Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return local_clock();
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->disable(event);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 /*
470  * Cross CPU call to remove a performance event
471  *
472  * We disable the event on the hardware level first. After that we
473  * remove it from the context list.
474  */
475 static void __perf_event_remove_from_context(void *info)
476 {
477         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478         struct perf_event *event = info;
479         struct perf_event_context *ctx = event->ctx;
480
481         /*
482          * If this is a task context, we need to check whether it is
483          * the current task context of this cpu. If not it has been
484          * scheduled out before the smp call arrived.
485          */
486         if (ctx->task && cpuctx->task_ctx != ctx)
487                 return;
488
489         raw_spin_lock(&ctx->lock);
490         /*
491          * Protect the list operation against NMI by disabling the
492          * events on a global level.
493          */
494         perf_disable();
495
496         event_sched_out(event, cpuctx, ctx);
497
498         list_del_event(event, ctx);
499
500         if (!ctx->task) {
501                 /*
502                  * Allow more per task events with respect to the
503                  * reservation:
504                  */
505                 cpuctx->max_pertask =
506                         min(perf_max_events - ctx->nr_events,
507                             perf_max_events - perf_reserved_percpu);
508         }
509
510         perf_enable();
511         raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516  * Remove the event from a task's (or a CPU's) list of events.
517  *
518  * Must be called with ctx->mutex held.
519  *
520  * CPU events are removed with a smp call. For task events we only
521  * call when the task is on a CPU.
522  *
523  * If event->ctx is a cloned context, callers must make sure that
524  * every task struct that event->ctx->task could possibly point to
525  * remains valid.  This is OK when called from perf_release since
526  * that only calls us on the top-level context, which can't be a clone.
527  * When called from perf_event_exit_task, it's OK because the
528  * context has been detached from its task.
529  */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532         struct perf_event_context *ctx = event->ctx;
533         struct task_struct *task = ctx->task;
534
535         if (!task) {
536                 /*
537                  * Per cpu events are removed via an smp call and
538                  * the removal is always successful.
539                  */
540                 smp_call_function_single(event->cpu,
541                                          __perf_event_remove_from_context,
542                                          event, 1);
543                 return;
544         }
545
546 retry:
547         task_oncpu_function_call(task, __perf_event_remove_from_context,
548                                  event);
549
550         raw_spin_lock_irq(&ctx->lock);
551         /*
552          * If the context is active we need to retry the smp call.
553          */
554         if (ctx->nr_active && !list_empty(&event->group_entry)) {
555                 raw_spin_unlock_irq(&ctx->lock);
556                 goto retry;
557         }
558
559         /*
560          * The lock prevents that this context is scheduled in so we
561          * can remove the event safely, if the call above did not
562          * succeed.
563          */
564         if (!list_empty(&event->group_entry))
565                 list_del_event(event, ctx);
566         raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570  * Cross CPU call to disable a performance event
571  */
572 static void __perf_event_disable(void *info)
573 {
574         struct perf_event *event = info;
575         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576         struct perf_event_context *ctx = event->ctx;
577
578         /*
579          * If this is a per-task event, need to check whether this
580          * event's task is the current task on this cpu.
581          */
582         if (ctx->task && cpuctx->task_ctx != ctx)
583                 return;
584
585         raw_spin_lock(&ctx->lock);
586
587         /*
588          * If the event is on, turn it off.
589          * If it is in error state, leave it in error state.
590          */
591         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592                 update_context_time(ctx);
593                 update_group_times(event);
594                 if (event == event->group_leader)
595                         group_sched_out(event, cpuctx, ctx);
596                 else
597                         event_sched_out(event, cpuctx, ctx);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605  * Disable a event.
606  *
607  * If event->ctx is a cloned context, callers must make sure that
608  * every task struct that event->ctx->task could possibly point to
609  * remains valid.  This condition is satisifed when called through
610  * perf_event_for_each_child or perf_event_for_each because they
611  * hold the top-level event's child_mutex, so any descendant that
612  * goes to exit will block in sync_child_event.
613  * When called from perf_pending_event it's OK because event->ctx
614  * is the current context on this CPU and preemption is disabled,
615  * hence we can't get into perf_event_task_sched_out for this context.
616  */
617 void perf_event_disable(struct perf_event *event)
618 {
619         struct perf_event_context *ctx = event->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Disable the event on the cpu that it's on
625                  */
626                 smp_call_function_single(event->cpu, __perf_event_disable,
627                                          event, 1);
628                 return;
629         }
630
631  retry:
632         task_oncpu_function_call(task, __perf_event_disable, event);
633
634         raw_spin_lock_irq(&ctx->lock);
635         /*
636          * If the event is still active, we need to retry the cross-call.
637          */
638         if (event->state == PERF_EVENT_STATE_ACTIVE) {
639                 raw_spin_unlock_irq(&ctx->lock);
640                 goto retry;
641         }
642
643         /*
644          * Since we have the lock this context can't be scheduled
645          * in, so we can change the state safely.
646          */
647         if (event->state == PERF_EVENT_STATE_INACTIVE) {
648                 update_group_times(event);
649                 event->state = PERF_EVENT_STATE_OFF;
650         }
651
652         raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657                  struct perf_cpu_context *cpuctx,
658                  struct perf_event_context *ctx)
659 {
660         if (event->state <= PERF_EVENT_STATE_OFF)
661                 return 0;
662
663         event->state = PERF_EVENT_STATE_ACTIVE;
664         event->oncpu = smp_processor_id();
665         /*
666          * The new state must be visible before we turn it on in the hardware:
667          */
668         smp_wmb();
669
670         if (event->pmu->enable(event)) {
671                 event->state = PERF_EVENT_STATE_INACTIVE;
672                 event->oncpu = -1;
673                 return -EAGAIN;
674         }
675
676         event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678         if (!is_software_event(event))
679                 cpuctx->active_oncpu++;
680         ctx->nr_active++;
681
682         if (event->attr.exclusive)
683                 cpuctx->exclusive = 1;
684
685         return 0;
686 }
687
688 static int
689 group_sched_in(struct perf_event *group_event,
690                struct perf_cpu_context *cpuctx,
691                struct perf_event_context *ctx)
692 {
693         struct perf_event *event, *partial_group = NULL;
694         const struct pmu *pmu = group_event->pmu;
695         bool txn = false;
696
697         if (group_event->state == PERF_EVENT_STATE_OFF)
698                 return 0;
699
700         /* Check if group transaction availabe */
701         if (pmu->start_txn)
702                 txn = true;
703
704         if (txn)
705                 pmu->start_txn(pmu);
706
707         if (event_sched_in(group_event, cpuctx, ctx)) {
708                 if (txn)
709                         pmu->cancel_txn(pmu);
710                 return -EAGAIN;
711         }
712
713         /*
714          * Schedule in siblings as one group (if any):
715          */
716         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717                 if (event_sched_in(event, cpuctx, ctx)) {
718                         partial_group = event;
719                         goto group_error;
720                 }
721         }
722
723         if (!txn || !pmu->commit_txn(pmu))
724                 return 0;
725
726 group_error:
727         /*
728          * Groups can be scheduled in as one unit only, so undo any
729          * partial group before returning:
730          */
731         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
732                 if (event == partial_group)
733                         break;
734                 event_sched_out(event, cpuctx, ctx);
735         }
736         event_sched_out(group_event, cpuctx, ctx);
737
738         if (txn)
739                 pmu->cancel_txn(pmu);
740
741         return -EAGAIN;
742 }
743
744 /*
745  * Work out whether we can put this event group on the CPU now.
746  */
747 static int group_can_go_on(struct perf_event *event,
748                            struct perf_cpu_context *cpuctx,
749                            int can_add_hw)
750 {
751         /*
752          * Groups consisting entirely of software events can always go on.
753          */
754         if (event->group_flags & PERF_GROUP_SOFTWARE)
755                 return 1;
756         /*
757          * If an exclusive group is already on, no other hardware
758          * events can go on.
759          */
760         if (cpuctx->exclusive)
761                 return 0;
762         /*
763          * If this group is exclusive and there are already
764          * events on the CPU, it can't go on.
765          */
766         if (event->attr.exclusive && cpuctx->active_oncpu)
767                 return 0;
768         /*
769          * Otherwise, try to add it if all previous groups were able
770          * to go on.
771          */
772         return can_add_hw;
773 }
774
775 static void add_event_to_ctx(struct perf_event *event,
776                                struct perf_event_context *ctx)
777 {
778         list_add_event(event, ctx);
779         perf_group_attach(event);
780         event->tstamp_enabled = ctx->time;
781         event->tstamp_running = ctx->time;
782         event->tstamp_stopped = ctx->time;
783 }
784
785 /*
786  * Cross CPU call to install and enable a performance event
787  *
788  * Must be called with ctx->mutex held
789  */
790 static void __perf_install_in_context(void *info)
791 {
792         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793         struct perf_event *event = info;
794         struct perf_event_context *ctx = event->ctx;
795         struct perf_event *leader = event->group_leader;
796         int err;
797
798         /*
799          * If this is a task context, we need to check whether it is
800          * the current task context of this cpu. If not it has been
801          * scheduled out before the smp call arrived.
802          * Or possibly this is the right context but it isn't
803          * on this cpu because it had no events.
804          */
805         if (ctx->task && cpuctx->task_ctx != ctx) {
806                 if (cpuctx->task_ctx || ctx->task != current)
807                         return;
808                 cpuctx->task_ctx = ctx;
809         }
810
811         raw_spin_lock(&ctx->lock);
812         ctx->is_active = 1;
813         update_context_time(ctx);
814
815         /*
816          * Protect the list operation against NMI by disabling the
817          * events on a global level. NOP for non NMI based events.
818          */
819         perf_disable();
820
821         add_event_to_ctx(event, ctx);
822
823         if (event->cpu != -1 && event->cpu != smp_processor_id())
824                 goto unlock;
825
826         /*
827          * Don't put the event on if it is disabled or if
828          * it is in a group and the group isn't on.
829          */
830         if (event->state != PERF_EVENT_STATE_INACTIVE ||
831             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832                 goto unlock;
833
834         /*
835          * An exclusive event can't go on if there are already active
836          * hardware events, and no hardware event can go on if there
837          * is already an exclusive event on.
838          */
839         if (!group_can_go_on(event, cpuctx, 1))
840                 err = -EEXIST;
841         else
842                 err = event_sched_in(event, cpuctx, ctx);
843
844         if (err) {
845                 /*
846                  * This event couldn't go on.  If it is in a group
847                  * then we have to pull the whole group off.
848                  * If the event group is pinned then put it in error state.
849                  */
850                 if (leader != event)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->attr.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_EVENT_STATE_ERROR;
855                 }
856         }
857
858         if (!err && !ctx->task && cpuctx->max_pertask)
859                 cpuctx->max_pertask--;
860
861  unlock:
862         perf_enable();
863
864         raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868  * Attach a performance event to a context
869  *
870  * First we add the event to the list with the hardware enable bit
871  * in event->hw_config cleared.
872  *
873  * If the event is attached to a task which is on a CPU we use a smp
874  * call to enable it in the task context. The task might have been
875  * scheduled away, but we check this in the smp call again.
876  *
877  * Must be called with ctx->mutex held.
878  */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881                         struct perf_event *event,
882                         int cpu)
883 {
884         struct task_struct *task = ctx->task;
885
886         if (!task) {
887                 /*
888                  * Per cpu events are installed via an smp call and
889                  * the install is always successful.
890                  */
891                 smp_call_function_single(cpu, __perf_install_in_context,
892                                          event, 1);
893                 return;
894         }
895
896 retry:
897         task_oncpu_function_call(task, __perf_install_in_context,
898                                  event);
899
900         raw_spin_lock_irq(&ctx->lock);
901         /*
902          * we need to retry the smp call.
903          */
904         if (ctx->is_active && list_empty(&event->group_entry)) {
905                 raw_spin_unlock_irq(&ctx->lock);
906                 goto retry;
907         }
908
909         /*
910          * The lock prevents that this context is scheduled in so we
911          * can add the event safely, if it the call above did not
912          * succeed.
913          */
914         if (list_empty(&event->group_entry))
915                 add_event_to_ctx(event, ctx);
916         raw_spin_unlock_irq(&ctx->lock);
917 }
918
919 /*
920  * Put a event into inactive state and update time fields.
921  * Enabling the leader of a group effectively enables all
922  * the group members that aren't explicitly disabled, so we
923  * have to update their ->tstamp_enabled also.
924  * Note: this works for group members as well as group leaders
925  * since the non-leader members' sibling_lists will be empty.
926  */
927 static void __perf_event_mark_enabled(struct perf_event *event,
928                                         struct perf_event_context *ctx)
929 {
930         struct perf_event *sub;
931
932         event->state = PERF_EVENT_STATE_INACTIVE;
933         event->tstamp_enabled = ctx->time - event->total_time_enabled;
934         list_for_each_entry(sub, &event->sibling_list, group_entry)
935                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936                         sub->tstamp_enabled =
937                                 ctx->time - sub->total_time_enabled;
938 }
939
940 /*
941  * Cross CPU call to enable a performance event
942  */
943 static void __perf_event_enable(void *info)
944 {
945         struct perf_event *event = info;
946         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947         struct perf_event_context *ctx = event->ctx;
948         struct perf_event *leader = event->group_leader;
949         int err;
950
951         /*
952          * If this is a per-task event, need to check whether this
953          * event's task is the current task on this cpu.
954          */
955         if (ctx->task && cpuctx->task_ctx != ctx) {
956                 if (cpuctx->task_ctx || ctx->task != current)
957                         return;
958                 cpuctx->task_ctx = ctx;
959         }
960
961         raw_spin_lock(&ctx->lock);
962         ctx->is_active = 1;
963         update_context_time(ctx);
964
965         if (event->state >= PERF_EVENT_STATE_INACTIVE)
966                 goto unlock;
967         __perf_event_mark_enabled(event, ctx);
968
969         if (event->cpu != -1 && event->cpu != smp_processor_id())
970                 goto unlock;
971
972         /*
973          * If the event is in a group and isn't the group leader,
974          * then don't put it on unless the group is on.
975          */
976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977                 goto unlock;
978
979         if (!group_can_go_on(event, cpuctx, 1)) {
980                 err = -EEXIST;
981         } else {
982                 perf_disable();
983                 if (event == leader)
984                         err = group_sched_in(event, cpuctx, ctx);
985                 else
986                         err = event_sched_in(event, cpuctx, ctx);
987                 perf_enable();
988         }
989
990         if (err) {
991                 /*
992                  * If this event can't go on and it's part of a
993                  * group, then the whole group has to come off.
994                  */
995                 if (leader != event)
996                         group_sched_out(leader, cpuctx, ctx);
997                 if (leader->attr.pinned) {
998                         update_group_times(leader);
999                         leader->state = PERF_EVENT_STATE_ERROR;
1000                 }
1001         }
1002
1003  unlock:
1004         raw_spin_unlock(&ctx->lock);
1005 }
1006
1007 /*
1008  * Enable a event.
1009  *
1010  * If event->ctx is a cloned context, callers must make sure that
1011  * every task struct that event->ctx->task could possibly point to
1012  * remains valid.  This condition is satisfied when called through
1013  * perf_event_for_each_child or perf_event_for_each as described
1014  * for perf_event_disable.
1015  */
1016 void perf_event_enable(struct perf_event *event)
1017 {
1018         struct perf_event_context *ctx = event->ctx;
1019         struct task_struct *task = ctx->task;
1020
1021         if (!task) {
1022                 /*
1023                  * Enable the event on the cpu that it's on
1024                  */
1025                 smp_call_function_single(event->cpu, __perf_event_enable,
1026                                          event, 1);
1027                 return;
1028         }
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032                 goto out;
1033
1034         /*
1035          * If the event is in error state, clear that first.
1036          * That way, if we see the event in error state below, we
1037          * know that it has gone back into error state, as distinct
1038          * from the task having been scheduled away before the
1039          * cross-call arrived.
1040          */
1041         if (event->state == PERF_EVENT_STATE_ERROR)
1042                 event->state = PERF_EVENT_STATE_OFF;
1043
1044  retry:
1045         raw_spin_unlock_irq(&ctx->lock);
1046         task_oncpu_function_call(task, __perf_event_enable, event);
1047
1048         raw_spin_lock_irq(&ctx->lock);
1049
1050         /*
1051          * If the context is active and the event is still off,
1052          * we need to retry the cross-call.
1053          */
1054         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055                 goto retry;
1056
1057         /*
1058          * Since we have the lock this context can't be scheduled
1059          * in, so we can change the state safely.
1060          */
1061         if (event->state == PERF_EVENT_STATE_OFF)
1062                 __perf_event_mark_enabled(event, ctx);
1063
1064  out:
1065         raw_spin_unlock_irq(&ctx->lock);
1066 }
1067
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1069 {
1070         /*
1071          * not supported on inherited events
1072          */
1073         if (event->attr.inherit)
1074                 return -EINVAL;
1075
1076         atomic_add(refresh, &event->event_limit);
1077         perf_event_enable(event);
1078
1079         return 0;
1080 }
1081
1082 enum event_type_t {
1083         EVENT_FLEXIBLE = 0x1,
1084         EVENT_PINNED = 0x2,
1085         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1086 };
1087
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089                           struct perf_cpu_context *cpuctx,
1090                           enum event_type_t event_type)
1091 {
1092         struct perf_event *event;
1093
1094         raw_spin_lock(&ctx->lock);
1095         ctx->is_active = 0;
1096         if (likely(!ctx->nr_events))
1097                 goto out;
1098         update_context_time(ctx);
1099
1100         perf_disable();
1101         if (!ctx->nr_active)
1102                 goto out_enable;
1103
1104         if (event_type & EVENT_PINNED)
1105                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106                         group_sched_out(event, cpuctx, ctx);
1107
1108         if (event_type & EVENT_FLEXIBLE)
1109                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110                         group_sched_out(event, cpuctx, ctx);
1111
1112  out_enable:
1113         perf_enable();
1114  out:
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Test whether two contexts are equivalent, i.e. whether they
1120  * have both been cloned from the same version of the same context
1121  * and they both have the same number of enabled events.
1122  * If the number of enabled events is the same, then the set
1123  * of enabled events should be the same, because these are both
1124  * inherited contexts, therefore we can't access individual events
1125  * in them directly with an fd; we can only enable/disable all
1126  * events via prctl, or enable/disable all events in a family
1127  * via ioctl, which will have the same effect on both contexts.
1128  */
1129 static int context_equiv(struct perf_event_context *ctx1,
1130                          struct perf_event_context *ctx2)
1131 {
1132         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133                 && ctx1->parent_gen == ctx2->parent_gen
1134                 && !ctx1->pin_count && !ctx2->pin_count;
1135 }
1136
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138                                      struct perf_event *next_event)
1139 {
1140         u64 value;
1141
1142         if (!event->attr.inherit_stat)
1143                 return;
1144
1145         /*
1146          * Update the event value, we cannot use perf_event_read()
1147          * because we're in the middle of a context switch and have IRQs
1148          * disabled, which upsets smp_call_function_single(), however
1149          * we know the event must be on the current CPU, therefore we
1150          * don't need to use it.
1151          */
1152         switch (event->state) {
1153         case PERF_EVENT_STATE_ACTIVE:
1154                 event->pmu->read(event);
1155                 /* fall-through */
1156
1157         case PERF_EVENT_STATE_INACTIVE:
1158                 update_event_times(event);
1159                 break;
1160
1161         default:
1162                 break;
1163         }
1164
1165         /*
1166          * In order to keep per-task stats reliable we need to flip the event
1167          * values when we flip the contexts.
1168          */
1169         value = local64_read(&next_event->count);
1170         value = local64_xchg(&event->count, value);
1171         local64_set(&next_event->count, value);
1172
1173         swap(event->total_time_enabled, next_event->total_time_enabled);
1174         swap(event->total_time_running, next_event->total_time_running);
1175
1176         /*
1177          * Since we swizzled the values, update the user visible data too.
1178          */
1179         perf_event_update_userpage(event);
1180         perf_event_update_userpage(next_event);
1181 }
1182
1183 #define list_next_entry(pos, member) \
1184         list_entry(pos->member.next, typeof(*pos), member)
1185
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187                                    struct perf_event_context *next_ctx)
1188 {
1189         struct perf_event *event, *next_event;
1190
1191         if (!ctx->nr_stat)
1192                 return;
1193
1194         update_context_time(ctx);
1195
1196         event = list_first_entry(&ctx->event_list,
1197                                    struct perf_event, event_entry);
1198
1199         next_event = list_first_entry(&next_ctx->event_list,
1200                                         struct perf_event, event_entry);
1201
1202         while (&event->event_entry != &ctx->event_list &&
1203                &next_event->event_entry != &next_ctx->event_list) {
1204
1205                 __perf_event_sync_stat(event, next_event);
1206
1207                 event = list_next_entry(event, event_entry);
1208                 next_event = list_next_entry(next_event, event_entry);
1209         }
1210 }
1211
1212 /*
1213  * Called from scheduler to remove the events of the current task,
1214  * with interrupts disabled.
1215  *
1216  * We stop each event and update the event value in event->count.
1217  *
1218  * This does not protect us against NMI, but disable()
1219  * sets the disabled bit in the control field of event _before_
1220  * accessing the event control register. If a NMI hits, then it will
1221  * not restart the event.
1222  */
1223 void perf_event_task_sched_out(struct task_struct *task,
1224                                  struct task_struct *next)
1225 {
1226         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227         struct perf_event_context *ctx = task->perf_event_ctxp;
1228         struct perf_event_context *next_ctx;
1229         struct perf_event_context *parent;
1230         int do_switch = 1;
1231
1232         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1233
1234         if (likely(!ctx || !cpuctx->task_ctx))
1235                 return;
1236
1237         rcu_read_lock();
1238         parent = rcu_dereference(ctx->parent_ctx);
1239         next_ctx = next->perf_event_ctxp;
1240         if (parent && next_ctx &&
1241             rcu_dereference(next_ctx->parent_ctx) == parent) {
1242                 /*
1243                  * Looks like the two contexts are clones, so we might be
1244                  * able to optimize the context switch.  We lock both
1245                  * contexts and check that they are clones under the
1246                  * lock (including re-checking that neither has been
1247                  * uncloned in the meantime).  It doesn't matter which
1248                  * order we take the locks because no other cpu could
1249                  * be trying to lock both of these tasks.
1250                  */
1251                 raw_spin_lock(&ctx->lock);
1252                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253                 if (context_equiv(ctx, next_ctx)) {
1254                         /*
1255                          * XXX do we need a memory barrier of sorts
1256                          * wrt to rcu_dereference() of perf_event_ctxp
1257                          */
1258                         task->perf_event_ctxp = next_ctx;
1259                         next->perf_event_ctxp = ctx;
1260                         ctx->task = next;
1261                         next_ctx->task = task;
1262                         do_switch = 0;
1263
1264                         perf_event_sync_stat(ctx, next_ctx);
1265                 }
1266                 raw_spin_unlock(&next_ctx->lock);
1267                 raw_spin_unlock(&ctx->lock);
1268         }
1269         rcu_read_unlock();
1270
1271         if (do_switch) {
1272                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1273                 cpuctx->task_ctx = NULL;
1274         }
1275 }
1276
1277 static void task_ctx_sched_out(struct perf_event_context *ctx,
1278                                enum event_type_t event_type)
1279 {
1280         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1281
1282         if (!cpuctx->task_ctx)
1283                 return;
1284
1285         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1286                 return;
1287
1288         ctx_sched_out(ctx, cpuctx, event_type);
1289         cpuctx->task_ctx = NULL;
1290 }
1291
1292 /*
1293  * Called with IRQs disabled
1294  */
1295 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1296 {
1297         task_ctx_sched_out(ctx, EVENT_ALL);
1298 }
1299
1300 /*
1301  * Called with IRQs disabled
1302  */
1303 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1304                               enum event_type_t event_type)
1305 {
1306         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1307 }
1308
1309 static void
1310 ctx_pinned_sched_in(struct perf_event_context *ctx,
1311                     struct perf_cpu_context *cpuctx)
1312 {
1313         struct perf_event *event;
1314
1315         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1316                 if (event->state <= PERF_EVENT_STATE_OFF)
1317                         continue;
1318                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1319                         continue;
1320
1321                 if (group_can_go_on(event, cpuctx, 1))
1322                         group_sched_in(event, cpuctx, ctx);
1323
1324                 /*
1325                  * If this pinned group hasn't been scheduled,
1326                  * put it in error state.
1327                  */
1328                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1329                         update_group_times(event);
1330                         event->state = PERF_EVENT_STATE_ERROR;
1331                 }
1332         }
1333 }
1334
1335 static void
1336 ctx_flexible_sched_in(struct perf_event_context *ctx,
1337                       struct perf_cpu_context *cpuctx)
1338 {
1339         struct perf_event *event;
1340         int can_add_hw = 1;
1341
1342         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1343                 /* Ignore events in OFF or ERROR state */
1344                 if (event->state <= PERF_EVENT_STATE_OFF)
1345                         continue;
1346                 /*
1347                  * Listen to the 'cpu' scheduling filter constraint
1348                  * of events:
1349                  */
1350                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1351                         continue;
1352
1353                 if (group_can_go_on(event, cpuctx, can_add_hw))
1354                         if (group_sched_in(event, cpuctx, ctx))
1355                                 can_add_hw = 0;
1356         }
1357 }
1358
1359 static void
1360 ctx_sched_in(struct perf_event_context *ctx,
1361              struct perf_cpu_context *cpuctx,
1362              enum event_type_t event_type)
1363 {
1364         raw_spin_lock(&ctx->lock);
1365         ctx->is_active = 1;
1366         if (likely(!ctx->nr_events))
1367                 goto out;
1368
1369         ctx->timestamp = perf_clock();
1370
1371         perf_disable();
1372
1373         /*
1374          * First go through the list and put on any pinned groups
1375          * in order to give them the best chance of going on.
1376          */
1377         if (event_type & EVENT_PINNED)
1378                 ctx_pinned_sched_in(ctx, cpuctx);
1379
1380         /* Then walk through the lower prio flexible groups */
1381         if (event_type & EVENT_FLEXIBLE)
1382                 ctx_flexible_sched_in(ctx, cpuctx);
1383
1384         perf_enable();
1385  out:
1386         raw_spin_unlock(&ctx->lock);
1387 }
1388
1389 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1390                              enum event_type_t event_type)
1391 {
1392         struct perf_event_context *ctx = &cpuctx->ctx;
1393
1394         ctx_sched_in(ctx, cpuctx, event_type);
1395 }
1396
1397 static void task_ctx_sched_in(struct task_struct *task,
1398                               enum event_type_t event_type)
1399 {
1400         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1401         struct perf_event_context *ctx = task->perf_event_ctxp;
1402
1403         if (likely(!ctx))
1404                 return;
1405         if (cpuctx->task_ctx == ctx)
1406                 return;
1407         ctx_sched_in(ctx, cpuctx, event_type);
1408         cpuctx->task_ctx = ctx;
1409 }
1410 /*
1411  * Called from scheduler to add the events of the current task
1412  * with interrupts disabled.
1413  *
1414  * We restore the event value and then enable it.
1415  *
1416  * This does not protect us against NMI, but enable()
1417  * sets the enabled bit in the control field of event _before_
1418  * accessing the event control register. If a NMI hits, then it will
1419  * keep the event running.
1420  */
1421 void perf_event_task_sched_in(struct task_struct *task)
1422 {
1423         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1424         struct perf_event_context *ctx = task->perf_event_ctxp;
1425
1426         if (likely(!ctx))
1427                 return;
1428
1429         if (cpuctx->task_ctx == ctx)
1430                 return;
1431
1432         perf_disable();
1433
1434         /*
1435          * We want to keep the following priority order:
1436          * cpu pinned (that don't need to move), task pinned,
1437          * cpu flexible, task flexible.
1438          */
1439         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1440
1441         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1442         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1443         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1444
1445         cpuctx->task_ctx = ctx;
1446
1447         perf_enable();
1448 }
1449
1450 #define MAX_INTERRUPTS (~0ULL)
1451
1452 static void perf_log_throttle(struct perf_event *event, int enable);
1453
1454 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1455 {
1456         u64 frequency = event->attr.sample_freq;
1457         u64 sec = NSEC_PER_SEC;
1458         u64 divisor, dividend;
1459
1460         int count_fls, nsec_fls, frequency_fls, sec_fls;
1461
1462         count_fls = fls64(count);
1463         nsec_fls = fls64(nsec);
1464         frequency_fls = fls64(frequency);
1465         sec_fls = 30;
1466
1467         /*
1468          * We got @count in @nsec, with a target of sample_freq HZ
1469          * the target period becomes:
1470          *
1471          *             @count * 10^9
1472          * period = -------------------
1473          *          @nsec * sample_freq
1474          *
1475          */
1476
1477         /*
1478          * Reduce accuracy by one bit such that @a and @b converge
1479          * to a similar magnitude.
1480          */
1481 #define REDUCE_FLS(a, b)                \
1482 do {                                    \
1483         if (a##_fls > b##_fls) {        \
1484                 a >>= 1;                \
1485                 a##_fls--;              \
1486         } else {                        \
1487                 b >>= 1;                \
1488                 b##_fls--;              \
1489         }                               \
1490 } while (0)
1491
1492         /*
1493          * Reduce accuracy until either term fits in a u64, then proceed with
1494          * the other, so that finally we can do a u64/u64 division.
1495          */
1496         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1497                 REDUCE_FLS(nsec, frequency);
1498                 REDUCE_FLS(sec, count);
1499         }
1500
1501         if (count_fls + sec_fls > 64) {
1502                 divisor = nsec * frequency;
1503
1504                 while (count_fls + sec_fls > 64) {
1505                         REDUCE_FLS(count, sec);
1506                         divisor >>= 1;
1507                 }
1508
1509                 dividend = count * sec;
1510         } else {
1511                 dividend = count * sec;
1512
1513                 while (nsec_fls + frequency_fls > 64) {
1514                         REDUCE_FLS(nsec, frequency);
1515                         dividend >>= 1;
1516                 }
1517
1518                 divisor = nsec * frequency;
1519         }
1520
1521         if (!divisor)
1522                 return dividend;
1523
1524         return div64_u64(dividend, divisor);
1525 }
1526
1527 static void perf_event_stop(struct perf_event *event)
1528 {
1529         if (!event->pmu->stop)
1530                 return event->pmu->disable(event);
1531
1532         return event->pmu->stop(event);
1533 }
1534
1535 static int perf_event_start(struct perf_event *event)
1536 {
1537         if (!event->pmu->start)
1538                 return event->pmu->enable(event);
1539
1540         return event->pmu->start(event);
1541 }
1542
1543 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1544 {
1545         struct hw_perf_event *hwc = &event->hw;
1546         s64 period, sample_period;
1547         s64 delta;
1548
1549         period = perf_calculate_period(event, nsec, count);
1550
1551         delta = (s64)(period - hwc->sample_period);
1552         delta = (delta + 7) / 8; /* low pass filter */
1553
1554         sample_period = hwc->sample_period + delta;
1555
1556         if (!sample_period)
1557                 sample_period = 1;
1558
1559         hwc->sample_period = sample_period;
1560
1561         if (local64_read(&hwc->period_left) > 8*sample_period) {
1562                 perf_disable();
1563                 perf_event_stop(event);
1564                 local64_set(&hwc->period_left, 0);
1565                 perf_event_start(event);
1566                 perf_enable();
1567         }
1568 }
1569
1570 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1571 {
1572         struct perf_event *event;
1573         struct hw_perf_event *hwc;
1574         u64 interrupts, now;
1575         s64 delta;
1576
1577         raw_spin_lock(&ctx->lock);
1578         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1579                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1580                         continue;
1581
1582                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1583                         continue;
1584
1585                 hwc = &event->hw;
1586
1587                 interrupts = hwc->interrupts;
1588                 hwc->interrupts = 0;
1589
1590                 /*
1591                  * unthrottle events on the tick
1592                  */
1593                 if (interrupts == MAX_INTERRUPTS) {
1594                         perf_log_throttle(event, 1);
1595                         perf_disable();
1596                         event->pmu->unthrottle(event);
1597                         perf_enable();
1598                 }
1599
1600                 if (!event->attr.freq || !event->attr.sample_freq)
1601                         continue;
1602
1603                 perf_disable();
1604                 event->pmu->read(event);
1605                 now = local64_read(&event->count);
1606                 delta = now - hwc->freq_count_stamp;
1607                 hwc->freq_count_stamp = now;
1608
1609                 if (delta > 0)
1610                         perf_adjust_period(event, TICK_NSEC, delta);
1611                 perf_enable();
1612         }
1613         raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 /*
1617  * Round-robin a context's events:
1618  */
1619 static void rotate_ctx(struct perf_event_context *ctx)
1620 {
1621         raw_spin_lock(&ctx->lock);
1622
1623         /* Rotate the first entry last of non-pinned groups */
1624         list_rotate_left(&ctx->flexible_groups);
1625
1626         raw_spin_unlock(&ctx->lock);
1627 }
1628
1629 void perf_event_task_tick(struct task_struct *curr)
1630 {
1631         struct perf_cpu_context *cpuctx;
1632         struct perf_event_context *ctx;
1633         int rotate = 0;
1634
1635         if (!atomic_read(&nr_events))
1636                 return;
1637
1638         cpuctx = &__get_cpu_var(perf_cpu_context);
1639         if (cpuctx->ctx.nr_events &&
1640             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1641                 rotate = 1;
1642
1643         ctx = curr->perf_event_ctxp;
1644         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1645                 rotate = 1;
1646
1647         perf_ctx_adjust_freq(&cpuctx->ctx);
1648         if (ctx)
1649                 perf_ctx_adjust_freq(ctx);
1650
1651         if (!rotate)
1652                 return;
1653
1654         perf_disable();
1655         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656         if (ctx)
1657                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1658
1659         rotate_ctx(&cpuctx->ctx);
1660         if (ctx)
1661                 rotate_ctx(ctx);
1662
1663         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664         if (ctx)
1665                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666         perf_enable();
1667 }
1668
1669 static int event_enable_on_exec(struct perf_event *event,
1670                                 struct perf_event_context *ctx)
1671 {
1672         if (!event->attr.enable_on_exec)
1673                 return 0;
1674
1675         event->attr.enable_on_exec = 0;
1676         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1677                 return 0;
1678
1679         __perf_event_mark_enabled(event, ctx);
1680
1681         return 1;
1682 }
1683
1684 /*
1685  * Enable all of a task's events that have been marked enable-on-exec.
1686  * This expects task == current.
1687  */
1688 static void perf_event_enable_on_exec(struct task_struct *task)
1689 {
1690         struct perf_event_context *ctx;
1691         struct perf_event *event;
1692         unsigned long flags;
1693         int enabled = 0;
1694         int ret;
1695
1696         local_irq_save(flags);
1697         ctx = task->perf_event_ctxp;
1698         if (!ctx || !ctx->nr_events)
1699                 goto out;
1700
1701         __perf_event_task_sched_out(ctx);
1702
1703         raw_spin_lock(&ctx->lock);
1704
1705         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1706                 ret = event_enable_on_exec(event, ctx);
1707                 if (ret)
1708                         enabled = 1;
1709         }
1710
1711         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1712                 ret = event_enable_on_exec(event, ctx);
1713                 if (ret)
1714                         enabled = 1;
1715         }
1716
1717         /*
1718          * Unclone this context if we enabled any event.
1719          */
1720         if (enabled)
1721                 unclone_ctx(ctx);
1722
1723         raw_spin_unlock(&ctx->lock);
1724
1725         perf_event_task_sched_in(task);
1726  out:
1727         local_irq_restore(flags);
1728 }
1729
1730 /*
1731  * Cross CPU call to read the hardware event
1732  */
1733 static void __perf_event_read(void *info)
1734 {
1735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736         struct perf_event *event = info;
1737         struct perf_event_context *ctx = event->ctx;
1738
1739         /*
1740          * If this is a task context, we need to check whether it is
1741          * the current task context of this cpu.  If not it has been
1742          * scheduled out before the smp call arrived.  In that case
1743          * event->count would have been updated to a recent sample
1744          * when the event was scheduled out.
1745          */
1746         if (ctx->task && cpuctx->task_ctx != ctx)
1747                 return;
1748
1749         raw_spin_lock(&ctx->lock);
1750         update_context_time(ctx);
1751         update_event_times(event);
1752         raw_spin_unlock(&ctx->lock);
1753
1754         event->pmu->read(event);
1755 }
1756
1757 static inline u64 perf_event_count(struct perf_event *event)
1758 {
1759         return local64_read(&event->count) + atomic64_read(&event->child_count);
1760 }
1761
1762 static u64 perf_event_read(struct perf_event *event)
1763 {
1764         /*
1765          * If event is enabled and currently active on a CPU, update the
1766          * value in the event structure:
1767          */
1768         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769                 smp_call_function_single(event->oncpu,
1770                                          __perf_event_read, event, 1);
1771         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1772                 struct perf_event_context *ctx = event->ctx;
1773                 unsigned long flags;
1774
1775                 raw_spin_lock_irqsave(&ctx->lock, flags);
1776                 update_context_time(ctx);
1777                 update_event_times(event);
1778                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1779         }
1780
1781         return perf_event_count(event);
1782 }
1783
1784 /*
1785  * Initialize the perf_event context in a task_struct:
1786  */
1787 static void
1788 __perf_event_init_context(struct perf_event_context *ctx,
1789                             struct task_struct *task)
1790 {
1791         raw_spin_lock_init(&ctx->lock);
1792         mutex_init(&ctx->mutex);
1793         INIT_LIST_HEAD(&ctx->pinned_groups);
1794         INIT_LIST_HEAD(&ctx->flexible_groups);
1795         INIT_LIST_HEAD(&ctx->event_list);
1796         atomic_set(&ctx->refcount, 1);
1797         ctx->task = task;
1798 }
1799
1800 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1801 {
1802         struct perf_event_context *ctx;
1803         struct perf_cpu_context *cpuctx;
1804         struct task_struct *task;
1805         unsigned long flags;
1806         int err;
1807
1808         if (pid == -1 && cpu != -1) {
1809                 /* Must be root to operate on a CPU event: */
1810                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1811                         return ERR_PTR(-EACCES);
1812
1813                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1814                         return ERR_PTR(-EINVAL);
1815
1816                 /*
1817                  * We could be clever and allow to attach a event to an
1818                  * offline CPU and activate it when the CPU comes up, but
1819                  * that's for later.
1820                  */
1821                 if (!cpu_online(cpu))
1822                         return ERR_PTR(-ENODEV);
1823
1824                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1825                 ctx = &cpuctx->ctx;
1826                 get_ctx(ctx);
1827
1828                 return ctx;
1829         }
1830
1831         rcu_read_lock();
1832         if (!pid)
1833                 task = current;
1834         else
1835                 task = find_task_by_vpid(pid);
1836         if (task)
1837                 get_task_struct(task);
1838         rcu_read_unlock();
1839
1840         if (!task)
1841                 return ERR_PTR(-ESRCH);
1842
1843         /*
1844          * Can't attach events to a dying task.
1845          */
1846         err = -ESRCH;
1847         if (task->flags & PF_EXITING)
1848                 goto errout;
1849
1850         /* Reuse ptrace permission checks for now. */
1851         err = -EACCES;
1852         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1853                 goto errout;
1854
1855  retry:
1856         ctx = perf_lock_task_context(task, &flags);
1857         if (ctx) {
1858                 unclone_ctx(ctx);
1859                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1860         }
1861
1862         if (!ctx) {
1863                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1864                 err = -ENOMEM;
1865                 if (!ctx)
1866                         goto errout;
1867                 __perf_event_init_context(ctx, task);
1868                 get_ctx(ctx);
1869                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1870                         /*
1871                          * We raced with some other task; use
1872                          * the context they set.
1873                          */
1874                         kfree(ctx);
1875                         goto retry;
1876                 }
1877                 get_task_struct(task);
1878         }
1879
1880         put_task_struct(task);
1881         return ctx;
1882
1883  errout:
1884         put_task_struct(task);
1885         return ERR_PTR(err);
1886 }
1887
1888 static void perf_event_free_filter(struct perf_event *event);
1889
1890 static void free_event_rcu(struct rcu_head *head)
1891 {
1892         struct perf_event *event;
1893
1894         event = container_of(head, struct perf_event, rcu_head);
1895         if (event->ns)
1896                 put_pid_ns(event->ns);
1897         perf_event_free_filter(event);
1898         kfree(event);
1899 }
1900
1901 static void perf_pending_sync(struct perf_event *event);
1902 static void perf_buffer_put(struct perf_buffer *buffer);
1903
1904 static void free_event(struct perf_event *event)
1905 {
1906         perf_pending_sync(event);
1907
1908         if (!event->parent) {
1909                 atomic_dec(&nr_events);
1910                 if (event->attr.mmap || event->attr.mmap_data)
1911                         atomic_dec(&nr_mmap_events);
1912                 if (event->attr.comm)
1913                         atomic_dec(&nr_comm_events);
1914                 if (event->attr.task)
1915                         atomic_dec(&nr_task_events);
1916         }
1917
1918         if (event->buffer) {
1919                 perf_buffer_put(event->buffer);
1920                 event->buffer = NULL;
1921         }
1922
1923         if (event->destroy)
1924                 event->destroy(event);
1925
1926         put_ctx(event->ctx);
1927         call_rcu(&event->rcu_head, free_event_rcu);
1928 }
1929
1930 int perf_event_release_kernel(struct perf_event *event)
1931 {
1932         struct perf_event_context *ctx = event->ctx;
1933
1934         /*
1935          * Remove from the PMU, can't get re-enabled since we got
1936          * here because the last ref went.
1937          */
1938         perf_event_disable(event);
1939
1940         WARN_ON_ONCE(ctx->parent_ctx);
1941         /*
1942          * There are two ways this annotation is useful:
1943          *
1944          *  1) there is a lock recursion from perf_event_exit_task
1945          *     see the comment there.
1946          *
1947          *  2) there is a lock-inversion with mmap_sem through
1948          *     perf_event_read_group(), which takes faults while
1949          *     holding ctx->mutex, however this is called after
1950          *     the last filedesc died, so there is no possibility
1951          *     to trigger the AB-BA case.
1952          */
1953         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1954         raw_spin_lock_irq(&ctx->lock);
1955         perf_group_detach(event);
1956         list_del_event(event, ctx);
1957         raw_spin_unlock_irq(&ctx->lock);
1958         mutex_unlock(&ctx->mutex);
1959
1960         mutex_lock(&event->owner->perf_event_mutex);
1961         list_del_init(&event->owner_entry);
1962         mutex_unlock(&event->owner->perf_event_mutex);
1963         put_task_struct(event->owner);
1964
1965         free_event(event);
1966
1967         return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1970
1971 /*
1972  * Called when the last reference to the file is gone.
1973  */
1974 static int perf_release(struct inode *inode, struct file *file)
1975 {
1976         struct perf_event *event = file->private_data;
1977
1978         file->private_data = NULL;
1979
1980         return perf_event_release_kernel(event);
1981 }
1982
1983 static int perf_event_read_size(struct perf_event *event)
1984 {
1985         int entry = sizeof(u64); /* value */
1986         int size = 0;
1987         int nr = 1;
1988
1989         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1990                 size += sizeof(u64);
1991
1992         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1993                 size += sizeof(u64);
1994
1995         if (event->attr.read_format & PERF_FORMAT_ID)
1996                 entry += sizeof(u64);
1997
1998         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1999                 nr += event->group_leader->nr_siblings;
2000                 size += sizeof(u64);
2001         }
2002
2003         size += entry * nr;
2004
2005         return size;
2006 }
2007
2008 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2009 {
2010         struct perf_event *child;
2011         u64 total = 0;
2012
2013         *enabled = 0;
2014         *running = 0;
2015
2016         mutex_lock(&event->child_mutex);
2017         total += perf_event_read(event);
2018         *enabled += event->total_time_enabled +
2019                         atomic64_read(&event->child_total_time_enabled);
2020         *running += event->total_time_running +
2021                         atomic64_read(&event->child_total_time_running);
2022
2023         list_for_each_entry(child, &event->child_list, child_list) {
2024                 total += perf_event_read(child);
2025                 *enabled += child->total_time_enabled;
2026                 *running += child->total_time_running;
2027         }
2028         mutex_unlock(&event->child_mutex);
2029
2030         return total;
2031 }
2032 EXPORT_SYMBOL_GPL(perf_event_read_value);
2033
2034 static int perf_event_read_group(struct perf_event *event,
2035                                    u64 read_format, char __user *buf)
2036 {
2037         struct perf_event *leader = event->group_leader, *sub;
2038         int n = 0, size = 0, ret = -EFAULT;
2039         struct perf_event_context *ctx = leader->ctx;
2040         u64 values[5];
2041         u64 count, enabled, running;
2042
2043         mutex_lock(&ctx->mutex);
2044         count = perf_event_read_value(leader, &enabled, &running);
2045
2046         values[n++] = 1 + leader->nr_siblings;
2047         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2048                 values[n++] = enabled;
2049         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2050                 values[n++] = running;
2051         values[n++] = count;
2052         if (read_format & PERF_FORMAT_ID)
2053                 values[n++] = primary_event_id(leader);
2054
2055         size = n * sizeof(u64);
2056
2057         if (copy_to_user(buf, values, size))
2058                 goto unlock;
2059
2060         ret = size;
2061
2062         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2063                 n = 0;
2064
2065                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2066                 if (read_format & PERF_FORMAT_ID)
2067                         values[n++] = primary_event_id(sub);
2068
2069                 size = n * sizeof(u64);
2070
2071                 if (copy_to_user(buf + ret, values, size)) {
2072                         ret = -EFAULT;
2073                         goto unlock;
2074                 }
2075
2076                 ret += size;
2077         }
2078 unlock:
2079         mutex_unlock(&ctx->mutex);
2080
2081         return ret;
2082 }
2083
2084 static int perf_event_read_one(struct perf_event *event,
2085                                  u64 read_format, char __user *buf)
2086 {
2087         u64 enabled, running;
2088         u64 values[4];
2089         int n = 0;
2090
2091         values[n++] = perf_event_read_value(event, &enabled, &running);
2092         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2093                 values[n++] = enabled;
2094         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2095                 values[n++] = running;
2096         if (read_format & PERF_FORMAT_ID)
2097                 values[n++] = primary_event_id(event);
2098
2099         if (copy_to_user(buf, values, n * sizeof(u64)))
2100                 return -EFAULT;
2101
2102         return n * sizeof(u64);
2103 }
2104
2105 /*
2106  * Read the performance event - simple non blocking version for now
2107  */
2108 static ssize_t
2109 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2110 {
2111         u64 read_format = event->attr.read_format;
2112         int ret;
2113
2114         /*
2115          * Return end-of-file for a read on a event that is in
2116          * error state (i.e. because it was pinned but it couldn't be
2117          * scheduled on to the CPU at some point).
2118          */
2119         if (event->state == PERF_EVENT_STATE_ERROR)
2120                 return 0;
2121
2122         if (count < perf_event_read_size(event))
2123                 return -ENOSPC;
2124
2125         WARN_ON_ONCE(event->ctx->parent_ctx);
2126         if (read_format & PERF_FORMAT_GROUP)
2127                 ret = perf_event_read_group(event, read_format, buf);
2128         else
2129                 ret = perf_event_read_one(event, read_format, buf);
2130
2131         return ret;
2132 }
2133
2134 static ssize_t
2135 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2136 {
2137         struct perf_event *event = file->private_data;
2138
2139         return perf_read_hw(event, buf, count);
2140 }
2141
2142 static unsigned int perf_poll(struct file *file, poll_table *wait)
2143 {
2144         struct perf_event *event = file->private_data;
2145         struct perf_buffer *buffer;
2146         unsigned int events = POLL_HUP;
2147
2148         rcu_read_lock();
2149         buffer = rcu_dereference(event->buffer);
2150         if (buffer)
2151                 events = atomic_xchg(&buffer->poll, 0);
2152         rcu_read_unlock();
2153
2154         poll_wait(file, &event->waitq, wait);
2155
2156         return events;
2157 }
2158
2159 static void perf_event_reset(struct perf_event *event)
2160 {
2161         (void)perf_event_read(event);
2162         local64_set(&event->count, 0);
2163         perf_event_update_userpage(event);
2164 }
2165
2166 /*
2167  * Holding the top-level event's child_mutex means that any
2168  * descendant process that has inherited this event will block
2169  * in sync_child_event if it goes to exit, thus satisfying the
2170  * task existence requirements of perf_event_enable/disable.
2171  */
2172 static void perf_event_for_each_child(struct perf_event *event,
2173                                         void (*func)(struct perf_event *))
2174 {
2175         struct perf_event *child;
2176
2177         WARN_ON_ONCE(event->ctx->parent_ctx);
2178         mutex_lock(&event->child_mutex);
2179         func(event);
2180         list_for_each_entry(child, &event->child_list, child_list)
2181                 func(child);
2182         mutex_unlock(&event->child_mutex);
2183 }
2184
2185 static void perf_event_for_each(struct perf_event *event,
2186                                   void (*func)(struct perf_event *))
2187 {
2188         struct perf_event_context *ctx = event->ctx;
2189         struct perf_event *sibling;
2190
2191         WARN_ON_ONCE(ctx->parent_ctx);
2192         mutex_lock(&ctx->mutex);
2193         event = event->group_leader;
2194
2195         perf_event_for_each_child(event, func);
2196         func(event);
2197         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2198                 perf_event_for_each_child(event, func);
2199         mutex_unlock(&ctx->mutex);
2200 }
2201
2202 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2203 {
2204         struct perf_event_context *ctx = event->ctx;
2205         unsigned long size;
2206         int ret = 0;
2207         u64 value;
2208
2209         if (!event->attr.sample_period)
2210                 return -EINVAL;
2211
2212         size = copy_from_user(&value, arg, sizeof(value));
2213         if (size != sizeof(value))
2214                 return -EFAULT;
2215
2216         if (!value)
2217                 return -EINVAL;
2218
2219         raw_spin_lock_irq(&ctx->lock);
2220         if (event->attr.freq) {
2221                 if (value > sysctl_perf_event_sample_rate) {
2222                         ret = -EINVAL;
2223                         goto unlock;
2224                 }
2225
2226                 event->attr.sample_freq = value;
2227         } else {
2228                 event->attr.sample_period = value;
2229                 event->hw.sample_period = value;
2230         }
2231 unlock:
2232         raw_spin_unlock_irq(&ctx->lock);
2233
2234         return ret;
2235 }
2236
2237 static const struct file_operations perf_fops;
2238
2239 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2240 {
2241         struct file *file;
2242
2243         file = fget_light(fd, fput_needed);
2244         if (!file)
2245                 return ERR_PTR(-EBADF);
2246
2247         if (file->f_op != &perf_fops) {
2248                 fput_light(file, *fput_needed);
2249                 *fput_needed = 0;
2250                 return ERR_PTR(-EBADF);
2251         }
2252
2253         return file->private_data;
2254 }
2255
2256 static int perf_event_set_output(struct perf_event *event,
2257                                  struct perf_event *output_event);
2258 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2259
2260 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2261 {
2262         struct perf_event *event = file->private_data;
2263         void (*func)(struct perf_event *);
2264         u32 flags = arg;
2265
2266         switch (cmd) {
2267         case PERF_EVENT_IOC_ENABLE:
2268                 func = perf_event_enable;
2269                 break;
2270         case PERF_EVENT_IOC_DISABLE:
2271                 func = perf_event_disable;
2272                 break;
2273         case PERF_EVENT_IOC_RESET:
2274                 func = perf_event_reset;
2275                 break;
2276
2277         case PERF_EVENT_IOC_REFRESH:
2278                 return perf_event_refresh(event, arg);
2279
2280         case PERF_EVENT_IOC_PERIOD:
2281                 return perf_event_period(event, (u64 __user *)arg);
2282
2283         case PERF_EVENT_IOC_SET_OUTPUT:
2284         {
2285                 struct perf_event *output_event = NULL;
2286                 int fput_needed = 0;
2287                 int ret;
2288
2289                 if (arg != -1) {
2290                         output_event = perf_fget_light(arg, &fput_needed);
2291                         if (IS_ERR(output_event))
2292                                 return PTR_ERR(output_event);
2293                 }
2294
2295                 ret = perf_event_set_output(event, output_event);
2296                 if (output_event)
2297                         fput_light(output_event->filp, fput_needed);
2298
2299                 return ret;
2300         }
2301
2302         case PERF_EVENT_IOC_SET_FILTER:
2303                 return perf_event_set_filter(event, (void __user *)arg);
2304
2305         default:
2306                 return -ENOTTY;
2307         }
2308
2309         if (flags & PERF_IOC_FLAG_GROUP)
2310                 perf_event_for_each(event, func);
2311         else
2312                 perf_event_for_each_child(event, func);
2313
2314         return 0;
2315 }
2316
2317 int perf_event_task_enable(void)
2318 {
2319         struct perf_event *event;
2320
2321         mutex_lock(&current->perf_event_mutex);
2322         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2323                 perf_event_for_each_child(event, perf_event_enable);
2324         mutex_unlock(&current->perf_event_mutex);
2325
2326         return 0;
2327 }
2328
2329 int perf_event_task_disable(void)
2330 {
2331         struct perf_event *event;
2332
2333         mutex_lock(&current->perf_event_mutex);
2334         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2335                 perf_event_for_each_child(event, perf_event_disable);
2336         mutex_unlock(&current->perf_event_mutex);
2337
2338         return 0;
2339 }
2340
2341 #ifndef PERF_EVENT_INDEX_OFFSET
2342 # define PERF_EVENT_INDEX_OFFSET 0
2343 #endif
2344
2345 static int perf_event_index(struct perf_event *event)
2346 {
2347         if (event->state != PERF_EVENT_STATE_ACTIVE)
2348                 return 0;
2349
2350         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2351 }
2352
2353 /*
2354  * Callers need to ensure there can be no nesting of this function, otherwise
2355  * the seqlock logic goes bad. We can not serialize this because the arch
2356  * code calls this from NMI context.
2357  */
2358 void perf_event_update_userpage(struct perf_event *event)
2359 {
2360         struct perf_event_mmap_page *userpg;
2361         struct perf_buffer *buffer;
2362
2363         rcu_read_lock();
2364         buffer = rcu_dereference(event->buffer);
2365         if (!buffer)
2366                 goto unlock;
2367
2368         userpg = buffer->user_page;
2369
2370         /*
2371          * Disable preemption so as to not let the corresponding user-space
2372          * spin too long if we get preempted.
2373          */
2374         preempt_disable();
2375         ++userpg->lock;
2376         barrier();
2377         userpg->index = perf_event_index(event);
2378         userpg->offset = perf_event_count(event);
2379         if (event->state == PERF_EVENT_STATE_ACTIVE)
2380                 userpg->offset -= local64_read(&event->hw.prev_count);
2381
2382         userpg->time_enabled = event->total_time_enabled +
2383                         atomic64_read(&event->child_total_time_enabled);
2384
2385         userpg->time_running = event->total_time_running +
2386                         atomic64_read(&event->child_total_time_running);
2387
2388         barrier();
2389         ++userpg->lock;
2390         preempt_enable();
2391 unlock:
2392         rcu_read_unlock();
2393 }
2394
2395 static unsigned long perf_data_size(struct perf_buffer *buffer);
2396
2397 static void
2398 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2399 {
2400         long max_size = perf_data_size(buffer);
2401
2402         if (watermark)
2403                 buffer->watermark = min(max_size, watermark);
2404
2405         if (!buffer->watermark)
2406                 buffer->watermark = max_size / 2;
2407
2408         if (flags & PERF_BUFFER_WRITABLE)
2409                 buffer->writable = 1;
2410
2411         atomic_set(&buffer->refcount, 1);
2412 }
2413
2414 #ifndef CONFIG_PERF_USE_VMALLOC
2415
2416 /*
2417  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2418  */
2419
2420 static struct page *
2421 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2422 {
2423         if (pgoff > buffer->nr_pages)
2424                 return NULL;
2425
2426         if (pgoff == 0)
2427                 return virt_to_page(buffer->user_page);
2428
2429         return virt_to_page(buffer->data_pages[pgoff - 1]);
2430 }
2431
2432 static void *perf_mmap_alloc_page(int cpu)
2433 {
2434         struct page *page;
2435         int node;
2436
2437         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2438         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2439         if (!page)
2440                 return NULL;
2441
2442         return page_address(page);
2443 }
2444
2445 static struct perf_buffer *
2446 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2447 {
2448         struct perf_buffer *buffer;
2449         unsigned long size;
2450         int i;
2451
2452         size = sizeof(struct perf_buffer);
2453         size += nr_pages * sizeof(void *);
2454
2455         buffer = kzalloc(size, GFP_KERNEL);
2456         if (!buffer)
2457                 goto fail;
2458
2459         buffer->user_page = perf_mmap_alloc_page(cpu);
2460         if (!buffer->user_page)
2461                 goto fail_user_page;
2462
2463         for (i = 0; i < nr_pages; i++) {
2464                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2465                 if (!buffer->data_pages[i])
2466                         goto fail_data_pages;
2467         }
2468
2469         buffer->nr_pages = nr_pages;
2470
2471         perf_buffer_init(buffer, watermark, flags);
2472
2473         return buffer;
2474
2475 fail_data_pages:
2476         for (i--; i >= 0; i--)
2477                 free_page((unsigned long)buffer->data_pages[i]);
2478
2479         free_page((unsigned long)buffer->user_page);
2480
2481 fail_user_page:
2482         kfree(buffer);
2483
2484 fail:
2485         return NULL;
2486 }
2487
2488 static void perf_mmap_free_page(unsigned long addr)
2489 {
2490         struct page *page = virt_to_page((void *)addr);
2491
2492         page->mapping = NULL;
2493         __free_page(page);
2494 }
2495
2496 static void perf_buffer_free(struct perf_buffer *buffer)
2497 {
2498         int i;
2499
2500         perf_mmap_free_page((unsigned long)buffer->user_page);
2501         for (i = 0; i < buffer->nr_pages; i++)
2502                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2503         kfree(buffer);
2504 }
2505
2506 static inline int page_order(struct perf_buffer *buffer)
2507 {
2508         return 0;
2509 }
2510
2511 #else
2512
2513 /*
2514  * Back perf_mmap() with vmalloc memory.
2515  *
2516  * Required for architectures that have d-cache aliasing issues.
2517  */
2518
2519 static inline int page_order(struct perf_buffer *buffer)
2520 {
2521         return buffer->page_order;
2522 }
2523
2524 static struct page *
2525 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2526 {
2527         if (pgoff > (1UL << page_order(buffer)))
2528                 return NULL;
2529
2530         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2531 }
2532
2533 static void perf_mmap_unmark_page(void *addr)
2534 {
2535         struct page *page = vmalloc_to_page(addr);
2536
2537         page->mapping = NULL;
2538 }
2539
2540 static void perf_buffer_free_work(struct work_struct *work)
2541 {
2542         struct perf_buffer *buffer;
2543         void *base;
2544         int i, nr;
2545
2546         buffer = container_of(work, struct perf_buffer, work);
2547         nr = 1 << page_order(buffer);
2548
2549         base = buffer->user_page;
2550         for (i = 0; i < nr + 1; i++)
2551                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2552
2553         vfree(base);
2554         kfree(buffer);
2555 }
2556
2557 static void perf_buffer_free(struct perf_buffer *buffer)
2558 {
2559         schedule_work(&buffer->work);
2560 }
2561
2562 static struct perf_buffer *
2563 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2564 {
2565         struct perf_buffer *buffer;
2566         unsigned long size;
2567         void *all_buf;
2568
2569         size = sizeof(struct perf_buffer);
2570         size += sizeof(void *);
2571
2572         buffer = kzalloc(size, GFP_KERNEL);
2573         if (!buffer)
2574                 goto fail;
2575
2576         INIT_WORK(&buffer->work, perf_buffer_free_work);
2577
2578         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2579         if (!all_buf)
2580                 goto fail_all_buf;
2581
2582         buffer->user_page = all_buf;
2583         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2584         buffer->page_order = ilog2(nr_pages);
2585         buffer->nr_pages = 1;
2586
2587         perf_buffer_init(buffer, watermark, flags);
2588
2589         return buffer;
2590
2591 fail_all_buf:
2592         kfree(buffer);
2593
2594 fail:
2595         return NULL;
2596 }
2597
2598 #endif
2599
2600 static unsigned long perf_data_size(struct perf_buffer *buffer)
2601 {
2602         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2603 }
2604
2605 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2606 {
2607         struct perf_event *event = vma->vm_file->private_data;
2608         struct perf_buffer *buffer;
2609         int ret = VM_FAULT_SIGBUS;
2610
2611         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2612                 if (vmf->pgoff == 0)
2613                         ret = 0;
2614                 return ret;
2615         }
2616
2617         rcu_read_lock();
2618         buffer = rcu_dereference(event->buffer);
2619         if (!buffer)
2620                 goto unlock;
2621
2622         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2623                 goto unlock;
2624
2625         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2626         if (!vmf->page)
2627                 goto unlock;
2628
2629         get_page(vmf->page);
2630         vmf->page->mapping = vma->vm_file->f_mapping;
2631         vmf->page->index   = vmf->pgoff;
2632
2633         ret = 0;
2634 unlock:
2635         rcu_read_unlock();
2636
2637         return ret;
2638 }
2639
2640 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2641 {
2642         struct perf_buffer *buffer;
2643
2644         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2645         perf_buffer_free(buffer);
2646 }
2647
2648 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2649 {
2650         struct perf_buffer *buffer;
2651
2652         rcu_read_lock();
2653         buffer = rcu_dereference(event->buffer);
2654         if (buffer) {
2655                 if (!atomic_inc_not_zero(&buffer->refcount))
2656                         buffer = NULL;
2657         }
2658         rcu_read_unlock();
2659
2660         return buffer;
2661 }
2662
2663 static void perf_buffer_put(struct perf_buffer *buffer)
2664 {
2665         if (!atomic_dec_and_test(&buffer->refcount))
2666                 return;
2667
2668         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2669 }
2670
2671 static void perf_mmap_open(struct vm_area_struct *vma)
2672 {
2673         struct perf_event *event = vma->vm_file->private_data;
2674
2675         atomic_inc(&event->mmap_count);
2676 }
2677
2678 static void perf_mmap_close(struct vm_area_struct *vma)
2679 {
2680         struct perf_event *event = vma->vm_file->private_data;
2681
2682         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2683                 unsigned long size = perf_data_size(event->buffer);
2684                 struct user_struct *user = event->mmap_user;
2685                 struct perf_buffer *buffer = event->buffer;
2686
2687                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2688                 vma->vm_mm->locked_vm -= event->mmap_locked;
2689                 rcu_assign_pointer(event->buffer, NULL);
2690                 mutex_unlock(&event->mmap_mutex);
2691
2692                 perf_buffer_put(buffer);
2693                 free_uid(user);
2694         }
2695 }
2696
2697 static const struct vm_operations_struct perf_mmap_vmops = {
2698         .open           = perf_mmap_open,
2699         .close          = perf_mmap_close,
2700         .fault          = perf_mmap_fault,
2701         .page_mkwrite   = perf_mmap_fault,
2702 };
2703
2704 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2705 {
2706         struct perf_event *event = file->private_data;
2707         unsigned long user_locked, user_lock_limit;
2708         struct user_struct *user = current_user();
2709         unsigned long locked, lock_limit;
2710         struct perf_buffer *buffer;
2711         unsigned long vma_size;
2712         unsigned long nr_pages;
2713         long user_extra, extra;
2714         int ret = 0, flags = 0;
2715
2716         /*
2717          * Don't allow mmap() of inherited per-task counters. This would
2718          * create a performance issue due to all children writing to the
2719          * same buffer.
2720          */
2721         if (event->cpu == -1 && event->attr.inherit)
2722                 return -EINVAL;
2723
2724         if (!(vma->vm_flags & VM_SHARED))
2725                 return -EINVAL;
2726
2727         vma_size = vma->vm_end - vma->vm_start;
2728         nr_pages = (vma_size / PAGE_SIZE) - 1;
2729
2730         /*
2731          * If we have buffer pages ensure they're a power-of-two number, so we
2732          * can do bitmasks instead of modulo.
2733          */
2734         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2735                 return -EINVAL;
2736
2737         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2738                 return -EINVAL;
2739
2740         if (vma->vm_pgoff != 0)
2741                 return -EINVAL;
2742
2743         WARN_ON_ONCE(event->ctx->parent_ctx);
2744         mutex_lock(&event->mmap_mutex);
2745         if (event->buffer) {
2746                 if (event->buffer->nr_pages == nr_pages)
2747                         atomic_inc(&event->buffer->refcount);
2748                 else
2749                         ret = -EINVAL;
2750                 goto unlock;
2751         }
2752
2753         user_extra = nr_pages + 1;
2754         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2755
2756         /*
2757          * Increase the limit linearly with more CPUs:
2758          */
2759         user_lock_limit *= num_online_cpus();
2760
2761         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2762
2763         extra = 0;
2764         if (user_locked > user_lock_limit)
2765                 extra = user_locked - user_lock_limit;
2766
2767         lock_limit = rlimit(RLIMIT_MEMLOCK);
2768         lock_limit >>= PAGE_SHIFT;
2769         locked = vma->vm_mm->locked_vm + extra;
2770
2771         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2772                 !capable(CAP_IPC_LOCK)) {
2773                 ret = -EPERM;
2774                 goto unlock;
2775         }
2776
2777         WARN_ON(event->buffer);
2778
2779         if (vma->vm_flags & VM_WRITE)
2780                 flags |= PERF_BUFFER_WRITABLE;
2781
2782         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2783                                    event->cpu, flags);
2784         if (!buffer) {
2785                 ret = -ENOMEM;
2786                 goto unlock;
2787         }
2788         rcu_assign_pointer(event->buffer, buffer);
2789
2790         atomic_long_add(user_extra, &user->locked_vm);
2791         event->mmap_locked = extra;
2792         event->mmap_user = get_current_user();
2793         vma->vm_mm->locked_vm += event->mmap_locked;
2794
2795 unlock:
2796         if (!ret)
2797                 atomic_inc(&event->mmap_count);
2798         mutex_unlock(&event->mmap_mutex);
2799
2800         vma->vm_flags |= VM_RESERVED;
2801         vma->vm_ops = &perf_mmap_vmops;
2802
2803         return ret;
2804 }
2805
2806 static int perf_fasync(int fd, struct file *filp, int on)
2807 {
2808         struct inode *inode = filp->f_path.dentry->d_inode;
2809         struct perf_event *event = filp->private_data;
2810         int retval;
2811
2812         mutex_lock(&inode->i_mutex);
2813         retval = fasync_helper(fd, filp, on, &event->fasync);
2814         mutex_unlock(&inode->i_mutex);
2815
2816         if (retval < 0)
2817                 return retval;
2818
2819         return 0;
2820 }
2821
2822 static const struct file_operations perf_fops = {
2823         .llseek                 = no_llseek,
2824         .release                = perf_release,
2825         .read                   = perf_read,
2826         .poll                   = perf_poll,
2827         .unlocked_ioctl         = perf_ioctl,
2828         .compat_ioctl           = perf_ioctl,
2829         .mmap                   = perf_mmap,
2830         .fasync                 = perf_fasync,
2831 };
2832
2833 /*
2834  * Perf event wakeup
2835  *
2836  * If there's data, ensure we set the poll() state and publish everything
2837  * to user-space before waking everybody up.
2838  */
2839
2840 void perf_event_wakeup(struct perf_event *event)
2841 {
2842         wake_up_all(&event->waitq);
2843
2844         if (event->pending_kill) {
2845                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2846                 event->pending_kill = 0;
2847         }
2848 }
2849
2850 /*
2851  * Pending wakeups
2852  *
2853  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2854  *
2855  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2856  * single linked list and use cmpxchg() to add entries lockless.
2857  */
2858
2859 static void perf_pending_event(struct perf_pending_entry *entry)
2860 {
2861         struct perf_event *event = container_of(entry,
2862                         struct perf_event, pending);
2863
2864         if (event->pending_disable) {
2865                 event->pending_disable = 0;
2866                 __perf_event_disable(event);
2867         }
2868
2869         if (event->pending_wakeup) {
2870                 event->pending_wakeup = 0;
2871                 perf_event_wakeup(event);
2872         }
2873 }
2874
2875 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2876
2877 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2878         PENDING_TAIL,
2879 };
2880
2881 static void perf_pending_queue(struct perf_pending_entry *entry,
2882                                void (*func)(struct perf_pending_entry *))
2883 {
2884         struct perf_pending_entry **head;
2885
2886         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2887                 return;
2888
2889         entry->func = func;
2890
2891         head = &get_cpu_var(perf_pending_head);
2892
2893         do {
2894                 entry->next = *head;
2895         } while (cmpxchg(head, entry->next, entry) != entry->next);
2896
2897         set_perf_event_pending();
2898
2899         put_cpu_var(perf_pending_head);
2900 }
2901
2902 static int __perf_pending_run(void)
2903 {
2904         struct perf_pending_entry *list;
2905         int nr = 0;
2906
2907         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2908         while (list != PENDING_TAIL) {
2909                 void (*func)(struct perf_pending_entry *);
2910                 struct perf_pending_entry *entry = list;
2911
2912                 list = list->next;
2913
2914                 func = entry->func;
2915                 entry->next = NULL;
2916                 /*
2917                  * Ensure we observe the unqueue before we issue the wakeup,
2918                  * so that we won't be waiting forever.
2919                  * -- see perf_not_pending().
2920                  */
2921                 smp_wmb();
2922
2923                 func(entry);
2924                 nr++;
2925         }
2926
2927         return nr;
2928 }
2929
2930 static inline int perf_not_pending(struct perf_event *event)
2931 {
2932         /*
2933          * If we flush on whatever cpu we run, there is a chance we don't
2934          * need to wait.
2935          */
2936         get_cpu();
2937         __perf_pending_run();
2938         put_cpu();
2939
2940         /*
2941          * Ensure we see the proper queue state before going to sleep
2942          * so that we do not miss the wakeup. -- see perf_pending_handle()
2943          */
2944         smp_rmb();
2945         return event->pending.next == NULL;
2946 }
2947
2948 static void perf_pending_sync(struct perf_event *event)
2949 {
2950         wait_event(event->waitq, perf_not_pending(event));
2951 }
2952
2953 void perf_event_do_pending(void)
2954 {
2955         __perf_pending_run();
2956 }
2957
2958 /*
2959  * Callchain support -- arch specific
2960  */
2961
2962 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2963 {
2964         return NULL;
2965 }
2966
2967
2968 /*
2969  * We assume there is only KVM supporting the callbacks.
2970  * Later on, we might change it to a list if there is
2971  * another virtualization implementation supporting the callbacks.
2972  */
2973 struct perf_guest_info_callbacks *perf_guest_cbs;
2974
2975 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2976 {
2977         perf_guest_cbs = cbs;
2978         return 0;
2979 }
2980 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2981
2982 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2983 {
2984         perf_guest_cbs = NULL;
2985         return 0;
2986 }
2987 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2988
2989 /*
2990  * Output
2991  */
2992 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2993                               unsigned long offset, unsigned long head)
2994 {
2995         unsigned long mask;
2996
2997         if (!buffer->writable)
2998                 return true;
2999
3000         mask = perf_data_size(buffer) - 1;
3001
3002         offset = (offset - tail) & mask;
3003         head   = (head   - tail) & mask;
3004
3005         if ((int)(head - offset) < 0)
3006                 return false;
3007
3008         return true;
3009 }
3010
3011 static void perf_output_wakeup(struct perf_output_handle *handle)
3012 {
3013         atomic_set(&handle->buffer->poll, POLL_IN);
3014
3015         if (handle->nmi) {
3016                 handle->event->pending_wakeup = 1;
3017                 perf_pending_queue(&handle->event->pending,
3018                                    perf_pending_event);
3019         } else
3020                 perf_event_wakeup(handle->event);
3021 }
3022
3023 /*
3024  * We need to ensure a later event_id doesn't publish a head when a former
3025  * event isn't done writing. However since we need to deal with NMIs we
3026  * cannot fully serialize things.
3027  *
3028  * We only publish the head (and generate a wakeup) when the outer-most
3029  * event completes.
3030  */
3031 static void perf_output_get_handle(struct perf_output_handle *handle)
3032 {
3033         struct perf_buffer *buffer = handle->buffer;
3034
3035         preempt_disable();
3036         local_inc(&buffer->nest);
3037         handle->wakeup = local_read(&buffer->wakeup);
3038 }
3039
3040 static void perf_output_put_handle(struct perf_output_handle *handle)
3041 {
3042         struct perf_buffer *buffer = handle->buffer;
3043         unsigned long head;
3044
3045 again:
3046         head = local_read(&buffer->head);
3047
3048         /*
3049          * IRQ/NMI can happen here, which means we can miss a head update.
3050          */
3051
3052         if (!local_dec_and_test(&buffer->nest))
3053                 goto out;
3054
3055         /*
3056          * Publish the known good head. Rely on the full barrier implied
3057          * by atomic_dec_and_test() order the buffer->head read and this
3058          * write.
3059          */
3060         buffer->user_page->data_head = head;
3061
3062         /*
3063          * Now check if we missed an update, rely on the (compiler)
3064          * barrier in atomic_dec_and_test() to re-read buffer->head.
3065          */
3066         if (unlikely(head != local_read(&buffer->head))) {
3067                 local_inc(&buffer->nest);
3068                 goto again;
3069         }
3070
3071         if (handle->wakeup != local_read(&buffer->wakeup))
3072                 perf_output_wakeup(handle);
3073
3074  out:
3075         preempt_enable();
3076 }
3077
3078 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3079                       const void *buf, unsigned int len)
3080 {
3081         do {
3082                 unsigned long size = min_t(unsigned long, handle->size, len);
3083
3084                 memcpy(handle->addr, buf, size);
3085
3086                 len -= size;
3087                 handle->addr += size;
3088                 buf += size;
3089                 handle->size -= size;
3090                 if (!handle->size) {
3091                         struct perf_buffer *buffer = handle->buffer;
3092
3093                         handle->page++;
3094                         handle->page &= buffer->nr_pages - 1;
3095                         handle->addr = buffer->data_pages[handle->page];
3096                         handle->size = PAGE_SIZE << page_order(buffer);
3097                 }
3098         } while (len);
3099 }
3100
3101 int perf_output_begin(struct perf_output_handle *handle,
3102                       struct perf_event *event, unsigned int size,
3103                       int nmi, int sample)
3104 {
3105         struct perf_buffer *buffer;
3106         unsigned long tail, offset, head;
3107         int have_lost;
3108         struct {
3109                 struct perf_event_header header;
3110                 u64                      id;
3111                 u64                      lost;
3112         } lost_event;
3113
3114         rcu_read_lock();
3115         /*
3116          * For inherited events we send all the output towards the parent.
3117          */
3118         if (event->parent)
3119                 event = event->parent;
3120
3121         buffer = rcu_dereference(event->buffer);
3122         if (!buffer)
3123                 goto out;
3124
3125         handle->buffer  = buffer;
3126         handle->event   = event;
3127         handle->nmi     = nmi;
3128         handle->sample  = sample;
3129
3130         if (!buffer->nr_pages)
3131                 goto out;
3132
3133         have_lost = local_read(&buffer->lost);
3134         if (have_lost)
3135                 size += sizeof(lost_event);
3136
3137         perf_output_get_handle(handle);
3138
3139         do {
3140                 /*
3141                  * Userspace could choose to issue a mb() before updating the
3142                  * tail pointer. So that all reads will be completed before the
3143                  * write is issued.
3144                  */
3145                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3146                 smp_rmb();
3147                 offset = head = local_read(&buffer->head);
3148                 head += size;
3149                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3150                         goto fail;
3151         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3152
3153         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3154                 local_add(buffer->watermark, &buffer->wakeup);
3155
3156         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3157         handle->page &= buffer->nr_pages - 1;
3158         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3159         handle->addr = buffer->data_pages[handle->page];
3160         handle->addr += handle->size;
3161         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3162
3163         if (have_lost) {
3164                 lost_event.header.type = PERF_RECORD_LOST;
3165                 lost_event.header.misc = 0;
3166                 lost_event.header.size = sizeof(lost_event);
3167                 lost_event.id          = event->id;
3168                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3169
3170                 perf_output_put(handle, lost_event);
3171         }
3172
3173         return 0;
3174
3175 fail:
3176         local_inc(&buffer->lost);
3177         perf_output_put_handle(handle);
3178 out:
3179         rcu_read_unlock();
3180
3181         return -ENOSPC;
3182 }
3183
3184 void perf_output_end(struct perf_output_handle *handle)
3185 {
3186         struct perf_event *event = handle->event;
3187         struct perf_buffer *buffer = handle->buffer;
3188
3189         int wakeup_events = event->attr.wakeup_events;
3190
3191         if (handle->sample && wakeup_events) {
3192                 int events = local_inc_return(&buffer->events);
3193                 if (events >= wakeup_events) {
3194                         local_sub(wakeup_events, &buffer->events);
3195                         local_inc(&buffer->wakeup);
3196                 }
3197         }
3198
3199         perf_output_put_handle(handle);
3200         rcu_read_unlock();
3201 }
3202
3203 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3204 {
3205         /*
3206          * only top level events have the pid namespace they were created in
3207          */
3208         if (event->parent)
3209                 event = event->parent;
3210
3211         return task_tgid_nr_ns(p, event->ns);
3212 }
3213
3214 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3215 {
3216         /*
3217          * only top level events have the pid namespace they were created in
3218          */
3219         if (event->parent)
3220                 event = event->parent;
3221
3222         return task_pid_nr_ns(p, event->ns);
3223 }
3224
3225 static void perf_output_read_one(struct perf_output_handle *handle,
3226                                  struct perf_event *event)
3227 {
3228         u64 read_format = event->attr.read_format;
3229         u64 values[4];
3230         int n = 0;
3231
3232         values[n++] = perf_event_count(event);
3233         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3234                 values[n++] = event->total_time_enabled +
3235                         atomic64_read(&event->child_total_time_enabled);
3236         }
3237         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3238                 values[n++] = event->total_time_running +
3239                         atomic64_read(&event->child_total_time_running);
3240         }
3241         if (read_format & PERF_FORMAT_ID)
3242                 values[n++] = primary_event_id(event);
3243
3244         perf_output_copy(handle, values, n * sizeof(u64));
3245 }
3246
3247 /*
3248  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3249  */
3250 static void perf_output_read_group(struct perf_output_handle *handle,
3251                             struct perf_event *event)
3252 {
3253         struct perf_event *leader = event->group_leader, *sub;
3254         u64 read_format = event->attr.read_format;
3255         u64 values[5];
3256         int n = 0;
3257
3258         values[n++] = 1 + leader->nr_siblings;
3259
3260         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3261                 values[n++] = leader->total_time_enabled;
3262
3263         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3264                 values[n++] = leader->total_time_running;
3265
3266         if (leader != event)
3267                 leader->pmu->read(leader);
3268
3269         values[n++] = perf_event_count(leader);
3270         if (read_format & PERF_FORMAT_ID)
3271                 values[n++] = primary_event_id(leader);
3272
3273         perf_output_copy(handle, values, n * sizeof(u64));
3274
3275         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3276                 n = 0;
3277
3278                 if (sub != event)
3279                         sub->pmu->read(sub);
3280
3281                 values[n++] = perf_event_count(sub);
3282                 if (read_format & PERF_FORMAT_ID)
3283                         values[n++] = primary_event_id(sub);
3284
3285                 perf_output_copy(handle, values, n * sizeof(u64));
3286         }
3287 }
3288
3289 static void perf_output_read(struct perf_output_handle *handle,
3290                              struct perf_event *event)
3291 {
3292         if (event->attr.read_format & PERF_FORMAT_GROUP)
3293                 perf_output_read_group(handle, event);
3294         else
3295                 perf_output_read_one(handle, event);
3296 }
3297
3298 void perf_output_sample(struct perf_output_handle *handle,
3299                         struct perf_event_header *header,
3300                         struct perf_sample_data *data,
3301                         struct perf_event *event)
3302 {
3303         u64 sample_type = data->type;
3304
3305         perf_output_put(handle, *header);
3306
3307         if (sample_type & PERF_SAMPLE_IP)
3308                 perf_output_put(handle, data->ip);
3309
3310         if (sample_type & PERF_SAMPLE_TID)
3311                 perf_output_put(handle, data->tid_entry);
3312
3313         if (sample_type & PERF_SAMPLE_TIME)
3314                 perf_output_put(handle, data->time);
3315
3316         if (sample_type & PERF_SAMPLE_ADDR)
3317                 perf_output_put(handle, data->addr);
3318
3319         if (sample_type & PERF_SAMPLE_ID)
3320                 perf_output_put(handle, data->id);
3321
3322         if (sample_type & PERF_SAMPLE_STREAM_ID)
3323                 perf_output_put(handle, data->stream_id);
3324
3325         if (sample_type & PERF_SAMPLE_CPU)
3326                 perf_output_put(handle, data->cpu_entry);
3327
3328         if (sample_type & PERF_SAMPLE_PERIOD)
3329                 perf_output_put(handle, data->period);
3330
3331         if (sample_type & PERF_SAMPLE_READ)
3332                 perf_output_read(handle, event);
3333
3334         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3335                 if (data->callchain) {
3336                         int size = 1;
3337
3338                         if (data->callchain)
3339                                 size += data->callchain->nr;
3340
3341                         size *= sizeof(u64);
3342
3343                         perf_output_copy(handle, data->callchain, size);
3344                 } else {
3345                         u64 nr = 0;
3346                         perf_output_put(handle, nr);
3347                 }
3348         }
3349
3350         if (sample_type & PERF_SAMPLE_RAW) {
3351                 if (data->raw) {
3352                         perf_output_put(handle, data->raw->size);
3353                         perf_output_copy(handle, data->raw->data,
3354                                          data->raw->size);
3355                 } else {
3356                         struct {
3357                                 u32     size;
3358                                 u32     data;
3359                         } raw = {
3360                                 .size = sizeof(u32),
3361                                 .data = 0,
3362                         };
3363                         perf_output_put(handle, raw);
3364                 }
3365         }
3366 }
3367
3368 void perf_prepare_sample(struct perf_event_header *header,
3369                          struct perf_sample_data *data,
3370                          struct perf_event *event,
3371                          struct pt_regs *regs)
3372 {
3373         u64 sample_type = event->attr.sample_type;
3374
3375         data->type = sample_type;
3376
3377         header->type = PERF_RECORD_SAMPLE;
3378         header->size = sizeof(*header);
3379
3380         header->misc = 0;
3381         header->misc |= perf_misc_flags(regs);
3382
3383         if (sample_type & PERF_SAMPLE_IP) {
3384                 data->ip = perf_instruction_pointer(regs);
3385
3386                 header->size += sizeof(data->ip);
3387         }
3388
3389         if (sample_type & PERF_SAMPLE_TID) {
3390                 /* namespace issues */
3391                 data->tid_entry.pid = perf_event_pid(event, current);
3392                 data->tid_entry.tid = perf_event_tid(event, current);
3393
3394                 header->size += sizeof(data->tid_entry);
3395         }
3396
3397         if (sample_type & PERF_SAMPLE_TIME) {
3398                 data->time = perf_clock();
3399
3400                 header->size += sizeof(data->time);
3401         }
3402
3403         if (sample_type & PERF_SAMPLE_ADDR)
3404                 header->size += sizeof(data->addr);
3405
3406         if (sample_type & PERF_SAMPLE_ID) {
3407                 data->id = primary_event_id(event);
3408
3409                 header->size += sizeof(data->id);
3410         }
3411
3412         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3413                 data->stream_id = event->id;
3414
3415                 header->size += sizeof(data->stream_id);
3416         }
3417
3418         if (sample_type & PERF_SAMPLE_CPU) {
3419                 data->cpu_entry.cpu             = raw_smp_processor_id();
3420                 data->cpu_entry.reserved        = 0;
3421
3422                 header->size += sizeof(data->cpu_entry);
3423         }
3424
3425         if (sample_type & PERF_SAMPLE_PERIOD)
3426                 header->size += sizeof(data->period);
3427
3428         if (sample_type & PERF_SAMPLE_READ)
3429                 header->size += perf_event_read_size(event);
3430
3431         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3432                 int size = 1;
3433
3434                 data->callchain = perf_callchain(regs);
3435
3436                 if (data->callchain)
3437                         size += data->callchain->nr;
3438
3439                 header->size += size * sizeof(u64);
3440         }
3441
3442         if (sample_type & PERF_SAMPLE_RAW) {
3443                 int size = sizeof(u32);
3444
3445                 if (data->raw)
3446                         size += data->raw->size;
3447                 else
3448                         size += sizeof(u32);
3449
3450                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3451                 header->size += size;
3452         }
3453 }
3454
3455 static void perf_event_output(struct perf_event *event, int nmi,
3456                                 struct perf_sample_data *data,
3457                                 struct pt_regs *regs)
3458 {
3459         struct perf_output_handle handle;
3460         struct perf_event_header header;
3461
3462         perf_prepare_sample(&header, data, event, regs);
3463
3464         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3465                 return;
3466
3467         perf_output_sample(&handle, &header, data, event);
3468
3469         perf_output_end(&handle);
3470 }
3471
3472 /*
3473  * read event_id
3474  */
3475
3476 struct perf_read_event {
3477         struct perf_event_header        header;
3478
3479         u32                             pid;
3480         u32                             tid;
3481 };
3482
3483 static void
3484 perf_event_read_event(struct perf_event *event,
3485                         struct task_struct *task)
3486 {
3487         struct perf_output_handle handle;
3488         struct perf_read_event read_event = {
3489                 .header = {
3490                         .type = PERF_RECORD_READ,
3491                         .misc = 0,
3492                         .size = sizeof(read_event) + perf_event_read_size(event),
3493                 },
3494                 .pid = perf_event_pid(event, task),
3495                 .tid = perf_event_tid(event, task),
3496         };
3497         int ret;
3498
3499         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3500         if (ret)
3501                 return;
3502
3503         perf_output_put(&handle, read_event);
3504         perf_output_read(&handle, event);
3505
3506         perf_output_end(&handle);
3507 }
3508
3509 /*
3510  * task tracking -- fork/exit
3511  *
3512  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3513  */
3514
3515 struct perf_task_event {
3516         struct task_struct              *task;
3517         struct perf_event_context       *task_ctx;
3518
3519         struct {
3520                 struct perf_event_header        header;
3521
3522                 u32                             pid;
3523                 u32                             ppid;
3524                 u32                             tid;
3525                 u32                             ptid;
3526                 u64                             time;
3527         } event_id;
3528 };
3529
3530 static void perf_event_task_output(struct perf_event *event,
3531                                      struct perf_task_event *task_event)
3532 {
3533         struct perf_output_handle handle;
3534         struct task_struct *task = task_event->task;
3535         int size, ret;
3536
3537         size  = task_event->event_id.header.size;
3538         ret = perf_output_begin(&handle, event, size, 0, 0);
3539
3540         if (ret)
3541                 return;
3542
3543         task_event->event_id.pid = perf_event_pid(event, task);
3544         task_event->event_id.ppid = perf_event_pid(event, current);
3545
3546         task_event->event_id.tid = perf_event_tid(event, task);
3547         task_event->event_id.ptid = perf_event_tid(event, current);
3548
3549         perf_output_put(&handle, task_event->event_id);
3550
3551         perf_output_end(&handle);
3552 }
3553
3554 static int perf_event_task_match(struct perf_event *event)
3555 {
3556         if (event->state < PERF_EVENT_STATE_INACTIVE)
3557                 return 0;
3558
3559         if (event->cpu != -1 && event->cpu != smp_processor_id())
3560                 return 0;
3561
3562         if (event->attr.comm || event->attr.mmap ||
3563             event->attr.mmap_data || event->attr.task)
3564                 return 1;
3565
3566         return 0;
3567 }
3568
3569 static void perf_event_task_ctx(struct perf_event_context *ctx,
3570                                   struct perf_task_event *task_event)
3571 {
3572         struct perf_event *event;
3573
3574         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3575                 if (perf_event_task_match(event))
3576                         perf_event_task_output(event, task_event);
3577         }
3578 }
3579
3580 static void perf_event_task_event(struct perf_task_event *task_event)
3581 {
3582         struct perf_cpu_context *cpuctx;
3583         struct perf_event_context *ctx = task_event->task_ctx;
3584
3585         rcu_read_lock();
3586         cpuctx = &get_cpu_var(perf_cpu_context);
3587         perf_event_task_ctx(&cpuctx->ctx, task_event);
3588         if (!ctx)
3589                 ctx = rcu_dereference(current->perf_event_ctxp);
3590         if (ctx)
3591                 perf_event_task_ctx(ctx, task_event);
3592         put_cpu_var(perf_cpu_context);
3593         rcu_read_unlock();
3594 }
3595
3596 static void perf_event_task(struct task_struct *task,
3597                               struct perf_event_context *task_ctx,
3598                               int new)
3599 {
3600         struct perf_task_event task_event;
3601
3602         if (!atomic_read(&nr_comm_events) &&
3603             !atomic_read(&nr_mmap_events) &&
3604             !atomic_read(&nr_task_events))
3605                 return;
3606
3607         task_event = (struct perf_task_event){
3608                 .task     = task,
3609                 .task_ctx = task_ctx,
3610                 .event_id    = {
3611                         .header = {
3612                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3613                                 .misc = 0,
3614                                 .size = sizeof(task_event.event_id),
3615                         },
3616                         /* .pid  */
3617                         /* .ppid */
3618                         /* .tid  */
3619                         /* .ptid */
3620                         .time = perf_clock(),
3621                 },
3622         };
3623
3624         perf_event_task_event(&task_event);
3625 }
3626
3627 void perf_event_fork(struct task_struct *task)
3628 {
3629         perf_event_task(task, NULL, 1);
3630 }
3631
3632 /*
3633  * comm tracking
3634  */
3635
3636 struct perf_comm_event {
3637         struct task_struct      *task;
3638         char                    *comm;
3639         int                     comm_size;
3640
3641         struct {
3642                 struct perf_event_header        header;
3643
3644                 u32                             pid;
3645                 u32                             tid;
3646         } event_id;
3647 };
3648
3649 static void perf_event_comm_output(struct perf_event *event,
3650                                      struct perf_comm_event *comm_event)
3651 {
3652         struct perf_output_handle handle;
3653         int size = comm_event->event_id.header.size;
3654         int ret = perf_output_begin(&handle, event, size, 0, 0);
3655
3656         if (ret)
3657                 return;
3658
3659         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3660         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3661
3662         perf_output_put(&handle, comm_event->event_id);
3663         perf_output_copy(&handle, comm_event->comm,
3664                                    comm_event->comm_size);
3665         perf_output_end(&handle);
3666 }
3667
3668 static int perf_event_comm_match(struct perf_event *event)
3669 {
3670         if (event->state < PERF_EVENT_STATE_INACTIVE)
3671                 return 0;
3672
3673         if (event->cpu != -1 && event->cpu != smp_processor_id())
3674                 return 0;
3675
3676         if (event->attr.comm)
3677                 return 1;
3678
3679         return 0;
3680 }
3681
3682 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3683                                   struct perf_comm_event *comm_event)
3684 {
3685         struct perf_event *event;
3686
3687         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3688                 if (perf_event_comm_match(event))
3689                         perf_event_comm_output(event, comm_event);
3690         }
3691 }
3692
3693 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3694 {
3695         struct perf_cpu_context *cpuctx;
3696         struct perf_event_context *ctx;
3697         unsigned int size;
3698         char comm[TASK_COMM_LEN];
3699
3700         memset(comm, 0, sizeof(comm));
3701         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3702         size = ALIGN(strlen(comm)+1, sizeof(u64));
3703
3704         comm_event->comm = comm;
3705         comm_event->comm_size = size;
3706
3707         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3708
3709         rcu_read_lock();
3710         cpuctx = &get_cpu_var(perf_cpu_context);
3711         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3712         ctx = rcu_dereference(current->perf_event_ctxp);
3713         if (ctx)
3714                 perf_event_comm_ctx(ctx, comm_event);
3715         put_cpu_var(perf_cpu_context);
3716         rcu_read_unlock();
3717 }
3718
3719 void perf_event_comm(struct task_struct *task)
3720 {
3721         struct perf_comm_event comm_event;
3722
3723         if (task->perf_event_ctxp)
3724                 perf_event_enable_on_exec(task);
3725
3726         if (!atomic_read(&nr_comm_events))
3727                 return;
3728
3729         comm_event = (struct perf_comm_event){
3730                 .task   = task,
3731                 /* .comm      */
3732                 /* .comm_size */
3733                 .event_id  = {
3734                         .header = {
3735                                 .type = PERF_RECORD_COMM,
3736                                 .misc = 0,
3737                                 /* .size */
3738                         },
3739                         /* .pid */
3740                         /* .tid */
3741                 },
3742         };
3743
3744         perf_event_comm_event(&comm_event);
3745 }
3746
3747 /*
3748  * mmap tracking
3749  */
3750
3751 struct perf_mmap_event {
3752         struct vm_area_struct   *vma;
3753
3754         const char              *file_name;
3755         int                     file_size;
3756
3757         struct {
3758                 struct perf_event_header        header;
3759
3760                 u32                             pid;
3761                 u32                             tid;
3762                 u64                             start;
3763                 u64                             len;
3764                 u64                             pgoff;
3765         } event_id;
3766 };
3767
3768 static void perf_event_mmap_output(struct perf_event *event,
3769                                      struct perf_mmap_event *mmap_event)
3770 {
3771         struct perf_output_handle handle;
3772         int size = mmap_event->event_id.header.size;
3773         int ret = perf_output_begin(&handle, event, size, 0, 0);
3774
3775         if (ret)
3776                 return;
3777
3778         mmap_event->event_id.pid = perf_event_pid(event, current);
3779         mmap_event->event_id.tid = perf_event_tid(event, current);
3780
3781         perf_output_put(&handle, mmap_event->event_id);
3782         perf_output_copy(&handle, mmap_event->file_name,
3783                                    mmap_event->file_size);
3784         perf_output_end(&handle);
3785 }
3786
3787 static int perf_event_mmap_match(struct perf_event *event,
3788                                    struct perf_mmap_event *mmap_event,
3789                                    int executable)
3790 {
3791         if (event->state < PERF_EVENT_STATE_INACTIVE)
3792                 return 0;
3793
3794         if (event->cpu != -1 && event->cpu != smp_processor_id())
3795                 return 0;
3796
3797         if ((!executable && event->attr.mmap_data) ||
3798             (executable && event->attr.mmap))
3799                 return 1;
3800
3801         return 0;
3802 }
3803
3804 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3805                                   struct perf_mmap_event *mmap_event,
3806                                   int executable)
3807 {
3808         struct perf_event *event;
3809
3810         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3811                 if (perf_event_mmap_match(event, mmap_event, executable))
3812                         perf_event_mmap_output(event, mmap_event);
3813         }
3814 }
3815
3816 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3817 {
3818         struct perf_cpu_context *cpuctx;
3819         struct perf_event_context *ctx;
3820         struct vm_area_struct *vma = mmap_event->vma;
3821         struct file *file = vma->vm_file;
3822         unsigned int size;
3823         char tmp[16];
3824         char *buf = NULL;
3825         const char *name;
3826
3827         memset(tmp, 0, sizeof(tmp));
3828
3829         if (file) {
3830                 /*
3831                  * d_path works from the end of the buffer backwards, so we
3832                  * need to add enough zero bytes after the string to handle
3833                  * the 64bit alignment we do later.
3834                  */
3835                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3836                 if (!buf) {
3837                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3838                         goto got_name;
3839                 }
3840                 name = d_path(&file->f_path, buf, PATH_MAX);
3841                 if (IS_ERR(name)) {
3842                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3843                         goto got_name;
3844                 }
3845         } else {
3846                 if (arch_vma_name(mmap_event->vma)) {
3847                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3848                                        sizeof(tmp));
3849                         goto got_name;
3850                 }
3851
3852                 if (!vma->vm_mm) {
3853                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3854                         goto got_name;
3855                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3856                                 vma->vm_end >= vma->vm_mm->brk) {
3857                         name = strncpy(tmp, "[heap]", sizeof(tmp));
3858                         goto got_name;
3859                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3860                                 vma->vm_end >= vma->vm_mm->start_stack) {
3861                         name = strncpy(tmp, "[stack]", sizeof(tmp));
3862                         goto got_name;
3863                 }
3864
3865                 name = strncpy(tmp, "//anon", sizeof(tmp));
3866                 goto got_name;
3867         }
3868
3869 got_name:
3870         size = ALIGN(strlen(name)+1, sizeof(u64));
3871
3872         mmap_event->file_name = name;
3873         mmap_event->file_size = size;
3874
3875         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3876
3877         rcu_read_lock();
3878         cpuctx = &get_cpu_var(perf_cpu_context);
3879         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3880         ctx = rcu_dereference(current->perf_event_ctxp);
3881         if (ctx)
3882                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3883         put_cpu_var(perf_cpu_context);
3884         rcu_read_unlock();
3885
3886         kfree(buf);
3887 }
3888
3889 void perf_event_mmap(struct vm_area_struct *vma)
3890 {
3891         struct perf_mmap_event mmap_event;
3892
3893         if (!atomic_read(&nr_mmap_events))
3894                 return;
3895
3896         mmap_event = (struct perf_mmap_event){
3897                 .vma    = vma,
3898                 /* .file_name */
3899                 /* .file_size */
3900                 .event_id  = {
3901                         .header = {
3902                                 .type = PERF_RECORD_MMAP,
3903                                 .misc = PERF_RECORD_MISC_USER,
3904                                 /* .size */
3905                         },
3906                         /* .pid */
3907                         /* .tid */
3908                         .start  = vma->vm_start,
3909                         .len    = vma->vm_end - vma->vm_start,
3910                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3911                 },
3912         };
3913
3914         perf_event_mmap_event(&mmap_event);
3915 }
3916
3917 /*
3918  * IRQ throttle logging
3919  */
3920
3921 static void perf_log_throttle(struct perf_event *event, int enable)
3922 {
3923         struct perf_output_handle handle;
3924         int ret;
3925
3926         struct {
3927                 struct perf_event_header        header;
3928                 u64                             time;
3929                 u64                             id;
3930                 u64                             stream_id;
3931         } throttle_event = {
3932                 .header = {
3933                         .type = PERF_RECORD_THROTTLE,
3934                         .misc = 0,
3935                         .size = sizeof(throttle_event),
3936                 },
3937                 .time           = perf_clock(),
3938                 .id             = primary_event_id(event),
3939                 .stream_id      = event->id,
3940         };
3941
3942         if (enable)
3943                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3944
3945         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3946         if (ret)
3947                 return;
3948
3949         perf_output_put(&handle, throttle_event);
3950         perf_output_end(&handle);
3951 }
3952
3953 /*
3954  * Generic event overflow handling, sampling.
3955  */
3956
3957 static int __perf_event_overflow(struct perf_event *event, int nmi,
3958                                    int throttle, struct perf_sample_data *data,
3959                                    struct pt_regs *regs)
3960 {
3961         int events = atomic_read(&event->event_limit);
3962         struct hw_perf_event *hwc = &event->hw;
3963         int ret = 0;
3964
3965         throttle = (throttle && event->pmu->unthrottle != NULL);
3966
3967         if (!throttle) {
3968                 hwc->interrupts++;
3969         } else {
3970                 if (hwc->interrupts != MAX_INTERRUPTS) {
3971                         hwc->interrupts++;
3972                         if (HZ * hwc->interrupts >
3973                                         (u64)sysctl_perf_event_sample_rate) {
3974                                 hwc->interrupts = MAX_INTERRUPTS;
3975                                 perf_log_throttle(event, 0);
3976                                 ret = 1;
3977                         }
3978                 } else {
3979                         /*
3980                          * Keep re-disabling events even though on the previous
3981                          * pass we disabled it - just in case we raced with a
3982                          * sched-in and the event got enabled again:
3983                          */
3984                         ret = 1;
3985                 }
3986         }
3987
3988         if (event->attr.freq) {
3989                 u64 now = perf_clock();
3990                 s64 delta = now - hwc->freq_time_stamp;
3991
3992                 hwc->freq_time_stamp = now;
3993
3994                 if (delta > 0 && delta < 2*TICK_NSEC)
3995                         perf_adjust_period(event, delta, hwc->last_period);
3996         }
3997
3998         /*
3999          * XXX event_limit might not quite work as expected on inherited
4000          * events
4001          */
4002
4003         event->pending_kill = POLL_IN;
4004         if (events && atomic_dec_and_test(&event->event_limit)) {
4005                 ret = 1;
4006                 event->pending_kill = POLL_HUP;
4007                 if (nmi) {
4008                         event->pending_disable = 1;
4009                         perf_pending_queue(&event->pending,
4010                                            perf_pending_event);
4011                 } else
4012                         perf_event_disable(event);
4013         }
4014
4015         if (event->overflow_handler)
4016                 event->overflow_handler(event, nmi, data, regs);
4017         else
4018                 perf_event_output(event, nmi, data, regs);
4019
4020         return ret;
4021 }
4022
4023 int perf_event_overflow(struct perf_event *event, int nmi,
4024                           struct perf_sample_data *data,
4025                           struct pt_regs *regs)
4026 {
4027         return __perf_event_overflow(event, nmi, 1, data, regs);
4028 }
4029
4030 /*
4031  * Generic software event infrastructure
4032  */
4033
4034 /*
4035  * We directly increment event->count and keep a second value in
4036  * event->hw.period_left to count intervals. This period event
4037  * is kept in the range [-sample_period, 0] so that we can use the
4038  * sign as trigger.
4039  */
4040
4041 static u64 perf_swevent_set_period(struct perf_event *event)
4042 {
4043         struct hw_perf_event *hwc = &event->hw;
4044         u64 period = hwc->last_period;
4045         u64 nr, offset;
4046         s64 old, val;
4047
4048         hwc->last_period = hwc->sample_period;
4049
4050 again:
4051         old = val = local64_read(&hwc->period_left);
4052         if (val < 0)
4053                 return 0;
4054
4055         nr = div64_u64(period + val, period);
4056         offset = nr * period;
4057         val -= offset;
4058         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4059                 goto again;
4060
4061         return nr;
4062 }
4063
4064 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4065                                     int nmi, struct perf_sample_data *data,
4066                                     struct pt_regs *regs)
4067 {
4068         struct hw_perf_event *hwc = &event->hw;
4069         int throttle = 0;
4070
4071         data->period = event->hw.last_period;
4072         if (!overflow)
4073                 overflow = perf_swevent_set_period(event);
4074
4075         if (hwc->interrupts == MAX_INTERRUPTS)
4076                 return;
4077
4078         for (; overflow; overflow--) {
4079                 if (__perf_event_overflow(event, nmi, throttle,
4080                                             data, regs)) {
4081                         /*
4082                          * We inhibit the overflow from happening when
4083                          * hwc->interrupts == MAX_INTERRUPTS.
4084                          */
4085                         break;
4086                 }
4087                 throttle = 1;
4088         }
4089 }
4090
4091 static void perf_swevent_add(struct perf_event *event, u64 nr,
4092                                int nmi, struct perf_sample_data *data,
4093                                struct pt_regs *regs)
4094 {
4095         struct hw_perf_event *hwc = &event->hw;
4096
4097         local64_add(nr, &event->count);
4098
4099         if (!regs)
4100                 return;
4101
4102         if (!hwc->sample_period)
4103                 return;
4104
4105         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4106                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4107
4108         if (local64_add_negative(nr, &hwc->period_left))
4109                 return;
4110
4111         perf_swevent_overflow(event, 0, nmi, data, regs);
4112 }
4113
4114 static int perf_exclude_event(struct perf_event *event,
4115                               struct pt_regs *regs)
4116 {
4117         if (regs) {
4118                 if (event->attr.exclude_user && user_mode(regs))
4119                         return 1;
4120
4121                 if (event->attr.exclude_kernel && !user_mode(regs))
4122                         return 1;
4123         }
4124
4125         return 0;
4126 }
4127
4128 static int perf_swevent_match(struct perf_event *event,
4129                                 enum perf_type_id type,
4130                                 u32 event_id,
4131                                 struct perf_sample_data *data,
4132                                 struct pt_regs *regs)
4133 {
4134         if (event->attr.type != type)
4135                 return 0;
4136
4137         if (event->attr.config != event_id)
4138                 return 0;
4139
4140         if (perf_exclude_event(event, regs))
4141                 return 0;
4142
4143         return 1;
4144 }
4145
4146 static inline u64 swevent_hash(u64 type, u32 event_id)
4147 {
4148         u64 val = event_id | (type << 32);
4149
4150         return hash_64(val, SWEVENT_HLIST_BITS);
4151 }
4152
4153 static inline struct hlist_head *
4154 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4155 {
4156         u64 hash = swevent_hash(type, event_id);
4157
4158         return &hlist->heads[hash];
4159 }
4160
4161 /* For the read side: events when they trigger */
4162 static inline struct hlist_head *
4163 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4164 {
4165         struct swevent_hlist *hlist;
4166
4167         hlist = rcu_dereference(ctx->swevent_hlist);
4168         if (!hlist)
4169                 return NULL;
4170
4171         return __find_swevent_head(hlist, type, event_id);
4172 }
4173
4174 /* For the event head insertion and removal in the hlist */
4175 static inline struct hlist_head *
4176 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4177 {
4178         struct swevent_hlist *hlist;
4179         u32 event_id = event->attr.config;
4180         u64 type = event->attr.type;
4181
4182         /*
4183          * Event scheduling is always serialized against hlist allocation
4184          * and release. Which makes the protected version suitable here.
4185          * The context lock guarantees that.
4186          */
4187         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4188                                           lockdep_is_held(&event->ctx->lock));
4189         if (!hlist)
4190                 return NULL;
4191
4192         return __find_swevent_head(hlist, type, event_id);
4193 }
4194
4195 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4196                                     u64 nr, int nmi,
4197                                     struct perf_sample_data *data,
4198                                     struct pt_regs *regs)
4199 {
4200         struct perf_cpu_context *cpuctx;
4201         struct perf_event *event;
4202         struct hlist_node *node;
4203         struct hlist_head *head;
4204
4205         cpuctx = &__get_cpu_var(perf_cpu_context);
4206
4207         rcu_read_lock();
4208
4209         head = find_swevent_head_rcu(cpuctx, type, event_id);
4210
4211         if (!head)
4212                 goto end;
4213
4214         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4215                 if (perf_swevent_match(event, type, event_id, data, regs))
4216                         perf_swevent_add(event, nr, nmi, data, regs);
4217         }
4218 end:
4219         rcu_read_unlock();
4220 }
4221
4222 int perf_swevent_get_recursion_context(void)
4223 {
4224         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4225         int rctx;
4226
4227         if (in_nmi())
4228                 rctx = 3;
4229         else if (in_irq())
4230                 rctx = 2;
4231         else if (in_softirq())
4232                 rctx = 1;
4233         else
4234                 rctx = 0;
4235
4236         if (cpuctx->recursion[rctx])
4237                 return -1;
4238
4239         cpuctx->recursion[rctx]++;
4240         barrier();
4241
4242         return rctx;
4243 }
4244 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4245
4246 void inline perf_swevent_put_recursion_context(int rctx)
4247 {
4248         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4249         barrier();
4250         cpuctx->recursion[rctx]--;
4251 }
4252
4253 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4254                             struct pt_regs *regs, u64 addr)
4255 {
4256         struct perf_sample_data data;
4257         int rctx;
4258
4259         preempt_disable_notrace();
4260         rctx = perf_swevent_get_recursion_context();
4261         if (rctx < 0)
4262                 return;
4263
4264         perf_sample_data_init(&data, addr);
4265
4266         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4267
4268         perf_swevent_put_recursion_context(rctx);
4269         preempt_enable_notrace();
4270 }
4271
4272 static void perf_swevent_read(struct perf_event *event)
4273 {
4274 }
4275
4276 static int perf_swevent_enable(struct perf_event *event)
4277 {
4278         struct hw_perf_event *hwc = &event->hw;
4279         struct perf_cpu_context *cpuctx;
4280         struct hlist_head *head;
4281
4282         cpuctx = &__get_cpu_var(perf_cpu_context);
4283
4284         if (hwc->sample_period) {
4285                 hwc->last_period = hwc->sample_period;
4286                 perf_swevent_set_period(event);
4287         }
4288
4289         head = find_swevent_head(cpuctx, event);
4290         if (WARN_ON_ONCE(!head))
4291                 return -EINVAL;
4292
4293         hlist_add_head_rcu(&event->hlist_entry, head);
4294
4295         return 0;
4296 }
4297
4298 static void perf_swevent_disable(struct perf_event *event)
4299 {
4300         hlist_del_rcu(&event->hlist_entry);
4301 }
4302
4303 static void perf_swevent_void(struct perf_event *event)
4304 {
4305 }
4306
4307 static int perf_swevent_int(struct perf_event *event)
4308 {
4309         return 0;
4310 }
4311
4312 static const struct pmu perf_ops_generic = {
4313         .enable         = perf_swevent_enable,
4314         .disable        = perf_swevent_disable,
4315         .start          = perf_swevent_int,
4316         .stop           = perf_swevent_void,
4317         .read           = perf_swevent_read,
4318         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4319 };
4320
4321 /*
4322  * hrtimer based swevent callback
4323  */
4324
4325 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4326 {
4327         enum hrtimer_restart ret = HRTIMER_RESTART;
4328         struct perf_sample_data data;
4329         struct pt_regs *regs;
4330         struct perf_event *event;
4331         u64 period;
4332
4333         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4334         event->pmu->read(event);
4335
4336         perf_sample_data_init(&data, 0);
4337         data.period = event->hw.last_period;
4338         regs = get_irq_regs();
4339
4340         if (regs && !perf_exclude_event(event, regs)) {
4341                 if (!(event->attr.exclude_idle && current->pid == 0))
4342                         if (perf_event_overflow(event, 0, &data, regs))
4343                                 ret = HRTIMER_NORESTART;
4344         }
4345
4346         period = max_t(u64, 10000, event->hw.sample_period);
4347         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4348
4349         return ret;
4350 }
4351
4352 static void perf_swevent_start_hrtimer(struct perf_event *event)
4353 {
4354         struct hw_perf_event *hwc = &event->hw;
4355
4356         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4357         hwc->hrtimer.function = perf_swevent_hrtimer;
4358         if (hwc->sample_period) {
4359                 u64 period;
4360
4361                 if (hwc->remaining) {
4362                         if (hwc->remaining < 0)
4363                                 period = 10000;
4364                         else
4365                                 period = hwc->remaining;
4366                         hwc->remaining = 0;
4367                 } else {
4368                         period = max_t(u64, 10000, hwc->sample_period);
4369                 }
4370                 __hrtimer_start_range_ns(&hwc->hrtimer,
4371                                 ns_to_ktime(period), 0,
4372                                 HRTIMER_MODE_REL, 0);
4373         }
4374 }
4375
4376 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4377 {
4378         struct hw_perf_event *hwc = &event->hw;
4379
4380         if (hwc->sample_period) {
4381                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4382                 hwc->remaining = ktime_to_ns(remaining);
4383
4384                 hrtimer_cancel(&hwc->hrtimer);
4385         }
4386 }
4387
4388 /*
4389  * Software event: cpu wall time clock
4390  */
4391
4392 static void cpu_clock_perf_event_update(struct perf_event *event)
4393 {
4394         int cpu = raw_smp_processor_id();
4395         s64 prev;
4396         u64 now;
4397
4398         now = cpu_clock(cpu);
4399         prev = local64_xchg(&event->hw.prev_count, now);
4400         local64_add(now - prev, &event->count);
4401 }
4402
4403 static int cpu_clock_perf_event_enable(struct perf_event *event)
4404 {
4405         struct hw_perf_event *hwc = &event->hw;
4406         int cpu = raw_smp_processor_id();
4407
4408         local64_set(&hwc->prev_count, cpu_clock(cpu));
4409         perf_swevent_start_hrtimer(event);
4410
4411         return 0;
4412 }
4413
4414 static void cpu_clock_perf_event_disable(struct perf_event *event)
4415 {
4416         perf_swevent_cancel_hrtimer(event);
4417         cpu_clock_perf_event_update(event);
4418 }
4419
4420 static void cpu_clock_perf_event_read(struct perf_event *event)
4421 {
4422         cpu_clock_perf_event_update(event);
4423 }
4424
4425 static const struct pmu perf_ops_cpu_clock = {
4426         .enable         = cpu_clock_perf_event_enable,
4427         .disable        = cpu_clock_perf_event_disable,
4428         .read           = cpu_clock_perf_event_read,
4429 };
4430
4431 /*
4432  * Software event: task time clock
4433  */
4434
4435 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4436 {
4437         u64 prev;
4438         s64 delta;
4439
4440         prev = local64_xchg(&event->hw.prev_count, now);
4441         delta = now - prev;
4442         local64_add(delta, &event->count);
4443 }
4444
4445 static int task_clock_perf_event_enable(struct perf_event *event)
4446 {
4447         struct hw_perf_event *hwc = &event->hw;
4448         u64 now;
4449
4450         now = event->ctx->time;
4451
4452         local64_set(&hwc->prev_count, now);
4453
4454         perf_swevent_start_hrtimer(event);
4455
4456         return 0;
4457 }
4458
4459 static void task_clock_perf_event_disable(struct perf_event *event)
4460 {
4461         perf_swevent_cancel_hrtimer(event);
4462         task_clock_perf_event_update(event, event->ctx->time);
4463
4464 }
4465
4466 static void task_clock_perf_event_read(struct perf_event *event)
4467 {
4468         u64 time;
4469
4470         if (!in_nmi()) {
4471                 update_context_time(event->ctx);
4472                 time = event->ctx->time;
4473         } else {
4474                 u64 now = perf_clock();
4475                 u64 delta = now - event->ctx->timestamp;
4476                 time = event->ctx->time + delta;
4477         }
4478
4479         task_clock_perf_event_update(event, time);
4480 }
4481
4482 static const struct pmu perf_ops_task_clock = {
4483         .enable         = task_clock_perf_event_enable,
4484         .disable        = task_clock_perf_event_disable,
4485         .read           = task_clock_perf_event_read,
4486 };
4487
4488 /* Deref the hlist from the update side */
4489 static inline struct swevent_hlist *
4490 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4491 {
4492         return rcu_dereference_protected(cpuctx->swevent_hlist,
4493                                          lockdep_is_held(&cpuctx->hlist_mutex));
4494 }
4495
4496 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4497 {
4498         struct swevent_hlist *hlist;
4499
4500         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4501         kfree(hlist);
4502 }
4503
4504 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4505 {
4506         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4507
4508         if (!hlist)
4509                 return;
4510
4511         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4512         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4513 }
4514
4515 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4516 {
4517         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4518
4519         mutex_lock(&cpuctx->hlist_mutex);
4520
4521         if (!--cpuctx->hlist_refcount)
4522                 swevent_hlist_release(cpuctx);
4523
4524         mutex_unlock(&cpuctx->hlist_mutex);
4525 }
4526
4527 static void swevent_hlist_put(struct perf_event *event)
4528 {
4529         int cpu;
4530
4531         if (event->cpu != -1) {
4532                 swevent_hlist_put_cpu(event, event->cpu);
4533                 return;
4534         }
4535
4536         for_each_possible_cpu(cpu)
4537                 swevent_hlist_put_cpu(event, cpu);
4538 }
4539
4540 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4541 {
4542         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4543         int err = 0;
4544
4545         mutex_lock(&cpuctx->hlist_mutex);
4546
4547         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4548                 struct swevent_hlist *hlist;
4549
4550                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4551                 if (!hlist) {
4552                         err = -ENOMEM;
4553                         goto exit;
4554                 }
4555                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4556         }
4557         cpuctx->hlist_refcount++;
4558  exit:
4559         mutex_unlock(&cpuctx->hlist_mutex);
4560
4561         return err;
4562 }
4563
4564 static int swevent_hlist_get(struct perf_event *event)
4565 {
4566         int err;
4567         int cpu, failed_cpu;
4568
4569         if (event->cpu != -1)
4570                 return swevent_hlist_get_cpu(event, event->cpu);
4571
4572         get_online_cpus();
4573         for_each_possible_cpu(cpu) {
4574                 err = swevent_hlist_get_cpu(event, cpu);
4575                 if (err) {
4576                         failed_cpu = cpu;
4577                         goto fail;
4578                 }
4579         }
4580         put_online_cpus();
4581
4582         return 0;
4583  fail:
4584         for_each_possible_cpu(cpu) {
4585                 if (cpu == failed_cpu)
4586                         break;
4587                 swevent_hlist_put_cpu(event, cpu);
4588         }
4589
4590         put_online_cpus();
4591         return err;
4592 }
4593
4594 #ifdef CONFIG_EVENT_TRACING
4595
4596 static const struct pmu perf_ops_tracepoint = {
4597         .enable         = perf_trace_enable,
4598         .disable        = perf_trace_disable,
4599         .start          = perf_swevent_int,
4600         .stop           = perf_swevent_void,
4601         .read           = perf_swevent_read,
4602         .unthrottle     = perf_swevent_void,
4603 };
4604
4605 static int perf_tp_filter_match(struct perf_event *event,
4606                                 struct perf_sample_data *data)
4607 {
4608         void *record = data->raw->data;
4609
4610         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4611                 return 1;
4612         return 0;
4613 }
4614
4615 static int perf_tp_event_match(struct perf_event *event,
4616                                 struct perf_sample_data *data,
4617                                 struct pt_regs *regs)
4618 {
4619         /*
4620          * All tracepoints are from kernel-space.
4621          */
4622         if (event->attr.exclude_kernel)
4623                 return 0;
4624
4625         if (!perf_tp_filter_match(event, data))
4626                 return 0;
4627
4628         return 1;
4629 }
4630
4631 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4632                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4633 {
4634         struct perf_sample_data data;
4635         struct perf_event *event;
4636         struct hlist_node *node;
4637
4638         struct perf_raw_record raw = {
4639                 .size = entry_size,
4640                 .data = record,
4641         };
4642
4643         perf_sample_data_init(&data, addr);
4644         data.raw = &raw;
4645
4646         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4647                 if (perf_tp_event_match(event, &data, regs))
4648                         perf_swevent_add(event, count, 1, &data, regs);
4649         }
4650
4651         perf_swevent_put_recursion_context(rctx);
4652 }
4653 EXPORT_SYMBOL_GPL(perf_tp_event);
4654
4655 static void tp_perf_event_destroy(struct perf_event *event)
4656 {
4657         perf_trace_destroy(event);
4658 }
4659
4660 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4661 {
4662         int err;
4663
4664         /*
4665          * Raw tracepoint data is a severe data leak, only allow root to
4666          * have these.
4667          */
4668         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4669                         perf_paranoid_tracepoint_raw() &&
4670                         !capable(CAP_SYS_ADMIN))
4671                 return ERR_PTR(-EPERM);
4672
4673         err = perf_trace_init(event);
4674         if (err)
4675                 return NULL;
4676
4677         event->destroy = tp_perf_event_destroy;
4678
4679         return &perf_ops_tracepoint;
4680 }
4681
4682 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4683 {
4684         char *filter_str;
4685         int ret;
4686
4687         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4688                 return -EINVAL;
4689
4690         filter_str = strndup_user(arg, PAGE_SIZE);
4691         if (IS_ERR(filter_str))
4692                 return PTR_ERR(filter_str);
4693
4694         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4695
4696         kfree(filter_str);
4697         return ret;
4698 }
4699
4700 static void perf_event_free_filter(struct perf_event *event)
4701 {
4702         ftrace_profile_free_filter(event);
4703 }
4704
4705 #else
4706
4707 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4708 {
4709         return NULL;
4710 }
4711
4712 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4713 {
4714         return -ENOENT;
4715 }
4716
4717 static void perf_event_free_filter(struct perf_event *event)
4718 {
4719 }
4720
4721 #endif /* CONFIG_EVENT_TRACING */
4722
4723 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4724 static void bp_perf_event_destroy(struct perf_event *event)
4725 {
4726         release_bp_slot(event);
4727 }
4728
4729 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4730 {
4731         int err;
4732
4733         err = register_perf_hw_breakpoint(bp);
4734         if (err)
4735                 return ERR_PTR(err);
4736
4737         bp->destroy = bp_perf_event_destroy;
4738
4739         return &perf_ops_bp;
4740 }
4741
4742 void perf_bp_event(struct perf_event *bp, void *data)
4743 {
4744         struct perf_sample_data sample;
4745         struct pt_regs *regs = data;
4746
4747         perf_sample_data_init(&sample, bp->attr.bp_addr);
4748
4749         if (!perf_exclude_event(bp, regs))
4750                 perf_swevent_add(bp, 1, 1, &sample, regs);
4751 }
4752 #else
4753 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4754 {
4755         return NULL;
4756 }
4757
4758 void perf_bp_event(struct perf_event *bp, void *regs)
4759 {
4760 }
4761 #endif
4762
4763 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4764
4765 static void sw_perf_event_destroy(struct perf_event *event)
4766 {
4767         u64 event_id = event->attr.config;
4768
4769         WARN_ON(event->parent);
4770
4771         atomic_dec(&perf_swevent_enabled[event_id]);
4772         swevent_hlist_put(event);
4773 }
4774
4775 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4776 {
4777         const struct pmu *pmu = NULL;
4778         u64 event_id = event->attr.config;
4779
4780         /*
4781          * Software events (currently) can't in general distinguish
4782          * between user, kernel and hypervisor events.
4783          * However, context switches and cpu migrations are considered
4784          * to be kernel events, and page faults are never hypervisor
4785          * events.
4786          */
4787         switch (event_id) {
4788         case PERF_COUNT_SW_CPU_CLOCK:
4789                 pmu = &perf_ops_cpu_clock;
4790
4791                 break;
4792         case PERF_COUNT_SW_TASK_CLOCK:
4793                 /*
4794                  * If the user instantiates this as a per-cpu event,
4795                  * use the cpu_clock event instead.
4796                  */
4797                 if (event->ctx->task)
4798                         pmu = &perf_ops_task_clock;
4799                 else
4800                         pmu = &perf_ops_cpu_clock;
4801
4802                 break;
4803         case PERF_COUNT_SW_PAGE_FAULTS:
4804         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4805         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4806         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4807         case PERF_COUNT_SW_CPU_MIGRATIONS:
4808         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4809         case PERF_COUNT_SW_EMULATION_FAULTS:
4810                 if (!event->parent) {
4811                         int err;
4812
4813                         err = swevent_hlist_get(event);
4814                         if (err)
4815                                 return ERR_PTR(err);
4816
4817                         atomic_inc(&perf_swevent_enabled[event_id]);
4818                         event->destroy = sw_perf_event_destroy;
4819                 }
4820                 pmu = &perf_ops_generic;
4821                 break;
4822         }
4823
4824         return pmu;
4825 }
4826
4827 /*
4828  * Allocate and initialize a event structure
4829  */
4830 static struct perf_event *
4831 perf_event_alloc(struct perf_event_attr *attr,
4832                    int cpu,
4833                    struct perf_event_context *ctx,
4834                    struct perf_event *group_leader,
4835                    struct perf_event *parent_event,
4836                    perf_overflow_handler_t overflow_handler,
4837                    gfp_t gfpflags)
4838 {
4839         const struct pmu *pmu;
4840         struct perf_event *event;
4841         struct hw_perf_event *hwc;
4842         long err;
4843
4844         event = kzalloc(sizeof(*event), gfpflags);
4845         if (!event)
4846                 return ERR_PTR(-ENOMEM);
4847
4848         /*
4849          * Single events are their own group leaders, with an
4850          * empty sibling list:
4851          */
4852         if (!group_leader)
4853                 group_leader = event;
4854
4855         mutex_init(&event->child_mutex);
4856         INIT_LIST_HEAD(&event->child_list);
4857
4858         INIT_LIST_HEAD(&event->group_entry);
4859         INIT_LIST_HEAD(&event->event_entry);
4860         INIT_LIST_HEAD(&event->sibling_list);
4861         init_waitqueue_head(&event->waitq);
4862
4863         mutex_init(&event->mmap_mutex);
4864
4865         event->cpu              = cpu;
4866         event->attr             = *attr;
4867         event->group_leader     = group_leader;
4868         event->pmu              = NULL;
4869         event->ctx              = ctx;
4870         event->oncpu            = -1;
4871
4872         event->parent           = parent_event;
4873
4874         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4875         event->id               = atomic64_inc_return(&perf_event_id);
4876
4877         event->state            = PERF_EVENT_STATE_INACTIVE;
4878
4879         if (!overflow_handler && parent_event)
4880                 overflow_handler = parent_event->overflow_handler;
4881         
4882         event->overflow_handler = overflow_handler;
4883
4884         if (attr->disabled)
4885                 event->state = PERF_EVENT_STATE_OFF;
4886
4887         pmu = NULL;
4888
4889         hwc = &event->hw;
4890         hwc->sample_period = attr->sample_period;
4891         if (attr->freq && attr->sample_freq)
4892                 hwc->sample_period = 1;
4893         hwc->last_period = hwc->sample_period;
4894
4895         local64_set(&hwc->period_left, hwc->sample_period);
4896
4897         /*
4898          * we currently do not support PERF_FORMAT_GROUP on inherited events
4899          */
4900         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4901                 goto done;
4902
4903         switch (attr->type) {
4904         case PERF_TYPE_RAW:
4905         case PERF_TYPE_HARDWARE:
4906         case PERF_TYPE_HW_CACHE:
4907                 pmu = hw_perf_event_init(event);
4908                 break;
4909
4910         case PERF_TYPE_SOFTWARE:
4911                 pmu = sw_perf_event_init(event);
4912                 break;
4913
4914         case PERF_TYPE_TRACEPOINT:
4915                 pmu = tp_perf_event_init(event);
4916                 break;
4917
4918         case PERF_TYPE_BREAKPOINT:
4919                 pmu = bp_perf_event_init(event);
4920                 break;
4921
4922
4923         default:
4924                 break;
4925         }
4926 done:
4927         err = 0;
4928         if (!pmu)
4929                 err = -EINVAL;
4930         else if (IS_ERR(pmu))
4931                 err = PTR_ERR(pmu);
4932
4933         if (err) {
4934                 if (event->ns)
4935                         put_pid_ns(event->ns);
4936                 kfree(event);
4937                 return ERR_PTR(err);
4938         }
4939
4940         event->pmu = pmu;
4941
4942         if (!event->parent) {
4943                 atomic_inc(&nr_events);
4944                 if (event->attr.mmap || event->attr.mmap_data)
4945                         atomic_inc(&nr_mmap_events);
4946                 if (event->attr.comm)
4947                         atomic_inc(&nr_comm_events);
4948                 if (event->attr.task)
4949                         atomic_inc(&nr_task_events);
4950         }
4951
4952         return event;
4953 }
4954
4955 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4956                           struct perf_event_attr *attr)
4957 {
4958         u32 size;
4959         int ret;
4960
4961         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4962                 return -EFAULT;
4963
4964         /*
4965          * zero the full structure, so that a short copy will be nice.
4966          */
4967         memset(attr, 0, sizeof(*attr));
4968
4969         ret = get_user(size, &uattr->size);
4970         if (ret)
4971                 return ret;
4972
4973         if (size > PAGE_SIZE)   /* silly large */
4974                 goto err_size;
4975
4976         if (!size)              /* abi compat */
4977                 size = PERF_ATTR_SIZE_VER0;
4978
4979         if (size < PERF_ATTR_SIZE_VER0)
4980                 goto err_size;
4981
4982         /*
4983          * If we're handed a bigger struct than we know of,
4984          * ensure all the unknown bits are 0 - i.e. new
4985          * user-space does not rely on any kernel feature
4986          * extensions we dont know about yet.
4987          */
4988         if (size > sizeof(*attr)) {
4989                 unsigned char __user *addr;
4990                 unsigned char __user *end;
4991                 unsigned char val;
4992
4993                 addr = (void __user *)uattr + sizeof(*attr);
4994                 end  = (void __user *)uattr + size;
4995
4996                 for (; addr < end; addr++) {
4997                         ret = get_user(val, addr);
4998                         if (ret)
4999                                 return ret;
5000                         if (val)
5001                                 goto err_size;
5002                 }
5003                 size = sizeof(*attr);
5004         }
5005
5006         ret = copy_from_user(attr, uattr, size);
5007         if (ret)
5008                 return -EFAULT;
5009
5010         /*
5011          * If the type exists, the corresponding creation will verify
5012          * the attr->config.
5013          */
5014         if (attr->type >= PERF_TYPE_MAX)
5015                 return -EINVAL;
5016
5017         if (attr->__reserved_1)
5018                 return -EINVAL;
5019
5020         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5021                 return -EINVAL;
5022
5023         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5024                 return -EINVAL;
5025
5026 out:
5027         return ret;
5028
5029 err_size:
5030         put_user(sizeof(*attr), &uattr->size);
5031         ret = -E2BIG;
5032         goto out;
5033 }
5034
5035 static int
5036 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5037 {
5038         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5039         int ret = -EINVAL;
5040
5041         if (!output_event)
5042                 goto set;
5043
5044         /* don't allow circular references */
5045         if (event == output_event)
5046                 goto out;
5047
5048         /*
5049          * Don't allow cross-cpu buffers
5050          */
5051         if (output_event->cpu != event->cpu)
5052                 goto out;
5053
5054         /*
5055          * If its not a per-cpu buffer, it must be the same task.
5056          */
5057         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5058                 goto out;
5059
5060 set:
5061         mutex_lock(&event->mmap_mutex);
5062         /* Can't redirect output if we've got an active mmap() */
5063         if (atomic_read(&event->mmap_count))
5064                 goto unlock;
5065
5066         if (output_event) {
5067                 /* get the buffer we want to redirect to */
5068                 buffer = perf_buffer_get(output_event);
5069                 if (!buffer)
5070                         goto unlock;
5071         }
5072
5073         old_buffer = event->buffer;
5074         rcu_assign_pointer(event->buffer, buffer);
5075         ret = 0;
5076 unlock:
5077         mutex_unlock(&event->mmap_mutex);
5078
5079         if (old_buffer)
5080                 perf_buffer_put(old_buffer);
5081 out:
5082         return ret;
5083 }
5084
5085 /**
5086  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5087  *
5088  * @attr_uptr:  event_id type attributes for monitoring/sampling
5089  * @pid:                target pid
5090  * @cpu:                target cpu
5091  * @group_fd:           group leader event fd
5092  */
5093 SYSCALL_DEFINE5(perf_event_open,
5094                 struct perf_event_attr __user *, attr_uptr,
5095                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5096 {
5097         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5098         struct perf_event_attr attr;
5099         struct perf_event_context *ctx;
5100         struct file *event_file = NULL;
5101         struct file *group_file = NULL;
5102         int event_fd;
5103         int fput_needed = 0;
5104         int err;
5105
5106         /* for future expandability... */
5107         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5108                 return -EINVAL;
5109
5110         err = perf_copy_attr(attr_uptr, &attr);
5111         if (err)
5112                 return err;
5113
5114         if (!attr.exclude_kernel) {
5115                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5116                         return -EACCES;
5117         }
5118
5119         if (attr.freq) {
5120                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5121                         return -EINVAL;
5122         }
5123
5124         event_fd = get_unused_fd_flags(O_RDWR);
5125         if (event_fd < 0)
5126                 return event_fd;
5127
5128         /*
5129          * Get the target context (task or percpu):
5130          */
5131         ctx = find_get_context(pid, cpu);
5132         if (IS_ERR(ctx)) {
5133                 err = PTR_ERR(ctx);
5134                 goto err_fd;
5135         }
5136
5137         if (group_fd != -1) {
5138                 group_leader = perf_fget_light(group_fd, &fput_needed);
5139                 if (IS_ERR(group_leader)) {
5140                         err = PTR_ERR(group_leader);
5141                         goto err_put_context;
5142                 }
5143                 group_file = group_leader->filp;
5144                 if (flags & PERF_FLAG_FD_OUTPUT)
5145                         output_event = group_leader;
5146                 if (flags & PERF_FLAG_FD_NO_GROUP)
5147                         group_leader = NULL;
5148         }
5149
5150         /*
5151          * Look up the group leader (we will attach this event to it):
5152          */
5153         if (group_leader) {
5154                 err = -EINVAL;
5155
5156                 /*
5157                  * Do not allow a recursive hierarchy (this new sibling
5158                  * becoming part of another group-sibling):
5159                  */
5160                 if (group_leader->group_leader != group_leader)
5161                         goto err_put_context;
5162                 /*
5163                  * Do not allow to attach to a group in a different
5164                  * task or CPU context:
5165                  */
5166                 if (group_leader->ctx != ctx)
5167                         goto err_put_context;
5168                 /*
5169                  * Only a group leader can be exclusive or pinned
5170                  */
5171                 if (attr.exclusive || attr.pinned)
5172                         goto err_put_context;
5173         }
5174
5175         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5176                                      NULL, NULL, GFP_KERNEL);
5177         if (IS_ERR(event)) {
5178                 err = PTR_ERR(event);
5179                 goto err_put_context;
5180         }
5181
5182         if (output_event) {
5183                 err = perf_event_set_output(event, output_event);
5184                 if (err)
5185                         goto err_free_put_context;
5186         }
5187
5188         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5189         if (IS_ERR(event_file)) {
5190                 err = PTR_ERR(event_file);
5191                 goto err_free_put_context;
5192         }
5193
5194         event->filp = event_file;
5195         WARN_ON_ONCE(ctx->parent_ctx);
5196         mutex_lock(&ctx->mutex);
5197         perf_install_in_context(ctx, event, cpu);
5198         ++ctx->generation;
5199         mutex_unlock(&ctx->mutex);
5200
5201         event->owner = current;
5202         get_task_struct(current);
5203         mutex_lock(&current->perf_event_mutex);
5204         list_add_tail(&event->owner_entry, &current->perf_event_list);
5205         mutex_unlock(&current->perf_event_mutex);
5206
5207         /*
5208          * Drop the reference on the group_event after placing the
5209          * new event on the sibling_list. This ensures destruction
5210          * of the group leader will find the pointer to itself in
5211          * perf_group_detach().
5212          */
5213         fput_light(group_file, fput_needed);
5214         fd_install(event_fd, event_file);
5215         return event_fd;
5216
5217 err_free_put_context:
5218         free_event(event);
5219 err_put_context:
5220         fput_light(group_file, fput_needed);
5221         put_ctx(ctx);
5222 err_fd:
5223         put_unused_fd(event_fd);
5224         return err;
5225 }
5226
5227 /**
5228  * perf_event_create_kernel_counter
5229  *
5230  * @attr: attributes of the counter to create
5231  * @cpu: cpu in which the counter is bound
5232  * @pid: task to profile
5233  */
5234 struct perf_event *
5235 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5236                                  pid_t pid,
5237                                  perf_overflow_handler_t overflow_handler)
5238 {
5239         struct perf_event *event;
5240         struct perf_event_context *ctx;
5241         int err;
5242
5243         /*
5244          * Get the target context (task or percpu):
5245          */
5246
5247         ctx = find_get_context(pid, cpu);
5248         if (IS_ERR(ctx)) {
5249                 err = PTR_ERR(ctx);
5250                 goto err_exit;
5251         }
5252
5253         event = perf_event_alloc(attr, cpu, ctx, NULL,
5254                                  NULL, overflow_handler, GFP_KERNEL);
5255         if (IS_ERR(event)) {
5256                 err = PTR_ERR(event);
5257                 goto err_put_context;
5258         }
5259
5260         event->filp = NULL;
5261         WARN_ON_ONCE(ctx->parent_ctx);
5262         mutex_lock(&ctx->mutex);
5263         perf_install_in_context(ctx, event, cpu);
5264         ++ctx->generation;
5265         mutex_unlock(&ctx->mutex);
5266
5267         event->owner = current;
5268         get_task_struct(current);
5269         mutex_lock(&current->perf_event_mutex);
5270         list_add_tail(&event->owner_entry, &current->perf_event_list);
5271         mutex_unlock(&current->perf_event_mutex);
5272
5273         return event;
5274
5275  err_put_context:
5276         put_ctx(ctx);
5277  err_exit:
5278         return ERR_PTR(err);
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5281
5282 /*
5283  * inherit a event from parent task to child task:
5284  */
5285 static struct perf_event *
5286 inherit_event(struct perf_event *parent_event,
5287               struct task_struct *parent,
5288               struct perf_event_context *parent_ctx,
5289               struct task_struct *child,
5290               struct perf_event *group_leader,
5291               struct perf_event_context *child_ctx)
5292 {
5293         struct perf_event *child_event;
5294
5295         /*
5296          * Instead of creating recursive hierarchies of events,
5297          * we link inherited events back to the original parent,
5298          * which has a filp for sure, which we use as the reference
5299          * count:
5300          */
5301         if (parent_event->parent)
5302                 parent_event = parent_event->parent;
5303
5304         child_event = perf_event_alloc(&parent_event->attr,
5305                                            parent_event->cpu, child_ctx,
5306                                            group_leader, parent_event,
5307                                            NULL, GFP_KERNEL);
5308         if (IS_ERR(child_event))
5309                 return child_event;
5310         get_ctx(child_ctx);
5311
5312         /*
5313          * Make the child state follow the state of the parent event,
5314          * not its attr.disabled bit.  We hold the parent's mutex,
5315          * so we won't race with perf_event_{en, dis}able_family.
5316          */
5317         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5318                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5319         else
5320                 child_event->state = PERF_EVENT_STATE_OFF;
5321
5322         if (parent_event->attr.freq) {
5323                 u64 sample_period = parent_event->hw.sample_period;
5324                 struct hw_perf_event *hwc = &child_event->hw;
5325
5326                 hwc->sample_period = sample_period;
5327                 hwc->last_period   = sample_period;
5328
5329                 local64_set(&hwc->period_left, sample_period);
5330         }
5331
5332         child_event->overflow_handler = parent_event->overflow_handler;
5333
5334         /*
5335          * Link it up in the child's context:
5336          */
5337         add_event_to_ctx(child_event, child_ctx);
5338
5339         /*
5340          * Get a reference to the parent filp - we will fput it
5341          * when the child event exits. This is safe to do because
5342          * we are in the parent and we know that the filp still
5343          * exists and has a nonzero count:
5344          */
5345         atomic_long_inc(&parent_event->filp->f_count);
5346
5347         /*
5348          * Link this into the parent event's child list
5349          */
5350         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5351         mutex_lock(&parent_event->child_mutex);
5352         list_add_tail(&child_event->child_list, &parent_event->child_list);
5353         mutex_unlock(&parent_event->child_mutex);
5354
5355         return child_event;
5356 }
5357
5358 static int inherit_group(struct perf_event *parent_event,
5359               struct task_struct *parent,
5360               struct perf_event_context *parent_ctx,
5361               struct task_struct *child,
5362               struct perf_event_context *child_ctx)
5363 {
5364         struct perf_event *leader;
5365         struct perf_event *sub;
5366         struct perf_event *child_ctr;
5367
5368         leader = inherit_event(parent_event, parent, parent_ctx,
5369                                  child, NULL, child_ctx);
5370         if (IS_ERR(leader))
5371                 return PTR_ERR(leader);
5372         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5373                 child_ctr = inherit_event(sub, parent, parent_ctx,
5374                                             child, leader, child_ctx);
5375                 if (IS_ERR(child_ctr))
5376                         return PTR_ERR(child_ctr);
5377         }
5378         return 0;
5379 }
5380
5381 static void sync_child_event(struct perf_event *child_event,
5382                                struct task_struct *child)
5383 {
5384         struct perf_event *parent_event = child_event->parent;
5385         u64 child_val;
5386
5387         if (child_event->attr.inherit_stat)
5388                 perf_event_read_event(child_event, child);
5389
5390         child_val = perf_event_count(child_event);
5391
5392         /*
5393          * Add back the child's count to the parent's count:
5394          */
5395         atomic64_add(child_val, &parent_event->child_count);
5396         atomic64_add(child_event->total_time_enabled,
5397                      &parent_event->child_total_time_enabled);
5398         atomic64_add(child_event->total_time_running,
5399                      &parent_event->child_total_time_running);
5400
5401         /*
5402          * Remove this event from the parent's list
5403          */
5404         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5405         mutex_lock(&parent_event->child_mutex);
5406         list_del_init(&child_event->child_list);
5407         mutex_unlock(&parent_event->child_mutex);
5408
5409         /*
5410          * Release the parent event, if this was the last
5411          * reference to it.
5412          */
5413         fput(parent_event->filp);
5414 }
5415
5416 static void
5417 __perf_event_exit_task(struct perf_event *child_event,
5418                          struct perf_event_context *child_ctx,
5419                          struct task_struct *child)
5420 {
5421         struct perf_event *parent_event;
5422
5423         perf_event_remove_from_context(child_event);
5424
5425         parent_event = child_event->parent;
5426         /*
5427          * It can happen that parent exits first, and has events
5428          * that are still around due to the child reference. These
5429          * events need to be zapped - but otherwise linger.
5430          */
5431         if (parent_event) {
5432                 sync_child_event(child_event, child);
5433                 free_event(child_event);
5434         }
5435 }
5436
5437 /*
5438  * When a child task exits, feed back event values to parent events.
5439  */
5440 void perf_event_exit_task(struct task_struct *child)
5441 {
5442         struct perf_event *child_event, *tmp;
5443         struct perf_event_context *child_ctx;
5444         unsigned long flags;
5445
5446         if (likely(!child->perf_event_ctxp)) {
5447                 perf_event_task(child, NULL, 0);
5448                 return;
5449         }
5450
5451         local_irq_save(flags);
5452         /*
5453          * We can't reschedule here because interrupts are disabled,
5454          * and either child is current or it is a task that can't be
5455          * scheduled, so we are now safe from rescheduling changing
5456          * our context.
5457          */
5458         child_ctx = child->perf_event_ctxp;
5459         __perf_event_task_sched_out(child_ctx);
5460
5461         /*
5462          * Take the context lock here so that if find_get_context is
5463          * reading child->perf_event_ctxp, we wait until it has
5464          * incremented the context's refcount before we do put_ctx below.
5465          */
5466         raw_spin_lock(&child_ctx->lock);
5467         child->perf_event_ctxp = NULL;
5468         /*
5469          * If this context is a clone; unclone it so it can't get
5470          * swapped to another process while we're removing all
5471          * the events from it.
5472          */
5473         unclone_ctx(child_ctx);
5474         update_context_time(child_ctx);
5475         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5476
5477         /*
5478          * Report the task dead after unscheduling the events so that we
5479          * won't get any samples after PERF_RECORD_EXIT. We can however still
5480          * get a few PERF_RECORD_READ events.
5481          */
5482         perf_event_task(child, child_ctx, 0);
5483
5484         /*
5485          * We can recurse on the same lock type through:
5486          *
5487          *   __perf_event_exit_task()
5488          *     sync_child_event()
5489          *       fput(parent_event->filp)
5490          *         perf_release()
5491          *           mutex_lock(&ctx->mutex)
5492          *
5493          * But since its the parent context it won't be the same instance.
5494          */
5495         mutex_lock(&child_ctx->mutex);
5496
5497 again:
5498         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5499                                  group_entry)
5500                 __perf_event_exit_task(child_event, child_ctx, child);
5501
5502         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5503                                  group_entry)
5504                 __perf_event_exit_task(child_event, child_ctx, child);
5505
5506         /*
5507          * If the last event was a group event, it will have appended all
5508          * its siblings to the list, but we obtained 'tmp' before that which
5509          * will still point to the list head terminating the iteration.
5510          */
5511         if (!list_empty(&child_ctx->pinned_groups) ||
5512             !list_empty(&child_ctx->flexible_groups))
5513                 goto again;
5514
5515         mutex_unlock(&child_ctx->mutex);
5516
5517         put_ctx(child_ctx);
5518 }
5519
5520 static void perf_free_event(struct perf_event *event,
5521                             struct perf_event_context *ctx)
5522 {
5523         struct perf_event *parent = event->parent;
5524
5525         if (WARN_ON_ONCE(!parent))
5526                 return;
5527
5528         mutex_lock(&parent->child_mutex);
5529         list_del_init(&event->child_list);
5530         mutex_unlock(&parent->child_mutex);
5531
5532         fput(parent->filp);
5533
5534         perf_group_detach(event);
5535         list_del_event(event, ctx);
5536         free_event(event);
5537 }
5538
5539 /*
5540  * free an unexposed, unused context as created by inheritance by
5541  * init_task below, used by fork() in case of fail.
5542  */
5543 void perf_event_free_task(struct task_struct *task)
5544 {
5545         struct perf_event_context *ctx = task->perf_event_ctxp;
5546         struct perf_event *event, *tmp;
5547
5548         if (!ctx)
5549                 return;
5550
5551         mutex_lock(&ctx->mutex);
5552 again:
5553         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5554                 perf_free_event(event, ctx);
5555
5556         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5557                                  group_entry)
5558                 perf_free_event(event, ctx);
5559
5560         if (!list_empty(&ctx->pinned_groups) ||
5561             !list_empty(&ctx->flexible_groups))
5562                 goto again;
5563
5564         mutex_unlock(&ctx->mutex);
5565
5566         put_ctx(ctx);
5567 }
5568
5569 static int
5570 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5571                    struct perf_event_context *parent_ctx,
5572                    struct task_struct *child,
5573                    int *inherited_all)
5574 {
5575         int ret;
5576         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5577
5578         if (!event->attr.inherit) {
5579                 *inherited_all = 0;
5580                 return 0;
5581         }
5582
5583         if (!child_ctx) {
5584                 /*
5585                  * This is executed from the parent task context, so
5586                  * inherit events that have been marked for cloning.
5587                  * First allocate and initialize a context for the
5588                  * child.
5589                  */
5590
5591                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5592                                     GFP_KERNEL);
5593                 if (!child_ctx)
5594                         return -ENOMEM;
5595
5596                 __perf_event_init_context(child_ctx, child);
5597                 child->perf_event_ctxp = child_ctx;
5598                 get_task_struct(child);
5599         }
5600
5601         ret = inherit_group(event, parent, parent_ctx,
5602                             child, child_ctx);
5603
5604         if (ret)
5605                 *inherited_all = 0;
5606
5607         return ret;
5608 }
5609
5610
5611 /*
5612  * Initialize the perf_event context in task_struct
5613  */
5614 int perf_event_init_task(struct task_struct *child)
5615 {
5616         struct perf_event_context *child_ctx, *parent_ctx;
5617         struct perf_event_context *cloned_ctx;
5618         struct perf_event *event;
5619         struct task_struct *parent = current;
5620         int inherited_all = 1;
5621         int ret = 0;
5622
5623         child->perf_event_ctxp = NULL;
5624
5625         mutex_init(&child->perf_event_mutex);
5626         INIT_LIST_HEAD(&child->perf_event_list);
5627
5628         if (likely(!parent->perf_event_ctxp))
5629                 return 0;
5630
5631         /*
5632          * If the parent's context is a clone, pin it so it won't get
5633          * swapped under us.
5634          */
5635         parent_ctx = perf_pin_task_context(parent);
5636
5637         /*
5638          * No need to check if parent_ctx != NULL here; since we saw
5639          * it non-NULL earlier, the only reason for it to become NULL
5640          * is if we exit, and since we're currently in the middle of
5641          * a fork we can't be exiting at the same time.
5642          */
5643
5644         /*
5645          * Lock the parent list. No need to lock the child - not PID
5646          * hashed yet and not running, so nobody can access it.
5647          */
5648         mutex_lock(&parent_ctx->mutex);
5649
5650         /*
5651          * We dont have to disable NMIs - we are only looking at
5652          * the list, not manipulating it:
5653          */
5654         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5655                 ret = inherit_task_group(event, parent, parent_ctx, child,
5656                                          &inherited_all);
5657                 if (ret)
5658                         break;
5659         }
5660
5661         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5662                 ret = inherit_task_group(event, parent, parent_ctx, child,
5663                                          &inherited_all);
5664                 if (ret)
5665                         break;
5666         }
5667
5668         child_ctx = child->perf_event_ctxp;
5669
5670         if (child_ctx && inherited_all) {
5671                 /*
5672                  * Mark the child context as a clone of the parent
5673                  * context, or of whatever the parent is a clone of.
5674                  * Note that if the parent is a clone, it could get
5675                  * uncloned at any point, but that doesn't matter
5676                  * because the list of events and the generation
5677                  * count can't have changed since we took the mutex.
5678                  */
5679                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5680                 if (cloned_ctx) {
5681                         child_ctx->parent_ctx = cloned_ctx;
5682                         child_ctx->parent_gen = parent_ctx->parent_gen;
5683                 } else {
5684                         child_ctx->parent_ctx = parent_ctx;
5685                         child_ctx->parent_gen = parent_ctx->generation;
5686                 }
5687                 get_ctx(child_ctx->parent_ctx);
5688         }
5689
5690         mutex_unlock(&parent_ctx->mutex);
5691
5692         perf_unpin_context(parent_ctx);
5693
5694         return ret;
5695 }
5696
5697 static void __init perf_event_init_all_cpus(void)
5698 {
5699         int cpu;
5700         struct perf_cpu_context *cpuctx;
5701
5702         for_each_possible_cpu(cpu) {
5703                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5704                 mutex_init(&cpuctx->hlist_mutex);
5705                 __perf_event_init_context(&cpuctx->ctx, NULL);
5706         }
5707 }
5708
5709 static void __cpuinit perf_event_init_cpu(int cpu)
5710 {
5711         struct perf_cpu_context *cpuctx;
5712
5713         cpuctx = &per_cpu(perf_cpu_context, cpu);
5714
5715         spin_lock(&perf_resource_lock);
5716         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5717         spin_unlock(&perf_resource_lock);
5718
5719         mutex_lock(&cpuctx->hlist_mutex);
5720         if (cpuctx->hlist_refcount > 0) {
5721                 struct swevent_hlist *hlist;
5722
5723                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5724                 WARN_ON_ONCE(!hlist);
5725                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5726         }
5727         mutex_unlock(&cpuctx->hlist_mutex);
5728 }
5729
5730 #ifdef CONFIG_HOTPLUG_CPU
5731 static void __perf_event_exit_cpu(void *info)
5732 {
5733         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5734         struct perf_event_context *ctx = &cpuctx->ctx;
5735         struct perf_event *event, *tmp;
5736
5737         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5738                 __perf_event_remove_from_context(event);
5739         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5740                 __perf_event_remove_from_context(event);
5741 }
5742 static void perf_event_exit_cpu(int cpu)
5743 {
5744         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5745         struct perf_event_context *ctx = &cpuctx->ctx;
5746
5747         mutex_lock(&cpuctx->hlist_mutex);
5748         swevent_hlist_release(cpuctx);
5749         mutex_unlock(&cpuctx->hlist_mutex);
5750
5751         mutex_lock(&ctx->mutex);
5752         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5753         mutex_unlock(&ctx->mutex);
5754 }
5755 #else
5756 static inline void perf_event_exit_cpu(int cpu) { }
5757 #endif
5758
5759 static int __cpuinit
5760 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5761 {
5762         unsigned int cpu = (long)hcpu;
5763
5764         switch (action & ~CPU_TASKS_FROZEN) {
5765
5766         case CPU_UP_PREPARE:
5767         case CPU_DOWN_FAILED:
5768                 perf_event_init_cpu(cpu);
5769                 break;
5770
5771         case CPU_UP_CANCELED:
5772         case CPU_DOWN_PREPARE:
5773                 perf_event_exit_cpu(cpu);
5774                 break;
5775
5776         default:
5777                 break;
5778         }
5779
5780         return NOTIFY_OK;
5781 }
5782
5783 /*
5784  * This has to have a higher priority than migration_notifier in sched.c.
5785  */
5786 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5787         .notifier_call          = perf_cpu_notify,
5788         .priority               = 20,
5789 };
5790
5791 void __init perf_event_init(void)
5792 {
5793         perf_event_init_all_cpus();
5794         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5795                         (void *)(long)smp_processor_id());
5796         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5797                         (void *)(long)smp_processor_id());
5798         register_cpu_notifier(&perf_cpu_nb);
5799 }
5800
5801 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5802                                         struct sysdev_class_attribute *attr,
5803                                         char *buf)
5804 {
5805         return sprintf(buf, "%d\n", perf_reserved_percpu);
5806 }
5807
5808 static ssize_t
5809 perf_set_reserve_percpu(struct sysdev_class *class,
5810                         struct sysdev_class_attribute *attr,
5811                         const char *buf,
5812                         size_t count)
5813 {
5814         struct perf_cpu_context *cpuctx;
5815         unsigned long val;
5816         int err, cpu, mpt;
5817
5818         err = strict_strtoul(buf, 10, &val);
5819         if (err)
5820                 return err;
5821         if (val > perf_max_events)
5822                 return -EINVAL;
5823
5824         spin_lock(&perf_resource_lock);
5825         perf_reserved_percpu = val;
5826         for_each_online_cpu(cpu) {
5827                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5828                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5829                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5830                           perf_max_events - perf_reserved_percpu);
5831                 cpuctx->max_pertask = mpt;
5832                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5833         }
5834         spin_unlock(&perf_resource_lock);
5835
5836         return count;
5837 }
5838
5839 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5840                                     struct sysdev_class_attribute *attr,
5841                                     char *buf)
5842 {
5843         return sprintf(buf, "%d\n", perf_overcommit);
5844 }
5845
5846 static ssize_t
5847 perf_set_overcommit(struct sysdev_class *class,
5848                     struct sysdev_class_attribute *attr,
5849                     const char *buf, size_t count)
5850 {
5851         unsigned long val;
5852         int err;
5853
5854         err = strict_strtoul(buf, 10, &val);
5855         if (err)
5856                 return err;
5857         if (val > 1)
5858                 return -EINVAL;
5859
5860         spin_lock(&perf_resource_lock);
5861         perf_overcommit = val;
5862         spin_unlock(&perf_resource_lock);
5863
5864         return count;
5865 }
5866
5867 static SYSDEV_CLASS_ATTR(
5868                                 reserve_percpu,
5869                                 0644,
5870                                 perf_show_reserve_percpu,
5871                                 perf_set_reserve_percpu
5872                         );
5873
5874 static SYSDEV_CLASS_ATTR(
5875                                 overcommit,
5876                                 0644,
5877                                 perf_show_overcommit,
5878                                 perf_set_overcommit
5879                         );
5880
5881 static struct attribute *perfclass_attrs[] = {
5882         &attr_reserve_percpu.attr,
5883         &attr_overcommit.attr,
5884         NULL
5885 };
5886
5887 static struct attribute_group perfclass_attr_group = {
5888         .attrs                  = perfclass_attrs,
5889         .name                   = "perf_events",
5890 };
5891
5892 static int __init perf_event_sysfs_init(void)
5893 {
5894         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5895                                   &perfclass_attr_group);
5896 }
5897 device_initcall(perf_event_sysfs_init);