perf: New helper function for pmu name
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 extern __weak const char *perf_pmu_name(void)
89 {
90         return "pmu";
91 }
92
93 static DEFINE_PER_CPU(int, perf_disable_count);
94
95 void perf_disable(void)
96 {
97         if (!__get_cpu_var(perf_disable_count)++)
98                 hw_perf_disable();
99 }
100
101 void perf_enable(void)
102 {
103         if (!--__get_cpu_var(perf_disable_count))
104                 hw_perf_enable();
105 }
106
107 static void get_ctx(struct perf_event_context *ctx)
108 {
109         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
110 }
111
112 static void free_ctx(struct rcu_head *head)
113 {
114         struct perf_event_context *ctx;
115
116         ctx = container_of(head, struct perf_event_context, rcu_head);
117         kfree(ctx);
118 }
119
120 static void put_ctx(struct perf_event_context *ctx)
121 {
122         if (atomic_dec_and_test(&ctx->refcount)) {
123                 if (ctx->parent_ctx)
124                         put_ctx(ctx->parent_ctx);
125                 if (ctx->task)
126                         put_task_struct(ctx->task);
127                 call_rcu(&ctx->rcu_head, free_ctx);
128         }
129 }
130
131 static void unclone_ctx(struct perf_event_context *ctx)
132 {
133         if (ctx->parent_ctx) {
134                 put_ctx(ctx->parent_ctx);
135                 ctx->parent_ctx = NULL;
136         }
137 }
138
139 /*
140  * If we inherit events we want to return the parent event id
141  * to userspace.
142  */
143 static u64 primary_event_id(struct perf_event *event)
144 {
145         u64 id = event->id;
146
147         if (event->parent)
148                 id = event->parent->id;
149
150         return id;
151 }
152
153 /*
154  * Get the perf_event_context for a task and lock it.
155  * This has to cope with with the fact that until it is locked,
156  * the context could get moved to another task.
157  */
158 static struct perf_event_context *
159 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
160 {
161         struct perf_event_context *ctx;
162
163         rcu_read_lock();
164  retry:
165         ctx = rcu_dereference(task->perf_event_ctxp);
166         if (ctx) {
167                 /*
168                  * If this context is a clone of another, it might
169                  * get swapped for another underneath us by
170                  * perf_event_task_sched_out, though the
171                  * rcu_read_lock() protects us from any context
172                  * getting freed.  Lock the context and check if it
173                  * got swapped before we could get the lock, and retry
174                  * if so.  If we locked the right context, then it
175                  * can't get swapped on us any more.
176                  */
177                 raw_spin_lock_irqsave(&ctx->lock, *flags);
178                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         goto retry;
181                 }
182
183                 if (!atomic_inc_not_zero(&ctx->refcount)) {
184                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
185                         ctx = NULL;
186                 }
187         }
188         rcu_read_unlock();
189         return ctx;
190 }
191
192 /*
193  * Get the context for a task and increment its pin_count so it
194  * can't get swapped to another task.  This also increments its
195  * reference count so that the context can't get freed.
196  */
197 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
198 {
199         struct perf_event_context *ctx;
200         unsigned long flags;
201
202         ctx = perf_lock_task_context(task, &flags);
203         if (ctx) {
204                 ++ctx->pin_count;
205                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
206         }
207         return ctx;
208 }
209
210 static void perf_unpin_context(struct perf_event_context *ctx)
211 {
212         unsigned long flags;
213
214         raw_spin_lock_irqsave(&ctx->lock, flags);
215         --ctx->pin_count;
216         raw_spin_unlock_irqrestore(&ctx->lock, flags);
217         put_ctx(ctx);
218 }
219
220 static inline u64 perf_clock(void)
221 {
222         return local_clock();
223 }
224
225 /*
226  * Update the record of the current time in a context.
227  */
228 static void update_context_time(struct perf_event_context *ctx)
229 {
230         u64 now = perf_clock();
231
232         ctx->time += now - ctx->timestamp;
233         ctx->timestamp = now;
234 }
235
236 /*
237  * Update the total_time_enabled and total_time_running fields for a event.
238  */
239 static void update_event_times(struct perf_event *event)
240 {
241         struct perf_event_context *ctx = event->ctx;
242         u64 run_end;
243
244         if (event->state < PERF_EVENT_STATE_INACTIVE ||
245             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
246                 return;
247
248         if (ctx->is_active)
249                 run_end = ctx->time;
250         else
251                 run_end = event->tstamp_stopped;
252
253         event->total_time_enabled = run_end - event->tstamp_enabled;
254
255         if (event->state == PERF_EVENT_STATE_INACTIVE)
256                 run_end = event->tstamp_stopped;
257         else
258                 run_end = ctx->time;
259
260         event->total_time_running = run_end - event->tstamp_running;
261 }
262
263 /*
264  * Update total_time_enabled and total_time_running for all events in a group.
265  */
266 static void update_group_times(struct perf_event *leader)
267 {
268         struct perf_event *event;
269
270         update_event_times(leader);
271         list_for_each_entry(event, &leader->sibling_list, group_entry)
272                 update_event_times(event);
273 }
274
275 static struct list_head *
276 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
277 {
278         if (event->attr.pinned)
279                 return &ctx->pinned_groups;
280         else
281                 return &ctx->flexible_groups;
282 }
283
284 /*
285  * Add a event from the lists for its context.
286  * Must be called with ctx->mutex and ctx->lock held.
287  */
288 static void
289 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
290 {
291         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
292         event->attach_state |= PERF_ATTACH_CONTEXT;
293
294         /*
295          * If we're a stand alone event or group leader, we go to the context
296          * list, group events are kept attached to the group so that
297          * perf_group_detach can, at all times, locate all siblings.
298          */
299         if (event->group_leader == event) {
300                 struct list_head *list;
301
302                 if (is_software_event(event))
303                         event->group_flags |= PERF_GROUP_SOFTWARE;
304
305                 list = ctx_group_list(event, ctx);
306                 list_add_tail(&event->group_entry, list);
307         }
308
309         list_add_rcu(&event->event_entry, &ctx->event_list);
310         ctx->nr_events++;
311         if (event->attr.inherit_stat)
312                 ctx->nr_stat++;
313 }
314
315 static void perf_group_attach(struct perf_event *event)
316 {
317         struct perf_event *group_leader = event->group_leader;
318
319         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
320         event->attach_state |= PERF_ATTACH_GROUP;
321
322         if (group_leader == event)
323                 return;
324
325         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
326                         !is_software_event(event))
327                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
328
329         list_add_tail(&event->group_entry, &group_leader->sibling_list);
330         group_leader->nr_siblings++;
331 }
332
333 /*
334  * Remove a event from the lists for its context.
335  * Must be called with ctx->mutex and ctx->lock held.
336  */
337 static void
338 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
339 {
340         /*
341          * We can have double detach due to exit/hot-unplug + close.
342          */
343         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
344                 return;
345
346         event->attach_state &= ~PERF_ATTACH_CONTEXT;
347
348         ctx->nr_events--;
349         if (event->attr.inherit_stat)
350                 ctx->nr_stat--;
351
352         list_del_rcu(&event->event_entry);
353
354         if (event->group_leader == event)
355                 list_del_init(&event->group_entry);
356
357         update_group_times(event);
358
359         /*
360          * If event was in error state, then keep it
361          * that way, otherwise bogus counts will be
362          * returned on read(). The only way to get out
363          * of error state is by explicit re-enabling
364          * of the event
365          */
366         if (event->state > PERF_EVENT_STATE_OFF)
367                 event->state = PERF_EVENT_STATE_OFF;
368 }
369
370 static void perf_group_detach(struct perf_event *event)
371 {
372         struct perf_event *sibling, *tmp;
373         struct list_head *list = NULL;
374
375         /*
376          * We can have double detach due to exit/hot-unplug + close.
377          */
378         if (!(event->attach_state & PERF_ATTACH_GROUP))
379                 return;
380
381         event->attach_state &= ~PERF_ATTACH_GROUP;
382
383         /*
384          * If this is a sibling, remove it from its group.
385          */
386         if (event->group_leader != event) {
387                 list_del_init(&event->group_entry);
388                 event->group_leader->nr_siblings--;
389                 return;
390         }
391
392         if (!list_empty(&event->group_entry))
393                 list = &event->group_entry;
394
395         /*
396          * If this was a group event with sibling events then
397          * upgrade the siblings to singleton events by adding them
398          * to whatever list we are on.
399          */
400         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
401                 if (list)
402                         list_move_tail(&sibling->group_entry, list);
403                 sibling->group_leader = sibling;
404
405                 /* Inherit group flags from the previous leader */
406                 sibling->group_flags = event->group_flags;
407         }
408 }
409
410 static void
411 event_sched_out(struct perf_event *event,
412                   struct perf_cpu_context *cpuctx,
413                   struct perf_event_context *ctx)
414 {
415         if (event->state != PERF_EVENT_STATE_ACTIVE)
416                 return;
417
418         event->state = PERF_EVENT_STATE_INACTIVE;
419         if (event->pending_disable) {
420                 event->pending_disable = 0;
421                 event->state = PERF_EVENT_STATE_OFF;
422         }
423         event->tstamp_stopped = ctx->time;
424         event->pmu->disable(event);
425         event->oncpu = -1;
426
427         if (!is_software_event(event))
428                 cpuctx->active_oncpu--;
429         ctx->nr_active--;
430         if (event->attr.exclusive || !cpuctx->active_oncpu)
431                 cpuctx->exclusive = 0;
432 }
433
434 static void
435 group_sched_out(struct perf_event *group_event,
436                 struct perf_cpu_context *cpuctx,
437                 struct perf_event_context *ctx)
438 {
439         struct perf_event *event;
440
441         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
442                 return;
443
444         event_sched_out(group_event, cpuctx, ctx);
445
446         /*
447          * Schedule out siblings (if any):
448          */
449         list_for_each_entry(event, &group_event->sibling_list, group_entry)
450                 event_sched_out(event, cpuctx, ctx);
451
452         if (group_event->attr.exclusive)
453                 cpuctx->exclusive = 0;
454 }
455
456 /*
457  * Cross CPU call to remove a performance event
458  *
459  * We disable the event on the hardware level first. After that we
460  * remove it from the context list.
461  */
462 static void __perf_event_remove_from_context(void *info)
463 {
464         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
465         struct perf_event *event = info;
466         struct perf_event_context *ctx = event->ctx;
467
468         /*
469          * If this is a task context, we need to check whether it is
470          * the current task context of this cpu. If not it has been
471          * scheduled out before the smp call arrived.
472          */
473         if (ctx->task && cpuctx->task_ctx != ctx)
474                 return;
475
476         raw_spin_lock(&ctx->lock);
477         /*
478          * Protect the list operation against NMI by disabling the
479          * events on a global level.
480          */
481         perf_disable();
482
483         event_sched_out(event, cpuctx, ctx);
484
485         list_del_event(event, ctx);
486
487         if (!ctx->task) {
488                 /*
489                  * Allow more per task events with respect to the
490                  * reservation:
491                  */
492                 cpuctx->max_pertask =
493                         min(perf_max_events - ctx->nr_events,
494                             perf_max_events - perf_reserved_percpu);
495         }
496
497         perf_enable();
498         raw_spin_unlock(&ctx->lock);
499 }
500
501
502 /*
503  * Remove the event from a task's (or a CPU's) list of events.
504  *
505  * Must be called with ctx->mutex held.
506  *
507  * CPU events are removed with a smp call. For task events we only
508  * call when the task is on a CPU.
509  *
510  * If event->ctx is a cloned context, callers must make sure that
511  * every task struct that event->ctx->task could possibly point to
512  * remains valid.  This is OK when called from perf_release since
513  * that only calls us on the top-level context, which can't be a clone.
514  * When called from perf_event_exit_task, it's OK because the
515  * context has been detached from its task.
516  */
517 static void perf_event_remove_from_context(struct perf_event *event)
518 {
519         struct perf_event_context *ctx = event->ctx;
520         struct task_struct *task = ctx->task;
521
522         if (!task) {
523                 /*
524                  * Per cpu events are removed via an smp call and
525                  * the removal is always successful.
526                  */
527                 smp_call_function_single(event->cpu,
528                                          __perf_event_remove_from_context,
529                                          event, 1);
530                 return;
531         }
532
533 retry:
534         task_oncpu_function_call(task, __perf_event_remove_from_context,
535                                  event);
536
537         raw_spin_lock_irq(&ctx->lock);
538         /*
539          * If the context is active we need to retry the smp call.
540          */
541         if (ctx->nr_active && !list_empty(&event->group_entry)) {
542                 raw_spin_unlock_irq(&ctx->lock);
543                 goto retry;
544         }
545
546         /*
547          * The lock prevents that this context is scheduled in so we
548          * can remove the event safely, if the call above did not
549          * succeed.
550          */
551         if (!list_empty(&event->group_entry))
552                 list_del_event(event, ctx);
553         raw_spin_unlock_irq(&ctx->lock);
554 }
555
556 /*
557  * Cross CPU call to disable a performance event
558  */
559 static void __perf_event_disable(void *info)
560 {
561         struct perf_event *event = info;
562         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
563         struct perf_event_context *ctx = event->ctx;
564
565         /*
566          * If this is a per-task event, need to check whether this
567          * event's task is the current task on this cpu.
568          */
569         if (ctx->task && cpuctx->task_ctx != ctx)
570                 return;
571
572         raw_spin_lock(&ctx->lock);
573
574         /*
575          * If the event is on, turn it off.
576          * If it is in error state, leave it in error state.
577          */
578         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
579                 update_context_time(ctx);
580                 update_group_times(event);
581                 if (event == event->group_leader)
582                         group_sched_out(event, cpuctx, ctx);
583                 else
584                         event_sched_out(event, cpuctx, ctx);
585                 event->state = PERF_EVENT_STATE_OFF;
586         }
587
588         raw_spin_unlock(&ctx->lock);
589 }
590
591 /*
592  * Disable a event.
593  *
594  * If event->ctx is a cloned context, callers must make sure that
595  * every task struct that event->ctx->task could possibly point to
596  * remains valid.  This condition is satisifed when called through
597  * perf_event_for_each_child or perf_event_for_each because they
598  * hold the top-level event's child_mutex, so any descendant that
599  * goes to exit will block in sync_child_event.
600  * When called from perf_pending_event it's OK because event->ctx
601  * is the current context on this CPU and preemption is disabled,
602  * hence we can't get into perf_event_task_sched_out for this context.
603  */
604 void perf_event_disable(struct perf_event *event)
605 {
606         struct perf_event_context *ctx = event->ctx;
607         struct task_struct *task = ctx->task;
608
609         if (!task) {
610                 /*
611                  * Disable the event on the cpu that it's on
612                  */
613                 smp_call_function_single(event->cpu, __perf_event_disable,
614                                          event, 1);
615                 return;
616         }
617
618  retry:
619         task_oncpu_function_call(task, __perf_event_disable, event);
620
621         raw_spin_lock_irq(&ctx->lock);
622         /*
623          * If the event is still active, we need to retry the cross-call.
624          */
625         if (event->state == PERF_EVENT_STATE_ACTIVE) {
626                 raw_spin_unlock_irq(&ctx->lock);
627                 goto retry;
628         }
629
630         /*
631          * Since we have the lock this context can't be scheduled
632          * in, so we can change the state safely.
633          */
634         if (event->state == PERF_EVENT_STATE_INACTIVE) {
635                 update_group_times(event);
636                 event->state = PERF_EVENT_STATE_OFF;
637         }
638
639         raw_spin_unlock_irq(&ctx->lock);
640 }
641
642 static int
643 event_sched_in(struct perf_event *event,
644                  struct perf_cpu_context *cpuctx,
645                  struct perf_event_context *ctx)
646 {
647         if (event->state <= PERF_EVENT_STATE_OFF)
648                 return 0;
649
650         event->state = PERF_EVENT_STATE_ACTIVE;
651         event->oncpu = smp_processor_id();
652         /*
653          * The new state must be visible before we turn it on in the hardware:
654          */
655         smp_wmb();
656
657         if (event->pmu->enable(event)) {
658                 event->state = PERF_EVENT_STATE_INACTIVE;
659                 event->oncpu = -1;
660                 return -EAGAIN;
661         }
662
663         event->tstamp_running += ctx->time - event->tstamp_stopped;
664
665         if (!is_software_event(event))
666                 cpuctx->active_oncpu++;
667         ctx->nr_active++;
668
669         if (event->attr.exclusive)
670                 cpuctx->exclusive = 1;
671
672         return 0;
673 }
674
675 static int
676 group_sched_in(struct perf_event *group_event,
677                struct perf_cpu_context *cpuctx,
678                struct perf_event_context *ctx)
679 {
680         struct perf_event *event, *partial_group = NULL;
681         const struct pmu *pmu = group_event->pmu;
682         bool txn = false;
683
684         if (group_event->state == PERF_EVENT_STATE_OFF)
685                 return 0;
686
687         /* Check if group transaction availabe */
688         if (pmu->start_txn)
689                 txn = true;
690
691         if (txn)
692                 pmu->start_txn(pmu);
693
694         if (event_sched_in(group_event, cpuctx, ctx)) {
695                 if (txn)
696                         pmu->cancel_txn(pmu);
697                 return -EAGAIN;
698         }
699
700         /*
701          * Schedule in siblings as one group (if any):
702          */
703         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
704                 if (event_sched_in(event, cpuctx, ctx)) {
705                         partial_group = event;
706                         goto group_error;
707                 }
708         }
709
710         if (!txn || !pmu->commit_txn(pmu))
711                 return 0;
712
713 group_error:
714         /*
715          * Groups can be scheduled in as one unit only, so undo any
716          * partial group before returning:
717          */
718         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
719                 if (event == partial_group)
720                         break;
721                 event_sched_out(event, cpuctx, ctx);
722         }
723         event_sched_out(group_event, cpuctx, ctx);
724
725         if (txn)
726                 pmu->cancel_txn(pmu);
727
728         return -EAGAIN;
729 }
730
731 /*
732  * Work out whether we can put this event group on the CPU now.
733  */
734 static int group_can_go_on(struct perf_event *event,
735                            struct perf_cpu_context *cpuctx,
736                            int can_add_hw)
737 {
738         /*
739          * Groups consisting entirely of software events can always go on.
740          */
741         if (event->group_flags & PERF_GROUP_SOFTWARE)
742                 return 1;
743         /*
744          * If an exclusive group is already on, no other hardware
745          * events can go on.
746          */
747         if (cpuctx->exclusive)
748                 return 0;
749         /*
750          * If this group is exclusive and there are already
751          * events on the CPU, it can't go on.
752          */
753         if (event->attr.exclusive && cpuctx->active_oncpu)
754                 return 0;
755         /*
756          * Otherwise, try to add it if all previous groups were able
757          * to go on.
758          */
759         return can_add_hw;
760 }
761
762 static void add_event_to_ctx(struct perf_event *event,
763                                struct perf_event_context *ctx)
764 {
765         list_add_event(event, ctx);
766         perf_group_attach(event);
767         event->tstamp_enabled = ctx->time;
768         event->tstamp_running = ctx->time;
769         event->tstamp_stopped = ctx->time;
770 }
771
772 /*
773  * Cross CPU call to install and enable a performance event
774  *
775  * Must be called with ctx->mutex held
776  */
777 static void __perf_install_in_context(void *info)
778 {
779         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
780         struct perf_event *event = info;
781         struct perf_event_context *ctx = event->ctx;
782         struct perf_event *leader = event->group_leader;
783         int err;
784
785         /*
786          * If this is a task context, we need to check whether it is
787          * the current task context of this cpu. If not it has been
788          * scheduled out before the smp call arrived.
789          * Or possibly this is the right context but it isn't
790          * on this cpu because it had no events.
791          */
792         if (ctx->task && cpuctx->task_ctx != ctx) {
793                 if (cpuctx->task_ctx || ctx->task != current)
794                         return;
795                 cpuctx->task_ctx = ctx;
796         }
797
798         raw_spin_lock(&ctx->lock);
799         ctx->is_active = 1;
800         update_context_time(ctx);
801
802         /*
803          * Protect the list operation against NMI by disabling the
804          * events on a global level. NOP for non NMI based events.
805          */
806         perf_disable();
807
808         add_event_to_ctx(event, ctx);
809
810         if (event->cpu != -1 && event->cpu != smp_processor_id())
811                 goto unlock;
812
813         /*
814          * Don't put the event on if it is disabled or if
815          * it is in a group and the group isn't on.
816          */
817         if (event->state != PERF_EVENT_STATE_INACTIVE ||
818             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
819                 goto unlock;
820
821         /*
822          * An exclusive event can't go on if there are already active
823          * hardware events, and no hardware event can go on if there
824          * is already an exclusive event on.
825          */
826         if (!group_can_go_on(event, cpuctx, 1))
827                 err = -EEXIST;
828         else
829                 err = event_sched_in(event, cpuctx, ctx);
830
831         if (err) {
832                 /*
833                  * This event couldn't go on.  If it is in a group
834                  * then we have to pull the whole group off.
835                  * If the event group is pinned then put it in error state.
836                  */
837                 if (leader != event)
838                         group_sched_out(leader, cpuctx, ctx);
839                 if (leader->attr.pinned) {
840                         update_group_times(leader);
841                         leader->state = PERF_EVENT_STATE_ERROR;
842                 }
843         }
844
845         if (!err && !ctx->task && cpuctx->max_pertask)
846                 cpuctx->max_pertask--;
847
848  unlock:
849         perf_enable();
850
851         raw_spin_unlock(&ctx->lock);
852 }
853
854 /*
855  * Attach a performance event to a context
856  *
857  * First we add the event to the list with the hardware enable bit
858  * in event->hw_config cleared.
859  *
860  * If the event is attached to a task which is on a CPU we use a smp
861  * call to enable it in the task context. The task might have been
862  * scheduled away, but we check this in the smp call again.
863  *
864  * Must be called with ctx->mutex held.
865  */
866 static void
867 perf_install_in_context(struct perf_event_context *ctx,
868                         struct perf_event *event,
869                         int cpu)
870 {
871         struct task_struct *task = ctx->task;
872
873         if (!task) {
874                 /*
875                  * Per cpu events are installed via an smp call and
876                  * the install is always successful.
877                  */
878                 smp_call_function_single(cpu, __perf_install_in_context,
879                                          event, 1);
880                 return;
881         }
882
883 retry:
884         task_oncpu_function_call(task, __perf_install_in_context,
885                                  event);
886
887         raw_spin_lock_irq(&ctx->lock);
888         /*
889          * we need to retry the smp call.
890          */
891         if (ctx->is_active && list_empty(&event->group_entry)) {
892                 raw_spin_unlock_irq(&ctx->lock);
893                 goto retry;
894         }
895
896         /*
897          * The lock prevents that this context is scheduled in so we
898          * can add the event safely, if it the call above did not
899          * succeed.
900          */
901         if (list_empty(&event->group_entry))
902                 add_event_to_ctx(event, ctx);
903         raw_spin_unlock_irq(&ctx->lock);
904 }
905
906 /*
907  * Put a event into inactive state and update time fields.
908  * Enabling the leader of a group effectively enables all
909  * the group members that aren't explicitly disabled, so we
910  * have to update their ->tstamp_enabled also.
911  * Note: this works for group members as well as group leaders
912  * since the non-leader members' sibling_lists will be empty.
913  */
914 static void __perf_event_mark_enabled(struct perf_event *event,
915                                         struct perf_event_context *ctx)
916 {
917         struct perf_event *sub;
918
919         event->state = PERF_EVENT_STATE_INACTIVE;
920         event->tstamp_enabled = ctx->time - event->total_time_enabled;
921         list_for_each_entry(sub, &event->sibling_list, group_entry)
922                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
923                         sub->tstamp_enabled =
924                                 ctx->time - sub->total_time_enabled;
925 }
926
927 /*
928  * Cross CPU call to enable a performance event
929  */
930 static void __perf_event_enable(void *info)
931 {
932         struct perf_event *event = info;
933         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
934         struct perf_event_context *ctx = event->ctx;
935         struct perf_event *leader = event->group_leader;
936         int err;
937
938         /*
939          * If this is a per-task event, need to check whether this
940          * event's task is the current task on this cpu.
941          */
942         if (ctx->task && cpuctx->task_ctx != ctx) {
943                 if (cpuctx->task_ctx || ctx->task != current)
944                         return;
945                 cpuctx->task_ctx = ctx;
946         }
947
948         raw_spin_lock(&ctx->lock);
949         ctx->is_active = 1;
950         update_context_time(ctx);
951
952         if (event->state >= PERF_EVENT_STATE_INACTIVE)
953                 goto unlock;
954         __perf_event_mark_enabled(event, ctx);
955
956         if (event->cpu != -1 && event->cpu != smp_processor_id())
957                 goto unlock;
958
959         /*
960          * If the event is in a group and isn't the group leader,
961          * then don't put it on unless the group is on.
962          */
963         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
964                 goto unlock;
965
966         if (!group_can_go_on(event, cpuctx, 1)) {
967                 err = -EEXIST;
968         } else {
969                 perf_disable();
970                 if (event == leader)
971                         err = group_sched_in(event, cpuctx, ctx);
972                 else
973                         err = event_sched_in(event, cpuctx, ctx);
974                 perf_enable();
975         }
976
977         if (err) {
978                 /*
979                  * If this event can't go on and it's part of a
980                  * group, then the whole group has to come off.
981                  */
982                 if (leader != event)
983                         group_sched_out(leader, cpuctx, ctx);
984                 if (leader->attr.pinned) {
985                         update_group_times(leader);
986                         leader->state = PERF_EVENT_STATE_ERROR;
987                 }
988         }
989
990  unlock:
991         raw_spin_unlock(&ctx->lock);
992 }
993
994 /*
995  * Enable a event.
996  *
997  * If event->ctx is a cloned context, callers must make sure that
998  * every task struct that event->ctx->task could possibly point to
999  * remains valid.  This condition is satisfied when called through
1000  * perf_event_for_each_child or perf_event_for_each as described
1001  * for perf_event_disable.
1002  */
1003 void perf_event_enable(struct perf_event *event)
1004 {
1005         struct perf_event_context *ctx = event->ctx;
1006         struct task_struct *task = ctx->task;
1007
1008         if (!task) {
1009                 /*
1010                  * Enable the event on the cpu that it's on
1011                  */
1012                 smp_call_function_single(event->cpu, __perf_event_enable,
1013                                          event, 1);
1014                 return;
1015         }
1016
1017         raw_spin_lock_irq(&ctx->lock);
1018         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1019                 goto out;
1020
1021         /*
1022          * If the event is in error state, clear that first.
1023          * That way, if we see the event in error state below, we
1024          * know that it has gone back into error state, as distinct
1025          * from the task having been scheduled away before the
1026          * cross-call arrived.
1027          */
1028         if (event->state == PERF_EVENT_STATE_ERROR)
1029                 event->state = PERF_EVENT_STATE_OFF;
1030
1031  retry:
1032         raw_spin_unlock_irq(&ctx->lock);
1033         task_oncpu_function_call(task, __perf_event_enable, event);
1034
1035         raw_spin_lock_irq(&ctx->lock);
1036
1037         /*
1038          * If the context is active and the event is still off,
1039          * we need to retry the cross-call.
1040          */
1041         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1042                 goto retry;
1043
1044         /*
1045          * Since we have the lock this context can't be scheduled
1046          * in, so we can change the state safely.
1047          */
1048         if (event->state == PERF_EVENT_STATE_OFF)
1049                 __perf_event_mark_enabled(event, ctx);
1050
1051  out:
1052         raw_spin_unlock_irq(&ctx->lock);
1053 }
1054
1055 static int perf_event_refresh(struct perf_event *event, int refresh)
1056 {
1057         /*
1058          * not supported on inherited events
1059          */
1060         if (event->attr.inherit)
1061                 return -EINVAL;
1062
1063         atomic_add(refresh, &event->event_limit);
1064         perf_event_enable(event);
1065
1066         return 0;
1067 }
1068
1069 enum event_type_t {
1070         EVENT_FLEXIBLE = 0x1,
1071         EVENT_PINNED = 0x2,
1072         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1073 };
1074
1075 static void ctx_sched_out(struct perf_event_context *ctx,
1076                           struct perf_cpu_context *cpuctx,
1077                           enum event_type_t event_type)
1078 {
1079         struct perf_event *event;
1080
1081         raw_spin_lock(&ctx->lock);
1082         ctx->is_active = 0;
1083         if (likely(!ctx->nr_events))
1084                 goto out;
1085         update_context_time(ctx);
1086
1087         perf_disable();
1088         if (!ctx->nr_active)
1089                 goto out_enable;
1090
1091         if (event_type & EVENT_PINNED)
1092                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1093                         group_sched_out(event, cpuctx, ctx);
1094
1095         if (event_type & EVENT_FLEXIBLE)
1096                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1097                         group_sched_out(event, cpuctx, ctx);
1098
1099  out_enable:
1100         perf_enable();
1101  out:
1102         raw_spin_unlock(&ctx->lock);
1103 }
1104
1105 /*
1106  * Test whether two contexts are equivalent, i.e. whether they
1107  * have both been cloned from the same version of the same context
1108  * and they both have the same number of enabled events.
1109  * If the number of enabled events is the same, then the set
1110  * of enabled events should be the same, because these are both
1111  * inherited contexts, therefore we can't access individual events
1112  * in them directly with an fd; we can only enable/disable all
1113  * events via prctl, or enable/disable all events in a family
1114  * via ioctl, which will have the same effect on both contexts.
1115  */
1116 static int context_equiv(struct perf_event_context *ctx1,
1117                          struct perf_event_context *ctx2)
1118 {
1119         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1120                 && ctx1->parent_gen == ctx2->parent_gen
1121                 && !ctx1->pin_count && !ctx2->pin_count;
1122 }
1123
1124 static void __perf_event_sync_stat(struct perf_event *event,
1125                                      struct perf_event *next_event)
1126 {
1127         u64 value;
1128
1129         if (!event->attr.inherit_stat)
1130                 return;
1131
1132         /*
1133          * Update the event value, we cannot use perf_event_read()
1134          * because we're in the middle of a context switch and have IRQs
1135          * disabled, which upsets smp_call_function_single(), however
1136          * we know the event must be on the current CPU, therefore we
1137          * don't need to use it.
1138          */
1139         switch (event->state) {
1140         case PERF_EVENT_STATE_ACTIVE:
1141                 event->pmu->read(event);
1142                 /* fall-through */
1143
1144         case PERF_EVENT_STATE_INACTIVE:
1145                 update_event_times(event);
1146                 break;
1147
1148         default:
1149                 break;
1150         }
1151
1152         /*
1153          * In order to keep per-task stats reliable we need to flip the event
1154          * values when we flip the contexts.
1155          */
1156         value = local64_read(&next_event->count);
1157         value = local64_xchg(&event->count, value);
1158         local64_set(&next_event->count, value);
1159
1160         swap(event->total_time_enabled, next_event->total_time_enabled);
1161         swap(event->total_time_running, next_event->total_time_running);
1162
1163         /*
1164          * Since we swizzled the values, update the user visible data too.
1165          */
1166         perf_event_update_userpage(event);
1167         perf_event_update_userpage(next_event);
1168 }
1169
1170 #define list_next_entry(pos, member) \
1171         list_entry(pos->member.next, typeof(*pos), member)
1172
1173 static void perf_event_sync_stat(struct perf_event_context *ctx,
1174                                    struct perf_event_context *next_ctx)
1175 {
1176         struct perf_event *event, *next_event;
1177
1178         if (!ctx->nr_stat)
1179                 return;
1180
1181         update_context_time(ctx);
1182
1183         event = list_first_entry(&ctx->event_list,
1184                                    struct perf_event, event_entry);
1185
1186         next_event = list_first_entry(&next_ctx->event_list,
1187                                         struct perf_event, event_entry);
1188
1189         while (&event->event_entry != &ctx->event_list &&
1190                &next_event->event_entry != &next_ctx->event_list) {
1191
1192                 __perf_event_sync_stat(event, next_event);
1193
1194                 event = list_next_entry(event, event_entry);
1195                 next_event = list_next_entry(next_event, event_entry);
1196         }
1197 }
1198
1199 /*
1200  * Called from scheduler to remove the events of the current task,
1201  * with interrupts disabled.
1202  *
1203  * We stop each event and update the event value in event->count.
1204  *
1205  * This does not protect us against NMI, but disable()
1206  * sets the disabled bit in the control field of event _before_
1207  * accessing the event control register. If a NMI hits, then it will
1208  * not restart the event.
1209  */
1210 void perf_event_task_sched_out(struct task_struct *task,
1211                                  struct task_struct *next)
1212 {
1213         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1214         struct perf_event_context *ctx = task->perf_event_ctxp;
1215         struct perf_event_context *next_ctx;
1216         struct perf_event_context *parent;
1217         int do_switch = 1;
1218
1219         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1220
1221         if (likely(!ctx || !cpuctx->task_ctx))
1222                 return;
1223
1224         rcu_read_lock();
1225         parent = rcu_dereference(ctx->parent_ctx);
1226         next_ctx = next->perf_event_ctxp;
1227         if (parent && next_ctx &&
1228             rcu_dereference(next_ctx->parent_ctx) == parent) {
1229                 /*
1230                  * Looks like the two contexts are clones, so we might be
1231                  * able to optimize the context switch.  We lock both
1232                  * contexts and check that they are clones under the
1233                  * lock (including re-checking that neither has been
1234                  * uncloned in the meantime).  It doesn't matter which
1235                  * order we take the locks because no other cpu could
1236                  * be trying to lock both of these tasks.
1237                  */
1238                 raw_spin_lock(&ctx->lock);
1239                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1240                 if (context_equiv(ctx, next_ctx)) {
1241                         /*
1242                          * XXX do we need a memory barrier of sorts
1243                          * wrt to rcu_dereference() of perf_event_ctxp
1244                          */
1245                         task->perf_event_ctxp = next_ctx;
1246                         next->perf_event_ctxp = ctx;
1247                         ctx->task = next;
1248                         next_ctx->task = task;
1249                         do_switch = 0;
1250
1251                         perf_event_sync_stat(ctx, next_ctx);
1252                 }
1253                 raw_spin_unlock(&next_ctx->lock);
1254                 raw_spin_unlock(&ctx->lock);
1255         }
1256         rcu_read_unlock();
1257
1258         if (do_switch) {
1259                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1260                 cpuctx->task_ctx = NULL;
1261         }
1262 }
1263
1264 static void task_ctx_sched_out(struct perf_event_context *ctx,
1265                                enum event_type_t event_type)
1266 {
1267         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1268
1269         if (!cpuctx->task_ctx)
1270                 return;
1271
1272         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1273                 return;
1274
1275         ctx_sched_out(ctx, cpuctx, event_type);
1276         cpuctx->task_ctx = NULL;
1277 }
1278
1279 /*
1280  * Called with IRQs disabled
1281  */
1282 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1283 {
1284         task_ctx_sched_out(ctx, EVENT_ALL);
1285 }
1286
1287 /*
1288  * Called with IRQs disabled
1289  */
1290 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1291                               enum event_type_t event_type)
1292 {
1293         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1294 }
1295
1296 static void
1297 ctx_pinned_sched_in(struct perf_event_context *ctx,
1298                     struct perf_cpu_context *cpuctx)
1299 {
1300         struct perf_event *event;
1301
1302         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1303                 if (event->state <= PERF_EVENT_STATE_OFF)
1304                         continue;
1305                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1306                         continue;
1307
1308                 if (group_can_go_on(event, cpuctx, 1))
1309                         group_sched_in(event, cpuctx, ctx);
1310
1311                 /*
1312                  * If this pinned group hasn't been scheduled,
1313                  * put it in error state.
1314                  */
1315                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1316                         update_group_times(event);
1317                         event->state = PERF_EVENT_STATE_ERROR;
1318                 }
1319         }
1320 }
1321
1322 static void
1323 ctx_flexible_sched_in(struct perf_event_context *ctx,
1324                       struct perf_cpu_context *cpuctx)
1325 {
1326         struct perf_event *event;
1327         int can_add_hw = 1;
1328
1329         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1330                 /* Ignore events in OFF or ERROR state */
1331                 if (event->state <= PERF_EVENT_STATE_OFF)
1332                         continue;
1333                 /*
1334                  * Listen to the 'cpu' scheduling filter constraint
1335                  * of events:
1336                  */
1337                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1338                         continue;
1339
1340                 if (group_can_go_on(event, cpuctx, can_add_hw))
1341                         if (group_sched_in(event, cpuctx, ctx))
1342                                 can_add_hw = 0;
1343         }
1344 }
1345
1346 static void
1347 ctx_sched_in(struct perf_event_context *ctx,
1348              struct perf_cpu_context *cpuctx,
1349              enum event_type_t event_type)
1350 {
1351         raw_spin_lock(&ctx->lock);
1352         ctx->is_active = 1;
1353         if (likely(!ctx->nr_events))
1354                 goto out;
1355
1356         ctx->timestamp = perf_clock();
1357
1358         perf_disable();
1359
1360         /*
1361          * First go through the list and put on any pinned groups
1362          * in order to give them the best chance of going on.
1363          */
1364         if (event_type & EVENT_PINNED)
1365                 ctx_pinned_sched_in(ctx, cpuctx);
1366
1367         /* Then walk through the lower prio flexible groups */
1368         if (event_type & EVENT_FLEXIBLE)
1369                 ctx_flexible_sched_in(ctx, cpuctx);
1370
1371         perf_enable();
1372  out:
1373         raw_spin_unlock(&ctx->lock);
1374 }
1375
1376 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1377                              enum event_type_t event_type)
1378 {
1379         struct perf_event_context *ctx = &cpuctx->ctx;
1380
1381         ctx_sched_in(ctx, cpuctx, event_type);
1382 }
1383
1384 static void task_ctx_sched_in(struct task_struct *task,
1385                               enum event_type_t event_type)
1386 {
1387         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1388         struct perf_event_context *ctx = task->perf_event_ctxp;
1389
1390         if (likely(!ctx))
1391                 return;
1392         if (cpuctx->task_ctx == ctx)
1393                 return;
1394         ctx_sched_in(ctx, cpuctx, event_type);
1395         cpuctx->task_ctx = ctx;
1396 }
1397 /*
1398  * Called from scheduler to add the events of the current task
1399  * with interrupts disabled.
1400  *
1401  * We restore the event value and then enable it.
1402  *
1403  * This does not protect us against NMI, but enable()
1404  * sets the enabled bit in the control field of event _before_
1405  * accessing the event control register. If a NMI hits, then it will
1406  * keep the event running.
1407  */
1408 void perf_event_task_sched_in(struct task_struct *task)
1409 {
1410         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1411         struct perf_event_context *ctx = task->perf_event_ctxp;
1412
1413         if (likely(!ctx))
1414                 return;
1415
1416         if (cpuctx->task_ctx == ctx)
1417                 return;
1418
1419         perf_disable();
1420
1421         /*
1422          * We want to keep the following priority order:
1423          * cpu pinned (that don't need to move), task pinned,
1424          * cpu flexible, task flexible.
1425          */
1426         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1427
1428         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1429         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1430         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1431
1432         cpuctx->task_ctx = ctx;
1433
1434         perf_enable();
1435 }
1436
1437 #define MAX_INTERRUPTS (~0ULL)
1438
1439 static void perf_log_throttle(struct perf_event *event, int enable);
1440
1441 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1442 {
1443         u64 frequency = event->attr.sample_freq;
1444         u64 sec = NSEC_PER_SEC;
1445         u64 divisor, dividend;
1446
1447         int count_fls, nsec_fls, frequency_fls, sec_fls;
1448
1449         count_fls = fls64(count);
1450         nsec_fls = fls64(nsec);
1451         frequency_fls = fls64(frequency);
1452         sec_fls = 30;
1453
1454         /*
1455          * We got @count in @nsec, with a target of sample_freq HZ
1456          * the target period becomes:
1457          *
1458          *             @count * 10^9
1459          * period = -------------------
1460          *          @nsec * sample_freq
1461          *
1462          */
1463
1464         /*
1465          * Reduce accuracy by one bit such that @a and @b converge
1466          * to a similar magnitude.
1467          */
1468 #define REDUCE_FLS(a, b)                \
1469 do {                                    \
1470         if (a##_fls > b##_fls) {        \
1471                 a >>= 1;                \
1472                 a##_fls--;              \
1473         } else {                        \
1474                 b >>= 1;                \
1475                 b##_fls--;              \
1476         }                               \
1477 } while (0)
1478
1479         /*
1480          * Reduce accuracy until either term fits in a u64, then proceed with
1481          * the other, so that finally we can do a u64/u64 division.
1482          */
1483         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1484                 REDUCE_FLS(nsec, frequency);
1485                 REDUCE_FLS(sec, count);
1486         }
1487
1488         if (count_fls + sec_fls > 64) {
1489                 divisor = nsec * frequency;
1490
1491                 while (count_fls + sec_fls > 64) {
1492                         REDUCE_FLS(count, sec);
1493                         divisor >>= 1;
1494                 }
1495
1496                 dividend = count * sec;
1497         } else {
1498                 dividend = count * sec;
1499
1500                 while (nsec_fls + frequency_fls > 64) {
1501                         REDUCE_FLS(nsec, frequency);
1502                         dividend >>= 1;
1503                 }
1504
1505                 divisor = nsec * frequency;
1506         }
1507
1508         if (!divisor)
1509                 return dividend;
1510
1511         return div64_u64(dividend, divisor);
1512 }
1513
1514 static void perf_event_stop(struct perf_event *event)
1515 {
1516         if (!event->pmu->stop)
1517                 return event->pmu->disable(event);
1518
1519         return event->pmu->stop(event);
1520 }
1521
1522 static int perf_event_start(struct perf_event *event)
1523 {
1524         if (!event->pmu->start)
1525                 return event->pmu->enable(event);
1526
1527         return event->pmu->start(event);
1528 }
1529
1530 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1531 {
1532         struct hw_perf_event *hwc = &event->hw;
1533         s64 period, sample_period;
1534         s64 delta;
1535
1536         period = perf_calculate_period(event, nsec, count);
1537
1538         delta = (s64)(period - hwc->sample_period);
1539         delta = (delta + 7) / 8; /* low pass filter */
1540
1541         sample_period = hwc->sample_period + delta;
1542
1543         if (!sample_period)
1544                 sample_period = 1;
1545
1546         hwc->sample_period = sample_period;
1547
1548         if (local64_read(&hwc->period_left) > 8*sample_period) {
1549                 perf_disable();
1550                 perf_event_stop(event);
1551                 local64_set(&hwc->period_left, 0);
1552                 perf_event_start(event);
1553                 perf_enable();
1554         }
1555 }
1556
1557 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1558 {
1559         struct perf_event *event;
1560         struct hw_perf_event *hwc;
1561         u64 interrupts, now;
1562         s64 delta;
1563
1564         raw_spin_lock(&ctx->lock);
1565         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1566                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1567                         continue;
1568
1569                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1570                         continue;
1571
1572                 hwc = &event->hw;
1573
1574                 interrupts = hwc->interrupts;
1575                 hwc->interrupts = 0;
1576
1577                 /*
1578                  * unthrottle events on the tick
1579                  */
1580                 if (interrupts == MAX_INTERRUPTS) {
1581                         perf_log_throttle(event, 1);
1582                         perf_disable();
1583                         event->pmu->unthrottle(event);
1584                         perf_enable();
1585                 }
1586
1587                 if (!event->attr.freq || !event->attr.sample_freq)
1588                         continue;
1589
1590                 perf_disable();
1591                 event->pmu->read(event);
1592                 now = local64_read(&event->count);
1593                 delta = now - hwc->freq_count_stamp;
1594                 hwc->freq_count_stamp = now;
1595
1596                 if (delta > 0)
1597                         perf_adjust_period(event, TICK_NSEC, delta);
1598                 perf_enable();
1599         }
1600         raw_spin_unlock(&ctx->lock);
1601 }
1602
1603 /*
1604  * Round-robin a context's events:
1605  */
1606 static void rotate_ctx(struct perf_event_context *ctx)
1607 {
1608         raw_spin_lock(&ctx->lock);
1609
1610         /* Rotate the first entry last of non-pinned groups */
1611         list_rotate_left(&ctx->flexible_groups);
1612
1613         raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 void perf_event_task_tick(struct task_struct *curr)
1617 {
1618         struct perf_cpu_context *cpuctx;
1619         struct perf_event_context *ctx;
1620         int rotate = 0;
1621
1622         if (!atomic_read(&nr_events))
1623                 return;
1624
1625         cpuctx = &__get_cpu_var(perf_cpu_context);
1626         if (cpuctx->ctx.nr_events &&
1627             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1628                 rotate = 1;
1629
1630         ctx = curr->perf_event_ctxp;
1631         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1632                 rotate = 1;
1633
1634         perf_ctx_adjust_freq(&cpuctx->ctx);
1635         if (ctx)
1636                 perf_ctx_adjust_freq(ctx);
1637
1638         if (!rotate)
1639                 return;
1640
1641         perf_disable();
1642         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1643         if (ctx)
1644                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1645
1646         rotate_ctx(&cpuctx->ctx);
1647         if (ctx)
1648                 rotate_ctx(ctx);
1649
1650         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1651         if (ctx)
1652                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1653         perf_enable();
1654 }
1655
1656 static int event_enable_on_exec(struct perf_event *event,
1657                                 struct perf_event_context *ctx)
1658 {
1659         if (!event->attr.enable_on_exec)
1660                 return 0;
1661
1662         event->attr.enable_on_exec = 0;
1663         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1664                 return 0;
1665
1666         __perf_event_mark_enabled(event, ctx);
1667
1668         return 1;
1669 }
1670
1671 /*
1672  * Enable all of a task's events that have been marked enable-on-exec.
1673  * This expects task == current.
1674  */
1675 static void perf_event_enable_on_exec(struct task_struct *task)
1676 {
1677         struct perf_event_context *ctx;
1678         struct perf_event *event;
1679         unsigned long flags;
1680         int enabled = 0;
1681         int ret;
1682
1683         local_irq_save(flags);
1684         ctx = task->perf_event_ctxp;
1685         if (!ctx || !ctx->nr_events)
1686                 goto out;
1687
1688         __perf_event_task_sched_out(ctx);
1689
1690         raw_spin_lock(&ctx->lock);
1691
1692         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1693                 ret = event_enable_on_exec(event, ctx);
1694                 if (ret)
1695                         enabled = 1;
1696         }
1697
1698         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1699                 ret = event_enable_on_exec(event, ctx);
1700                 if (ret)
1701                         enabled = 1;
1702         }
1703
1704         /*
1705          * Unclone this context if we enabled any event.
1706          */
1707         if (enabled)
1708                 unclone_ctx(ctx);
1709
1710         raw_spin_unlock(&ctx->lock);
1711
1712         perf_event_task_sched_in(task);
1713  out:
1714         local_irq_restore(flags);
1715 }
1716
1717 /*
1718  * Cross CPU call to read the hardware event
1719  */
1720 static void __perf_event_read(void *info)
1721 {
1722         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1723         struct perf_event *event = info;
1724         struct perf_event_context *ctx = event->ctx;
1725
1726         /*
1727          * If this is a task context, we need to check whether it is
1728          * the current task context of this cpu.  If not it has been
1729          * scheduled out before the smp call arrived.  In that case
1730          * event->count would have been updated to a recent sample
1731          * when the event was scheduled out.
1732          */
1733         if (ctx->task && cpuctx->task_ctx != ctx)
1734                 return;
1735
1736         raw_spin_lock(&ctx->lock);
1737         update_context_time(ctx);
1738         update_event_times(event);
1739         raw_spin_unlock(&ctx->lock);
1740
1741         event->pmu->read(event);
1742 }
1743
1744 static inline u64 perf_event_count(struct perf_event *event)
1745 {
1746         return local64_read(&event->count) + atomic64_read(&event->child_count);
1747 }
1748
1749 static u64 perf_event_read(struct perf_event *event)
1750 {
1751         /*
1752          * If event is enabled and currently active on a CPU, update the
1753          * value in the event structure:
1754          */
1755         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1756                 smp_call_function_single(event->oncpu,
1757                                          __perf_event_read, event, 1);
1758         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1759                 struct perf_event_context *ctx = event->ctx;
1760                 unsigned long flags;
1761
1762                 raw_spin_lock_irqsave(&ctx->lock, flags);
1763                 update_context_time(ctx);
1764                 update_event_times(event);
1765                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1766         }
1767
1768         return perf_event_count(event);
1769 }
1770
1771 /*
1772  * Initialize the perf_event context in a task_struct:
1773  */
1774 static void
1775 __perf_event_init_context(struct perf_event_context *ctx,
1776                             struct task_struct *task)
1777 {
1778         raw_spin_lock_init(&ctx->lock);
1779         mutex_init(&ctx->mutex);
1780         INIT_LIST_HEAD(&ctx->pinned_groups);
1781         INIT_LIST_HEAD(&ctx->flexible_groups);
1782         INIT_LIST_HEAD(&ctx->event_list);
1783         atomic_set(&ctx->refcount, 1);
1784         ctx->task = task;
1785 }
1786
1787 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1788 {
1789         struct perf_event_context *ctx;
1790         struct perf_cpu_context *cpuctx;
1791         struct task_struct *task;
1792         unsigned long flags;
1793         int err;
1794
1795         if (pid == -1 && cpu != -1) {
1796                 /* Must be root to operate on a CPU event: */
1797                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1798                         return ERR_PTR(-EACCES);
1799
1800                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1801                         return ERR_PTR(-EINVAL);
1802
1803                 /*
1804                  * We could be clever and allow to attach a event to an
1805                  * offline CPU and activate it when the CPU comes up, but
1806                  * that's for later.
1807                  */
1808                 if (!cpu_online(cpu))
1809                         return ERR_PTR(-ENODEV);
1810
1811                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1812                 ctx = &cpuctx->ctx;
1813                 get_ctx(ctx);
1814
1815                 return ctx;
1816         }
1817
1818         rcu_read_lock();
1819         if (!pid)
1820                 task = current;
1821         else
1822                 task = find_task_by_vpid(pid);
1823         if (task)
1824                 get_task_struct(task);
1825         rcu_read_unlock();
1826
1827         if (!task)
1828                 return ERR_PTR(-ESRCH);
1829
1830         /*
1831          * Can't attach events to a dying task.
1832          */
1833         err = -ESRCH;
1834         if (task->flags & PF_EXITING)
1835                 goto errout;
1836
1837         /* Reuse ptrace permission checks for now. */
1838         err = -EACCES;
1839         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1840                 goto errout;
1841
1842  retry:
1843         ctx = perf_lock_task_context(task, &flags);
1844         if (ctx) {
1845                 unclone_ctx(ctx);
1846                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1847         }
1848
1849         if (!ctx) {
1850                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1851                 err = -ENOMEM;
1852                 if (!ctx)
1853                         goto errout;
1854                 __perf_event_init_context(ctx, task);
1855                 get_ctx(ctx);
1856                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1857                         /*
1858                          * We raced with some other task; use
1859                          * the context they set.
1860                          */
1861                         kfree(ctx);
1862                         goto retry;
1863                 }
1864                 get_task_struct(task);
1865         }
1866
1867         put_task_struct(task);
1868         return ctx;
1869
1870  errout:
1871         put_task_struct(task);
1872         return ERR_PTR(err);
1873 }
1874
1875 static void perf_event_free_filter(struct perf_event *event);
1876
1877 static void free_event_rcu(struct rcu_head *head)
1878 {
1879         struct perf_event *event;
1880
1881         event = container_of(head, struct perf_event, rcu_head);
1882         if (event->ns)
1883                 put_pid_ns(event->ns);
1884         perf_event_free_filter(event);
1885         kfree(event);
1886 }
1887
1888 static void perf_pending_sync(struct perf_event *event);
1889 static void perf_buffer_put(struct perf_buffer *buffer);
1890
1891 static void free_event(struct perf_event *event)
1892 {
1893         perf_pending_sync(event);
1894
1895         if (!event->parent) {
1896                 atomic_dec(&nr_events);
1897                 if (event->attr.mmap || event->attr.mmap_data)
1898                         atomic_dec(&nr_mmap_events);
1899                 if (event->attr.comm)
1900                         atomic_dec(&nr_comm_events);
1901                 if (event->attr.task)
1902                         atomic_dec(&nr_task_events);
1903         }
1904
1905         if (event->buffer) {
1906                 perf_buffer_put(event->buffer);
1907                 event->buffer = NULL;
1908         }
1909
1910         if (event->destroy)
1911                 event->destroy(event);
1912
1913         put_ctx(event->ctx);
1914         call_rcu(&event->rcu_head, free_event_rcu);
1915 }
1916
1917 int perf_event_release_kernel(struct perf_event *event)
1918 {
1919         struct perf_event_context *ctx = event->ctx;
1920
1921         /*
1922          * Remove from the PMU, can't get re-enabled since we got
1923          * here because the last ref went.
1924          */
1925         perf_event_disable(event);
1926
1927         WARN_ON_ONCE(ctx->parent_ctx);
1928         /*
1929          * There are two ways this annotation is useful:
1930          *
1931          *  1) there is a lock recursion from perf_event_exit_task
1932          *     see the comment there.
1933          *
1934          *  2) there is a lock-inversion with mmap_sem through
1935          *     perf_event_read_group(), which takes faults while
1936          *     holding ctx->mutex, however this is called after
1937          *     the last filedesc died, so there is no possibility
1938          *     to trigger the AB-BA case.
1939          */
1940         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1941         raw_spin_lock_irq(&ctx->lock);
1942         perf_group_detach(event);
1943         list_del_event(event, ctx);
1944         raw_spin_unlock_irq(&ctx->lock);
1945         mutex_unlock(&ctx->mutex);
1946
1947         mutex_lock(&event->owner->perf_event_mutex);
1948         list_del_init(&event->owner_entry);
1949         mutex_unlock(&event->owner->perf_event_mutex);
1950         put_task_struct(event->owner);
1951
1952         free_event(event);
1953
1954         return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1957
1958 /*
1959  * Called when the last reference to the file is gone.
1960  */
1961 static int perf_release(struct inode *inode, struct file *file)
1962 {
1963         struct perf_event *event = file->private_data;
1964
1965         file->private_data = NULL;
1966
1967         return perf_event_release_kernel(event);
1968 }
1969
1970 static int perf_event_read_size(struct perf_event *event)
1971 {
1972         int entry = sizeof(u64); /* value */
1973         int size = 0;
1974         int nr = 1;
1975
1976         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1977                 size += sizeof(u64);
1978
1979         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1980                 size += sizeof(u64);
1981
1982         if (event->attr.read_format & PERF_FORMAT_ID)
1983                 entry += sizeof(u64);
1984
1985         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1986                 nr += event->group_leader->nr_siblings;
1987                 size += sizeof(u64);
1988         }
1989
1990         size += entry * nr;
1991
1992         return size;
1993 }
1994
1995 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1996 {
1997         struct perf_event *child;
1998         u64 total = 0;
1999
2000         *enabled = 0;
2001         *running = 0;
2002
2003         mutex_lock(&event->child_mutex);
2004         total += perf_event_read(event);
2005         *enabled += event->total_time_enabled +
2006                         atomic64_read(&event->child_total_time_enabled);
2007         *running += event->total_time_running +
2008                         atomic64_read(&event->child_total_time_running);
2009
2010         list_for_each_entry(child, &event->child_list, child_list) {
2011                 total += perf_event_read(child);
2012                 *enabled += child->total_time_enabled;
2013                 *running += child->total_time_running;
2014         }
2015         mutex_unlock(&event->child_mutex);
2016
2017         return total;
2018 }
2019 EXPORT_SYMBOL_GPL(perf_event_read_value);
2020
2021 static int perf_event_read_group(struct perf_event *event,
2022                                    u64 read_format, char __user *buf)
2023 {
2024         struct perf_event *leader = event->group_leader, *sub;
2025         int n = 0, size = 0, ret = -EFAULT;
2026         struct perf_event_context *ctx = leader->ctx;
2027         u64 values[5];
2028         u64 count, enabled, running;
2029
2030         mutex_lock(&ctx->mutex);
2031         count = perf_event_read_value(leader, &enabled, &running);
2032
2033         values[n++] = 1 + leader->nr_siblings;
2034         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2035                 values[n++] = enabled;
2036         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2037                 values[n++] = running;
2038         values[n++] = count;
2039         if (read_format & PERF_FORMAT_ID)
2040                 values[n++] = primary_event_id(leader);
2041
2042         size = n * sizeof(u64);
2043
2044         if (copy_to_user(buf, values, size))
2045                 goto unlock;
2046
2047         ret = size;
2048
2049         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2050                 n = 0;
2051
2052                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2053                 if (read_format & PERF_FORMAT_ID)
2054                         values[n++] = primary_event_id(sub);
2055
2056                 size = n * sizeof(u64);
2057
2058                 if (copy_to_user(buf + ret, values, size)) {
2059                         ret = -EFAULT;
2060                         goto unlock;
2061                 }
2062
2063                 ret += size;
2064         }
2065 unlock:
2066         mutex_unlock(&ctx->mutex);
2067
2068         return ret;
2069 }
2070
2071 static int perf_event_read_one(struct perf_event *event,
2072                                  u64 read_format, char __user *buf)
2073 {
2074         u64 enabled, running;
2075         u64 values[4];
2076         int n = 0;
2077
2078         values[n++] = perf_event_read_value(event, &enabled, &running);
2079         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2080                 values[n++] = enabled;
2081         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2082                 values[n++] = running;
2083         if (read_format & PERF_FORMAT_ID)
2084                 values[n++] = primary_event_id(event);
2085
2086         if (copy_to_user(buf, values, n * sizeof(u64)))
2087                 return -EFAULT;
2088
2089         return n * sizeof(u64);
2090 }
2091
2092 /*
2093  * Read the performance event - simple non blocking version for now
2094  */
2095 static ssize_t
2096 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2097 {
2098         u64 read_format = event->attr.read_format;
2099         int ret;
2100
2101         /*
2102          * Return end-of-file for a read on a event that is in
2103          * error state (i.e. because it was pinned but it couldn't be
2104          * scheduled on to the CPU at some point).
2105          */
2106         if (event->state == PERF_EVENT_STATE_ERROR)
2107                 return 0;
2108
2109         if (count < perf_event_read_size(event))
2110                 return -ENOSPC;
2111
2112         WARN_ON_ONCE(event->ctx->parent_ctx);
2113         if (read_format & PERF_FORMAT_GROUP)
2114                 ret = perf_event_read_group(event, read_format, buf);
2115         else
2116                 ret = perf_event_read_one(event, read_format, buf);
2117
2118         return ret;
2119 }
2120
2121 static ssize_t
2122 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2123 {
2124         struct perf_event *event = file->private_data;
2125
2126         return perf_read_hw(event, buf, count);
2127 }
2128
2129 static unsigned int perf_poll(struct file *file, poll_table *wait)
2130 {
2131         struct perf_event *event = file->private_data;
2132         struct perf_buffer *buffer;
2133         unsigned int events = POLL_HUP;
2134
2135         rcu_read_lock();
2136         buffer = rcu_dereference(event->buffer);
2137         if (buffer)
2138                 events = atomic_xchg(&buffer->poll, 0);
2139         rcu_read_unlock();
2140
2141         poll_wait(file, &event->waitq, wait);
2142
2143         return events;
2144 }
2145
2146 static void perf_event_reset(struct perf_event *event)
2147 {
2148         (void)perf_event_read(event);
2149         local64_set(&event->count, 0);
2150         perf_event_update_userpage(event);
2151 }
2152
2153 /*
2154  * Holding the top-level event's child_mutex means that any
2155  * descendant process that has inherited this event will block
2156  * in sync_child_event if it goes to exit, thus satisfying the
2157  * task existence requirements of perf_event_enable/disable.
2158  */
2159 static void perf_event_for_each_child(struct perf_event *event,
2160                                         void (*func)(struct perf_event *))
2161 {
2162         struct perf_event *child;
2163
2164         WARN_ON_ONCE(event->ctx->parent_ctx);
2165         mutex_lock(&event->child_mutex);
2166         func(event);
2167         list_for_each_entry(child, &event->child_list, child_list)
2168                 func(child);
2169         mutex_unlock(&event->child_mutex);
2170 }
2171
2172 static void perf_event_for_each(struct perf_event *event,
2173                                   void (*func)(struct perf_event *))
2174 {
2175         struct perf_event_context *ctx = event->ctx;
2176         struct perf_event *sibling;
2177
2178         WARN_ON_ONCE(ctx->parent_ctx);
2179         mutex_lock(&ctx->mutex);
2180         event = event->group_leader;
2181
2182         perf_event_for_each_child(event, func);
2183         func(event);
2184         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2185                 perf_event_for_each_child(event, func);
2186         mutex_unlock(&ctx->mutex);
2187 }
2188
2189 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2190 {
2191         struct perf_event_context *ctx = event->ctx;
2192         unsigned long size;
2193         int ret = 0;
2194         u64 value;
2195
2196         if (!event->attr.sample_period)
2197                 return -EINVAL;
2198
2199         size = copy_from_user(&value, arg, sizeof(value));
2200         if (size != sizeof(value))
2201                 return -EFAULT;
2202
2203         if (!value)
2204                 return -EINVAL;
2205
2206         raw_spin_lock_irq(&ctx->lock);
2207         if (event->attr.freq) {
2208                 if (value > sysctl_perf_event_sample_rate) {
2209                         ret = -EINVAL;
2210                         goto unlock;
2211                 }
2212
2213                 event->attr.sample_freq = value;
2214         } else {
2215                 event->attr.sample_period = value;
2216                 event->hw.sample_period = value;
2217         }
2218 unlock:
2219         raw_spin_unlock_irq(&ctx->lock);
2220
2221         return ret;
2222 }
2223
2224 static const struct file_operations perf_fops;
2225
2226 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2227 {
2228         struct file *file;
2229
2230         file = fget_light(fd, fput_needed);
2231         if (!file)
2232                 return ERR_PTR(-EBADF);
2233
2234         if (file->f_op != &perf_fops) {
2235                 fput_light(file, *fput_needed);
2236                 *fput_needed = 0;
2237                 return ERR_PTR(-EBADF);
2238         }
2239
2240         return file->private_data;
2241 }
2242
2243 static int perf_event_set_output(struct perf_event *event,
2244                                  struct perf_event *output_event);
2245 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2246
2247 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2248 {
2249         struct perf_event *event = file->private_data;
2250         void (*func)(struct perf_event *);
2251         u32 flags = arg;
2252
2253         switch (cmd) {
2254         case PERF_EVENT_IOC_ENABLE:
2255                 func = perf_event_enable;
2256                 break;
2257         case PERF_EVENT_IOC_DISABLE:
2258                 func = perf_event_disable;
2259                 break;
2260         case PERF_EVENT_IOC_RESET:
2261                 func = perf_event_reset;
2262                 break;
2263
2264         case PERF_EVENT_IOC_REFRESH:
2265                 return perf_event_refresh(event, arg);
2266
2267         case PERF_EVENT_IOC_PERIOD:
2268                 return perf_event_period(event, (u64 __user *)arg);
2269
2270         case PERF_EVENT_IOC_SET_OUTPUT:
2271         {
2272                 struct perf_event *output_event = NULL;
2273                 int fput_needed = 0;
2274                 int ret;
2275
2276                 if (arg != -1) {
2277                         output_event = perf_fget_light(arg, &fput_needed);
2278                         if (IS_ERR(output_event))
2279                                 return PTR_ERR(output_event);
2280                 }
2281
2282                 ret = perf_event_set_output(event, output_event);
2283                 if (output_event)
2284                         fput_light(output_event->filp, fput_needed);
2285
2286                 return ret;
2287         }
2288
2289         case PERF_EVENT_IOC_SET_FILTER:
2290                 return perf_event_set_filter(event, (void __user *)arg);
2291
2292         default:
2293                 return -ENOTTY;
2294         }
2295
2296         if (flags & PERF_IOC_FLAG_GROUP)
2297                 perf_event_for_each(event, func);
2298         else
2299                 perf_event_for_each_child(event, func);
2300
2301         return 0;
2302 }
2303
2304 int perf_event_task_enable(void)
2305 {
2306         struct perf_event *event;
2307
2308         mutex_lock(&current->perf_event_mutex);
2309         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2310                 perf_event_for_each_child(event, perf_event_enable);
2311         mutex_unlock(&current->perf_event_mutex);
2312
2313         return 0;
2314 }
2315
2316 int perf_event_task_disable(void)
2317 {
2318         struct perf_event *event;
2319
2320         mutex_lock(&current->perf_event_mutex);
2321         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2322                 perf_event_for_each_child(event, perf_event_disable);
2323         mutex_unlock(&current->perf_event_mutex);
2324
2325         return 0;
2326 }
2327
2328 #ifndef PERF_EVENT_INDEX_OFFSET
2329 # define PERF_EVENT_INDEX_OFFSET 0
2330 #endif
2331
2332 static int perf_event_index(struct perf_event *event)
2333 {
2334         if (event->state != PERF_EVENT_STATE_ACTIVE)
2335                 return 0;
2336
2337         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2338 }
2339
2340 /*
2341  * Callers need to ensure there can be no nesting of this function, otherwise
2342  * the seqlock logic goes bad. We can not serialize this because the arch
2343  * code calls this from NMI context.
2344  */
2345 void perf_event_update_userpage(struct perf_event *event)
2346 {
2347         struct perf_event_mmap_page *userpg;
2348         struct perf_buffer *buffer;
2349
2350         rcu_read_lock();
2351         buffer = rcu_dereference(event->buffer);
2352         if (!buffer)
2353                 goto unlock;
2354
2355         userpg = buffer->user_page;
2356
2357         /*
2358          * Disable preemption so as to not let the corresponding user-space
2359          * spin too long if we get preempted.
2360          */
2361         preempt_disable();
2362         ++userpg->lock;
2363         barrier();
2364         userpg->index = perf_event_index(event);
2365         userpg->offset = perf_event_count(event);
2366         if (event->state == PERF_EVENT_STATE_ACTIVE)
2367                 userpg->offset -= local64_read(&event->hw.prev_count);
2368
2369         userpg->time_enabled = event->total_time_enabled +
2370                         atomic64_read(&event->child_total_time_enabled);
2371
2372         userpg->time_running = event->total_time_running +
2373                         atomic64_read(&event->child_total_time_running);
2374
2375         barrier();
2376         ++userpg->lock;
2377         preempt_enable();
2378 unlock:
2379         rcu_read_unlock();
2380 }
2381
2382 static unsigned long perf_data_size(struct perf_buffer *buffer);
2383
2384 static void
2385 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2386 {
2387         long max_size = perf_data_size(buffer);
2388
2389         if (watermark)
2390                 buffer->watermark = min(max_size, watermark);
2391
2392         if (!buffer->watermark)
2393                 buffer->watermark = max_size / 2;
2394
2395         if (flags & PERF_BUFFER_WRITABLE)
2396                 buffer->writable = 1;
2397
2398         atomic_set(&buffer->refcount, 1);
2399 }
2400
2401 #ifndef CONFIG_PERF_USE_VMALLOC
2402
2403 /*
2404  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2405  */
2406
2407 static struct page *
2408 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2409 {
2410         if (pgoff > buffer->nr_pages)
2411                 return NULL;
2412
2413         if (pgoff == 0)
2414                 return virt_to_page(buffer->user_page);
2415
2416         return virt_to_page(buffer->data_pages[pgoff - 1]);
2417 }
2418
2419 static void *perf_mmap_alloc_page(int cpu)
2420 {
2421         struct page *page;
2422         int node;
2423
2424         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2425         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2426         if (!page)
2427                 return NULL;
2428
2429         return page_address(page);
2430 }
2431
2432 static struct perf_buffer *
2433 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2434 {
2435         struct perf_buffer *buffer;
2436         unsigned long size;
2437         int i;
2438
2439         size = sizeof(struct perf_buffer);
2440         size += nr_pages * sizeof(void *);
2441
2442         buffer = kzalloc(size, GFP_KERNEL);
2443         if (!buffer)
2444                 goto fail;
2445
2446         buffer->user_page = perf_mmap_alloc_page(cpu);
2447         if (!buffer->user_page)
2448                 goto fail_user_page;
2449
2450         for (i = 0; i < nr_pages; i++) {
2451                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2452                 if (!buffer->data_pages[i])
2453                         goto fail_data_pages;
2454         }
2455
2456         buffer->nr_pages = nr_pages;
2457
2458         perf_buffer_init(buffer, watermark, flags);
2459
2460         return buffer;
2461
2462 fail_data_pages:
2463         for (i--; i >= 0; i--)
2464                 free_page((unsigned long)buffer->data_pages[i]);
2465
2466         free_page((unsigned long)buffer->user_page);
2467
2468 fail_user_page:
2469         kfree(buffer);
2470
2471 fail:
2472         return NULL;
2473 }
2474
2475 static void perf_mmap_free_page(unsigned long addr)
2476 {
2477         struct page *page = virt_to_page((void *)addr);
2478
2479         page->mapping = NULL;
2480         __free_page(page);
2481 }
2482
2483 static void perf_buffer_free(struct perf_buffer *buffer)
2484 {
2485         int i;
2486
2487         perf_mmap_free_page((unsigned long)buffer->user_page);
2488         for (i = 0; i < buffer->nr_pages; i++)
2489                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2490         kfree(buffer);
2491 }
2492
2493 static inline int page_order(struct perf_buffer *buffer)
2494 {
2495         return 0;
2496 }
2497
2498 #else
2499
2500 /*
2501  * Back perf_mmap() with vmalloc memory.
2502  *
2503  * Required for architectures that have d-cache aliasing issues.
2504  */
2505
2506 static inline int page_order(struct perf_buffer *buffer)
2507 {
2508         return buffer->page_order;
2509 }
2510
2511 static struct page *
2512 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2513 {
2514         if (pgoff > (1UL << page_order(buffer)))
2515                 return NULL;
2516
2517         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2518 }
2519
2520 static void perf_mmap_unmark_page(void *addr)
2521 {
2522         struct page *page = vmalloc_to_page(addr);
2523
2524         page->mapping = NULL;
2525 }
2526
2527 static void perf_buffer_free_work(struct work_struct *work)
2528 {
2529         struct perf_buffer *buffer;
2530         void *base;
2531         int i, nr;
2532
2533         buffer = container_of(work, struct perf_buffer, work);
2534         nr = 1 << page_order(buffer);
2535
2536         base = buffer->user_page;
2537         for (i = 0; i < nr + 1; i++)
2538                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2539
2540         vfree(base);
2541         kfree(buffer);
2542 }
2543
2544 static void perf_buffer_free(struct perf_buffer *buffer)
2545 {
2546         schedule_work(&buffer->work);
2547 }
2548
2549 static struct perf_buffer *
2550 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2551 {
2552         struct perf_buffer *buffer;
2553         unsigned long size;
2554         void *all_buf;
2555
2556         size = sizeof(struct perf_buffer);
2557         size += sizeof(void *);
2558
2559         buffer = kzalloc(size, GFP_KERNEL);
2560         if (!buffer)
2561                 goto fail;
2562
2563         INIT_WORK(&buffer->work, perf_buffer_free_work);
2564
2565         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2566         if (!all_buf)
2567                 goto fail_all_buf;
2568
2569         buffer->user_page = all_buf;
2570         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2571         buffer->page_order = ilog2(nr_pages);
2572         buffer->nr_pages = 1;
2573
2574         perf_buffer_init(buffer, watermark, flags);
2575
2576         return buffer;
2577
2578 fail_all_buf:
2579         kfree(buffer);
2580
2581 fail:
2582         return NULL;
2583 }
2584
2585 #endif
2586
2587 static unsigned long perf_data_size(struct perf_buffer *buffer)
2588 {
2589         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2590 }
2591
2592 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2593 {
2594         struct perf_event *event = vma->vm_file->private_data;
2595         struct perf_buffer *buffer;
2596         int ret = VM_FAULT_SIGBUS;
2597
2598         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2599                 if (vmf->pgoff == 0)
2600                         ret = 0;
2601                 return ret;
2602         }
2603
2604         rcu_read_lock();
2605         buffer = rcu_dereference(event->buffer);
2606         if (!buffer)
2607                 goto unlock;
2608
2609         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2610                 goto unlock;
2611
2612         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2613         if (!vmf->page)
2614                 goto unlock;
2615
2616         get_page(vmf->page);
2617         vmf->page->mapping = vma->vm_file->f_mapping;
2618         vmf->page->index   = vmf->pgoff;
2619
2620         ret = 0;
2621 unlock:
2622         rcu_read_unlock();
2623
2624         return ret;
2625 }
2626
2627 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2628 {
2629         struct perf_buffer *buffer;
2630
2631         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2632         perf_buffer_free(buffer);
2633 }
2634
2635 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2636 {
2637         struct perf_buffer *buffer;
2638
2639         rcu_read_lock();
2640         buffer = rcu_dereference(event->buffer);
2641         if (buffer) {
2642                 if (!atomic_inc_not_zero(&buffer->refcount))
2643                         buffer = NULL;
2644         }
2645         rcu_read_unlock();
2646
2647         return buffer;
2648 }
2649
2650 static void perf_buffer_put(struct perf_buffer *buffer)
2651 {
2652         if (!atomic_dec_and_test(&buffer->refcount))
2653                 return;
2654
2655         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2656 }
2657
2658 static void perf_mmap_open(struct vm_area_struct *vma)
2659 {
2660         struct perf_event *event = vma->vm_file->private_data;
2661
2662         atomic_inc(&event->mmap_count);
2663 }
2664
2665 static void perf_mmap_close(struct vm_area_struct *vma)
2666 {
2667         struct perf_event *event = vma->vm_file->private_data;
2668
2669         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2670                 unsigned long size = perf_data_size(event->buffer);
2671                 struct user_struct *user = event->mmap_user;
2672                 struct perf_buffer *buffer = event->buffer;
2673
2674                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2675                 vma->vm_mm->locked_vm -= event->mmap_locked;
2676                 rcu_assign_pointer(event->buffer, NULL);
2677                 mutex_unlock(&event->mmap_mutex);
2678
2679                 perf_buffer_put(buffer);
2680                 free_uid(user);
2681         }
2682 }
2683
2684 static const struct vm_operations_struct perf_mmap_vmops = {
2685         .open           = perf_mmap_open,
2686         .close          = perf_mmap_close,
2687         .fault          = perf_mmap_fault,
2688         .page_mkwrite   = perf_mmap_fault,
2689 };
2690
2691 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2692 {
2693         struct perf_event *event = file->private_data;
2694         unsigned long user_locked, user_lock_limit;
2695         struct user_struct *user = current_user();
2696         unsigned long locked, lock_limit;
2697         struct perf_buffer *buffer;
2698         unsigned long vma_size;
2699         unsigned long nr_pages;
2700         long user_extra, extra;
2701         int ret = 0, flags = 0;
2702
2703         /*
2704          * Don't allow mmap() of inherited per-task counters. This would
2705          * create a performance issue due to all children writing to the
2706          * same buffer.
2707          */
2708         if (event->cpu == -1 && event->attr.inherit)
2709                 return -EINVAL;
2710
2711         if (!(vma->vm_flags & VM_SHARED))
2712                 return -EINVAL;
2713
2714         vma_size = vma->vm_end - vma->vm_start;
2715         nr_pages = (vma_size / PAGE_SIZE) - 1;
2716
2717         /*
2718          * If we have buffer pages ensure they're a power-of-two number, so we
2719          * can do bitmasks instead of modulo.
2720          */
2721         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2722                 return -EINVAL;
2723
2724         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2725                 return -EINVAL;
2726
2727         if (vma->vm_pgoff != 0)
2728                 return -EINVAL;
2729
2730         WARN_ON_ONCE(event->ctx->parent_ctx);
2731         mutex_lock(&event->mmap_mutex);
2732         if (event->buffer) {
2733                 if (event->buffer->nr_pages == nr_pages)
2734                         atomic_inc(&event->buffer->refcount);
2735                 else
2736                         ret = -EINVAL;
2737                 goto unlock;
2738         }
2739
2740         user_extra = nr_pages + 1;
2741         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2742
2743         /*
2744          * Increase the limit linearly with more CPUs:
2745          */
2746         user_lock_limit *= num_online_cpus();
2747
2748         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2749
2750         extra = 0;
2751         if (user_locked > user_lock_limit)
2752                 extra = user_locked - user_lock_limit;
2753
2754         lock_limit = rlimit(RLIMIT_MEMLOCK);
2755         lock_limit >>= PAGE_SHIFT;
2756         locked = vma->vm_mm->locked_vm + extra;
2757
2758         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2759                 !capable(CAP_IPC_LOCK)) {
2760                 ret = -EPERM;
2761                 goto unlock;
2762         }
2763
2764         WARN_ON(event->buffer);
2765
2766         if (vma->vm_flags & VM_WRITE)
2767                 flags |= PERF_BUFFER_WRITABLE;
2768
2769         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2770                                    event->cpu, flags);
2771         if (!buffer) {
2772                 ret = -ENOMEM;
2773                 goto unlock;
2774         }
2775         rcu_assign_pointer(event->buffer, buffer);
2776
2777         atomic_long_add(user_extra, &user->locked_vm);
2778         event->mmap_locked = extra;
2779         event->mmap_user = get_current_user();
2780         vma->vm_mm->locked_vm += event->mmap_locked;
2781
2782 unlock:
2783         if (!ret)
2784                 atomic_inc(&event->mmap_count);
2785         mutex_unlock(&event->mmap_mutex);
2786
2787         vma->vm_flags |= VM_RESERVED;
2788         vma->vm_ops = &perf_mmap_vmops;
2789
2790         return ret;
2791 }
2792
2793 static int perf_fasync(int fd, struct file *filp, int on)
2794 {
2795         struct inode *inode = filp->f_path.dentry->d_inode;
2796         struct perf_event *event = filp->private_data;
2797         int retval;
2798
2799         mutex_lock(&inode->i_mutex);
2800         retval = fasync_helper(fd, filp, on, &event->fasync);
2801         mutex_unlock(&inode->i_mutex);
2802
2803         if (retval < 0)
2804                 return retval;
2805
2806         return 0;
2807 }
2808
2809 static const struct file_operations perf_fops = {
2810         .llseek                 = no_llseek,
2811         .release                = perf_release,
2812         .read                   = perf_read,
2813         .poll                   = perf_poll,
2814         .unlocked_ioctl         = perf_ioctl,
2815         .compat_ioctl           = perf_ioctl,
2816         .mmap                   = perf_mmap,
2817         .fasync                 = perf_fasync,
2818 };
2819
2820 /*
2821  * Perf event wakeup
2822  *
2823  * If there's data, ensure we set the poll() state and publish everything
2824  * to user-space before waking everybody up.
2825  */
2826
2827 void perf_event_wakeup(struct perf_event *event)
2828 {
2829         wake_up_all(&event->waitq);
2830
2831         if (event->pending_kill) {
2832                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2833                 event->pending_kill = 0;
2834         }
2835 }
2836
2837 /*
2838  * Pending wakeups
2839  *
2840  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2841  *
2842  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2843  * single linked list and use cmpxchg() to add entries lockless.
2844  */
2845
2846 static void perf_pending_event(struct perf_pending_entry *entry)
2847 {
2848         struct perf_event *event = container_of(entry,
2849                         struct perf_event, pending);
2850
2851         if (event->pending_disable) {
2852                 event->pending_disable = 0;
2853                 __perf_event_disable(event);
2854         }
2855
2856         if (event->pending_wakeup) {
2857                 event->pending_wakeup = 0;
2858                 perf_event_wakeup(event);
2859         }
2860 }
2861
2862 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2863
2864 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2865         PENDING_TAIL,
2866 };
2867
2868 static void perf_pending_queue(struct perf_pending_entry *entry,
2869                                void (*func)(struct perf_pending_entry *))
2870 {
2871         struct perf_pending_entry **head;
2872
2873         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2874                 return;
2875
2876         entry->func = func;
2877
2878         head = &get_cpu_var(perf_pending_head);
2879
2880         do {
2881                 entry->next = *head;
2882         } while (cmpxchg(head, entry->next, entry) != entry->next);
2883
2884         set_perf_event_pending();
2885
2886         put_cpu_var(perf_pending_head);
2887 }
2888
2889 static int __perf_pending_run(void)
2890 {
2891         struct perf_pending_entry *list;
2892         int nr = 0;
2893
2894         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2895         while (list != PENDING_TAIL) {
2896                 void (*func)(struct perf_pending_entry *);
2897                 struct perf_pending_entry *entry = list;
2898
2899                 list = list->next;
2900
2901                 func = entry->func;
2902                 entry->next = NULL;
2903                 /*
2904                  * Ensure we observe the unqueue before we issue the wakeup,
2905                  * so that we won't be waiting forever.
2906                  * -- see perf_not_pending().
2907                  */
2908                 smp_wmb();
2909
2910                 func(entry);
2911                 nr++;
2912         }
2913
2914         return nr;
2915 }
2916
2917 static inline int perf_not_pending(struct perf_event *event)
2918 {
2919         /*
2920          * If we flush on whatever cpu we run, there is a chance we don't
2921          * need to wait.
2922          */
2923         get_cpu();
2924         __perf_pending_run();
2925         put_cpu();
2926
2927         /*
2928          * Ensure we see the proper queue state before going to sleep
2929          * so that we do not miss the wakeup. -- see perf_pending_handle()
2930          */
2931         smp_rmb();
2932         return event->pending.next == NULL;
2933 }
2934
2935 static void perf_pending_sync(struct perf_event *event)
2936 {
2937         wait_event(event->waitq, perf_not_pending(event));
2938 }
2939
2940 void perf_event_do_pending(void)
2941 {
2942         __perf_pending_run();
2943 }
2944
2945 /*
2946  * Callchain support -- arch specific
2947  */
2948
2949 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2950 {
2951         return NULL;
2952 }
2953
2954
2955 /*
2956  * We assume there is only KVM supporting the callbacks.
2957  * Later on, we might change it to a list if there is
2958  * another virtualization implementation supporting the callbacks.
2959  */
2960 struct perf_guest_info_callbacks *perf_guest_cbs;
2961
2962 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2963 {
2964         perf_guest_cbs = cbs;
2965         return 0;
2966 }
2967 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2968
2969 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2970 {
2971         perf_guest_cbs = NULL;
2972         return 0;
2973 }
2974 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2975
2976 /*
2977  * Output
2978  */
2979 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2980                               unsigned long offset, unsigned long head)
2981 {
2982         unsigned long mask;
2983
2984         if (!buffer->writable)
2985                 return true;
2986
2987         mask = perf_data_size(buffer) - 1;
2988
2989         offset = (offset - tail) & mask;
2990         head   = (head   - tail) & mask;
2991
2992         if ((int)(head - offset) < 0)
2993                 return false;
2994
2995         return true;
2996 }
2997
2998 static void perf_output_wakeup(struct perf_output_handle *handle)
2999 {
3000         atomic_set(&handle->buffer->poll, POLL_IN);
3001
3002         if (handle->nmi) {
3003                 handle->event->pending_wakeup = 1;
3004                 perf_pending_queue(&handle->event->pending,
3005                                    perf_pending_event);
3006         } else
3007                 perf_event_wakeup(handle->event);
3008 }
3009
3010 /*
3011  * We need to ensure a later event_id doesn't publish a head when a former
3012  * event isn't done writing. However since we need to deal with NMIs we
3013  * cannot fully serialize things.
3014  *
3015  * We only publish the head (and generate a wakeup) when the outer-most
3016  * event completes.
3017  */
3018 static void perf_output_get_handle(struct perf_output_handle *handle)
3019 {
3020         struct perf_buffer *buffer = handle->buffer;
3021
3022         preempt_disable();
3023         local_inc(&buffer->nest);
3024         handle->wakeup = local_read(&buffer->wakeup);
3025 }
3026
3027 static void perf_output_put_handle(struct perf_output_handle *handle)
3028 {
3029         struct perf_buffer *buffer = handle->buffer;
3030         unsigned long head;
3031
3032 again:
3033         head = local_read(&buffer->head);
3034
3035         /*
3036          * IRQ/NMI can happen here, which means we can miss a head update.
3037          */
3038
3039         if (!local_dec_and_test(&buffer->nest))
3040                 goto out;
3041
3042         /*
3043          * Publish the known good head. Rely on the full barrier implied
3044          * by atomic_dec_and_test() order the buffer->head read and this
3045          * write.
3046          */
3047         buffer->user_page->data_head = head;
3048
3049         /*
3050          * Now check if we missed an update, rely on the (compiler)
3051          * barrier in atomic_dec_and_test() to re-read buffer->head.
3052          */
3053         if (unlikely(head != local_read(&buffer->head))) {
3054                 local_inc(&buffer->nest);
3055                 goto again;
3056         }
3057
3058         if (handle->wakeup != local_read(&buffer->wakeup))
3059                 perf_output_wakeup(handle);
3060
3061  out:
3062         preempt_enable();
3063 }
3064
3065 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3066                       const void *buf, unsigned int len)
3067 {
3068         do {
3069                 unsigned long size = min_t(unsigned long, handle->size, len);
3070
3071                 memcpy(handle->addr, buf, size);
3072
3073                 len -= size;
3074                 handle->addr += size;
3075                 buf += size;
3076                 handle->size -= size;
3077                 if (!handle->size) {
3078                         struct perf_buffer *buffer = handle->buffer;
3079
3080                         handle->page++;
3081                         handle->page &= buffer->nr_pages - 1;
3082                         handle->addr = buffer->data_pages[handle->page];
3083                         handle->size = PAGE_SIZE << page_order(buffer);
3084                 }
3085         } while (len);
3086 }
3087
3088 int perf_output_begin(struct perf_output_handle *handle,
3089                       struct perf_event *event, unsigned int size,
3090                       int nmi, int sample)
3091 {
3092         struct perf_buffer *buffer;
3093         unsigned long tail, offset, head;
3094         int have_lost;
3095         struct {
3096                 struct perf_event_header header;
3097                 u64                      id;
3098                 u64                      lost;
3099         } lost_event;
3100
3101         rcu_read_lock();
3102         /*
3103          * For inherited events we send all the output towards the parent.
3104          */
3105         if (event->parent)
3106                 event = event->parent;
3107
3108         buffer = rcu_dereference(event->buffer);
3109         if (!buffer)
3110                 goto out;
3111
3112         handle->buffer  = buffer;
3113         handle->event   = event;
3114         handle->nmi     = nmi;
3115         handle->sample  = sample;
3116
3117         if (!buffer->nr_pages)
3118                 goto out;
3119
3120         have_lost = local_read(&buffer->lost);
3121         if (have_lost)
3122                 size += sizeof(lost_event);
3123
3124         perf_output_get_handle(handle);
3125
3126         do {
3127                 /*
3128                  * Userspace could choose to issue a mb() before updating the
3129                  * tail pointer. So that all reads will be completed before the
3130                  * write is issued.
3131                  */
3132                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3133                 smp_rmb();
3134                 offset = head = local_read(&buffer->head);
3135                 head += size;
3136                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3137                         goto fail;
3138         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3139
3140         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3141                 local_add(buffer->watermark, &buffer->wakeup);
3142
3143         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3144         handle->page &= buffer->nr_pages - 1;
3145         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3146         handle->addr = buffer->data_pages[handle->page];
3147         handle->addr += handle->size;
3148         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3149
3150         if (have_lost) {
3151                 lost_event.header.type = PERF_RECORD_LOST;
3152                 lost_event.header.misc = 0;
3153                 lost_event.header.size = sizeof(lost_event);
3154                 lost_event.id          = event->id;
3155                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3156
3157                 perf_output_put(handle, lost_event);
3158         }
3159
3160         return 0;
3161
3162 fail:
3163         local_inc(&buffer->lost);
3164         perf_output_put_handle(handle);
3165 out:
3166         rcu_read_unlock();
3167
3168         return -ENOSPC;
3169 }
3170
3171 void perf_output_end(struct perf_output_handle *handle)
3172 {
3173         struct perf_event *event = handle->event;
3174         struct perf_buffer *buffer = handle->buffer;
3175
3176         int wakeup_events = event->attr.wakeup_events;
3177
3178         if (handle->sample && wakeup_events) {
3179                 int events = local_inc_return(&buffer->events);
3180                 if (events >= wakeup_events) {
3181                         local_sub(wakeup_events, &buffer->events);
3182                         local_inc(&buffer->wakeup);
3183                 }
3184         }
3185
3186         perf_output_put_handle(handle);
3187         rcu_read_unlock();
3188 }
3189
3190 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3191 {
3192         /*
3193          * only top level events have the pid namespace they were created in
3194          */
3195         if (event->parent)
3196                 event = event->parent;
3197
3198         return task_tgid_nr_ns(p, event->ns);
3199 }
3200
3201 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3202 {
3203         /*
3204          * only top level events have the pid namespace they were created in
3205          */
3206         if (event->parent)
3207                 event = event->parent;
3208
3209         return task_pid_nr_ns(p, event->ns);
3210 }
3211
3212 static void perf_output_read_one(struct perf_output_handle *handle,
3213                                  struct perf_event *event)
3214 {
3215         u64 read_format = event->attr.read_format;
3216         u64 values[4];
3217         int n = 0;
3218
3219         values[n++] = perf_event_count(event);
3220         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3221                 values[n++] = event->total_time_enabled +
3222                         atomic64_read(&event->child_total_time_enabled);
3223         }
3224         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3225                 values[n++] = event->total_time_running +
3226                         atomic64_read(&event->child_total_time_running);
3227         }
3228         if (read_format & PERF_FORMAT_ID)
3229                 values[n++] = primary_event_id(event);
3230
3231         perf_output_copy(handle, values, n * sizeof(u64));
3232 }
3233
3234 /*
3235  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3236  */
3237 static void perf_output_read_group(struct perf_output_handle *handle,
3238                             struct perf_event *event)
3239 {
3240         struct perf_event *leader = event->group_leader, *sub;
3241         u64 read_format = event->attr.read_format;
3242         u64 values[5];
3243         int n = 0;
3244
3245         values[n++] = 1 + leader->nr_siblings;
3246
3247         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3248                 values[n++] = leader->total_time_enabled;
3249
3250         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3251                 values[n++] = leader->total_time_running;
3252
3253         if (leader != event)
3254                 leader->pmu->read(leader);
3255
3256         values[n++] = perf_event_count(leader);
3257         if (read_format & PERF_FORMAT_ID)
3258                 values[n++] = primary_event_id(leader);
3259
3260         perf_output_copy(handle, values, n * sizeof(u64));
3261
3262         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3263                 n = 0;
3264
3265                 if (sub != event)
3266                         sub->pmu->read(sub);
3267
3268                 values[n++] = perf_event_count(sub);
3269                 if (read_format & PERF_FORMAT_ID)
3270                         values[n++] = primary_event_id(sub);
3271
3272                 perf_output_copy(handle, values, n * sizeof(u64));
3273         }
3274 }
3275
3276 static void perf_output_read(struct perf_output_handle *handle,
3277                              struct perf_event *event)
3278 {
3279         if (event->attr.read_format & PERF_FORMAT_GROUP)
3280                 perf_output_read_group(handle, event);
3281         else
3282                 perf_output_read_one(handle, event);
3283 }
3284
3285 void perf_output_sample(struct perf_output_handle *handle,
3286                         struct perf_event_header *header,
3287                         struct perf_sample_data *data,
3288                         struct perf_event *event)
3289 {
3290         u64 sample_type = data->type;
3291
3292         perf_output_put(handle, *header);
3293
3294         if (sample_type & PERF_SAMPLE_IP)
3295                 perf_output_put(handle, data->ip);
3296
3297         if (sample_type & PERF_SAMPLE_TID)
3298                 perf_output_put(handle, data->tid_entry);
3299
3300         if (sample_type & PERF_SAMPLE_TIME)
3301                 perf_output_put(handle, data->time);
3302
3303         if (sample_type & PERF_SAMPLE_ADDR)
3304                 perf_output_put(handle, data->addr);
3305
3306         if (sample_type & PERF_SAMPLE_ID)
3307                 perf_output_put(handle, data->id);
3308
3309         if (sample_type & PERF_SAMPLE_STREAM_ID)
3310                 perf_output_put(handle, data->stream_id);
3311
3312         if (sample_type & PERF_SAMPLE_CPU)
3313                 perf_output_put(handle, data->cpu_entry);
3314
3315         if (sample_type & PERF_SAMPLE_PERIOD)
3316                 perf_output_put(handle, data->period);
3317
3318         if (sample_type & PERF_SAMPLE_READ)
3319                 perf_output_read(handle, event);
3320
3321         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3322                 if (data->callchain) {
3323                         int size = 1;
3324
3325                         if (data->callchain)
3326                                 size += data->callchain->nr;
3327
3328                         size *= sizeof(u64);
3329
3330                         perf_output_copy(handle, data->callchain, size);
3331                 } else {
3332                         u64 nr = 0;
3333                         perf_output_put(handle, nr);
3334                 }
3335         }
3336
3337         if (sample_type & PERF_SAMPLE_RAW) {
3338                 if (data->raw) {
3339                         perf_output_put(handle, data->raw->size);
3340                         perf_output_copy(handle, data->raw->data,
3341                                          data->raw->size);
3342                 } else {
3343                         struct {
3344                                 u32     size;
3345                                 u32     data;
3346                         } raw = {
3347                                 .size = sizeof(u32),
3348                                 .data = 0,
3349                         };
3350                         perf_output_put(handle, raw);
3351                 }
3352         }
3353 }
3354
3355 void perf_prepare_sample(struct perf_event_header *header,
3356                          struct perf_sample_data *data,
3357                          struct perf_event *event,
3358                          struct pt_regs *regs)
3359 {
3360         u64 sample_type = event->attr.sample_type;
3361
3362         data->type = sample_type;
3363
3364         header->type = PERF_RECORD_SAMPLE;
3365         header->size = sizeof(*header);
3366
3367         header->misc = 0;
3368         header->misc |= perf_misc_flags(regs);
3369
3370         if (sample_type & PERF_SAMPLE_IP) {
3371                 data->ip = perf_instruction_pointer(regs);
3372
3373                 header->size += sizeof(data->ip);
3374         }
3375
3376         if (sample_type & PERF_SAMPLE_TID) {
3377                 /* namespace issues */
3378                 data->tid_entry.pid = perf_event_pid(event, current);
3379                 data->tid_entry.tid = perf_event_tid(event, current);
3380
3381                 header->size += sizeof(data->tid_entry);
3382         }
3383
3384         if (sample_type & PERF_SAMPLE_TIME) {
3385                 data->time = perf_clock();
3386
3387                 header->size += sizeof(data->time);
3388         }
3389
3390         if (sample_type & PERF_SAMPLE_ADDR)
3391                 header->size += sizeof(data->addr);
3392
3393         if (sample_type & PERF_SAMPLE_ID) {
3394                 data->id = primary_event_id(event);
3395
3396                 header->size += sizeof(data->id);
3397         }
3398
3399         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3400                 data->stream_id = event->id;
3401
3402                 header->size += sizeof(data->stream_id);
3403         }
3404
3405         if (sample_type & PERF_SAMPLE_CPU) {
3406                 data->cpu_entry.cpu             = raw_smp_processor_id();
3407                 data->cpu_entry.reserved        = 0;
3408
3409                 header->size += sizeof(data->cpu_entry);
3410         }
3411
3412         if (sample_type & PERF_SAMPLE_PERIOD)
3413                 header->size += sizeof(data->period);
3414
3415         if (sample_type & PERF_SAMPLE_READ)
3416                 header->size += perf_event_read_size(event);
3417
3418         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3419                 int size = 1;
3420
3421                 data->callchain = perf_callchain(regs);
3422
3423                 if (data->callchain)
3424                         size += data->callchain->nr;
3425
3426                 header->size += size * sizeof(u64);
3427         }
3428
3429         if (sample_type & PERF_SAMPLE_RAW) {
3430                 int size = sizeof(u32);
3431
3432                 if (data->raw)
3433                         size += data->raw->size;
3434                 else
3435                         size += sizeof(u32);
3436
3437                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3438                 header->size += size;
3439         }
3440 }
3441
3442 static void perf_event_output(struct perf_event *event, int nmi,
3443                                 struct perf_sample_data *data,
3444                                 struct pt_regs *regs)
3445 {
3446         struct perf_output_handle handle;
3447         struct perf_event_header header;
3448
3449         perf_prepare_sample(&header, data, event, regs);
3450
3451         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3452                 return;
3453
3454         perf_output_sample(&handle, &header, data, event);
3455
3456         perf_output_end(&handle);
3457 }
3458
3459 /*
3460  * read event_id
3461  */
3462
3463 struct perf_read_event {
3464         struct perf_event_header        header;
3465
3466         u32                             pid;
3467         u32                             tid;
3468 };
3469
3470 static void
3471 perf_event_read_event(struct perf_event *event,
3472                         struct task_struct *task)
3473 {
3474         struct perf_output_handle handle;
3475         struct perf_read_event read_event = {
3476                 .header = {
3477                         .type = PERF_RECORD_READ,
3478                         .misc = 0,
3479                         .size = sizeof(read_event) + perf_event_read_size(event),
3480                 },
3481                 .pid = perf_event_pid(event, task),
3482                 .tid = perf_event_tid(event, task),
3483         };
3484         int ret;
3485
3486         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3487         if (ret)
3488                 return;
3489
3490         perf_output_put(&handle, read_event);
3491         perf_output_read(&handle, event);
3492
3493         perf_output_end(&handle);
3494 }
3495
3496 /*
3497  * task tracking -- fork/exit
3498  *
3499  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3500  */
3501
3502 struct perf_task_event {
3503         struct task_struct              *task;
3504         struct perf_event_context       *task_ctx;
3505
3506         struct {
3507                 struct perf_event_header        header;
3508
3509                 u32                             pid;
3510                 u32                             ppid;
3511                 u32                             tid;
3512                 u32                             ptid;
3513                 u64                             time;
3514         } event_id;
3515 };
3516
3517 static void perf_event_task_output(struct perf_event *event,
3518                                      struct perf_task_event *task_event)
3519 {
3520         struct perf_output_handle handle;
3521         struct task_struct *task = task_event->task;
3522         int size, ret;
3523
3524         size  = task_event->event_id.header.size;
3525         ret = perf_output_begin(&handle, event, size, 0, 0);
3526
3527         if (ret)
3528                 return;
3529
3530         task_event->event_id.pid = perf_event_pid(event, task);
3531         task_event->event_id.ppid = perf_event_pid(event, current);
3532
3533         task_event->event_id.tid = perf_event_tid(event, task);
3534         task_event->event_id.ptid = perf_event_tid(event, current);
3535
3536         perf_output_put(&handle, task_event->event_id);
3537
3538         perf_output_end(&handle);
3539 }
3540
3541 static int perf_event_task_match(struct perf_event *event)
3542 {
3543         if (event->state < PERF_EVENT_STATE_INACTIVE)
3544                 return 0;
3545
3546         if (event->cpu != -1 && event->cpu != smp_processor_id())
3547                 return 0;
3548
3549         if (event->attr.comm || event->attr.mmap ||
3550             event->attr.mmap_data || event->attr.task)
3551                 return 1;
3552
3553         return 0;
3554 }
3555
3556 static void perf_event_task_ctx(struct perf_event_context *ctx,
3557                                   struct perf_task_event *task_event)
3558 {
3559         struct perf_event *event;
3560
3561         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3562                 if (perf_event_task_match(event))
3563                         perf_event_task_output(event, task_event);
3564         }
3565 }
3566
3567 static void perf_event_task_event(struct perf_task_event *task_event)
3568 {
3569         struct perf_cpu_context *cpuctx;
3570         struct perf_event_context *ctx = task_event->task_ctx;
3571
3572         rcu_read_lock();
3573         cpuctx = &get_cpu_var(perf_cpu_context);
3574         perf_event_task_ctx(&cpuctx->ctx, task_event);
3575         if (!ctx)
3576                 ctx = rcu_dereference(current->perf_event_ctxp);
3577         if (ctx)
3578                 perf_event_task_ctx(ctx, task_event);
3579         put_cpu_var(perf_cpu_context);
3580         rcu_read_unlock();
3581 }
3582
3583 static void perf_event_task(struct task_struct *task,
3584                               struct perf_event_context *task_ctx,
3585                               int new)
3586 {
3587         struct perf_task_event task_event;
3588
3589         if (!atomic_read(&nr_comm_events) &&
3590             !atomic_read(&nr_mmap_events) &&
3591             !atomic_read(&nr_task_events))
3592                 return;
3593
3594         task_event = (struct perf_task_event){
3595                 .task     = task,
3596                 .task_ctx = task_ctx,
3597                 .event_id    = {
3598                         .header = {
3599                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3600                                 .misc = 0,
3601                                 .size = sizeof(task_event.event_id),
3602                         },
3603                         /* .pid  */
3604                         /* .ppid */
3605                         /* .tid  */
3606                         /* .ptid */
3607                         .time = perf_clock(),
3608                 },
3609         };
3610
3611         perf_event_task_event(&task_event);
3612 }
3613
3614 void perf_event_fork(struct task_struct *task)
3615 {
3616         perf_event_task(task, NULL, 1);
3617 }
3618
3619 /*
3620  * comm tracking
3621  */
3622
3623 struct perf_comm_event {
3624         struct task_struct      *task;
3625         char                    *comm;
3626         int                     comm_size;
3627
3628         struct {
3629                 struct perf_event_header        header;
3630
3631                 u32                             pid;
3632                 u32                             tid;
3633         } event_id;
3634 };
3635
3636 static void perf_event_comm_output(struct perf_event *event,
3637                                      struct perf_comm_event *comm_event)
3638 {
3639         struct perf_output_handle handle;
3640         int size = comm_event->event_id.header.size;
3641         int ret = perf_output_begin(&handle, event, size, 0, 0);
3642
3643         if (ret)
3644                 return;
3645
3646         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3647         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3648
3649         perf_output_put(&handle, comm_event->event_id);
3650         perf_output_copy(&handle, comm_event->comm,
3651                                    comm_event->comm_size);
3652         perf_output_end(&handle);
3653 }
3654
3655 static int perf_event_comm_match(struct perf_event *event)
3656 {
3657         if (event->state < PERF_EVENT_STATE_INACTIVE)
3658                 return 0;
3659
3660         if (event->cpu != -1 && event->cpu != smp_processor_id())
3661                 return 0;
3662
3663         if (event->attr.comm)
3664                 return 1;
3665
3666         return 0;
3667 }
3668
3669 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3670                                   struct perf_comm_event *comm_event)
3671 {
3672         struct perf_event *event;
3673
3674         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3675                 if (perf_event_comm_match(event))
3676                         perf_event_comm_output(event, comm_event);
3677         }
3678 }
3679
3680 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3681 {
3682         struct perf_cpu_context *cpuctx;
3683         struct perf_event_context *ctx;
3684         unsigned int size;
3685         char comm[TASK_COMM_LEN];
3686
3687         memset(comm, 0, sizeof(comm));
3688         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3689         size = ALIGN(strlen(comm)+1, sizeof(u64));
3690
3691         comm_event->comm = comm;
3692         comm_event->comm_size = size;
3693
3694         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3695
3696         rcu_read_lock();
3697         cpuctx = &get_cpu_var(perf_cpu_context);
3698         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3699         ctx = rcu_dereference(current->perf_event_ctxp);
3700         if (ctx)
3701                 perf_event_comm_ctx(ctx, comm_event);
3702         put_cpu_var(perf_cpu_context);
3703         rcu_read_unlock();
3704 }
3705
3706 void perf_event_comm(struct task_struct *task)
3707 {
3708         struct perf_comm_event comm_event;
3709
3710         if (task->perf_event_ctxp)
3711                 perf_event_enable_on_exec(task);
3712
3713         if (!atomic_read(&nr_comm_events))
3714                 return;
3715
3716         comm_event = (struct perf_comm_event){
3717                 .task   = task,
3718                 /* .comm      */
3719                 /* .comm_size */
3720                 .event_id  = {
3721                         .header = {
3722                                 .type = PERF_RECORD_COMM,
3723                                 .misc = 0,
3724                                 /* .size */
3725                         },
3726                         /* .pid */
3727                         /* .tid */
3728                 },
3729         };
3730
3731         perf_event_comm_event(&comm_event);
3732 }
3733
3734 /*
3735  * mmap tracking
3736  */
3737
3738 struct perf_mmap_event {
3739         struct vm_area_struct   *vma;
3740
3741         const char              *file_name;
3742         int                     file_size;
3743
3744         struct {
3745                 struct perf_event_header        header;
3746
3747                 u32                             pid;
3748                 u32                             tid;
3749                 u64                             start;
3750                 u64                             len;
3751                 u64                             pgoff;
3752         } event_id;
3753 };
3754
3755 static void perf_event_mmap_output(struct perf_event *event,
3756                                      struct perf_mmap_event *mmap_event)
3757 {
3758         struct perf_output_handle handle;
3759         int size = mmap_event->event_id.header.size;
3760         int ret = perf_output_begin(&handle, event, size, 0, 0);
3761
3762         if (ret)
3763                 return;
3764
3765         mmap_event->event_id.pid = perf_event_pid(event, current);
3766         mmap_event->event_id.tid = perf_event_tid(event, current);
3767
3768         perf_output_put(&handle, mmap_event->event_id);
3769         perf_output_copy(&handle, mmap_event->file_name,
3770                                    mmap_event->file_size);
3771         perf_output_end(&handle);
3772 }
3773
3774 static int perf_event_mmap_match(struct perf_event *event,
3775                                    struct perf_mmap_event *mmap_event,
3776                                    int executable)
3777 {
3778         if (event->state < PERF_EVENT_STATE_INACTIVE)
3779                 return 0;
3780
3781         if (event->cpu != -1 && event->cpu != smp_processor_id())
3782                 return 0;
3783
3784         if ((!executable && event->attr.mmap_data) ||
3785             (executable && event->attr.mmap))
3786                 return 1;
3787
3788         return 0;
3789 }
3790
3791 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3792                                   struct perf_mmap_event *mmap_event,
3793                                   int executable)
3794 {
3795         struct perf_event *event;
3796
3797         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3798                 if (perf_event_mmap_match(event, mmap_event, executable))
3799                         perf_event_mmap_output(event, mmap_event);
3800         }
3801 }
3802
3803 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3804 {
3805         struct perf_cpu_context *cpuctx;
3806         struct perf_event_context *ctx;
3807         struct vm_area_struct *vma = mmap_event->vma;
3808         struct file *file = vma->vm_file;
3809         unsigned int size;
3810         char tmp[16];
3811         char *buf = NULL;
3812         const char *name;
3813
3814         memset(tmp, 0, sizeof(tmp));
3815
3816         if (file) {
3817                 /*
3818                  * d_path works from the end of the buffer backwards, so we
3819                  * need to add enough zero bytes after the string to handle
3820                  * the 64bit alignment we do later.
3821                  */
3822                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3823                 if (!buf) {
3824                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3825                         goto got_name;
3826                 }
3827                 name = d_path(&file->f_path, buf, PATH_MAX);
3828                 if (IS_ERR(name)) {
3829                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3830                         goto got_name;
3831                 }
3832         } else {
3833                 if (arch_vma_name(mmap_event->vma)) {
3834                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3835                                        sizeof(tmp));
3836                         goto got_name;
3837                 }
3838
3839                 if (!vma->vm_mm) {
3840                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3841                         goto got_name;
3842                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3843                                 vma->vm_end >= vma->vm_mm->brk) {
3844                         name = strncpy(tmp, "[heap]", sizeof(tmp));
3845                         goto got_name;
3846                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3847                                 vma->vm_end >= vma->vm_mm->start_stack) {
3848                         name = strncpy(tmp, "[stack]", sizeof(tmp));
3849                         goto got_name;
3850                 }
3851
3852                 name = strncpy(tmp, "//anon", sizeof(tmp));
3853                 goto got_name;
3854         }
3855
3856 got_name:
3857         size = ALIGN(strlen(name)+1, sizeof(u64));
3858
3859         mmap_event->file_name = name;
3860         mmap_event->file_size = size;
3861
3862         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3863
3864         rcu_read_lock();
3865         cpuctx = &get_cpu_var(perf_cpu_context);
3866         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3867         ctx = rcu_dereference(current->perf_event_ctxp);
3868         if (ctx)
3869                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3870         put_cpu_var(perf_cpu_context);
3871         rcu_read_unlock();
3872
3873         kfree(buf);
3874 }
3875
3876 void perf_event_mmap(struct vm_area_struct *vma)
3877 {
3878         struct perf_mmap_event mmap_event;
3879
3880         if (!atomic_read(&nr_mmap_events))
3881                 return;
3882
3883         mmap_event = (struct perf_mmap_event){
3884                 .vma    = vma,
3885                 /* .file_name */
3886                 /* .file_size */
3887                 .event_id  = {
3888                         .header = {
3889                                 .type = PERF_RECORD_MMAP,
3890                                 .misc = PERF_RECORD_MISC_USER,
3891                                 /* .size */
3892                         },
3893                         /* .pid */
3894                         /* .tid */
3895                         .start  = vma->vm_start,
3896                         .len    = vma->vm_end - vma->vm_start,
3897                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3898                 },
3899         };
3900
3901         perf_event_mmap_event(&mmap_event);
3902 }
3903
3904 /*
3905  * IRQ throttle logging
3906  */
3907
3908 static void perf_log_throttle(struct perf_event *event, int enable)
3909 {
3910         struct perf_output_handle handle;
3911         int ret;
3912
3913         struct {
3914                 struct perf_event_header        header;
3915                 u64                             time;
3916                 u64                             id;
3917                 u64                             stream_id;
3918         } throttle_event = {
3919                 .header = {
3920                         .type = PERF_RECORD_THROTTLE,
3921                         .misc = 0,
3922                         .size = sizeof(throttle_event),
3923                 },
3924                 .time           = perf_clock(),
3925                 .id             = primary_event_id(event),
3926                 .stream_id      = event->id,
3927         };
3928
3929         if (enable)
3930                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3931
3932         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3933         if (ret)
3934                 return;
3935
3936         perf_output_put(&handle, throttle_event);
3937         perf_output_end(&handle);
3938 }
3939
3940 /*
3941  * Generic event overflow handling, sampling.
3942  */
3943
3944 static int __perf_event_overflow(struct perf_event *event, int nmi,
3945                                    int throttle, struct perf_sample_data *data,
3946                                    struct pt_regs *regs)
3947 {
3948         int events = atomic_read(&event->event_limit);
3949         struct hw_perf_event *hwc = &event->hw;
3950         int ret = 0;
3951
3952         throttle = (throttle && event->pmu->unthrottle != NULL);
3953
3954         if (!throttle) {
3955                 hwc->interrupts++;
3956         } else {
3957                 if (hwc->interrupts != MAX_INTERRUPTS) {
3958                         hwc->interrupts++;
3959                         if (HZ * hwc->interrupts >
3960                                         (u64)sysctl_perf_event_sample_rate) {
3961                                 hwc->interrupts = MAX_INTERRUPTS;
3962                                 perf_log_throttle(event, 0);
3963                                 ret = 1;
3964                         }
3965                 } else {
3966                         /*
3967                          * Keep re-disabling events even though on the previous
3968                          * pass we disabled it - just in case we raced with a
3969                          * sched-in and the event got enabled again:
3970                          */
3971                         ret = 1;
3972                 }
3973         }
3974
3975         if (event->attr.freq) {
3976                 u64 now = perf_clock();
3977                 s64 delta = now - hwc->freq_time_stamp;
3978
3979                 hwc->freq_time_stamp = now;
3980
3981                 if (delta > 0 && delta < 2*TICK_NSEC)
3982                         perf_adjust_period(event, delta, hwc->last_period);
3983         }
3984
3985         /*
3986          * XXX event_limit might not quite work as expected on inherited
3987          * events
3988          */
3989
3990         event->pending_kill = POLL_IN;
3991         if (events && atomic_dec_and_test(&event->event_limit)) {
3992                 ret = 1;
3993                 event->pending_kill = POLL_HUP;
3994                 if (nmi) {
3995                         event->pending_disable = 1;
3996                         perf_pending_queue(&event->pending,
3997                                            perf_pending_event);
3998                 } else
3999                         perf_event_disable(event);
4000         }
4001
4002         if (event->overflow_handler)
4003                 event->overflow_handler(event, nmi, data, regs);
4004         else
4005                 perf_event_output(event, nmi, data, regs);
4006
4007         return ret;
4008 }
4009
4010 int perf_event_overflow(struct perf_event *event, int nmi,
4011                           struct perf_sample_data *data,
4012                           struct pt_regs *regs)
4013 {
4014         return __perf_event_overflow(event, nmi, 1, data, regs);
4015 }
4016
4017 /*
4018  * Generic software event infrastructure
4019  */
4020
4021 /*
4022  * We directly increment event->count and keep a second value in
4023  * event->hw.period_left to count intervals. This period event
4024  * is kept in the range [-sample_period, 0] so that we can use the
4025  * sign as trigger.
4026  */
4027
4028 static u64 perf_swevent_set_period(struct perf_event *event)
4029 {
4030         struct hw_perf_event *hwc = &event->hw;
4031         u64 period = hwc->last_period;
4032         u64 nr, offset;
4033         s64 old, val;
4034
4035         hwc->last_period = hwc->sample_period;
4036
4037 again:
4038         old = val = local64_read(&hwc->period_left);
4039         if (val < 0)
4040                 return 0;
4041
4042         nr = div64_u64(period + val, period);
4043         offset = nr * period;
4044         val -= offset;
4045         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4046                 goto again;
4047
4048         return nr;
4049 }
4050
4051 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4052                                     int nmi, struct perf_sample_data *data,
4053                                     struct pt_regs *regs)
4054 {
4055         struct hw_perf_event *hwc = &event->hw;
4056         int throttle = 0;
4057
4058         data->period = event->hw.last_period;
4059         if (!overflow)
4060                 overflow = perf_swevent_set_period(event);
4061
4062         if (hwc->interrupts == MAX_INTERRUPTS)
4063                 return;
4064
4065         for (; overflow; overflow--) {
4066                 if (__perf_event_overflow(event, nmi, throttle,
4067                                             data, regs)) {
4068                         /*
4069                          * We inhibit the overflow from happening when
4070                          * hwc->interrupts == MAX_INTERRUPTS.
4071                          */
4072                         break;
4073                 }
4074                 throttle = 1;
4075         }
4076 }
4077
4078 static void perf_swevent_add(struct perf_event *event, u64 nr,
4079                                int nmi, struct perf_sample_data *data,
4080                                struct pt_regs *regs)
4081 {
4082         struct hw_perf_event *hwc = &event->hw;
4083
4084         local64_add(nr, &event->count);
4085
4086         if (!regs)
4087                 return;
4088
4089         if (!hwc->sample_period)
4090                 return;
4091
4092         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4093                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4094
4095         if (local64_add_negative(nr, &hwc->period_left))
4096                 return;
4097
4098         perf_swevent_overflow(event, 0, nmi, data, regs);
4099 }
4100
4101 static int perf_exclude_event(struct perf_event *event,
4102                               struct pt_regs *regs)
4103 {
4104         if (regs) {
4105                 if (event->attr.exclude_user && user_mode(regs))
4106                         return 1;
4107
4108                 if (event->attr.exclude_kernel && !user_mode(regs))
4109                         return 1;
4110         }
4111
4112         return 0;
4113 }
4114
4115 static int perf_swevent_match(struct perf_event *event,
4116                                 enum perf_type_id type,
4117                                 u32 event_id,
4118                                 struct perf_sample_data *data,
4119                                 struct pt_regs *regs)
4120 {
4121         if (event->attr.type != type)
4122                 return 0;
4123
4124         if (event->attr.config != event_id)
4125                 return 0;
4126
4127         if (perf_exclude_event(event, regs))
4128                 return 0;
4129
4130         return 1;
4131 }
4132
4133 static inline u64 swevent_hash(u64 type, u32 event_id)
4134 {
4135         u64 val = event_id | (type << 32);
4136
4137         return hash_64(val, SWEVENT_HLIST_BITS);
4138 }
4139
4140 static inline struct hlist_head *
4141 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4142 {
4143         u64 hash = swevent_hash(type, event_id);
4144
4145         return &hlist->heads[hash];
4146 }
4147
4148 /* For the read side: events when they trigger */
4149 static inline struct hlist_head *
4150 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4151 {
4152         struct swevent_hlist *hlist;
4153
4154         hlist = rcu_dereference(ctx->swevent_hlist);
4155         if (!hlist)
4156                 return NULL;
4157
4158         return __find_swevent_head(hlist, type, event_id);
4159 }
4160
4161 /* For the event head insertion and removal in the hlist */
4162 static inline struct hlist_head *
4163 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4164 {
4165         struct swevent_hlist *hlist;
4166         u32 event_id = event->attr.config;
4167         u64 type = event->attr.type;
4168
4169         /*
4170          * Event scheduling is always serialized against hlist allocation
4171          * and release. Which makes the protected version suitable here.
4172          * The context lock guarantees that.
4173          */
4174         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4175                                           lockdep_is_held(&event->ctx->lock));
4176         if (!hlist)
4177                 return NULL;
4178
4179         return __find_swevent_head(hlist, type, event_id);
4180 }
4181
4182 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4183                                     u64 nr, int nmi,
4184                                     struct perf_sample_data *data,
4185                                     struct pt_regs *regs)
4186 {
4187         struct perf_cpu_context *cpuctx;
4188         struct perf_event *event;
4189         struct hlist_node *node;
4190         struct hlist_head *head;
4191
4192         cpuctx = &__get_cpu_var(perf_cpu_context);
4193
4194         rcu_read_lock();
4195
4196         head = find_swevent_head_rcu(cpuctx, type, event_id);
4197
4198         if (!head)
4199                 goto end;
4200
4201         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4202                 if (perf_swevent_match(event, type, event_id, data, regs))
4203                         perf_swevent_add(event, nr, nmi, data, regs);
4204         }
4205 end:
4206         rcu_read_unlock();
4207 }
4208
4209 int perf_swevent_get_recursion_context(void)
4210 {
4211         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4212         int rctx;
4213
4214         if (in_nmi())
4215                 rctx = 3;
4216         else if (in_irq())
4217                 rctx = 2;
4218         else if (in_softirq())
4219                 rctx = 1;
4220         else
4221                 rctx = 0;
4222
4223         if (cpuctx->recursion[rctx])
4224                 return -1;
4225
4226         cpuctx->recursion[rctx]++;
4227         barrier();
4228
4229         return rctx;
4230 }
4231 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4232
4233 void inline perf_swevent_put_recursion_context(int rctx)
4234 {
4235         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4236         barrier();
4237         cpuctx->recursion[rctx]--;
4238 }
4239
4240 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4241                             struct pt_regs *regs, u64 addr)
4242 {
4243         struct perf_sample_data data;
4244         int rctx;
4245
4246         preempt_disable_notrace();
4247         rctx = perf_swevent_get_recursion_context();
4248         if (rctx < 0)
4249                 return;
4250
4251         perf_sample_data_init(&data, addr);
4252
4253         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4254
4255         perf_swevent_put_recursion_context(rctx);
4256         preempt_enable_notrace();
4257 }
4258
4259 static void perf_swevent_read(struct perf_event *event)
4260 {
4261 }
4262
4263 static int perf_swevent_enable(struct perf_event *event)
4264 {
4265         struct hw_perf_event *hwc = &event->hw;
4266         struct perf_cpu_context *cpuctx;
4267         struct hlist_head *head;
4268
4269         cpuctx = &__get_cpu_var(perf_cpu_context);
4270
4271         if (hwc->sample_period) {
4272                 hwc->last_period = hwc->sample_period;
4273                 perf_swevent_set_period(event);
4274         }
4275
4276         head = find_swevent_head(cpuctx, event);
4277         if (WARN_ON_ONCE(!head))
4278                 return -EINVAL;
4279
4280         hlist_add_head_rcu(&event->hlist_entry, head);
4281
4282         return 0;
4283 }
4284
4285 static void perf_swevent_disable(struct perf_event *event)
4286 {
4287         hlist_del_rcu(&event->hlist_entry);
4288 }
4289
4290 static void perf_swevent_void(struct perf_event *event)
4291 {
4292 }
4293
4294 static int perf_swevent_int(struct perf_event *event)
4295 {
4296         return 0;
4297 }
4298
4299 static const struct pmu perf_ops_generic = {
4300         .enable         = perf_swevent_enable,
4301         .disable        = perf_swevent_disable,
4302         .start          = perf_swevent_int,
4303         .stop           = perf_swevent_void,
4304         .read           = perf_swevent_read,
4305         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4306 };
4307
4308 /*
4309  * hrtimer based swevent callback
4310  */
4311
4312 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4313 {
4314         enum hrtimer_restart ret = HRTIMER_RESTART;
4315         struct perf_sample_data data;
4316         struct pt_regs *regs;
4317         struct perf_event *event;
4318         u64 period;
4319
4320         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4321         event->pmu->read(event);
4322
4323         perf_sample_data_init(&data, 0);
4324         data.period = event->hw.last_period;
4325         regs = get_irq_regs();
4326
4327         if (regs && !perf_exclude_event(event, regs)) {
4328                 if (!(event->attr.exclude_idle && current->pid == 0))
4329                         if (perf_event_overflow(event, 0, &data, regs))
4330                                 ret = HRTIMER_NORESTART;
4331         }
4332
4333         period = max_t(u64, 10000, event->hw.sample_period);
4334         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4335
4336         return ret;
4337 }
4338
4339 static void perf_swevent_start_hrtimer(struct perf_event *event)
4340 {
4341         struct hw_perf_event *hwc = &event->hw;
4342
4343         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4344         hwc->hrtimer.function = perf_swevent_hrtimer;
4345         if (hwc->sample_period) {
4346                 u64 period;
4347
4348                 if (hwc->remaining) {
4349                         if (hwc->remaining < 0)
4350                                 period = 10000;
4351                         else
4352                                 period = hwc->remaining;
4353                         hwc->remaining = 0;
4354                 } else {
4355                         period = max_t(u64, 10000, hwc->sample_period);
4356                 }
4357                 __hrtimer_start_range_ns(&hwc->hrtimer,
4358                                 ns_to_ktime(period), 0,
4359                                 HRTIMER_MODE_REL, 0);
4360         }
4361 }
4362
4363 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4364 {
4365         struct hw_perf_event *hwc = &event->hw;
4366
4367         if (hwc->sample_period) {
4368                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4369                 hwc->remaining = ktime_to_ns(remaining);
4370
4371                 hrtimer_cancel(&hwc->hrtimer);
4372         }
4373 }
4374
4375 /*
4376  * Software event: cpu wall time clock
4377  */
4378
4379 static void cpu_clock_perf_event_update(struct perf_event *event)
4380 {
4381         int cpu = raw_smp_processor_id();
4382         s64 prev;
4383         u64 now;
4384
4385         now = cpu_clock(cpu);
4386         prev = local64_xchg(&event->hw.prev_count, now);
4387         local64_add(now - prev, &event->count);
4388 }
4389
4390 static int cpu_clock_perf_event_enable(struct perf_event *event)
4391 {
4392         struct hw_perf_event *hwc = &event->hw;
4393         int cpu = raw_smp_processor_id();
4394
4395         local64_set(&hwc->prev_count, cpu_clock(cpu));
4396         perf_swevent_start_hrtimer(event);
4397
4398         return 0;
4399 }
4400
4401 static void cpu_clock_perf_event_disable(struct perf_event *event)
4402 {
4403         perf_swevent_cancel_hrtimer(event);
4404         cpu_clock_perf_event_update(event);
4405 }
4406
4407 static void cpu_clock_perf_event_read(struct perf_event *event)
4408 {
4409         cpu_clock_perf_event_update(event);
4410 }
4411
4412 static const struct pmu perf_ops_cpu_clock = {
4413         .enable         = cpu_clock_perf_event_enable,
4414         .disable        = cpu_clock_perf_event_disable,
4415         .read           = cpu_clock_perf_event_read,
4416 };
4417
4418 /*
4419  * Software event: task time clock
4420  */
4421
4422 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4423 {
4424         u64 prev;
4425         s64 delta;
4426
4427         prev = local64_xchg(&event->hw.prev_count, now);
4428         delta = now - prev;
4429         local64_add(delta, &event->count);
4430 }
4431
4432 static int task_clock_perf_event_enable(struct perf_event *event)
4433 {
4434         struct hw_perf_event *hwc = &event->hw;
4435         u64 now;
4436
4437         now = event->ctx->time;
4438
4439         local64_set(&hwc->prev_count, now);
4440
4441         perf_swevent_start_hrtimer(event);
4442
4443         return 0;
4444 }
4445
4446 static void task_clock_perf_event_disable(struct perf_event *event)
4447 {
4448         perf_swevent_cancel_hrtimer(event);
4449         task_clock_perf_event_update(event, event->ctx->time);
4450
4451 }
4452
4453 static void task_clock_perf_event_read(struct perf_event *event)
4454 {
4455         u64 time;
4456
4457         if (!in_nmi()) {
4458                 update_context_time(event->ctx);
4459                 time = event->ctx->time;
4460         } else {
4461                 u64 now = perf_clock();
4462                 u64 delta = now - event->ctx->timestamp;
4463                 time = event->ctx->time + delta;
4464         }
4465
4466         task_clock_perf_event_update(event, time);
4467 }
4468
4469 static const struct pmu perf_ops_task_clock = {
4470         .enable         = task_clock_perf_event_enable,
4471         .disable        = task_clock_perf_event_disable,
4472         .read           = task_clock_perf_event_read,
4473 };
4474
4475 /* Deref the hlist from the update side */
4476 static inline struct swevent_hlist *
4477 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4478 {
4479         return rcu_dereference_protected(cpuctx->swevent_hlist,
4480                                          lockdep_is_held(&cpuctx->hlist_mutex));
4481 }
4482
4483 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4484 {
4485         struct swevent_hlist *hlist;
4486
4487         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4488         kfree(hlist);
4489 }
4490
4491 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4492 {
4493         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4494
4495         if (!hlist)
4496                 return;
4497
4498         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4499         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4500 }
4501
4502 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4503 {
4504         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4505
4506         mutex_lock(&cpuctx->hlist_mutex);
4507
4508         if (!--cpuctx->hlist_refcount)
4509                 swevent_hlist_release(cpuctx);
4510
4511         mutex_unlock(&cpuctx->hlist_mutex);
4512 }
4513
4514 static void swevent_hlist_put(struct perf_event *event)
4515 {
4516         int cpu;
4517
4518         if (event->cpu != -1) {
4519                 swevent_hlist_put_cpu(event, event->cpu);
4520                 return;
4521         }
4522
4523         for_each_possible_cpu(cpu)
4524                 swevent_hlist_put_cpu(event, cpu);
4525 }
4526
4527 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4528 {
4529         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4530         int err = 0;
4531
4532         mutex_lock(&cpuctx->hlist_mutex);
4533
4534         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4535                 struct swevent_hlist *hlist;
4536
4537                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4538                 if (!hlist) {
4539                         err = -ENOMEM;
4540                         goto exit;
4541                 }
4542                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4543         }
4544         cpuctx->hlist_refcount++;
4545  exit:
4546         mutex_unlock(&cpuctx->hlist_mutex);
4547
4548         return err;
4549 }
4550
4551 static int swevent_hlist_get(struct perf_event *event)
4552 {
4553         int err;
4554         int cpu, failed_cpu;
4555
4556         if (event->cpu != -1)
4557                 return swevent_hlist_get_cpu(event, event->cpu);
4558
4559         get_online_cpus();
4560         for_each_possible_cpu(cpu) {
4561                 err = swevent_hlist_get_cpu(event, cpu);
4562                 if (err) {
4563                         failed_cpu = cpu;
4564                         goto fail;
4565                 }
4566         }
4567         put_online_cpus();
4568
4569         return 0;
4570  fail:
4571         for_each_possible_cpu(cpu) {
4572                 if (cpu == failed_cpu)
4573                         break;
4574                 swevent_hlist_put_cpu(event, cpu);
4575         }
4576
4577         put_online_cpus();
4578         return err;
4579 }
4580
4581 #ifdef CONFIG_EVENT_TRACING
4582
4583 static const struct pmu perf_ops_tracepoint = {
4584         .enable         = perf_trace_enable,
4585         .disable        = perf_trace_disable,
4586         .start          = perf_swevent_int,
4587         .stop           = perf_swevent_void,
4588         .read           = perf_swevent_read,
4589         .unthrottle     = perf_swevent_void,
4590 };
4591
4592 static int perf_tp_filter_match(struct perf_event *event,
4593                                 struct perf_sample_data *data)
4594 {
4595         void *record = data->raw->data;
4596
4597         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4598                 return 1;
4599         return 0;
4600 }
4601
4602 static int perf_tp_event_match(struct perf_event *event,
4603                                 struct perf_sample_data *data,
4604                                 struct pt_regs *regs)
4605 {
4606         /*
4607          * All tracepoints are from kernel-space.
4608          */
4609         if (event->attr.exclude_kernel)
4610                 return 0;
4611
4612         if (!perf_tp_filter_match(event, data))
4613                 return 0;
4614
4615         return 1;
4616 }
4617
4618 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4619                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4620 {
4621         struct perf_sample_data data;
4622         struct perf_event *event;
4623         struct hlist_node *node;
4624
4625         struct perf_raw_record raw = {
4626                 .size = entry_size,
4627                 .data = record,
4628         };
4629
4630         perf_sample_data_init(&data, addr);
4631         data.raw = &raw;
4632
4633         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4634                 if (perf_tp_event_match(event, &data, regs))
4635                         perf_swevent_add(event, count, 1, &data, regs);
4636         }
4637
4638         perf_swevent_put_recursion_context(rctx);
4639 }
4640 EXPORT_SYMBOL_GPL(perf_tp_event);
4641
4642 static void tp_perf_event_destroy(struct perf_event *event)
4643 {
4644         perf_trace_destroy(event);
4645 }
4646
4647 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4648 {
4649         int err;
4650
4651         /*
4652          * Raw tracepoint data is a severe data leak, only allow root to
4653          * have these.
4654          */
4655         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4656                         perf_paranoid_tracepoint_raw() &&
4657                         !capable(CAP_SYS_ADMIN))
4658                 return ERR_PTR(-EPERM);
4659
4660         err = perf_trace_init(event);
4661         if (err)
4662                 return NULL;
4663
4664         event->destroy = tp_perf_event_destroy;
4665
4666         return &perf_ops_tracepoint;
4667 }
4668
4669 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4670 {
4671         char *filter_str;
4672         int ret;
4673
4674         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4675                 return -EINVAL;
4676
4677         filter_str = strndup_user(arg, PAGE_SIZE);
4678         if (IS_ERR(filter_str))
4679                 return PTR_ERR(filter_str);
4680
4681         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4682
4683         kfree(filter_str);
4684         return ret;
4685 }
4686
4687 static void perf_event_free_filter(struct perf_event *event)
4688 {
4689         ftrace_profile_free_filter(event);
4690 }
4691
4692 #else
4693
4694 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4695 {
4696         return NULL;
4697 }
4698
4699 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4700 {
4701         return -ENOENT;
4702 }
4703
4704 static void perf_event_free_filter(struct perf_event *event)
4705 {
4706 }
4707
4708 #endif /* CONFIG_EVENT_TRACING */
4709
4710 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4711 static void bp_perf_event_destroy(struct perf_event *event)
4712 {
4713         release_bp_slot(event);
4714 }
4715
4716 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4717 {
4718         int err;
4719
4720         err = register_perf_hw_breakpoint(bp);
4721         if (err)
4722                 return ERR_PTR(err);
4723
4724         bp->destroy = bp_perf_event_destroy;
4725
4726         return &perf_ops_bp;
4727 }
4728
4729 void perf_bp_event(struct perf_event *bp, void *data)
4730 {
4731         struct perf_sample_data sample;
4732         struct pt_regs *regs = data;
4733
4734         perf_sample_data_init(&sample, bp->attr.bp_addr);
4735
4736         if (!perf_exclude_event(bp, regs))
4737                 perf_swevent_add(bp, 1, 1, &sample, regs);
4738 }
4739 #else
4740 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4741 {
4742         return NULL;
4743 }
4744
4745 void perf_bp_event(struct perf_event *bp, void *regs)
4746 {
4747 }
4748 #endif
4749
4750 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4751
4752 static void sw_perf_event_destroy(struct perf_event *event)
4753 {
4754         u64 event_id = event->attr.config;
4755
4756         WARN_ON(event->parent);
4757
4758         atomic_dec(&perf_swevent_enabled[event_id]);
4759         swevent_hlist_put(event);
4760 }
4761
4762 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4763 {
4764         const struct pmu *pmu = NULL;
4765         u64 event_id = event->attr.config;
4766
4767         /*
4768          * Software events (currently) can't in general distinguish
4769          * between user, kernel and hypervisor events.
4770          * However, context switches and cpu migrations are considered
4771          * to be kernel events, and page faults are never hypervisor
4772          * events.
4773          */
4774         switch (event_id) {
4775         case PERF_COUNT_SW_CPU_CLOCK:
4776                 pmu = &perf_ops_cpu_clock;
4777
4778                 break;
4779         case PERF_COUNT_SW_TASK_CLOCK:
4780                 /*
4781                  * If the user instantiates this as a per-cpu event,
4782                  * use the cpu_clock event instead.
4783                  */
4784                 if (event->ctx->task)
4785                         pmu = &perf_ops_task_clock;
4786                 else
4787                         pmu = &perf_ops_cpu_clock;
4788
4789                 break;
4790         case PERF_COUNT_SW_PAGE_FAULTS:
4791         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4792         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4793         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4794         case PERF_COUNT_SW_CPU_MIGRATIONS:
4795         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4796         case PERF_COUNT_SW_EMULATION_FAULTS:
4797                 if (!event->parent) {
4798                         int err;
4799
4800                         err = swevent_hlist_get(event);
4801                         if (err)
4802                                 return ERR_PTR(err);
4803
4804                         atomic_inc(&perf_swevent_enabled[event_id]);
4805                         event->destroy = sw_perf_event_destroy;
4806                 }
4807                 pmu = &perf_ops_generic;
4808                 break;
4809         }
4810
4811         return pmu;
4812 }
4813
4814 /*
4815  * Allocate and initialize a event structure
4816  */
4817 static struct perf_event *
4818 perf_event_alloc(struct perf_event_attr *attr,
4819                    int cpu,
4820                    struct perf_event_context *ctx,
4821                    struct perf_event *group_leader,
4822                    struct perf_event *parent_event,
4823                    perf_overflow_handler_t overflow_handler,
4824                    gfp_t gfpflags)
4825 {
4826         const struct pmu *pmu;
4827         struct perf_event *event;
4828         struct hw_perf_event *hwc;
4829         long err;
4830
4831         event = kzalloc(sizeof(*event), gfpflags);
4832         if (!event)
4833                 return ERR_PTR(-ENOMEM);
4834
4835         /*
4836          * Single events are their own group leaders, with an
4837          * empty sibling list:
4838          */
4839         if (!group_leader)
4840                 group_leader = event;
4841
4842         mutex_init(&event->child_mutex);
4843         INIT_LIST_HEAD(&event->child_list);
4844
4845         INIT_LIST_HEAD(&event->group_entry);
4846         INIT_LIST_HEAD(&event->event_entry);
4847         INIT_LIST_HEAD(&event->sibling_list);
4848         init_waitqueue_head(&event->waitq);
4849
4850         mutex_init(&event->mmap_mutex);
4851
4852         event->cpu              = cpu;
4853         event->attr             = *attr;
4854         event->group_leader     = group_leader;
4855         event->pmu              = NULL;
4856         event->ctx              = ctx;
4857         event->oncpu            = -1;
4858
4859         event->parent           = parent_event;
4860
4861         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4862         event->id               = atomic64_inc_return(&perf_event_id);
4863
4864         event->state            = PERF_EVENT_STATE_INACTIVE;
4865
4866         if (!overflow_handler && parent_event)
4867                 overflow_handler = parent_event->overflow_handler;
4868         
4869         event->overflow_handler = overflow_handler;
4870
4871         if (attr->disabled)
4872                 event->state = PERF_EVENT_STATE_OFF;
4873
4874         pmu = NULL;
4875
4876         hwc = &event->hw;
4877         hwc->sample_period = attr->sample_period;
4878         if (attr->freq && attr->sample_freq)
4879                 hwc->sample_period = 1;
4880         hwc->last_period = hwc->sample_period;
4881
4882         local64_set(&hwc->period_left, hwc->sample_period);
4883
4884         /*
4885          * we currently do not support PERF_FORMAT_GROUP on inherited events
4886          */
4887         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4888                 goto done;
4889
4890         switch (attr->type) {
4891         case PERF_TYPE_RAW:
4892         case PERF_TYPE_HARDWARE:
4893         case PERF_TYPE_HW_CACHE:
4894                 pmu = hw_perf_event_init(event);
4895                 break;
4896
4897         case PERF_TYPE_SOFTWARE:
4898                 pmu = sw_perf_event_init(event);
4899                 break;
4900
4901         case PERF_TYPE_TRACEPOINT:
4902                 pmu = tp_perf_event_init(event);
4903                 break;
4904
4905         case PERF_TYPE_BREAKPOINT:
4906                 pmu = bp_perf_event_init(event);
4907                 break;
4908
4909
4910         default:
4911                 break;
4912         }
4913 done:
4914         err = 0;
4915         if (!pmu)
4916                 err = -EINVAL;
4917         else if (IS_ERR(pmu))
4918                 err = PTR_ERR(pmu);
4919
4920         if (err) {
4921                 if (event->ns)
4922                         put_pid_ns(event->ns);
4923                 kfree(event);
4924                 return ERR_PTR(err);
4925         }
4926
4927         event->pmu = pmu;
4928
4929         if (!event->parent) {
4930                 atomic_inc(&nr_events);
4931                 if (event->attr.mmap || event->attr.mmap_data)
4932                         atomic_inc(&nr_mmap_events);
4933                 if (event->attr.comm)
4934                         atomic_inc(&nr_comm_events);
4935                 if (event->attr.task)
4936                         atomic_inc(&nr_task_events);
4937         }
4938
4939         return event;
4940 }
4941
4942 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4943                           struct perf_event_attr *attr)
4944 {
4945         u32 size;
4946         int ret;
4947
4948         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4949                 return -EFAULT;
4950
4951         /*
4952          * zero the full structure, so that a short copy will be nice.
4953          */
4954         memset(attr, 0, sizeof(*attr));
4955
4956         ret = get_user(size, &uattr->size);
4957         if (ret)
4958                 return ret;
4959
4960         if (size > PAGE_SIZE)   /* silly large */
4961                 goto err_size;
4962
4963         if (!size)              /* abi compat */
4964                 size = PERF_ATTR_SIZE_VER0;
4965
4966         if (size < PERF_ATTR_SIZE_VER0)
4967                 goto err_size;
4968
4969         /*
4970          * If we're handed a bigger struct than we know of,
4971          * ensure all the unknown bits are 0 - i.e. new
4972          * user-space does not rely on any kernel feature
4973          * extensions we dont know about yet.
4974          */
4975         if (size > sizeof(*attr)) {
4976                 unsigned char __user *addr;
4977                 unsigned char __user *end;
4978                 unsigned char val;
4979
4980                 addr = (void __user *)uattr + sizeof(*attr);
4981                 end  = (void __user *)uattr + size;
4982
4983                 for (; addr < end; addr++) {
4984                         ret = get_user(val, addr);
4985                         if (ret)
4986                                 return ret;
4987                         if (val)
4988                                 goto err_size;
4989                 }
4990                 size = sizeof(*attr);
4991         }
4992
4993         ret = copy_from_user(attr, uattr, size);
4994         if (ret)
4995                 return -EFAULT;
4996
4997         /*
4998          * If the type exists, the corresponding creation will verify
4999          * the attr->config.
5000          */
5001         if (attr->type >= PERF_TYPE_MAX)
5002                 return -EINVAL;
5003
5004         if (attr->__reserved_1)
5005                 return -EINVAL;
5006
5007         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5008                 return -EINVAL;
5009
5010         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5011                 return -EINVAL;
5012
5013 out:
5014         return ret;
5015
5016 err_size:
5017         put_user(sizeof(*attr), &uattr->size);
5018         ret = -E2BIG;
5019         goto out;
5020 }
5021
5022 static int
5023 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5024 {
5025         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5026         int ret = -EINVAL;
5027
5028         if (!output_event)
5029                 goto set;
5030
5031         /* don't allow circular references */
5032         if (event == output_event)
5033                 goto out;
5034
5035         /*
5036          * Don't allow cross-cpu buffers
5037          */
5038         if (output_event->cpu != event->cpu)
5039                 goto out;
5040
5041         /*
5042          * If its not a per-cpu buffer, it must be the same task.
5043          */
5044         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5045                 goto out;
5046
5047 set:
5048         mutex_lock(&event->mmap_mutex);
5049         /* Can't redirect output if we've got an active mmap() */
5050         if (atomic_read(&event->mmap_count))
5051                 goto unlock;
5052
5053         if (output_event) {
5054                 /* get the buffer we want to redirect to */
5055                 buffer = perf_buffer_get(output_event);
5056                 if (!buffer)
5057                         goto unlock;
5058         }
5059
5060         old_buffer = event->buffer;
5061         rcu_assign_pointer(event->buffer, buffer);
5062         ret = 0;
5063 unlock:
5064         mutex_unlock(&event->mmap_mutex);
5065
5066         if (old_buffer)
5067                 perf_buffer_put(old_buffer);
5068 out:
5069         return ret;
5070 }
5071
5072 /**
5073  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5074  *
5075  * @attr_uptr:  event_id type attributes for monitoring/sampling
5076  * @pid:                target pid
5077  * @cpu:                target cpu
5078  * @group_fd:           group leader event fd
5079  */
5080 SYSCALL_DEFINE5(perf_event_open,
5081                 struct perf_event_attr __user *, attr_uptr,
5082                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5083 {
5084         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5085         struct perf_event_attr attr;
5086         struct perf_event_context *ctx;
5087         struct file *event_file = NULL;
5088         struct file *group_file = NULL;
5089         int event_fd;
5090         int fput_needed = 0;
5091         int err;
5092
5093         /* for future expandability... */
5094         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5095                 return -EINVAL;
5096
5097         err = perf_copy_attr(attr_uptr, &attr);
5098         if (err)
5099                 return err;
5100
5101         if (!attr.exclude_kernel) {
5102                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5103                         return -EACCES;
5104         }
5105
5106         if (attr.freq) {
5107                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5108                         return -EINVAL;
5109         }
5110
5111         event_fd = get_unused_fd_flags(O_RDWR);
5112         if (event_fd < 0)
5113                 return event_fd;
5114
5115         /*
5116          * Get the target context (task or percpu):
5117          */
5118         ctx = find_get_context(pid, cpu);
5119         if (IS_ERR(ctx)) {
5120                 err = PTR_ERR(ctx);
5121                 goto err_fd;
5122         }
5123
5124         if (group_fd != -1) {
5125                 group_leader = perf_fget_light(group_fd, &fput_needed);
5126                 if (IS_ERR(group_leader)) {
5127                         err = PTR_ERR(group_leader);
5128                         goto err_put_context;
5129                 }
5130                 group_file = group_leader->filp;
5131                 if (flags & PERF_FLAG_FD_OUTPUT)
5132                         output_event = group_leader;
5133                 if (flags & PERF_FLAG_FD_NO_GROUP)
5134                         group_leader = NULL;
5135         }
5136
5137         /*
5138          * Look up the group leader (we will attach this event to it):
5139          */
5140         if (group_leader) {
5141                 err = -EINVAL;
5142
5143                 /*
5144                  * Do not allow a recursive hierarchy (this new sibling
5145                  * becoming part of another group-sibling):
5146                  */
5147                 if (group_leader->group_leader != group_leader)
5148                         goto err_put_context;
5149                 /*
5150                  * Do not allow to attach to a group in a different
5151                  * task or CPU context:
5152                  */
5153                 if (group_leader->ctx != ctx)
5154                         goto err_put_context;
5155                 /*
5156                  * Only a group leader can be exclusive or pinned
5157                  */
5158                 if (attr.exclusive || attr.pinned)
5159                         goto err_put_context;
5160         }
5161
5162         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5163                                      NULL, NULL, GFP_KERNEL);
5164         if (IS_ERR(event)) {
5165                 err = PTR_ERR(event);
5166                 goto err_put_context;
5167         }
5168
5169         if (output_event) {
5170                 err = perf_event_set_output(event, output_event);
5171                 if (err)
5172                         goto err_free_put_context;
5173         }
5174
5175         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5176         if (IS_ERR(event_file)) {
5177                 err = PTR_ERR(event_file);
5178                 goto err_free_put_context;
5179         }
5180
5181         event->filp = event_file;
5182         WARN_ON_ONCE(ctx->parent_ctx);
5183         mutex_lock(&ctx->mutex);
5184         perf_install_in_context(ctx, event, cpu);
5185         ++ctx->generation;
5186         mutex_unlock(&ctx->mutex);
5187
5188         event->owner = current;
5189         get_task_struct(current);
5190         mutex_lock(&current->perf_event_mutex);
5191         list_add_tail(&event->owner_entry, &current->perf_event_list);
5192         mutex_unlock(&current->perf_event_mutex);
5193
5194         /*
5195          * Drop the reference on the group_event after placing the
5196          * new event on the sibling_list. This ensures destruction
5197          * of the group leader will find the pointer to itself in
5198          * perf_group_detach().
5199          */
5200         fput_light(group_file, fput_needed);
5201         fd_install(event_fd, event_file);
5202         return event_fd;
5203
5204 err_free_put_context:
5205         free_event(event);
5206 err_put_context:
5207         fput_light(group_file, fput_needed);
5208         put_ctx(ctx);
5209 err_fd:
5210         put_unused_fd(event_fd);
5211         return err;
5212 }
5213
5214 /**
5215  * perf_event_create_kernel_counter
5216  *
5217  * @attr: attributes of the counter to create
5218  * @cpu: cpu in which the counter is bound
5219  * @pid: task to profile
5220  */
5221 struct perf_event *
5222 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5223                                  pid_t pid,
5224                                  perf_overflow_handler_t overflow_handler)
5225 {
5226         struct perf_event *event;
5227         struct perf_event_context *ctx;
5228         int err;
5229
5230         /*
5231          * Get the target context (task or percpu):
5232          */
5233
5234         ctx = find_get_context(pid, cpu);
5235         if (IS_ERR(ctx)) {
5236                 err = PTR_ERR(ctx);
5237                 goto err_exit;
5238         }
5239
5240         event = perf_event_alloc(attr, cpu, ctx, NULL,
5241                                  NULL, overflow_handler, GFP_KERNEL);
5242         if (IS_ERR(event)) {
5243                 err = PTR_ERR(event);
5244                 goto err_put_context;
5245         }
5246
5247         event->filp = NULL;
5248         WARN_ON_ONCE(ctx->parent_ctx);
5249         mutex_lock(&ctx->mutex);
5250         perf_install_in_context(ctx, event, cpu);
5251         ++ctx->generation;
5252         mutex_unlock(&ctx->mutex);
5253
5254         event->owner = current;
5255         get_task_struct(current);
5256         mutex_lock(&current->perf_event_mutex);
5257         list_add_tail(&event->owner_entry, &current->perf_event_list);
5258         mutex_unlock(&current->perf_event_mutex);
5259
5260         return event;
5261
5262  err_put_context:
5263         put_ctx(ctx);
5264  err_exit:
5265         return ERR_PTR(err);
5266 }
5267 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5268
5269 /*
5270  * inherit a event from parent task to child task:
5271  */
5272 static struct perf_event *
5273 inherit_event(struct perf_event *parent_event,
5274               struct task_struct *parent,
5275               struct perf_event_context *parent_ctx,
5276               struct task_struct *child,
5277               struct perf_event *group_leader,
5278               struct perf_event_context *child_ctx)
5279 {
5280         struct perf_event *child_event;
5281
5282         /*
5283          * Instead of creating recursive hierarchies of events,
5284          * we link inherited events back to the original parent,
5285          * which has a filp for sure, which we use as the reference
5286          * count:
5287          */
5288         if (parent_event->parent)
5289                 parent_event = parent_event->parent;
5290
5291         child_event = perf_event_alloc(&parent_event->attr,
5292                                            parent_event->cpu, child_ctx,
5293                                            group_leader, parent_event,
5294                                            NULL, GFP_KERNEL);
5295         if (IS_ERR(child_event))
5296                 return child_event;
5297         get_ctx(child_ctx);
5298
5299         /*
5300          * Make the child state follow the state of the parent event,
5301          * not its attr.disabled bit.  We hold the parent's mutex,
5302          * so we won't race with perf_event_{en, dis}able_family.
5303          */
5304         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5305                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5306         else
5307                 child_event->state = PERF_EVENT_STATE_OFF;
5308
5309         if (parent_event->attr.freq) {
5310                 u64 sample_period = parent_event->hw.sample_period;
5311                 struct hw_perf_event *hwc = &child_event->hw;
5312
5313                 hwc->sample_period = sample_period;
5314                 hwc->last_period   = sample_period;
5315
5316                 local64_set(&hwc->period_left, sample_period);
5317         }
5318
5319         child_event->overflow_handler = parent_event->overflow_handler;
5320
5321         /*
5322          * Link it up in the child's context:
5323          */
5324         add_event_to_ctx(child_event, child_ctx);
5325
5326         /*
5327          * Get a reference to the parent filp - we will fput it
5328          * when the child event exits. This is safe to do because
5329          * we are in the parent and we know that the filp still
5330          * exists and has a nonzero count:
5331          */
5332         atomic_long_inc(&parent_event->filp->f_count);
5333
5334         /*
5335          * Link this into the parent event's child list
5336          */
5337         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5338         mutex_lock(&parent_event->child_mutex);
5339         list_add_tail(&child_event->child_list, &parent_event->child_list);
5340         mutex_unlock(&parent_event->child_mutex);
5341
5342         return child_event;
5343 }
5344
5345 static int inherit_group(struct perf_event *parent_event,
5346               struct task_struct *parent,
5347               struct perf_event_context *parent_ctx,
5348               struct task_struct *child,
5349               struct perf_event_context *child_ctx)
5350 {
5351         struct perf_event *leader;
5352         struct perf_event *sub;
5353         struct perf_event *child_ctr;
5354
5355         leader = inherit_event(parent_event, parent, parent_ctx,
5356                                  child, NULL, child_ctx);
5357         if (IS_ERR(leader))
5358                 return PTR_ERR(leader);
5359         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5360                 child_ctr = inherit_event(sub, parent, parent_ctx,
5361                                             child, leader, child_ctx);
5362                 if (IS_ERR(child_ctr))
5363                         return PTR_ERR(child_ctr);
5364         }
5365         return 0;
5366 }
5367
5368 static void sync_child_event(struct perf_event *child_event,
5369                                struct task_struct *child)
5370 {
5371         struct perf_event *parent_event = child_event->parent;
5372         u64 child_val;
5373
5374         if (child_event->attr.inherit_stat)
5375                 perf_event_read_event(child_event, child);
5376
5377         child_val = perf_event_count(child_event);
5378
5379         /*
5380          * Add back the child's count to the parent's count:
5381          */
5382         atomic64_add(child_val, &parent_event->child_count);
5383         atomic64_add(child_event->total_time_enabled,
5384                      &parent_event->child_total_time_enabled);
5385         atomic64_add(child_event->total_time_running,
5386                      &parent_event->child_total_time_running);
5387
5388         /*
5389          * Remove this event from the parent's list
5390          */
5391         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5392         mutex_lock(&parent_event->child_mutex);
5393         list_del_init(&child_event->child_list);
5394         mutex_unlock(&parent_event->child_mutex);
5395
5396         /*
5397          * Release the parent event, if this was the last
5398          * reference to it.
5399          */
5400         fput(parent_event->filp);
5401 }
5402
5403 static void
5404 __perf_event_exit_task(struct perf_event *child_event,
5405                          struct perf_event_context *child_ctx,
5406                          struct task_struct *child)
5407 {
5408         struct perf_event *parent_event;
5409
5410         perf_event_remove_from_context(child_event);
5411
5412         parent_event = child_event->parent;
5413         /*
5414          * It can happen that parent exits first, and has events
5415          * that are still around due to the child reference. These
5416          * events need to be zapped - but otherwise linger.
5417          */
5418         if (parent_event) {
5419                 sync_child_event(child_event, child);
5420                 free_event(child_event);
5421         }
5422 }
5423
5424 /*
5425  * When a child task exits, feed back event values to parent events.
5426  */
5427 void perf_event_exit_task(struct task_struct *child)
5428 {
5429         struct perf_event *child_event, *tmp;
5430         struct perf_event_context *child_ctx;
5431         unsigned long flags;
5432
5433         if (likely(!child->perf_event_ctxp)) {
5434                 perf_event_task(child, NULL, 0);
5435                 return;
5436         }
5437
5438         local_irq_save(flags);
5439         /*
5440          * We can't reschedule here because interrupts are disabled,
5441          * and either child is current or it is a task that can't be
5442          * scheduled, so we are now safe from rescheduling changing
5443          * our context.
5444          */
5445         child_ctx = child->perf_event_ctxp;
5446         __perf_event_task_sched_out(child_ctx);
5447
5448         /*
5449          * Take the context lock here so that if find_get_context is
5450          * reading child->perf_event_ctxp, we wait until it has
5451          * incremented the context's refcount before we do put_ctx below.
5452          */
5453         raw_spin_lock(&child_ctx->lock);
5454         child->perf_event_ctxp = NULL;
5455         /*
5456          * If this context is a clone; unclone it so it can't get
5457          * swapped to another process while we're removing all
5458          * the events from it.
5459          */
5460         unclone_ctx(child_ctx);
5461         update_context_time(child_ctx);
5462         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5463
5464         /*
5465          * Report the task dead after unscheduling the events so that we
5466          * won't get any samples after PERF_RECORD_EXIT. We can however still
5467          * get a few PERF_RECORD_READ events.
5468          */
5469         perf_event_task(child, child_ctx, 0);
5470
5471         /*
5472          * We can recurse on the same lock type through:
5473          *
5474          *   __perf_event_exit_task()
5475          *     sync_child_event()
5476          *       fput(parent_event->filp)
5477          *         perf_release()
5478          *           mutex_lock(&ctx->mutex)
5479          *
5480          * But since its the parent context it won't be the same instance.
5481          */
5482         mutex_lock(&child_ctx->mutex);
5483
5484 again:
5485         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5486                                  group_entry)
5487                 __perf_event_exit_task(child_event, child_ctx, child);
5488
5489         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5490                                  group_entry)
5491                 __perf_event_exit_task(child_event, child_ctx, child);
5492
5493         /*
5494          * If the last event was a group event, it will have appended all
5495          * its siblings to the list, but we obtained 'tmp' before that which
5496          * will still point to the list head terminating the iteration.
5497          */
5498         if (!list_empty(&child_ctx->pinned_groups) ||
5499             !list_empty(&child_ctx->flexible_groups))
5500                 goto again;
5501
5502         mutex_unlock(&child_ctx->mutex);
5503
5504         put_ctx(child_ctx);
5505 }
5506
5507 static void perf_free_event(struct perf_event *event,
5508                             struct perf_event_context *ctx)
5509 {
5510         struct perf_event *parent = event->parent;
5511
5512         if (WARN_ON_ONCE(!parent))
5513                 return;
5514
5515         mutex_lock(&parent->child_mutex);
5516         list_del_init(&event->child_list);
5517         mutex_unlock(&parent->child_mutex);
5518
5519         fput(parent->filp);
5520
5521         perf_group_detach(event);
5522         list_del_event(event, ctx);
5523         free_event(event);
5524 }
5525
5526 /*
5527  * free an unexposed, unused context as created by inheritance by
5528  * init_task below, used by fork() in case of fail.
5529  */
5530 void perf_event_free_task(struct task_struct *task)
5531 {
5532         struct perf_event_context *ctx = task->perf_event_ctxp;
5533         struct perf_event *event, *tmp;
5534
5535         if (!ctx)
5536                 return;
5537
5538         mutex_lock(&ctx->mutex);
5539 again:
5540         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5541                 perf_free_event(event, ctx);
5542
5543         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5544                                  group_entry)
5545                 perf_free_event(event, ctx);
5546
5547         if (!list_empty(&ctx->pinned_groups) ||
5548             !list_empty(&ctx->flexible_groups))
5549                 goto again;
5550
5551         mutex_unlock(&ctx->mutex);
5552
5553         put_ctx(ctx);
5554 }
5555
5556 static int
5557 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5558                    struct perf_event_context *parent_ctx,
5559                    struct task_struct *child,
5560                    int *inherited_all)
5561 {
5562         int ret;
5563         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5564
5565         if (!event->attr.inherit) {
5566                 *inherited_all = 0;
5567                 return 0;
5568         }
5569
5570         if (!child_ctx) {
5571                 /*
5572                  * This is executed from the parent task context, so
5573                  * inherit events that have been marked for cloning.
5574                  * First allocate and initialize a context for the
5575                  * child.
5576                  */
5577
5578                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5579                                     GFP_KERNEL);
5580                 if (!child_ctx)
5581                         return -ENOMEM;
5582
5583                 __perf_event_init_context(child_ctx, child);
5584                 child->perf_event_ctxp = child_ctx;
5585                 get_task_struct(child);
5586         }
5587
5588         ret = inherit_group(event, parent, parent_ctx,
5589                             child, child_ctx);
5590
5591         if (ret)
5592                 *inherited_all = 0;
5593
5594         return ret;
5595 }
5596
5597
5598 /*
5599  * Initialize the perf_event context in task_struct
5600  */
5601 int perf_event_init_task(struct task_struct *child)
5602 {
5603         struct perf_event_context *child_ctx, *parent_ctx;
5604         struct perf_event_context *cloned_ctx;
5605         struct perf_event *event;
5606         struct task_struct *parent = current;
5607         int inherited_all = 1;
5608         int ret = 0;
5609
5610         child->perf_event_ctxp = NULL;
5611
5612         mutex_init(&child->perf_event_mutex);
5613         INIT_LIST_HEAD(&child->perf_event_list);
5614
5615         if (likely(!parent->perf_event_ctxp))
5616                 return 0;
5617
5618         /*
5619          * If the parent's context is a clone, pin it so it won't get
5620          * swapped under us.
5621          */
5622         parent_ctx = perf_pin_task_context(parent);
5623
5624         /*
5625          * No need to check if parent_ctx != NULL here; since we saw
5626          * it non-NULL earlier, the only reason for it to become NULL
5627          * is if we exit, and since we're currently in the middle of
5628          * a fork we can't be exiting at the same time.
5629          */
5630
5631         /*
5632          * Lock the parent list. No need to lock the child - not PID
5633          * hashed yet and not running, so nobody can access it.
5634          */
5635         mutex_lock(&parent_ctx->mutex);
5636
5637         /*
5638          * We dont have to disable NMIs - we are only looking at
5639          * the list, not manipulating it:
5640          */
5641         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5642                 ret = inherit_task_group(event, parent, parent_ctx, child,
5643                                          &inherited_all);
5644                 if (ret)
5645                         break;
5646         }
5647
5648         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5649                 ret = inherit_task_group(event, parent, parent_ctx, child,
5650                                          &inherited_all);
5651                 if (ret)
5652                         break;
5653         }
5654
5655         child_ctx = child->perf_event_ctxp;
5656
5657         if (child_ctx && inherited_all) {
5658                 /*
5659                  * Mark the child context as a clone of the parent
5660                  * context, or of whatever the parent is a clone of.
5661                  * Note that if the parent is a clone, it could get
5662                  * uncloned at any point, but that doesn't matter
5663                  * because the list of events and the generation
5664                  * count can't have changed since we took the mutex.
5665                  */
5666                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5667                 if (cloned_ctx) {
5668                         child_ctx->parent_ctx = cloned_ctx;
5669                         child_ctx->parent_gen = parent_ctx->parent_gen;
5670                 } else {
5671                         child_ctx->parent_ctx = parent_ctx;
5672                         child_ctx->parent_gen = parent_ctx->generation;
5673                 }
5674                 get_ctx(child_ctx->parent_ctx);
5675         }
5676
5677         mutex_unlock(&parent_ctx->mutex);
5678
5679         perf_unpin_context(parent_ctx);
5680
5681         return ret;
5682 }
5683
5684 static void __init perf_event_init_all_cpus(void)
5685 {
5686         int cpu;
5687         struct perf_cpu_context *cpuctx;
5688
5689         for_each_possible_cpu(cpu) {
5690                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5691                 mutex_init(&cpuctx->hlist_mutex);
5692                 __perf_event_init_context(&cpuctx->ctx, NULL);
5693         }
5694 }
5695
5696 static void __cpuinit perf_event_init_cpu(int cpu)
5697 {
5698         struct perf_cpu_context *cpuctx;
5699
5700         cpuctx = &per_cpu(perf_cpu_context, cpu);
5701
5702         spin_lock(&perf_resource_lock);
5703         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5704         spin_unlock(&perf_resource_lock);
5705
5706         mutex_lock(&cpuctx->hlist_mutex);
5707         if (cpuctx->hlist_refcount > 0) {
5708                 struct swevent_hlist *hlist;
5709
5710                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5711                 WARN_ON_ONCE(!hlist);
5712                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5713         }
5714         mutex_unlock(&cpuctx->hlist_mutex);
5715 }
5716
5717 #ifdef CONFIG_HOTPLUG_CPU
5718 static void __perf_event_exit_cpu(void *info)
5719 {
5720         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5721         struct perf_event_context *ctx = &cpuctx->ctx;
5722         struct perf_event *event, *tmp;
5723
5724         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5725                 __perf_event_remove_from_context(event);
5726         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5727                 __perf_event_remove_from_context(event);
5728 }
5729 static void perf_event_exit_cpu(int cpu)
5730 {
5731         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5732         struct perf_event_context *ctx = &cpuctx->ctx;
5733
5734         mutex_lock(&cpuctx->hlist_mutex);
5735         swevent_hlist_release(cpuctx);
5736         mutex_unlock(&cpuctx->hlist_mutex);
5737
5738         mutex_lock(&ctx->mutex);
5739         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5740         mutex_unlock(&ctx->mutex);
5741 }
5742 #else
5743 static inline void perf_event_exit_cpu(int cpu) { }
5744 #endif
5745
5746 static int __cpuinit
5747 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5748 {
5749         unsigned int cpu = (long)hcpu;
5750
5751         switch (action) {
5752
5753         case CPU_UP_PREPARE:
5754         case CPU_UP_PREPARE_FROZEN:
5755                 perf_event_init_cpu(cpu);
5756                 break;
5757
5758         case CPU_DOWN_PREPARE:
5759         case CPU_DOWN_PREPARE_FROZEN:
5760                 perf_event_exit_cpu(cpu);
5761                 break;
5762
5763         default:
5764                 break;
5765         }
5766
5767         return NOTIFY_OK;
5768 }
5769
5770 /*
5771  * This has to have a higher priority than migration_notifier in sched.c.
5772  */
5773 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5774         .notifier_call          = perf_cpu_notify,
5775         .priority               = 20,
5776 };
5777
5778 void __init perf_event_init(void)
5779 {
5780         perf_event_init_all_cpus();
5781         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5782                         (void *)(long)smp_processor_id());
5783         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5784                         (void *)(long)smp_processor_id());
5785         register_cpu_notifier(&perf_cpu_nb);
5786 }
5787
5788 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5789                                         struct sysdev_class_attribute *attr,
5790                                         char *buf)
5791 {
5792         return sprintf(buf, "%d\n", perf_reserved_percpu);
5793 }
5794
5795 static ssize_t
5796 perf_set_reserve_percpu(struct sysdev_class *class,
5797                         struct sysdev_class_attribute *attr,
5798                         const char *buf,
5799                         size_t count)
5800 {
5801         struct perf_cpu_context *cpuctx;
5802         unsigned long val;
5803         int err, cpu, mpt;
5804
5805         err = strict_strtoul(buf, 10, &val);
5806         if (err)
5807                 return err;
5808         if (val > perf_max_events)
5809                 return -EINVAL;
5810
5811         spin_lock(&perf_resource_lock);
5812         perf_reserved_percpu = val;
5813         for_each_online_cpu(cpu) {
5814                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5815                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5816                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5817                           perf_max_events - perf_reserved_percpu);
5818                 cpuctx->max_pertask = mpt;
5819                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5820         }
5821         spin_unlock(&perf_resource_lock);
5822
5823         return count;
5824 }
5825
5826 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5827                                     struct sysdev_class_attribute *attr,
5828                                     char *buf)
5829 {
5830         return sprintf(buf, "%d\n", perf_overcommit);
5831 }
5832
5833 static ssize_t
5834 perf_set_overcommit(struct sysdev_class *class,
5835                     struct sysdev_class_attribute *attr,
5836                     const char *buf, size_t count)
5837 {
5838         unsigned long val;
5839         int err;
5840
5841         err = strict_strtoul(buf, 10, &val);
5842         if (err)
5843                 return err;
5844         if (val > 1)
5845                 return -EINVAL;
5846
5847         spin_lock(&perf_resource_lock);
5848         perf_overcommit = val;
5849         spin_unlock(&perf_resource_lock);
5850
5851         return count;
5852 }
5853
5854 static SYSDEV_CLASS_ATTR(
5855                                 reserve_percpu,
5856                                 0644,
5857                                 perf_show_reserve_percpu,
5858                                 perf_set_reserve_percpu
5859                         );
5860
5861 static SYSDEV_CLASS_ATTR(
5862                                 overcommit,
5863                                 0644,
5864                                 perf_show_overcommit,
5865                                 perf_set_overcommit
5866                         );
5867
5868 static struct attribute *perfclass_attrs[] = {
5869         &attr_reserve_percpu.attr,
5870         &attr_overcommit.attr,
5871         NULL
5872 };
5873
5874 static struct attribute_group perfclass_attr_group = {
5875         .attrs                  = perfclass_attrs,
5876         .name                   = "perf_events",
5877 };
5878
5879 static int __init perf_event_sysfs_init(void)
5880 {
5881         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5882                                   &perfclass_attr_group);
5883 }
5884 device_initcall(perf_event_sysfs_init);