
1306
1307         /*
1308          * We must release these locks before taking any timer's lock.
1309          * There is a potential race with timer deletion here, as the
1310          * siglock now protects our private firing list.  We have set
1311          * the firing flag in each timer, so that a deletion attempt
1312          * that gets the timer lock before we do will give it up and
1313          * spin until we've taken care of that timer below.
1314          */
1315         unlock_task_sighand(tsk, &flags);
1316
1317         /*
1318          * Now that all the timers on our list have the firing flag,
1319          * no one will touch their list entries but us.  We'll take
1320          * each timer's lock before clearing its firing flag, so no
1321          * timer call will interfere.
1322          */
1323         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1324                 int cpu_firing;
1325
1326                 spin_lock(&timer->it_lock);
1327                 list_del_init(&timer->it.cpu.entry);
1328                 cpu_firing = timer->it.cpu.firing;
1329                 timer->it.cpu.firing = 0;
1330                 /*
1331                  * The firing flag is -1 if we collided with a reset
1332                  * of the timer, which already reported this
1333                  * almost-firing as an overrun.  So don't generate an event.
1334                  */
1335                 if (likely(cpu_firing >= 0))
1336                         cpu_timer_fire(timer);
1337                 spin_unlock(&timer->it_lock);
1338         }
1339 }
1340
1341 /*
1342  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1343  * The tsk->sighand->siglock must be held by the caller.
1344  */
1345 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1346                            cputime_t *newval, cputime_t *oldval)
1347 {
1348         union cpu_time_count now;
1349
1350         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1351         cpu_timer_sample_group(clock_idx, tsk, &now);
1352
1353         if (oldval) {
1354                 /*
1355                  * We are setting itimer. The *oldval is absolute and we update
1356                  * it to be relative, *newval argument is relative and we update
1357                  * it to be absolute.
1358                  */
1359                 if (*oldval) {
1360                         if (*oldval <= now.cpu) {
1361                                 /* Just about to fire. */
1362                                 *oldval = cputime_one_jiffy;
1363                         } else {
1364                                 *oldval -= now.cpu;
1365                         }
1366                 }
1367
1368                 if (!*newval)
1369                         return;
1370                 *newval += now.cpu;
1371         }
1372
1373         /*
1374          * Update expiration cache if we are the earliest timer, or eventually
1375          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1376          */
1377         switch (clock_idx) {
1378         case CPUCLOCK_PROF:
1379                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1380                         tsk->signal->cputime_expires.prof_exp = *newval;
1381                 break;
1382         case CPUCLOCK_VIRT:
1383                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1384                         tsk->signal->cputime_expires.virt_exp = *newval;
1385                 break;
1386         }
1387 }
1388
1389 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1390                             struct timespec *rqtp, struct itimerspec *it)
1391 {
1392         struct k_itimer timer;
1393         int error;
1394
1395         /*
1396          * Set up a temporary timer and then wait for it to go off.
1397          */
1398         memset(&timer, 0, sizeof timer);
1399         spin_lock_init(&timer.it_lock);
1400         timer.it_clock = which_clock;
1401         timer.it_overrun = -1;
1402         error = posix_cpu_timer_create(&timer);
1403         timer.it_process = current;
1404         if (!error) {
1405                 static struct itimerspec zero_it;
1406
1407                 memset(it, 0, sizeof *it);
1408                 it->it_value = *rqtp;
1409
1410                 spin_lock_irq(&timer.it_lock);
1411                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1412                 if (error) {
1413                         spin_unlock_irq(&timer.it_lock);
1414                         return error;
1415                 }
1416
1417                 while (!signal_pending(current)) {
1418                         if (timer.it.cpu.expires.sched == 0) {
1419                                 /*
1420                                  * Our timer fired and was reset, below
1421                                  * deletion can not fail.
1422                                  */
1423                                 posix_cpu_timer_del(&timer);
1424                                 spin_unlock_irq(&timer.it_lock);
1425                                 return 0;
1426                         }
1427
1428                         /*
1429                          * Block until cpu_timer_fire (or a signal) wakes us.
1430                          */
1431                         __set_current_state(TASK_INTERRUPTIBLE);
1432                         spin_unlock_irq(&timer.it_lock);
1433                         schedule();
1434                         spin_lock_irq(&timer.it_lock);
1435                 }
1436
1437                 /*
1438                  * We were interrupted by a signal.
1439                  */
1440                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1441                 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1442                 if (!error) {
1443                         /*
1444                          * Timer is now unarmed, deletion can not fail.
1445                          */
1446                         posix_cpu_timer_del(&timer);
1447                 }
1448                 spin_unlock_irq(&timer.it_lock);
1449
1450                 while (error == TIMER_RETRY) {
1451                         /*
1452                          * We need to handle case when timer was or is in the
1453                          * middle of firing. In other cases we already freed
1454                          * resources.
1455                          */
1456                         spin_lock_irq(&timer.it_lock);
1457                         error = posix_cpu_timer_del(&timer);
1458                         spin_unlock_irq(&timer.it_lock);
1459                 }
1460
1461                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1462                         /*
1463                          * It actually did fire already.
1464                          */
1465                         return 0;
1466                 }
1467
1468                 error = -ERESTART_RESTARTBLOCK;
1469         }
1470
1471         return error;
1472 }
1473
1474 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1475
1476 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1477                             struct timespec *rqtp, struct timespec __user *rmtp)
1478 {
1479         struct restart_block *restart_block =
1480                 &current_thread_info()->restart_block;
1481         struct itimerspec it;
1482         int error;
1483
1484         /*
1485          * Diagnose required errors first.
1486          */
1487         if (CPUCLOCK_PERTHREAD(which_clock) &&
1488             (CPUCLOCK_PID(which_clock) == 0 ||
1489              CPUCLOCK_PID(which_clock) == current->pid))
1490                 return -EINVAL;
1491
1492         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1493
1494         if (error == -ERESTART_RESTARTBLOCK) {
1495
1496                 if (flags & TIMER_ABSTIME)
1497                         return -ERESTARTNOHAND;
1498                 /*
1499                  * Report back to the user the time still remaining.
1500                  */
1501                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1502                         return -EFAULT;
1503
1504                 restart_block->fn = posix_cpu_nsleep_restart;
1505                 restart_block->nanosleep.clockid = which_clock;
1506                 restart_block->nanosleep.rmtp = rmtp;
1507                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1508         }
1509         return error;
1510 }
1511
1512 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1513 {
1514         clockid_t which_clock = restart_block->nanosleep.clockid;
1515         struct timespec t;
1516         struct itimerspec it;
1517         int error;
1518
1519         t = ns_to_timespec(restart_block->nanosleep.expires);
1520
1521         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1522
1523         if (error == -ERESTART_RESTARTBLOCK) {
1524                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1525                 /*
1526                  * Report back to the user the time still remaining.
1527                  */
1528                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1529                         return -EFAULT;
1530
1531                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1532         }
1533         return error;
1534
1535 }
1536
1537 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1538 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1539
1540 static int process_cpu_clock_getres(const clockid_t which_clock,
1541                                     struct timespec *tp)
1542 {
1543         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1544 }
1545 static int process_cpu_clock_get(const clockid_t which_clock,
1546                                  struct timespec *tp)
1547 {
1548         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1549 }
1550 static int process_cpu_timer_create(struct k_itimer *timer)
1551 {
1552         timer->it_clock = PROCESS_CLOCK;
1553         return posix_cpu_timer_create(timer);
1554 }
1555 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1556                               struct timespec *rqtp,
1557                               struct timespec __user *rmtp)
1558 {
1559         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1560 }
1561 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1562 {
1563         return -EINVAL;
1564 }
1565 static int thread_cpu_clock_getres(const clockid_t which_clock,
1566                                    struct timespec *tp)
1567 {
1568         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1569 }
1570 static int thread_cpu_clock_get(const clockid_t which_clock,
1571                                 struct timespec *tp)
1572 {
1573         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1574 }
1575 static int thread_cpu_timer_create(struct k_itimer *timer)
1576 {
1577         timer->it_clock = THREAD_CLOCK;
1578         return posix_cpu_timer_create(timer);
1579 }
1580
1581 struct k_clock clock_posix_cpu = {
1582         .clock_getres   = posix_cpu_clock_getres,
1583         .clock_set      = posix_cpu_clock_set,
1584         .clock_get      = posix_cpu_clock_get,
1585         .timer_create   = posix_cpu_timer_create,
1586         .nsleep         = posix_cpu_nsleep,
1587         .nsleep_restart = posix_cpu_nsleep_restart,
1588         .timer_set      = posix_cpu_timer_set,
1589         .timer_del      = posix_cpu_timer_del,
1590         .timer_get      = posix_cpu_timer_get,
1591 };
1592
1593 static __init int init_posix_cpu_timers(void)
1594 {
1595         struct k_clock process = {
1596                 .clock_getres   = process_cpu_clock_getres,
1597                 .clock_get      = process_cpu_clock_get,
1598                 .timer_create   = process_cpu_timer_create,
1599                 .nsleep         = process_cpu_nsleep,
1600                 .nsleep_restart = process_cpu_nsleep_restart,
1601         };
1602         struct k_clock thread = {
1603                 .clock_getres   = thread_cpu_clock_getres,
1604                 .clock_get      = thread_cpu_clock_get,
1605                 .timer_create   = thread_cpu_timer_create,
1606         };
1607         struct timespec ts;
1608
1609         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1610         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1611
1612         cputime_to_timespec(cputime_one_jiffy, &ts);
1613         onecputick = ts.tv_nsec;
1614         WARN_ON(ts.tv_sec != 0);
1615
1616         return 0;
1617 }
1618 __initcall(init_posix_cpu_timers);