perf: Optimize sw events
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         /*
319          * We can have double attach due to group movement in perf_event_open.
320          */
321         if (event->attach_state & PERF_ATTACH_GROUP)
322                 return;
323
324         event->attach_state |= PERF_ATTACH_GROUP;
325
326         if (group_leader == event)
327                 return;
328
329         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330                         !is_software_event(event))
331                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333         list_add_tail(&event->group_entry, &group_leader->sibling_list);
334         group_leader->nr_siblings++;
335 }
336
337 /*
338  * Remove a event from the lists for its context.
339  * Must be called with ctx->mutex and ctx->lock held.
340  */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344         /*
345          * We can have double detach due to exit/hot-unplug + close.
346          */
347         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348                 return;
349
350         event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352         ctx->nr_events--;
353         if (event->attr.inherit_stat)
354                 ctx->nr_stat--;
355
356         list_del_rcu(&event->event_entry);
357
358         if (event->group_leader == event)
359                 list_del_init(&event->group_entry);
360
361         update_group_times(event);
362
363         /*
364          * If event was in error state, then keep it
365          * that way, otherwise bogus counts will be
366          * returned on read(). The only way to get out
367          * of error state is by explicit re-enabling
368          * of the event
369          */
370         if (event->state > PERF_EVENT_STATE_OFF)
371                 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376         struct perf_event *sibling, *tmp;
377         struct list_head *list = NULL;
378
379         /*
380          * We can have double detach due to exit/hot-unplug + close.
381          */
382         if (!(event->attach_state & PERF_ATTACH_GROUP))
383                 return;
384
385         event->attach_state &= ~PERF_ATTACH_GROUP;
386
387         /*
388          * If this is a sibling, remove it from its group.
389          */
390         if (event->group_leader != event) {
391                 list_del_init(&event->group_entry);
392                 event->group_leader->nr_siblings--;
393                 return;
394         }
395
396         if (!list_empty(&event->group_entry))
397                 list = &event->group_entry;
398
399         /*
400          * If this was a group event with sibling events then
401          * upgrade the siblings to singleton events by adding them
402          * to whatever list we are on.
403          */
404         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405                 if (list)
406                         list_move_tail(&sibling->group_entry, list);
407                 sibling->group_leader = sibling;
408
409                 /* Inherit group flags from the previous leader */
410                 sibling->group_flags = event->group_flags;
411         }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417         return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static int
421 __event_sched_out(struct perf_event *event,
422                   struct perf_cpu_context *cpuctx,
423                   struct perf_event_context *ctx)
424 {
425         u64 delta;
426         /*
427          * An event which could not be activated because of
428          * filter mismatch still needs to have its timings
429          * maintained, otherwise bogus information is return
430          * via read() for time_enabled, time_running:
431          */
432         if (event->state == PERF_EVENT_STATE_INACTIVE
433             && !event_filter_match(event)) {
434                 delta = ctx->time - event->tstamp_stopped;
435                 event->tstamp_running += delta;
436                 event->tstamp_stopped = ctx->time;
437         }
438
439         if (event->state != PERF_EVENT_STATE_ACTIVE)
440                 return 0;
441
442         event->state = PERF_EVENT_STATE_INACTIVE;
443         if (event->pending_disable) {
444                 event->pending_disable = 0;
445                 event->state = PERF_EVENT_STATE_OFF;
446         }
447         event->pmu->del(event, 0);
448         event->oncpu = -1;
449
450         if (!is_software_event(event))
451                 cpuctx->active_oncpu--;
452         ctx->nr_active--;
453         if (event->attr.exclusive || !cpuctx->active_oncpu)
454                 cpuctx->exclusive = 0;
455         return 1;
456 }
457
458 static void
459 event_sched_out(struct perf_event *event,
460                   struct perf_cpu_context *cpuctx,
461                   struct perf_event_context *ctx)
462 {
463         int ret;
464
465         ret = __event_sched_out(event, cpuctx, ctx);
466         if (ret)
467                 event->tstamp_stopped = ctx->time;
468 }
469
470 static void
471 group_sched_out(struct perf_event *group_event,
472                 struct perf_cpu_context *cpuctx,
473                 struct perf_event_context *ctx)
474 {
475         struct perf_event *event;
476         int state = group_event->state;
477
478         event_sched_out(group_event, cpuctx, ctx);
479
480         /*
481          * Schedule out siblings (if any):
482          */
483         list_for_each_entry(event, &group_event->sibling_list, group_entry)
484                 event_sched_out(event, cpuctx, ctx);
485
486         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487                 cpuctx->exclusive = 0;
488 }
489
490 static inline struct perf_cpu_context *
491 __get_cpu_context(struct perf_event_context *ctx)
492 {
493         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
494 }
495
496 /*
497  * Cross CPU call to remove a performance event
498  *
499  * We disable the event on the hardware level first. After that we
500  * remove it from the context list.
501  */
502 static void __perf_event_remove_from_context(void *info)
503 {
504         struct perf_event *event = info;
505         struct perf_event_context *ctx = event->ctx;
506         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
507
508         /*
509          * If this is a task context, we need to check whether it is
510          * the current task context of this cpu. If not it has been
511          * scheduled out before the smp call arrived.
512          */
513         if (ctx->task && cpuctx->task_ctx != ctx)
514                 return;
515
516         raw_spin_lock(&ctx->lock);
517
518         event_sched_out(event, cpuctx, ctx);
519
520         list_del_event(event, ctx);
521
522         raw_spin_unlock(&ctx->lock);
523 }
524
525
526 /*
527  * Remove the event from a task's (or a CPU's) list of events.
528  *
529  * Must be called with ctx->mutex held.
530  *
531  * CPU events are removed with a smp call. For task events we only
532  * call when the task is on a CPU.
533  *
534  * If event->ctx is a cloned context, callers must make sure that
535  * every task struct that event->ctx->task could possibly point to
536  * remains valid.  This is OK when called from perf_release since
537  * that only calls us on the top-level context, which can't be a clone.
538  * When called from perf_event_exit_task, it's OK because the
539  * context has been detached from its task.
540  */
541 static void perf_event_remove_from_context(struct perf_event *event)
542 {
543         struct perf_event_context *ctx = event->ctx;
544         struct task_struct *task = ctx->task;
545
546         if (!task) {
547                 /*
548                  * Per cpu events are removed via an smp call and
549                  * the removal is always successful.
550                  */
551                 smp_call_function_single(event->cpu,
552                                          __perf_event_remove_from_context,
553                                          event, 1);
554                 return;
555         }
556
557 retry:
558         task_oncpu_function_call(task, __perf_event_remove_from_context,
559                                  event);
560
561         raw_spin_lock_irq(&ctx->lock);
562         /*
563          * If the context is active we need to retry the smp call.
564          */
565         if (ctx->nr_active && !list_empty(&event->group_entry)) {
566                 raw_spin_unlock_irq(&ctx->lock);
567                 goto retry;
568         }
569
570         /*
571          * The lock prevents that this context is scheduled in so we
572          * can remove the event safely, if the call above did not
573          * succeed.
574          */
575         if (!list_empty(&event->group_entry))
576                 list_del_event(event, ctx);
577         raw_spin_unlock_irq(&ctx->lock);
578 }
579
580 /*
581  * Cross CPU call to disable a performance event
582  */
583 static void __perf_event_disable(void *info)
584 {
585         struct perf_event *event = info;
586         struct perf_event_context *ctx = event->ctx;
587         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589         /*
590          * If this is a per-task event, need to check whether this
591          * event's task is the current task on this cpu.
592          */
593         if (ctx->task && cpuctx->task_ctx != ctx)
594                 return;
595
596         raw_spin_lock(&ctx->lock);
597
598         /*
599          * If the event is on, turn it off.
600          * If it is in error state, leave it in error state.
601          */
602         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603                 update_context_time(ctx);
604                 update_group_times(event);
605                 if (event == event->group_leader)
606                         group_sched_out(event, cpuctx, ctx);
607                 else
608                         event_sched_out(event, cpuctx, ctx);
609                 event->state = PERF_EVENT_STATE_OFF;
610         }
611
612         raw_spin_unlock(&ctx->lock);
613 }
614
615 /*
616  * Disable a event.
617  *
618  * If event->ctx is a cloned context, callers must make sure that
619  * every task struct that event->ctx->task could possibly point to
620  * remains valid.  This condition is satisifed when called through
621  * perf_event_for_each_child or perf_event_for_each because they
622  * hold the top-level event's child_mutex, so any descendant that
623  * goes to exit will block in sync_child_event.
624  * When called from perf_pending_event it's OK because event->ctx
625  * is the current context on this CPU and preemption is disabled,
626  * hence we can't get into perf_event_task_sched_out for this context.
627  */
628 void perf_event_disable(struct perf_event *event)
629 {
630         struct perf_event_context *ctx = event->ctx;
631         struct task_struct *task = ctx->task;
632
633         if (!task) {
634                 /*
635                  * Disable the event on the cpu that it's on
636                  */
637                 smp_call_function_single(event->cpu, __perf_event_disable,
638                                          event, 1);
639                 return;
640         }
641
642 retry:
643         task_oncpu_function_call(task, __perf_event_disable, event);
644
645         raw_spin_lock_irq(&ctx->lock);
646         /*
647          * If the event is still active, we need to retry the cross-call.
648          */
649         if (event->state == PERF_EVENT_STATE_ACTIVE) {
650                 raw_spin_unlock_irq(&ctx->lock);
651                 goto retry;
652         }
653
654         /*
655          * Since we have the lock this context can't be scheduled
656          * in, so we can change the state safely.
657          */
658         if (event->state == PERF_EVENT_STATE_INACTIVE) {
659                 update_group_times(event);
660                 event->state = PERF_EVENT_STATE_OFF;
661         }
662
663         raw_spin_unlock_irq(&ctx->lock);
664 }
665
666 static int
667 __event_sched_in(struct perf_event *event,
668                  struct perf_cpu_context *cpuctx,
669                  struct perf_event_context *ctx)
670 {
671         if (event->state <= PERF_EVENT_STATE_OFF)
672                 return 0;
673
674         event->state = PERF_EVENT_STATE_ACTIVE;
675         event->oncpu = smp_processor_id();
676         /*
677          * The new state must be visible before we turn it on in the hardware:
678          */
679         smp_wmb();
680
681         if (event->pmu->add(event, PERF_EF_START)) {
682                 event->state = PERF_EVENT_STATE_INACTIVE;
683                 event->oncpu = -1;
684                 return -EAGAIN;
685         }
686
687         if (!is_software_event(event))
688                 cpuctx->active_oncpu++;
689         ctx->nr_active++;
690
691         if (event->attr.exclusive)
692                 cpuctx->exclusive = 1;
693
694         return 0;
695 }
696
697 static inline int
698 event_sched_in(struct perf_event *event,
699                  struct perf_cpu_context *cpuctx,
700                  struct perf_event_context *ctx)
701 {
702         int ret = __event_sched_in(event, cpuctx, ctx);
703         if (ret)
704                 return ret;
705         event->tstamp_running += ctx->time - event->tstamp_stopped;
706         return 0;
707 }
708
709 static void
710 group_commit_event_sched_in(struct perf_event *group_event,
711                struct perf_cpu_context *cpuctx,
712                struct perf_event_context *ctx)
713 {
714         struct perf_event *event;
715         u64 now = ctx->time;
716
717         group_event->tstamp_running += now - group_event->tstamp_stopped;
718         /*
719          * Schedule in siblings as one group (if any):
720          */
721         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
722                 event->tstamp_running += now - event->tstamp_stopped;
723         }
724 }
725
726 static int
727 group_sched_in(struct perf_event *group_event,
728                struct perf_cpu_context *cpuctx,
729                struct perf_event_context *ctx)
730 {
731         struct perf_event *event, *partial_group = NULL;
732         struct pmu *pmu = group_event->pmu;
733
734         if (group_event->state == PERF_EVENT_STATE_OFF)
735                 return 0;
736
737         pmu->start_txn(pmu);
738
739         /*
740          * use __event_sched_in() to delay updating tstamp_running
741          * until the transaction is committed. In case of failure
742          * we will keep an unmodified tstamp_running which is a
743          * requirement to get correct timing information
744          */
745         if (__event_sched_in(group_event, cpuctx, ctx)) {
746                 pmu->cancel_txn(pmu);
747                 return -EAGAIN;
748         }
749
750         /*
751          * Schedule in siblings as one group (if any):
752          */
753         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754                 if (__event_sched_in(event, cpuctx, ctx)) {
755                         partial_group = event;
756                         goto group_error;
757                 }
758         }
759
760         if (!pmu->commit_txn(pmu)) {
761                 /* commit tstamp_running */
762                 group_commit_event_sched_in(group_event, cpuctx, ctx);
763                 return 0;
764         }
765 group_error:
766         /*
767          * Groups can be scheduled in as one unit only, so undo any
768          * partial group before returning:
769          *
770          * use __event_sched_out() to avoid updating tstamp_stopped
771          * because the event never actually ran
772          */
773         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
774                 if (event == partial_group)
775                         break;
776                 __event_sched_out(event, cpuctx, ctx);
777         }
778         __event_sched_out(group_event, cpuctx, ctx);
779
780         pmu->cancel_txn(pmu);
781
782         return -EAGAIN;
783 }
784
785 /*
786  * Work out whether we can put this event group on the CPU now.
787  */
788 static int group_can_go_on(struct perf_event *event,
789                            struct perf_cpu_context *cpuctx,
790                            int can_add_hw)
791 {
792         /*
793          * Groups consisting entirely of software events can always go on.
794          */
795         if (event->group_flags & PERF_GROUP_SOFTWARE)
796                 return 1;
797         /*
798          * If an exclusive group is already on, no other hardware
799          * events can go on.
800          */
801         if (cpuctx->exclusive)
802                 return 0;
803         /*
804          * If this group is exclusive and there are already
805          * events on the CPU, it can't go on.
806          */
807         if (event->attr.exclusive && cpuctx->active_oncpu)
808                 return 0;
809         /*
810          * Otherwise, try to add it if all previous groups were able
811          * to go on.
812          */
813         return can_add_hw;
814 }
815
816 static void add_event_to_ctx(struct perf_event *event,
817                                struct perf_event_context *ctx)
818 {
819         list_add_event(event, ctx);
820         perf_group_attach(event);
821         event->tstamp_enabled = ctx->time;
822         event->tstamp_running = ctx->time;
823         event->tstamp_stopped = ctx->time;
824 }
825
826 /*
827  * Cross CPU call to install and enable a performance event
828  *
829  * Must be called with ctx->mutex held
830  */
831 static void __perf_install_in_context(void *info)
832 {
833         struct perf_event *event = info;
834         struct perf_event_context *ctx = event->ctx;
835         struct perf_event *leader = event->group_leader;
836         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
837         int err;
838
839         /*
840          * If this is a task context, we need to check whether it is
841          * the current task context of this cpu. If not it has been
842          * scheduled out before the smp call arrived.
843          * Or possibly this is the right context but it isn't
844          * on this cpu because it had no events.
845          */
846         if (ctx->task && cpuctx->task_ctx != ctx) {
847                 if (cpuctx->task_ctx || ctx->task != current)
848                         return;
849                 cpuctx->task_ctx = ctx;
850         }
851
852         raw_spin_lock(&ctx->lock);
853         ctx->is_active = 1;
854         update_context_time(ctx);
855
856         add_event_to_ctx(event, ctx);
857
858         if (event->cpu != -1 && event->cpu != smp_processor_id())
859                 goto unlock;
860
861         /*
862          * Don't put the event on if it is disabled or if
863          * it is in a group and the group isn't on.
864          */
865         if (event->state != PERF_EVENT_STATE_INACTIVE ||
866             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
867                 goto unlock;
868
869         /*
870          * An exclusive event can't go on if there are already active
871          * hardware events, and no hardware event can go on if there
872          * is already an exclusive event on.
873          */
874         if (!group_can_go_on(event, cpuctx, 1))
875                 err = -EEXIST;
876         else
877                 err = event_sched_in(event, cpuctx, ctx);
878
879         if (err) {
880                 /*
881                  * This event couldn't go on.  If it is in a group
882                  * then we have to pull the whole group off.
883                  * If the event group is pinned then put it in error state.
884                  */
885                 if (leader != event)
886                         group_sched_out(leader, cpuctx, ctx);
887                 if (leader->attr.pinned) {
888                         update_group_times(leader);
889                         leader->state = PERF_EVENT_STATE_ERROR;
890                 }
891         }
892
893 unlock:
894         raw_spin_unlock(&ctx->lock);
895 }
896
897 /*
898  * Attach a performance event to a context
899  *
900  * First we add the event to the list with the hardware enable bit
901  * in event->hw_config cleared.
902  *
903  * If the event is attached to a task which is on a CPU we use a smp
904  * call to enable it in the task context. The task might have been
905  * scheduled away, but we check this in the smp call again.
906  *
907  * Must be called with ctx->mutex held.
908  */
909 static void
910 perf_install_in_context(struct perf_event_context *ctx,
911                         struct perf_event *event,
912                         int cpu)
913 {
914         struct task_struct *task = ctx->task;
915
916         event->ctx = ctx;
917
918         if (!task) {
919                 /*
920                  * Per cpu events are installed via an smp call and
921                  * the install is always successful.
922                  */
923                 smp_call_function_single(cpu, __perf_install_in_context,
924                                          event, 1);
925                 return;
926         }
927
928 retry:
929         task_oncpu_function_call(task, __perf_install_in_context,
930                                  event);
931
932         raw_spin_lock_irq(&ctx->lock);
933         /*
934          * we need to retry the smp call.
935          */
936         if (ctx->is_active && list_empty(&event->group_entry)) {
937                 raw_spin_unlock_irq(&ctx->lock);
938                 goto retry;
939         }
940
941         /*
942          * The lock prevents that this context is scheduled in so we
943          * can add the event safely, if it the call above did not
944          * succeed.
945          */
946         if (list_empty(&event->group_entry))
947                 add_event_to_ctx(event, ctx);
948         raw_spin_unlock_irq(&ctx->lock);
949 }
950
951 /*
952  * Put a event into inactive state and update time fields.
953  * Enabling the leader of a group effectively enables all
954  * the group members that aren't explicitly disabled, so we
955  * have to update their ->tstamp_enabled also.
956  * Note: this works for group members as well as group leaders
957  * since the non-leader members' sibling_lists will be empty.
958  */
959 static void __perf_event_mark_enabled(struct perf_event *event,
960                                         struct perf_event_context *ctx)
961 {
962         struct perf_event *sub;
963
964         event->state = PERF_EVENT_STATE_INACTIVE;
965         event->tstamp_enabled = ctx->time - event->total_time_enabled;
966         list_for_each_entry(sub, &event->sibling_list, group_entry) {
967                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968                         sub->tstamp_enabled =
969                                 ctx->time - sub->total_time_enabled;
970                 }
971         }
972 }
973
974 /*
975  * Cross CPU call to enable a performance event
976  */
977 static void __perf_event_enable(void *info)
978 {
979         struct perf_event *event = info;
980         struct perf_event_context *ctx = event->ctx;
981         struct perf_event *leader = event->group_leader;
982         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
983         int err;
984
985         /*
986          * If this is a per-task event, need to check whether this
987          * event's task is the current task on this cpu.
988          */
989         if (ctx->task && cpuctx->task_ctx != ctx) {
990                 if (cpuctx->task_ctx || ctx->task != current)
991                         return;
992                 cpuctx->task_ctx = ctx;
993         }
994
995         raw_spin_lock(&ctx->lock);
996         ctx->is_active = 1;
997         update_context_time(ctx);
998
999         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1000                 goto unlock;
1001         __perf_event_mark_enabled(event, ctx);
1002
1003         if (event->cpu != -1 && event->cpu != smp_processor_id())
1004                 goto unlock;
1005
1006         /*
1007          * If the event is in a group and isn't the group leader,
1008          * then don't put it on unless the group is on.
1009          */
1010         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1011                 goto unlock;
1012
1013         if (!group_can_go_on(event, cpuctx, 1)) {
1014                 err = -EEXIST;
1015         } else {
1016                 if (event == leader)
1017                         err = group_sched_in(event, cpuctx, ctx);
1018                 else
1019                         err = event_sched_in(event, cpuctx, ctx);
1020         }
1021
1022         if (err) {
1023                 /*
1024                  * If this event can't go on and it's part of a
1025                  * group, then the whole group has to come off.
1026                  */
1027                 if (leader != event)
1028                         group_sched_out(leader, cpuctx, ctx);
1029                 if (leader->attr.pinned) {
1030                         update_group_times(leader);
1031                         leader->state = PERF_EVENT_STATE_ERROR;
1032                 }
1033         }
1034
1035 unlock:
1036         raw_spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040  * Enable a event.
1041  *
1042  * If event->ctx is a cloned context, callers must make sure that
1043  * every task struct that event->ctx->task could possibly point to
1044  * remains valid.  This condition is satisfied when called through
1045  * perf_event_for_each_child or perf_event_for_each as described
1046  * for perf_event_disable.
1047  */
1048 void perf_event_enable(struct perf_event *event)
1049 {
1050         struct perf_event_context *ctx = event->ctx;
1051         struct task_struct *task = ctx->task;
1052
1053         if (!task) {
1054                 /*
1055                  * Enable the event on the cpu that it's on
1056                  */
1057                 smp_call_function_single(event->cpu, __perf_event_enable,
1058                                          event, 1);
1059                 return;
1060         }
1061
1062         raw_spin_lock_irq(&ctx->lock);
1063         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1064                 goto out;
1065
1066         /*
1067          * If the event is in error state, clear that first.
1068          * That way, if we see the event in error state below, we
1069          * know that it has gone back into error state, as distinct
1070          * from the task having been scheduled away before the
1071          * cross-call arrived.
1072          */
1073         if (event->state == PERF_EVENT_STATE_ERROR)
1074                 event->state = PERF_EVENT_STATE_OFF;
1075
1076 retry:
1077         raw_spin_unlock_irq(&ctx->lock);
1078         task_oncpu_function_call(task, __perf_event_enable, event);
1079
1080         raw_spin_lock_irq(&ctx->lock);
1081
1082         /*
1083          * If the context is active and the event is still off,
1084          * we need to retry the cross-call.
1085          */
1086         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1087                 goto retry;
1088
1089         /*
1090          * Since we have the lock this context can't be scheduled
1091          * in, so we can change the state safely.
1092          */
1093         if (event->state == PERF_EVENT_STATE_OFF)
1094                 __perf_event_mark_enabled(event, ctx);
1095
1096 out:
1097         raw_spin_unlock_irq(&ctx->lock);
1098 }
1099
1100 static int perf_event_refresh(struct perf_event *event, int refresh)
1101 {
1102         /*
1103          * not supported on inherited events
1104          */
1105         if (event->attr.inherit)
1106                 return -EINVAL;
1107
1108         atomic_add(refresh, &event->event_limit);
1109         perf_event_enable(event);
1110
1111         return 0;
1112 }
1113
1114 enum event_type_t {
1115         EVENT_FLEXIBLE = 0x1,
1116         EVENT_PINNED = 0x2,
1117         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1118 };
1119
1120 static void ctx_sched_out(struct perf_event_context *ctx,
1121                           struct perf_cpu_context *cpuctx,
1122                           enum event_type_t event_type)
1123 {
1124         struct perf_event *event;
1125
1126         raw_spin_lock(&ctx->lock);
1127         perf_pmu_disable(ctx->pmu);
1128         ctx->is_active = 0;
1129         if (likely(!ctx->nr_events))
1130                 goto out;
1131         update_context_time(ctx);
1132
1133         if (!ctx->nr_active)
1134                 goto out;
1135
1136         if (event_type & EVENT_PINNED) {
1137                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1138                         group_sched_out(event, cpuctx, ctx);
1139         }
1140
1141         if (event_type & EVENT_FLEXIBLE) {
1142                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143                         group_sched_out(event, cpuctx, ctx);
1144         }
1145 out:
1146         perf_pmu_enable(ctx->pmu);
1147         raw_spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Test whether two contexts are equivalent, i.e. whether they
1152  * have both been cloned from the same version of the same context
1153  * and they both have the same number of enabled events.
1154  * If the number of enabled events is the same, then the set
1155  * of enabled events should be the same, because these are both
1156  * inherited contexts, therefore we can't access individual events
1157  * in them directly with an fd; we can only enable/disable all
1158  * events via prctl, or enable/disable all events in a family
1159  * via ioctl, which will have the same effect on both contexts.
1160  */
1161 static int context_equiv(struct perf_event_context *ctx1,
1162                          struct perf_event_context *ctx2)
1163 {
1164         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165                 && ctx1->parent_gen == ctx2->parent_gen
1166                 && !ctx1->pin_count && !ctx2->pin_count;
1167 }
1168
1169 static void __perf_event_sync_stat(struct perf_event *event,
1170                                      struct perf_event *next_event)
1171 {
1172         u64 value;
1173
1174         if (!event->attr.inherit_stat)
1175                 return;
1176
1177         /*
1178          * Update the event value, we cannot use perf_event_read()
1179          * because we're in the middle of a context switch and have IRQs
1180          * disabled, which upsets smp_call_function_single(), however
1181          * we know the event must be on the current CPU, therefore we
1182          * don't need to use it.
1183          */
1184         switch (event->state) {
1185         case PERF_EVENT_STATE_ACTIVE:
1186                 event->pmu->read(event);
1187                 /* fall-through */
1188
1189         case PERF_EVENT_STATE_INACTIVE:
1190                 update_event_times(event);
1191                 break;
1192
1193         default:
1194                 break;
1195         }
1196
1197         /*
1198          * In order to keep per-task stats reliable we need to flip the event
1199          * values when we flip the contexts.
1200          */
1201         value = local64_read(&next_event->count);
1202         value = local64_xchg(&event->count, value);
1203         local64_set(&next_event->count, value);
1204
1205         swap(event->total_time_enabled, next_event->total_time_enabled);
1206         swap(event->total_time_running, next_event->total_time_running);
1207
1208         /*
1209          * Since we swizzled the values, update the user visible data too.
1210          */
1211         perf_event_update_userpage(event);
1212         perf_event_update_userpage(next_event);
1213 }
1214
1215 #define list_next_entry(pos, member) \
1216         list_entry(pos->member.next, typeof(*pos), member)
1217
1218 static void perf_event_sync_stat(struct perf_event_context *ctx,
1219                                    struct perf_event_context *next_ctx)
1220 {
1221         struct perf_event *event, *next_event;
1222
1223         if (!ctx->nr_stat)
1224                 return;
1225
1226         update_context_time(ctx);
1227
1228         event = list_first_entry(&ctx->event_list,
1229                                    struct perf_event, event_entry);
1230
1231         next_event = list_first_entry(&next_ctx->event_list,
1232                                         struct perf_event, event_entry);
1233
1234         while (&event->event_entry != &ctx->event_list &&
1235                &next_event->event_entry != &next_ctx->event_list) {
1236
1237                 __perf_event_sync_stat(event, next_event);
1238
1239                 event = list_next_entry(event, event_entry);
1240                 next_event = list_next_entry(next_event, event_entry);
1241         }
1242 }
1243
1244 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1245                                   struct task_struct *next)
1246 {
1247         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248         struct perf_event_context *next_ctx;
1249         struct perf_event_context *parent;
1250         struct perf_cpu_context *cpuctx;
1251         int do_switch = 1;
1252
1253         if (likely(!ctx))
1254                 return;
1255
1256         cpuctx = __get_cpu_context(ctx);
1257         if (!cpuctx->task_ctx)
1258                 return;
1259
1260         rcu_read_lock();
1261         parent = rcu_dereference(ctx->parent_ctx);
1262         next_ctx = next->perf_event_ctxp[ctxn];
1263         if (parent && next_ctx &&
1264             rcu_dereference(next_ctx->parent_ctx) == parent) {
1265                 /*
1266                  * Looks like the two contexts are clones, so we might be
1267                  * able to optimize the context switch.  We lock both
1268                  * contexts and check that they are clones under the
1269                  * lock (including re-checking that neither has been
1270                  * uncloned in the meantime).  It doesn't matter which
1271                  * order we take the locks because no other cpu could
1272                  * be trying to lock both of these tasks.
1273                  */
1274                 raw_spin_lock(&ctx->lock);
1275                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276                 if (context_equiv(ctx, next_ctx)) {
1277                         /*
1278                          * XXX do we need a memory barrier of sorts
1279                          * wrt to rcu_dereference() of perf_event_ctxp
1280                          */
1281                         task->perf_event_ctxp[ctxn] = next_ctx;
1282                         next->perf_event_ctxp[ctxn] = ctx;
1283                         ctx->task = next;
1284                         next_ctx->task = task;
1285                         do_switch = 0;
1286
1287                         perf_event_sync_stat(ctx, next_ctx);
1288                 }
1289                 raw_spin_unlock(&next_ctx->lock);
1290                 raw_spin_unlock(&ctx->lock);
1291         }
1292         rcu_read_unlock();
1293
1294         if (do_switch) {
1295                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296                 cpuctx->task_ctx = NULL;
1297         }
1298 }
1299
1300 #define for_each_task_context_nr(ctxn)                                  \
1301         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1302
1303 /*
1304  * Called from scheduler to remove the events of the current task,
1305  * with interrupts disabled.
1306  *
1307  * We stop each event and update the event value in event->count.
1308  *
1309  * This does not protect us against NMI, but disable()
1310  * sets the disabled bit in the control field of event _before_
1311  * accessing the event control register. If a NMI hits, then it will
1312  * not restart the event.
1313  */
1314 void __perf_event_task_sched_out(struct task_struct *task,
1315                                  struct task_struct *next)
1316 {
1317         int ctxn;
1318
1319         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1320
1321         for_each_task_context_nr(ctxn)
1322                 perf_event_context_sched_out(task, ctxn, next);
1323 }
1324
1325 static void task_ctx_sched_out(struct perf_event_context *ctx,
1326                                enum event_type_t event_type)
1327 {
1328         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1329
1330         if (!cpuctx->task_ctx)
1331                 return;
1332
1333         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1334                 return;
1335
1336         ctx_sched_out(ctx, cpuctx, event_type);
1337         cpuctx->task_ctx = NULL;
1338 }
1339
1340 /*
1341  * Called with IRQs disabled
1342  */
1343 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1344                               enum event_type_t event_type)
1345 {
1346         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1347 }
1348
1349 static void
1350 ctx_pinned_sched_in(struct perf_event_context *ctx,
1351                     struct perf_cpu_context *cpuctx)
1352 {
1353         struct perf_event *event;
1354
1355         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1356                 if (event->state <= PERF_EVENT_STATE_OFF)
1357                         continue;
1358                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1359                         continue;
1360
1361                 if (group_can_go_on(event, cpuctx, 1))
1362                         group_sched_in(event, cpuctx, ctx);
1363
1364                 /*
1365                  * If this pinned group hasn't been scheduled,
1366                  * put it in error state.
1367                  */
1368                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1369                         update_group_times(event);
1370                         event->state = PERF_EVENT_STATE_ERROR;
1371                 }
1372         }
1373 }
1374
1375 static void
1376 ctx_flexible_sched_in(struct perf_event_context *ctx,
1377                       struct perf_cpu_context *cpuctx)
1378 {
1379         struct perf_event *event;
1380         int can_add_hw = 1;
1381
1382         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1383                 /* Ignore events in OFF or ERROR state */
1384                 if (event->state <= PERF_EVENT_STATE_OFF)
1385                         continue;
1386                 /*
1387                  * Listen to the 'cpu' scheduling filter constraint
1388                  * of events:
1389                  */
1390                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1391                         continue;
1392
1393                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1394                         if (group_sched_in(event, cpuctx, ctx))
1395                                 can_add_hw = 0;
1396                 }
1397         }
1398 }
1399
1400 static void
1401 ctx_sched_in(struct perf_event_context *ctx,
1402              struct perf_cpu_context *cpuctx,
1403              enum event_type_t event_type)
1404 {
1405         raw_spin_lock(&ctx->lock);
1406         ctx->is_active = 1;
1407         if (likely(!ctx->nr_events))
1408                 goto out;
1409
1410         ctx->timestamp = perf_clock();
1411
1412         /*
1413          * First go through the list and put on any pinned groups
1414          * in order to give them the best chance of going on.
1415          */
1416         if (event_type & EVENT_PINNED)
1417                 ctx_pinned_sched_in(ctx, cpuctx);
1418
1419         /* Then walk through the lower prio flexible groups */
1420         if (event_type & EVENT_FLEXIBLE)
1421                 ctx_flexible_sched_in(ctx, cpuctx);
1422
1423 out:
1424         raw_spin_unlock(&ctx->lock);
1425 }
1426
1427 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1428                              enum event_type_t event_type)
1429 {
1430         struct perf_event_context *ctx = &cpuctx->ctx;
1431
1432         ctx_sched_in(ctx, cpuctx, event_type);
1433 }
1434
1435 static void task_ctx_sched_in(struct perf_event_context *ctx,
1436                               enum event_type_t event_type)
1437 {
1438         struct perf_cpu_context *cpuctx;
1439
1440         cpuctx = __get_cpu_context(ctx);
1441         if (cpuctx->task_ctx == ctx)
1442                 return;
1443
1444         ctx_sched_in(ctx, cpuctx, event_type);
1445         cpuctx->task_ctx = ctx;
1446 }
1447
1448 void perf_event_context_sched_in(struct perf_event_context *ctx)
1449 {
1450         struct perf_cpu_context *cpuctx;
1451
1452         cpuctx = __get_cpu_context(ctx);
1453         if (cpuctx->task_ctx == ctx)
1454                 return;
1455
1456         perf_pmu_disable(ctx->pmu);
1457         /*
1458          * We want to keep the following priority order:
1459          * cpu pinned (that don't need to move), task pinned,
1460          * cpu flexible, task flexible.
1461          */
1462         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1463
1464         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1465         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1466         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1467
1468         cpuctx->task_ctx = ctx;
1469
1470         /*
1471          * Since these rotations are per-cpu, we need to ensure the
1472          * cpu-context we got scheduled on is actually rotating.
1473          */
1474         perf_pmu_rotate_start(ctx->pmu);
1475         perf_pmu_enable(ctx->pmu);
1476 }
1477
1478 /*
1479  * Called from scheduler to add the events of the current task
1480  * with interrupts disabled.
1481  *
1482  * We restore the event value and then enable it.
1483  *
1484  * This does not protect us against NMI, but enable()
1485  * sets the enabled bit in the control field of event _before_
1486  * accessing the event control register. If a NMI hits, then it will
1487  * keep the event running.
1488  */
1489 void __perf_event_task_sched_in(struct task_struct *task)
1490 {
1491         struct perf_event_context *ctx;
1492         int ctxn;
1493
1494         for_each_task_context_nr(ctxn) {
1495                 ctx = task->perf_event_ctxp[ctxn];
1496                 if (likely(!ctx))
1497                         continue;
1498
1499                 perf_event_context_sched_in(ctx);
1500         }
1501 }
1502
1503 #define MAX_INTERRUPTS (~0ULL)
1504
1505 static void perf_log_throttle(struct perf_event *event, int enable);
1506
1507 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1508 {
1509         u64 frequency = event->attr.sample_freq;
1510         u64 sec = NSEC_PER_SEC;
1511         u64 divisor, dividend;
1512
1513         int count_fls, nsec_fls, frequency_fls, sec_fls;
1514
1515         count_fls = fls64(count);
1516         nsec_fls = fls64(nsec);
1517         frequency_fls = fls64(frequency);
1518         sec_fls = 30;
1519
1520         /*
1521          * We got @count in @nsec, with a target of sample_freq HZ
1522          * the target period becomes:
1523          *
1524          *             @count * 10^9
1525          * period = -------------------
1526          *          @nsec * sample_freq
1527          *
1528          */
1529
1530         /*
1531          * Reduce accuracy by one bit such that @a and @b converge
1532          * to a similar magnitude.
1533          */
1534 #define REDUCE_FLS(a, b)                \
1535 do {                                    \
1536         if (a##_fls > b##_fls) {        \
1537                 a >>= 1;                \
1538                 a##_fls--;              \
1539         } else {                        \
1540                 b >>= 1;                \
1541                 b##_fls--;              \
1542         }                               \
1543 } while (0)
1544
1545         /*
1546          * Reduce accuracy until either term fits in a u64, then proceed with
1547          * the other, so that finally we can do a u64/u64 division.
1548          */
1549         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1550                 REDUCE_FLS(nsec, frequency);
1551                 REDUCE_FLS(sec, count);
1552         }
1553
1554         if (count_fls + sec_fls > 64) {
1555                 divisor = nsec * frequency;
1556
1557                 while (count_fls + sec_fls > 64) {
1558                         REDUCE_FLS(count, sec);
1559                         divisor >>= 1;
1560                 }
1561
1562                 dividend = count * sec;
1563         } else {
1564                 dividend = count * sec;
1565
1566                 while (nsec_fls + frequency_fls > 64) {
1567                         REDUCE_FLS(nsec, frequency);
1568                         dividend >>= 1;
1569                 }
1570
1571                 divisor = nsec * frequency;
1572         }
1573
1574         if (!divisor)
1575                 return dividend;
1576
1577         return div64_u64(dividend, divisor);
1578 }
1579
1580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1581 {
1582         struct hw_perf_event *hwc = &event->hw;
1583         s64 period, sample_period;
1584         s64 delta;
1585
1586         period = perf_calculate_period(event, nsec, count);
1587
1588         delta = (s64)(period - hwc->sample_period);
1589         delta = (delta + 7) / 8; /* low pass filter */
1590
1591         sample_period = hwc->sample_period + delta;
1592
1593         if (!sample_period)
1594                 sample_period = 1;
1595
1596         hwc->sample_period = sample_period;
1597
1598         if (local64_read(&hwc->period_left) > 8*sample_period) {
1599                 event->pmu->stop(event, PERF_EF_UPDATE);
1600                 local64_set(&hwc->period_left, 0);
1601                 event->pmu->start(event, PERF_EF_RELOAD);
1602         }
1603 }
1604
1605 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1606 {
1607         struct perf_event *event;
1608         struct hw_perf_event *hwc;
1609         u64 interrupts, now;
1610         s64 delta;
1611
1612         raw_spin_lock(&ctx->lock);
1613         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1614                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1615                         continue;
1616
1617                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1618                         continue;
1619
1620                 hwc = &event->hw;
1621
1622                 interrupts = hwc->interrupts;
1623                 hwc->interrupts = 0;
1624
1625                 /*
1626                  * unthrottle events on the tick
1627                  */
1628                 if (interrupts == MAX_INTERRUPTS) {
1629                         perf_log_throttle(event, 1);
1630                         event->pmu->start(event, 0);
1631                 }
1632
1633                 if (!event->attr.freq || !event->attr.sample_freq)
1634                         continue;
1635
1636                 event->pmu->read(event);
1637                 now = local64_read(&event->count);
1638                 delta = now - hwc->freq_count_stamp;
1639                 hwc->freq_count_stamp = now;
1640
1641                 if (delta > 0)
1642                         perf_adjust_period(event, period, delta);
1643         }
1644         raw_spin_unlock(&ctx->lock);
1645 }
1646
1647 /*
1648  * Round-robin a context's events:
1649  */
1650 static void rotate_ctx(struct perf_event_context *ctx)
1651 {
1652         raw_spin_lock(&ctx->lock);
1653
1654         /* Rotate the first entry last of non-pinned groups */
1655         list_rotate_left(&ctx->flexible_groups);
1656
1657         raw_spin_unlock(&ctx->lock);
1658 }
1659
1660 /*
1661  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1662  * because they're strictly cpu affine and rotate_start is called with IRQs
1663  * disabled, while rotate_context is called from IRQ context.
1664  */
1665 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1666 {
1667         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1668         struct perf_event_context *ctx = NULL;
1669         int rotate = 0, remove = 1;
1670
1671         if (cpuctx->ctx.nr_events) {
1672                 remove = 0;
1673                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1674                         rotate = 1;
1675         }
1676
1677         ctx = cpuctx->task_ctx;
1678         if (ctx && ctx->nr_events) {
1679                 remove = 0;
1680                 if (ctx->nr_events != ctx->nr_active)
1681                         rotate = 1;
1682         }
1683
1684         perf_pmu_disable(cpuctx->ctx.pmu);
1685         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1686         if (ctx)
1687                 perf_ctx_adjust_freq(ctx, interval);
1688
1689         if (!rotate)
1690                 goto done;
1691
1692         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1693         if (ctx)
1694                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1695
1696         rotate_ctx(&cpuctx->ctx);
1697         if (ctx)
1698                 rotate_ctx(ctx);
1699
1700         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1701         if (ctx)
1702                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1703
1704 done:
1705         if (remove)
1706                 list_del_init(&cpuctx->rotation_list);
1707
1708         perf_pmu_enable(cpuctx->ctx.pmu);
1709 }
1710
1711 void perf_event_task_tick(void)
1712 {
1713         struct list_head *head = &__get_cpu_var(rotation_list);
1714         struct perf_cpu_context *cpuctx, *tmp;
1715
1716         WARN_ON(!irqs_disabled());
1717
1718         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1719                 if (cpuctx->jiffies_interval == 1 ||
1720                                 !(jiffies % cpuctx->jiffies_interval))
1721                         perf_rotate_context(cpuctx);
1722         }
1723 }
1724
1725 static int event_enable_on_exec(struct perf_event *event,
1726                                 struct perf_event_context *ctx)
1727 {
1728         if (!event->attr.enable_on_exec)
1729                 return 0;
1730
1731         event->attr.enable_on_exec = 0;
1732         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1733                 return 0;
1734
1735         __perf_event_mark_enabled(event, ctx);
1736
1737         return 1;
1738 }
1739
1740 /*
1741  * Enable all of a task's events that have been marked enable-on-exec.
1742  * This expects task == current.
1743  */
1744 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1745 {
1746         struct perf_event *event;
1747         unsigned long flags;
1748         int enabled = 0;
1749         int ret;
1750
1751         local_irq_save(flags);
1752         if (!ctx || !ctx->nr_events)
1753                 goto out;
1754
1755         task_ctx_sched_out(ctx, EVENT_ALL);
1756
1757         raw_spin_lock(&ctx->lock);
1758
1759         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1760                 ret = event_enable_on_exec(event, ctx);
1761                 if (ret)
1762                         enabled = 1;
1763         }
1764
1765         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1766                 ret = event_enable_on_exec(event, ctx);
1767                 if (ret)
1768                         enabled = 1;
1769         }
1770
1771         /*
1772          * Unclone this context if we enabled any event.
1773          */
1774         if (enabled)
1775                 unclone_ctx(ctx);
1776
1777         raw_spin_unlock(&ctx->lock);
1778
1779         perf_event_context_sched_in(ctx);
1780 out:
1781         local_irq_restore(flags);
1782 }
1783
1784 /*
1785  * Cross CPU call to read the hardware event
1786  */
1787 static void __perf_event_read(void *info)
1788 {
1789         struct perf_event *event = info;
1790         struct perf_event_context *ctx = event->ctx;
1791         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1792
1793         /*
1794          * If this is a task context, we need to check whether it is
1795          * the current task context of this cpu.  If not it has been
1796          * scheduled out before the smp call arrived.  In that case
1797          * event->count would have been updated to a recent sample
1798          * when the event was scheduled out.
1799          */
1800         if (ctx->task && cpuctx->task_ctx != ctx)
1801                 return;
1802
1803         raw_spin_lock(&ctx->lock);
1804         update_context_time(ctx);
1805         update_event_times(event);
1806         raw_spin_unlock(&ctx->lock);
1807
1808         event->pmu->read(event);
1809 }
1810
1811 static inline u64 perf_event_count(struct perf_event *event)
1812 {
1813         return local64_read(&event->count) + atomic64_read(&event->child_count);
1814 }
1815
1816 static u64 perf_event_read(struct perf_event *event)
1817 {
1818         /*
1819          * If event is enabled and currently active on a CPU, update the
1820          * value in the event structure:
1821          */
1822         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1823                 smp_call_function_single(event->oncpu,
1824                                          __perf_event_read, event, 1);
1825         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1826                 struct perf_event_context *ctx = event->ctx;
1827                 unsigned long flags;
1828
1829                 raw_spin_lock_irqsave(&ctx->lock, flags);
1830                 /*
1831                  * may read while context is not active
1832                  * (e.g., thread is blocked), in that case
1833                  * we cannot update context time
1834                  */
1835                 if (ctx->is_active)
1836                         update_context_time(ctx);
1837                 update_event_times(event);
1838                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1839         }
1840
1841         return perf_event_count(event);
1842 }
1843
1844 /*
1845  * Callchain support
1846  */
1847
1848 struct callchain_cpus_entries {
1849         struct rcu_head                 rcu_head;
1850         struct perf_callchain_entry     *cpu_entries[0];
1851 };
1852
1853 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1854 static atomic_t nr_callchain_events;
1855 static DEFINE_MUTEX(callchain_mutex);
1856 struct callchain_cpus_entries *callchain_cpus_entries;
1857
1858
1859 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1860                                   struct pt_regs *regs)
1861 {
1862 }
1863
1864 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1865                                 struct pt_regs *regs)
1866 {
1867 }
1868
1869 static void release_callchain_buffers_rcu(struct rcu_head *head)
1870 {
1871         struct callchain_cpus_entries *entries;
1872         int cpu;
1873
1874         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1875
1876         for_each_possible_cpu(cpu)
1877                 kfree(entries->cpu_entries[cpu]);
1878
1879         kfree(entries);
1880 }
1881
1882 static void release_callchain_buffers(void)
1883 {
1884         struct callchain_cpus_entries *entries;
1885
1886         entries = callchain_cpus_entries;
1887         rcu_assign_pointer(callchain_cpus_entries, NULL);
1888         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1889 }
1890
1891 static int alloc_callchain_buffers(void)
1892 {
1893         int cpu;
1894         int size;
1895         struct callchain_cpus_entries *entries;
1896
1897         /*
1898          * We can't use the percpu allocation API for data that can be
1899          * accessed from NMI. Use a temporary manual per cpu allocation
1900          * until that gets sorted out.
1901          */
1902         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1903                 num_possible_cpus();
1904
1905         entries = kzalloc(size, GFP_KERNEL);
1906         if (!entries)
1907                 return -ENOMEM;
1908
1909         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1910
1911         for_each_possible_cpu(cpu) {
1912                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1913                                                          cpu_to_node(cpu));
1914                 if (!entries->cpu_entries[cpu])
1915                         goto fail;
1916         }
1917
1918         rcu_assign_pointer(callchain_cpus_entries, entries);
1919
1920         return 0;
1921
1922 fail:
1923         for_each_possible_cpu(cpu)
1924                 kfree(entries->cpu_entries[cpu]);
1925         kfree(entries);
1926
1927         return -ENOMEM;
1928 }
1929
1930 static int get_callchain_buffers(void)
1931 {
1932         int err = 0;
1933         int count;
1934
1935         mutex_lock(&callchain_mutex);
1936
1937         count = atomic_inc_return(&nr_callchain_events);
1938         if (WARN_ON_ONCE(count < 1)) {
1939                 err = -EINVAL;
1940                 goto exit;
1941         }
1942
1943         if (count > 1) {
1944                 /* If the allocation failed, give up */
1945                 if (!callchain_cpus_entries)
1946                         err = -ENOMEM;
1947                 goto exit;
1948         }
1949
1950         err = alloc_callchain_buffers();
1951         if (err)
1952                 release_callchain_buffers();
1953 exit:
1954         mutex_unlock(&callchain_mutex);
1955
1956         return err;
1957 }
1958
1959 static void put_callchain_buffers(void)
1960 {
1961         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1962                 release_callchain_buffers();
1963                 mutex_unlock(&callchain_mutex);
1964         }
1965 }
1966
1967 static int get_recursion_context(int *recursion)
1968 {
1969         int rctx;
1970
1971         if (in_nmi())
1972                 rctx = 3;
1973         else if (in_irq())
1974                 rctx = 2;
1975         else if (in_softirq())
1976                 rctx = 1;
1977         else
1978                 rctx = 0;
1979
1980         if (recursion[rctx])
1981                 return -1;
1982
1983         recursion[rctx]++;
1984         barrier();
1985
1986         return rctx;
1987 }
1988
1989 static inline void put_recursion_context(int *recursion, int rctx)
1990 {
1991         barrier();
1992         recursion[rctx]--;
1993 }
1994
1995 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1996 {
1997         int cpu;
1998         struct callchain_cpus_entries *entries;
1999
2000         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2001         if (*rctx == -1)
2002                 return NULL;
2003
2004         entries = rcu_dereference(callchain_cpus_entries);
2005         if (!entries)
2006                 return NULL;
2007
2008         cpu = smp_processor_id();
2009
2010         return &entries->cpu_entries[cpu][*rctx];
2011 }
2012
2013 static void
2014 put_callchain_entry(int rctx)
2015 {
2016         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2017 }
2018
2019 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2020 {
2021         int rctx;
2022         struct perf_callchain_entry *entry;
2023
2024
2025         entry = get_callchain_entry(&rctx);
2026         if (rctx == -1)
2027                 return NULL;
2028
2029         if (!entry)
2030                 goto exit_put;
2031
2032         entry->nr = 0;
2033
2034         if (!user_mode(regs)) {
2035                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2036                 perf_callchain_kernel(entry, regs);
2037                 if (current->mm)
2038                         regs = task_pt_regs(current);
2039                 else
2040                         regs = NULL;
2041         }
2042
2043         if (regs) {
2044                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2045                 perf_callchain_user(entry, regs);
2046         }
2047
2048 exit_put:
2049         put_callchain_entry(rctx);
2050
2051         return entry;
2052 }
2053
2054 /*
2055  * Initialize the perf_event context in a task_struct:
2056  */
2057 static void __perf_event_init_context(struct perf_event_context *ctx)
2058 {
2059         raw_spin_lock_init(&ctx->lock);
2060         mutex_init(&ctx->mutex);
2061         INIT_LIST_HEAD(&ctx->pinned_groups);
2062         INIT_LIST_HEAD(&ctx->flexible_groups);
2063         INIT_LIST_HEAD(&ctx->event_list);
2064         atomic_set(&ctx->refcount, 1);
2065 }
2066
2067 static struct perf_event_context *
2068 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2069 {
2070         struct perf_event_context *ctx;
2071
2072         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2073         if (!ctx)
2074                 return NULL;
2075
2076         __perf_event_init_context(ctx);
2077         if (task) {
2078                 ctx->task = task;
2079                 get_task_struct(task);
2080         }
2081         ctx->pmu = pmu;
2082
2083         return ctx;
2084 }
2085
2086 static struct task_struct *
2087 find_lively_task_by_vpid(pid_t vpid)
2088 {
2089         struct task_struct *task;
2090         int err;
2091
2092         rcu_read_lock();
2093         if (!vpid)
2094                 task = current;
2095         else
2096                 task = find_task_by_vpid(vpid);
2097         if (task)
2098                 get_task_struct(task);
2099         rcu_read_unlock();
2100
2101         if (!task)
2102                 return ERR_PTR(-ESRCH);
2103
2104         /*
2105          * Can't attach events to a dying task.
2106          */
2107         err = -ESRCH;
2108         if (task->flags & PF_EXITING)
2109                 goto errout;
2110
2111         /* Reuse ptrace permission checks for now. */
2112         err = -EACCES;
2113         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2114                 goto errout;
2115
2116         return task;
2117 errout:
2118         put_task_struct(task);
2119         return ERR_PTR(err);
2120
2121 }
2122
2123 static struct perf_event_context *
2124 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2125 {
2126         struct perf_event_context *ctx;
2127         struct perf_cpu_context *cpuctx;
2128         unsigned long flags;
2129         int ctxn, err;
2130
2131         if (!task && cpu != -1) {
2132                 /* Must be root to operate on a CPU event: */
2133                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2134                         return ERR_PTR(-EACCES);
2135
2136                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2137                         return ERR_PTR(-EINVAL);
2138
2139                 /*
2140                  * We could be clever and allow to attach a event to an
2141                  * offline CPU and activate it when the CPU comes up, but
2142                  * that's for later.
2143                  */
2144                 if (!cpu_online(cpu))
2145                         return ERR_PTR(-ENODEV);
2146
2147                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2148                 ctx = &cpuctx->ctx;
2149                 get_ctx(ctx);
2150
2151                 return ctx;
2152         }
2153
2154         err = -EINVAL;
2155         ctxn = pmu->task_ctx_nr;
2156         if (ctxn < 0)
2157                 goto errout;
2158
2159 retry:
2160         ctx = perf_lock_task_context(task, ctxn, &flags);
2161         if (ctx) {
2162                 unclone_ctx(ctx);
2163                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2164         }
2165
2166         if (!ctx) {
2167                 ctx = alloc_perf_context(pmu, task);
2168                 err = -ENOMEM;
2169                 if (!ctx)
2170                         goto errout;
2171
2172                 get_ctx(ctx);
2173
2174                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2175                         /*
2176                          * We raced with some other task; use
2177                          * the context they set.
2178                          */
2179                         put_task_struct(task);
2180                         kfree(ctx);
2181                         goto retry;
2182                 }
2183         }
2184
2185         return ctx;
2186
2187 errout:
2188         return ERR_PTR(err);
2189 }
2190
2191 static void perf_event_free_filter(struct perf_event *event);
2192
2193 static void free_event_rcu(struct rcu_head *head)
2194 {
2195         struct perf_event *event;
2196
2197         event = container_of(head, struct perf_event, rcu_head);
2198         if (event->ns)
2199                 put_pid_ns(event->ns);
2200         perf_event_free_filter(event);
2201         kfree(event);
2202 }
2203
2204 static void perf_buffer_put(struct perf_buffer *buffer);
2205
2206 static void free_event(struct perf_event *event)
2207 {
2208         irq_work_sync(&event->pending);
2209
2210         if (!event->parent) {
2211                 if (event->attach_state & PERF_ATTACH_TASK)
2212                         jump_label_dec(&perf_task_events);
2213                 if (event->attr.mmap || event->attr.mmap_data)
2214                         atomic_dec(&nr_mmap_events);
2215                 if (event->attr.comm)
2216                         atomic_dec(&nr_comm_events);
2217                 if (event->attr.task)
2218                         atomic_dec(&nr_task_events);
2219                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2220                         put_callchain_buffers();
2221         }
2222
2223         if (event->buffer) {
2224                 perf_buffer_put(event->buffer);
2225                 event->buffer = NULL;
2226         }
2227
2228         if (event->destroy)
2229                 event->destroy(event);
2230
2231         if (event->ctx)
2232                 put_ctx(event->ctx);
2233
2234         call_rcu(&event->rcu_head, free_event_rcu);
2235 }
2236
2237 int perf_event_release_kernel(struct perf_event *event)
2238 {
2239         struct perf_event_context *ctx = event->ctx;
2240
2241         /*
2242          * Remove from the PMU, can't get re-enabled since we got
2243          * here because the last ref went.
2244          */
2245         perf_event_disable(event);
2246
2247         WARN_ON_ONCE(ctx->parent_ctx);
2248         /*
2249          * There are two ways this annotation is useful:
2250          *
2251          *  1) there is a lock recursion from perf_event_exit_task
2252          *     see the comment there.
2253          *
2254          *  2) there is a lock-inversion with mmap_sem through
2255          *     perf_event_read_group(), which takes faults while
2256          *     holding ctx->mutex, however this is called after
2257          *     the last filedesc died, so there is no possibility
2258          *     to trigger the AB-BA case.
2259          */
2260         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2261         raw_spin_lock_irq(&ctx->lock);
2262         perf_group_detach(event);
2263         list_del_event(event, ctx);
2264         raw_spin_unlock_irq(&ctx->lock);
2265         mutex_unlock(&ctx->mutex);
2266
2267         mutex_lock(&event->owner->perf_event_mutex);
2268         list_del_init(&event->owner_entry);
2269         mutex_unlock(&event->owner->perf_event_mutex);
2270         put_task_struct(event->owner);
2271
2272         free_event(event);
2273
2274         return 0;
2275 }
2276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2277
2278 /*
2279  * Called when the last reference to the file is gone.
2280  */
2281 static int perf_release(struct inode *inode, struct file *file)
2282 {
2283         struct perf_event *event = file->private_data;
2284
2285         file->private_data = NULL;
2286
2287         return perf_event_release_kernel(event);
2288 }
2289
2290 static int perf_event_read_size(struct perf_event *event)
2291 {
2292         int entry = sizeof(u64); /* value */
2293         int size = 0;
2294         int nr = 1;
2295
2296         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2297                 size += sizeof(u64);
2298
2299         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2300                 size += sizeof(u64);
2301
2302         if (event->attr.read_format & PERF_FORMAT_ID)
2303                 entry += sizeof(u64);
2304
2305         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2306                 nr += event->group_leader->nr_siblings;
2307                 size += sizeof(u64);
2308         }
2309
2310         size += entry * nr;
2311
2312         return size;
2313 }
2314
2315 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2316 {
2317         struct perf_event *child;
2318         u64 total = 0;
2319
2320         *enabled = 0;
2321         *running = 0;
2322
2323         mutex_lock(&event->child_mutex);
2324         total += perf_event_read(event);
2325         *enabled += event->total_time_enabled +
2326                         atomic64_read(&event->child_total_time_enabled);
2327         *running += event->total_time_running +
2328                         atomic64_read(&event->child_total_time_running);
2329
2330         list_for_each_entry(child, &event->child_list, child_list) {
2331                 total += perf_event_read(child);
2332                 *enabled += child->total_time_enabled;
2333                 *running += child->total_time_running;
2334         }
2335         mutex_unlock(&event->child_mutex);
2336
2337         return total;
2338 }
2339 EXPORT_SYMBOL_GPL(perf_event_read_value);
2340
2341 static int perf_event_read_group(struct perf_event *event,
2342                                    u64 read_format, char __user *buf)
2343 {
2344         struct perf_event *leader = event->group_leader, *sub;
2345         int n = 0, size = 0, ret = -EFAULT;
2346         struct perf_event_context *ctx = leader->ctx;
2347         u64 values[5];
2348         u64 count, enabled, running;
2349
2350         mutex_lock(&ctx->mutex);
2351         count = perf_event_read_value(leader, &enabled, &running);
2352
2353         values[n++] = 1 + leader->nr_siblings;
2354         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2355                 values[n++] = enabled;
2356         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2357                 values[n++] = running;
2358         values[n++] = count;
2359         if (read_format & PERF_FORMAT_ID)
2360                 values[n++] = primary_event_id(leader);
2361
2362         size = n * sizeof(u64);
2363
2364         if (copy_to_user(buf, values, size))
2365                 goto unlock;
2366
2367         ret = size;
2368
2369         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2370                 n = 0;
2371
2372                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2373                 if (read_format & PERF_FORMAT_ID)
2374                         values[n++] = primary_event_id(sub);
2375
2376                 size = n * sizeof(u64);
2377
2378                 if (copy_to_user(buf + ret, values, size)) {
2379                         ret = -EFAULT;
2380                         goto unlock;
2381                 }
2382
2383                 ret += size;
2384         }
2385 unlock:
2386         mutex_unlock(&ctx->mutex);
2387
2388         return ret;
2389 }
2390
2391 static int perf_event_read_one(struct perf_event *event,
2392                                  u64 read_format, char __user *buf)
2393 {
2394         u64 enabled, running;
2395         u64 values[4];
2396         int n = 0;
2397
2398         values[n++] = perf_event_read_value(event, &enabled, &running);
2399         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2400                 values[n++] = enabled;
2401         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2402                 values[n++] = running;
2403         if (read_format & PERF_FORMAT_ID)
2404                 values[n++] = primary_event_id(event);
2405
2406         if (copy_to_user(buf, values, n * sizeof(u64)))
2407                 return -EFAULT;
2408
2409         return n * sizeof(u64);
2410 }
2411
2412 /*
2413  * Read the performance event - simple non blocking version for now
2414  */
2415 static ssize_t
2416 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2417 {
2418         u64 read_format = event->attr.read_format;
2419         int ret;
2420
2421         /*
2422          * Return end-of-file for a read on a event that is in
2423          * error state (i.e. because it was pinned but it couldn't be
2424          * scheduled on to the CPU at some point).
2425          */
2426         if (event->state == PERF_EVENT_STATE_ERROR)
2427                 return 0;
2428
2429         if (count < perf_event_read_size(event))
2430                 return -ENOSPC;
2431
2432         WARN_ON_ONCE(event->ctx->parent_ctx);
2433         if (read_format & PERF_FORMAT_GROUP)
2434                 ret = perf_event_read_group(event, read_format, buf);
2435         else
2436                 ret = perf_event_read_one(event, read_format, buf);
2437
2438         return ret;
2439 }
2440
2441 static ssize_t
2442 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2443 {
2444         struct perf_event *event = file->private_data;
2445
2446         return perf_read_hw(event, buf, count);
2447 }
2448
2449 static unsigned int perf_poll(struct file *file, poll_table *wait)
2450 {
2451         struct perf_event *event = file->private_data;
2452         struct perf_buffer *buffer;
2453         unsigned int events = POLL_HUP;
2454
2455         rcu_read_lock();
2456         buffer = rcu_dereference(event->buffer);
2457         if (buffer)
2458                 events = atomic_xchg(&buffer->poll, 0);
2459         rcu_read_unlock();
2460
2461         poll_wait(file, &event->waitq, wait);
2462
2463         return events;
2464 }
2465
2466 static void perf_event_reset(struct perf_event *event)
2467 {
2468         (void)perf_event_read(event);
2469         local64_set(&event->count, 0);
2470         perf_event_update_userpage(event);
2471 }
2472
2473 /*
2474  * Holding the top-level event's child_mutex means that any
2475  * descendant process that has inherited this event will block
2476  * in sync_child_event if it goes to exit, thus satisfying the
2477  * task existence requirements of perf_event_enable/disable.
2478  */
2479 static void perf_event_for_each_child(struct perf_event *event,
2480                                         void (*func)(struct perf_event *))
2481 {
2482         struct perf_event *child;
2483
2484         WARN_ON_ONCE(event->ctx->parent_ctx);
2485         mutex_lock(&event->child_mutex);
2486         func(event);
2487         list_for_each_entry(child, &event->child_list, child_list)
2488                 func(child);
2489         mutex_unlock(&event->child_mutex);
2490 }
2491
2492 static void perf_event_for_each(struct perf_event *event,
2493                                   void (*func)(struct perf_event *))
2494 {
2495         struct perf_event_context *ctx = event->ctx;
2496         struct perf_event *sibling;
2497
2498         WARN_ON_ONCE(ctx->parent_ctx);
2499         mutex_lock(&ctx->mutex);
2500         event = event->group_leader;
2501
2502         perf_event_for_each_child(event, func);
2503         func(event);
2504         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2505                 perf_event_for_each_child(event, func);
2506         mutex_unlock(&ctx->mutex);
2507 }
2508
2509 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2510 {
2511         struct perf_event_context *ctx = event->ctx;
2512         unsigned long size;
2513         int ret = 0;
2514         u64 value;
2515
2516         if (!event->attr.sample_period)
2517                 return -EINVAL;
2518
2519         size = copy_from_user(&value, arg, sizeof(value));
2520         if (size != sizeof(value))
2521                 return -EFAULT;
2522
2523         if (!value)
2524                 return -EINVAL;
2525
2526         raw_spin_lock_irq(&ctx->lock);
2527         if (event->attr.freq) {
2528                 if (value > sysctl_perf_event_sample_rate) {
2529                         ret = -EINVAL;
2530                         goto unlock;
2531                 }
2532
2533                 event->attr.sample_freq = value;
2534         } else {
2535                 event->attr.sample_period = value;
2536                 event->hw.sample_period = value;
2537         }
2538 unlock:
2539         raw_spin_unlock_irq(&ctx->lock);
2540
2541         return ret;
2542 }
2543
2544 static const struct file_operations perf_fops;
2545
2546 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2547 {
2548         struct file *file;
2549
2550         file = fget_light(fd, fput_needed);
2551         if (!file)
2552                 return ERR_PTR(-EBADF);
2553
2554         if (file->f_op != &perf_fops) {
2555                 fput_light(file, *fput_needed);
2556                 *fput_needed = 0;
2557                 return ERR_PTR(-EBADF);
2558         }
2559
2560         return file->private_data;
2561 }
2562
2563 static int perf_event_set_output(struct perf_event *event,
2564                                  struct perf_event *output_event);
2565 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2566
2567 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2568 {
2569         struct perf_event *event = file->private_data;
2570         void (*func)(struct perf_event *);
2571         u32 flags = arg;
2572
2573         switch (cmd) {
2574         case PERF_EVENT_IOC_ENABLE:
2575                 func = perf_event_enable;
2576                 break;
2577         case PERF_EVENT_IOC_DISABLE:
2578                 func = perf_event_disable;
2579                 break;
2580         case PERF_EVENT_IOC_RESET:
2581                 func = perf_event_reset;
2582                 break;
2583
2584         case PERF_EVENT_IOC_REFRESH:
2585                 return perf_event_refresh(event, arg);
2586
2587         case PERF_EVENT_IOC_PERIOD:
2588                 return perf_event_period(event, (u64 __user *)arg);
2589
2590         case PERF_EVENT_IOC_SET_OUTPUT:
2591         {
2592                 struct perf_event *output_event = NULL;
2593                 int fput_needed = 0;
2594                 int ret;
2595
2596                 if (arg != -1) {
2597                         output_event = perf_fget_light(arg, &fput_needed);
2598                         if (IS_ERR(output_event))
2599                                 return PTR_ERR(output_event);
2600                 }
2601
2602                 ret = perf_event_set_output(event, output_event);
2603                 if (output_event)
2604                         fput_light(output_event->filp, fput_needed);
2605
2606                 return ret;
2607         }
2608
2609         case PERF_EVENT_IOC_SET_FILTER:
2610                 return perf_event_set_filter(event, (void __user *)arg);
2611
2612         default:
2613                 return -ENOTTY;
2614         }
2615
2616         if (flags & PERF_IOC_FLAG_GROUP)
2617                 perf_event_for_each(event, func);
2618         else
2619                 perf_event_for_each_child(event, func);
2620
2621         return 0;
2622 }
2623
2624 int perf_event_task_enable(void)
2625 {
2626         struct perf_event *event;
2627
2628         mutex_lock(&current->perf_event_mutex);
2629         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2630                 perf_event_for_each_child(event, perf_event_enable);
2631         mutex_unlock(&current->perf_event_mutex);
2632
2633         return 0;
2634 }
2635
2636 int perf_event_task_disable(void)
2637 {
2638         struct perf_event *event;
2639
2640         mutex_lock(&current->perf_event_mutex);
2641         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2642                 perf_event_for_each_child(event, perf_event_disable);
2643         mutex_unlock(&current->perf_event_mutex);
2644
2645         return 0;
2646 }
2647
2648 #ifndef PERF_EVENT_INDEX_OFFSET
2649 # define PERF_EVENT_INDEX_OFFSET 0
2650 #endif
2651
2652 static int perf_event_index(struct perf_event *event)
2653 {
2654         if (event->hw.state & PERF_HES_STOPPED)
2655                 return 0;
2656
2657         if (event->state != PERF_EVENT_STATE_ACTIVE)
2658                 return 0;
2659
2660         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2661 }
2662
2663 /*
2664  * Callers need to ensure there can be no nesting of this function, otherwise
2665  * the seqlock logic goes bad. We can not serialize this because the arch
2666  * code calls this from NMI context.
2667  */
2668 void perf_event_update_userpage(struct perf_event *event)
2669 {
2670         struct perf_event_mmap_page *userpg;
2671         struct perf_buffer *buffer;
2672
2673         rcu_read_lock();
2674         buffer = rcu_dereference(event->buffer);
2675         if (!buffer)
2676                 goto unlock;
2677
2678         userpg = buffer->user_page;
2679
2680         /*
2681          * Disable preemption so as to not let the corresponding user-space
2682          * spin too long if we get preempted.
2683          */
2684         preempt_disable();
2685         ++userpg->lock;
2686         barrier();
2687         userpg->index = perf_event_index(event);
2688         userpg->offset = perf_event_count(event);
2689         if (event->state == PERF_EVENT_STATE_ACTIVE)
2690                 userpg->offset -= local64_read(&event->hw.prev_count);
2691
2692         userpg->time_enabled = event->total_time_enabled +
2693                         atomic64_read(&event->child_total_time_enabled);
2694
2695         userpg->time_running = event->total_time_running +
2696                         atomic64_read(&event->child_total_time_running);
2697
2698         barrier();
2699         ++userpg->lock;
2700         preempt_enable();
2701 unlock:
2702         rcu_read_unlock();
2703 }
2704
2705 static unsigned long perf_data_size(struct perf_buffer *buffer);
2706
2707 static void
2708 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2709 {
2710         long max_size = perf_data_size(buffer);
2711
2712         if (watermark)
2713                 buffer->watermark = min(max_size, watermark);
2714
2715         if (!buffer->watermark)
2716                 buffer->watermark = max_size / 2;
2717
2718         if (flags & PERF_BUFFER_WRITABLE)
2719                 buffer->writable = 1;
2720
2721         atomic_set(&buffer->refcount, 1);
2722 }
2723
2724 #ifndef CONFIG_PERF_USE_VMALLOC
2725
2726 /*
2727  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2728  */
2729
2730 static struct page *
2731 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2732 {
2733         if (pgoff > buffer->nr_pages)
2734                 return NULL;
2735
2736         if (pgoff == 0)
2737                 return virt_to_page(buffer->user_page);
2738
2739         return virt_to_page(buffer->data_pages[pgoff - 1]);
2740 }
2741
2742 static void *perf_mmap_alloc_page(int cpu)
2743 {
2744         struct page *page;
2745         int node;
2746
2747         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2748         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2749         if (!page)
2750                 return NULL;
2751
2752         return page_address(page);
2753 }
2754
2755 static struct perf_buffer *
2756 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2757 {
2758         struct perf_buffer *buffer;
2759         unsigned long size;
2760         int i;
2761
2762         size = sizeof(struct perf_buffer);
2763         size += nr_pages * sizeof(void *);
2764
2765         buffer = kzalloc(size, GFP_KERNEL);
2766         if (!buffer)
2767                 goto fail;
2768
2769         buffer->user_page = perf_mmap_alloc_page(cpu);
2770         if (!buffer->user_page)
2771                 goto fail_user_page;
2772
2773         for (i = 0; i < nr_pages; i++) {
2774                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2775                 if (!buffer->data_pages[i])
2776                         goto fail_data_pages;
2777         }
2778
2779         buffer->nr_pages = nr_pages;
2780
2781         perf_buffer_init(buffer, watermark, flags);
2782
2783         return buffer;
2784
2785 fail_data_pages:
2786         for (i--; i >= 0; i--)
2787                 free_page((unsigned long)buffer->data_pages[i]);
2788
2789         free_page((unsigned long)buffer->user_page);
2790
2791 fail_user_page:
2792         kfree(buffer);
2793
2794 fail:
2795         return NULL;
2796 }
2797
2798 static void perf_mmap_free_page(unsigned long addr)
2799 {
2800         struct page *page = virt_to_page((void *)addr);
2801
2802         page->mapping = NULL;
2803         __free_page(page);
2804 }
2805
2806 static void perf_buffer_free(struct perf_buffer *buffer)
2807 {
2808         int i;
2809
2810         perf_mmap_free_page((unsigned long)buffer->user_page);
2811         for (i = 0; i < buffer->nr_pages; i++)
2812                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2813         kfree(buffer);
2814 }
2815
2816 static inline int page_order(struct perf_buffer *buffer)
2817 {
2818         return 0;
2819 }
2820
2821 #else
2822
2823 /*
2824  * Back perf_mmap() with vmalloc memory.
2825  *
2826  * Required for architectures that have d-cache aliasing issues.
2827  */
2828
2829 static inline int page_order(struct perf_buffer *buffer)
2830 {
2831         return buffer->page_order;
2832 }
2833
2834 static struct page *
2835 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2836 {
2837         if (pgoff > (1UL << page_order(buffer)))
2838                 return NULL;
2839
2840         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2841 }
2842
2843 static void perf_mmap_unmark_page(void *addr)
2844 {
2845         struct page *page = vmalloc_to_page(addr);
2846
2847         page->mapping = NULL;
2848 }
2849
2850 static void perf_buffer_free_work(struct work_struct *work)
2851 {
2852         struct perf_buffer *buffer;
2853         void *base;
2854         int i, nr;
2855
2856         buffer = container_of(work, struct perf_buffer, work);
2857         nr = 1 << page_order(buffer);
2858
2859         base = buffer->user_page;
2860         for (i = 0; i < nr + 1; i++)
2861                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2862
2863         vfree(base);
2864         kfree(buffer);
2865 }
2866
2867 static void perf_buffer_free(struct perf_buffer *buffer)
2868 {
2869         schedule_work(&buffer->work);
2870 }
2871
2872 static struct perf_buffer *
2873 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2874 {
2875         struct perf_buffer *buffer;
2876         unsigned long size;
2877         void *all_buf;
2878
2879         size = sizeof(struct perf_buffer);
2880         size += sizeof(void *);
2881
2882         buffer = kzalloc(size, GFP_KERNEL);
2883         if (!buffer)
2884                 goto fail;
2885
2886         INIT_WORK(&buffer->work, perf_buffer_free_work);
2887
2888         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2889         if (!all_buf)
2890                 goto fail_all_buf;
2891
2892         buffer->user_page = all_buf;
2893         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2894         buffer->page_order = ilog2(nr_pages);
2895         buffer->nr_pages = 1;
2896
2897         perf_buffer_init(buffer, watermark, flags);
2898
2899         return buffer;
2900
2901 fail_all_buf:
2902         kfree(buffer);
2903
2904 fail:
2905         return NULL;
2906 }
2907
2908 #endif
2909
2910 static unsigned long perf_data_size(struct perf_buffer *buffer)
2911 {
2912         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2913 }
2914
2915 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2916 {
2917         struct perf_event *event = vma->vm_file->private_data;
2918         struct perf_buffer *buffer;
2919         int ret = VM_FAULT_SIGBUS;
2920
2921         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2922                 if (vmf->pgoff == 0)
2923                         ret = 0;
2924                 return ret;
2925         }
2926
2927         rcu_read_lock();
2928         buffer = rcu_dereference(event->buffer);
2929         if (!buffer)
2930                 goto unlock;
2931
2932         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2933                 goto unlock;
2934
2935         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2936         if (!vmf->page)
2937                 goto unlock;
2938
2939         get_page(vmf->page);
2940         vmf->page->mapping = vma->vm_file->f_mapping;
2941         vmf->page->index   = vmf->pgoff;
2942
2943         ret = 0;
2944 unlock:
2945         rcu_read_unlock();
2946
2947         return ret;
2948 }
2949
2950 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2951 {
2952         struct perf_buffer *buffer;
2953
2954         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2955         perf_buffer_free(buffer);
2956 }
2957
2958 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2959 {
2960         struct perf_buffer *buffer;
2961
2962         rcu_read_lock();
2963         buffer = rcu_dereference(event->buffer);
2964         if (buffer) {
2965                 if (!atomic_inc_not_zero(&buffer->refcount))
2966                         buffer = NULL;
2967         }
2968         rcu_read_unlock();
2969
2970         return buffer;
2971 }
2972
2973 static void perf_buffer_put(struct perf_buffer *buffer)
2974 {
2975         if (!atomic_dec_and_test(&buffer->refcount))
2976                 return;
2977
2978         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2979 }
2980
2981 static void perf_mmap_open(struct vm_area_struct *vma)
2982 {
2983         struct perf_event *event = vma->vm_file->private_data;
2984
2985         atomic_inc(&event->mmap_count);
2986 }
2987
2988 static void perf_mmap_close(struct vm_area_struct *vma)
2989 {
2990         struct perf_event *event = vma->vm_file->private_data;
2991
2992         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2993                 unsigned long size = perf_data_size(event->buffer);
2994                 struct user_struct *user = event->mmap_user;
2995                 struct perf_buffer *buffer = event->buffer;
2996
2997                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2998                 vma->vm_mm->locked_vm -= event->mmap_locked;
2999                 rcu_assign_pointer(event->buffer, NULL);
3000                 mutex_unlock(&event->mmap_mutex);
3001
3002                 perf_buffer_put(buffer);
3003                 free_uid(user);
3004         }
3005 }
3006
3007 static const struct vm_operations_struct perf_mmap_vmops = {
3008         .open           = perf_mmap_open,
3009         .close          = perf_mmap_close,
3010         .fault          = perf_mmap_fault,
3011         .page_mkwrite   = perf_mmap_fault,
3012 };
3013
3014 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3015 {
3016         struct perf_event *event = file->private_data;
3017         unsigned long user_locked, user_lock_limit;
3018         struct user_struct *user = current_user();
3019         unsigned long locked, lock_limit;
3020         struct perf_buffer *buffer;
3021         unsigned long vma_size;
3022         unsigned long nr_pages;
3023         long user_extra, extra;
3024         int ret = 0, flags = 0;
3025
3026         /*
3027          * Don't allow mmap() of inherited per-task counters. This would
3028          * create a performance issue due to all children writing to the
3029          * same buffer.
3030          */
3031         if (event->cpu == -1 && event->attr.inherit)
3032                 return -EINVAL;
3033
3034         if (!(vma->vm_flags & VM_SHARED))
3035                 return -EINVAL;
3036
3037         vma_size = vma->vm_end - vma->vm_start;
3038         nr_pages = (vma_size / PAGE_SIZE) - 1;
3039
3040         /*
3041          * If we have buffer pages ensure they're a power-of-two number, so we
3042          * can do bitmasks instead of modulo.
3043          */
3044         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3045                 return -EINVAL;
3046
3047         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3048                 return -EINVAL;
3049
3050         if (vma->vm_pgoff != 0)
3051                 return -EINVAL;
3052
3053         WARN_ON_ONCE(event->ctx->parent_ctx);
3054         mutex_lock(&event->mmap_mutex);
3055         if (event->buffer) {
3056                 if (event->buffer->nr_pages == nr_pages)
3057                         atomic_inc(&event->buffer->refcount);
3058                 else
3059                         ret = -EINVAL;
3060                 goto unlock;
3061         }
3062
3063         user_extra = nr_pages + 1;
3064         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3065
3066         /*
3067          * Increase the limit linearly with more CPUs:
3068          */
3069         user_lock_limit *= num_online_cpus();
3070
3071         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3072
3073         extra = 0;
3074         if (user_locked > user_lock_limit)
3075                 extra = user_locked - user_lock_limit;
3076
3077         lock_limit = rlimit(RLIMIT_MEMLOCK);
3078         lock_limit >>= PAGE_SHIFT;
3079         locked = vma->vm_mm->locked_vm + extra;
3080
3081         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3082                 !capable(CAP_IPC_LOCK)) {
3083                 ret = -EPERM;
3084                 goto unlock;
3085         }
3086
3087         WARN_ON(event->buffer);
3088
3089         if (vma->vm_flags & VM_WRITE)
3090                 flags |= PERF_BUFFER_WRITABLE;
3091
3092         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3093                                    event->cpu, flags);
3094         if (!buffer) {
3095                 ret = -ENOMEM;
3096                 goto unlock;
3097         }
3098         rcu_assign_pointer(event->buffer, buffer);
3099
3100         atomic_long_add(user_extra, &user->locked_vm);
3101         event->mmap_locked = extra;
3102         event->mmap_user = get_current_user();
3103         vma->vm_mm->locked_vm += event->mmap_locked;
3104
3105 unlock:
3106         if (!ret)
3107                 atomic_inc(&event->mmap_count);
3108         mutex_unlock(&event->mmap_mutex);
3109
3110         vma->vm_flags |= VM_RESERVED;
3111         vma->vm_ops = &perf_mmap_vmops;
3112
3113         return ret;
3114 }
3115
3116 static int perf_fasync(int fd, struct file *filp, int on)
3117 {
3118         struct inode *inode = filp->f_path.dentry->d_inode;
3119         struct perf_event *event = filp->private_data;
3120         int retval;
3121
3122         mutex_lock(&inode->i_mutex);
3123         retval = fasync_helper(fd, filp, on, &event->fasync);
3124         mutex_unlock(&inode->i_mutex);
3125
3126         if (retval < 0)
3127                 return retval;
3128
3129         return 0;
3130 }
3131
3132 static const struct file_operations perf_fops = {
3133         .llseek                 = no_llseek,
3134         .release                = perf_release,
3135         .read                   = perf_read,
3136         .poll                   = perf_poll,
3137         .unlocked_ioctl         = perf_ioctl,
3138         .compat_ioctl           = perf_ioctl,
3139         .mmap                   = perf_mmap,
3140         .fasync                 = perf_fasync,
3141 };
3142
3143 /*
3144  * Perf event wakeup
3145  *
3146  * If there's data, ensure we set the poll() state and publish everything
3147  * to user-space before waking everybody up.
3148  */
3149
3150 void perf_event_wakeup(struct perf_event *event)
3151 {
3152         wake_up_all(&event->waitq);
3153
3154         if (event->pending_kill) {
3155                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3156                 event->pending_kill = 0;
3157         }
3158 }
3159
3160 static void perf_pending_event(struct irq_work *entry)
3161 {
3162         struct perf_event *event = container_of(entry,
3163                         struct perf_event, pending);
3164
3165         if (event->pending_disable) {
3166                 event->pending_disable = 0;
3167                 __perf_event_disable(event);
3168         }
3169
3170         if (event->pending_wakeup) {
3171                 event->pending_wakeup = 0;
3172                 perf_event_wakeup(event);
3173         }
3174 }
3175
3176 /*
3177  * We assume there is only KVM supporting the callbacks.
3178  * Later on, we might change it to a list if there is
3179  * another virtualization implementation supporting the callbacks.
3180  */
3181 struct perf_guest_info_callbacks *perf_guest_cbs;
3182
3183 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3184 {
3185         perf_guest_cbs = cbs;
3186         return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3189
3190 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3191 {
3192         perf_guest_cbs = NULL;
3193         return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3196
3197 /*
3198  * Output
3199  */
3200 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3201                               unsigned long offset, unsigned long head)
3202 {
3203         unsigned long mask;
3204
3205         if (!buffer->writable)
3206                 return true;
3207
3208         mask = perf_data_size(buffer) - 1;
3209
3210         offset = (offset - tail) & mask;
3211         head   = (head   - tail) & mask;
3212
3213         if ((int)(head - offset) < 0)
3214                 return false;
3215
3216         return true;
3217 }
3218
3219 static void perf_output_wakeup(struct perf_output_handle *handle)
3220 {
3221         atomic_set(&handle->buffer->poll, POLL_IN);
3222
3223         if (handle->nmi) {
3224                 handle->event->pending_wakeup = 1;
3225                 irq_work_queue(&handle->event->pending);
3226         } else
3227                 perf_event_wakeup(handle->event);
3228 }
3229
3230 /*
3231  * We need to ensure a later event_id doesn't publish a head when a former
3232  * event isn't done writing. However since we need to deal with NMIs we
3233  * cannot fully serialize things.
3234  *
3235  * We only publish the head (and generate a wakeup) when the outer-most
3236  * event completes.
3237  */
3238 static void perf_output_get_handle(struct perf_output_handle *handle)
3239 {
3240         struct perf_buffer *buffer = handle->buffer;
3241
3242         preempt_disable();
3243         local_inc(&buffer->nest);
3244         handle->wakeup = local_read(&buffer->wakeup);
3245 }
3246
3247 static void perf_output_put_handle(struct perf_output_handle *handle)
3248 {
3249         struct perf_buffer *buffer = handle->buffer;
3250         unsigned long head;
3251
3252 again:
3253         head = local_read(&buffer->head);
3254
3255         /*
3256          * IRQ/NMI can happen here, which means we can miss a head update.
3257          */
3258
3259         if (!local_dec_and_test(&buffer->nest))
3260                 goto out;
3261
3262         /*
3263          * Publish the known good head. Rely on the full barrier implied
3264          * by atomic_dec_and_test() order the buffer->head read and this
3265          * write.
3266          */
3267         buffer->user_page->data_head = head;
3268
3269         /*
3270          * Now check if we missed an update, rely on the (compiler)
3271          * barrier in atomic_dec_and_test() to re-read buffer->head.
3272          */
3273         if (unlikely(head != local_read(&buffer->head))) {
3274                 local_inc(&buffer->nest);
3275                 goto again;
3276         }
3277
3278         if (handle->wakeup != local_read(&buffer->wakeup))
3279                 perf_output_wakeup(handle);
3280
3281 out:
3282         preempt_enable();
3283 }
3284
3285 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3286                       const void *buf, unsigned int len)
3287 {
3288         do {
3289                 unsigned long size = min_t(unsigned long, handle->size, len);
3290
3291                 memcpy(handle->addr, buf, size);
3292
3293                 len -= size;
3294                 handle->addr += size;
3295                 buf += size;
3296                 handle->size -= size;
3297                 if (!handle->size) {
3298                         struct perf_buffer *buffer = handle->buffer;
3299
3300                         handle->page++;
3301                         handle->page &= buffer->nr_pages - 1;
3302                         handle->addr = buffer->data_pages[handle->page];
3303                         handle->size = PAGE_SIZE << page_order(buffer);
3304                 }
3305         } while (len);
3306 }
3307
3308 int perf_output_begin(struct perf_output_handle *handle,
3309                       struct perf_event *event, unsigned int size,
3310                       int nmi, int sample)
3311 {
3312         struct perf_buffer *buffer;
3313         unsigned long tail, offset, head;
3314         int have_lost;
3315         struct {
3316                 struct perf_event_header header;
3317                 u64                      id;
3318                 u64                      lost;
3319         } lost_event;
3320
3321         rcu_read_lock();
3322         /*
3323          * For inherited events we send all the output towards the parent.
3324          */
3325         if (event->parent)
3326                 event = event->parent;
3327
3328         buffer = rcu_dereference(event->buffer);
3329         if (!buffer)
3330                 goto out;
3331
3332         handle->buffer  = buffer;
3333         handle->event   = event;
3334         handle->nmi     = nmi;
3335         handle->sample  = sample;
3336
3337         if (!buffer->nr_pages)
3338                 goto out;
3339
3340         have_lost = local_read(&buffer->lost);
3341         if (have_lost)
3342                 size += sizeof(lost_event);
3343
3344         perf_output_get_handle(handle);
3345
3346         do {
3347                 /*
3348                  * Userspace could choose to issue a mb() before updating the
3349                  * tail pointer. So that all reads will be completed before the
3350                  * write is issued.
3351                  */
3352                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3353                 smp_rmb();
3354                 offset = head = local_read(&buffer->head);
3355                 head += size;
3356                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3357                         goto fail;
3358         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3359
3360         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3361                 local_add(buffer->watermark, &buffer->wakeup);
3362
3363         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3364         handle->page &= buffer->nr_pages - 1;
3365         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3366         handle->addr = buffer->data_pages[handle->page];
3367         handle->addr += handle->size;
3368         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3369
3370         if (have_lost) {
3371                 lost_event.header.type = PERF_RECORD_LOST;
3372                 lost_event.header.misc = 0;
3373                 lost_event.header.size = sizeof(lost_event);
3374                 lost_event.id          = event->id;
3375                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3376
3377                 perf_output_put(handle, lost_event);
3378         }
3379
3380         return 0;
3381
3382 fail:
3383         local_inc(&buffer->lost);
3384         perf_output_put_handle(handle);
3385 out:
3386         rcu_read_unlock();
3387
3388         return -ENOSPC;
3389 }
3390
3391 void perf_output_end(struct perf_output_handle *handle)
3392 {
3393         struct perf_event *event = handle->event;
3394         struct perf_buffer *buffer = handle->buffer;
3395
3396         int wakeup_events = event->attr.wakeup_events;
3397
3398         if (handle->sample && wakeup_events) {
3399                 int events = local_inc_return(&buffer->events);
3400                 if (events >= wakeup_events) {
3401                         local_sub(wakeup_events, &buffer->events);
3402                         local_inc(&buffer->wakeup);
3403                 }
3404         }
3405
3406         perf_output_put_handle(handle);
3407         rcu_read_unlock();
3408 }
3409
3410 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3411 {
3412         /*
3413          * only top level events have the pid namespace they were created in
3414          */
3415         if (event->parent)
3416                 event = event->parent;
3417
3418         return task_tgid_nr_ns(p, event->ns);
3419 }
3420
3421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3422 {
3423         /*
3424          * only top level events have the pid namespace they were created in
3425          */
3426         if (event->parent)
3427                 event = event->parent;
3428
3429         return task_pid_nr_ns(p, event->ns);
3430 }
3431
3432 static void perf_output_read_one(struct perf_output_handle *handle,
3433                                  struct perf_event *event)
3434 {
3435         u64 read_format = event->attr.read_format;
3436         u64 values[4];
3437         int n = 0;
3438
3439         values[n++] = perf_event_count(event);
3440         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3441                 values[n++] = event->total_time_enabled +
3442                         atomic64_read(&event->child_total_time_enabled);
3443         }
3444         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3445                 values[n++] = event->total_time_running +
3446                         atomic64_read(&event->child_total_time_running);
3447         }
3448         if (read_format & PERF_FORMAT_ID)
3449                 values[n++] = primary_event_id(event);
3450
3451         perf_output_copy(handle, values, n * sizeof(u64));
3452 }
3453
3454 /*
3455  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3456  */
3457 static void perf_output_read_group(struct perf_output_handle *handle,
3458                             struct perf_event *event)
3459 {
3460         struct perf_event *leader = event->group_leader, *sub;
3461         u64 read_format = event->attr.read_format;
3462         u64 values[5];
3463         int n = 0;
3464
3465         values[n++] = 1 + leader->nr_siblings;
3466
3467         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3468                 values[n++] = leader->total_time_enabled;
3469
3470         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3471                 values[n++] = leader->total_time_running;
3472
3473         if (leader != event)
3474                 leader->pmu->read(leader);
3475
3476         values[n++] = perf_event_count(leader);
3477         if (read_format & PERF_FORMAT_ID)
3478                 values[n++] = primary_event_id(leader);
3479
3480         perf_output_copy(handle, values, n * sizeof(u64));
3481
3482         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3483                 n = 0;
3484
3485                 if (sub != event)
3486                         sub->pmu->read(sub);
3487
3488                 values[n++] = perf_event_count(sub);
3489                 if (read_format & PERF_FORMAT_ID)
3490                         values[n++] = primary_event_id(sub);
3491
3492                 perf_output_copy(handle, values, n * sizeof(u64));
3493         }
3494 }
3495
3496 static void perf_output_read(struct perf_output_handle *handle,
3497                              struct perf_event *event)
3498 {
3499         if (event->attr.read_format & PERF_FORMAT_GROUP)
3500                 perf_output_read_group(handle, event);
3501         else
3502                 perf_output_read_one(handle, event);
3503 }
3504
3505 void perf_output_sample(struct perf_output_handle *handle,
3506                         struct perf_event_header *header,
3507                         struct perf_sample_data *data,
3508                         struct perf_event *event)
3509 {
3510         u64 sample_type = data->type;
3511
3512         perf_output_put(handle, *header);
3513
3514         if (sample_type & PERF_SAMPLE_IP)
3515                 perf_output_put(handle, data->ip);
3516
3517         if (sample_type & PERF_SAMPLE_TID)
3518                 perf_output_put(handle, data->tid_entry);
3519
3520         if (sample_type & PERF_SAMPLE_TIME)
3521                 perf_output_put(handle, data->time);
3522
3523         if (sample_type & PERF_SAMPLE_ADDR)
3524                 perf_output_put(handle, data->addr);
3525
3526         if (sample_type & PERF_SAMPLE_ID)
3527                 perf_output_put(handle, data->id);
3528
3529         if (sample_type & PERF_SAMPLE_STREAM_ID)
3530                 perf_output_put(handle, data->stream_id);
3531
3532         if (sample_type & PERF_SAMPLE_CPU)
3533                 perf_output_put(handle, data->cpu_entry);
3534
3535         if (sample_type & PERF_SAMPLE_PERIOD)
3536                 perf_output_put(handle, data->period);
3537
3538         if (sample_type & PERF_SAMPLE_READ)
3539                 perf_output_read(handle, event);
3540
3541         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3542                 if (data->callchain) {
3543                         int size = 1;
3544
3545                         if (data->callchain)
3546                                 size += data->callchain->nr;
3547
3548                         size *= sizeof(u64);
3549
3550                         perf_output_copy(handle, data->callchain, size);
3551                 } else {
3552                         u64 nr = 0;
3553                         perf_output_put(handle, nr);
3554                 }
3555         }
3556
3557         if (sample_type & PERF_SAMPLE_RAW) {
3558                 if (data->raw) {
3559                         perf_output_put(handle, data->raw->size);
3560                         perf_output_copy(handle, data->raw->data,
3561                                          data->raw->size);
3562                 } else {
3563                         struct {
3564                                 u32     size;
3565                                 u32     data;
3566                         } raw = {
3567                                 .size = sizeof(u32),
3568                                 .data = 0,
3569                         };
3570                         perf_output_put(handle, raw);
3571                 }
3572         }
3573 }
3574
3575 void perf_prepare_sample(struct perf_event_header *header,
3576                          struct perf_sample_data *data,
3577                          struct perf_event *event,
3578                          struct pt_regs *regs)
3579 {
3580         u64 sample_type = event->attr.sample_type;
3581
3582         data->type = sample_type;
3583
3584         header->type = PERF_RECORD_SAMPLE;
3585         header->size = sizeof(*header);
3586
3587         header->misc = 0;
3588         header->misc |= perf_misc_flags(regs);
3589
3590         if (sample_type & PERF_SAMPLE_IP) {
3591                 data->ip = perf_instruction_pointer(regs);
3592
3593                 header->size += sizeof(data->ip);
3594         }
3595
3596         if (sample_type & PERF_SAMPLE_TID) {
3597                 /* namespace issues */
3598                 data->tid_entry.pid = perf_event_pid(event, current);
3599                 data->tid_entry.tid = perf_event_tid(event, current);
3600
3601                 header->size += sizeof(data->tid_entry);
3602         }
3603
3604         if (sample_type & PERF_SAMPLE_TIME) {
3605                 data->time = perf_clock();
3606
3607                 header->size += sizeof(data->time);
3608         }
3609
3610         if (sample_type & PERF_SAMPLE_ADDR)
3611                 header->size += sizeof(data->addr);
3612
3613         if (sample_type & PERF_SAMPLE_ID) {
3614                 data->id = primary_event_id(event);
3615
3616                 header->size += sizeof(data->id);
3617         }
3618
3619         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3620                 data->stream_id = event->id;
3621
3622                 header->size += sizeof(data->stream_id);
3623         }
3624
3625         if (sample_type & PERF_SAMPLE_CPU) {
3626                 data->cpu_entry.cpu             = raw_smp_processor_id();
3627                 data->cpu_entry.reserved        = 0;
3628
3629                 header->size += sizeof(data->cpu_entry);
3630         }
3631
3632         if (sample_type & PERF_SAMPLE_PERIOD)
3633                 header->size += sizeof(data->period);
3634
3635         if (sample_type & PERF_SAMPLE_READ)
3636                 header->size += perf_event_read_size(event);
3637
3638         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3639                 int size = 1;
3640
3641                 data->callchain = perf_callchain(regs);
3642
3643                 if (data->callchain)
3644                         size += data->callchain->nr;
3645
3646                 header->size += size * sizeof(u64);
3647         }
3648
3649         if (sample_type & PERF_SAMPLE_RAW) {
3650                 int size = sizeof(u32);
3651
3652                 if (data->raw)
3653                         size += data->raw->size;
3654                 else
3655                         size += sizeof(u32);
3656
3657                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3658                 header->size += size;
3659         }
3660 }
3661
3662 static void perf_event_output(struct perf_event *event, int nmi,
3663                                 struct perf_sample_data *data,
3664                                 struct pt_regs *regs)
3665 {
3666         struct perf_output_handle handle;
3667         struct perf_event_header header;
3668
3669         /* protect the callchain buffers */
3670         rcu_read_lock();
3671
3672         perf_prepare_sample(&header, data, event, regs);
3673
3674         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3675                 goto exit;
3676
3677         perf_output_sample(&handle, &header, data, event);
3678
3679         perf_output_end(&handle);
3680
3681 exit:
3682         rcu_read_unlock();
3683 }
3684
3685 /*
3686  * read event_id
3687  */
3688
3689 struct perf_read_event {
3690         struct perf_event_header        header;
3691
3692         u32                             pid;
3693         u32                             tid;
3694 };
3695
3696 static void
3697 perf_event_read_event(struct perf_event *event,
3698                         struct task_struct *task)
3699 {
3700         struct perf_output_handle handle;
3701         struct perf_read_event read_event = {
3702                 .header = {
3703                         .type = PERF_RECORD_READ,
3704                         .misc = 0,
3705                         .size = sizeof(read_event) + perf_event_read_size(event),
3706                 },
3707                 .pid = perf_event_pid(event, task),
3708                 .tid = perf_event_tid(event, task),
3709         };
3710         int ret;
3711
3712         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3713         if (ret)
3714                 return;
3715
3716         perf_output_put(&handle, read_event);
3717         perf_output_read(&handle, event);
3718
3719         perf_output_end(&handle);
3720 }
3721
3722 /*
3723  * task tracking -- fork/exit
3724  *
3725  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3726  */
3727
3728 struct perf_task_event {
3729         struct task_struct              *task;
3730         struct perf_event_context       *task_ctx;
3731
3732         struct {
3733                 struct perf_event_header        header;
3734
3735                 u32                             pid;
3736                 u32                             ppid;
3737                 u32                             tid;
3738                 u32                             ptid;
3739                 u64                             time;
3740         } event_id;
3741 };
3742
3743 static void perf_event_task_output(struct perf_event *event,
3744                                      struct perf_task_event *task_event)
3745 {
3746         struct perf_output_handle handle;
3747         struct task_struct *task = task_event->task;
3748         int size, ret;
3749
3750         size  = task_event->event_id.header.size;
3751         ret = perf_output_begin(&handle, event, size, 0, 0);
3752
3753         if (ret)
3754                 return;
3755
3756         task_event->event_id.pid = perf_event_pid(event, task);
3757         task_event->event_id.ppid = perf_event_pid(event, current);
3758
3759         task_event->event_id.tid = perf_event_tid(event, task);
3760         task_event->event_id.ptid = perf_event_tid(event, current);
3761
3762         perf_output_put(&handle, task_event->event_id);
3763
3764         perf_output_end(&handle);
3765 }
3766
3767 static int perf_event_task_match(struct perf_event *event)
3768 {
3769         if (event->state < PERF_EVENT_STATE_INACTIVE)
3770                 return 0;
3771
3772         if (event->cpu != -1 && event->cpu != smp_processor_id())
3773                 return 0;
3774
3775         if (event->attr.comm || event->attr.mmap ||
3776             event->attr.mmap_data || event->attr.task)
3777                 return 1;
3778
3779         return 0;
3780 }
3781
3782 static void perf_event_task_ctx(struct perf_event_context *ctx,
3783                                   struct perf_task_event *task_event)
3784 {
3785         struct perf_event *event;
3786
3787         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3788                 if (perf_event_task_match(event))
3789                         perf_event_task_output(event, task_event);
3790         }
3791 }
3792
3793 static void perf_event_task_event(struct perf_task_event *task_event)
3794 {
3795         struct perf_cpu_context *cpuctx;
3796         struct perf_event_context *ctx;
3797         struct pmu *pmu;
3798         int ctxn;
3799
3800         rcu_read_lock();
3801         list_for_each_entry_rcu(pmu, &pmus, entry) {
3802                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3803                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3804
3805                 ctx = task_event->task_ctx;
3806                 if (!ctx) {
3807                         ctxn = pmu->task_ctx_nr;
3808                         if (ctxn < 0)
3809                                 goto next;
3810                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3811                 }
3812                 if (ctx)
3813                         perf_event_task_ctx(ctx, task_event);
3814 next:
3815                 put_cpu_ptr(pmu->pmu_cpu_context);
3816         }
3817         rcu_read_unlock();
3818 }
3819
3820 static void perf_event_task(struct task_struct *task,
3821                               struct perf_event_context *task_ctx,
3822                               int new)
3823 {
3824         struct perf_task_event task_event;
3825
3826         if (!atomic_read(&nr_comm_events) &&
3827             !atomic_read(&nr_mmap_events) &&
3828             !atomic_read(&nr_task_events))
3829                 return;
3830
3831         task_event = (struct perf_task_event){
3832                 .task     = task,
3833                 .task_ctx = task_ctx,
3834                 .event_id    = {
3835                         .header = {
3836                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3837                                 .misc = 0,
3838                                 .size = sizeof(task_event.event_id),
3839                         },
3840                         /* .pid  */
3841                         /* .ppid */
3842                         /* .tid  */
3843                         /* .ptid */
3844                         .time = perf_clock(),
3845                 },
3846         };
3847
3848         perf_event_task_event(&task_event);
3849 }
3850
3851 void perf_event_fork(struct task_struct *task)
3852 {
3853         perf_event_task(task, NULL, 1);
3854 }
3855
3856 /*
3857  * comm tracking
3858  */
3859
3860 struct perf_comm_event {
3861         struct task_struct      *task;
3862         char                    *comm;
3863         int                     comm_size;
3864
3865         struct {
3866                 struct perf_event_header        header;
3867
3868                 u32                             pid;
3869                 u32                             tid;
3870         } event_id;
3871 };
3872
3873 static void perf_event_comm_output(struct perf_event *event,
3874                                      struct perf_comm_event *comm_event)
3875 {
3876         struct perf_output_handle handle;
3877         int size = comm_event->event_id.header.size;
3878         int ret = perf_output_begin(&handle, event, size, 0, 0);
3879
3880         if (ret)
3881                 return;
3882
3883         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3884         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3885
3886         perf_output_put(&handle, comm_event->event_id);
3887         perf_output_copy(&handle, comm_event->comm,
3888                                    comm_event->comm_size);
3889         perf_output_end(&handle);
3890 }
3891
3892 static int perf_event_comm_match(struct perf_event *event)
3893 {
3894         if (event->state < PERF_EVENT_STATE_INACTIVE)
3895                 return 0;
3896
3897         if (event->cpu != -1 && event->cpu != smp_processor_id())
3898                 return 0;
3899
3900         if (event->attr.comm)
3901                 return 1;
3902
3903         return 0;
3904 }
3905
3906 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3907                                   struct perf_comm_event *comm_event)
3908 {
3909         struct perf_event *event;
3910
3911         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3912                 if (perf_event_comm_match(event))
3913                         perf_event_comm_output(event, comm_event);
3914         }
3915 }
3916
3917 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3918 {
3919         struct perf_cpu_context *cpuctx;
3920         struct perf_event_context *ctx;
3921         char comm[TASK_COMM_LEN];
3922         unsigned int size;
3923         struct pmu *pmu;
3924         int ctxn;
3925
3926         memset(comm, 0, sizeof(comm));
3927         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3928         size = ALIGN(strlen(comm)+1, sizeof(u64));
3929
3930         comm_event->comm = comm;
3931         comm_event->comm_size = size;
3932
3933         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3934
3935         rcu_read_lock();
3936         list_for_each_entry_rcu(pmu, &pmus, entry) {
3937                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3938                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3939
3940                 ctxn = pmu->task_ctx_nr;
3941                 if (ctxn < 0)
3942                         goto next;
3943
3944                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3945                 if (ctx)
3946                         perf_event_comm_ctx(ctx, comm_event);
3947 next:
3948                 put_cpu_ptr(pmu->pmu_cpu_context);
3949         }
3950         rcu_read_unlock();
3951 }
3952
3953 void perf_event_comm(struct task_struct *task)
3954 {
3955         struct perf_comm_event comm_event;
3956         struct perf_event_context *ctx;
3957         int ctxn;
3958
3959         for_each_task_context_nr(ctxn) {
3960                 ctx = task->perf_event_ctxp[ctxn];
3961                 if (!ctx)
3962                         continue;
3963
3964                 perf_event_enable_on_exec(ctx);
3965         }
3966
3967         if (!atomic_read(&nr_comm_events))
3968                 return;
3969
3970         comm_event = (struct perf_comm_event){
3971                 .task   = task,
3972                 /* .comm      */
3973                 /* .comm_size */
3974                 .event_id  = {
3975                         .header = {
3976                                 .type = PERF_RECORD_COMM,
3977                                 .misc = 0,
3978                                 /* .size */
3979                         },
3980                         /* .pid */
3981                         /* .tid */
3982                 },
3983         };
3984
3985         perf_event_comm_event(&comm_event);
3986 }
3987
3988 /*
3989  * mmap tracking
3990  */
3991
3992 struct perf_mmap_event {
3993         struct vm_area_struct   *vma;
3994
3995         const char              *file_name;
3996         int                     file_size;
3997
3998         struct {
3999                 struct perf_event_header        header;
4000
4001                 u32                             pid;
4002                 u32                             tid;
4003                 u64                             start;
4004                 u64                             len;
4005                 u64                             pgoff;
4006         } event_id;
4007 };
4008
4009 static void perf_event_mmap_output(struct perf_event *event,
4010                                      struct perf_mmap_event *mmap_event)
4011 {
4012         struct perf_output_handle handle;
4013         int size = mmap_event->event_id.header.size;
4014         int ret = perf_output_begin(&handle, event, size, 0, 0);
4015
4016         if (ret)
4017                 return;
4018
4019         mmap_event->event_id.pid = perf_event_pid(event, current);
4020         mmap_event->event_id.tid = perf_event_tid(event, current);
4021
4022         perf_output_put(&handle, mmap_event->event_id);
4023         perf_output_copy(&handle, mmap_event->file_name,
4024                                    mmap_event->file_size);
4025         perf_output_end(&handle);
4026 }
4027
4028 static int perf_event_mmap_match(struct perf_event *event,
4029                                    struct perf_mmap_event *mmap_event,
4030                                    int executable)
4031 {
4032         if (event->state < PERF_EVENT_STATE_INACTIVE)
4033                 return 0;
4034
4035         if (event->cpu != -1 && event->cpu != smp_processor_id())
4036                 return 0;
4037
4038         if ((!executable && event->attr.mmap_data) ||
4039             (executable && event->attr.mmap))
4040                 return 1;
4041
4042         return 0;
4043 }
4044
4045 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4046                                   struct perf_mmap_event *mmap_event,
4047                                   int executable)
4048 {
4049         struct perf_event *event;
4050
4051         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4052                 if (perf_event_mmap_match(event, mmap_event, executable))
4053                         perf_event_mmap_output(event, mmap_event);
4054         }
4055 }
4056
4057 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4058 {
4059         struct perf_cpu_context *cpuctx;
4060         struct perf_event_context *ctx;
4061         struct vm_area_struct *vma = mmap_event->vma;
4062         struct file *file = vma->vm_file;
4063         unsigned int size;
4064         char tmp[16];
4065         char *buf = NULL;
4066         const char *name;
4067         struct pmu *pmu;
4068         int ctxn;
4069
4070         memset(tmp, 0, sizeof(tmp));
4071
4072         if (file) {
4073                 /*
4074                  * d_path works from the end of the buffer backwards, so we
4075                  * need to add enough zero bytes after the string to handle
4076                  * the 64bit alignment we do later.
4077                  */
4078                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4079                 if (!buf) {
4080                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4081                         goto got_name;
4082                 }
4083                 name = d_path(&file->f_path, buf, PATH_MAX);
4084                 if (IS_ERR(name)) {
4085                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4086                         goto got_name;
4087                 }
4088         } else {
4089                 if (arch_vma_name(mmap_event->vma)) {
4090                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4091                                        sizeof(tmp));
4092                         goto got_name;
4093                 }
4094
4095                 if (!vma->vm_mm) {
4096                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4097                         goto got_name;
4098                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4099                                 vma->vm_end >= vma->vm_mm->brk) {
4100                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4101                         goto got_name;
4102                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4103                                 vma->vm_end >= vma->vm_mm->start_stack) {
4104                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4105                         goto got_name;
4106                 }
4107
4108                 name = strncpy(tmp, "//anon", sizeof(tmp));
4109                 goto got_name;
4110         }
4111
4112 got_name:
4113         size = ALIGN(strlen(name)+1, sizeof(u64));
4114
4115         mmap_event->file_name = name;
4116         mmap_event->file_size = size;
4117
4118         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4119
4120         rcu_read_lock();
4121         list_for_each_entry_rcu(pmu, &pmus, entry) {
4122                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4123                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4124                                         vma->vm_flags & VM_EXEC);
4125
4126                 ctxn = pmu->task_ctx_nr;
4127                 if (ctxn < 0)
4128                         goto next;
4129
4130                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4131                 if (ctx) {
4132                         perf_event_mmap_ctx(ctx, mmap_event,
4133                                         vma->vm_flags & VM_EXEC);
4134                 }
4135 next:
4136                 put_cpu_ptr(pmu->pmu_cpu_context);
4137         }
4138         rcu_read_unlock();
4139
4140         kfree(buf);
4141 }
4142
4143 void perf_event_mmap(struct vm_area_struct *vma)
4144 {
4145         struct perf_mmap_event mmap_event;
4146
4147         if (!atomic_read(&nr_mmap_events))
4148                 return;
4149
4150         mmap_event = (struct perf_mmap_event){
4151                 .vma    = vma,
4152                 /* .file_name */
4153                 /* .file_size */
4154                 .event_id  = {
4155                         .header = {
4156                                 .type = PERF_RECORD_MMAP,
4157                                 .misc = PERF_RECORD_MISC_USER,
4158                                 /* .size */
4159                         },
4160                         /* .pid */
4161                         /* .tid */
4162                         .start  = vma->vm_start,
4163                         .len    = vma->vm_end - vma->vm_start,
4164                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4165                 },
4166         };
4167
4168         perf_event_mmap_event(&mmap_event);
4169 }
4170
4171 /*
4172  * IRQ throttle logging
4173  */
4174
4175 static void perf_log_throttle(struct perf_event *event, int enable)
4176 {
4177         struct perf_output_handle handle;
4178         int ret;
4179
4180         struct {
4181                 struct perf_event_header        header;
4182                 u64                             time;
4183                 u64                             id;
4184                 u64                             stream_id;
4185         } throttle_event = {
4186                 .header = {
4187                         .type = PERF_RECORD_THROTTLE,
4188                         .misc = 0,
4189                         .size = sizeof(throttle_event),
4190                 },
4191                 .time           = perf_clock(),
4192                 .id             = primary_event_id(event),
4193                 .stream_id      = event->id,
4194         };
4195
4196         if (enable)
4197                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4198
4199         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4200         if (ret)
4201                 return;
4202
4203         perf_output_put(&handle, throttle_event);
4204         perf_output_end(&handle);
4205 }
4206
4207 /*
4208  * Generic event overflow handling, sampling.
4209  */
4210
4211 static int __perf_event_overflow(struct perf_event *event, int nmi,
4212                                    int throttle, struct perf_sample_data *data,
4213                                    struct pt_regs *regs)
4214 {
4215         int events = atomic_read(&event->event_limit);
4216         struct hw_perf_event *hwc = &event->hw;
4217         int ret = 0;
4218
4219         if (!throttle) {
4220                 hwc->interrupts++;
4221         } else {
4222                 if (hwc->interrupts != MAX_INTERRUPTS) {
4223                         hwc->interrupts++;
4224                         if (HZ * hwc->interrupts >
4225                                         (u64)sysctl_perf_event_sample_rate) {
4226                                 hwc->interrupts = MAX_INTERRUPTS;
4227                                 perf_log_throttle(event, 0);
4228                                 ret = 1;
4229                         }
4230                 } else {
4231                         /*
4232                          * Keep re-disabling events even though on the previous
4233                          * pass we disabled it - just in case we raced with a
4234                          * sched-in and the event got enabled again:
4235                          */
4236                         ret = 1;
4237                 }
4238         }
4239
4240         if (event->attr.freq) {
4241                 u64 now = perf_clock();
4242                 s64 delta = now - hwc->freq_time_stamp;
4243
4244                 hwc->freq_time_stamp = now;
4245
4246                 if (delta > 0 && delta < 2*TICK_NSEC)
4247                         perf_adjust_period(event, delta, hwc->last_period);
4248         }
4249
4250         /*
4251          * XXX event_limit might not quite work as expected on inherited
4252          * events
4253          */
4254
4255         event->pending_kill = POLL_IN;
4256         if (events && atomic_dec_and_test(&event->event_limit)) {
4257                 ret = 1;
4258                 event->pending_kill = POLL_HUP;
4259                 if (nmi) {
4260                         event->pending_disable = 1;
4261                         irq_work_queue(&event->pending);
4262                 } else
4263                         perf_event_disable(event);
4264         }
4265
4266         if (event->overflow_handler)
4267                 event->overflow_handler(event, nmi, data, regs);
4268         else
4269                 perf_event_output(event, nmi, data, regs);
4270
4271         return ret;
4272 }
4273
4274 int perf_event_overflow(struct perf_event *event, int nmi,
4275                           struct perf_sample_data *data,
4276                           struct pt_regs *regs)
4277 {
4278         return __perf_event_overflow(event, nmi, 1, data, regs);
4279 }
4280
4281 /*
4282  * Generic software event infrastructure
4283  */
4284
4285 struct swevent_htable {
4286         struct swevent_hlist            *swevent_hlist;
4287         struct mutex                    hlist_mutex;
4288         int                             hlist_refcount;
4289
4290         /* Recursion avoidance in each contexts */
4291         int                             recursion[PERF_NR_CONTEXTS];
4292 };
4293
4294 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4295
4296 /*
4297  * We directly increment event->count and keep a second value in
4298  * event->hw.period_left to count intervals. This period event
4299  * is kept in the range [-sample_period, 0] so that we can use the
4300  * sign as trigger.
4301  */
4302
4303 static u64 perf_swevent_set_period(struct perf_event *event)
4304 {
4305         struct hw_perf_event *hwc = &event->hw;
4306         u64 period = hwc->last_period;
4307         u64 nr, offset;
4308         s64 old, val;
4309
4310         hwc->last_period = hwc->sample_period;
4311
4312 again:
4313         old = val = local64_read(&hwc->period_left);
4314         if (val < 0)
4315                 return 0;
4316
4317         nr = div64_u64(period + val, period);
4318         offset = nr * period;
4319         val -= offset;
4320         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4321                 goto again;
4322
4323         return nr;
4324 }
4325
4326 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4327                                     int nmi, struct perf_sample_data *data,
4328                                     struct pt_regs *regs)
4329 {
4330         struct hw_perf_event *hwc = &event->hw;
4331         int throttle = 0;
4332
4333         data->period = event->hw.last_period;
4334         if (!overflow)
4335                 overflow = perf_swevent_set_period(event);
4336
4337         if (hwc->interrupts == MAX_INTERRUPTS)
4338                 return;
4339
4340         for (; overflow; overflow--) {
4341                 if (__perf_event_overflow(event, nmi, throttle,
4342                                             data, regs)) {
4343                         /*
4344                          * We inhibit the overflow from happening when
4345                          * hwc->interrupts == MAX_INTERRUPTS.
4346                          */
4347                         break;
4348                 }
4349                 throttle = 1;
4350         }
4351 }
4352
4353 static void perf_swevent_event(struct perf_event *event, u64 nr,
4354                                int nmi, struct perf_sample_data *data,
4355                                struct pt_regs *regs)
4356 {
4357         struct hw_perf_event *hwc = &event->hw;
4358
4359         local64_add(nr, &event->count);
4360
4361         if (!regs)
4362                 return;
4363
4364         if (!hwc->sample_period)
4365                 return;
4366
4367         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4368                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4369
4370         if (local64_add_negative(nr, &hwc->period_left))
4371                 return;
4372
4373         perf_swevent_overflow(event, 0, nmi, data, regs);
4374 }
4375
4376 static int perf_exclude_event(struct perf_event *event,
4377                               struct pt_regs *regs)
4378 {
4379         if (event->hw.state & PERF_HES_STOPPED)
4380                 return 0;
4381
4382         if (regs) {
4383                 if (event->attr.exclude_user && user_mode(regs))
4384                         return 1;
4385
4386                 if (event->attr.exclude_kernel && !user_mode(regs))
4387                         return 1;
4388         }
4389
4390         return 0;
4391 }
4392
4393 static int perf_swevent_match(struct perf_event *event,
4394                                 enum perf_type_id type,
4395                                 u32 event_id,
4396                                 struct perf_sample_data *data,
4397                                 struct pt_regs *regs)
4398 {
4399         if (event->attr.type != type)
4400                 return 0;
4401
4402         if (event->attr.config != event_id)
4403                 return 0;
4404
4405         if (perf_exclude_event(event, regs))
4406                 return 0;
4407
4408         return 1;
4409 }
4410
4411 static inline u64 swevent_hash(u64 type, u32 event_id)
4412 {
4413         u64 val = event_id | (type << 32);
4414
4415         return hash_64(val, SWEVENT_HLIST_BITS);
4416 }
4417
4418 static inline struct hlist_head *
4419 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4420 {
4421         u64 hash = swevent_hash(type, event_id);
4422
4423         return &hlist->heads[hash];
4424 }
4425
4426 /* For the read side: events when they trigger */
4427 static inline struct hlist_head *
4428 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4429 {
4430         struct swevent_hlist *hlist;
4431
4432         hlist = rcu_dereference(swhash->swevent_hlist);
4433         if (!hlist)
4434                 return NULL;
4435
4436         return __find_swevent_head(hlist, type, event_id);
4437 }
4438
4439 /* For the event head insertion and removal in the hlist */
4440 static inline struct hlist_head *
4441 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4442 {
4443         struct swevent_hlist *hlist;
4444         u32 event_id = event->attr.config;
4445         u64 type = event->attr.type;
4446
4447         /*
4448          * Event scheduling is always serialized against hlist allocation
4449          * and release. Which makes the protected version suitable here.
4450          * The context lock guarantees that.
4451          */
4452         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4453                                           lockdep_is_held(&event->ctx->lock));
4454         if (!hlist)
4455                 return NULL;
4456
4457         return __find_swevent_head(hlist, type, event_id);
4458 }
4459
4460 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4461                                     u64 nr, int nmi,
4462                                     struct perf_sample_data *data,
4463                                     struct pt_regs *regs)
4464 {
4465         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4466         struct perf_event *event;
4467         struct hlist_node *node;
4468         struct hlist_head *head;
4469
4470         rcu_read_lock();
4471         head = find_swevent_head_rcu(swhash, type, event_id);
4472         if (!head)
4473                 goto end;
4474
4475         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4476                 if (perf_swevent_match(event, type, event_id, data, regs))
4477                         perf_swevent_event(event, nr, nmi, data, regs);
4478         }
4479 end:
4480         rcu_read_unlock();
4481 }
4482
4483 int perf_swevent_get_recursion_context(void)
4484 {
4485         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4486
4487         return get_recursion_context(swhash->recursion);
4488 }
4489 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4490
4491 void inline perf_swevent_put_recursion_context(int rctx)
4492 {
4493         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4494
4495         put_recursion_context(swhash->recursion, rctx);
4496 }
4497
4498 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4499                             struct pt_regs *regs, u64 addr)
4500 {
4501         struct perf_sample_data data;
4502         int rctx;
4503
4504         preempt_disable_notrace();
4505         rctx = perf_swevent_get_recursion_context();
4506         if (rctx < 0)
4507                 return;
4508
4509         perf_sample_data_init(&data, addr);
4510
4511         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4512
4513         perf_swevent_put_recursion_context(rctx);
4514         preempt_enable_notrace();
4515 }
4516
4517 static void perf_swevent_read(struct perf_event *event)
4518 {
4519 }
4520
4521 static int perf_swevent_add(struct perf_event *event, int flags)
4522 {
4523         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4524         struct hw_perf_event *hwc = &event->hw;
4525         struct hlist_head *head;
4526
4527         if (hwc->sample_period) {
4528                 hwc->last_period = hwc->sample_period;
4529                 perf_swevent_set_period(event);
4530         }
4531
4532         hwc->state = !(flags & PERF_EF_START);
4533
4534         head = find_swevent_head(swhash, event);
4535         if (WARN_ON_ONCE(!head))
4536                 return -EINVAL;
4537
4538         hlist_add_head_rcu(&event->hlist_entry, head);
4539
4540         return 0;
4541 }
4542
4543 static void perf_swevent_del(struct perf_event *event, int flags)
4544 {
4545         hlist_del_rcu(&event->hlist_entry);
4546 }
4547
4548 static void perf_swevent_start(struct perf_event *event, int flags)
4549 {
4550         event->hw.state = 0;
4551 }
4552
4553 static void perf_swevent_stop(struct perf_event *event, int flags)
4554 {
4555         event->hw.state = PERF_HES_STOPPED;
4556 }
4557
4558 /* Deref the hlist from the update side */
4559 static inline struct swevent_hlist *
4560 swevent_hlist_deref(struct swevent_htable *swhash)
4561 {
4562         return rcu_dereference_protected(swhash->swevent_hlist,
4563                                          lockdep_is_held(&swhash->hlist_mutex));
4564 }
4565
4566 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4567 {
4568         struct swevent_hlist *hlist;
4569
4570         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4571         kfree(hlist);
4572 }
4573
4574 static void swevent_hlist_release(struct swevent_htable *swhash)
4575 {
4576         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4577
4578         if (!hlist)
4579                 return;
4580
4581         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4582         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4583 }
4584
4585 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4586 {
4587         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4588
4589         mutex_lock(&swhash->hlist_mutex);
4590
4591         if (!--swhash->hlist_refcount)
4592                 swevent_hlist_release(swhash);
4593
4594         mutex_unlock(&swhash->hlist_mutex);
4595 }
4596
4597 static void swevent_hlist_put(struct perf_event *event)
4598 {
4599         int cpu;
4600
4601         if (event->cpu != -1) {
4602                 swevent_hlist_put_cpu(event, event->cpu);
4603                 return;
4604         }
4605
4606         for_each_possible_cpu(cpu)
4607                 swevent_hlist_put_cpu(event, cpu);
4608 }
4609
4610 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4611 {
4612         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4613         int err = 0;
4614
4615         mutex_lock(&swhash->hlist_mutex);
4616
4617         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4618                 struct swevent_hlist *hlist;
4619
4620                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4621                 if (!hlist) {
4622                         err = -ENOMEM;
4623                         goto exit;
4624                 }
4625                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4626         }
4627         swhash->hlist_refcount++;
4628 exit:
4629         mutex_unlock(&swhash->hlist_mutex);
4630
4631         return err;
4632 }
4633
4634 static int swevent_hlist_get(struct perf_event *event)
4635 {
4636         int err;
4637         int cpu, failed_cpu;
4638
4639         if (event->cpu != -1)
4640                 return swevent_hlist_get_cpu(event, event->cpu);
4641
4642         get_online_cpus();
4643         for_each_possible_cpu(cpu) {
4644                 err = swevent_hlist_get_cpu(event, cpu);
4645                 if (err) {
4646                         failed_cpu = cpu;
4647                         goto fail;
4648                 }
4649         }
4650         put_online_cpus();
4651
4652         return 0;
4653 fail:
4654         for_each_possible_cpu(cpu) {
4655                 if (cpu == failed_cpu)
4656                         break;
4657                 swevent_hlist_put_cpu(event, cpu);
4658         }
4659
4660         put_online_cpus();
4661         return err;
4662 }
4663
4664 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4665
4666 static void sw_perf_event_destroy(struct perf_event *event)
4667 {
4668         u64 event_id = event->attr.config;
4669
4670         WARN_ON(event->parent);
4671
4672         jump_label_dec(&perf_swevent_enabled[event_id]);
4673         swevent_hlist_put(event);
4674 }
4675
4676 static int perf_swevent_init(struct perf_event *event)
4677 {
4678         int event_id = event->attr.config;
4679
4680         if (event->attr.type != PERF_TYPE_SOFTWARE)
4681                 return -ENOENT;
4682
4683         switch (event_id) {
4684         case PERF_COUNT_SW_CPU_CLOCK:
4685         case PERF_COUNT_SW_TASK_CLOCK:
4686                 return -ENOENT;
4687
4688         default:
4689                 break;
4690         }
4691
4692         if (event_id > PERF_COUNT_SW_MAX)
4693                 return -ENOENT;
4694
4695         if (!event->parent) {
4696                 int err;
4697
4698                 err = swevent_hlist_get(event);
4699                 if (err)
4700                         return err;
4701
4702                 jump_label_inc(&perf_swevent_enabled[event_id]);
4703                 event->destroy = sw_perf_event_destroy;
4704         }
4705
4706         return 0;
4707 }
4708
4709 static struct pmu perf_swevent = {
4710         .task_ctx_nr    = perf_sw_context,
4711
4712         .event_init     = perf_swevent_init,
4713         .add            = perf_swevent_add,
4714         .del            = perf_swevent_del,
4715         .start          = perf_swevent_start,
4716         .stop           = perf_swevent_stop,
4717         .read           = perf_swevent_read,
4718 };
4719
4720 #ifdef CONFIG_EVENT_TRACING
4721
4722 static int perf_tp_filter_match(struct perf_event *event,
4723                                 struct perf_sample_data *data)
4724 {
4725         void *record = data->raw->data;
4726
4727         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4728                 return 1;
4729         return 0;
4730 }
4731
4732 static int perf_tp_event_match(struct perf_event *event,
4733                                 struct perf_sample_data *data,
4734                                 struct pt_regs *regs)
4735 {
4736         /*
4737          * All tracepoints are from kernel-space.
4738          */
4739         if (event->attr.exclude_kernel)
4740                 return 0;
4741
4742         if (!perf_tp_filter_match(event, data))
4743                 return 0;
4744
4745         return 1;
4746 }
4747
4748 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4749                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4750 {
4751         struct perf_sample_data data;
4752         struct perf_event *event;
4753         struct hlist_node *node;
4754
4755         struct perf_raw_record raw = {
4756                 .size = entry_size,
4757                 .data = record,
4758         };
4759
4760         perf_sample_data_init(&data, addr);
4761         data.raw = &raw;
4762
4763         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4764                 if (perf_tp_event_match(event, &data, regs))
4765                         perf_swevent_event(event, count, 1, &data, regs);
4766         }
4767
4768         perf_swevent_put_recursion_context(rctx);
4769 }
4770 EXPORT_SYMBOL_GPL(perf_tp_event);
4771
4772 static void tp_perf_event_destroy(struct perf_event *event)
4773 {
4774         perf_trace_destroy(event);
4775 }
4776
4777 static int perf_tp_event_init(struct perf_event *event)
4778 {
4779         int err;
4780
4781         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4782                 return -ENOENT;
4783
4784         /*
4785          * Raw tracepoint data is a severe data leak, only allow root to
4786          * have these.
4787          */
4788         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4789                         perf_paranoid_tracepoint_raw() &&
4790                         !capable(CAP_SYS_ADMIN))
4791                 return -EPERM;
4792
4793         err = perf_trace_init(event);
4794         if (err)
4795                 return err;
4796
4797         event->destroy = tp_perf_event_destroy;
4798
4799         return 0;
4800 }
4801
4802 static struct pmu perf_tracepoint = {
4803         .task_ctx_nr    = perf_sw_context,
4804
4805         .event_init     = perf_tp_event_init,
4806         .add            = perf_trace_add,
4807         .del            = perf_trace_del,
4808         .start          = perf_swevent_start,
4809         .stop           = perf_swevent_stop,
4810         .read           = perf_swevent_read,
4811 };
4812
4813 static inline void perf_tp_register(void)
4814 {
4815         perf_pmu_register(&perf_tracepoint);
4816 }
4817
4818 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4819 {
4820         char *filter_str;
4821         int ret;
4822
4823         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4824                 return -EINVAL;
4825
4826         filter_str = strndup_user(arg, PAGE_SIZE);
4827         if (IS_ERR(filter_str))
4828                 return PTR_ERR(filter_str);
4829
4830         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4831
4832         kfree(filter_str);
4833         return ret;
4834 }
4835
4836 static void perf_event_free_filter(struct perf_event *event)
4837 {
4838         ftrace_profile_free_filter(event);
4839 }
4840
4841 #else
4842
4843 static inline void perf_tp_register(void)
4844 {
4845 }
4846
4847 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4848 {
4849         return -ENOENT;
4850 }
4851
4852 static void perf_event_free_filter(struct perf_event *event)
4853 {
4854 }
4855
4856 #endif /* CONFIG_EVENT_TRACING */
4857
4858 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4859 void perf_bp_event(struct perf_event *bp, void *data)
4860 {
4861         struct perf_sample_data sample;
4862         struct pt_regs *regs = data;
4863
4864         perf_sample_data_init(&sample, bp->attr.bp_addr);
4865
4866         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4867                 perf_swevent_event(bp, 1, 1, &sample, regs);
4868 }
4869 #endif
4870
4871 /*
4872  * hrtimer based swevent callback
4873  */
4874
4875 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4876 {
4877         enum hrtimer_restart ret = HRTIMER_RESTART;
4878         struct perf_sample_data data;
4879         struct pt_regs *regs;
4880         struct perf_event *event;
4881         u64 period;
4882
4883         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4884         event->pmu->read(event);
4885
4886         perf_sample_data_init(&data, 0);
4887         data.period = event->hw.last_period;
4888         regs = get_irq_regs();
4889
4890         if (regs && !perf_exclude_event(event, regs)) {
4891                 if (!(event->attr.exclude_idle && current->pid == 0))
4892                         if (perf_event_overflow(event, 0, &data, regs))
4893                                 ret = HRTIMER_NORESTART;
4894         }
4895
4896         period = max_t(u64, 10000, event->hw.sample_period);
4897         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4898
4899         return ret;
4900 }
4901
4902 static void perf_swevent_start_hrtimer(struct perf_event *event)
4903 {
4904         struct hw_perf_event *hwc = &event->hw;
4905
4906         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4907         hwc->hrtimer.function = perf_swevent_hrtimer;
4908         if (hwc->sample_period) {
4909                 s64 period = local64_read(&hwc->period_left);
4910
4911                 if (period) {
4912                         if (period < 0)
4913                                 period = 10000;
4914
4915                         local64_set(&hwc->period_left, 0);
4916                 } else {
4917                         period = max_t(u64, 10000, hwc->sample_period);
4918                 }
4919                 __hrtimer_start_range_ns(&hwc->hrtimer,
4920                                 ns_to_ktime(period), 0,
4921                                 HRTIMER_MODE_REL_PINNED, 0);
4922         }
4923 }
4924
4925 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4926 {
4927         struct hw_perf_event *hwc = &event->hw;
4928
4929         if (hwc->sample_period) {
4930                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4931                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4932
4933                 hrtimer_cancel(&hwc->hrtimer);
4934         }
4935 }
4936
4937 /*
4938  * Software event: cpu wall time clock
4939  */
4940
4941 static void cpu_clock_event_update(struct perf_event *event)
4942 {
4943         s64 prev;
4944         u64 now;
4945
4946         now = local_clock();
4947         prev = local64_xchg(&event->hw.prev_count, now);
4948         local64_add(now - prev, &event->count);
4949 }
4950
4951 static void cpu_clock_event_start(struct perf_event *event, int flags)
4952 {
4953         local64_set(&event->hw.prev_count, local_clock());
4954         perf_swevent_start_hrtimer(event);
4955 }
4956
4957 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4958 {
4959         perf_swevent_cancel_hrtimer(event);
4960         cpu_clock_event_update(event);
4961 }
4962
4963 static int cpu_clock_event_add(struct perf_event *event, int flags)
4964 {
4965         if (flags & PERF_EF_START)
4966                 cpu_clock_event_start(event, flags);
4967
4968         return 0;
4969 }
4970
4971 static void cpu_clock_event_del(struct perf_event *event, int flags)
4972 {
4973         cpu_clock_event_stop(event, flags);
4974 }
4975
4976 static void cpu_clock_event_read(struct perf_event *event)
4977 {
4978         cpu_clock_event_update(event);
4979 }
4980
4981 static int cpu_clock_event_init(struct perf_event *event)
4982 {
4983         if (event->attr.type != PERF_TYPE_SOFTWARE)
4984                 return -ENOENT;
4985
4986         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4987                 return -ENOENT;
4988
4989         return 0;
4990 }
4991
4992 static struct pmu perf_cpu_clock = {
4993         .task_ctx_nr    = perf_sw_context,
4994
4995         .event_init     = cpu_clock_event_init,
4996         .add            = cpu_clock_event_add,
4997         .del            = cpu_clock_event_del,
4998         .start          = cpu_clock_event_start,
4999         .stop           = cpu_clock_event_stop,
5000         .read           = cpu_clock_event_read,
5001 };
5002
5003 /*
5004  * Software event: task time clock
5005  */
5006
5007 static void task_clock_event_update(struct perf_event *event, u64 now)
5008 {
5009         u64 prev;
5010         s64 delta;
5011
5012         prev = local64_xchg(&event->hw.prev_count, now);
5013         delta = now - prev;
5014         local64_add(delta, &event->count);
5015 }
5016
5017 static void task_clock_event_start(struct perf_event *event, int flags)
5018 {
5019         local64_set(&event->hw.prev_count, event->ctx->time);
5020         perf_swevent_start_hrtimer(event);
5021 }
5022
5023 static void task_clock_event_stop(struct perf_event *event, int flags)
5024 {
5025         perf_swevent_cancel_hrtimer(event);
5026         task_clock_event_update(event, event->ctx->time);
5027 }
5028
5029 static int task_clock_event_add(struct perf_event *event, int flags)
5030 {
5031         if (flags & PERF_EF_START)
5032                 task_clock_event_start(event, flags);
5033
5034         return 0;
5035 }
5036
5037 static void task_clock_event_del(struct perf_event *event, int flags)
5038 {
5039         task_clock_event_stop(event, PERF_EF_UPDATE);
5040 }
5041
5042 static void task_clock_event_read(struct perf_event *event)
5043 {
5044         u64 time;
5045
5046         if (!in_nmi()) {
5047                 update_context_time(event->ctx);
5048                 time = event->ctx->time;
5049         } else {
5050                 u64 now = perf_clock();
5051                 u64 delta = now - event->ctx->timestamp;
5052                 time = event->ctx->time + delta;
5053         }
5054
5055         task_clock_event_update(event, time);
5056 }
5057
5058 static int task_clock_event_init(struct perf_event *event)
5059 {
5060         if (event->attr.type != PERF_TYPE_SOFTWARE)
5061                 return -ENOENT;
5062
5063         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5064                 return -ENOENT;
5065
5066         return 0;
5067 }
5068
5069 static struct pmu perf_task_clock = {
5070         .task_ctx_nr    = perf_sw_context,
5071
5072         .event_init     = task_clock_event_init,
5073         .add            = task_clock_event_add,
5074         .del            = task_clock_event_del,
5075         .start          = task_clock_event_start,
5076         .stop           = task_clock_event_stop,
5077         .read           = task_clock_event_read,
5078 };
5079
5080 static void perf_pmu_nop_void(struct pmu *pmu)
5081 {
5082 }
5083
5084 static int perf_pmu_nop_int(struct pmu *pmu)
5085 {
5086         return 0;
5087 }
5088
5089 static void perf_pmu_start_txn(struct pmu *pmu)
5090 {
5091         perf_pmu_disable(pmu);
5092 }
5093
5094 static int perf_pmu_commit_txn(struct pmu *pmu)
5095 {
5096         perf_pmu_enable(pmu);
5097         return 0;
5098 }
5099
5100 static void perf_pmu_cancel_txn(struct pmu *pmu)
5101 {
5102         perf_pmu_enable(pmu);
5103 }
5104
5105 /*
5106  * Ensures all contexts with the same task_ctx_nr have the same
5107  * pmu_cpu_context too.
5108  */
5109 static void *find_pmu_context(int ctxn)
5110 {
5111         struct pmu *pmu;
5112
5113         if (ctxn < 0)
5114                 return NULL;
5115
5116         list_for_each_entry(pmu, &pmus, entry) {
5117                 if (pmu->task_ctx_nr == ctxn)
5118                         return pmu->pmu_cpu_context;
5119         }
5120
5121         return NULL;
5122 }
5123
5124 static void free_pmu_context(void * __percpu cpu_context)
5125 {
5126         struct pmu *pmu;
5127
5128         mutex_lock(&pmus_lock);
5129         /*
5130          * Like a real lame refcount.
5131          */
5132         list_for_each_entry(pmu, &pmus, entry) {
5133                 if (pmu->pmu_cpu_context == cpu_context)
5134                         goto out;
5135         }
5136
5137         free_percpu(cpu_context);
5138 out:
5139         mutex_unlock(&pmus_lock);
5140 }
5141
5142 int perf_pmu_register(struct pmu *pmu)
5143 {
5144         int cpu, ret;
5145
5146         mutex_lock(&pmus_lock);
5147         ret = -ENOMEM;
5148         pmu->pmu_disable_count = alloc_percpu(int);
5149         if (!pmu->pmu_disable_count)
5150                 goto unlock;
5151
5152         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5153         if (pmu->pmu_cpu_context)
5154                 goto got_cpu_context;
5155
5156         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5157         if (!pmu->pmu_cpu_context)
5158                 goto free_pdc;
5159
5160         for_each_possible_cpu(cpu) {
5161                 struct perf_cpu_context *cpuctx;
5162
5163                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5164                 __perf_event_init_context(&cpuctx->ctx);
5165                 cpuctx->ctx.type = cpu_context;
5166                 cpuctx->ctx.pmu = pmu;
5167                 cpuctx->jiffies_interval = 1;
5168                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5169         }
5170
5171 got_cpu_context:
5172         if (!pmu->start_txn) {
5173                 if (pmu->pmu_enable) {
5174                         /*
5175                          * If we have pmu_enable/pmu_disable calls, install
5176                          * transaction stubs that use that to try and batch
5177                          * hardware accesses.
5178                          */
5179                         pmu->start_txn  = perf_pmu_start_txn;
5180                         pmu->commit_txn = perf_pmu_commit_txn;
5181                         pmu->cancel_txn = perf_pmu_cancel_txn;
5182                 } else {
5183                         pmu->start_txn  = perf_pmu_nop_void;
5184                         pmu->commit_txn = perf_pmu_nop_int;
5185                         pmu->cancel_txn = perf_pmu_nop_void;
5186                 }
5187         }
5188
5189         if (!pmu->pmu_enable) {
5190                 pmu->pmu_enable  = perf_pmu_nop_void;
5191                 pmu->pmu_disable = perf_pmu_nop_void;
5192         }
5193
5194         list_add_rcu(&pmu->entry, &pmus);
5195         ret = 0;
5196 unlock:
5197         mutex_unlock(&pmus_lock);
5198
5199         return ret;
5200
5201 free_pdc:
5202         free_percpu(pmu->pmu_disable_count);
5203         goto unlock;
5204 }
5205
5206 void perf_pmu_unregister(struct pmu *pmu)
5207 {
5208         mutex_lock(&pmus_lock);
5209         list_del_rcu(&pmu->entry);
5210         mutex_unlock(&pmus_lock);
5211
5212         /*
5213          * We dereference the pmu list under both SRCU and regular RCU, so
5214          * synchronize against both of those.
5215          */
5216         synchronize_srcu(&pmus_srcu);
5217         synchronize_rcu();
5218
5219         free_percpu(pmu->pmu_disable_count);
5220         free_pmu_context(pmu->pmu_cpu_context);
5221 }
5222
5223 struct pmu *perf_init_event(struct perf_event *event)
5224 {
5225         struct pmu *pmu = NULL;
5226         int idx;
5227
5228         idx = srcu_read_lock(&pmus_srcu);
5229         list_for_each_entry_rcu(pmu, &pmus, entry) {
5230                 int ret = pmu->event_init(event);
5231                 if (!ret)
5232                         goto unlock;
5233
5234                 if (ret != -ENOENT) {
5235                         pmu = ERR_PTR(ret);
5236                         goto unlock;
5237                 }
5238         }
5239         pmu = ERR_PTR(-ENOENT);
5240 unlock:
5241         srcu_read_unlock(&pmus_srcu, idx);
5242
5243         return pmu;
5244 }
5245
5246 /*
5247  * Allocate and initialize a event structure
5248  */
5249 static struct perf_event *
5250 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5251                  struct task_struct *task,
5252                  struct perf_event *group_leader,
5253                  struct perf_event *parent_event,
5254                  perf_overflow_handler_t overflow_handler)
5255 {
5256         struct pmu *pmu;
5257         struct perf_event *event;
5258         struct hw_perf_event *hwc;
5259         long err;
5260
5261         event = kzalloc(sizeof(*event), GFP_KERNEL);
5262         if (!event)
5263                 return ERR_PTR(-ENOMEM);
5264
5265         /*
5266          * Single events are their own group leaders, with an
5267          * empty sibling list:
5268          */
5269         if (!group_leader)
5270                 group_leader = event;
5271
5272         mutex_init(&event->child_mutex);
5273         INIT_LIST_HEAD(&event->child_list);
5274
5275         INIT_LIST_HEAD(&event->group_entry);
5276         INIT_LIST_HEAD(&event->event_entry);
5277         INIT_LIST_HEAD(&event->sibling_list);
5278         init_waitqueue_head(&event->waitq);
5279         init_irq_work(&event->pending, perf_pending_event);
5280
5281         mutex_init(&event->mmap_mutex);
5282
5283         event->cpu              = cpu;
5284         event->attr             = *attr;
5285         event->group_leader     = group_leader;
5286         event->pmu              = NULL;
5287         event->oncpu            = -1;
5288
5289         event->parent           = parent_event;
5290
5291         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5292         event->id               = atomic64_inc_return(&perf_event_id);
5293
5294         event->state            = PERF_EVENT_STATE_INACTIVE;
5295
5296         if (task) {
5297                 event->attach_state = PERF_ATTACH_TASK;
5298 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5299                 /*
5300                  * hw_breakpoint is a bit difficult here..
5301                  */
5302                 if (attr->type == PERF_TYPE_BREAKPOINT)
5303                         event->hw.bp_target = task;
5304 #endif
5305         }
5306
5307         if (!overflow_handler && parent_event)
5308                 overflow_handler = parent_event->overflow_handler;
5309         
5310         event->overflow_handler = overflow_handler;
5311
5312         if (attr->disabled)
5313                 event->state = PERF_EVENT_STATE_OFF;
5314
5315         pmu = NULL;
5316
5317         hwc = &event->hw;
5318         hwc->sample_period = attr->sample_period;
5319         if (attr->freq && attr->sample_freq)
5320                 hwc->sample_period = 1;
5321         hwc->last_period = hwc->sample_period;
5322
5323         local64_set(&hwc->period_left, hwc->sample_period);
5324
5325         /*
5326          * we currently do not support PERF_FORMAT_GROUP on inherited events
5327          */
5328         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5329                 goto done;
5330
5331         pmu = perf_init_event(event);
5332
5333 done:
5334         err = 0;
5335         if (!pmu)
5336                 err = -EINVAL;
5337         else if (IS_ERR(pmu))
5338                 err = PTR_ERR(pmu);
5339
5340         if (err) {
5341                 if (event->ns)
5342                         put_pid_ns(event->ns);
5343                 kfree(event);
5344                 return ERR_PTR(err);
5345         }
5346
5347         event->pmu = pmu;
5348
5349         if (!event->parent) {
5350                 if (event->attach_state & PERF_ATTACH_TASK)
5351                         jump_label_inc(&perf_task_events);
5352                 if (event->attr.mmap || event->attr.mmap_data)
5353                         atomic_inc(&nr_mmap_events);
5354                 if (event->attr.comm)
5355                         atomic_inc(&nr_comm_events);
5356                 if (event->attr.task)
5357                         atomic_inc(&nr_task_events);
5358                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5359                         err = get_callchain_buffers();
5360                         if (err) {
5361                                 free_event(event);
5362                                 return ERR_PTR(err);
5363                         }
5364                 }
5365         }
5366
5367         return event;
5368 }
5369
5370 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5371                           struct perf_event_attr *attr)
5372 {
5373         u32 size;
5374         int ret;
5375
5376         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5377                 return -EFAULT;
5378
5379         /*
5380          * zero the full structure, so that a short copy will be nice.
5381          */
5382         memset(attr, 0, sizeof(*attr));
5383
5384         ret = get_user(size, &uattr->size);
5385         if (ret)
5386                 return ret;
5387
5388         if (size > PAGE_SIZE)   /* silly large */
5389                 goto err_size;
5390
5391         if (!size)              /* abi compat */
5392                 size = PERF_ATTR_SIZE_VER0;
5393
5394         if (size < PERF_ATTR_SIZE_VER0)
5395                 goto err_size;
5396
5397         /*
5398          * If we're handed a bigger struct than we know of,
5399          * ensure all the unknown bits are 0 - i.e. new
5400          * user-space does not rely on any kernel feature
5401          * extensions we dont know about yet.
5402          */
5403         if (size > sizeof(*attr)) {
5404                 unsigned char __user *addr;
5405                 unsigned char __user *end;
5406                 unsigned char val;
5407
5408                 addr = (void __user *)uattr + sizeof(*attr);
5409                 end  = (void __user *)uattr + size;
5410
5411                 for (; addr < end; addr++) {
5412                         ret = get_user(val, addr);
5413                         if (ret)
5414                                 return ret;
5415                         if (val)
5416                                 goto err_size;
5417                 }
5418                 size = sizeof(*attr);
5419         }
5420
5421         ret = copy_from_user(attr, uattr, size);
5422         if (ret)
5423                 return -EFAULT;
5424
5425         /*
5426          * If the type exists, the corresponding creation will verify
5427          * the attr->config.
5428          */
5429         if (attr->type >= PERF_TYPE_MAX)
5430                 return -EINVAL;
5431
5432         if (attr->__reserved_1)
5433                 return -EINVAL;
5434
5435         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5436                 return -EINVAL;
5437
5438         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5439                 return -EINVAL;
5440
5441 out:
5442         return ret;
5443
5444 err_size:
5445         put_user(sizeof(*attr), &uattr->size);
5446         ret = -E2BIG;
5447         goto out;
5448 }
5449
5450 static int
5451 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5452 {
5453         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5454         int ret = -EINVAL;
5455
5456         if (!output_event)
5457                 goto set;
5458
5459         /* don't allow circular references */
5460         if (event == output_event)
5461                 goto out;
5462
5463         /*
5464          * Don't allow cross-cpu buffers
5465          */
5466         if (output_event->cpu != event->cpu)
5467                 goto out;
5468
5469         /*
5470          * If its not a per-cpu buffer, it must be the same task.
5471          */
5472         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5473                 goto out;
5474
5475 set:
5476         mutex_lock(&event->mmap_mutex);
5477         /* Can't redirect output if we've got an active mmap() */
5478         if (atomic_read(&event->mmap_count))
5479                 goto unlock;
5480
5481         if (output_event) {
5482                 /* get the buffer we want to redirect to */
5483                 buffer = perf_buffer_get(output_event);
5484                 if (!buffer)
5485                         goto unlock;
5486         }
5487
5488         old_buffer = event->buffer;
5489         rcu_assign_pointer(event->buffer, buffer);
5490         ret = 0;
5491 unlock:
5492         mutex_unlock(&event->mmap_mutex);
5493
5494         if (old_buffer)
5495                 perf_buffer_put(old_buffer);
5496 out:
5497         return ret;
5498 }
5499
5500 /**
5501  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5502  *
5503  * @attr_uptr:  event_id type attributes for monitoring/sampling
5504  * @pid:                target pid
5505  * @cpu:                target cpu
5506  * @group_fd:           group leader event fd
5507  */
5508 SYSCALL_DEFINE5(perf_event_open,
5509                 struct perf_event_attr __user *, attr_uptr,
5510                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5511 {
5512         struct perf_event *group_leader = NULL, *output_event = NULL;
5513         struct perf_event *event, *sibling;
5514         struct perf_event_attr attr;
5515         struct perf_event_context *ctx;
5516         struct file *event_file = NULL;
5517         struct file *group_file = NULL;
5518         struct task_struct *task = NULL;
5519         struct pmu *pmu;
5520         int event_fd;
5521         int move_group = 0;
5522         int fput_needed = 0;
5523         int err;
5524
5525         /* for future expandability... */
5526         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5527                 return -EINVAL;
5528
5529         err = perf_copy_attr(attr_uptr, &attr);
5530         if (err)
5531                 return err;
5532
5533         if (!attr.exclude_kernel) {
5534                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5535                         return -EACCES;
5536         }
5537
5538         if (attr.freq) {
5539                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5540                         return -EINVAL;
5541         }
5542
5543         event_fd = get_unused_fd_flags(O_RDWR);
5544         if (event_fd < 0)
5545                 return event_fd;
5546
5547         if (group_fd != -1) {
5548                 group_leader = perf_fget_light(group_fd, &fput_needed);
5549                 if (IS_ERR(group_leader)) {
5550                         err = PTR_ERR(group_leader);
5551                         goto err_fd;
5552                 }
5553                 group_file = group_leader->filp;
5554                 if (flags & PERF_FLAG_FD_OUTPUT)
5555                         output_event = group_leader;
5556                 if (flags & PERF_FLAG_FD_NO_GROUP)
5557                         group_leader = NULL;
5558         }
5559
5560         if (pid != -1) {
5561                 task = find_lively_task_by_vpid(pid);
5562                 if (IS_ERR(task)) {
5563                         err = PTR_ERR(task);
5564                         goto err_group_fd;
5565                 }
5566         }
5567
5568         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5569         if (IS_ERR(event)) {
5570                 err = PTR_ERR(event);
5571                 goto err_task;
5572         }
5573
5574         /*
5575          * Special case software events and allow them to be part of
5576          * any hardware group.
5577          */
5578         pmu = event->pmu;
5579
5580         if (group_leader &&
5581             (is_software_event(event) != is_software_event(group_leader))) {
5582                 if (is_software_event(event)) {
5583                         /*
5584                          * If event and group_leader are not both a software
5585                          * event, and event is, then group leader is not.
5586                          *
5587                          * Allow the addition of software events to !software
5588                          * groups, this is safe because software events never
5589                          * fail to schedule.
5590                          */
5591                         pmu = group_leader->pmu;
5592                 } else if (is_software_event(group_leader) &&
5593                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5594                         /*
5595                          * In case the group is a pure software group, and we
5596                          * try to add a hardware event, move the whole group to
5597                          * the hardware context.
5598                          */
5599                         move_group = 1;
5600                 }
5601         }
5602
5603         /*
5604          * Get the target context (task or percpu):
5605          */
5606         ctx = find_get_context(pmu, task, cpu);
5607         if (IS_ERR(ctx)) {
5608                 err = PTR_ERR(ctx);
5609                 goto err_alloc;
5610         }
5611
5612         /*
5613          * Look up the group leader (we will attach this event to it):
5614          */
5615         if (group_leader) {
5616                 err = -EINVAL;
5617
5618                 /*
5619                  * Do not allow a recursive hierarchy (this new sibling
5620                  * becoming part of another group-sibling):
5621                  */
5622                 if (group_leader->group_leader != group_leader)
5623                         goto err_context;
5624                 /*
5625                  * Do not allow to attach to a group in a different
5626                  * task or CPU context:
5627                  */
5628                 if (move_group) {
5629                         if (group_leader->ctx->type != ctx->type)
5630                                 goto err_context;
5631                 } else {
5632                         if (group_leader->ctx != ctx)
5633                                 goto err_context;
5634                 }
5635
5636                 /*
5637                  * Only a group leader can be exclusive or pinned
5638                  */
5639                 if (attr.exclusive || attr.pinned)
5640                         goto err_context;
5641         }
5642
5643         if (output_event) {
5644                 err = perf_event_set_output(event, output_event);
5645                 if (err)
5646                         goto err_context;
5647         }
5648
5649         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5650         if (IS_ERR(event_file)) {
5651                 err = PTR_ERR(event_file);
5652                 goto err_context;
5653         }
5654
5655         if (move_group) {
5656                 struct perf_event_context *gctx = group_leader->ctx;
5657
5658                 mutex_lock(&gctx->mutex);
5659                 perf_event_remove_from_context(group_leader);
5660                 list_for_each_entry(sibling, &group_leader->sibling_list,
5661                                     group_entry) {
5662                         perf_event_remove_from_context(sibling);
5663                         put_ctx(gctx);
5664                 }
5665                 mutex_unlock(&gctx->mutex);
5666                 put_ctx(gctx);
5667         }
5668
5669         event->filp = event_file;
5670         WARN_ON_ONCE(ctx->parent_ctx);
5671         mutex_lock(&ctx->mutex);
5672
5673         if (move_group) {
5674                 perf_install_in_context(ctx, group_leader, cpu);
5675                 get_ctx(ctx);
5676                 list_for_each_entry(sibling, &group_leader->sibling_list,
5677                                     group_entry) {
5678                         perf_install_in_context(ctx, sibling, cpu);
5679                         get_ctx(ctx);
5680                 }
5681         }
5682
5683         perf_install_in_context(ctx, event, cpu);
5684         ++ctx->generation;
5685         mutex_unlock(&ctx->mutex);
5686
5687         event->owner = current;
5688         get_task_struct(current);
5689         mutex_lock(&current->perf_event_mutex);
5690         list_add_tail(&event->owner_entry, &current->perf_event_list);
5691         mutex_unlock(&current->perf_event_mutex);
5692
5693         /*
5694          * Drop the reference on the group_event after placing the
5695          * new event on the sibling_list. This ensures destruction
5696          * of the group leader will find the pointer to itself in
5697          * perf_group_detach().
5698          */
5699         fput_light(group_file, fput_needed);
5700         fd_install(event_fd, event_file);
5701         return event_fd;
5702
5703 err_context:
5704         put_ctx(ctx);
5705 err_alloc:
5706         free_event(event);
5707 err_task:
5708         if (task)
5709                 put_task_struct(task);
5710 err_group_fd:
5711         fput_light(group_file, fput_needed);
5712 err_fd:
5713         put_unused_fd(event_fd);
5714         return err;
5715 }
5716
5717 /**
5718  * perf_event_create_kernel_counter
5719  *
5720  * @attr: attributes of the counter to create
5721  * @cpu: cpu in which the counter is bound
5722  * @task: task to profile (NULL for percpu)
5723  */
5724 struct perf_event *
5725 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5726                                  struct task_struct *task,
5727                                  perf_overflow_handler_t overflow_handler)
5728 {
5729         struct perf_event_context *ctx;
5730         struct perf_event *event;
5731         int err;
5732
5733         /*
5734          * Get the target context (task or percpu):
5735          */
5736
5737         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5738         if (IS_ERR(event)) {
5739                 err = PTR_ERR(event);
5740                 goto err;
5741         }
5742
5743         ctx = find_get_context(event->pmu, task, cpu);
5744         if (IS_ERR(ctx)) {
5745                 err = PTR_ERR(ctx);
5746                 goto err_free;
5747         }
5748
5749         event->filp = NULL;
5750         WARN_ON_ONCE(ctx->parent_ctx);
5751         mutex_lock(&ctx->mutex);
5752         perf_install_in_context(ctx, event, cpu);
5753         ++ctx->generation;
5754         mutex_unlock(&ctx->mutex);
5755
5756         event->owner = current;
5757         get_task_struct(current);
5758         mutex_lock(&current->perf_event_mutex);
5759         list_add_tail(&event->owner_entry, &current->perf_event_list);
5760         mutex_unlock(&current->perf_event_mutex);
5761
5762         return event;
5763
5764 err_free:
5765         free_event(event);
5766 err:
5767         return ERR_PTR(err);
5768 }
5769 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5770
5771 static void sync_child_event(struct perf_event *child_event,
5772                                struct task_struct *child)
5773 {
5774         struct perf_event *parent_event = child_event->parent;
5775         u64 child_val;
5776
5777         if (child_event->attr.inherit_stat)
5778                 perf_event_read_event(child_event, child);
5779
5780         child_val = perf_event_count(child_event);
5781
5782         /*
5783          * Add back the child's count to the parent's count:
5784          */
5785         atomic64_add(child_val, &parent_event->child_count);
5786         atomic64_add(child_event->total_time_enabled,
5787                      &parent_event->child_total_time_enabled);
5788         atomic64_add(child_event->total_time_running,
5789                      &parent_event->child_total_time_running);
5790
5791         /*
5792          * Remove this event from the parent's list
5793          */
5794         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5795         mutex_lock(&parent_event->child_mutex);
5796         list_del_init(&child_event->child_list);
5797         mutex_unlock(&parent_event->child_mutex);
5798
5799         /*
5800          * Release the parent event, if this was the last
5801          * reference to it.
5802          */
5803         fput(parent_event->filp);
5804 }
5805
5806 static void
5807 __perf_event_exit_task(struct perf_event *child_event,
5808                          struct perf_event_context *child_ctx,
5809                          struct task_struct *child)
5810 {
5811         struct perf_event *parent_event;
5812
5813         perf_event_remove_from_context(child_event);
5814
5815         parent_event = child_event->parent;
5816         /*
5817          * It can happen that parent exits first, and has events
5818          * that are still around due to the child reference. These
5819          * events need to be zapped - but otherwise linger.
5820          */
5821         if (parent_event) {
5822                 sync_child_event(child_event, child);
5823                 free_event(child_event);
5824         }
5825 }
5826
5827 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5828 {
5829         struct perf_event *child_event, *tmp;
5830         struct perf_event_context *child_ctx;
5831         unsigned long flags;
5832
5833         if (likely(!child->perf_event_ctxp[ctxn])) {
5834                 perf_event_task(child, NULL, 0);
5835                 return;
5836         }
5837
5838         local_irq_save(flags);
5839         /*
5840          * We can't reschedule here because interrupts are disabled,
5841          * and either child is current or it is a task that can't be
5842          * scheduled, so we are now safe from rescheduling changing
5843          * our context.
5844          */
5845         child_ctx = child->perf_event_ctxp[ctxn];
5846         task_ctx_sched_out(child_ctx, EVENT_ALL);
5847
5848         /*
5849          * Take the context lock here so that if find_get_context is
5850          * reading child->perf_event_ctxp, we wait until it has
5851          * incremented the context's refcount before we do put_ctx below.
5852          */
5853         raw_spin_lock(&child_ctx->lock);
5854         child->perf_event_ctxp[ctxn] = NULL;
5855         /*
5856          * If this context is a clone; unclone it so it can't get
5857          * swapped to another process while we're removing all
5858          * the events from it.
5859          */
5860         unclone_ctx(child_ctx);
5861         update_context_time(child_ctx);
5862         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5863
5864         /*
5865          * Report the task dead after unscheduling the events so that we
5866          * won't get any samples after PERF_RECORD_EXIT. We can however still
5867          * get a few PERF_RECORD_READ events.
5868          */
5869         perf_event_task(child, child_ctx, 0);
5870
5871         /*
5872          * We can recurse on the same lock type through:
5873          *
5874          *   __perf_event_exit_task()
5875          *     sync_child_event()
5876          *       fput(parent_event->filp)
5877          *         perf_release()
5878          *           mutex_lock(&ctx->mutex)
5879          *
5880          * But since its the parent context it won't be the same instance.
5881          */
5882         mutex_lock(&child_ctx->mutex);
5883
5884 again:
5885         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5886                                  group_entry)
5887                 __perf_event_exit_task(child_event, child_ctx, child);
5888
5889         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5890                                  group_entry)
5891                 __perf_event_exit_task(child_event, child_ctx, child);
5892
5893         /*
5894          * If the last event was a group event, it will have appended all
5895          * its siblings to the list, but we obtained 'tmp' before that which
5896          * will still point to the list head terminating the iteration.
5897          */
5898         if (!list_empty(&child_ctx->pinned_groups) ||
5899             !list_empty(&child_ctx->flexible_groups))
5900                 goto again;
5901
5902         mutex_unlock(&child_ctx->mutex);
5903
5904         put_ctx(child_ctx);
5905 }
5906
5907 /*
5908  * When a child task exits, feed back event values to parent events.
5909  */
5910 void perf_event_exit_task(struct task_struct *child)
5911 {
5912         int ctxn;
5913
5914         for_each_task_context_nr(ctxn)
5915                 perf_event_exit_task_context(child, ctxn);
5916 }
5917
5918 static void perf_free_event(struct perf_event *event,
5919                             struct perf_event_context *ctx)
5920 {
5921         struct perf_event *parent = event->parent;
5922
5923         if (WARN_ON_ONCE(!parent))
5924                 return;
5925
5926         mutex_lock(&parent->child_mutex);
5927         list_del_init(&event->child_list);
5928         mutex_unlock(&parent->child_mutex);
5929
5930         fput(parent->filp);
5931
5932         perf_group_detach(event);
5933         list_del_event(event, ctx);
5934         free_event(event);
5935 }
5936
5937 /*
5938  * free an unexposed, unused context as created by inheritance by
5939  * perf_event_init_task below, used by fork() in case of fail.
5940  */
5941 void perf_event_free_task(struct task_struct *task)
5942 {
5943         struct perf_event_context *ctx;
5944         struct perf_event *event, *tmp;
5945         int ctxn;
5946
5947         for_each_task_context_nr(ctxn) {
5948                 ctx = task->perf_event_ctxp[ctxn];
5949                 if (!ctx)
5950                         continue;
5951
5952                 mutex_lock(&ctx->mutex);
5953 again:
5954                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5955                                 group_entry)
5956                         perf_free_event(event, ctx);
5957
5958                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5959                                 group_entry)
5960                         perf_free_event(event, ctx);
5961
5962                 if (!list_empty(&ctx->pinned_groups) ||
5963                                 !list_empty(&ctx->flexible_groups))
5964                         goto again;
5965
5966                 mutex_unlock(&ctx->mutex);
5967
5968                 put_ctx(ctx);
5969         }
5970 }
5971
5972 void perf_event_delayed_put(struct task_struct *task)
5973 {
5974         int ctxn;
5975
5976         for_each_task_context_nr(ctxn)
5977                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5978 }
5979
5980 /*
5981  * inherit a event from parent task to child task:
5982  */
5983 static struct perf_event *
5984 inherit_event(struct perf_event *parent_event,
5985               struct task_struct *parent,
5986               struct perf_event_context *parent_ctx,
5987               struct task_struct *child,
5988               struct perf_event *group_leader,
5989               struct perf_event_context *child_ctx)
5990 {
5991         struct perf_event *child_event;
5992         unsigned long flags;
5993
5994         /*
5995          * Instead of creating recursive hierarchies of events,
5996          * we link inherited events back to the original parent,
5997          * which has a filp for sure, which we use as the reference
5998          * count:
5999          */
6000         if (parent_event->parent)
6001                 parent_event = parent_event->parent;
6002
6003         child_event = perf_event_alloc(&parent_event->attr,
6004                                            parent_event->cpu,
6005                                            child,
6006                                            group_leader, parent_event,
6007                                            NULL);
6008         if (IS_ERR(child_event))
6009                 return child_event;
6010         get_ctx(child_ctx);
6011
6012         /*
6013          * Make the child state follow the state of the parent event,
6014          * not its attr.disabled bit.  We hold the parent's mutex,
6015          * so we won't race with perf_event_{en, dis}able_family.
6016          */
6017         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6018                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6019         else
6020                 child_event->state = PERF_EVENT_STATE_OFF;
6021
6022         if (parent_event->attr.freq) {
6023                 u64 sample_period = parent_event->hw.sample_period;
6024                 struct hw_perf_event *hwc = &child_event->hw;
6025
6026                 hwc->sample_period = sample_period;
6027                 hwc->last_period   = sample_period;
6028
6029                 local64_set(&hwc->period_left, sample_period);
6030         }
6031
6032         child_event->ctx = child_ctx;
6033         child_event->overflow_handler = parent_event->overflow_handler;
6034
6035         /*
6036          * Link it up in the child's context:
6037          */
6038         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6039         add_event_to_ctx(child_event, child_ctx);
6040         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6041
6042         /*
6043          * Get a reference to the parent filp - we will fput it
6044          * when the child event exits. This is safe to do because
6045          * we are in the parent and we know that the filp still
6046          * exists and has a nonzero count:
6047          */
6048         atomic_long_inc(&parent_event->filp->f_count);
6049
6050         /*
6051          * Link this into the parent event's child list
6052          */
6053         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6054         mutex_lock(&parent_event->child_mutex);
6055         list_add_tail(&child_event->child_list, &parent_event->child_list);
6056         mutex_unlock(&parent_event->child_mutex);
6057
6058         return child_event;
6059 }
6060
6061 static int inherit_group(struct perf_event *parent_event,
6062               struct task_struct *parent,
6063               struct perf_event_context *parent_ctx,
6064               struct task_struct *child,
6065               struct perf_event_context *child_ctx)
6066 {
6067         struct perf_event *leader;
6068         struct perf_event *sub;
6069         struct perf_event *child_ctr;
6070
6071         leader = inherit_event(parent_event, parent, parent_ctx,
6072                                  child, NULL, child_ctx);
6073         if (IS_ERR(leader))
6074                 return PTR_ERR(leader);
6075         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6076                 child_ctr = inherit_event(sub, parent, parent_ctx,
6077                                             child, leader, child_ctx);
6078                 if (IS_ERR(child_ctr))
6079                         return PTR_ERR(child_ctr);
6080         }
6081         return 0;
6082 }
6083
6084 static int
6085 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6086                    struct perf_event_context *parent_ctx,
6087                    struct task_struct *child, int ctxn,
6088                    int *inherited_all)
6089 {
6090         int ret;
6091         struct perf_event_context *child_ctx;
6092
6093         if (!event->attr.inherit) {
6094                 *inherited_all = 0;
6095                 return 0;
6096         }
6097
6098         child_ctx = child->perf_event_ctxp[ctxn];
6099         if (!child_ctx) {
6100                 /*
6101                  * This is executed from the parent task context, so
6102                  * inherit events that have been marked for cloning.
6103                  * First allocate and initialize a context for the
6104                  * child.
6105                  */
6106
6107                 child_ctx = alloc_perf_context(event->pmu, child);
6108                 if (!child_ctx)
6109                         return -ENOMEM;
6110
6111                 child->perf_event_ctxp[ctxn] = child_ctx;
6112         }
6113
6114         ret = inherit_group(event, parent, parent_ctx,
6115                             child, child_ctx);
6116
6117         if (ret)
6118                 *inherited_all = 0;
6119
6120         return ret;
6121 }
6122
6123 /*
6124  * Initialize the perf_event context in task_struct
6125  */
6126 int perf_event_init_context(struct task_struct *child, int ctxn)
6127 {
6128         struct perf_event_context *child_ctx, *parent_ctx;
6129         struct perf_event_context *cloned_ctx;
6130         struct perf_event *event;
6131         struct task_struct *parent = current;
6132         int inherited_all = 1;
6133         int ret = 0;
6134
6135         child->perf_event_ctxp[ctxn] = NULL;
6136
6137         mutex_init(&child->perf_event_mutex);
6138         INIT_LIST_HEAD(&child->perf_event_list);
6139
6140         if (likely(!parent->perf_event_ctxp[ctxn]))
6141                 return 0;
6142
6143         /*
6144          * If the parent's context is a clone, pin it so it won't get
6145          * swapped under us.
6146          */
6147         parent_ctx = perf_pin_task_context(parent, ctxn);
6148
6149         /*
6150          * No need to check if parent_ctx != NULL here; since we saw
6151          * it non-NULL earlier, the only reason for it to become NULL
6152          * is if we exit, and since we're currently in the middle of
6153          * a fork we can't be exiting at the same time.
6154          */
6155
6156         /*
6157          * Lock the parent list. No need to lock the child - not PID
6158          * hashed yet and not running, so nobody can access it.
6159          */
6160         mutex_lock(&parent_ctx->mutex);
6161
6162         /*
6163          * We dont have to disable NMIs - we are only looking at
6164          * the list, not manipulating it:
6165          */
6166         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6167                 ret = inherit_task_group(event, parent, parent_ctx,
6168                                          child, ctxn, &inherited_all);
6169                 if (ret)
6170                         break;
6171         }
6172
6173         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6174                 ret = inherit_task_group(event, parent, parent_ctx,
6175                                          child, ctxn, &inherited_all);
6176                 if (ret)
6177                         break;
6178         }
6179
6180         child_ctx = child->perf_event_ctxp[ctxn];
6181
6182         if (child_ctx && inherited_all) {
6183                 /*
6184                  * Mark the child context as a clone of the parent
6185                  * context, or of whatever the parent is a clone of.
6186                  * Note that if the parent is a clone, it could get
6187                  * uncloned at any point, but that doesn't matter
6188                  * because the list of events and the generation
6189                  * count can't have changed since we took the mutex.
6190                  */
6191                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6192                 if (cloned_ctx) {
6193                         child_ctx->parent_ctx = cloned_ctx;
6194                         child_ctx->parent_gen = parent_ctx->parent_gen;
6195                 } else {
6196                         child_ctx->parent_ctx = parent_ctx;
6197                         child_ctx->parent_gen = parent_ctx->generation;
6198                 }
6199                 get_ctx(child_ctx->parent_ctx);
6200         }
6201
6202         mutex_unlock(&parent_ctx->mutex);
6203
6204         perf_unpin_context(parent_ctx);
6205
6206         return ret;
6207 }
6208
6209 /*
6210  * Initialize the perf_event context in task_struct
6211  */
6212 int perf_event_init_task(struct task_struct *child)
6213 {
6214         int ctxn, ret;
6215
6216         for_each_task_context_nr(ctxn) {
6217                 ret = perf_event_init_context(child, ctxn);
6218                 if (ret)
6219                         return ret;
6220         }
6221
6222         return 0;
6223 }
6224
6225 static void __init perf_event_init_all_cpus(void)
6226 {
6227         struct swevent_htable *swhash;
6228         int cpu;
6229
6230         for_each_possible_cpu(cpu) {
6231                 swhash = &per_cpu(swevent_htable, cpu);
6232                 mutex_init(&swhash->hlist_mutex);
6233                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6234         }
6235 }
6236
6237 static void __cpuinit perf_event_init_cpu(int cpu)
6238 {
6239         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6240
6241         mutex_lock(&swhash->hlist_mutex);
6242         if (swhash->hlist_refcount > 0) {
6243                 struct swevent_hlist *hlist;
6244
6245                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6246                 WARN_ON(!hlist);
6247                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6248         }
6249         mutex_unlock(&swhash->hlist_mutex);
6250 }
6251
6252 #ifdef CONFIG_HOTPLUG_CPU
6253 static void perf_pmu_rotate_stop(struct pmu *pmu)
6254 {
6255         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6256
6257         WARN_ON(!irqs_disabled());
6258
6259         list_del_init(&cpuctx->rotation_list);
6260 }
6261
6262 static void __perf_event_exit_context(void *__info)
6263 {
6264         struct perf_event_context *ctx = __info;
6265         struct perf_event *event, *tmp;
6266
6267         perf_pmu_rotate_stop(ctx->pmu);
6268
6269         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6270                 __perf_event_remove_from_context(event);
6271         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6272                 __perf_event_remove_from_context(event);
6273 }
6274
6275 static void perf_event_exit_cpu_context(int cpu)
6276 {
6277         struct perf_event_context *ctx;
6278         struct pmu *pmu;
6279         int idx;
6280
6281         idx = srcu_read_lock(&pmus_srcu);
6282         list_for_each_entry_rcu(pmu, &pmus, entry) {
6283                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6284
6285                 mutex_lock(&ctx->mutex);
6286                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6287                 mutex_unlock(&ctx->mutex);
6288         }
6289         srcu_read_unlock(&pmus_srcu, idx);
6290 }
6291
6292 static void perf_event_exit_cpu(int cpu)
6293 {
6294         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6295
6296         mutex_lock(&swhash->hlist_mutex);
6297         swevent_hlist_release(swhash);
6298         mutex_unlock(&swhash->hlist_mutex);
6299
6300         perf_event_exit_cpu_context(cpu);
6301 }
6302 #else
6303 static inline void perf_event_exit_cpu(int cpu) { }
6304 #endif
6305
6306 static int __cpuinit
6307 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6308 {
6309         unsigned int cpu = (long)hcpu;
6310
6311         switch (action & ~CPU_TASKS_FROZEN) {
6312
6313         case CPU_UP_PREPARE:
6314         case CPU_DOWN_FAILED:
6315                 perf_event_init_cpu(cpu);
6316                 break;
6317
6318         case CPU_UP_CANCELED:
6319         case CPU_DOWN_PREPARE:
6320                 perf_event_exit_cpu(cpu);
6321                 break;
6322
6323         default:
6324                 break;
6325         }
6326
6327         return NOTIFY_OK;
6328 }
6329
6330 void __init perf_event_init(void)
6331 {
6332         perf_event_init_all_cpus();
6333         init_srcu_struct(&pmus_srcu);
6334         perf_pmu_register(&perf_swevent);
6335         perf_pmu_register(&perf_cpu_clock);
6336         perf_pmu_register(&perf_task_clock);
6337         perf_tp_register();
6338         perf_cpu_notifier(perf_cpu_notify);
6339 }