perf, hw_breakpoint: Fix crash in hw_breakpoint creation
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         /*
319          * We can have double attach due to group movement in perf_event_open.
320          */
321         if (event->attach_state & PERF_ATTACH_GROUP)
322                 return;
323
324         event->attach_state |= PERF_ATTACH_GROUP;
325
326         if (group_leader == event)
327                 return;
328
329         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330                         !is_software_event(event))
331                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333         list_add_tail(&event->group_entry, &group_leader->sibling_list);
334         group_leader->nr_siblings++;
335 }
336
337 /*
338  * Remove a event from the lists for its context.
339  * Must be called with ctx->mutex and ctx->lock held.
340  */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344         /*
345          * We can have double detach due to exit/hot-unplug + close.
346          */
347         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348                 return;
349
350         event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352         ctx->nr_events--;
353         if (event->attr.inherit_stat)
354                 ctx->nr_stat--;
355
356         list_del_rcu(&event->event_entry);
357
358         if (event->group_leader == event)
359                 list_del_init(&event->group_entry);
360
361         update_group_times(event);
362
363         /*
364          * If event was in error state, then keep it
365          * that way, otherwise bogus counts will be
366          * returned on read(). The only way to get out
367          * of error state is by explicit re-enabling
368          * of the event
369          */
370         if (event->state > PERF_EVENT_STATE_OFF)
371                 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376         struct perf_event *sibling, *tmp;
377         struct list_head *list = NULL;
378
379         /*
380          * We can have double detach due to exit/hot-unplug + close.
381          */
382         if (!(event->attach_state & PERF_ATTACH_GROUP))
383                 return;
384
385         event->attach_state &= ~PERF_ATTACH_GROUP;
386
387         /*
388          * If this is a sibling, remove it from its group.
389          */
390         if (event->group_leader != event) {
391                 list_del_init(&event->group_entry);
392                 event->group_leader->nr_siblings--;
393                 return;
394         }
395
396         if (!list_empty(&event->group_entry))
397                 list = &event->group_entry;
398
399         /*
400          * If this was a group event with sibling events then
401          * upgrade the siblings to singleton events by adding them
402          * to whatever list we are on.
403          */
404         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405                 if (list)
406                         list_move_tail(&sibling->group_entry, list);
407                 sibling->group_leader = sibling;
408
409                 /* Inherit group flags from the previous leader */
410                 sibling->group_flags = event->group_flags;
411         }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417         return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static int
421 __event_sched_out(struct perf_event *event,
422                   struct perf_cpu_context *cpuctx,
423                   struct perf_event_context *ctx)
424 {
425         u64 delta;
426         /*
427          * An event which could not be activated because of
428          * filter mismatch still needs to have its timings
429          * maintained, otherwise bogus information is return
430          * via read() for time_enabled, time_running:
431          */
432         if (event->state == PERF_EVENT_STATE_INACTIVE
433             && !event_filter_match(event)) {
434                 delta = ctx->time - event->tstamp_stopped;
435                 event->tstamp_running += delta;
436                 event->tstamp_stopped = ctx->time;
437         }
438
439         if (event->state != PERF_EVENT_STATE_ACTIVE)
440                 return 0;
441
442         event->state = PERF_EVENT_STATE_INACTIVE;
443         if (event->pending_disable) {
444                 event->pending_disable = 0;
445                 event->state = PERF_EVENT_STATE_OFF;
446         }
447         event->pmu->del(event, 0);
448         event->oncpu = -1;
449
450         if (!is_software_event(event))
451                 cpuctx->active_oncpu--;
452         ctx->nr_active--;
453         if (event->attr.exclusive || !cpuctx->active_oncpu)
454                 cpuctx->exclusive = 0;
455         return 1;
456 }
457
458 static void
459 event_sched_out(struct perf_event *event,
460                   struct perf_cpu_context *cpuctx,
461                   struct perf_event_context *ctx)
462 {
463         int ret;
464
465         ret = __event_sched_out(event, cpuctx, ctx);
466         if (ret)
467                 event->tstamp_stopped = ctx->time;
468 }
469
470 static void
471 group_sched_out(struct perf_event *group_event,
472                 struct perf_cpu_context *cpuctx,
473                 struct perf_event_context *ctx)
474 {
475         struct perf_event *event;
476         int state = group_event->state;
477
478         event_sched_out(group_event, cpuctx, ctx);
479
480         /*
481          * Schedule out siblings (if any):
482          */
483         list_for_each_entry(event, &group_event->sibling_list, group_entry)
484                 event_sched_out(event, cpuctx, ctx);
485
486         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487                 cpuctx->exclusive = 0;
488 }
489
490 static inline struct perf_cpu_context *
491 __get_cpu_context(struct perf_event_context *ctx)
492 {
493         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
494 }
495
496 /*
497  * Cross CPU call to remove a performance event
498  *
499  * We disable the event on the hardware level first. After that we
500  * remove it from the context list.
501  */
502 static void __perf_event_remove_from_context(void *info)
503 {
504         struct perf_event *event = info;
505         struct perf_event_context *ctx = event->ctx;
506         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
507
508         /*
509          * If this is a task context, we need to check whether it is
510          * the current task context of this cpu. If not it has been
511          * scheduled out before the smp call arrived.
512          */
513         if (ctx->task && cpuctx->task_ctx != ctx)
514                 return;
515
516         raw_spin_lock(&ctx->lock);
517
518         event_sched_out(event, cpuctx, ctx);
519
520         list_del_event(event, ctx);
521
522         raw_spin_unlock(&ctx->lock);
523 }
524
525
526 /*
527  * Remove the event from a task's (or a CPU's) list of events.
528  *
529  * Must be called with ctx->mutex held.
530  *
531  * CPU events are removed with a smp call. For task events we only
532  * call when the task is on a CPU.
533  *
534  * If event->ctx is a cloned context, callers must make sure that
535  * every task struct that event->ctx->task could possibly point to
536  * remains valid.  This is OK when called from perf_release since
537  * that only calls us on the top-level context, which can't be a clone.
538  * When called from perf_event_exit_task, it's OK because the
539  * context has been detached from its task.
540  */
541 static void perf_event_remove_from_context(struct perf_event *event)
542 {
543         struct perf_event_context *ctx = event->ctx;
544         struct task_struct *task = ctx->task;
545
546         if (!task) {
547                 /*
548                  * Per cpu events are removed via an smp call and
549                  * the removal is always successful.
550                  */
551                 smp_call_function_single(event->cpu,
552                                          __perf_event_remove_from_context,
553                                          event, 1);
554                 return;
555         }
556
557 retry:
558         task_oncpu_function_call(task, __perf_event_remove_from_context,
559                                  event);
560
561         raw_spin_lock_irq(&ctx->lock);
562         /*
563          * If the context is active we need to retry the smp call.
564          */
565         if (ctx->nr_active && !list_empty(&event->group_entry)) {
566                 raw_spin_unlock_irq(&ctx->lock);
567                 goto retry;
568         }
569
570         /*
571          * The lock prevents that this context is scheduled in so we
572          * can remove the event safely, if the call above did not
573          * succeed.
574          */
575         if (!list_empty(&event->group_entry))
576                 list_del_event(event, ctx);
577         raw_spin_unlock_irq(&ctx->lock);
578 }
579
580 /*
581  * Cross CPU call to disable a performance event
582  */
583 static void __perf_event_disable(void *info)
584 {
585         struct perf_event *event = info;
586         struct perf_event_context *ctx = event->ctx;
587         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589         /*
590          * If this is a per-task event, need to check whether this
591          * event's task is the current task on this cpu.
592          */
593         if (ctx->task && cpuctx->task_ctx != ctx)
594                 return;
595
596         raw_spin_lock(&ctx->lock);
597
598         /*
599          * If the event is on, turn it off.
600          * If it is in error state, leave it in error state.
601          */
602         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603                 update_context_time(ctx);
604                 update_group_times(event);
605                 if (event == event->group_leader)
606                         group_sched_out(event, cpuctx, ctx);
607                 else
608                         event_sched_out(event, cpuctx, ctx);
609                 event->state = PERF_EVENT_STATE_OFF;
610         }
611
612         raw_spin_unlock(&ctx->lock);
613 }
614
615 /*
616  * Disable a event.
617  *
618  * If event->ctx is a cloned context, callers must make sure that
619  * every task struct that event->ctx->task could possibly point to
620  * remains valid.  This condition is satisifed when called through
621  * perf_event_for_each_child or perf_event_for_each because they
622  * hold the top-level event's child_mutex, so any descendant that
623  * goes to exit will block in sync_child_event.
624  * When called from perf_pending_event it's OK because event->ctx
625  * is the current context on this CPU and preemption is disabled,
626  * hence we can't get into perf_event_task_sched_out for this context.
627  */
628 void perf_event_disable(struct perf_event *event)
629 {
630         struct perf_event_context *ctx = event->ctx;
631         struct task_struct *task = ctx->task;
632
633         if (!task) {
634                 /*
635                  * Disable the event on the cpu that it's on
636                  */
637                 smp_call_function_single(event->cpu, __perf_event_disable,
638                                          event, 1);
639                 return;
640         }
641
642 retry:
643         task_oncpu_function_call(task, __perf_event_disable, event);
644
645         raw_spin_lock_irq(&ctx->lock);
646         /*
647          * If the event is still active, we need to retry the cross-call.
648          */
649         if (event->state == PERF_EVENT_STATE_ACTIVE) {
650                 raw_spin_unlock_irq(&ctx->lock);
651                 goto retry;
652         }
653
654         /*
655          * Since we have the lock this context can't be scheduled
656          * in, so we can change the state safely.
657          */
658         if (event->state == PERF_EVENT_STATE_INACTIVE) {
659                 update_group_times(event);
660                 event->state = PERF_EVENT_STATE_OFF;
661         }
662
663         raw_spin_unlock_irq(&ctx->lock);
664 }
665
666 static int
667 __event_sched_in(struct perf_event *event,
668                  struct perf_cpu_context *cpuctx,
669                  struct perf_event_context *ctx)
670 {
671         if (event->state <= PERF_EVENT_STATE_OFF)
672                 return 0;
673
674         event->state = PERF_EVENT_STATE_ACTIVE;
675         event->oncpu = smp_processor_id();
676         /*
677          * The new state must be visible before we turn it on in the hardware:
678          */
679         smp_wmb();
680
681         if (event->pmu->add(event, PERF_EF_START)) {
682                 event->state = PERF_EVENT_STATE_INACTIVE;
683                 event->oncpu = -1;
684                 return -EAGAIN;
685         }
686
687         if (!is_software_event(event))
688                 cpuctx->active_oncpu++;
689         ctx->nr_active++;
690
691         if (event->attr.exclusive)
692                 cpuctx->exclusive = 1;
693
694         return 0;
695 }
696
697 static inline int
698 event_sched_in(struct perf_event *event,
699                  struct perf_cpu_context *cpuctx,
700                  struct perf_event_context *ctx)
701 {
702         int ret = __event_sched_in(event, cpuctx, ctx);
703         if (ret)
704                 return ret;
705         event->tstamp_running += ctx->time - event->tstamp_stopped;
706         return 0;
707 }
708
709 static void
710 group_commit_event_sched_in(struct perf_event *group_event,
711                struct perf_cpu_context *cpuctx,
712                struct perf_event_context *ctx)
713 {
714         struct perf_event *event;
715         u64 now = ctx->time;
716
717         group_event->tstamp_running += now - group_event->tstamp_stopped;
718         /*
719          * Schedule in siblings as one group (if any):
720          */
721         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
722                 event->tstamp_running += now - event->tstamp_stopped;
723         }
724 }
725
726 static int
727 group_sched_in(struct perf_event *group_event,
728                struct perf_cpu_context *cpuctx,
729                struct perf_event_context *ctx)
730 {
731         struct perf_event *event, *partial_group = NULL;
732         struct pmu *pmu = group_event->pmu;
733
734         if (group_event->state == PERF_EVENT_STATE_OFF)
735                 return 0;
736
737         pmu->start_txn(pmu);
738
739         /*
740          * use __event_sched_in() to delay updating tstamp_running
741          * until the transaction is committed. In case of failure
742          * we will keep an unmodified tstamp_running which is a
743          * requirement to get correct timing information
744          */
745         if (__event_sched_in(group_event, cpuctx, ctx)) {
746                 pmu->cancel_txn(pmu);
747                 return -EAGAIN;
748         }
749
750         /*
751          * Schedule in siblings as one group (if any):
752          */
753         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754                 if (__event_sched_in(event, cpuctx, ctx)) {
755                         partial_group = event;
756                         goto group_error;
757                 }
758         }
759
760         if (!pmu->commit_txn(pmu)) {
761                 /* commit tstamp_running */
762                 group_commit_event_sched_in(group_event, cpuctx, ctx);
763                 return 0;
764         }
765 group_error:
766         /*
767          * Groups can be scheduled in as one unit only, so undo any
768          * partial group before returning:
769          *
770          * use __event_sched_out() to avoid updating tstamp_stopped
771          * because the event never actually ran
772          */
773         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
774                 if (event == partial_group)
775                         break;
776                 __event_sched_out(event, cpuctx, ctx);
777         }
778         __event_sched_out(group_event, cpuctx, ctx);
779
780         pmu->cancel_txn(pmu);
781
782         return -EAGAIN;
783 }
784
785 /*
786  * Work out whether we can put this event group on the CPU now.
787  */
788 static int group_can_go_on(struct perf_event *event,
789                            struct perf_cpu_context *cpuctx,
790                            int can_add_hw)
791 {
792         /*
793          * Groups consisting entirely of software events can always go on.
794          */
795         if (event->group_flags & PERF_GROUP_SOFTWARE)
796                 return 1;
797         /*
798          * If an exclusive group is already on, no other hardware
799          * events can go on.
800          */
801         if (cpuctx->exclusive)
802                 return 0;
803         /*
804          * If this group is exclusive and there are already
805          * events on the CPU, it can't go on.
806          */
807         if (event->attr.exclusive && cpuctx->active_oncpu)
808                 return 0;
809         /*
810          * Otherwise, try to add it if all previous groups were able
811          * to go on.
812          */
813         return can_add_hw;
814 }
815
816 static void add_event_to_ctx(struct perf_event *event,
817                                struct perf_event_context *ctx)
818 {
819         list_add_event(event, ctx);
820         perf_group_attach(event);
821         event->tstamp_enabled = ctx->time;
822         event->tstamp_running = ctx->time;
823         event->tstamp_stopped = ctx->time;
824 }
825
826 /*
827  * Cross CPU call to install and enable a performance event
828  *
829  * Must be called with ctx->mutex held
830  */
831 static void __perf_install_in_context(void *info)
832 {
833         struct perf_event *event = info;
834         struct perf_event_context *ctx = event->ctx;
835         struct perf_event *leader = event->group_leader;
836         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
837         int err;
838
839         /*
840          * If this is a task context, we need to check whether it is
841          * the current task context of this cpu. If not it has been
842          * scheduled out before the smp call arrived.
843          * Or possibly this is the right context but it isn't
844          * on this cpu because it had no events.
845          */
846         if (ctx->task && cpuctx->task_ctx != ctx) {
847                 if (cpuctx->task_ctx || ctx->task != current)
848                         return;
849                 cpuctx->task_ctx = ctx;
850         }
851
852         raw_spin_lock(&ctx->lock);
853         ctx->is_active = 1;
854         update_context_time(ctx);
855
856         add_event_to_ctx(event, ctx);
857
858         if (event->cpu != -1 && event->cpu != smp_processor_id())
859                 goto unlock;
860
861         /*
862          * Don't put the event on if it is disabled or if
863          * it is in a group and the group isn't on.
864          */
865         if (event->state != PERF_EVENT_STATE_INACTIVE ||
866             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
867                 goto unlock;
868
869         /*
870          * An exclusive event can't go on if there are already active
871          * hardware events, and no hardware event can go on if there
872          * is already an exclusive event on.
873          */
874         if (!group_can_go_on(event, cpuctx, 1))
875                 err = -EEXIST;
876         else
877                 err = event_sched_in(event, cpuctx, ctx);
878
879         if (err) {
880                 /*
881                  * This event couldn't go on.  If it is in a group
882                  * then we have to pull the whole group off.
883                  * If the event group is pinned then put it in error state.
884                  */
885                 if (leader != event)
886                         group_sched_out(leader, cpuctx, ctx);
887                 if (leader->attr.pinned) {
888                         update_group_times(leader);
889                         leader->state = PERF_EVENT_STATE_ERROR;
890                 }
891         }
892
893 unlock:
894         raw_spin_unlock(&ctx->lock);
895 }
896
897 /*
898  * Attach a performance event to a context
899  *
900  * First we add the event to the list with the hardware enable bit
901  * in event->hw_config cleared.
902  *
903  * If the event is attached to a task which is on a CPU we use a smp
904  * call to enable it in the task context. The task might have been
905  * scheduled away, but we check this in the smp call again.
906  *
907  * Must be called with ctx->mutex held.
908  */
909 static void
910 perf_install_in_context(struct perf_event_context *ctx,
911                         struct perf_event *event,
912                         int cpu)
913 {
914         struct task_struct *task = ctx->task;
915
916         event->ctx = ctx;
917
918         if (!task) {
919                 /*
920                  * Per cpu events are installed via an smp call and
921                  * the install is always successful.
922                  */
923                 smp_call_function_single(cpu, __perf_install_in_context,
924                                          event, 1);
925                 return;
926         }
927
928 retry:
929         task_oncpu_function_call(task, __perf_install_in_context,
930                                  event);
931
932         raw_spin_lock_irq(&ctx->lock);
933         /*
934          * we need to retry the smp call.
935          */
936         if (ctx->is_active && list_empty(&event->group_entry)) {
937                 raw_spin_unlock_irq(&ctx->lock);
938                 goto retry;
939         }
940
941         /*
942          * The lock prevents that this context is scheduled in so we
943          * can add the event safely, if it the call above did not
944          * succeed.
945          */
946         if (list_empty(&event->group_entry))
947                 add_event_to_ctx(event, ctx);
948         raw_spin_unlock_irq(&ctx->lock);
949 }
950
951 /*
952  * Put a event into inactive state and update time fields.
953  * Enabling the leader of a group effectively enables all
954  * the group members that aren't explicitly disabled, so we
955  * have to update their ->tstamp_enabled also.
956  * Note: this works for group members as well as group leaders
957  * since the non-leader members' sibling_lists will be empty.
958  */
959 static void __perf_event_mark_enabled(struct perf_event *event,
960                                         struct perf_event_context *ctx)
961 {
962         struct perf_event *sub;
963
964         event->state = PERF_EVENT_STATE_INACTIVE;
965         event->tstamp_enabled = ctx->time - event->total_time_enabled;
966         list_for_each_entry(sub, &event->sibling_list, group_entry) {
967                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968                         sub->tstamp_enabled =
969                                 ctx->time - sub->total_time_enabled;
970                 }
971         }
972 }
973
974 /*
975  * Cross CPU call to enable a performance event
976  */
977 static void __perf_event_enable(void *info)
978 {
979         struct perf_event *event = info;
980         struct perf_event_context *ctx = event->ctx;
981         struct perf_event *leader = event->group_leader;
982         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
983         int err;
984
985         /*
986          * If this is a per-task event, need to check whether this
987          * event's task is the current task on this cpu.
988          */
989         if (ctx->task && cpuctx->task_ctx != ctx) {
990                 if (cpuctx->task_ctx || ctx->task != current)
991                         return;
992                 cpuctx->task_ctx = ctx;
993         }
994
995         raw_spin_lock(&ctx->lock);
996         ctx->is_active = 1;
997         update_context_time(ctx);
998
999         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1000                 goto unlock;
1001         __perf_event_mark_enabled(event, ctx);
1002
1003         if (event->cpu != -1 && event->cpu != smp_processor_id())
1004                 goto unlock;
1005
1006         /*
1007          * If the event is in a group and isn't the group leader,
1008          * then don't put it on unless the group is on.
1009          */
1010         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1011                 goto unlock;
1012
1013         if (!group_can_go_on(event, cpuctx, 1)) {
1014                 err = -EEXIST;
1015         } else {
1016                 if (event == leader)
1017                         err = group_sched_in(event, cpuctx, ctx);
1018                 else
1019                         err = event_sched_in(event, cpuctx, ctx);
1020         }
1021
1022         if (err) {
1023                 /*
1024                  * If this event can't go on and it's part of a
1025                  * group, then the whole group has to come off.
1026                  */
1027                 if (leader != event)
1028                         group_sched_out(leader, cpuctx, ctx);
1029                 if (leader->attr.pinned) {
1030                         update_group_times(leader);
1031                         leader->state = PERF_EVENT_STATE_ERROR;
1032                 }
1033         }
1034
1035 unlock:
1036         raw_spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040  * Enable a event.
1041  *
1042  * If event->ctx is a cloned context, callers must make sure that
1043  * every task struct that event->ctx->task could possibly point to
1044  * remains valid.  This condition is satisfied when called through
1045  * perf_event_for_each_child or perf_event_for_each as described
1046  * for perf_event_disable.
1047  */
1048 void perf_event_enable(struct perf_event *event)
1049 {
1050         struct perf_event_context *ctx = event->ctx;
1051         struct task_struct *task = ctx->task;
1052
1053         if (!task) {
1054                 /*
1055                  * Enable the event on the cpu that it's on
1056                  */
1057                 smp_call_function_single(event->cpu, __perf_event_enable,
1058                                          event, 1);
1059                 return;
1060         }
1061
1062         raw_spin_lock_irq(&ctx->lock);
1063         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1064                 goto out;
1065
1066         /*
1067          * If the event is in error state, clear that first.
1068          * That way, if we see the event in error state below, we
1069          * know that it has gone back into error state, as distinct
1070          * from the task having been scheduled away before the
1071          * cross-call arrived.
1072          */
1073         if (event->state == PERF_EVENT_STATE_ERROR)
1074                 event->state = PERF_EVENT_STATE_OFF;
1075
1076 retry:
1077         raw_spin_unlock_irq(&ctx->lock);
1078         task_oncpu_function_call(task, __perf_event_enable, event);
1079
1080         raw_spin_lock_irq(&ctx->lock);
1081
1082         /*
1083          * If the context is active and the event is still off,
1084          * we need to retry the cross-call.
1085          */
1086         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1087                 goto retry;
1088
1089         /*
1090          * Since we have the lock this context can't be scheduled
1091          * in, so we can change the state safely.
1092          */
1093         if (event->state == PERF_EVENT_STATE_OFF)
1094                 __perf_event_mark_enabled(event, ctx);
1095
1096 out:
1097         raw_spin_unlock_irq(&ctx->lock);
1098 }
1099
1100 static int perf_event_refresh(struct perf_event *event, int refresh)
1101 {
1102         /*
1103          * not supported on inherited events
1104          */
1105         if (event->attr.inherit)
1106                 return -EINVAL;
1107
1108         atomic_add(refresh, &event->event_limit);
1109         perf_event_enable(event);
1110
1111         return 0;
1112 }
1113
1114 enum event_type_t {
1115         EVENT_FLEXIBLE = 0x1,
1116         EVENT_PINNED = 0x2,
1117         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1118 };
1119
1120 static void ctx_sched_out(struct perf_event_context *ctx,
1121                           struct perf_cpu_context *cpuctx,
1122                           enum event_type_t event_type)
1123 {
1124         struct perf_event *event;
1125
1126         raw_spin_lock(&ctx->lock);
1127         perf_pmu_disable(ctx->pmu);
1128         ctx->is_active = 0;
1129         if (likely(!ctx->nr_events))
1130                 goto out;
1131         update_context_time(ctx);
1132
1133         if (!ctx->nr_active)
1134                 goto out;
1135
1136         if (event_type & EVENT_PINNED) {
1137                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1138                         group_sched_out(event, cpuctx, ctx);
1139         }
1140
1141         if (event_type & EVENT_FLEXIBLE) {
1142                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143                         group_sched_out(event, cpuctx, ctx);
1144         }
1145 out:
1146         perf_pmu_enable(ctx->pmu);
1147         raw_spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Test whether two contexts are equivalent, i.e. whether they
1152  * have both been cloned from the same version of the same context
1153  * and they both have the same number of enabled events.
1154  * If the number of enabled events is the same, then the set
1155  * of enabled events should be the same, because these are both
1156  * inherited contexts, therefore we can't access individual events
1157  * in them directly with an fd; we can only enable/disable all
1158  * events via prctl, or enable/disable all events in a family
1159  * via ioctl, which will have the same effect on both contexts.
1160  */
1161 static int context_equiv(struct perf_event_context *ctx1,
1162                          struct perf_event_context *ctx2)
1163 {
1164         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165                 && ctx1->parent_gen == ctx2->parent_gen
1166                 && !ctx1->pin_count && !ctx2->pin_count;
1167 }
1168
1169 static void __perf_event_sync_stat(struct perf_event *event,
1170                                      struct perf_event *next_event)
1171 {
1172         u64 value;
1173
1174         if (!event->attr.inherit_stat)
1175                 return;
1176
1177         /*
1178          * Update the event value, we cannot use perf_event_read()
1179          * because we're in the middle of a context switch and have IRQs
1180          * disabled, which upsets smp_call_function_single(), however
1181          * we know the event must be on the current CPU, therefore we
1182          * don't need to use it.
1183          */
1184         switch (event->state) {
1185         case PERF_EVENT_STATE_ACTIVE:
1186                 event->pmu->read(event);
1187                 /* fall-through */
1188
1189         case PERF_EVENT_STATE_INACTIVE:
1190                 update_event_times(event);
1191                 break;
1192
1193         default:
1194                 break;
1195         }
1196
1197         /*
1198          * In order to keep per-task stats reliable we need to flip the event
1199          * values when we flip the contexts.
1200          */
1201         value = local64_read(&next_event->count);
1202         value = local64_xchg(&event->count, value);
1203         local64_set(&next_event->count, value);
1204
1205         swap(event->total_time_enabled, next_event->total_time_enabled);
1206         swap(event->total_time_running, next_event->total_time_running);
1207
1208         /*
1209          * Since we swizzled the values, update the user visible data too.
1210          */
1211         perf_event_update_userpage(event);
1212         perf_event_update_userpage(next_event);
1213 }
1214
1215 #define list_next_entry(pos, member) \
1216         list_entry(pos->member.next, typeof(*pos), member)
1217
1218 static void perf_event_sync_stat(struct perf_event_context *ctx,
1219                                    struct perf_event_context *next_ctx)
1220 {
1221         struct perf_event *event, *next_event;
1222
1223         if (!ctx->nr_stat)
1224                 return;
1225
1226         update_context_time(ctx);
1227
1228         event = list_first_entry(&ctx->event_list,
1229                                    struct perf_event, event_entry);
1230
1231         next_event = list_first_entry(&next_ctx->event_list,
1232                                         struct perf_event, event_entry);
1233
1234         while (&event->event_entry != &ctx->event_list &&
1235                &next_event->event_entry != &next_ctx->event_list) {
1236
1237                 __perf_event_sync_stat(event, next_event);
1238
1239                 event = list_next_entry(event, event_entry);
1240                 next_event = list_next_entry(next_event, event_entry);
1241         }
1242 }
1243
1244 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1245                                   struct task_struct *next)
1246 {
1247         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248         struct perf_event_context *next_ctx;
1249         struct perf_event_context *parent;
1250         struct perf_cpu_context *cpuctx;
1251         int do_switch = 1;
1252
1253         if (likely(!ctx))
1254                 return;
1255
1256         cpuctx = __get_cpu_context(ctx);
1257         if (!cpuctx->task_ctx)
1258                 return;
1259
1260         rcu_read_lock();
1261         parent = rcu_dereference(ctx->parent_ctx);
1262         next_ctx = next->perf_event_ctxp[ctxn];
1263         if (parent && next_ctx &&
1264             rcu_dereference(next_ctx->parent_ctx) == parent) {
1265                 /*
1266                  * Looks like the two contexts are clones, so we might be
1267                  * able to optimize the context switch.  We lock both
1268                  * contexts and check that they are clones under the
1269                  * lock (including re-checking that neither has been
1270                  * uncloned in the meantime).  It doesn't matter which
1271                  * order we take the locks because no other cpu could
1272                  * be trying to lock both of these tasks.
1273                  */
1274                 raw_spin_lock(&ctx->lock);
1275                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276                 if (context_equiv(ctx, next_ctx)) {
1277                         /*
1278                          * XXX do we need a memory barrier of sorts
1279                          * wrt to rcu_dereference() of perf_event_ctxp
1280                          */
1281                         task->perf_event_ctxp[ctxn] = next_ctx;
1282                         next->perf_event_ctxp[ctxn] = ctx;
1283                         ctx->task = next;
1284                         next_ctx->task = task;
1285                         do_switch = 0;
1286
1287                         perf_event_sync_stat(ctx, next_ctx);
1288                 }
1289                 raw_spin_unlock(&next_ctx->lock);
1290                 raw_spin_unlock(&ctx->lock);
1291         }
1292         rcu_read_unlock();
1293
1294         if (do_switch) {
1295                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296                 cpuctx->task_ctx = NULL;
1297         }
1298 }
1299
1300 #define for_each_task_context_nr(ctxn)                                  \
1301         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1302
1303 /*
1304  * Called from scheduler to remove the events of the current task,
1305  * with interrupts disabled.
1306  *
1307  * We stop each event and update the event value in event->count.
1308  *
1309  * This does not protect us against NMI, but disable()
1310  * sets the disabled bit in the control field of event _before_
1311  * accessing the event control register. If a NMI hits, then it will
1312  * not restart the event.
1313  */
1314 void perf_event_task_sched_out(struct task_struct *task,
1315                                struct task_struct *next)
1316 {
1317         int ctxn;
1318
1319         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1320
1321         for_each_task_context_nr(ctxn)
1322                 perf_event_context_sched_out(task, ctxn, next);
1323 }
1324
1325 static void task_ctx_sched_out(struct perf_event_context *ctx,
1326                                enum event_type_t event_type)
1327 {
1328         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1329
1330         if (!cpuctx->task_ctx)
1331                 return;
1332
1333         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1334                 return;
1335
1336         ctx_sched_out(ctx, cpuctx, event_type);
1337         cpuctx->task_ctx = NULL;
1338 }
1339
1340 /*
1341  * Called with IRQs disabled
1342  */
1343 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1344 {
1345         task_ctx_sched_out(ctx, EVENT_ALL);
1346 }
1347
1348 /*
1349  * Called with IRQs disabled
1350  */
1351 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1352                               enum event_type_t event_type)
1353 {
1354         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1355 }
1356
1357 static void
1358 ctx_pinned_sched_in(struct perf_event_context *ctx,
1359                     struct perf_cpu_context *cpuctx)
1360 {
1361         struct perf_event *event;
1362
1363         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1364                 if (event->state <= PERF_EVENT_STATE_OFF)
1365                         continue;
1366                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1367                         continue;
1368
1369                 if (group_can_go_on(event, cpuctx, 1))
1370                         group_sched_in(event, cpuctx, ctx);
1371
1372                 /*
1373                  * If this pinned group hasn't been scheduled,
1374                  * put it in error state.
1375                  */
1376                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1377                         update_group_times(event);
1378                         event->state = PERF_EVENT_STATE_ERROR;
1379                 }
1380         }
1381 }
1382
1383 static void
1384 ctx_flexible_sched_in(struct perf_event_context *ctx,
1385                       struct perf_cpu_context *cpuctx)
1386 {
1387         struct perf_event *event;
1388         int can_add_hw = 1;
1389
1390         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1391                 /* Ignore events in OFF or ERROR state */
1392                 if (event->state <= PERF_EVENT_STATE_OFF)
1393                         continue;
1394                 /*
1395                  * Listen to the 'cpu' scheduling filter constraint
1396                  * of events:
1397                  */
1398                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1399                         continue;
1400
1401                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1402                         if (group_sched_in(event, cpuctx, ctx))
1403                                 can_add_hw = 0;
1404                 }
1405         }
1406 }
1407
1408 static void
1409 ctx_sched_in(struct perf_event_context *ctx,
1410              struct perf_cpu_context *cpuctx,
1411              enum event_type_t event_type)
1412 {
1413         raw_spin_lock(&ctx->lock);
1414         ctx->is_active = 1;
1415         if (likely(!ctx->nr_events))
1416                 goto out;
1417
1418         ctx->timestamp = perf_clock();
1419
1420         /*
1421          * First go through the list and put on any pinned groups
1422          * in order to give them the best chance of going on.
1423          */
1424         if (event_type & EVENT_PINNED)
1425                 ctx_pinned_sched_in(ctx, cpuctx);
1426
1427         /* Then walk through the lower prio flexible groups */
1428         if (event_type & EVENT_FLEXIBLE)
1429                 ctx_flexible_sched_in(ctx, cpuctx);
1430
1431 out:
1432         raw_spin_unlock(&ctx->lock);
1433 }
1434
1435 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1436                              enum event_type_t event_type)
1437 {
1438         struct perf_event_context *ctx = &cpuctx->ctx;
1439
1440         ctx_sched_in(ctx, cpuctx, event_type);
1441 }
1442
1443 static void task_ctx_sched_in(struct perf_event_context *ctx,
1444                               enum event_type_t event_type)
1445 {
1446         struct perf_cpu_context *cpuctx;
1447
1448         cpuctx = __get_cpu_context(ctx);
1449         if (cpuctx->task_ctx == ctx)
1450                 return;
1451
1452         ctx_sched_in(ctx, cpuctx, event_type);
1453         cpuctx->task_ctx = ctx;
1454 }
1455
1456 void perf_event_context_sched_in(struct perf_event_context *ctx)
1457 {
1458         struct perf_cpu_context *cpuctx;
1459
1460         cpuctx = __get_cpu_context(ctx);
1461         if (cpuctx->task_ctx == ctx)
1462                 return;
1463
1464         perf_pmu_disable(ctx->pmu);
1465         /*
1466          * We want to keep the following priority order:
1467          * cpu pinned (that don't need to move), task pinned,
1468          * cpu flexible, task flexible.
1469          */
1470         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1471
1472         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1473         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1474         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1475
1476         cpuctx->task_ctx = ctx;
1477
1478         /*
1479          * Since these rotations are per-cpu, we need to ensure the
1480          * cpu-context we got scheduled on is actually rotating.
1481          */
1482         perf_pmu_rotate_start(ctx->pmu);
1483         perf_pmu_enable(ctx->pmu);
1484 }
1485
1486 /*
1487  * Called from scheduler to add the events of the current task
1488  * with interrupts disabled.
1489  *
1490  * We restore the event value and then enable it.
1491  *
1492  * This does not protect us against NMI, but enable()
1493  * sets the enabled bit in the control field of event _before_
1494  * accessing the event control register. If a NMI hits, then it will
1495  * keep the event running.
1496  */
1497 void perf_event_task_sched_in(struct task_struct *task)
1498 {
1499         struct perf_event_context *ctx;
1500         int ctxn;
1501
1502         for_each_task_context_nr(ctxn) {
1503                 ctx = task->perf_event_ctxp[ctxn];
1504                 if (likely(!ctx))
1505                         continue;
1506
1507                 perf_event_context_sched_in(ctx);
1508         }
1509 }
1510
1511 #define MAX_INTERRUPTS (~0ULL)
1512
1513 static void perf_log_throttle(struct perf_event *event, int enable);
1514
1515 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1516 {
1517         u64 frequency = event->attr.sample_freq;
1518         u64 sec = NSEC_PER_SEC;
1519         u64 divisor, dividend;
1520
1521         int count_fls, nsec_fls, frequency_fls, sec_fls;
1522
1523         count_fls = fls64(count);
1524         nsec_fls = fls64(nsec);
1525         frequency_fls = fls64(frequency);
1526         sec_fls = 30;
1527
1528         /*
1529          * We got @count in @nsec, with a target of sample_freq HZ
1530          * the target period becomes:
1531          *
1532          *             @count * 10^9
1533          * period = -------------------
1534          *          @nsec * sample_freq
1535          *
1536          */
1537
1538         /*
1539          * Reduce accuracy by one bit such that @a and @b converge
1540          * to a similar magnitude.
1541          */
1542 #define REDUCE_FLS(a, b)                \
1543 do {                                    \
1544         if (a##_fls > b##_fls) {        \
1545                 a >>= 1;                \
1546                 a##_fls--;              \
1547         } else {                        \
1548                 b >>= 1;                \
1549                 b##_fls--;              \
1550         }                               \
1551 } while (0)
1552
1553         /*
1554          * Reduce accuracy until either term fits in a u64, then proceed with
1555          * the other, so that finally we can do a u64/u64 division.
1556          */
1557         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1558                 REDUCE_FLS(nsec, frequency);
1559                 REDUCE_FLS(sec, count);
1560         }
1561
1562         if (count_fls + sec_fls > 64) {
1563                 divisor = nsec * frequency;
1564
1565                 while (count_fls + sec_fls > 64) {
1566                         REDUCE_FLS(count, sec);
1567                         divisor >>= 1;
1568                 }
1569
1570                 dividend = count * sec;
1571         } else {
1572                 dividend = count * sec;
1573
1574                 while (nsec_fls + frequency_fls > 64) {
1575                         REDUCE_FLS(nsec, frequency);
1576                         dividend >>= 1;
1577                 }
1578
1579                 divisor = nsec * frequency;
1580         }
1581
1582         if (!divisor)
1583                 return dividend;
1584
1585         return div64_u64(dividend, divisor);
1586 }
1587
1588 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1589 {
1590         struct hw_perf_event *hwc = &event->hw;
1591         s64 period, sample_period;
1592         s64 delta;
1593
1594         period = perf_calculate_period(event, nsec, count);
1595
1596         delta = (s64)(period - hwc->sample_period);
1597         delta = (delta + 7) / 8; /* low pass filter */
1598
1599         sample_period = hwc->sample_period + delta;
1600
1601         if (!sample_period)
1602                 sample_period = 1;
1603
1604         hwc->sample_period = sample_period;
1605
1606         if (local64_read(&hwc->period_left) > 8*sample_period) {
1607                 event->pmu->stop(event, PERF_EF_UPDATE);
1608                 local64_set(&hwc->period_left, 0);
1609                 event->pmu->start(event, PERF_EF_RELOAD);
1610         }
1611 }
1612
1613 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1614 {
1615         struct perf_event *event;
1616         struct hw_perf_event *hwc;
1617         u64 interrupts, now;
1618         s64 delta;
1619
1620         raw_spin_lock(&ctx->lock);
1621         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1622                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1623                         continue;
1624
1625                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1626                         continue;
1627
1628                 hwc = &event->hw;
1629
1630                 interrupts = hwc->interrupts;
1631                 hwc->interrupts = 0;
1632
1633                 /*
1634                  * unthrottle events on the tick
1635                  */
1636                 if (interrupts == MAX_INTERRUPTS) {
1637                         perf_log_throttle(event, 1);
1638                         event->pmu->start(event, 0);
1639                 }
1640
1641                 if (!event->attr.freq || !event->attr.sample_freq)
1642                         continue;
1643
1644                 event->pmu->read(event);
1645                 now = local64_read(&event->count);
1646                 delta = now - hwc->freq_count_stamp;
1647                 hwc->freq_count_stamp = now;
1648
1649                 if (delta > 0)
1650                         perf_adjust_period(event, period, delta);
1651         }
1652         raw_spin_unlock(&ctx->lock);
1653 }
1654
1655 /*
1656  * Round-robin a context's events:
1657  */
1658 static void rotate_ctx(struct perf_event_context *ctx)
1659 {
1660         raw_spin_lock(&ctx->lock);
1661
1662         /* Rotate the first entry last of non-pinned groups */
1663         list_rotate_left(&ctx->flexible_groups);
1664
1665         raw_spin_unlock(&ctx->lock);
1666 }
1667
1668 /*
1669  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1670  * because they're strictly cpu affine and rotate_start is called with IRQs
1671  * disabled, while rotate_context is called from IRQ context.
1672  */
1673 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1674 {
1675         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1676         struct perf_event_context *ctx = NULL;
1677         int rotate = 0, remove = 1;
1678
1679         if (cpuctx->ctx.nr_events) {
1680                 remove = 0;
1681                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1682                         rotate = 1;
1683         }
1684
1685         ctx = cpuctx->task_ctx;
1686         if (ctx && ctx->nr_events) {
1687                 remove = 0;
1688                 if (ctx->nr_events != ctx->nr_active)
1689                         rotate = 1;
1690         }
1691
1692         perf_pmu_disable(cpuctx->ctx.pmu);
1693         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1694         if (ctx)
1695                 perf_ctx_adjust_freq(ctx, interval);
1696
1697         if (!rotate)
1698                 goto done;
1699
1700         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1701         if (ctx)
1702                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1703
1704         rotate_ctx(&cpuctx->ctx);
1705         if (ctx)
1706                 rotate_ctx(ctx);
1707
1708         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1709         if (ctx)
1710                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1711
1712 done:
1713         if (remove)
1714                 list_del_init(&cpuctx->rotation_list);
1715
1716         perf_pmu_enable(cpuctx->ctx.pmu);
1717 }
1718
1719 void perf_event_task_tick(void)
1720 {
1721         struct list_head *head = &__get_cpu_var(rotation_list);
1722         struct perf_cpu_context *cpuctx, *tmp;
1723
1724         WARN_ON(!irqs_disabled());
1725
1726         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1727                 if (cpuctx->jiffies_interval == 1 ||
1728                                 !(jiffies % cpuctx->jiffies_interval))
1729                         perf_rotate_context(cpuctx);
1730         }
1731 }
1732
1733 static int event_enable_on_exec(struct perf_event *event,
1734                                 struct perf_event_context *ctx)
1735 {
1736         if (!event->attr.enable_on_exec)
1737                 return 0;
1738
1739         event->attr.enable_on_exec = 0;
1740         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1741                 return 0;
1742
1743         __perf_event_mark_enabled(event, ctx);
1744
1745         return 1;
1746 }
1747
1748 /*
1749  * Enable all of a task's events that have been marked enable-on-exec.
1750  * This expects task == current.
1751  */
1752 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1753 {
1754         struct perf_event *event;
1755         unsigned long flags;
1756         int enabled = 0;
1757         int ret;
1758
1759         local_irq_save(flags);
1760         if (!ctx || !ctx->nr_events)
1761                 goto out;
1762
1763         task_ctx_sched_out(ctx, EVENT_ALL);
1764
1765         raw_spin_lock(&ctx->lock);
1766
1767         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1768                 ret = event_enable_on_exec(event, ctx);
1769                 if (ret)
1770                         enabled = 1;
1771         }
1772
1773         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1774                 ret = event_enable_on_exec(event, ctx);
1775                 if (ret)
1776                         enabled = 1;
1777         }
1778
1779         /*
1780          * Unclone this context if we enabled any event.
1781          */
1782         if (enabled)
1783                 unclone_ctx(ctx);
1784
1785         raw_spin_unlock(&ctx->lock);
1786
1787         perf_event_context_sched_in(ctx);
1788 out:
1789         local_irq_restore(flags);
1790 }
1791
1792 /*
1793  * Cross CPU call to read the hardware event
1794  */
1795 static void __perf_event_read(void *info)
1796 {
1797         struct perf_event *event = info;
1798         struct perf_event_context *ctx = event->ctx;
1799         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1800
1801         /*
1802          * If this is a task context, we need to check whether it is
1803          * the current task context of this cpu.  If not it has been
1804          * scheduled out before the smp call arrived.  In that case
1805          * event->count would have been updated to a recent sample
1806          * when the event was scheduled out.
1807          */
1808         if (ctx->task && cpuctx->task_ctx != ctx)
1809                 return;
1810
1811         raw_spin_lock(&ctx->lock);
1812         update_context_time(ctx);
1813         update_event_times(event);
1814         raw_spin_unlock(&ctx->lock);
1815
1816         event->pmu->read(event);
1817 }
1818
1819 static inline u64 perf_event_count(struct perf_event *event)
1820 {
1821         return local64_read(&event->count) + atomic64_read(&event->child_count);
1822 }
1823
1824 static u64 perf_event_read(struct perf_event *event)
1825 {
1826         /*
1827          * If event is enabled and currently active on a CPU, update the
1828          * value in the event structure:
1829          */
1830         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1831                 smp_call_function_single(event->oncpu,
1832                                          __perf_event_read, event, 1);
1833         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1834                 struct perf_event_context *ctx = event->ctx;
1835                 unsigned long flags;
1836
1837                 raw_spin_lock_irqsave(&ctx->lock, flags);
1838                 /*
1839                  * may read while context is not active
1840                  * (e.g., thread is blocked), in that case
1841                  * we cannot update context time
1842                  */
1843                 if (ctx->is_active)
1844                         update_context_time(ctx);
1845                 update_event_times(event);
1846                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1847         }
1848
1849         return perf_event_count(event);
1850 }
1851
1852 /*
1853  * Callchain support
1854  */
1855
1856 struct callchain_cpus_entries {
1857         struct rcu_head                 rcu_head;
1858         struct perf_callchain_entry     *cpu_entries[0];
1859 };
1860
1861 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1862 static atomic_t nr_callchain_events;
1863 static DEFINE_MUTEX(callchain_mutex);
1864 struct callchain_cpus_entries *callchain_cpus_entries;
1865
1866
1867 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1868                                   struct pt_regs *regs)
1869 {
1870 }
1871
1872 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1873                                 struct pt_regs *regs)
1874 {
1875 }
1876
1877 static void release_callchain_buffers_rcu(struct rcu_head *head)
1878 {
1879         struct callchain_cpus_entries *entries;
1880         int cpu;
1881
1882         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1883
1884         for_each_possible_cpu(cpu)
1885                 kfree(entries->cpu_entries[cpu]);
1886
1887         kfree(entries);
1888 }
1889
1890 static void release_callchain_buffers(void)
1891 {
1892         struct callchain_cpus_entries *entries;
1893
1894         entries = callchain_cpus_entries;
1895         rcu_assign_pointer(callchain_cpus_entries, NULL);
1896         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1897 }
1898
1899 static int alloc_callchain_buffers(void)
1900 {
1901         int cpu;
1902         int size;
1903         struct callchain_cpus_entries *entries;
1904
1905         /*
1906          * We can't use the percpu allocation API for data that can be
1907          * accessed from NMI. Use a temporary manual per cpu allocation
1908          * until that gets sorted out.
1909          */
1910         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1911                 num_possible_cpus();
1912
1913         entries = kzalloc(size, GFP_KERNEL);
1914         if (!entries)
1915                 return -ENOMEM;
1916
1917         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1918
1919         for_each_possible_cpu(cpu) {
1920                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1921                                                          cpu_to_node(cpu));
1922                 if (!entries->cpu_entries[cpu])
1923                         goto fail;
1924         }
1925
1926         rcu_assign_pointer(callchain_cpus_entries, entries);
1927
1928         return 0;
1929
1930 fail:
1931         for_each_possible_cpu(cpu)
1932                 kfree(entries->cpu_entries[cpu]);
1933         kfree(entries);
1934
1935         return -ENOMEM;
1936 }
1937
1938 static int get_callchain_buffers(void)
1939 {
1940         int err = 0;
1941         int count;
1942
1943         mutex_lock(&callchain_mutex);
1944
1945         count = atomic_inc_return(&nr_callchain_events);
1946         if (WARN_ON_ONCE(count < 1)) {
1947                 err = -EINVAL;
1948                 goto exit;
1949         }
1950
1951         if (count > 1) {
1952                 /* If the allocation failed, give up */
1953                 if (!callchain_cpus_entries)
1954                         err = -ENOMEM;
1955                 goto exit;
1956         }
1957
1958         err = alloc_callchain_buffers();
1959         if (err)
1960                 release_callchain_buffers();
1961 exit:
1962         mutex_unlock(&callchain_mutex);
1963
1964         return err;
1965 }
1966
1967 static void put_callchain_buffers(void)
1968 {
1969         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1970                 release_callchain_buffers();
1971                 mutex_unlock(&callchain_mutex);
1972         }
1973 }
1974
1975 static int get_recursion_context(int *recursion)
1976 {
1977         int rctx;
1978
1979         if (in_nmi())
1980                 rctx = 3;
1981         else if (in_irq())
1982                 rctx = 2;
1983         else if (in_softirq())
1984                 rctx = 1;
1985         else
1986                 rctx = 0;
1987
1988         if (recursion[rctx])
1989                 return -1;
1990
1991         recursion[rctx]++;
1992         barrier();
1993
1994         return rctx;
1995 }
1996
1997 static inline void put_recursion_context(int *recursion, int rctx)
1998 {
1999         barrier();
2000         recursion[rctx]--;
2001 }
2002
2003 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2004 {
2005         int cpu;
2006         struct callchain_cpus_entries *entries;
2007
2008         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2009         if (*rctx == -1)
2010                 return NULL;
2011
2012         entries = rcu_dereference(callchain_cpus_entries);
2013         if (!entries)
2014                 return NULL;
2015
2016         cpu = smp_processor_id();
2017
2018         return &entries->cpu_entries[cpu][*rctx];
2019 }
2020
2021 static void
2022 put_callchain_entry(int rctx)
2023 {
2024         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2025 }
2026
2027 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2028 {
2029         int rctx;
2030         struct perf_callchain_entry *entry;
2031
2032
2033         entry = get_callchain_entry(&rctx);
2034         if (rctx == -1)
2035                 return NULL;
2036
2037         if (!entry)
2038                 goto exit_put;
2039
2040         entry->nr = 0;
2041
2042         if (!user_mode(regs)) {
2043                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2044                 perf_callchain_kernel(entry, regs);
2045                 if (current->mm)
2046                         regs = task_pt_regs(current);
2047                 else
2048                         regs = NULL;
2049         }
2050
2051         if (regs) {
2052                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2053                 perf_callchain_user(entry, regs);
2054         }
2055
2056 exit_put:
2057         put_callchain_entry(rctx);
2058
2059         return entry;
2060 }
2061
2062 /*
2063  * Initialize the perf_event context in a task_struct:
2064  */
2065 static void __perf_event_init_context(struct perf_event_context *ctx)
2066 {
2067         raw_spin_lock_init(&ctx->lock);
2068         mutex_init(&ctx->mutex);
2069         INIT_LIST_HEAD(&ctx->pinned_groups);
2070         INIT_LIST_HEAD(&ctx->flexible_groups);
2071         INIT_LIST_HEAD(&ctx->event_list);
2072         atomic_set(&ctx->refcount, 1);
2073 }
2074
2075 static struct perf_event_context *
2076 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2077 {
2078         struct perf_event_context *ctx;
2079
2080         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2081         if (!ctx)
2082                 return NULL;
2083
2084         __perf_event_init_context(ctx);
2085         if (task) {
2086                 ctx->task = task;
2087                 get_task_struct(task);
2088         }
2089         ctx->pmu = pmu;
2090
2091         return ctx;
2092 }
2093
2094 static struct task_struct *
2095 find_lively_task_by_vpid(pid_t vpid)
2096 {
2097         struct task_struct *task;
2098         int err;
2099
2100         rcu_read_lock();
2101         if (!vpid)
2102                 task = current;
2103         else
2104                 task = find_task_by_vpid(vpid);
2105         if (task)
2106                 get_task_struct(task);
2107         rcu_read_unlock();
2108
2109         if (!task)
2110                 return ERR_PTR(-ESRCH);
2111
2112         /*
2113          * Can't attach events to a dying task.
2114          */
2115         err = -ESRCH;
2116         if (task->flags & PF_EXITING)
2117                 goto errout;
2118
2119         /* Reuse ptrace permission checks for now. */
2120         err = -EACCES;
2121         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2122                 goto errout;
2123
2124         return task;
2125 errout:
2126         put_task_struct(task);
2127         return ERR_PTR(err);
2128
2129 }
2130
2131 static struct perf_event_context *
2132 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2133 {
2134         struct perf_event_context *ctx;
2135         struct perf_cpu_context *cpuctx;
2136         unsigned long flags;
2137         int ctxn, err;
2138
2139         if (!task && cpu != -1) {
2140                 /* Must be root to operate on a CPU event: */
2141                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2142                         return ERR_PTR(-EACCES);
2143
2144                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2145                         return ERR_PTR(-EINVAL);
2146
2147                 /*
2148                  * We could be clever and allow to attach a event to an
2149                  * offline CPU and activate it when the CPU comes up, but
2150                  * that's for later.
2151                  */
2152                 if (!cpu_online(cpu))
2153                         return ERR_PTR(-ENODEV);
2154
2155                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2156                 ctx = &cpuctx->ctx;
2157                 get_ctx(ctx);
2158
2159                 return ctx;
2160         }
2161
2162         err = -EINVAL;
2163         ctxn = pmu->task_ctx_nr;
2164         if (ctxn < 0)
2165                 goto errout;
2166
2167 retry:
2168         ctx = perf_lock_task_context(task, ctxn, &flags);
2169         if (ctx) {
2170                 unclone_ctx(ctx);
2171                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2172         }
2173
2174         if (!ctx) {
2175                 ctx = alloc_perf_context(pmu, task);
2176                 err = -ENOMEM;
2177                 if (!ctx)
2178                         goto errout;
2179
2180                 get_ctx(ctx);
2181
2182                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2183                         /*
2184                          * We raced with some other task; use
2185                          * the context they set.
2186                          */
2187                         put_task_struct(task);
2188                         kfree(ctx);
2189                         goto retry;
2190                 }
2191         }
2192
2193         return ctx;
2194
2195 errout:
2196         return ERR_PTR(err);
2197 }
2198
2199 static void perf_event_free_filter(struct perf_event *event);
2200
2201 static void free_event_rcu(struct rcu_head *head)
2202 {
2203         struct perf_event *event;
2204
2205         event = container_of(head, struct perf_event, rcu_head);
2206         if (event->ns)
2207                 put_pid_ns(event->ns);
2208         perf_event_free_filter(event);
2209         kfree(event);
2210 }
2211
2212 static void perf_buffer_put(struct perf_buffer *buffer);
2213
2214 static void free_event(struct perf_event *event)
2215 {
2216         irq_work_sync(&event->pending);
2217
2218         if (!event->parent) {
2219                 atomic_dec(&nr_events);
2220                 if (event->attr.mmap || event->attr.mmap_data)
2221                         atomic_dec(&nr_mmap_events);
2222                 if (event->attr.comm)
2223                         atomic_dec(&nr_comm_events);
2224                 if (event->attr.task)
2225                         atomic_dec(&nr_task_events);
2226                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2227                         put_callchain_buffers();
2228         }
2229
2230         if (event->buffer) {
2231                 perf_buffer_put(event->buffer);
2232                 event->buffer = NULL;
2233         }
2234
2235         if (event->destroy)
2236                 event->destroy(event);
2237
2238         if (event->ctx)
2239                 put_ctx(event->ctx);
2240
2241         call_rcu(&event->rcu_head, free_event_rcu);
2242 }
2243
2244 int perf_event_release_kernel(struct perf_event *event)
2245 {
2246         struct perf_event_context *ctx = event->ctx;
2247
2248         /*
2249          * Remove from the PMU, can't get re-enabled since we got
2250          * here because the last ref went.
2251          */
2252         perf_event_disable(event);
2253
2254         WARN_ON_ONCE(ctx->parent_ctx);
2255         /*
2256          * There are two ways this annotation is useful:
2257          *
2258          *  1) there is a lock recursion from perf_event_exit_task
2259          *     see the comment there.
2260          *
2261          *  2) there is a lock-inversion with mmap_sem through
2262          *     perf_event_read_group(), which takes faults while
2263          *     holding ctx->mutex, however this is called after
2264          *     the last filedesc died, so there is no possibility
2265          *     to trigger the AB-BA case.
2266          */
2267         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2268         raw_spin_lock_irq(&ctx->lock);
2269         perf_group_detach(event);
2270         list_del_event(event, ctx);
2271         raw_spin_unlock_irq(&ctx->lock);
2272         mutex_unlock(&ctx->mutex);
2273
2274         mutex_lock(&event->owner->perf_event_mutex);
2275         list_del_init(&event->owner_entry);
2276         mutex_unlock(&event->owner->perf_event_mutex);
2277         put_task_struct(event->owner);
2278
2279         free_event(event);
2280
2281         return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2284
2285 /*
2286  * Called when the last reference to the file is gone.
2287  */
2288 static int perf_release(struct inode *inode, struct file *file)
2289 {
2290         struct perf_event *event = file->private_data;
2291
2292         file->private_data = NULL;
2293
2294         return perf_event_release_kernel(event);
2295 }
2296
2297 static int perf_event_read_size(struct perf_event *event)
2298 {
2299         int entry = sizeof(u64); /* value */
2300         int size = 0;
2301         int nr = 1;
2302
2303         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2304                 size += sizeof(u64);
2305
2306         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2307                 size += sizeof(u64);
2308
2309         if (event->attr.read_format & PERF_FORMAT_ID)
2310                 entry += sizeof(u64);
2311
2312         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2313                 nr += event->group_leader->nr_siblings;
2314                 size += sizeof(u64);
2315         }
2316
2317         size += entry * nr;
2318
2319         return size;
2320 }
2321
2322 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2323 {
2324         struct perf_event *child;
2325         u64 total = 0;
2326
2327         *enabled = 0;
2328         *running = 0;
2329
2330         mutex_lock(&event->child_mutex);
2331         total += perf_event_read(event);
2332         *enabled += event->total_time_enabled +
2333                         atomic64_read(&event->child_total_time_enabled);
2334         *running += event->total_time_running +
2335                         atomic64_read(&event->child_total_time_running);
2336
2337         list_for_each_entry(child, &event->child_list, child_list) {
2338                 total += perf_event_read(child);
2339                 *enabled += child->total_time_enabled;
2340                 *running += child->total_time_running;
2341         }
2342         mutex_unlock(&event->child_mutex);
2343
2344         return total;
2345 }
2346 EXPORT_SYMBOL_GPL(perf_event_read_value);
2347
2348 static int perf_event_read_group(struct perf_event *event,
2349                                    u64 read_format, char __user *buf)
2350 {
2351         struct perf_event *leader = event->group_leader, *sub;
2352         int n = 0, size = 0, ret = -EFAULT;
2353         struct perf_event_context *ctx = leader->ctx;
2354         u64 values[5];
2355         u64 count, enabled, running;
2356
2357         mutex_lock(&ctx->mutex);
2358         count = perf_event_read_value(leader, &enabled, &running);
2359
2360         values[n++] = 1 + leader->nr_siblings;
2361         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2362                 values[n++] = enabled;
2363         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2364                 values[n++] = running;
2365         values[n++] = count;
2366         if (read_format & PERF_FORMAT_ID)
2367                 values[n++] = primary_event_id(leader);
2368
2369         size = n * sizeof(u64);
2370
2371         if (copy_to_user(buf, values, size))
2372                 goto unlock;
2373
2374         ret = size;
2375
2376         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2377                 n = 0;
2378
2379                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2380                 if (read_format & PERF_FORMAT_ID)
2381                         values[n++] = primary_event_id(sub);
2382
2383                 size = n * sizeof(u64);
2384
2385                 if (copy_to_user(buf + ret, values, size)) {
2386                         ret = -EFAULT;
2387                         goto unlock;
2388                 }
2389
2390                 ret += size;
2391         }
2392 unlock:
2393         mutex_unlock(&ctx->mutex);
2394
2395         return ret;
2396 }
2397
2398 static int perf_event_read_one(struct perf_event *event,
2399                                  u64 read_format, char __user *buf)
2400 {
2401         u64 enabled, running;
2402         u64 values[4];
2403         int n = 0;
2404
2405         values[n++] = perf_event_read_value(event, &enabled, &running);
2406         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2407                 values[n++] = enabled;
2408         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2409                 values[n++] = running;
2410         if (read_format & PERF_FORMAT_ID)
2411                 values[n++] = primary_event_id(event);
2412
2413         if (copy_to_user(buf, values, n * sizeof(u64)))
2414                 return -EFAULT;
2415
2416         return n * sizeof(u64);
2417 }
2418
2419 /*
2420  * Read the performance event - simple non blocking version for now
2421  */
2422 static ssize_t
2423 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2424 {
2425         u64 read_format = event->attr.read_format;
2426         int ret;
2427
2428         /*
2429          * Return end-of-file for a read on a event that is in
2430          * error state (i.e. because it was pinned but it couldn't be
2431          * scheduled on to the CPU at some point).
2432          */
2433         if (event->state == PERF_EVENT_STATE_ERROR)
2434                 return 0;
2435
2436         if (count < perf_event_read_size(event))
2437                 return -ENOSPC;
2438
2439         WARN_ON_ONCE(event->ctx->parent_ctx);
2440         if (read_format & PERF_FORMAT_GROUP)
2441                 ret = perf_event_read_group(event, read_format, buf);
2442         else
2443                 ret = perf_event_read_one(event, read_format, buf);
2444
2445         return ret;
2446 }
2447
2448 static ssize_t
2449 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2450 {
2451         struct perf_event *event = file->private_data;
2452
2453         return perf_read_hw(event, buf, count);
2454 }
2455
2456 static unsigned int perf_poll(struct file *file, poll_table *wait)
2457 {
2458         struct perf_event *event = file->private_data;
2459         struct perf_buffer *buffer;
2460         unsigned int events = POLL_HUP;
2461
2462         rcu_read_lock();
2463         buffer = rcu_dereference(event->buffer);
2464         if (buffer)
2465                 events = atomic_xchg(&buffer->poll, 0);
2466         rcu_read_unlock();
2467
2468         poll_wait(file, &event->waitq, wait);
2469
2470         return events;
2471 }
2472
2473 static void perf_event_reset(struct perf_event *event)
2474 {
2475         (void)perf_event_read(event);
2476         local64_set(&event->count, 0);
2477         perf_event_update_userpage(event);
2478 }
2479
2480 /*
2481  * Holding the top-level event's child_mutex means that any
2482  * descendant process that has inherited this event will block
2483  * in sync_child_event if it goes to exit, thus satisfying the
2484  * task existence requirements of perf_event_enable/disable.
2485  */
2486 static void perf_event_for_each_child(struct perf_event *event,
2487                                         void (*func)(struct perf_event *))
2488 {
2489         struct perf_event *child;
2490
2491         WARN_ON_ONCE(event->ctx->parent_ctx);
2492         mutex_lock(&event->child_mutex);
2493         func(event);
2494         list_for_each_entry(child, &event->child_list, child_list)
2495                 func(child);
2496         mutex_unlock(&event->child_mutex);
2497 }
2498
2499 static void perf_event_for_each(struct perf_event *event,
2500                                   void (*func)(struct perf_event *))
2501 {
2502         struct perf_event_context *ctx = event->ctx;
2503         struct perf_event *sibling;
2504
2505         WARN_ON_ONCE(ctx->parent_ctx);
2506         mutex_lock(&ctx->mutex);
2507         event = event->group_leader;
2508
2509         perf_event_for_each_child(event, func);
2510         func(event);
2511         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2512                 perf_event_for_each_child(event, func);
2513         mutex_unlock(&ctx->mutex);
2514 }
2515
2516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2517 {
2518         struct perf_event_context *ctx = event->ctx;
2519         unsigned long size;
2520         int ret = 0;
2521         u64 value;
2522
2523         if (!event->attr.sample_period)
2524                 return -EINVAL;
2525
2526         size = copy_from_user(&value, arg, sizeof(value));
2527         if (size != sizeof(value))
2528                 return -EFAULT;
2529
2530         if (!value)
2531                 return -EINVAL;
2532
2533         raw_spin_lock_irq(&ctx->lock);
2534         if (event->attr.freq) {
2535                 if (value > sysctl_perf_event_sample_rate) {
2536                         ret = -EINVAL;
2537                         goto unlock;
2538                 }
2539
2540                 event->attr.sample_freq = value;
2541         } else {
2542                 event->attr.sample_period = value;
2543                 event->hw.sample_period = value;
2544         }
2545 unlock:
2546         raw_spin_unlock_irq(&ctx->lock);
2547
2548         return ret;
2549 }
2550
2551 static const struct file_operations perf_fops;
2552
2553 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2554 {
2555         struct file *file;
2556
2557         file = fget_light(fd, fput_needed);
2558         if (!file)
2559                 return ERR_PTR(-EBADF);
2560
2561         if (file->f_op != &perf_fops) {
2562                 fput_light(file, *fput_needed);
2563                 *fput_needed = 0;
2564                 return ERR_PTR(-EBADF);
2565         }
2566
2567         return file->private_data;
2568 }
2569
2570 static int perf_event_set_output(struct perf_event *event,
2571                                  struct perf_event *output_event);
2572 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2573
2574 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2575 {
2576         struct perf_event *event = file->private_data;
2577         void (*func)(struct perf_event *);
2578         u32 flags = arg;
2579
2580         switch (cmd) {
2581         case PERF_EVENT_IOC_ENABLE:
2582                 func = perf_event_enable;
2583                 break;
2584         case PERF_EVENT_IOC_DISABLE:
2585                 func = perf_event_disable;
2586                 break;
2587         case PERF_EVENT_IOC_RESET:
2588                 func = perf_event_reset;
2589                 break;
2590
2591         case PERF_EVENT_IOC_REFRESH:
2592                 return perf_event_refresh(event, arg);
2593
2594         case PERF_EVENT_IOC_PERIOD:
2595                 return perf_event_period(event, (u64 __user *)arg);
2596
2597         case PERF_EVENT_IOC_SET_OUTPUT:
2598         {
2599                 struct perf_event *output_event = NULL;
2600                 int fput_needed = 0;
2601                 int ret;
2602
2603                 if (arg != -1) {
2604                         output_event = perf_fget_light(arg, &fput_needed);
2605                         if (IS_ERR(output_event))
2606                                 return PTR_ERR(output_event);
2607                 }
2608
2609                 ret = perf_event_set_output(event, output_event);
2610                 if (output_event)
2611                         fput_light(output_event->filp, fput_needed);
2612
2613                 return ret;
2614         }
2615
2616         case PERF_EVENT_IOC_SET_FILTER:
2617                 return perf_event_set_filter(event, (void __user *)arg);
2618
2619         default:
2620                 return -ENOTTY;
2621         }
2622
2623         if (flags & PERF_IOC_FLAG_GROUP)
2624                 perf_event_for_each(event, func);
2625         else
2626                 perf_event_for_each_child(event, func);
2627
2628         return 0;
2629 }
2630
2631 int perf_event_task_enable(void)
2632 {
2633         struct perf_event *event;
2634
2635         mutex_lock(&current->perf_event_mutex);
2636         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2637                 perf_event_for_each_child(event, perf_event_enable);
2638         mutex_unlock(&current->perf_event_mutex);
2639
2640         return 0;
2641 }
2642
2643 int perf_event_task_disable(void)
2644 {
2645         struct perf_event *event;
2646
2647         mutex_lock(&current->perf_event_mutex);
2648         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2649                 perf_event_for_each_child(event, perf_event_disable);
2650         mutex_unlock(&current->perf_event_mutex);
2651
2652         return 0;
2653 }
2654
2655 #ifndef PERF_EVENT_INDEX_OFFSET
2656 # define PERF_EVENT_INDEX_OFFSET 0
2657 #endif
2658
2659 static int perf_event_index(struct perf_event *event)
2660 {
2661         if (event->hw.state & PERF_HES_STOPPED)
2662                 return 0;
2663
2664         if (event->state != PERF_EVENT_STATE_ACTIVE)
2665                 return 0;
2666
2667         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2668 }
2669
2670 /*
2671  * Callers need to ensure there can be no nesting of this function, otherwise
2672  * the seqlock logic goes bad. We can not serialize this because the arch
2673  * code calls this from NMI context.
2674  */
2675 void perf_event_update_userpage(struct perf_event *event)
2676 {
2677         struct perf_event_mmap_page *userpg;
2678         struct perf_buffer *buffer;
2679
2680         rcu_read_lock();
2681         buffer = rcu_dereference(event->buffer);
2682         if (!buffer)
2683                 goto unlock;
2684
2685         userpg = buffer->user_page;
2686
2687         /*
2688          * Disable preemption so as to not let the corresponding user-space
2689          * spin too long if we get preempted.
2690          */
2691         preempt_disable();
2692         ++userpg->lock;
2693         barrier();
2694         userpg->index = perf_event_index(event);
2695         userpg->offset = perf_event_count(event);
2696         if (event->state == PERF_EVENT_STATE_ACTIVE)
2697                 userpg->offset -= local64_read(&event->hw.prev_count);
2698
2699         userpg->time_enabled = event->total_time_enabled +
2700                         atomic64_read(&event->child_total_time_enabled);
2701
2702         userpg->time_running = event->total_time_running +
2703                         atomic64_read(&event->child_total_time_running);
2704
2705         barrier();
2706         ++userpg->lock;
2707         preempt_enable();
2708 unlock:
2709         rcu_read_unlock();
2710 }
2711
2712 static unsigned long perf_data_size(struct perf_buffer *buffer);
2713
2714 static void
2715 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2716 {
2717         long max_size = perf_data_size(buffer);
2718
2719         if (watermark)
2720                 buffer->watermark = min(max_size, watermark);
2721
2722         if (!buffer->watermark)
2723                 buffer->watermark = max_size / 2;
2724
2725         if (flags & PERF_BUFFER_WRITABLE)
2726                 buffer->writable = 1;
2727
2728         atomic_set(&buffer->refcount, 1);
2729 }
2730
2731 #ifndef CONFIG_PERF_USE_VMALLOC
2732
2733 /*
2734  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2735  */
2736
2737 static struct page *
2738 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2739 {
2740         if (pgoff > buffer->nr_pages)
2741                 return NULL;
2742
2743         if (pgoff == 0)
2744                 return virt_to_page(buffer->user_page);
2745
2746         return virt_to_page(buffer->data_pages[pgoff - 1]);
2747 }
2748
2749 static void *perf_mmap_alloc_page(int cpu)
2750 {
2751         struct page *page;
2752         int node;
2753
2754         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2755         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2756         if (!page)
2757                 return NULL;
2758
2759         return page_address(page);
2760 }
2761
2762 static struct perf_buffer *
2763 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2764 {
2765         struct perf_buffer *buffer;
2766         unsigned long size;
2767         int i;
2768
2769         size = sizeof(struct perf_buffer);
2770         size += nr_pages * sizeof(void *);
2771
2772         buffer = kzalloc(size, GFP_KERNEL);
2773         if (!buffer)
2774                 goto fail;
2775
2776         buffer->user_page = perf_mmap_alloc_page(cpu);
2777         if (!buffer->user_page)
2778                 goto fail_user_page;
2779
2780         for (i = 0; i < nr_pages; i++) {
2781                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2782                 if (!buffer->data_pages[i])
2783                         goto fail_data_pages;
2784         }
2785
2786         buffer->nr_pages = nr_pages;
2787
2788         perf_buffer_init(buffer, watermark, flags);
2789
2790         return buffer;
2791
2792 fail_data_pages:
2793         for (i--; i >= 0; i--)
2794                 free_page((unsigned long)buffer->data_pages[i]);
2795
2796         free_page((unsigned long)buffer->user_page);
2797
2798 fail_user_page:
2799         kfree(buffer);
2800
2801 fail:
2802         return NULL;
2803 }
2804
2805 static void perf_mmap_free_page(unsigned long addr)
2806 {
2807         struct page *page = virt_to_page((void *)addr);
2808
2809         page->mapping = NULL;
2810         __free_page(page);
2811 }
2812
2813 static void perf_buffer_free(struct perf_buffer *buffer)
2814 {
2815         int i;
2816
2817         perf_mmap_free_page((unsigned long)buffer->user_page);
2818         for (i = 0; i < buffer->nr_pages; i++)
2819                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2820         kfree(buffer);
2821 }
2822
2823 static inline int page_order(struct perf_buffer *buffer)
2824 {
2825         return 0;
2826 }
2827
2828 #else
2829
2830 /*
2831  * Back perf_mmap() with vmalloc memory.
2832  *
2833  * Required for architectures that have d-cache aliasing issues.
2834  */
2835
2836 static inline int page_order(struct perf_buffer *buffer)
2837 {
2838         return buffer->page_order;
2839 }
2840
2841 static struct page *
2842 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2843 {
2844         if (pgoff > (1UL << page_order(buffer)))
2845                 return NULL;
2846
2847         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2848 }
2849
2850 static void perf_mmap_unmark_page(void *addr)
2851 {
2852         struct page *page = vmalloc_to_page(addr);
2853
2854         page->mapping = NULL;
2855 }
2856
2857 static void perf_buffer_free_work(struct work_struct *work)
2858 {
2859         struct perf_buffer *buffer;
2860         void *base;
2861         int i, nr;
2862
2863         buffer = container_of(work, struct perf_buffer, work);
2864         nr = 1 << page_order(buffer);
2865
2866         base = buffer->user_page;
2867         for (i = 0; i < nr + 1; i++)
2868                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2869
2870         vfree(base);
2871         kfree(buffer);
2872 }
2873
2874 static void perf_buffer_free(struct perf_buffer *buffer)
2875 {
2876         schedule_work(&buffer->work);
2877 }
2878
2879 static struct perf_buffer *
2880 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2881 {
2882         struct perf_buffer *buffer;
2883         unsigned long size;
2884         void *all_buf;
2885
2886         size = sizeof(struct perf_buffer);
2887         size += sizeof(void *);
2888
2889         buffer = kzalloc(size, GFP_KERNEL);
2890         if (!buffer)
2891                 goto fail;
2892
2893         INIT_WORK(&buffer->work, perf_buffer_free_work);
2894
2895         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2896         if (!all_buf)
2897                 goto fail_all_buf;
2898
2899         buffer->user_page = all_buf;
2900         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2901         buffer->page_order = ilog2(nr_pages);
2902         buffer->nr_pages = 1;
2903
2904         perf_buffer_init(buffer, watermark, flags);
2905
2906         return buffer;
2907
2908 fail_all_buf:
2909         kfree(buffer);
2910
2911 fail:
2912         return NULL;
2913 }
2914
2915 #endif
2916
2917 static unsigned long perf_data_size(struct perf_buffer *buffer)
2918 {
2919         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2920 }
2921
2922 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2923 {
2924         struct perf_event *event = vma->vm_file->private_data;
2925         struct perf_buffer *buffer;
2926         int ret = VM_FAULT_SIGBUS;
2927
2928         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2929                 if (vmf->pgoff == 0)
2930                         ret = 0;
2931                 return ret;
2932         }
2933
2934         rcu_read_lock();
2935         buffer = rcu_dereference(event->buffer);
2936         if (!buffer)
2937                 goto unlock;
2938
2939         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2940                 goto unlock;
2941
2942         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2943         if (!vmf->page)
2944                 goto unlock;
2945
2946         get_page(vmf->page);
2947         vmf->page->mapping = vma->vm_file->f_mapping;
2948         vmf->page->index   = vmf->pgoff;
2949
2950         ret = 0;
2951 unlock:
2952         rcu_read_unlock();
2953
2954         return ret;
2955 }
2956
2957 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2958 {
2959         struct perf_buffer *buffer;
2960
2961         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2962         perf_buffer_free(buffer);
2963 }
2964
2965 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2966 {
2967         struct perf_buffer *buffer;
2968
2969         rcu_read_lock();
2970         buffer = rcu_dereference(event->buffer);
2971         if (buffer) {
2972                 if (!atomic_inc_not_zero(&buffer->refcount))
2973                         buffer = NULL;
2974         }
2975         rcu_read_unlock();
2976
2977         return buffer;
2978 }
2979
2980 static void perf_buffer_put(struct perf_buffer *buffer)
2981 {
2982         if (!atomic_dec_and_test(&buffer->refcount))
2983                 return;
2984
2985         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2986 }
2987
2988 static void perf_mmap_open(struct vm_area_struct *vma)
2989 {
2990         struct perf_event *event = vma->vm_file->private_data;
2991
2992         atomic_inc(&event->mmap_count);
2993 }
2994
2995 static void perf_mmap_close(struct vm_area_struct *vma)
2996 {
2997         struct perf_event *event = vma->vm_file->private_data;
2998
2999         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3000                 unsigned long size = perf_data_size(event->buffer);
3001                 struct user_struct *user = event->mmap_user;
3002                 struct perf_buffer *buffer = event->buffer;
3003
3004                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3005                 vma->vm_mm->locked_vm -= event->mmap_locked;
3006                 rcu_assign_pointer(event->buffer, NULL);
3007                 mutex_unlock(&event->mmap_mutex);
3008
3009                 perf_buffer_put(buffer);
3010                 free_uid(user);
3011         }
3012 }
3013
3014 static const struct vm_operations_struct perf_mmap_vmops = {
3015         .open           = perf_mmap_open,
3016         .close          = perf_mmap_close,
3017         .fault          = perf_mmap_fault,
3018         .page_mkwrite   = perf_mmap_fault,
3019 };
3020
3021 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3022 {
3023         struct perf_event *event = file->private_data;
3024         unsigned long user_locked, user_lock_limit;
3025         struct user_struct *user = current_user();
3026         unsigned long locked, lock_limit;
3027         struct perf_buffer *buffer;
3028         unsigned long vma_size;
3029         unsigned long nr_pages;
3030         long user_extra, extra;
3031         int ret = 0, flags = 0;
3032
3033         /*
3034          * Don't allow mmap() of inherited per-task counters. This would
3035          * create a performance issue due to all children writing to the
3036          * same buffer.
3037          */
3038         if (event->cpu == -1 && event->attr.inherit)
3039                 return -EINVAL;
3040
3041         if (!(vma->vm_flags & VM_SHARED))
3042                 return -EINVAL;
3043
3044         vma_size = vma->vm_end - vma->vm_start;
3045         nr_pages = (vma_size / PAGE_SIZE) - 1;
3046
3047         /*
3048          * If we have buffer pages ensure they're a power-of-two number, so we
3049          * can do bitmasks instead of modulo.
3050          */
3051         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3052                 return -EINVAL;
3053
3054         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3055                 return -EINVAL;
3056
3057         if (vma->vm_pgoff != 0)
3058                 return -EINVAL;
3059
3060         WARN_ON_ONCE(event->ctx->parent_ctx);
3061         mutex_lock(&event->mmap_mutex);
3062         if (event->buffer) {
3063                 if (event->buffer->nr_pages == nr_pages)
3064                         atomic_inc(&event->buffer->refcount);
3065                 else
3066                         ret = -EINVAL;
3067                 goto unlock;
3068         }
3069
3070         user_extra = nr_pages + 1;
3071         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3072
3073         /*
3074          * Increase the limit linearly with more CPUs:
3075          */
3076         user_lock_limit *= num_online_cpus();
3077
3078         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3079
3080         extra = 0;
3081         if (user_locked > user_lock_limit)
3082                 extra = user_locked - user_lock_limit;
3083
3084         lock_limit = rlimit(RLIMIT_MEMLOCK);
3085         lock_limit >>= PAGE_SHIFT;
3086         locked = vma->vm_mm->locked_vm + extra;
3087
3088         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3089                 !capable(CAP_IPC_LOCK)) {
3090                 ret = -EPERM;
3091                 goto unlock;
3092         }
3093
3094         WARN_ON(event->buffer);
3095
3096         if (vma->vm_flags & VM_WRITE)
3097                 flags |= PERF_BUFFER_WRITABLE;
3098
3099         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3100                                    event->cpu, flags);
3101         if (!buffer) {
3102                 ret = -ENOMEM;
3103                 goto unlock;
3104         }
3105         rcu_assign_pointer(event->buffer, buffer);
3106
3107         atomic_long_add(user_extra, &user->locked_vm);
3108         event->mmap_locked = extra;
3109         event->mmap_user = get_current_user();
3110         vma->vm_mm->locked_vm += event->mmap_locked;
3111
3112 unlock:
3113         if (!ret)
3114                 atomic_inc(&event->mmap_count);
3115         mutex_unlock(&event->mmap_mutex);
3116
3117         vma->vm_flags |= VM_RESERVED;
3118         vma->vm_ops = &perf_mmap_vmops;
3119
3120         return ret;
3121 }
3122
3123 static int perf_fasync(int fd, struct file *filp, int on)
3124 {
3125         struct inode *inode = filp->f_path.dentry->d_inode;
3126         struct perf_event *event = filp->private_data;
3127         int retval;
3128
3129         mutex_lock(&inode->i_mutex);
3130         retval = fasync_helper(fd, filp, on, &event->fasync);
3131         mutex_unlock(&inode->i_mutex);
3132
3133         if (retval < 0)
3134                 return retval;
3135
3136         return 0;
3137 }
3138
3139 static const struct file_operations perf_fops = {
3140         .llseek                 = no_llseek,
3141         .release                = perf_release,
3142         .read                   = perf_read,
3143         .poll                   = perf_poll,
3144         .unlocked_ioctl         = perf_ioctl,
3145         .compat_ioctl           = perf_ioctl,
3146         .mmap                   = perf_mmap,
3147         .fasync                 = perf_fasync,
3148 };
3149
3150 /*
3151  * Perf event wakeup
3152  *
3153  * If there's data, ensure we set the poll() state and publish everything
3154  * to user-space before waking everybody up.
3155  */
3156
3157 void perf_event_wakeup(struct perf_event *event)
3158 {
3159         wake_up_all(&event->waitq);
3160
3161         if (event->pending_kill) {
3162                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3163                 event->pending_kill = 0;
3164         }
3165 }
3166
3167 static void perf_pending_event(struct irq_work *entry)
3168 {
3169         struct perf_event *event = container_of(entry,
3170                         struct perf_event, pending);
3171
3172         if (event->pending_disable) {
3173                 event->pending_disable = 0;
3174                 __perf_event_disable(event);
3175         }
3176
3177         if (event->pending_wakeup) {
3178                 event->pending_wakeup = 0;
3179                 perf_event_wakeup(event);
3180         }
3181 }
3182
3183 /*
3184  * We assume there is only KVM supporting the callbacks.
3185  * Later on, we might change it to a list if there is
3186  * another virtualization implementation supporting the callbacks.
3187  */
3188 struct perf_guest_info_callbacks *perf_guest_cbs;
3189
3190 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3191 {
3192         perf_guest_cbs = cbs;
3193         return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3196
3197 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3198 {
3199         perf_guest_cbs = NULL;
3200         return 0;
3201 }
3202 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3203
3204 /*
3205  * Output
3206  */
3207 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3208                               unsigned long offset, unsigned long head)
3209 {
3210         unsigned long mask;
3211
3212         if (!buffer->writable)
3213                 return true;
3214
3215         mask = perf_data_size(buffer) - 1;
3216
3217         offset = (offset - tail) & mask;
3218         head   = (head   - tail) & mask;
3219
3220         if ((int)(head - offset) < 0)
3221                 return false;
3222
3223         return true;
3224 }
3225
3226 static void perf_output_wakeup(struct perf_output_handle *handle)
3227 {
3228         atomic_set(&handle->buffer->poll, POLL_IN);
3229
3230         if (handle->nmi) {
3231                 handle->event->pending_wakeup = 1;
3232                 irq_work_queue(&handle->event->pending);
3233         } else
3234                 perf_event_wakeup(handle->event);
3235 }
3236
3237 /*
3238  * We need to ensure a later event_id doesn't publish a head when a former
3239  * event isn't done writing. However since we need to deal with NMIs we
3240  * cannot fully serialize things.
3241  *
3242  * We only publish the head (and generate a wakeup) when the outer-most
3243  * event completes.
3244  */
3245 static void perf_output_get_handle(struct perf_output_handle *handle)
3246 {
3247         struct perf_buffer *buffer = handle->buffer;
3248
3249         preempt_disable();
3250         local_inc(&buffer->nest);
3251         handle->wakeup = local_read(&buffer->wakeup);
3252 }
3253
3254 static void perf_output_put_handle(struct perf_output_handle *handle)
3255 {
3256         struct perf_buffer *buffer = handle->buffer;
3257         unsigned long head;
3258
3259 again:
3260         head = local_read(&buffer->head);
3261
3262         /*
3263          * IRQ/NMI can happen here, which means we can miss a head update.
3264          */
3265
3266         if (!local_dec_and_test(&buffer->nest))
3267                 goto out;
3268
3269         /*
3270          * Publish the known good head. Rely on the full barrier implied
3271          * by atomic_dec_and_test() order the buffer->head read and this
3272          * write.
3273          */
3274         buffer->user_page->data_head = head;
3275
3276         /*
3277          * Now check if we missed an update, rely on the (compiler)
3278          * barrier in atomic_dec_and_test() to re-read buffer->head.
3279          */
3280         if (unlikely(head != local_read(&buffer->head))) {
3281                 local_inc(&buffer->nest);
3282                 goto again;
3283         }
3284
3285         if (handle->wakeup != local_read(&buffer->wakeup))
3286                 perf_output_wakeup(handle);
3287
3288 out:
3289         preempt_enable();
3290 }
3291
3292 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3293                       const void *buf, unsigned int len)
3294 {
3295         do {
3296                 unsigned long size = min_t(unsigned long, handle->size, len);
3297
3298                 memcpy(handle->addr, buf, size);
3299
3300                 len -= size;
3301                 handle->addr += size;
3302                 buf += size;
3303                 handle->size -= size;
3304                 if (!handle->size) {
3305                         struct perf_buffer *buffer = handle->buffer;
3306
3307                         handle->page++;
3308                         handle->page &= buffer->nr_pages - 1;
3309                         handle->addr = buffer->data_pages[handle->page];
3310                         handle->size = PAGE_SIZE << page_order(buffer);
3311                 }
3312         } while (len);
3313 }
3314
3315 int perf_output_begin(struct perf_output_handle *handle,
3316                       struct perf_event *event, unsigned int size,
3317                       int nmi, int sample)
3318 {
3319         struct perf_buffer *buffer;
3320         unsigned long tail, offset, head;
3321         int have_lost;
3322         struct {
3323                 struct perf_event_header header;
3324                 u64                      id;
3325                 u64                      lost;
3326         } lost_event;
3327
3328         rcu_read_lock();
3329         /*
3330          * For inherited events we send all the output towards the parent.
3331          */
3332         if (event->parent)
3333                 event = event->parent;
3334
3335         buffer = rcu_dereference(event->buffer);
3336         if (!buffer)
3337                 goto out;
3338
3339         handle->buffer  = buffer;
3340         handle->event   = event;
3341         handle->nmi     = nmi;
3342         handle->sample  = sample;
3343
3344         if (!buffer->nr_pages)
3345                 goto out;
3346
3347         have_lost = local_read(&buffer->lost);
3348         if (have_lost)
3349                 size += sizeof(lost_event);
3350
3351         perf_output_get_handle(handle);
3352
3353         do {
3354                 /*
3355                  * Userspace could choose to issue a mb() before updating the
3356                  * tail pointer. So that all reads will be completed before the
3357                  * write is issued.
3358                  */
3359                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3360                 smp_rmb();
3361                 offset = head = local_read(&buffer->head);
3362                 head += size;
3363                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3364                         goto fail;
3365         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3366
3367         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3368                 local_add(buffer->watermark, &buffer->wakeup);
3369
3370         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3371         handle->page &= buffer->nr_pages - 1;
3372         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3373         handle->addr = buffer->data_pages[handle->page];
3374         handle->addr += handle->size;
3375         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3376
3377         if (have_lost) {
3378                 lost_event.header.type = PERF_RECORD_LOST;
3379                 lost_event.header.misc = 0;
3380                 lost_event.header.size = sizeof(lost_event);
3381                 lost_event.id          = event->id;
3382                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3383
3384                 perf_output_put(handle, lost_event);
3385         }
3386
3387         return 0;
3388
3389 fail:
3390         local_inc(&buffer->lost);
3391         perf_output_put_handle(handle);
3392 out:
3393         rcu_read_unlock();
3394
3395         return -ENOSPC;
3396 }
3397
3398 void perf_output_end(struct perf_output_handle *handle)
3399 {
3400         struct perf_event *event = handle->event;
3401         struct perf_buffer *buffer = handle->buffer;
3402
3403         int wakeup_events = event->attr.wakeup_events;
3404
3405         if (handle->sample && wakeup_events) {
3406                 int events = local_inc_return(&buffer->events);
3407                 if (events >= wakeup_events) {
3408                         local_sub(wakeup_events, &buffer->events);
3409                         local_inc(&buffer->wakeup);
3410                 }
3411         }
3412
3413         perf_output_put_handle(handle);
3414         rcu_read_unlock();
3415 }
3416
3417 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3418 {
3419         /*
3420          * only top level events have the pid namespace they were created in
3421          */
3422         if (event->parent)
3423                 event = event->parent;
3424
3425         return task_tgid_nr_ns(p, event->ns);
3426 }
3427
3428 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3429 {
3430         /*
3431          * only top level events have the pid namespace they were created in
3432          */
3433         if (event->parent)
3434                 event = event->parent;
3435
3436         return task_pid_nr_ns(p, event->ns);
3437 }
3438
3439 static void perf_output_read_one(struct perf_output_handle *handle,
3440                                  struct perf_event *event)
3441 {
3442         u64 read_format = event->attr.read_format;
3443         u64 values[4];
3444         int n = 0;
3445
3446         values[n++] = perf_event_count(event);
3447         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3448                 values[n++] = event->total_time_enabled +
3449                         atomic64_read(&event->child_total_time_enabled);
3450         }
3451         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3452                 values[n++] = event->total_time_running +
3453                         atomic64_read(&event->child_total_time_running);
3454         }
3455         if (read_format & PERF_FORMAT_ID)
3456                 values[n++] = primary_event_id(event);
3457
3458         perf_output_copy(handle, values, n * sizeof(u64));
3459 }
3460
3461 /*
3462  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3463  */
3464 static void perf_output_read_group(struct perf_output_handle *handle,
3465                             struct perf_event *event)
3466 {
3467         struct perf_event *leader = event->group_leader, *sub;
3468         u64 read_format = event->attr.read_format;
3469         u64 values[5];
3470         int n = 0;
3471
3472         values[n++] = 1 + leader->nr_siblings;
3473
3474         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3475                 values[n++] = leader->total_time_enabled;
3476
3477         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3478                 values[n++] = leader->total_time_running;
3479
3480         if (leader != event)
3481                 leader->pmu->read(leader);
3482
3483         values[n++] = perf_event_count(leader);
3484         if (read_format & PERF_FORMAT_ID)
3485                 values[n++] = primary_event_id(leader);
3486
3487         perf_output_copy(handle, values, n * sizeof(u64));
3488
3489         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3490                 n = 0;
3491
3492                 if (sub != event)
3493                         sub->pmu->read(sub);
3494
3495                 values[n++] = perf_event_count(sub);
3496                 if (read_format & PERF_FORMAT_ID)
3497                         values[n++] = primary_event_id(sub);
3498
3499                 perf_output_copy(handle, values, n * sizeof(u64));
3500         }
3501 }
3502
3503 static void perf_output_read(struct perf_output_handle *handle,
3504                              struct perf_event *event)
3505 {
3506         if (event->attr.read_format & PERF_FORMAT_GROUP)
3507                 perf_output_read_group(handle, event);
3508         else
3509                 perf_output_read_one(handle, event);
3510 }
3511
3512 void perf_output_sample(struct perf_output_handle *handle,
3513                         struct perf_event_header *header,
3514                         struct perf_sample_data *data,
3515                         struct perf_event *event)
3516 {
3517         u64 sample_type = data->type;
3518
3519         perf_output_put(handle, *header);
3520
3521         if (sample_type & PERF_SAMPLE_IP)
3522                 perf_output_put(handle, data->ip);
3523
3524         if (sample_type & PERF_SAMPLE_TID)
3525                 perf_output_put(handle, data->tid_entry);
3526
3527         if (sample_type & PERF_SAMPLE_TIME)
3528                 perf_output_put(handle, data->time);
3529
3530         if (sample_type & PERF_SAMPLE_ADDR)
3531                 perf_output_put(handle, data->addr);
3532
3533         if (sample_type & PERF_SAMPLE_ID)
3534                 perf_output_put(handle, data->id);
3535
3536         if (sample_type & PERF_SAMPLE_STREAM_ID)
3537                 perf_output_put(handle, data->stream_id);
3538
3539         if (sample_type & PERF_SAMPLE_CPU)
3540                 perf_output_put(handle, data->cpu_entry);
3541
3542         if (sample_type & PERF_SAMPLE_PERIOD)
3543                 perf_output_put(handle, data->period);
3544
3545         if (sample_type & PERF_SAMPLE_READ)
3546                 perf_output_read(handle, event);
3547
3548         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3549                 if (data->callchain) {
3550                         int size = 1;
3551
3552                         if (data->callchain)
3553                                 size += data->callchain->nr;
3554
3555                         size *= sizeof(u64);
3556
3557                         perf_output_copy(handle, data->callchain, size);
3558                 } else {
3559                         u64 nr = 0;
3560                         perf_output_put(handle, nr);
3561                 }
3562         }
3563
3564         if (sample_type & PERF_SAMPLE_RAW) {
3565                 if (data->raw) {
3566                         perf_output_put(handle, data->raw->size);
3567                         perf_output_copy(handle, data->raw->data,
3568                                          data->raw->size);
3569                 } else {
3570                         struct {
3571                                 u32     size;
3572                                 u32     data;
3573                         } raw = {
3574                                 .size = sizeof(u32),
3575                                 .data = 0,
3576                         };
3577                         perf_output_put(handle, raw);
3578                 }
3579         }
3580 }
3581
3582 void perf_prepare_sample(struct perf_event_header *header,
3583                          struct perf_sample_data *data,
3584                          struct perf_event *event,
3585                          struct pt_regs *regs)
3586 {
3587         u64 sample_type = event->attr.sample_type;
3588
3589         data->type = sample_type;
3590
3591         header->type = PERF_RECORD_SAMPLE;
3592         header->size = sizeof(*header);
3593
3594         header->misc = 0;
3595         header->misc |= perf_misc_flags(regs);
3596
3597         if (sample_type & PERF_SAMPLE_IP) {
3598                 data->ip = perf_instruction_pointer(regs);
3599
3600                 header->size += sizeof(data->ip);
3601         }
3602
3603         if (sample_type & PERF_SAMPLE_TID) {
3604                 /* namespace issues */
3605                 data->tid_entry.pid = perf_event_pid(event, current);
3606                 data->tid_entry.tid = perf_event_tid(event, current);
3607
3608                 header->size += sizeof(data->tid_entry);
3609         }
3610
3611         if (sample_type & PERF_SAMPLE_TIME) {
3612                 data->time = perf_clock();
3613
3614                 header->size += sizeof(data->time);
3615         }
3616
3617         if (sample_type & PERF_SAMPLE_ADDR)
3618                 header->size += sizeof(data->addr);
3619
3620         if (sample_type & PERF_SAMPLE_ID) {
3621                 data->id = primary_event_id(event);
3622
3623                 header->size += sizeof(data->id);
3624         }
3625
3626         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3627                 data->stream_id = event->id;
3628
3629                 header->size += sizeof(data->stream_id);
3630         }
3631
3632         if (sample_type & PERF_SAMPLE_CPU) {
3633                 data->cpu_entry.cpu             = raw_smp_processor_id();
3634                 data->cpu_entry.reserved        = 0;
3635
3636                 header->size += sizeof(data->cpu_entry);
3637         }
3638
3639         if (sample_type & PERF_SAMPLE_PERIOD)
3640                 header->size += sizeof(data->period);
3641
3642         if (sample_type & PERF_SAMPLE_READ)
3643                 header->size += perf_event_read_size(event);
3644
3645         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3646                 int size = 1;
3647
3648                 data->callchain = perf_callchain(regs);
3649
3650                 if (data->callchain)
3651                         size += data->callchain->nr;
3652
3653                 header->size += size * sizeof(u64);
3654         }
3655
3656         if (sample_type & PERF_SAMPLE_RAW) {
3657                 int size = sizeof(u32);
3658
3659                 if (data->raw)
3660                         size += data->raw->size;
3661                 else
3662                         size += sizeof(u32);
3663
3664                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3665                 header->size += size;
3666         }
3667 }
3668
3669 static void perf_event_output(struct perf_event *event, int nmi,
3670                                 struct perf_sample_data *data,
3671                                 struct pt_regs *regs)
3672 {
3673         struct perf_output_handle handle;
3674         struct perf_event_header header;
3675
3676         /* protect the callchain buffers */
3677         rcu_read_lock();
3678
3679         perf_prepare_sample(&header, data, event, regs);
3680
3681         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3682                 goto exit;
3683
3684         perf_output_sample(&handle, &header, data, event);
3685
3686         perf_output_end(&handle);
3687
3688 exit:
3689         rcu_read_unlock();
3690 }
3691
3692 /*
3693  * read event_id
3694  */
3695
3696 struct perf_read_event {
3697         struct perf_event_header        header;
3698
3699         u32                             pid;
3700         u32                             tid;
3701 };
3702
3703 static void
3704 perf_event_read_event(struct perf_event *event,
3705                         struct task_struct *task)
3706 {
3707         struct perf_output_handle handle;
3708         struct perf_read_event read_event = {
3709                 .header = {
3710                         .type = PERF_RECORD_READ,
3711                         .misc = 0,
3712                         .size = sizeof(read_event) + perf_event_read_size(event),
3713                 },
3714                 .pid = perf_event_pid(event, task),
3715                 .tid = perf_event_tid(event, task),
3716         };
3717         int ret;
3718
3719         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3720         if (ret)
3721                 return;
3722
3723         perf_output_put(&handle, read_event);
3724         perf_output_read(&handle, event);
3725
3726         perf_output_end(&handle);
3727 }
3728
3729 /*
3730  * task tracking -- fork/exit
3731  *
3732  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3733  */
3734
3735 struct perf_task_event {
3736         struct task_struct              *task;
3737         struct perf_event_context       *task_ctx;
3738
3739         struct {
3740                 struct perf_event_header        header;
3741
3742                 u32                             pid;
3743                 u32                             ppid;
3744                 u32                             tid;
3745                 u32                             ptid;
3746                 u64                             time;
3747         } event_id;
3748 };
3749
3750 static void perf_event_task_output(struct perf_event *event,
3751                                      struct perf_task_event *task_event)
3752 {
3753         struct perf_output_handle handle;
3754         struct task_struct *task = task_event->task;
3755         int size, ret;
3756
3757         size  = task_event->event_id.header.size;
3758         ret = perf_output_begin(&handle, event, size, 0, 0);
3759
3760         if (ret)
3761                 return;
3762
3763         task_event->event_id.pid = perf_event_pid(event, task);
3764         task_event->event_id.ppid = perf_event_pid(event, current);
3765
3766         task_event->event_id.tid = perf_event_tid(event, task);
3767         task_event->event_id.ptid = perf_event_tid(event, current);
3768
3769         perf_output_put(&handle, task_event->event_id);
3770
3771         perf_output_end(&handle);
3772 }
3773
3774 static int perf_event_task_match(struct perf_event *event)
3775 {
3776         if (event->state < PERF_EVENT_STATE_INACTIVE)
3777                 return 0;
3778
3779         if (event->cpu != -1 && event->cpu != smp_processor_id())
3780                 return 0;
3781
3782         if (event->attr.comm || event->attr.mmap ||
3783             event->attr.mmap_data || event->attr.task)
3784                 return 1;
3785
3786         return 0;
3787 }
3788
3789 static void perf_event_task_ctx(struct perf_event_context *ctx,
3790                                   struct perf_task_event *task_event)
3791 {
3792         struct perf_event *event;
3793
3794         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3795                 if (perf_event_task_match(event))
3796                         perf_event_task_output(event, task_event);
3797         }
3798 }
3799
3800 static void perf_event_task_event(struct perf_task_event *task_event)
3801 {
3802         struct perf_cpu_context *cpuctx;
3803         struct perf_event_context *ctx;
3804         struct pmu *pmu;
3805         int ctxn;
3806
3807         rcu_read_lock();
3808         list_for_each_entry_rcu(pmu, &pmus, entry) {
3809                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3810                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3811
3812                 ctx = task_event->task_ctx;
3813                 if (!ctx) {
3814                         ctxn = pmu->task_ctx_nr;
3815                         if (ctxn < 0)
3816                                 goto next;
3817                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3818                 }
3819                 if (ctx)
3820                         perf_event_task_ctx(ctx, task_event);
3821 next:
3822                 put_cpu_ptr(pmu->pmu_cpu_context);
3823         }
3824         rcu_read_unlock();
3825 }
3826
3827 static void perf_event_task(struct task_struct *task,
3828                               struct perf_event_context *task_ctx,
3829                               int new)
3830 {
3831         struct perf_task_event task_event;
3832
3833         if (!atomic_read(&nr_comm_events) &&
3834             !atomic_read(&nr_mmap_events) &&
3835             !atomic_read(&nr_task_events))
3836                 return;
3837
3838         task_event = (struct perf_task_event){
3839                 .task     = task,
3840                 .task_ctx = task_ctx,
3841                 .event_id    = {
3842                         .header = {
3843                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3844                                 .misc = 0,
3845                                 .size = sizeof(task_event.event_id),
3846                         },
3847                         /* .pid  */
3848                         /* .ppid */
3849                         /* .tid  */
3850                         /* .ptid */
3851                         .time = perf_clock(),
3852                 },
3853         };
3854
3855         perf_event_task_event(&task_event);
3856 }
3857
3858 void perf_event_fork(struct task_struct *task)
3859 {
3860         perf_event_task(task, NULL, 1);
3861 }
3862
3863 /*
3864  * comm tracking
3865  */
3866
3867 struct perf_comm_event {
3868         struct task_struct      *task;
3869         char                    *comm;
3870         int                     comm_size;
3871
3872         struct {
3873                 struct perf_event_header        header;
3874
3875                 u32                             pid;
3876                 u32                             tid;
3877         } event_id;
3878 };
3879
3880 static void perf_event_comm_output(struct perf_event *event,
3881                                      struct perf_comm_event *comm_event)
3882 {
3883         struct perf_output_handle handle;
3884         int size = comm_event->event_id.header.size;
3885         int ret = perf_output_begin(&handle, event, size, 0, 0);
3886
3887         if (ret)
3888                 return;
3889
3890         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3891         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3892
3893         perf_output_put(&handle, comm_event->event_id);
3894         perf_output_copy(&handle, comm_event->comm,
3895                                    comm_event->comm_size);
3896         perf_output_end(&handle);
3897 }
3898
3899 static int perf_event_comm_match(struct perf_event *event)
3900 {
3901         if (event->state < PERF_EVENT_STATE_INACTIVE)
3902                 return 0;
3903
3904         if (event->cpu != -1 && event->cpu != smp_processor_id())
3905                 return 0;
3906
3907         if (event->attr.comm)
3908                 return 1;
3909
3910         return 0;
3911 }
3912
3913 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3914                                   struct perf_comm_event *comm_event)
3915 {
3916         struct perf_event *event;
3917
3918         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3919                 if (perf_event_comm_match(event))
3920                         perf_event_comm_output(event, comm_event);
3921         }
3922 }
3923
3924 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3925 {
3926         struct perf_cpu_context *cpuctx;
3927         struct perf_event_context *ctx;
3928         char comm[TASK_COMM_LEN];
3929         unsigned int size;
3930         struct pmu *pmu;
3931         int ctxn;
3932
3933         memset(comm, 0, sizeof(comm));
3934         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3935         size = ALIGN(strlen(comm)+1, sizeof(u64));
3936
3937         comm_event->comm = comm;
3938         comm_event->comm_size = size;
3939
3940         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3941
3942         rcu_read_lock();
3943         list_for_each_entry_rcu(pmu, &pmus, entry) {
3944                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3945                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3946
3947                 ctxn = pmu->task_ctx_nr;
3948                 if (ctxn < 0)
3949                         goto next;
3950
3951                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3952                 if (ctx)
3953                         perf_event_comm_ctx(ctx, comm_event);
3954 next:
3955                 put_cpu_ptr(pmu->pmu_cpu_context);
3956         }
3957         rcu_read_unlock();
3958 }
3959
3960 void perf_event_comm(struct task_struct *task)
3961 {
3962         struct perf_comm_event comm_event;
3963         struct perf_event_context *ctx;
3964         int ctxn;
3965
3966         for_each_task_context_nr(ctxn) {
3967                 ctx = task->perf_event_ctxp[ctxn];
3968                 if (!ctx)
3969                         continue;
3970
3971                 perf_event_enable_on_exec(ctx);
3972         }
3973
3974         if (!atomic_read(&nr_comm_events))
3975                 return;
3976
3977         comm_event = (struct perf_comm_event){
3978                 .task   = task,
3979                 /* .comm      */
3980                 /* .comm_size */
3981                 .event_id  = {
3982                         .header = {
3983                                 .type = PERF_RECORD_COMM,
3984                                 .misc = 0,
3985                                 /* .size */
3986                         },
3987                         /* .pid */
3988                         /* .tid */
3989                 },
3990         };
3991
3992         perf_event_comm_event(&comm_event);
3993 }
3994
3995 /*
3996  * mmap tracking
3997  */
3998
3999 struct perf_mmap_event {
4000         struct vm_area_struct   *vma;
4001
4002         const char              *file_name;
4003         int                     file_size;
4004
4005         struct {
4006                 struct perf_event_header        header;
4007
4008                 u32                             pid;
4009                 u32                             tid;
4010                 u64                             start;
4011                 u64                             len;
4012                 u64                             pgoff;
4013         } event_id;
4014 };
4015
4016 static void perf_event_mmap_output(struct perf_event *event,
4017                                      struct perf_mmap_event *mmap_event)
4018 {
4019         struct perf_output_handle handle;
4020         int size = mmap_event->event_id.header.size;
4021         int ret = perf_output_begin(&handle, event, size, 0, 0);
4022
4023         if (ret)
4024                 return;
4025
4026         mmap_event->event_id.pid = perf_event_pid(event, current);
4027         mmap_event->event_id.tid = perf_event_tid(event, current);
4028
4029         perf_output_put(&handle, mmap_event->event_id);
4030         perf_output_copy(&handle, mmap_event->file_name,
4031                                    mmap_event->file_size);
4032         perf_output_end(&handle);
4033 }
4034
4035 static int perf_event_mmap_match(struct perf_event *event,
4036                                    struct perf_mmap_event *mmap_event,
4037                                    int executable)
4038 {
4039         if (event->state < PERF_EVENT_STATE_INACTIVE)
4040                 return 0;
4041
4042         if (event->cpu != -1 && event->cpu != smp_processor_id())
4043                 return 0;
4044
4045         if ((!executable && event->attr.mmap_data) ||
4046             (executable && event->attr.mmap))
4047                 return 1;
4048
4049         return 0;
4050 }
4051
4052 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4053                                   struct perf_mmap_event *mmap_event,
4054                                   int executable)
4055 {
4056         struct perf_event *event;
4057
4058         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4059                 if (perf_event_mmap_match(event, mmap_event, executable))
4060                         perf_event_mmap_output(event, mmap_event);
4061         }
4062 }
4063
4064 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4065 {
4066         struct perf_cpu_context *cpuctx;
4067         struct perf_event_context *ctx;
4068         struct vm_area_struct *vma = mmap_event->vma;
4069         struct file *file = vma->vm_file;
4070         unsigned int size;
4071         char tmp[16];
4072         char *buf = NULL;
4073         const char *name;
4074         struct pmu *pmu;
4075         int ctxn;
4076
4077         memset(tmp, 0, sizeof(tmp));
4078
4079         if (file) {
4080                 /*
4081                  * d_path works from the end of the buffer backwards, so we
4082                  * need to add enough zero bytes after the string to handle
4083                  * the 64bit alignment we do later.
4084                  */
4085                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4086                 if (!buf) {
4087                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4088                         goto got_name;
4089                 }
4090                 name = d_path(&file->f_path, buf, PATH_MAX);
4091                 if (IS_ERR(name)) {
4092                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4093                         goto got_name;
4094                 }
4095         } else {
4096                 if (arch_vma_name(mmap_event->vma)) {
4097                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4098                                        sizeof(tmp));
4099                         goto got_name;
4100                 }
4101
4102                 if (!vma->vm_mm) {
4103                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4104                         goto got_name;
4105                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4106                                 vma->vm_end >= vma->vm_mm->brk) {
4107                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4108                         goto got_name;
4109                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4110                                 vma->vm_end >= vma->vm_mm->start_stack) {
4111                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4112                         goto got_name;
4113                 }
4114
4115                 name = strncpy(tmp, "//anon", sizeof(tmp));
4116                 goto got_name;
4117         }
4118
4119 got_name:
4120         size = ALIGN(strlen(name)+1, sizeof(u64));
4121
4122         mmap_event->file_name = name;
4123         mmap_event->file_size = size;
4124
4125         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4126
4127         rcu_read_lock();
4128         list_for_each_entry_rcu(pmu, &pmus, entry) {
4129                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4130                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4131                                         vma->vm_flags & VM_EXEC);
4132
4133                 ctxn = pmu->task_ctx_nr;
4134                 if (ctxn < 0)
4135                         goto next;
4136
4137                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4138                 if (ctx) {
4139                         perf_event_mmap_ctx(ctx, mmap_event,
4140                                         vma->vm_flags & VM_EXEC);
4141                 }
4142 next:
4143                 put_cpu_ptr(pmu->pmu_cpu_context);
4144         }
4145         rcu_read_unlock();
4146
4147         kfree(buf);
4148 }
4149
4150 void perf_event_mmap(struct vm_area_struct *vma)
4151 {
4152         struct perf_mmap_event mmap_event;
4153
4154         if (!atomic_read(&nr_mmap_events))
4155                 return;
4156
4157         mmap_event = (struct perf_mmap_event){
4158                 .vma    = vma,
4159                 /* .file_name */
4160                 /* .file_size */
4161                 .event_id  = {
4162                         .header = {
4163                                 .type = PERF_RECORD_MMAP,
4164                                 .misc = PERF_RECORD_MISC_USER,
4165                                 /* .size */
4166                         },
4167                         /* .pid */
4168                         /* .tid */
4169                         .start  = vma->vm_start,
4170                         .len    = vma->vm_end - vma->vm_start,
4171                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4172                 },
4173         };
4174
4175         perf_event_mmap_event(&mmap_event);
4176 }
4177
4178 /*
4179  * IRQ throttle logging
4180  */
4181
4182 static void perf_log_throttle(struct perf_event *event, int enable)
4183 {
4184         struct perf_output_handle handle;
4185         int ret;
4186
4187         struct {
4188                 struct perf_event_header        header;
4189                 u64                             time;
4190                 u64                             id;
4191                 u64                             stream_id;
4192         } throttle_event = {
4193                 .header = {
4194                         .type = PERF_RECORD_THROTTLE,
4195                         .misc = 0,
4196                         .size = sizeof(throttle_event),
4197                 },
4198                 .time           = perf_clock(),
4199                 .id             = primary_event_id(event),
4200                 .stream_id      = event->id,
4201         };
4202
4203         if (enable)
4204                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4205
4206         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4207         if (ret)
4208                 return;
4209
4210         perf_output_put(&handle, throttle_event);
4211         perf_output_end(&handle);
4212 }
4213
4214 /*
4215  * Generic event overflow handling, sampling.
4216  */
4217
4218 static int __perf_event_overflow(struct perf_event *event, int nmi,
4219                                    int throttle, struct perf_sample_data *data,
4220                                    struct pt_regs *regs)
4221 {
4222         int events = atomic_read(&event->event_limit);
4223         struct hw_perf_event *hwc = &event->hw;
4224         int ret = 0;
4225
4226         if (!throttle) {
4227                 hwc->interrupts++;
4228         } else {
4229                 if (hwc->interrupts != MAX_INTERRUPTS) {
4230                         hwc->interrupts++;
4231                         if (HZ * hwc->interrupts >
4232                                         (u64)sysctl_perf_event_sample_rate) {
4233                                 hwc->interrupts = MAX_INTERRUPTS;
4234                                 perf_log_throttle(event, 0);
4235                                 ret = 1;
4236                         }
4237                 } else {
4238                         /*
4239                          * Keep re-disabling events even though on the previous
4240                          * pass we disabled it - just in case we raced with a
4241                          * sched-in and the event got enabled again:
4242                          */
4243                         ret = 1;
4244                 }
4245         }
4246
4247         if (event->attr.freq) {
4248                 u64 now = perf_clock();
4249                 s64 delta = now - hwc->freq_time_stamp;
4250
4251                 hwc->freq_time_stamp = now;
4252
4253                 if (delta > 0 && delta < 2*TICK_NSEC)
4254                         perf_adjust_period(event, delta, hwc->last_period);
4255         }
4256
4257         /*
4258          * XXX event_limit might not quite work as expected on inherited
4259          * events
4260          */
4261
4262         event->pending_kill = POLL_IN;
4263         if (events && atomic_dec_and_test(&event->event_limit)) {
4264                 ret = 1;
4265                 event->pending_kill = POLL_HUP;
4266                 if (nmi) {
4267                         event->pending_disable = 1;
4268                         irq_work_queue(&event->pending);
4269                 } else
4270                         perf_event_disable(event);
4271         }
4272
4273         if (event->overflow_handler)
4274                 event->overflow_handler(event, nmi, data, regs);
4275         else
4276                 perf_event_output(event, nmi, data, regs);
4277
4278         return ret;
4279 }
4280
4281 int perf_event_overflow(struct perf_event *event, int nmi,
4282                           struct perf_sample_data *data,
4283                           struct pt_regs *regs)
4284 {
4285         return __perf_event_overflow(event, nmi, 1, data, regs);
4286 }
4287
4288 /*
4289  * Generic software event infrastructure
4290  */
4291
4292 struct swevent_htable {
4293         struct swevent_hlist            *swevent_hlist;
4294         struct mutex                    hlist_mutex;
4295         int                             hlist_refcount;
4296
4297         /* Recursion avoidance in each contexts */
4298         int                             recursion[PERF_NR_CONTEXTS];
4299 };
4300
4301 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4302
4303 /*
4304  * We directly increment event->count and keep a second value in
4305  * event->hw.period_left to count intervals. This period event
4306  * is kept in the range [-sample_period, 0] so that we can use the
4307  * sign as trigger.
4308  */
4309
4310 static u64 perf_swevent_set_period(struct perf_event *event)
4311 {
4312         struct hw_perf_event *hwc = &event->hw;
4313         u64 period = hwc->last_period;
4314         u64 nr, offset;
4315         s64 old, val;
4316
4317         hwc->last_period = hwc->sample_period;
4318
4319 again:
4320         old = val = local64_read(&hwc->period_left);
4321         if (val < 0)
4322                 return 0;
4323
4324         nr = div64_u64(period + val, period);
4325         offset = nr * period;
4326         val -= offset;
4327         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4328                 goto again;
4329
4330         return nr;
4331 }
4332
4333 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4334                                     int nmi, struct perf_sample_data *data,
4335                                     struct pt_regs *regs)
4336 {
4337         struct hw_perf_event *hwc = &event->hw;
4338         int throttle = 0;
4339
4340         data->period = event->hw.last_period;
4341         if (!overflow)
4342                 overflow = perf_swevent_set_period(event);
4343
4344         if (hwc->interrupts == MAX_INTERRUPTS)
4345                 return;
4346
4347         for (; overflow; overflow--) {
4348                 if (__perf_event_overflow(event, nmi, throttle,
4349                                             data, regs)) {
4350                         /*
4351                          * We inhibit the overflow from happening when
4352                          * hwc->interrupts == MAX_INTERRUPTS.
4353                          */
4354                         break;
4355                 }
4356                 throttle = 1;
4357         }
4358 }
4359
4360 static void perf_swevent_event(struct perf_event *event, u64 nr,
4361                                int nmi, struct perf_sample_data *data,
4362                                struct pt_regs *regs)
4363 {
4364         struct hw_perf_event *hwc = &event->hw;
4365
4366         local64_add(nr, &event->count);
4367
4368         if (!regs)
4369                 return;
4370
4371         if (!hwc->sample_period)
4372                 return;
4373
4374         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4375                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4376
4377         if (local64_add_negative(nr, &hwc->period_left))
4378                 return;
4379
4380         perf_swevent_overflow(event, 0, nmi, data, regs);
4381 }
4382
4383 static int perf_exclude_event(struct perf_event *event,
4384                               struct pt_regs *regs)
4385 {
4386         if (event->hw.state & PERF_HES_STOPPED)
4387                 return 0;
4388
4389         if (regs) {
4390                 if (event->attr.exclude_user && user_mode(regs))
4391                         return 1;
4392
4393                 if (event->attr.exclude_kernel && !user_mode(regs))
4394                         return 1;
4395         }
4396
4397         return 0;
4398 }
4399
4400 static int perf_swevent_match(struct perf_event *event,
4401                                 enum perf_type_id type,
4402                                 u32 event_id,
4403                                 struct perf_sample_data *data,
4404                                 struct pt_regs *regs)
4405 {
4406         if (event->attr.type != type)
4407                 return 0;
4408
4409         if (event->attr.config != event_id)
4410                 return 0;
4411
4412         if (perf_exclude_event(event, regs))
4413                 return 0;
4414
4415         return 1;
4416 }
4417
4418 static inline u64 swevent_hash(u64 type, u32 event_id)
4419 {
4420         u64 val = event_id | (type << 32);
4421
4422         return hash_64(val, SWEVENT_HLIST_BITS);
4423 }
4424
4425 static inline struct hlist_head *
4426 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4427 {
4428         u64 hash = swevent_hash(type, event_id);
4429
4430         return &hlist->heads[hash];
4431 }
4432
4433 /* For the read side: events when they trigger */
4434 static inline struct hlist_head *
4435 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4436 {
4437         struct swevent_hlist *hlist;
4438
4439         hlist = rcu_dereference(swhash->swevent_hlist);
4440         if (!hlist)
4441                 return NULL;
4442
4443         return __find_swevent_head(hlist, type, event_id);
4444 }
4445
4446 /* For the event head insertion and removal in the hlist */
4447 static inline struct hlist_head *
4448 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4449 {
4450         struct swevent_hlist *hlist;
4451         u32 event_id = event->attr.config;
4452         u64 type = event->attr.type;
4453
4454         /*
4455          * Event scheduling is always serialized against hlist allocation
4456          * and release. Which makes the protected version suitable here.
4457          * The context lock guarantees that.
4458          */
4459         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4460                                           lockdep_is_held(&event->ctx->lock));
4461         if (!hlist)
4462                 return NULL;
4463
4464         return __find_swevent_head(hlist, type, event_id);
4465 }
4466
4467 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4468                                     u64 nr, int nmi,
4469                                     struct perf_sample_data *data,
4470                                     struct pt_regs *regs)
4471 {
4472         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4473         struct perf_event *event;
4474         struct hlist_node *node;
4475         struct hlist_head *head;
4476
4477         rcu_read_lock();
4478         head = find_swevent_head_rcu(swhash, type, event_id);
4479         if (!head)
4480                 goto end;
4481
4482         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4483                 if (perf_swevent_match(event, type, event_id, data, regs))
4484                         perf_swevent_event(event, nr, nmi, data, regs);
4485         }
4486 end:
4487         rcu_read_unlock();
4488 }
4489
4490 int perf_swevent_get_recursion_context(void)
4491 {
4492         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4493
4494         return get_recursion_context(swhash->recursion);
4495 }
4496 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4497
4498 void inline perf_swevent_put_recursion_context(int rctx)
4499 {
4500         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4501
4502         put_recursion_context(swhash->recursion, rctx);
4503 }
4504
4505 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4506                             struct pt_regs *regs, u64 addr)
4507 {
4508         struct perf_sample_data data;
4509         int rctx;
4510
4511         preempt_disable_notrace();
4512         rctx = perf_swevent_get_recursion_context();
4513         if (rctx < 0)
4514                 return;
4515
4516         perf_sample_data_init(&data, addr);
4517
4518         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4519
4520         perf_swevent_put_recursion_context(rctx);
4521         preempt_enable_notrace();
4522 }
4523
4524 static void perf_swevent_read(struct perf_event *event)
4525 {
4526 }
4527
4528 static int perf_swevent_add(struct perf_event *event, int flags)
4529 {
4530         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4531         struct hw_perf_event *hwc = &event->hw;
4532         struct hlist_head *head;
4533
4534         if (hwc->sample_period) {
4535                 hwc->last_period = hwc->sample_period;
4536                 perf_swevent_set_period(event);
4537         }
4538
4539         hwc->state = !(flags & PERF_EF_START);
4540
4541         head = find_swevent_head(swhash, event);
4542         if (WARN_ON_ONCE(!head))
4543                 return -EINVAL;
4544
4545         hlist_add_head_rcu(&event->hlist_entry, head);
4546
4547         return 0;
4548 }
4549
4550 static void perf_swevent_del(struct perf_event *event, int flags)
4551 {
4552         hlist_del_rcu(&event->hlist_entry);
4553 }
4554
4555 static void perf_swevent_start(struct perf_event *event, int flags)
4556 {
4557         event->hw.state = 0;
4558 }
4559
4560 static void perf_swevent_stop(struct perf_event *event, int flags)
4561 {
4562         event->hw.state = PERF_HES_STOPPED;
4563 }
4564
4565 /* Deref the hlist from the update side */
4566 static inline struct swevent_hlist *
4567 swevent_hlist_deref(struct swevent_htable *swhash)
4568 {
4569         return rcu_dereference_protected(swhash->swevent_hlist,
4570                                          lockdep_is_held(&swhash->hlist_mutex));
4571 }
4572
4573 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4574 {
4575         struct swevent_hlist *hlist;
4576
4577         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4578         kfree(hlist);
4579 }
4580
4581 static void swevent_hlist_release(struct swevent_htable *swhash)
4582 {
4583         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4584
4585         if (!hlist)
4586                 return;
4587
4588         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4589         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4590 }
4591
4592 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4593 {
4594         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4595
4596         mutex_lock(&swhash->hlist_mutex);
4597
4598         if (!--swhash->hlist_refcount)
4599                 swevent_hlist_release(swhash);
4600
4601         mutex_unlock(&swhash->hlist_mutex);
4602 }
4603
4604 static void swevent_hlist_put(struct perf_event *event)
4605 {
4606         int cpu;
4607
4608         if (event->cpu != -1) {
4609                 swevent_hlist_put_cpu(event, event->cpu);
4610                 return;
4611         }
4612
4613         for_each_possible_cpu(cpu)
4614                 swevent_hlist_put_cpu(event, cpu);
4615 }
4616
4617 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4618 {
4619         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4620         int err = 0;
4621
4622         mutex_lock(&swhash->hlist_mutex);
4623
4624         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4625                 struct swevent_hlist *hlist;
4626
4627                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4628                 if (!hlist) {
4629                         err = -ENOMEM;
4630                         goto exit;
4631                 }
4632                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4633         }
4634         swhash->hlist_refcount++;
4635 exit:
4636         mutex_unlock(&swhash->hlist_mutex);
4637
4638         return err;
4639 }
4640
4641 static int swevent_hlist_get(struct perf_event *event)
4642 {
4643         int err;
4644         int cpu, failed_cpu;
4645
4646         if (event->cpu != -1)
4647                 return swevent_hlist_get_cpu(event, event->cpu);
4648
4649         get_online_cpus();
4650         for_each_possible_cpu(cpu) {
4651                 err = swevent_hlist_get_cpu(event, cpu);
4652                 if (err) {
4653                         failed_cpu = cpu;
4654                         goto fail;
4655                 }
4656         }
4657         put_online_cpus();
4658
4659         return 0;
4660 fail:
4661         for_each_possible_cpu(cpu) {
4662                 if (cpu == failed_cpu)
4663                         break;
4664                 swevent_hlist_put_cpu(event, cpu);
4665         }
4666
4667         put_online_cpus();
4668         return err;
4669 }
4670
4671 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4672
4673 static void sw_perf_event_destroy(struct perf_event *event)
4674 {
4675         u64 event_id = event->attr.config;
4676
4677         WARN_ON(event->parent);
4678
4679         atomic_dec(&perf_swevent_enabled[event_id]);
4680         swevent_hlist_put(event);
4681 }
4682
4683 static int perf_swevent_init(struct perf_event *event)
4684 {
4685         int event_id = event->attr.config;
4686
4687         if (event->attr.type != PERF_TYPE_SOFTWARE)
4688                 return -ENOENT;
4689
4690         switch (event_id) {
4691         case PERF_COUNT_SW_CPU_CLOCK:
4692         case PERF_COUNT_SW_TASK_CLOCK:
4693                 return -ENOENT;
4694
4695         default:
4696                 break;
4697         }
4698
4699         if (event_id > PERF_COUNT_SW_MAX)
4700                 return -ENOENT;
4701
4702         if (!event->parent) {
4703                 int err;
4704
4705                 err = swevent_hlist_get(event);
4706                 if (err)
4707                         return err;
4708
4709                 atomic_inc(&perf_swevent_enabled[event_id]);
4710                 event->destroy = sw_perf_event_destroy;
4711         }
4712
4713         return 0;
4714 }
4715
4716 static struct pmu perf_swevent = {
4717         .task_ctx_nr    = perf_sw_context,
4718
4719         .event_init     = perf_swevent_init,
4720         .add            = perf_swevent_add,
4721         .del            = perf_swevent_del,
4722         .start          = perf_swevent_start,
4723         .stop           = perf_swevent_stop,
4724         .read           = perf_swevent_read,
4725 };
4726
4727 #ifdef CONFIG_EVENT_TRACING
4728
4729 static int perf_tp_filter_match(struct perf_event *event,
4730                                 struct perf_sample_data *data)
4731 {
4732         void *record = data->raw->data;
4733
4734         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4735                 return 1;
4736         return 0;
4737 }
4738
4739 static int perf_tp_event_match(struct perf_event *event,
4740                                 struct perf_sample_data *data,
4741                                 struct pt_regs *regs)
4742 {
4743         /*
4744          * All tracepoints are from kernel-space.
4745          */
4746         if (event->attr.exclude_kernel)
4747                 return 0;
4748
4749         if (!perf_tp_filter_match(event, data))
4750                 return 0;
4751
4752         return 1;
4753 }
4754
4755 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4756                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4757 {
4758         struct perf_sample_data data;
4759         struct perf_event *event;
4760         struct hlist_node *node;
4761
4762         struct perf_raw_record raw = {
4763                 .size = entry_size,
4764                 .data = record,
4765         };
4766
4767         perf_sample_data_init(&data, addr);
4768         data.raw = &raw;
4769
4770         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4771                 if (perf_tp_event_match(event, &data, regs))
4772                         perf_swevent_event(event, count, 1, &data, regs);
4773         }
4774
4775         perf_swevent_put_recursion_context(rctx);
4776 }
4777 EXPORT_SYMBOL_GPL(perf_tp_event);
4778
4779 static void tp_perf_event_destroy(struct perf_event *event)
4780 {
4781         perf_trace_destroy(event);
4782 }
4783
4784 static int perf_tp_event_init(struct perf_event *event)
4785 {
4786         int err;
4787
4788         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4789                 return -ENOENT;
4790
4791         /*
4792          * Raw tracepoint data is a severe data leak, only allow root to
4793          * have these.
4794          */
4795         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4796                         perf_paranoid_tracepoint_raw() &&
4797                         !capable(CAP_SYS_ADMIN))
4798                 return -EPERM;
4799
4800         err = perf_trace_init(event);
4801         if (err)
4802                 return err;
4803
4804         event->destroy = tp_perf_event_destroy;
4805
4806         return 0;
4807 }
4808
4809 static struct pmu perf_tracepoint = {
4810         .task_ctx_nr    = perf_sw_context,
4811
4812         .event_init     = perf_tp_event_init,
4813         .add            = perf_trace_add,
4814         .del            = perf_trace_del,
4815         .start          = perf_swevent_start,
4816         .stop           = perf_swevent_stop,
4817         .read           = perf_swevent_read,
4818 };
4819
4820 static inline void perf_tp_register(void)
4821 {
4822         perf_pmu_register(&perf_tracepoint);
4823 }
4824
4825 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4826 {
4827         char *filter_str;
4828         int ret;
4829
4830         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4831                 return -EINVAL;
4832
4833         filter_str = strndup_user(arg, PAGE_SIZE);
4834         if (IS_ERR(filter_str))
4835                 return PTR_ERR(filter_str);
4836
4837         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4838
4839         kfree(filter_str);
4840         return ret;
4841 }
4842
4843 static void perf_event_free_filter(struct perf_event *event)
4844 {
4845         ftrace_profile_free_filter(event);
4846 }
4847
4848 #else
4849
4850 static inline void perf_tp_register(void)
4851 {
4852 }
4853
4854 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4855 {
4856         return -ENOENT;
4857 }
4858
4859 static void perf_event_free_filter(struct perf_event *event)
4860 {
4861 }
4862
4863 #endif /* CONFIG_EVENT_TRACING */
4864
4865 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4866 void perf_bp_event(struct perf_event *bp, void *data)
4867 {
4868         struct perf_sample_data sample;
4869         struct pt_regs *regs = data;
4870
4871         perf_sample_data_init(&sample, bp->attr.bp_addr);
4872
4873         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4874                 perf_swevent_event(bp, 1, 1, &sample, regs);
4875 }
4876 #endif
4877
4878 /*
4879  * hrtimer based swevent callback
4880  */
4881
4882 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4883 {
4884         enum hrtimer_restart ret = HRTIMER_RESTART;
4885         struct perf_sample_data data;
4886         struct pt_regs *regs;
4887         struct perf_event *event;
4888         u64 period;
4889
4890         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4891         event->pmu->read(event);
4892
4893         perf_sample_data_init(&data, 0);
4894         data.period = event->hw.last_period;
4895         regs = get_irq_regs();
4896
4897         if (regs && !perf_exclude_event(event, regs)) {
4898                 if (!(event->attr.exclude_idle && current->pid == 0))
4899                         if (perf_event_overflow(event, 0, &data, regs))
4900                                 ret = HRTIMER_NORESTART;
4901         }
4902
4903         period = max_t(u64, 10000, event->hw.sample_period);
4904         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4905
4906         return ret;
4907 }
4908
4909 static void perf_swevent_start_hrtimer(struct perf_event *event)
4910 {
4911         struct hw_perf_event *hwc = &event->hw;
4912
4913         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4914         hwc->hrtimer.function = perf_swevent_hrtimer;
4915         if (hwc->sample_period) {
4916                 s64 period = local64_read(&hwc->period_left);
4917
4918                 if (period) {
4919                         if (period < 0)
4920                                 period = 10000;
4921
4922                         local64_set(&hwc->period_left, 0);
4923                 } else {
4924                         period = max_t(u64, 10000, hwc->sample_period);
4925                 }
4926                 __hrtimer_start_range_ns(&hwc->hrtimer,
4927                                 ns_to_ktime(period), 0,
4928                                 HRTIMER_MODE_REL_PINNED, 0);
4929         }
4930 }
4931
4932 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4933 {
4934         struct hw_perf_event *hwc = &event->hw;
4935
4936         if (hwc->sample_period) {
4937                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4938                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4939
4940                 hrtimer_cancel(&hwc->hrtimer);
4941         }
4942 }
4943
4944 /*
4945  * Software event: cpu wall time clock
4946  */
4947
4948 static void cpu_clock_event_update(struct perf_event *event)
4949 {
4950         s64 prev;
4951         u64 now;
4952
4953         now = local_clock();
4954         prev = local64_xchg(&event->hw.prev_count, now);
4955         local64_add(now - prev, &event->count);
4956 }
4957
4958 static void cpu_clock_event_start(struct perf_event *event, int flags)
4959 {
4960         local64_set(&event->hw.prev_count, local_clock());
4961         perf_swevent_start_hrtimer(event);
4962 }
4963
4964 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4965 {
4966         perf_swevent_cancel_hrtimer(event);
4967         cpu_clock_event_update(event);
4968 }
4969
4970 static int cpu_clock_event_add(struct perf_event *event, int flags)
4971 {
4972         if (flags & PERF_EF_START)
4973                 cpu_clock_event_start(event, flags);
4974
4975         return 0;
4976 }
4977
4978 static void cpu_clock_event_del(struct perf_event *event, int flags)
4979 {
4980         cpu_clock_event_stop(event, flags);
4981 }
4982
4983 static void cpu_clock_event_read(struct perf_event *event)
4984 {
4985         cpu_clock_event_update(event);
4986 }
4987
4988 static int cpu_clock_event_init(struct perf_event *event)
4989 {
4990         if (event->attr.type != PERF_TYPE_SOFTWARE)
4991                 return -ENOENT;
4992
4993         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4994                 return -ENOENT;
4995
4996         return 0;
4997 }
4998
4999 static struct pmu perf_cpu_clock = {
5000         .task_ctx_nr    = perf_sw_context,
5001
5002         .event_init     = cpu_clock_event_init,
5003         .add            = cpu_clock_event_add,
5004         .del            = cpu_clock_event_del,
5005         .start          = cpu_clock_event_start,
5006         .stop           = cpu_clock_event_stop,
5007         .read           = cpu_clock_event_read,
5008 };
5009
5010 /*
5011  * Software event: task time clock
5012  */
5013
5014 static void task_clock_event_update(struct perf_event *event, u64 now)
5015 {
5016         u64 prev;
5017         s64 delta;
5018
5019         prev = local64_xchg(&event->hw.prev_count, now);
5020         delta = now - prev;
5021         local64_add(delta, &event->count);
5022 }
5023
5024 static void task_clock_event_start(struct perf_event *event, int flags)
5025 {
5026         local64_set(&event->hw.prev_count, event->ctx->time);
5027         perf_swevent_start_hrtimer(event);
5028 }
5029
5030 static void task_clock_event_stop(struct perf_event *event, int flags)
5031 {
5032         perf_swevent_cancel_hrtimer(event);
5033         task_clock_event_update(event, event->ctx->time);
5034 }
5035
5036 static int task_clock_event_add(struct perf_event *event, int flags)
5037 {
5038         if (flags & PERF_EF_START)
5039                 task_clock_event_start(event, flags);
5040
5041         return 0;
5042 }
5043
5044 static void task_clock_event_del(struct perf_event *event, int flags)
5045 {
5046         task_clock_event_stop(event, PERF_EF_UPDATE);
5047 }
5048
5049 static void task_clock_event_read(struct perf_event *event)
5050 {
5051         u64 time;
5052
5053         if (!in_nmi()) {
5054                 update_context_time(event->ctx);
5055                 time = event->ctx->time;
5056         } else {
5057                 u64 now = perf_clock();
5058                 u64 delta = now - event->ctx->timestamp;
5059                 time = event->ctx->time + delta;
5060         }
5061
5062         task_clock_event_update(event, time);
5063 }
5064
5065 static int task_clock_event_init(struct perf_event *event)
5066 {
5067         if (event->attr.type != PERF_TYPE_SOFTWARE)
5068                 return -ENOENT;
5069
5070         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5071                 return -ENOENT;
5072
5073         return 0;
5074 }
5075
5076 static struct pmu perf_task_clock = {
5077         .task_ctx_nr    = perf_sw_context,
5078
5079         .event_init     = task_clock_event_init,
5080         .add            = task_clock_event_add,
5081         .del            = task_clock_event_del,
5082         .start          = task_clock_event_start,
5083         .stop           = task_clock_event_stop,
5084         .read           = task_clock_event_read,
5085 };
5086
5087 static void perf_pmu_nop_void(struct pmu *pmu)
5088 {
5089 }
5090
5091 static int perf_pmu_nop_int(struct pmu *pmu)
5092 {
5093         return 0;
5094 }
5095
5096 static void perf_pmu_start_txn(struct pmu *pmu)
5097 {
5098         perf_pmu_disable(pmu);
5099 }
5100
5101 static int perf_pmu_commit_txn(struct pmu *pmu)
5102 {
5103         perf_pmu_enable(pmu);
5104         return 0;
5105 }
5106
5107 static void perf_pmu_cancel_txn(struct pmu *pmu)
5108 {
5109         perf_pmu_enable(pmu);
5110 }
5111
5112 /*
5113  * Ensures all contexts with the same task_ctx_nr have the same
5114  * pmu_cpu_context too.
5115  */
5116 static void *find_pmu_context(int ctxn)
5117 {
5118         struct pmu *pmu;
5119
5120         if (ctxn < 0)
5121                 return NULL;
5122
5123         list_for_each_entry(pmu, &pmus, entry) {
5124                 if (pmu->task_ctx_nr == ctxn)
5125                         return pmu->pmu_cpu_context;
5126         }
5127
5128         return NULL;
5129 }
5130
5131 static void free_pmu_context(void * __percpu cpu_context)
5132 {
5133         struct pmu *pmu;
5134
5135         mutex_lock(&pmus_lock);
5136         /*
5137          * Like a real lame refcount.
5138          */
5139         list_for_each_entry(pmu, &pmus, entry) {
5140                 if (pmu->pmu_cpu_context == cpu_context)
5141                         goto out;
5142         }
5143
5144         free_percpu(cpu_context);
5145 out:
5146         mutex_unlock(&pmus_lock);
5147 }
5148
5149 int perf_pmu_register(struct pmu *pmu)
5150 {
5151         int cpu, ret;
5152
5153         mutex_lock(&pmus_lock);
5154         ret = -ENOMEM;
5155         pmu->pmu_disable_count = alloc_percpu(int);
5156         if (!pmu->pmu_disable_count)
5157                 goto unlock;
5158
5159         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5160         if (pmu->pmu_cpu_context)
5161                 goto got_cpu_context;
5162
5163         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5164         if (!pmu->pmu_cpu_context)
5165                 goto free_pdc;
5166
5167         for_each_possible_cpu(cpu) {
5168                 struct perf_cpu_context *cpuctx;
5169
5170                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5171                 __perf_event_init_context(&cpuctx->ctx);
5172                 cpuctx->ctx.type = cpu_context;
5173                 cpuctx->ctx.pmu = pmu;
5174                 cpuctx->jiffies_interval = 1;
5175                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5176         }
5177
5178 got_cpu_context:
5179         if (!pmu->start_txn) {
5180                 if (pmu->pmu_enable) {
5181                         /*
5182                          * If we have pmu_enable/pmu_disable calls, install
5183                          * transaction stubs that use that to try and batch
5184                          * hardware accesses.
5185                          */
5186                         pmu->start_txn  = perf_pmu_start_txn;
5187                         pmu->commit_txn = perf_pmu_commit_txn;
5188                         pmu->cancel_txn = perf_pmu_cancel_txn;
5189                 } else {
5190                         pmu->start_txn  = perf_pmu_nop_void;
5191                         pmu->commit_txn = perf_pmu_nop_int;
5192                         pmu->cancel_txn = perf_pmu_nop_void;
5193                 }
5194         }
5195
5196         if (!pmu->pmu_enable) {
5197                 pmu->pmu_enable  = perf_pmu_nop_void;
5198                 pmu->pmu_disable = perf_pmu_nop_void;
5199         }
5200
5201         list_add_rcu(&pmu->entry, &pmus);
5202         ret = 0;
5203 unlock:
5204         mutex_unlock(&pmus_lock);
5205
5206         return ret;
5207
5208 free_pdc:
5209         free_percpu(pmu->pmu_disable_count);
5210         goto unlock;
5211 }
5212
5213 void perf_pmu_unregister(struct pmu *pmu)
5214 {
5215         mutex_lock(&pmus_lock);
5216         list_del_rcu(&pmu->entry);
5217         mutex_unlock(&pmus_lock);
5218
5219         /*
5220          * We dereference the pmu list under both SRCU and regular RCU, so
5221          * synchronize against both of those.
5222          */
5223         synchronize_srcu(&pmus_srcu);
5224         synchronize_rcu();
5225
5226         free_percpu(pmu->pmu_disable_count);
5227         free_pmu_context(pmu->pmu_cpu_context);
5228 }
5229
5230 struct pmu *perf_init_event(struct perf_event *event)
5231 {
5232         struct pmu *pmu = NULL;
5233         int idx;
5234
5235         idx = srcu_read_lock(&pmus_srcu);
5236         list_for_each_entry_rcu(pmu, &pmus, entry) {
5237                 int ret = pmu->event_init(event);
5238                 if (!ret)
5239                         goto unlock;
5240
5241                 if (ret != -ENOENT) {
5242                         pmu = ERR_PTR(ret);
5243                         goto unlock;
5244                 }
5245         }
5246         pmu = ERR_PTR(-ENOENT);
5247 unlock:
5248         srcu_read_unlock(&pmus_srcu, idx);
5249
5250         return pmu;
5251 }
5252
5253 /*
5254  * Allocate and initialize a event structure
5255  */
5256 static struct perf_event *
5257 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5258                  struct task_struct *task,
5259                  struct perf_event *group_leader,
5260                  struct perf_event *parent_event,
5261                  perf_overflow_handler_t overflow_handler)
5262 {
5263         struct pmu *pmu;
5264         struct perf_event *event;
5265         struct hw_perf_event *hwc;
5266         long err;
5267
5268         event = kzalloc(sizeof(*event), GFP_KERNEL);
5269         if (!event)
5270                 return ERR_PTR(-ENOMEM);
5271
5272         /*
5273          * Single events are their own group leaders, with an
5274          * empty sibling list:
5275          */
5276         if (!group_leader)
5277                 group_leader = event;
5278
5279         mutex_init(&event->child_mutex);
5280         INIT_LIST_HEAD(&event->child_list);
5281
5282         INIT_LIST_HEAD(&event->group_entry);
5283         INIT_LIST_HEAD(&event->event_entry);
5284         INIT_LIST_HEAD(&event->sibling_list);
5285         init_waitqueue_head(&event->waitq);
5286         init_irq_work(&event->pending, perf_pending_event);
5287
5288         mutex_init(&event->mmap_mutex);
5289
5290         event->cpu              = cpu;
5291         event->attr             = *attr;
5292         event->group_leader     = group_leader;
5293         event->pmu              = NULL;
5294         event->oncpu            = -1;
5295
5296         event->parent           = parent_event;
5297
5298         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5299         event->id               = atomic64_inc_return(&perf_event_id);
5300
5301         event->state            = PERF_EVENT_STATE_INACTIVE;
5302
5303         if (task) {
5304                 event->attach_state = PERF_ATTACH_TASK;
5305 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5306                 /*
5307                  * hw_breakpoint is a bit difficult here..
5308                  */
5309                 if (attr->type == PERF_TYPE_BREAKPOINT)
5310                         event->hw.bp_target = task;
5311 #endif
5312         }
5313
5314         if (!overflow_handler && parent_event)
5315                 overflow_handler = parent_event->overflow_handler;
5316         
5317         event->overflow_handler = overflow_handler;
5318
5319         if (attr->disabled)
5320                 event->state = PERF_EVENT_STATE_OFF;
5321
5322         pmu = NULL;
5323
5324         hwc = &event->hw;
5325         hwc->sample_period = attr->sample_period;
5326         if (attr->freq && attr->sample_freq)
5327                 hwc->sample_period = 1;
5328         hwc->last_period = hwc->sample_period;
5329
5330         local64_set(&hwc->period_left, hwc->sample_period);
5331
5332         /*
5333          * we currently do not support PERF_FORMAT_GROUP on inherited events
5334          */
5335         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5336                 goto done;
5337
5338         pmu = perf_init_event(event);
5339
5340 done:
5341         err = 0;
5342         if (!pmu)
5343                 err = -EINVAL;
5344         else if (IS_ERR(pmu))
5345                 err = PTR_ERR(pmu);
5346
5347         if (err) {
5348                 if (event->ns)
5349                         put_pid_ns(event->ns);
5350                 kfree(event);
5351                 return ERR_PTR(err);
5352         }
5353
5354         event->pmu = pmu;
5355
5356         if (!event->parent) {
5357                 atomic_inc(&nr_events);
5358                 if (event->attr.mmap || event->attr.mmap_data)
5359                         atomic_inc(&nr_mmap_events);
5360                 if (event->attr.comm)
5361                         atomic_inc(&nr_comm_events);
5362                 if (event->attr.task)
5363                         atomic_inc(&nr_task_events);
5364                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5365                         err = get_callchain_buffers();
5366                         if (err) {
5367                                 free_event(event);
5368                                 return ERR_PTR(err);
5369                         }
5370                 }
5371         }
5372
5373         return event;
5374 }
5375
5376 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5377                           struct perf_event_attr *attr)
5378 {
5379         u32 size;
5380         int ret;
5381
5382         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5383                 return -EFAULT;
5384
5385         /*
5386          * zero the full structure, so that a short copy will be nice.
5387          */
5388         memset(attr, 0, sizeof(*attr));
5389
5390         ret = get_user(size, &uattr->size);
5391         if (ret)
5392                 return ret;
5393
5394         if (size > PAGE_SIZE)   /* silly large */
5395                 goto err_size;
5396
5397         if (!size)              /* abi compat */
5398                 size = PERF_ATTR_SIZE_VER0;
5399
5400         if (size < PERF_ATTR_SIZE_VER0)
5401                 goto err_size;
5402
5403         /*
5404          * If we're handed a bigger struct than we know of,
5405          * ensure all the unknown bits are 0 - i.e. new
5406          * user-space does not rely on any kernel feature
5407          * extensions we dont know about yet.
5408          */
5409         if (size > sizeof(*attr)) {
5410                 unsigned char __user *addr;
5411                 unsigned char __user *end;
5412                 unsigned char val;
5413
5414                 addr = (void __user *)uattr + sizeof(*attr);
5415                 end  = (void __user *)uattr + size;
5416
5417                 for (; addr < end; addr++) {
5418                         ret = get_user(val, addr);
5419                         if (ret)
5420                                 return ret;
5421                         if (val)
5422                                 goto err_size;
5423                 }
5424                 size = sizeof(*attr);
5425         }
5426
5427         ret = copy_from_user(attr, uattr, size);
5428         if (ret)
5429                 return -EFAULT;
5430
5431         /*
5432          * If the type exists, the corresponding creation will verify
5433          * the attr->config.
5434          */
5435         if (attr->type >= PERF_TYPE_MAX)
5436                 return -EINVAL;
5437
5438         if (attr->__reserved_1)
5439                 return -EINVAL;
5440
5441         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5442                 return -EINVAL;
5443
5444         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5445                 return -EINVAL;
5446
5447 out:
5448         return ret;
5449
5450 err_size:
5451         put_user(sizeof(*attr), &uattr->size);
5452         ret = -E2BIG;
5453         goto out;
5454 }
5455
5456 static int
5457 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5458 {
5459         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5460         int ret = -EINVAL;
5461
5462         if (!output_event)
5463                 goto set;
5464
5465         /* don't allow circular references */
5466         if (event == output_event)
5467                 goto out;
5468
5469         /*
5470          * Don't allow cross-cpu buffers
5471          */
5472         if (output_event->cpu != event->cpu)
5473                 goto out;
5474
5475         /*
5476          * If its not a per-cpu buffer, it must be the same task.
5477          */
5478         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5479                 goto out;
5480
5481 set:
5482         mutex_lock(&event->mmap_mutex);
5483         /* Can't redirect output if we've got an active mmap() */
5484         if (atomic_read(&event->mmap_count))
5485                 goto unlock;
5486
5487         if (output_event) {
5488                 /* get the buffer we want to redirect to */
5489                 buffer = perf_buffer_get(output_event);
5490                 if (!buffer)
5491                         goto unlock;
5492         }
5493
5494         old_buffer = event->buffer;
5495         rcu_assign_pointer(event->buffer, buffer);
5496         ret = 0;
5497 unlock:
5498         mutex_unlock(&event->mmap_mutex);
5499
5500         if (old_buffer)
5501                 perf_buffer_put(old_buffer);
5502 out:
5503         return ret;
5504 }
5505
5506 /**
5507  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5508  *
5509  * @attr_uptr:  event_id type attributes for monitoring/sampling
5510  * @pid:                target pid
5511  * @cpu:                target cpu
5512  * @group_fd:           group leader event fd
5513  */
5514 SYSCALL_DEFINE5(perf_event_open,
5515                 struct perf_event_attr __user *, attr_uptr,
5516                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5517 {
5518         struct perf_event *group_leader = NULL, *output_event = NULL;
5519         struct perf_event *event, *sibling;
5520         struct perf_event_attr attr;
5521         struct perf_event_context *ctx;
5522         struct file *event_file = NULL;
5523         struct file *group_file = NULL;
5524         struct task_struct *task = NULL;
5525         struct pmu *pmu;
5526         int event_fd;
5527         int move_group = 0;
5528         int fput_needed = 0;
5529         int err;
5530
5531         /* for future expandability... */
5532         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5533                 return -EINVAL;
5534
5535         err = perf_copy_attr(attr_uptr, &attr);
5536         if (err)
5537                 return err;
5538
5539         if (!attr.exclude_kernel) {
5540                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5541                         return -EACCES;
5542         }
5543
5544         if (attr.freq) {
5545                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5546                         return -EINVAL;
5547         }
5548
5549         event_fd = get_unused_fd_flags(O_RDWR);
5550         if (event_fd < 0)
5551                 return event_fd;
5552
5553         if (group_fd != -1) {
5554                 group_leader = perf_fget_light(group_fd, &fput_needed);
5555                 if (IS_ERR(group_leader)) {
5556                         err = PTR_ERR(group_leader);
5557                         goto err_fd;
5558                 }
5559                 group_file = group_leader->filp;
5560                 if (flags & PERF_FLAG_FD_OUTPUT)
5561                         output_event = group_leader;
5562                 if (flags & PERF_FLAG_FD_NO_GROUP)
5563                         group_leader = NULL;
5564         }
5565
5566         if (pid != -1) {
5567                 task = find_lively_task_by_vpid(pid);
5568                 if (IS_ERR(task)) {
5569                         err = PTR_ERR(task);
5570                         goto err_group_fd;
5571                 }
5572         }
5573
5574         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5575         if (IS_ERR(event)) {
5576                 err = PTR_ERR(event);
5577                 goto err_task;
5578         }
5579
5580         /*
5581          * Special case software events and allow them to be part of
5582          * any hardware group.
5583          */
5584         pmu = event->pmu;
5585
5586         if (group_leader &&
5587             (is_software_event(event) != is_software_event(group_leader))) {
5588                 if (is_software_event(event)) {
5589                         /*
5590                          * If event and group_leader are not both a software
5591                          * event, and event is, then group leader is not.
5592                          *
5593                          * Allow the addition of software events to !software
5594                          * groups, this is safe because software events never
5595                          * fail to schedule.
5596                          */
5597                         pmu = group_leader->pmu;
5598                 } else if (is_software_event(group_leader) &&
5599                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5600                         /*
5601                          * In case the group is a pure software group, and we
5602                          * try to add a hardware event, move the whole group to
5603                          * the hardware context.
5604                          */
5605                         move_group = 1;
5606                 }
5607         }
5608
5609         /*
5610          * Get the target context (task or percpu):
5611          */
5612         ctx = find_get_context(pmu, task, cpu);
5613         if (IS_ERR(ctx)) {
5614                 err = PTR_ERR(ctx);
5615                 goto err_alloc;
5616         }
5617
5618         /*
5619          * Look up the group leader (we will attach this event to it):
5620          */
5621         if (group_leader) {
5622                 err = -EINVAL;
5623
5624                 /*
5625                  * Do not allow a recursive hierarchy (this new sibling
5626                  * becoming part of another group-sibling):
5627                  */
5628                 if (group_leader->group_leader != group_leader)
5629                         goto err_context;
5630                 /*
5631                  * Do not allow to attach to a group in a different
5632                  * task or CPU context:
5633                  */
5634                 if (move_group) {
5635                         if (group_leader->ctx->type != ctx->type)
5636                                 goto err_context;
5637                 } else {
5638                         if (group_leader->ctx != ctx)
5639                                 goto err_context;
5640                 }
5641
5642                 /*
5643                  * Only a group leader can be exclusive or pinned
5644                  */
5645                 if (attr.exclusive || attr.pinned)
5646                         goto err_context;
5647         }
5648
5649         if (output_event) {
5650                 err = perf_event_set_output(event, output_event);
5651                 if (err)
5652                         goto err_context;
5653         }
5654
5655         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5656         if (IS_ERR(event_file)) {
5657                 err = PTR_ERR(event_file);
5658                 goto err_context;
5659         }
5660
5661         if (move_group) {
5662                 struct perf_event_context *gctx = group_leader->ctx;
5663
5664                 mutex_lock(&gctx->mutex);
5665                 perf_event_remove_from_context(group_leader);
5666                 list_for_each_entry(sibling, &group_leader->sibling_list,
5667                                     group_entry) {
5668                         perf_event_remove_from_context(sibling);
5669                         put_ctx(gctx);
5670                 }
5671                 mutex_unlock(&gctx->mutex);
5672                 put_ctx(gctx);
5673         }
5674
5675         event->filp = event_file;
5676         WARN_ON_ONCE(ctx->parent_ctx);
5677         mutex_lock(&ctx->mutex);
5678
5679         if (move_group) {
5680                 perf_install_in_context(ctx, group_leader, cpu);
5681                 get_ctx(ctx);
5682                 list_for_each_entry(sibling, &group_leader->sibling_list,
5683                                     group_entry) {
5684                         perf_install_in_context(ctx, sibling, cpu);
5685                         get_ctx(ctx);
5686                 }
5687         }
5688
5689         perf_install_in_context(ctx, event, cpu);
5690         ++ctx->generation;
5691         mutex_unlock(&ctx->mutex);
5692
5693         event->owner = current;
5694         get_task_struct(current);
5695         mutex_lock(&current->perf_event_mutex);
5696         list_add_tail(&event->owner_entry, &current->perf_event_list);
5697         mutex_unlock(&current->perf_event_mutex);
5698
5699         /*
5700          * Drop the reference on the group_event after placing the
5701          * new event on the sibling_list. This ensures destruction
5702          * of the group leader will find the pointer to itself in
5703          * perf_group_detach().
5704          */
5705         fput_light(group_file, fput_needed);
5706         fd_install(event_fd, event_file);
5707         return event_fd;
5708
5709 err_context:
5710         put_ctx(ctx);
5711 err_alloc:
5712         free_event(event);
5713 err_task:
5714         if (task)
5715                 put_task_struct(task);
5716 err_group_fd:
5717         fput_light(group_file, fput_needed);
5718 err_fd:
5719         put_unused_fd(event_fd);
5720         return err;
5721 }
5722
5723 /**
5724  * perf_event_create_kernel_counter
5725  *
5726  * @attr: attributes of the counter to create
5727  * @cpu: cpu in which the counter is bound
5728  * @task: task to profile (NULL for percpu)
5729  */
5730 struct perf_event *
5731 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5732                                  struct task_struct *task,
5733                                  perf_overflow_handler_t overflow_handler)
5734 {
5735         struct perf_event_context *ctx;
5736         struct perf_event *event;
5737         int err;
5738
5739         /*
5740          * Get the target context (task or percpu):
5741          */
5742
5743         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5744         if (IS_ERR(event)) {
5745                 err = PTR_ERR(event);
5746                 goto err;
5747         }
5748
5749         ctx = find_get_context(event->pmu, task, cpu);
5750         if (IS_ERR(ctx)) {
5751                 err = PTR_ERR(ctx);
5752                 goto err_free;
5753         }
5754
5755         event->filp = NULL;
5756         WARN_ON_ONCE(ctx->parent_ctx);
5757         mutex_lock(&ctx->mutex);
5758         perf_install_in_context(ctx, event, cpu);
5759         ++ctx->generation;
5760         mutex_unlock(&ctx->mutex);
5761
5762         event->owner = current;
5763         get_task_struct(current);
5764         mutex_lock(&current->perf_event_mutex);
5765         list_add_tail(&event->owner_entry, &current->perf_event_list);
5766         mutex_unlock(&current->perf_event_mutex);
5767
5768         return event;
5769
5770 err_free:
5771         free_event(event);
5772 err:
5773         return ERR_PTR(err);
5774 }
5775 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5776
5777 static void sync_child_event(struct perf_event *child_event,
5778                                struct task_struct *child)
5779 {
5780         struct perf_event *parent_event = child_event->parent;
5781         u64 child_val;
5782
5783         if (child_event->attr.inherit_stat)
5784                 perf_event_read_event(child_event, child);
5785
5786         child_val = perf_event_count(child_event);
5787
5788         /*
5789          * Add back the child's count to the parent's count:
5790          */
5791         atomic64_add(child_val, &parent_event->child_count);
5792         atomic64_add(child_event->total_time_enabled,
5793                      &parent_event->child_total_time_enabled);
5794         atomic64_add(child_event->total_time_running,
5795                      &parent_event->child_total_time_running);
5796
5797         /*
5798          * Remove this event from the parent's list
5799          */
5800         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5801         mutex_lock(&parent_event->child_mutex);
5802         list_del_init(&child_event->child_list);
5803         mutex_unlock(&parent_event->child_mutex);
5804
5805         /*
5806          * Release the parent event, if this was the last
5807          * reference to it.
5808          */
5809         fput(parent_event->filp);
5810 }
5811
5812 static void
5813 __perf_event_exit_task(struct perf_event *child_event,
5814                          struct perf_event_context *child_ctx,
5815                          struct task_struct *child)
5816 {
5817         struct perf_event *parent_event;
5818
5819         perf_event_remove_from_context(child_event);
5820
5821         parent_event = child_event->parent;
5822         /*
5823          * It can happen that parent exits first, and has events
5824          * that are still around due to the child reference. These
5825          * events need to be zapped - but otherwise linger.
5826          */
5827         if (parent_event) {
5828                 sync_child_event(child_event, child);
5829                 free_event(child_event);
5830         }
5831 }
5832
5833 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5834 {
5835         struct perf_event *child_event, *tmp;
5836         struct perf_event_context *child_ctx;
5837         unsigned long flags;
5838
5839         if (likely(!child->perf_event_ctxp[ctxn])) {
5840                 perf_event_task(child, NULL, 0);
5841                 return;
5842         }
5843
5844         local_irq_save(flags);
5845         /*
5846          * We can't reschedule here because interrupts are disabled,
5847          * and either child is current or it is a task that can't be
5848          * scheduled, so we are now safe from rescheduling changing
5849          * our context.
5850          */
5851         child_ctx = child->perf_event_ctxp[ctxn];
5852         __perf_event_task_sched_out(child_ctx);
5853
5854         /*
5855          * Take the context lock here so that if find_get_context is
5856          * reading child->perf_event_ctxp, we wait until it has
5857          * incremented the context's refcount before we do put_ctx below.
5858          */
5859         raw_spin_lock(&child_ctx->lock);
5860         child->perf_event_ctxp[ctxn] = NULL;
5861         /*
5862          * If this context is a clone; unclone it so it can't get
5863          * swapped to another process while we're removing all
5864          * the events from it.
5865          */
5866         unclone_ctx(child_ctx);
5867         update_context_time(child_ctx);
5868         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5869
5870         /*
5871          * Report the task dead after unscheduling the events so that we
5872          * won't get any samples after PERF_RECORD_EXIT. We can however still
5873          * get a few PERF_RECORD_READ events.
5874          */
5875         perf_event_task(child, child_ctx, 0);
5876
5877         /*
5878          * We can recurse on the same lock type through:
5879          *
5880          *   __perf_event_exit_task()
5881          *     sync_child_event()
5882          *       fput(parent_event->filp)
5883          *         perf_release()
5884          *           mutex_lock(&ctx->mutex)
5885          *
5886          * But since its the parent context it won't be the same instance.
5887          */
5888         mutex_lock(&child_ctx->mutex);
5889
5890 again:
5891         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5892                                  group_entry)
5893                 __perf_event_exit_task(child_event, child_ctx, child);
5894
5895         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5896                                  group_entry)
5897                 __perf_event_exit_task(child_event, child_ctx, child);
5898
5899         /*
5900          * If the last event was a group event, it will have appended all
5901          * its siblings to the list, but we obtained 'tmp' before that which
5902          * will still point to the list head terminating the iteration.
5903          */
5904         if (!list_empty(&child_ctx->pinned_groups) ||
5905             !list_empty(&child_ctx->flexible_groups))
5906                 goto again;
5907
5908         mutex_unlock(&child_ctx->mutex);
5909
5910         put_ctx(child_ctx);
5911 }
5912
5913 /*
5914  * When a child task exits, feed back event values to parent events.
5915  */
5916 void perf_event_exit_task(struct task_struct *child)
5917 {
5918         int ctxn;
5919
5920         for_each_task_context_nr(ctxn)
5921                 perf_event_exit_task_context(child, ctxn);
5922 }
5923
5924 static void perf_free_event(struct perf_event *event,
5925                             struct perf_event_context *ctx)
5926 {
5927         struct perf_event *parent = event->parent;
5928
5929         if (WARN_ON_ONCE(!parent))
5930                 return;
5931
5932         mutex_lock(&parent->child_mutex);
5933         list_del_init(&event->child_list);
5934         mutex_unlock(&parent->child_mutex);
5935
5936         fput(parent->filp);
5937
5938         perf_group_detach(event);
5939         list_del_event(event, ctx);
5940         free_event(event);
5941 }
5942
5943 /*
5944  * free an unexposed, unused context as created by inheritance by
5945  * perf_event_init_task below, used by fork() in case of fail.
5946  */
5947 void perf_event_free_task(struct task_struct *task)
5948 {
5949         struct perf_event_context *ctx;
5950         struct perf_event *event, *tmp;
5951         int ctxn;
5952
5953         for_each_task_context_nr(ctxn) {
5954                 ctx = task->perf_event_ctxp[ctxn];
5955                 if (!ctx)
5956                         continue;
5957
5958                 mutex_lock(&ctx->mutex);
5959 again:
5960                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5961                                 group_entry)
5962                         perf_free_event(event, ctx);
5963
5964                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5965                                 group_entry)
5966                         perf_free_event(event, ctx);
5967
5968                 if (!list_empty(&ctx->pinned_groups) ||
5969                                 !list_empty(&ctx->flexible_groups))
5970                         goto again;
5971
5972                 mutex_unlock(&ctx->mutex);
5973
5974                 put_ctx(ctx);
5975         }
5976 }
5977
5978 void perf_event_delayed_put(struct task_struct *task)
5979 {
5980         int ctxn;
5981
5982         for_each_task_context_nr(ctxn)
5983                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5984 }
5985
5986 /*
5987  * inherit a event from parent task to child task:
5988  */
5989 static struct perf_event *
5990 inherit_event(struct perf_event *parent_event,
5991               struct task_struct *parent,
5992               struct perf_event_context *parent_ctx,
5993               struct task_struct *child,
5994               struct perf_event *group_leader,
5995               struct perf_event_context *child_ctx)
5996 {
5997         struct perf_event *child_event;
5998         unsigned long flags;
5999
6000         /*
6001          * Instead of creating recursive hierarchies of events,
6002          * we link inherited events back to the original parent,
6003          * which has a filp for sure, which we use as the reference
6004          * count:
6005          */
6006         if (parent_event->parent)
6007                 parent_event = parent_event->parent;
6008
6009         child_event = perf_event_alloc(&parent_event->attr,
6010                                            parent_event->cpu,
6011                                            child,
6012                                            group_leader, parent_event,
6013                                            NULL);
6014         if (IS_ERR(child_event))
6015                 return child_event;
6016         get_ctx(child_ctx);
6017
6018         /*
6019          * Make the child state follow the state of the parent event,
6020          * not its attr.disabled bit.  We hold the parent's mutex,
6021          * so we won't race with perf_event_{en, dis}able_family.
6022          */
6023         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6024                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6025         else
6026                 child_event->state = PERF_EVENT_STATE_OFF;
6027
6028         if (parent_event->attr.freq) {
6029                 u64 sample_period = parent_event->hw.sample_period;
6030                 struct hw_perf_event *hwc = &child_event->hw;
6031
6032                 hwc->sample_period = sample_period;
6033                 hwc->last_period   = sample_period;
6034
6035                 local64_set(&hwc->period_left, sample_period);
6036         }
6037
6038         child_event->ctx = child_ctx;
6039         child_event->overflow_handler = parent_event->overflow_handler;
6040
6041         /*
6042          * Link it up in the child's context:
6043          */
6044         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6045         add_event_to_ctx(child_event, child_ctx);
6046         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6047
6048         /*
6049          * Get a reference to the parent filp - we will fput it
6050          * when the child event exits. This is safe to do because
6051          * we are in the parent and we know that the filp still
6052          * exists and has a nonzero count:
6053          */
6054         atomic_long_inc(&parent_event->filp->f_count);
6055
6056         /*
6057          * Link this into the parent event's child list
6058          */
6059         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6060         mutex_lock(&parent_event->child_mutex);
6061         list_add_tail(&child_event->child_list, &parent_event->child_list);
6062         mutex_unlock(&parent_event->child_mutex);
6063
6064         return child_event;
6065 }
6066
6067 static int inherit_group(struct perf_event *parent_event,
6068               struct task_struct *parent,
6069               struct perf_event_context *parent_ctx,
6070               struct task_struct *child,
6071               struct perf_event_context *child_ctx)
6072 {
6073         struct perf_event *leader;
6074         struct perf_event *sub;
6075         struct perf_event *child_ctr;
6076
6077         leader = inherit_event(parent_event, parent, parent_ctx,
6078                                  child, NULL, child_ctx);
6079         if (IS_ERR(leader))
6080                 return PTR_ERR(leader);
6081         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6082                 child_ctr = inherit_event(sub, parent, parent_ctx,
6083                                             child, leader, child_ctx);
6084                 if (IS_ERR(child_ctr))
6085                         return PTR_ERR(child_ctr);
6086         }
6087         return 0;
6088 }
6089
6090 static int
6091 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6092                    struct perf_event_context *parent_ctx,
6093                    struct task_struct *child, int ctxn,
6094                    int *inherited_all)
6095 {
6096         int ret;
6097         struct perf_event_context *child_ctx;
6098
6099         if (!event->attr.inherit) {
6100                 *inherited_all = 0;
6101                 return 0;
6102         }
6103
6104         child_ctx = child->perf_event_ctxp[ctxn];
6105         if (!child_ctx) {
6106                 /*
6107                  * This is executed from the parent task context, so
6108                  * inherit events that have been marked for cloning.
6109                  * First allocate and initialize a context for the
6110                  * child.
6111                  */
6112
6113                 child_ctx = alloc_perf_context(event->pmu, child);
6114                 if (!child_ctx)
6115                         return -ENOMEM;
6116
6117                 child->perf_event_ctxp[ctxn] = child_ctx;
6118         }
6119
6120         ret = inherit_group(event, parent, parent_ctx,
6121                             child, child_ctx);
6122
6123         if (ret)
6124                 *inherited_all = 0;
6125
6126         return ret;
6127 }
6128
6129 /*
6130  * Initialize the perf_event context in task_struct
6131  */
6132 int perf_event_init_context(struct task_struct *child, int ctxn)
6133 {
6134         struct perf_event_context *child_ctx, *parent_ctx;
6135         struct perf_event_context *cloned_ctx;
6136         struct perf_event *event;
6137         struct task_struct *parent = current;
6138         int inherited_all = 1;
6139         int ret = 0;
6140
6141         child->perf_event_ctxp[ctxn] = NULL;
6142
6143         mutex_init(&child->perf_event_mutex);
6144         INIT_LIST_HEAD(&child->perf_event_list);
6145
6146         if (likely(!parent->perf_event_ctxp[ctxn]))
6147                 return 0;
6148
6149         /*
6150          * If the parent's context is a clone, pin it so it won't get
6151          * swapped under us.
6152          */
6153         parent_ctx = perf_pin_task_context(parent, ctxn);
6154
6155         /*
6156          * No need to check if parent_ctx != NULL here; since we saw
6157          * it non-NULL earlier, the only reason for it to become NULL
6158          * is if we exit, and since we're currently in the middle of
6159          * a fork we can't be exiting at the same time.
6160          */
6161
6162         /*
6163          * Lock the parent list. No need to lock the child - not PID
6164          * hashed yet and not running, so nobody can access it.
6165          */
6166         mutex_lock(&parent_ctx->mutex);
6167
6168         /*
6169          * We dont have to disable NMIs - we are only looking at
6170          * the list, not manipulating it:
6171          */
6172         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6173                 ret = inherit_task_group(event, parent, parent_ctx,
6174                                          child, ctxn, &inherited_all);
6175                 if (ret)
6176                         break;
6177         }
6178
6179         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6180                 ret = inherit_task_group(event, parent, parent_ctx,
6181                                          child, ctxn, &inherited_all);
6182                 if (ret)
6183                         break;
6184         }
6185
6186         child_ctx = child->perf_event_ctxp[ctxn];
6187
6188         if (child_ctx && inherited_all) {
6189                 /*
6190                  * Mark the child context as a clone of the parent
6191                  * context, or of whatever the parent is a clone of.
6192                  * Note that if the parent is a clone, it could get
6193                  * uncloned at any point, but that doesn't matter
6194                  * because the list of events and the generation
6195                  * count can't have changed since we took the mutex.
6196                  */
6197                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6198                 if (cloned_ctx) {
6199                         child_ctx->parent_ctx = cloned_ctx;
6200                         child_ctx->parent_gen = parent_ctx->parent_gen;
6201                 } else {
6202                         child_ctx->parent_ctx = parent_ctx;
6203                         child_ctx->parent_gen = parent_ctx->generation;
6204                 }
6205                 get_ctx(child_ctx->parent_ctx);
6206         }
6207
6208         mutex_unlock(&parent_ctx->mutex);
6209
6210         perf_unpin_context(parent_ctx);
6211
6212         return ret;
6213 }
6214
6215 /*
6216  * Initialize the perf_event context in task_struct
6217  */
6218 int perf_event_init_task(struct task_struct *child)
6219 {
6220         int ctxn, ret;
6221
6222         for_each_task_context_nr(ctxn) {
6223                 ret = perf_event_init_context(child, ctxn);
6224                 if (ret)
6225                         return ret;
6226         }
6227
6228         return 0;
6229 }
6230
6231 static void __init perf_event_init_all_cpus(void)
6232 {
6233         struct swevent_htable *swhash;
6234         int cpu;
6235
6236         for_each_possible_cpu(cpu) {
6237                 swhash = &per_cpu(swevent_htable, cpu);
6238                 mutex_init(&swhash->hlist_mutex);
6239                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6240         }
6241 }
6242
6243 static void __cpuinit perf_event_init_cpu(int cpu)
6244 {
6245         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6246
6247         mutex_lock(&swhash->hlist_mutex);
6248         if (swhash->hlist_refcount > 0) {
6249                 struct swevent_hlist *hlist;
6250
6251                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6252                 WARN_ON(!hlist);
6253                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6254         }
6255         mutex_unlock(&swhash->hlist_mutex);
6256 }
6257
6258 #ifdef CONFIG_HOTPLUG_CPU
6259 static void perf_pmu_rotate_stop(struct pmu *pmu)
6260 {
6261         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6262
6263         WARN_ON(!irqs_disabled());
6264
6265         list_del_init(&cpuctx->rotation_list);
6266 }
6267
6268 static void __perf_event_exit_context(void *__info)
6269 {
6270         struct perf_event_context *ctx = __info;
6271         struct perf_event *event, *tmp;
6272
6273         perf_pmu_rotate_stop(ctx->pmu);
6274
6275         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6276                 __perf_event_remove_from_context(event);
6277         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6278                 __perf_event_remove_from_context(event);
6279 }
6280
6281 static void perf_event_exit_cpu_context(int cpu)
6282 {
6283         struct perf_event_context *ctx;
6284         struct pmu *pmu;
6285         int idx;
6286
6287         idx = srcu_read_lock(&pmus_srcu);
6288         list_for_each_entry_rcu(pmu, &pmus, entry) {
6289                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6290
6291                 mutex_lock(&ctx->mutex);
6292                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6293                 mutex_unlock(&ctx->mutex);
6294         }
6295         srcu_read_unlock(&pmus_srcu, idx);
6296 }
6297
6298 static void perf_event_exit_cpu(int cpu)
6299 {
6300         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6301
6302         mutex_lock(&swhash->hlist_mutex);
6303         swevent_hlist_release(swhash);
6304         mutex_unlock(&swhash->hlist_mutex);
6305
6306         perf_event_exit_cpu_context(cpu);
6307 }
6308 #else
6309 static inline void perf_event_exit_cpu(int cpu) { }
6310 #endif
6311
6312 static int __cpuinit
6313 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6314 {
6315         unsigned int cpu = (long)hcpu;
6316
6317         switch (action & ~CPU_TASKS_FROZEN) {
6318
6319         case CPU_UP_PREPARE:
6320         case CPU_DOWN_FAILED:
6321                 perf_event_init_cpu(cpu);
6322                 break;
6323
6324         case CPU_UP_CANCELED:
6325         case CPU_DOWN_PREPARE:
6326                 perf_event_exit_cpu(cpu);
6327                 break;
6328
6329         default:
6330                 break;
6331         }
6332
6333         return NOTIFY_OK;
6334 }
6335
6336 void __init perf_event_init(void)
6337 {
6338         perf_event_init_all_cpus();
6339         init_srcu_struct(&pmus_srcu);
6340         perf_pmu_register(&perf_swevent);
6341         perf_pmu_register(&perf_cpu_clock);
6342         perf_pmu_register(&perf_task_clock);
6343         perf_tp_register();
6344         perf_cpu_notifier(perf_cpu_notify);
6345 }