Merge branch 'perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48  * perf event paranoia level:
49  *  -1 - not paranoid at all
50  *   0 - disallow raw tracepoint access for unpriv
51  *   1 - disallow cpu events for unpriv
52  *   2 - disallow kernel profiling for unpriv
53  */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59  * max perf event sample rate
60  */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void)        { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69         return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74         int *count = this_cpu_ptr(pmu->pmu_disable_count);
75         if (!(*count)++)
76                 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81         int *count = this_cpu_ptr(pmu->pmu_disable_count);
82         if (!--(*count))
83                 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90  * because they're strictly cpu affine and rotate_start is called with IRQs
91  * disabled, while rotate_context is called from IRQ context.
92  */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96         struct list_head *head = &__get_cpu_var(rotation_list);
97
98         WARN_ON(!irqs_disabled());
99
100         if (list_empty(&cpuctx->rotation_list))
101                 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111         struct perf_event_context *ctx;
112
113         ctx = container_of(head, struct perf_event_context, rcu_head);
114         kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119         if (atomic_dec_and_test(&ctx->refcount)) {
120                 if (ctx->parent_ctx)
121                         put_ctx(ctx->parent_ctx);
122                 if (ctx->task)
123                         put_task_struct(ctx->task);
124                 call_rcu(&ctx->rcu_head, free_ctx);
125         }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130         if (ctx->parent_ctx) {
131                 put_ctx(ctx->parent_ctx);
132                 ctx->parent_ctx = NULL;
133         }
134 }
135
136 /*
137  * If we inherit events we want to return the parent event id
138  * to userspace.
139  */
140 static u64 primary_event_id(struct perf_event *event)
141 {
142         u64 id = event->id;
143
144         if (event->parent)
145                 id = event->parent->id;
146
147         return id;
148 }
149
150 /*
151  * Get the perf_event_context for a task and lock it.
152  * This has to cope with with the fact that until it is locked,
153  * the context could get moved to another task.
154  */
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 {
158         struct perf_event_context *ctx;
159
160         rcu_read_lock();
161 retry:
162         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163         if (ctx) {
164                 /*
165                  * If this context is a clone of another, it might
166                  * get swapped for another underneath us by
167                  * perf_event_task_sched_out, though the
168                  * rcu_read_lock() protects us from any context
169                  * getting freed.  Lock the context and check if it
170                  * got swapped before we could get the lock, and retry
171                  * if so.  If we locked the right context, then it
172                  * can't get swapped on us any more.
173                  */
174                 raw_spin_lock_irqsave(&ctx->lock, *flags);
175                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         goto retry;
178                 }
179
180                 if (!atomic_inc_not_zero(&ctx->refcount)) {
181                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182                         ctx = NULL;
183                 }
184         }
185         rcu_read_unlock();
186         return ctx;
187 }
188
189 /*
190  * Get the context for a task and increment its pin_count so it
191  * can't get swapped to another task.  This also increments its
192  * reference count so that the context can't get freed.
193  */
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
196 {
197         struct perf_event_context *ctx;
198         unsigned long flags;
199
200         ctx = perf_lock_task_context(task, ctxn, &flags);
201         if (ctx) {
202                 ++ctx->pin_count;
203                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204         }
205         return ctx;
206 }
207
208 static void perf_unpin_context(struct perf_event_context *ctx)
209 {
210         unsigned long flags;
211
212         raw_spin_lock_irqsave(&ctx->lock, flags);
213         --ctx->pin_count;
214         raw_spin_unlock_irqrestore(&ctx->lock, flags);
215         put_ctx(ctx);
216 }
217
218 static inline u64 perf_clock(void)
219 {
220         return local_clock();
221 }
222
223 /*
224  * Update the record of the current time in a context.
225  */
226 static void update_context_time(struct perf_event_context *ctx)
227 {
228         u64 now = perf_clock();
229
230         ctx->time += now - ctx->timestamp;
231         ctx->timestamp = now;
232 }
233
234 /*
235  * Update the total_time_enabled and total_time_running fields for a event.
236  */
237 static void update_event_times(struct perf_event *event)
238 {
239         struct perf_event_context *ctx = event->ctx;
240         u64 run_end;
241
242         if (event->state < PERF_EVENT_STATE_INACTIVE ||
243             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244                 return;
245
246         if (ctx->is_active)
247                 run_end = ctx->time;
248         else
249                 run_end = event->tstamp_stopped;
250
251         event->total_time_enabled = run_end - event->tstamp_enabled;
252
253         if (event->state == PERF_EVENT_STATE_INACTIVE)
254                 run_end = event->tstamp_stopped;
255         else
256                 run_end = ctx->time;
257
258         event->total_time_running = run_end - event->tstamp_running;
259 }
260
261 /*
262  * Update total_time_enabled and total_time_running for all events in a group.
263  */
264 static void update_group_times(struct perf_event *leader)
265 {
266         struct perf_event *event;
267
268         update_event_times(leader);
269         list_for_each_entry(event, &leader->sibling_list, group_entry)
270                 update_event_times(event);
271 }
272
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 {
276         if (event->attr.pinned)
277                 return &ctx->pinned_groups;
278         else
279                 return &ctx->flexible_groups;
280 }
281
282 /*
283  * Add a event from the lists for its context.
284  * Must be called with ctx->mutex and ctx->lock held.
285  */
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 {
289         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290         event->attach_state |= PERF_ATTACH_CONTEXT;
291
292         /*
293          * If we're a stand alone event or group leader, we go to the context
294          * list, group events are kept attached to the group so that
295          * perf_group_detach can, at all times, locate all siblings.
296          */
297         if (event->group_leader == event) {
298                 struct list_head *list;
299
300                 if (is_software_event(event))
301                         event->group_flags |= PERF_GROUP_SOFTWARE;
302
303                 list = ctx_group_list(event, ctx);
304                 list_add_tail(&event->group_entry, list);
305         }
306
307         list_add_rcu(&event->event_entry, &ctx->event_list);
308         if (!ctx->nr_events)
309                 perf_pmu_rotate_start(ctx->pmu);
310         ctx->nr_events++;
311         if (event->attr.inherit_stat)
312                 ctx->nr_stat++;
313 }
314
315 static void perf_group_attach(struct perf_event *event)
316 {
317         struct perf_event *group_leader = event->group_leader;
318
319         /*
320          * We can have double attach due to group movement in perf_event_open.
321          */
322         if (event->attach_state & PERF_ATTACH_GROUP)
323                 return;
324
325         event->attach_state |= PERF_ATTACH_GROUP;
326
327         if (group_leader == event)
328                 return;
329
330         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331                         !is_software_event(event))
332                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333
334         list_add_tail(&event->group_entry, &group_leader->sibling_list);
335         group_leader->nr_siblings++;
336 }
337
338 /*
339  * Remove a event from the lists for its context.
340  * Must be called with ctx->mutex and ctx->lock held.
341  */
342 static void
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344 {
345         /*
346          * We can have double detach due to exit/hot-unplug + close.
347          */
348         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349                 return;
350
351         event->attach_state &= ~PERF_ATTACH_CONTEXT;
352
353         ctx->nr_events--;
354         if (event->attr.inherit_stat)
355                 ctx->nr_stat--;
356
357         list_del_rcu(&event->event_entry);
358
359         if (event->group_leader == event)
360                 list_del_init(&event->group_entry);
361
362         update_group_times(event);
363
364         /*
365          * If event was in error state, then keep it
366          * that way, otherwise bogus counts will be
367          * returned on read(). The only way to get out
368          * of error state is by explicit re-enabling
369          * of the event
370          */
371         if (event->state > PERF_EVENT_STATE_OFF)
372                 event->state = PERF_EVENT_STATE_OFF;
373 }
374
375 static void perf_group_detach(struct perf_event *event)
376 {
377         struct perf_event *sibling, *tmp;
378         struct list_head *list = NULL;
379
380         /*
381          * We can have double detach due to exit/hot-unplug + close.
382          */
383         if (!(event->attach_state & PERF_ATTACH_GROUP))
384                 return;
385
386         event->attach_state &= ~PERF_ATTACH_GROUP;
387
388         /*
389          * If this is a sibling, remove it from its group.
390          */
391         if (event->group_leader != event) {
392                 list_del_init(&event->group_entry);
393                 event->group_leader->nr_siblings--;
394                 return;
395         }
396
397         if (!list_empty(&event->group_entry))
398                 list = &event->group_entry;
399
400         /*
401          * If this was a group event with sibling events then
402          * upgrade the siblings to singleton events by adding them
403          * to whatever list we are on.
404          */
405         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406                 if (list)
407                         list_move_tail(&sibling->group_entry, list);
408                 sibling->group_leader = sibling;
409
410                 /* Inherit group flags from the previous leader */
411                 sibling->group_flags = event->group_flags;
412         }
413 }
414
415 static inline int
416 event_filter_match(struct perf_event *event)
417 {
418         return event->cpu == -1 || event->cpu == smp_processor_id();
419 }
420
421 static void
422 event_sched_out(struct perf_event *event,
423                   struct perf_cpu_context *cpuctx,
424                   struct perf_event_context *ctx)
425 {
426         u64 delta;
427         /*
428          * An event which could not be activated because of
429          * filter mismatch still needs to have its timings
430          * maintained, otherwise bogus information is return
431          * via read() for time_enabled, time_running:
432          */
433         if (event->state == PERF_EVENT_STATE_INACTIVE
434             && !event_filter_match(event)) {
435                 delta = ctx->time - event->tstamp_stopped;
436                 event->tstamp_running += delta;
437                 event->tstamp_stopped = ctx->time;
438         }
439
440         if (event->state != PERF_EVENT_STATE_ACTIVE)
441                 return;
442
443         event->state = PERF_EVENT_STATE_INACTIVE;
444         if (event->pending_disable) {
445                 event->pending_disable = 0;
446                 event->state = PERF_EVENT_STATE_OFF;
447         }
448         event->tstamp_stopped = ctx->time;
449         event->pmu->del(event, 0);
450         event->oncpu = -1;
451
452         if (!is_software_event(event))
453                 cpuctx->active_oncpu--;
454         ctx->nr_active--;
455         if (event->attr.exclusive || !cpuctx->active_oncpu)
456                 cpuctx->exclusive = 0;
457 }
458
459 static void
460 group_sched_out(struct perf_event *group_event,
461                 struct perf_cpu_context *cpuctx,
462                 struct perf_event_context *ctx)
463 {
464         struct perf_event *event;
465         int state = group_event->state;
466
467         event_sched_out(group_event, cpuctx, ctx);
468
469         /*
470          * Schedule out siblings (if any):
471          */
472         list_for_each_entry(event, &group_event->sibling_list, group_entry)
473                 event_sched_out(event, cpuctx, ctx);
474
475         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476                 cpuctx->exclusive = 0;
477 }
478
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
481 {
482         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
483 }
484
485 /*
486  * Cross CPU call to remove a performance event
487  *
488  * We disable the event on the hardware level first. After that we
489  * remove it from the context list.
490  */
491 static void __perf_event_remove_from_context(void *info)
492 {
493         struct perf_event *event = info;
494         struct perf_event_context *ctx = event->ctx;
495         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
496
497         /*
498          * If this is a task context, we need to check whether it is
499          * the current task context of this cpu. If not it has been
500          * scheduled out before the smp call arrived.
501          */
502         if (ctx->task && cpuctx->task_ctx != ctx)
503                 return;
504
505         raw_spin_lock(&ctx->lock);
506
507         event_sched_out(event, cpuctx, ctx);
508
509         list_del_event(event, ctx);
510
511         raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516  * Remove the event from a task's (or a CPU's) list of events.
517  *
518  * Must be called with ctx->mutex held.
519  *
520  * CPU events are removed with a smp call. For task events we only
521  * call when the task is on a CPU.
522  *
523  * If event->ctx is a cloned context, callers must make sure that
524  * every task struct that event->ctx->task could possibly point to
525  * remains valid.  This is OK when called from perf_release since
526  * that only calls us on the top-level context, which can't be a clone.
527  * When called from perf_event_exit_task, it's OK because the
528  * context has been detached from its task.
529  */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532         struct perf_event_context *ctx = event->ctx;
533         struct task_struct *task = ctx->task;
534
535         if (!task) {
536                 /*
537                  * Per cpu events are removed via an smp call and
538                  * the removal is always successful.
539                  */
540                 smp_call_function_single(event->cpu,
541                                          __perf_event_remove_from_context,
542                                          event, 1);
543                 return;
544         }
545
546 retry:
547         task_oncpu_function_call(task, __perf_event_remove_from_context,
548                                  event);
549
550         raw_spin_lock_irq(&ctx->lock);
551         /*
552          * If the context is active we need to retry the smp call.
553          */
554         if (ctx->nr_active && !list_empty(&event->group_entry)) {
555                 raw_spin_unlock_irq(&ctx->lock);
556                 goto retry;
557         }
558
559         /*
560          * The lock prevents that this context is scheduled in so we
561          * can remove the event safely, if the call above did not
562          * succeed.
563          */
564         if (!list_empty(&event->group_entry))
565                 list_del_event(event, ctx);
566         raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570  * Cross CPU call to disable a performance event
571  */
572 static void __perf_event_disable(void *info)
573 {
574         struct perf_event *event = info;
575         struct perf_event_context *ctx = event->ctx;
576         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
577
578         /*
579          * If this is a per-task event, need to check whether this
580          * event's task is the current task on this cpu.
581          */
582         if (ctx->task && cpuctx->task_ctx != ctx)
583                 return;
584
585         raw_spin_lock(&ctx->lock);
586
587         /*
588          * If the event is on, turn it off.
589          * If it is in error state, leave it in error state.
590          */
591         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592                 update_context_time(ctx);
593                 update_group_times(event);
594                 if (event == event->group_leader)
595                         group_sched_out(event, cpuctx, ctx);
596                 else
597                         event_sched_out(event, cpuctx, ctx);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605  * Disable a event.
606  *
607  * If event->ctx is a cloned context, callers must make sure that
608  * every task struct that event->ctx->task could possibly point to
609  * remains valid.  This condition is satisifed when called through
610  * perf_event_for_each_child or perf_event_for_each because they
611  * hold the top-level event's child_mutex, so any descendant that
612  * goes to exit will block in sync_child_event.
613  * When called from perf_pending_event it's OK because event->ctx
614  * is the current context on this CPU and preemption is disabled,
615  * hence we can't get into perf_event_task_sched_out for this context.
616  */
617 void perf_event_disable(struct perf_event *event)
618 {
619         struct perf_event_context *ctx = event->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Disable the event on the cpu that it's on
625                  */
626                 smp_call_function_single(event->cpu, __perf_event_disable,
627                                          event, 1);
628                 return;
629         }
630
631 retry:
632         task_oncpu_function_call(task, __perf_event_disable, event);
633
634         raw_spin_lock_irq(&ctx->lock);
635         /*
636          * If the event is still active, we need to retry the cross-call.
637          */
638         if (event->state == PERF_EVENT_STATE_ACTIVE) {
639                 raw_spin_unlock_irq(&ctx->lock);
640                 goto retry;
641         }
642
643         /*
644          * Since we have the lock this context can't be scheduled
645          * in, so we can change the state safely.
646          */
647         if (event->state == PERF_EVENT_STATE_INACTIVE) {
648                 update_group_times(event);
649                 event->state = PERF_EVENT_STATE_OFF;
650         }
651
652         raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657                  struct perf_cpu_context *cpuctx,
658                  struct perf_event_context *ctx)
659 {
660         if (event->state <= PERF_EVENT_STATE_OFF)
661                 return 0;
662
663         event->state = PERF_EVENT_STATE_ACTIVE;
664         event->oncpu = smp_processor_id();
665         /*
666          * The new state must be visible before we turn it on in the hardware:
667          */
668         smp_wmb();
669
670         if (event->pmu->add(event, PERF_EF_START)) {
671                 event->state = PERF_EVENT_STATE_INACTIVE;
672                 event->oncpu = -1;
673                 return -EAGAIN;
674         }
675
676         event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678         event->shadow_ctx_time = ctx->time - ctx->timestamp;
679
680         if (!is_software_event(event))
681                 cpuctx->active_oncpu++;
682         ctx->nr_active++;
683
684         if (event->attr.exclusive)
685                 cpuctx->exclusive = 1;
686
687         return 0;
688 }
689
690 static int
691 group_sched_in(struct perf_event *group_event,
692                struct perf_cpu_context *cpuctx,
693                struct perf_event_context *ctx)
694 {
695         struct perf_event *event, *partial_group = NULL;
696         struct pmu *pmu = group_event->pmu;
697         u64 now = ctx->time;
698         bool simulate = false;
699
700         if (group_event->state == PERF_EVENT_STATE_OFF)
701                 return 0;
702
703         pmu->start_txn(pmu);
704
705         if (event_sched_in(group_event, cpuctx, ctx)) {
706                 pmu->cancel_txn(pmu);
707                 return -EAGAIN;
708         }
709
710         /*
711          * Schedule in siblings as one group (if any):
712          */
713         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714                 if (event_sched_in(event, cpuctx, ctx)) {
715                         partial_group = event;
716                         goto group_error;
717                 }
718         }
719
720         if (!pmu->commit_txn(pmu))
721                 return 0;
722
723 group_error:
724         /*
725          * Groups can be scheduled in as one unit only, so undo any
726          * partial group before returning:
727          * The events up to the failed event are scheduled out normally,
728          * tstamp_stopped will be updated.
729          *
730          * The failed events and the remaining siblings need to have
731          * their timings updated as if they had gone thru event_sched_in()
732          * and event_sched_out(). This is required to get consistent timings
733          * across the group. This also takes care of the case where the group
734          * could never be scheduled by ensuring tstamp_stopped is set to mark
735          * the time the event was actually stopped, such that time delta
736          * calculation in update_event_times() is correct.
737          */
738         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739                 if (event == partial_group)
740                         simulate = true;
741
742                 if (simulate) {
743                         event->tstamp_running += now - event->tstamp_stopped;
744                         event->tstamp_stopped = now;
745                 } else {
746                         event_sched_out(event, cpuctx, ctx);
747                 }
748         }
749         event_sched_out(group_event, cpuctx, ctx);
750
751         pmu->cancel_txn(pmu);
752
753         return -EAGAIN;
754 }
755
756 /*
757  * Work out whether we can put this event group on the CPU now.
758  */
759 static int group_can_go_on(struct perf_event *event,
760                            struct perf_cpu_context *cpuctx,
761                            int can_add_hw)
762 {
763         /*
764          * Groups consisting entirely of software events can always go on.
765          */
766         if (event->group_flags & PERF_GROUP_SOFTWARE)
767                 return 1;
768         /*
769          * If an exclusive group is already on, no other hardware
770          * events can go on.
771          */
772         if (cpuctx->exclusive)
773                 return 0;
774         /*
775          * If this group is exclusive and there are already
776          * events on the CPU, it can't go on.
777          */
778         if (event->attr.exclusive && cpuctx->active_oncpu)
779                 return 0;
780         /*
781          * Otherwise, try to add it if all previous groups were able
782          * to go on.
783          */
784         return can_add_hw;
785 }
786
787 static void add_event_to_ctx(struct perf_event *event,
788                                struct perf_event_context *ctx)
789 {
790         list_add_event(event, ctx);
791         perf_group_attach(event);
792         event->tstamp_enabled = ctx->time;
793         event->tstamp_running = ctx->time;
794         event->tstamp_stopped = ctx->time;
795 }
796
797 /*
798  * Cross CPU call to install and enable a performance event
799  *
800  * Must be called with ctx->mutex held
801  */
802 static void __perf_install_in_context(void *info)
803 {
804         struct perf_event *event = info;
805         struct perf_event_context *ctx = event->ctx;
806         struct perf_event *leader = event->group_leader;
807         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808         int err;
809
810         /*
811          * If this is a task context, we need to check whether it is
812          * the current task context of this cpu. If not it has been
813          * scheduled out before the smp call arrived.
814          * Or possibly this is the right context but it isn't
815          * on this cpu because it had no events.
816          */
817         if (ctx->task && cpuctx->task_ctx != ctx) {
818                 if (cpuctx->task_ctx || ctx->task != current)
819                         return;
820                 cpuctx->task_ctx = ctx;
821         }
822
823         raw_spin_lock(&ctx->lock);
824         ctx->is_active = 1;
825         update_context_time(ctx);
826
827         add_event_to_ctx(event, ctx);
828
829         if (event->cpu != -1 && event->cpu != smp_processor_id())
830                 goto unlock;
831
832         /*
833          * Don't put the event on if it is disabled or if
834          * it is in a group and the group isn't on.
835          */
836         if (event->state != PERF_EVENT_STATE_INACTIVE ||
837             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838                 goto unlock;
839
840         /*
841          * An exclusive event can't go on if there are already active
842          * hardware events, and no hardware event can go on if there
843          * is already an exclusive event on.
844          */
845         if (!group_can_go_on(event, cpuctx, 1))
846                 err = -EEXIST;
847         else
848                 err = event_sched_in(event, cpuctx, ctx);
849
850         if (err) {
851                 /*
852                  * This event couldn't go on.  If it is in a group
853                  * then we have to pull the whole group off.
854                  * If the event group is pinned then put it in error state.
855                  */
856                 if (leader != event)
857                         group_sched_out(leader, cpuctx, ctx);
858                 if (leader->attr.pinned) {
859                         update_group_times(leader);
860                         leader->state = PERF_EVENT_STATE_ERROR;
861                 }
862         }
863
864 unlock:
865         raw_spin_unlock(&ctx->lock);
866 }
867
868 /*
869  * Attach a performance event to a context
870  *
871  * First we add the event to the list with the hardware enable bit
872  * in event->hw_config cleared.
873  *
874  * If the event is attached to a task which is on a CPU we use a smp
875  * call to enable it in the task context. The task might have been
876  * scheduled away, but we check this in the smp call again.
877  *
878  * Must be called with ctx->mutex held.
879  */
880 static void
881 perf_install_in_context(struct perf_event_context *ctx,
882                         struct perf_event *event,
883                         int cpu)
884 {
885         struct task_struct *task = ctx->task;
886
887         event->ctx = ctx;
888
889         if (!task) {
890                 /*
891                  * Per cpu events are installed via an smp call and
892                  * the install is always successful.
893                  */
894                 smp_call_function_single(cpu, __perf_install_in_context,
895                                          event, 1);
896                 return;
897         }
898
899 retry:
900         task_oncpu_function_call(task, __perf_install_in_context,
901                                  event);
902
903         raw_spin_lock_irq(&ctx->lock);
904         /*
905          * we need to retry the smp call.
906          */
907         if (ctx->is_active && list_empty(&event->group_entry)) {
908                 raw_spin_unlock_irq(&ctx->lock);
909                 goto retry;
910         }
911
912         /*
913          * The lock prevents that this context is scheduled in so we
914          * can add the event safely, if it the call above did not
915          * succeed.
916          */
917         if (list_empty(&event->group_entry))
918                 add_event_to_ctx(event, ctx);
919         raw_spin_unlock_irq(&ctx->lock);
920 }
921
922 /*
923  * Put a event into inactive state and update time fields.
924  * Enabling the leader of a group effectively enables all
925  * the group members that aren't explicitly disabled, so we
926  * have to update their ->tstamp_enabled also.
927  * Note: this works for group members as well as group leaders
928  * since the non-leader members' sibling_lists will be empty.
929  */
930 static void __perf_event_mark_enabled(struct perf_event *event,
931                                         struct perf_event_context *ctx)
932 {
933         struct perf_event *sub;
934
935         event->state = PERF_EVENT_STATE_INACTIVE;
936         event->tstamp_enabled = ctx->time - event->total_time_enabled;
937         list_for_each_entry(sub, &event->sibling_list, group_entry) {
938                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939                         sub->tstamp_enabled =
940                                 ctx->time - sub->total_time_enabled;
941                 }
942         }
943 }
944
945 /*
946  * Cross CPU call to enable a performance event
947  */
948 static void __perf_event_enable(void *info)
949 {
950         struct perf_event *event = info;
951         struct perf_event_context *ctx = event->ctx;
952         struct perf_event *leader = event->group_leader;
953         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954         int err;
955
956         /*
957          * If this is a per-task event, need to check whether this
958          * event's task is the current task on this cpu.
959          */
960         if (ctx->task && cpuctx->task_ctx != ctx) {
961                 if (cpuctx->task_ctx || ctx->task != current)
962                         return;
963                 cpuctx->task_ctx = ctx;
964         }
965
966         raw_spin_lock(&ctx->lock);
967         ctx->is_active = 1;
968         update_context_time(ctx);
969
970         if (event->state >= PERF_EVENT_STATE_INACTIVE)
971                 goto unlock;
972         __perf_event_mark_enabled(event, ctx);
973
974         if (event->cpu != -1 && event->cpu != smp_processor_id())
975                 goto unlock;
976
977         /*
978          * If the event is in a group and isn't the group leader,
979          * then don't put it on unless the group is on.
980          */
981         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982                 goto unlock;
983
984         if (!group_can_go_on(event, cpuctx, 1)) {
985                 err = -EEXIST;
986         } else {
987                 if (event == leader)
988                         err = group_sched_in(event, cpuctx, ctx);
989                 else
990                         err = event_sched_in(event, cpuctx, ctx);
991         }
992
993         if (err) {
994                 /*
995                  * If this event can't go on and it's part of a
996                  * group, then the whole group has to come off.
997                  */
998                 if (leader != event)
999                         group_sched_out(leader, cpuctx, ctx);
1000                 if (leader->attr.pinned) {
1001                         update_group_times(leader);
1002                         leader->state = PERF_EVENT_STATE_ERROR;
1003                 }
1004         }
1005
1006 unlock:
1007         raw_spin_unlock(&ctx->lock);
1008 }
1009
1010 /*
1011  * Enable a event.
1012  *
1013  * If event->ctx is a cloned context, callers must make sure that
1014  * every task struct that event->ctx->task could possibly point to
1015  * remains valid.  This condition is satisfied when called through
1016  * perf_event_for_each_child or perf_event_for_each as described
1017  * for perf_event_disable.
1018  */
1019 void perf_event_enable(struct perf_event *event)
1020 {
1021         struct perf_event_context *ctx = event->ctx;
1022         struct task_struct *task = ctx->task;
1023
1024         if (!task) {
1025                 /*
1026                  * Enable the event on the cpu that it's on
1027                  */
1028                 smp_call_function_single(event->cpu, __perf_event_enable,
1029                                          event, 1);
1030                 return;
1031         }
1032
1033         raw_spin_lock_irq(&ctx->lock);
1034         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035                 goto out;
1036
1037         /*
1038          * If the event is in error state, clear that first.
1039          * That way, if we see the event in error state below, we
1040          * know that it has gone back into error state, as distinct
1041          * from the task having been scheduled away before the
1042          * cross-call arrived.
1043          */
1044         if (event->state == PERF_EVENT_STATE_ERROR)
1045                 event->state = PERF_EVENT_STATE_OFF;
1046
1047 retry:
1048         raw_spin_unlock_irq(&ctx->lock);
1049         task_oncpu_function_call(task, __perf_event_enable, event);
1050
1051         raw_spin_lock_irq(&ctx->lock);
1052
1053         /*
1054          * If the context is active and the event is still off,
1055          * we need to retry the cross-call.
1056          */
1057         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058                 goto retry;
1059
1060         /*
1061          * Since we have the lock this context can't be scheduled
1062          * in, so we can change the state safely.
1063          */
1064         if (event->state == PERF_EVENT_STATE_OFF)
1065                 __perf_event_mark_enabled(event, ctx);
1066
1067 out:
1068         raw_spin_unlock_irq(&ctx->lock);
1069 }
1070
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1072 {
1073         /*
1074          * not supported on inherited events
1075          */
1076         if (event->attr.inherit)
1077                 return -EINVAL;
1078
1079         atomic_add(refresh, &event->event_limit);
1080         perf_event_enable(event);
1081
1082         return 0;
1083 }
1084
1085 enum event_type_t {
1086         EVENT_FLEXIBLE = 0x1,
1087         EVENT_PINNED = 0x2,
1088         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1089 };
1090
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092                           struct perf_cpu_context *cpuctx,
1093                           enum event_type_t event_type)
1094 {
1095         struct perf_event *event;
1096
1097         raw_spin_lock(&ctx->lock);
1098         perf_pmu_disable(ctx->pmu);
1099         ctx->is_active = 0;
1100         if (likely(!ctx->nr_events))
1101                 goto out;
1102         update_context_time(ctx);
1103
1104         if (!ctx->nr_active)
1105                 goto out;
1106
1107         if (event_type & EVENT_PINNED) {
1108                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109                         group_sched_out(event, cpuctx, ctx);
1110         }
1111
1112         if (event_type & EVENT_FLEXIBLE) {
1113                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114                         group_sched_out(event, cpuctx, ctx);
1115         }
1116 out:
1117         perf_pmu_enable(ctx->pmu);
1118         raw_spin_unlock(&ctx->lock);
1119 }
1120
1121 /*
1122  * Test whether two contexts are equivalent, i.e. whether they
1123  * have both been cloned from the same version of the same context
1124  * and they both have the same number of enabled events.
1125  * If the number of enabled events is the same, then the set
1126  * of enabled events should be the same, because these are both
1127  * inherited contexts, therefore we can't access individual events
1128  * in them directly with an fd; we can only enable/disable all
1129  * events via prctl, or enable/disable all events in a family
1130  * via ioctl, which will have the same effect on both contexts.
1131  */
1132 static int context_equiv(struct perf_event_context *ctx1,
1133                          struct perf_event_context *ctx2)
1134 {
1135         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136                 && ctx1->parent_gen == ctx2->parent_gen
1137                 && !ctx1->pin_count && !ctx2->pin_count;
1138 }
1139
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141                                      struct perf_event *next_event)
1142 {
1143         u64 value;
1144
1145         if (!event->attr.inherit_stat)
1146                 return;
1147
1148         /*
1149          * Update the event value, we cannot use perf_event_read()
1150          * because we're in the middle of a context switch and have IRQs
1151          * disabled, which upsets smp_call_function_single(), however
1152          * we know the event must be on the current CPU, therefore we
1153          * don't need to use it.
1154          */
1155         switch (event->state) {
1156         case PERF_EVENT_STATE_ACTIVE:
1157                 event->pmu->read(event);
1158                 /* fall-through */
1159
1160         case PERF_EVENT_STATE_INACTIVE:
1161                 update_event_times(event);
1162                 break;
1163
1164         default:
1165                 break;
1166         }
1167
1168         /*
1169          * In order to keep per-task stats reliable we need to flip the event
1170          * values when we flip the contexts.
1171          */
1172         value = local64_read(&next_event->count);
1173         value = local64_xchg(&event->count, value);
1174         local64_set(&next_event->count, value);
1175
1176         swap(event->total_time_enabled, next_event->total_time_enabled);
1177         swap(event->total_time_running, next_event->total_time_running);
1178
1179         /*
1180          * Since we swizzled the values, update the user visible data too.
1181          */
1182         perf_event_update_userpage(event);
1183         perf_event_update_userpage(next_event);
1184 }
1185
1186 #define list_next_entry(pos, member) \
1187         list_entry(pos->member.next, typeof(*pos), member)
1188
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190                                    struct perf_event_context *next_ctx)
1191 {
1192         struct perf_event *event, *next_event;
1193
1194         if (!ctx->nr_stat)
1195                 return;
1196
1197         update_context_time(ctx);
1198
1199         event = list_first_entry(&ctx->event_list,
1200                                    struct perf_event, event_entry);
1201
1202         next_event = list_first_entry(&next_ctx->event_list,
1203                                         struct perf_event, event_entry);
1204
1205         while (&event->event_entry != &ctx->event_list &&
1206                &next_event->event_entry != &next_ctx->event_list) {
1207
1208                 __perf_event_sync_stat(event, next_event);
1209
1210                 event = list_next_entry(event, event_entry);
1211                 next_event = list_next_entry(next_event, event_entry);
1212         }
1213 }
1214
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216                                   struct task_struct *next)
1217 {
1218         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219         struct perf_event_context *next_ctx;
1220         struct perf_event_context *parent;
1221         struct perf_cpu_context *cpuctx;
1222         int do_switch = 1;
1223
1224         if (likely(!ctx))
1225                 return;
1226
1227         cpuctx = __get_cpu_context(ctx);
1228         if (!cpuctx->task_ctx)
1229                 return;
1230
1231         rcu_read_lock();
1232         parent = rcu_dereference(ctx->parent_ctx);
1233         next_ctx = next->perf_event_ctxp[ctxn];
1234         if (parent && next_ctx &&
1235             rcu_dereference(next_ctx->parent_ctx) == parent) {
1236                 /*
1237                  * Looks like the two contexts are clones, so we might be
1238                  * able to optimize the context switch.  We lock both
1239                  * contexts and check that they are clones under the
1240                  * lock (including re-checking that neither has been
1241                  * uncloned in the meantime).  It doesn't matter which
1242                  * order we take the locks because no other cpu could
1243                  * be trying to lock both of these tasks.
1244                  */
1245                 raw_spin_lock(&ctx->lock);
1246                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247                 if (context_equiv(ctx, next_ctx)) {
1248                         /*
1249                          * XXX do we need a memory barrier of sorts
1250                          * wrt to rcu_dereference() of perf_event_ctxp
1251                          */
1252                         task->perf_event_ctxp[ctxn] = next_ctx;
1253                         next->perf_event_ctxp[ctxn] = ctx;
1254                         ctx->task = next;
1255                         next_ctx->task = task;
1256                         do_switch = 0;
1257
1258                         perf_event_sync_stat(ctx, next_ctx);
1259                 }
1260                 raw_spin_unlock(&next_ctx->lock);
1261                 raw_spin_unlock(&ctx->lock);
1262         }
1263         rcu_read_unlock();
1264
1265         if (do_switch) {
1266                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267                 cpuctx->task_ctx = NULL;
1268         }
1269 }
1270
1271 #define for_each_task_context_nr(ctxn)                                  \
1272         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1273
1274 /*
1275  * Called from scheduler to remove the events of the current task,
1276  * with interrupts disabled.
1277  *
1278  * We stop each event and update the event value in event->count.
1279  *
1280  * This does not protect us against NMI, but disable()
1281  * sets the disabled bit in the control field of event _before_
1282  * accessing the event control register. If a NMI hits, then it will
1283  * not restart the event.
1284  */
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286                                  struct task_struct *next)
1287 {
1288         int ctxn;
1289
1290         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1291
1292         for_each_task_context_nr(ctxn)
1293                 perf_event_context_sched_out(task, ctxn, next);
1294 }
1295
1296 static void task_ctx_sched_out(struct perf_event_context *ctx,
1297                                enum event_type_t event_type)
1298 {
1299         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1300
1301         if (!cpuctx->task_ctx)
1302                 return;
1303
1304         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1305                 return;
1306
1307         ctx_sched_out(ctx, cpuctx, event_type);
1308         cpuctx->task_ctx = NULL;
1309 }
1310
1311 /*
1312  * Called with IRQs disabled
1313  */
1314 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1315                               enum event_type_t event_type)
1316 {
1317         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1318 }
1319
1320 static void
1321 ctx_pinned_sched_in(struct perf_event_context *ctx,
1322                     struct perf_cpu_context *cpuctx)
1323 {
1324         struct perf_event *event;
1325
1326         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1327                 if (event->state <= PERF_EVENT_STATE_OFF)
1328                         continue;
1329                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1330                         continue;
1331
1332                 if (group_can_go_on(event, cpuctx, 1))
1333                         group_sched_in(event, cpuctx, ctx);
1334
1335                 /*
1336                  * If this pinned group hasn't been scheduled,
1337                  * put it in error state.
1338                  */
1339                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1340                         update_group_times(event);
1341                         event->state = PERF_EVENT_STATE_ERROR;
1342                 }
1343         }
1344 }
1345
1346 static void
1347 ctx_flexible_sched_in(struct perf_event_context *ctx,
1348                       struct perf_cpu_context *cpuctx)
1349 {
1350         struct perf_event *event;
1351         int can_add_hw = 1;
1352
1353         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1354                 /* Ignore events in OFF or ERROR state */
1355                 if (event->state <= PERF_EVENT_STATE_OFF)
1356                         continue;
1357                 /*
1358                  * Listen to the 'cpu' scheduling filter constraint
1359                  * of events:
1360                  */
1361                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362                         continue;
1363
1364                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1365                         if (group_sched_in(event, cpuctx, ctx))
1366                                 can_add_hw = 0;
1367                 }
1368         }
1369 }
1370
1371 static void
1372 ctx_sched_in(struct perf_event_context *ctx,
1373              struct perf_cpu_context *cpuctx,
1374              enum event_type_t event_type)
1375 {
1376         raw_spin_lock(&ctx->lock);
1377         ctx->is_active = 1;
1378         if (likely(!ctx->nr_events))
1379                 goto out;
1380
1381         ctx->timestamp = perf_clock();
1382
1383         /*
1384          * First go through the list and put on any pinned groups
1385          * in order to give them the best chance of going on.
1386          */
1387         if (event_type & EVENT_PINNED)
1388                 ctx_pinned_sched_in(ctx, cpuctx);
1389
1390         /* Then walk through the lower prio flexible groups */
1391         if (event_type & EVENT_FLEXIBLE)
1392                 ctx_flexible_sched_in(ctx, cpuctx);
1393
1394 out:
1395         raw_spin_unlock(&ctx->lock);
1396 }
1397
1398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1399                              enum event_type_t event_type)
1400 {
1401         struct perf_event_context *ctx = &cpuctx->ctx;
1402
1403         ctx_sched_in(ctx, cpuctx, event_type);
1404 }
1405
1406 static void task_ctx_sched_in(struct perf_event_context *ctx,
1407                               enum event_type_t event_type)
1408 {
1409         struct perf_cpu_context *cpuctx;
1410
1411         cpuctx = __get_cpu_context(ctx);
1412         if (cpuctx->task_ctx == ctx)
1413                 return;
1414
1415         ctx_sched_in(ctx, cpuctx, event_type);
1416         cpuctx->task_ctx = ctx;
1417 }
1418
1419 void perf_event_context_sched_in(struct perf_event_context *ctx)
1420 {
1421         struct perf_cpu_context *cpuctx;
1422
1423         cpuctx = __get_cpu_context(ctx);
1424         if (cpuctx->task_ctx == ctx)
1425                 return;
1426
1427         perf_pmu_disable(ctx->pmu);
1428         /*
1429          * We want to keep the following priority order:
1430          * cpu pinned (that don't need to move), task pinned,
1431          * cpu flexible, task flexible.
1432          */
1433         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1434
1435         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1436         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1437         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1438
1439         cpuctx->task_ctx = ctx;
1440
1441         /*
1442          * Since these rotations are per-cpu, we need to ensure the
1443          * cpu-context we got scheduled on is actually rotating.
1444          */
1445         perf_pmu_rotate_start(ctx->pmu);
1446         perf_pmu_enable(ctx->pmu);
1447 }
1448
1449 /*
1450  * Called from scheduler to add the events of the current task
1451  * with interrupts disabled.
1452  *
1453  * We restore the event value and then enable it.
1454  *
1455  * This does not protect us against NMI, but enable()
1456  * sets the enabled bit in the control field of event _before_
1457  * accessing the event control register. If a NMI hits, then it will
1458  * keep the event running.
1459  */
1460 void __perf_event_task_sched_in(struct task_struct *task)
1461 {
1462         struct perf_event_context *ctx;
1463         int ctxn;
1464
1465         for_each_task_context_nr(ctxn) {
1466                 ctx = task->perf_event_ctxp[ctxn];
1467                 if (likely(!ctx))
1468                         continue;
1469
1470                 perf_event_context_sched_in(ctx);
1471         }
1472 }
1473
1474 #define MAX_INTERRUPTS (~0ULL)
1475
1476 static void perf_log_throttle(struct perf_event *event, int enable);
1477
1478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1479 {
1480         u64 frequency = event->attr.sample_freq;
1481         u64 sec = NSEC_PER_SEC;
1482         u64 divisor, dividend;
1483
1484         int count_fls, nsec_fls, frequency_fls, sec_fls;
1485
1486         count_fls = fls64(count);
1487         nsec_fls = fls64(nsec);
1488         frequency_fls = fls64(frequency);
1489         sec_fls = 30;
1490
1491         /*
1492          * We got @count in @nsec, with a target of sample_freq HZ
1493          * the target period becomes:
1494          *
1495          *             @count * 10^9
1496          * period = -------------------
1497          *          @nsec * sample_freq
1498          *
1499          */
1500
1501         /*
1502          * Reduce accuracy by one bit such that @a and @b converge
1503          * to a similar magnitude.
1504          */
1505 #define REDUCE_FLS(a, b)                \
1506 do {                                    \
1507         if (a##_fls > b##_fls) {        \
1508                 a >>= 1;                \
1509                 a##_fls--;              \
1510         } else {                        \
1511                 b >>= 1;                \
1512                 b##_fls--;              \
1513         }                               \
1514 } while (0)
1515
1516         /*
1517          * Reduce accuracy until either term fits in a u64, then proceed with
1518          * the other, so that finally we can do a u64/u64 division.
1519          */
1520         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1521                 REDUCE_FLS(nsec, frequency);
1522                 REDUCE_FLS(sec, count);
1523         }
1524
1525         if (count_fls + sec_fls > 64) {
1526                 divisor = nsec * frequency;
1527
1528                 while (count_fls + sec_fls > 64) {
1529                         REDUCE_FLS(count, sec);
1530                         divisor >>= 1;
1531                 }
1532
1533                 dividend = count * sec;
1534         } else {
1535                 dividend = count * sec;
1536
1537                 while (nsec_fls + frequency_fls > 64) {
1538                         REDUCE_FLS(nsec, frequency);
1539                         dividend >>= 1;
1540                 }
1541
1542                 divisor = nsec * frequency;
1543         }
1544
1545         if (!divisor)
1546                 return dividend;
1547
1548         return div64_u64(dividend, divisor);
1549 }
1550
1551 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1552 {
1553         struct hw_perf_event *hwc = &event->hw;
1554         s64 period, sample_period;
1555         s64 delta;
1556
1557         period = perf_calculate_period(event, nsec, count);
1558
1559         delta = (s64)(period - hwc->sample_period);
1560         delta = (delta + 7) / 8; /* low pass filter */
1561
1562         sample_period = hwc->sample_period + delta;
1563
1564         if (!sample_period)
1565                 sample_period = 1;
1566
1567         hwc->sample_period = sample_period;
1568
1569         if (local64_read(&hwc->period_left) > 8*sample_period) {
1570                 event->pmu->stop(event, PERF_EF_UPDATE);
1571                 local64_set(&hwc->period_left, 0);
1572                 event->pmu->start(event, PERF_EF_RELOAD);
1573         }
1574 }
1575
1576 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1577 {
1578         struct perf_event *event;
1579         struct hw_perf_event *hwc;
1580         u64 interrupts, now;
1581         s64 delta;
1582
1583         raw_spin_lock(&ctx->lock);
1584         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1585                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1586                         continue;
1587
1588                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1589                         continue;
1590
1591                 hwc = &event->hw;
1592
1593                 interrupts = hwc->interrupts;
1594                 hwc->interrupts = 0;
1595
1596                 /*
1597                  * unthrottle events on the tick
1598                  */
1599                 if (interrupts == MAX_INTERRUPTS) {
1600                         perf_log_throttle(event, 1);
1601                         event->pmu->start(event, 0);
1602                 }
1603
1604                 if (!event->attr.freq || !event->attr.sample_freq)
1605                         continue;
1606
1607                 event->pmu->read(event);
1608                 now = local64_read(&event->count);
1609                 delta = now - hwc->freq_count_stamp;
1610                 hwc->freq_count_stamp = now;
1611
1612                 if (delta > 0)
1613                         perf_adjust_period(event, period, delta);
1614         }
1615         raw_spin_unlock(&ctx->lock);
1616 }
1617
1618 /*
1619  * Round-robin a context's events:
1620  */
1621 static void rotate_ctx(struct perf_event_context *ctx)
1622 {
1623         raw_spin_lock(&ctx->lock);
1624
1625         /* Rotate the first entry last of non-pinned groups */
1626         list_rotate_left(&ctx->flexible_groups);
1627
1628         raw_spin_unlock(&ctx->lock);
1629 }
1630
1631 /*
1632  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1633  * because they're strictly cpu affine and rotate_start is called with IRQs
1634  * disabled, while rotate_context is called from IRQ context.
1635  */
1636 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1637 {
1638         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1639         struct perf_event_context *ctx = NULL;
1640         int rotate = 0, remove = 1;
1641
1642         if (cpuctx->ctx.nr_events) {
1643                 remove = 0;
1644                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1645                         rotate = 1;
1646         }
1647
1648         ctx = cpuctx->task_ctx;
1649         if (ctx && ctx->nr_events) {
1650                 remove = 0;
1651                 if (ctx->nr_events != ctx->nr_active)
1652                         rotate = 1;
1653         }
1654
1655         perf_pmu_disable(cpuctx->ctx.pmu);
1656         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1657         if (ctx)
1658                 perf_ctx_adjust_freq(ctx, interval);
1659
1660         if (!rotate)
1661                 goto done;
1662
1663         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1664         if (ctx)
1665                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1666
1667         rotate_ctx(&cpuctx->ctx);
1668         if (ctx)
1669                 rotate_ctx(ctx);
1670
1671         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1672         if (ctx)
1673                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1674
1675 done:
1676         if (remove)
1677                 list_del_init(&cpuctx->rotation_list);
1678
1679         perf_pmu_enable(cpuctx->ctx.pmu);
1680 }
1681
1682 void perf_event_task_tick(void)
1683 {
1684         struct list_head *head = &__get_cpu_var(rotation_list);
1685         struct perf_cpu_context *cpuctx, *tmp;
1686
1687         WARN_ON(!irqs_disabled());
1688
1689         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1690                 if (cpuctx->jiffies_interval == 1 ||
1691                                 !(jiffies % cpuctx->jiffies_interval))
1692                         perf_rotate_context(cpuctx);
1693         }
1694 }
1695
1696 static int event_enable_on_exec(struct perf_event *event,
1697                                 struct perf_event_context *ctx)
1698 {
1699         if (!event->attr.enable_on_exec)
1700                 return 0;
1701
1702         event->attr.enable_on_exec = 0;
1703         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1704                 return 0;
1705
1706         __perf_event_mark_enabled(event, ctx);
1707
1708         return 1;
1709 }
1710
1711 /*
1712  * Enable all of a task's events that have been marked enable-on-exec.
1713  * This expects task == current.
1714  */
1715 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1716 {
1717         struct perf_event *event;
1718         unsigned long flags;
1719         int enabled = 0;
1720         int ret;
1721
1722         local_irq_save(flags);
1723         if (!ctx || !ctx->nr_events)
1724                 goto out;
1725
1726         task_ctx_sched_out(ctx, EVENT_ALL);
1727
1728         raw_spin_lock(&ctx->lock);
1729
1730         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1731                 ret = event_enable_on_exec(event, ctx);
1732                 if (ret)
1733                         enabled = 1;
1734         }
1735
1736         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1737                 ret = event_enable_on_exec(event, ctx);
1738                 if (ret)
1739                         enabled = 1;
1740         }
1741
1742         /*
1743          * Unclone this context if we enabled any event.
1744          */
1745         if (enabled)
1746                 unclone_ctx(ctx);
1747
1748         raw_spin_unlock(&ctx->lock);
1749
1750         perf_event_context_sched_in(ctx);
1751 out:
1752         local_irq_restore(flags);
1753 }
1754
1755 /*
1756  * Cross CPU call to read the hardware event
1757  */
1758 static void __perf_event_read(void *info)
1759 {
1760         struct perf_event *event = info;
1761         struct perf_event_context *ctx = event->ctx;
1762         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1763
1764         /*
1765          * If this is a task context, we need to check whether it is
1766          * the current task context of this cpu.  If not it has been
1767          * scheduled out before the smp call arrived.  In that case
1768          * event->count would have been updated to a recent sample
1769          * when the event was scheduled out.
1770          */
1771         if (ctx->task && cpuctx->task_ctx != ctx)
1772                 return;
1773
1774         raw_spin_lock(&ctx->lock);
1775         update_context_time(ctx);
1776         update_event_times(event);
1777         raw_spin_unlock(&ctx->lock);
1778
1779         event->pmu->read(event);
1780 }
1781
1782 static inline u64 perf_event_count(struct perf_event *event)
1783 {
1784         return local64_read(&event->count) + atomic64_read(&event->child_count);
1785 }
1786
1787 static u64 perf_event_read(struct perf_event *event)
1788 {
1789         /*
1790          * If event is enabled and currently active on a CPU, update the
1791          * value in the event structure:
1792          */
1793         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1794                 smp_call_function_single(event->oncpu,
1795                                          __perf_event_read, event, 1);
1796         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1797                 struct perf_event_context *ctx = event->ctx;
1798                 unsigned long flags;
1799
1800                 raw_spin_lock_irqsave(&ctx->lock, flags);
1801                 /*
1802                  * may read while context is not active
1803                  * (e.g., thread is blocked), in that case
1804                  * we cannot update context time
1805                  */
1806                 if (ctx->is_active)
1807                         update_context_time(ctx);
1808                 update_event_times(event);
1809                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1810         }
1811
1812         return perf_event_count(event);
1813 }
1814
1815 /*
1816  * Callchain support
1817  */
1818
1819 struct callchain_cpus_entries {
1820         struct rcu_head                 rcu_head;
1821         struct perf_callchain_entry     *cpu_entries[0];
1822 };
1823
1824 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1825 static atomic_t nr_callchain_events;
1826 static DEFINE_MUTEX(callchain_mutex);
1827 struct callchain_cpus_entries *callchain_cpus_entries;
1828
1829
1830 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1831                                   struct pt_regs *regs)
1832 {
1833 }
1834
1835 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1836                                 struct pt_regs *regs)
1837 {
1838 }
1839
1840 static void release_callchain_buffers_rcu(struct rcu_head *head)
1841 {
1842         struct callchain_cpus_entries *entries;
1843         int cpu;
1844
1845         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1846
1847         for_each_possible_cpu(cpu)
1848                 kfree(entries->cpu_entries[cpu]);
1849
1850         kfree(entries);
1851 }
1852
1853 static void release_callchain_buffers(void)
1854 {
1855         struct callchain_cpus_entries *entries;
1856
1857         entries = callchain_cpus_entries;
1858         rcu_assign_pointer(callchain_cpus_entries, NULL);
1859         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1860 }
1861
1862 static int alloc_callchain_buffers(void)
1863 {
1864         int cpu;
1865         int size;
1866         struct callchain_cpus_entries *entries;
1867
1868         /*
1869          * We can't use the percpu allocation API for data that can be
1870          * accessed from NMI. Use a temporary manual per cpu allocation
1871          * until that gets sorted out.
1872          */
1873         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1874                 num_possible_cpus();
1875
1876         entries = kzalloc(size, GFP_KERNEL);
1877         if (!entries)
1878                 return -ENOMEM;
1879
1880         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1881
1882         for_each_possible_cpu(cpu) {
1883                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1884                                                          cpu_to_node(cpu));
1885                 if (!entries->cpu_entries[cpu])
1886                         goto fail;
1887         }
1888
1889         rcu_assign_pointer(callchain_cpus_entries, entries);
1890
1891         return 0;
1892
1893 fail:
1894         for_each_possible_cpu(cpu)
1895                 kfree(entries->cpu_entries[cpu]);
1896         kfree(entries);
1897
1898         return -ENOMEM;
1899 }
1900
1901 static int get_callchain_buffers(void)
1902 {
1903         int err = 0;
1904         int count;
1905
1906         mutex_lock(&callchain_mutex);
1907
1908         count = atomic_inc_return(&nr_callchain_events);
1909         if (WARN_ON_ONCE(count < 1)) {
1910                 err = -EINVAL;
1911                 goto exit;
1912         }
1913
1914         if (count > 1) {
1915                 /* If the allocation failed, give up */
1916                 if (!callchain_cpus_entries)
1917                         err = -ENOMEM;
1918                 goto exit;
1919         }
1920
1921         err = alloc_callchain_buffers();
1922         if (err)
1923                 release_callchain_buffers();
1924 exit:
1925         mutex_unlock(&callchain_mutex);
1926
1927         return err;
1928 }
1929
1930 static void put_callchain_buffers(void)
1931 {
1932         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1933                 release_callchain_buffers();
1934                 mutex_unlock(&callchain_mutex);
1935         }
1936 }
1937
1938 static int get_recursion_context(int *recursion)
1939 {
1940         int rctx;
1941
1942         if (in_nmi())
1943                 rctx = 3;
1944         else if (in_irq())
1945                 rctx = 2;
1946         else if (in_softirq())
1947                 rctx = 1;
1948         else
1949                 rctx = 0;
1950
1951         if (recursion[rctx])
1952                 return -1;
1953
1954         recursion[rctx]++;
1955         barrier();
1956
1957         return rctx;
1958 }
1959
1960 static inline void put_recursion_context(int *recursion, int rctx)
1961 {
1962         barrier();
1963         recursion[rctx]--;
1964 }
1965
1966 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1967 {
1968         int cpu;
1969         struct callchain_cpus_entries *entries;
1970
1971         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1972         if (*rctx == -1)
1973                 return NULL;
1974
1975         entries = rcu_dereference(callchain_cpus_entries);
1976         if (!entries)
1977                 return NULL;
1978
1979         cpu = smp_processor_id();
1980
1981         return &entries->cpu_entries[cpu][*rctx];
1982 }
1983
1984 static void
1985 put_callchain_entry(int rctx)
1986 {
1987         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1988 }
1989
1990 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1991 {
1992         int rctx;
1993         struct perf_callchain_entry *entry;
1994
1995
1996         entry = get_callchain_entry(&rctx);
1997         if (rctx == -1)
1998                 return NULL;
1999
2000         if (!entry)
2001                 goto exit_put;
2002
2003         entry->nr = 0;
2004
2005         if (!user_mode(regs)) {
2006                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2007                 perf_callchain_kernel(entry, regs);
2008                 if (current->mm)
2009                         regs = task_pt_regs(current);
2010                 else
2011                         regs = NULL;
2012         }
2013
2014         if (regs) {
2015                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2016                 perf_callchain_user(entry, regs);
2017         }
2018
2019 exit_put:
2020         put_callchain_entry(rctx);
2021
2022         return entry;
2023 }
2024
2025 /*
2026  * Initialize the perf_event context in a task_struct:
2027  */
2028 static void __perf_event_init_context(struct perf_event_context *ctx)
2029 {
2030         raw_spin_lock_init(&ctx->lock);
2031         mutex_init(&ctx->mutex);
2032         INIT_LIST_HEAD(&ctx->pinned_groups);
2033         INIT_LIST_HEAD(&ctx->flexible_groups);
2034         INIT_LIST_HEAD(&ctx->event_list);
2035         atomic_set(&ctx->refcount, 1);
2036 }
2037
2038 static struct perf_event_context *
2039 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2040 {
2041         struct perf_event_context *ctx;
2042
2043         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2044         if (!ctx)
2045                 return NULL;
2046
2047         __perf_event_init_context(ctx);
2048         if (task) {
2049                 ctx->task = task;
2050                 get_task_struct(task);
2051         }
2052         ctx->pmu = pmu;
2053
2054         return ctx;
2055 }
2056
2057 static struct task_struct *
2058 find_lively_task_by_vpid(pid_t vpid)
2059 {
2060         struct task_struct *task;
2061         int err;
2062
2063         rcu_read_lock();
2064         if (!vpid)
2065                 task = current;
2066         else
2067                 task = find_task_by_vpid(vpid);
2068         if (task)
2069                 get_task_struct(task);
2070         rcu_read_unlock();
2071
2072         if (!task)
2073                 return ERR_PTR(-ESRCH);
2074
2075         /*
2076          * Can't attach events to a dying task.
2077          */
2078         err = -ESRCH;
2079         if (task->flags & PF_EXITING)
2080                 goto errout;
2081
2082         /* Reuse ptrace permission checks for now. */
2083         err = -EACCES;
2084         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2085                 goto errout;
2086
2087         return task;
2088 errout:
2089         put_task_struct(task);
2090         return ERR_PTR(err);
2091
2092 }
2093
2094 static struct perf_event_context *
2095 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2096 {
2097         struct perf_event_context *ctx;
2098         struct perf_cpu_context *cpuctx;
2099         unsigned long flags;
2100         int ctxn, err;
2101
2102         if (!task && cpu != -1) {
2103                 /* Must be root to operate on a CPU event: */
2104                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2105                         return ERR_PTR(-EACCES);
2106
2107                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2108                         return ERR_PTR(-EINVAL);
2109
2110                 /*
2111                  * We could be clever and allow to attach a event to an
2112                  * offline CPU and activate it when the CPU comes up, but
2113                  * that's for later.
2114                  */
2115                 if (!cpu_online(cpu))
2116                         return ERR_PTR(-ENODEV);
2117
2118                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2119                 ctx = &cpuctx->ctx;
2120                 get_ctx(ctx);
2121
2122                 return ctx;
2123         }
2124
2125         err = -EINVAL;
2126         ctxn = pmu->task_ctx_nr;
2127         if (ctxn < 0)
2128                 goto errout;
2129
2130 retry:
2131         ctx = perf_lock_task_context(task, ctxn, &flags);
2132         if (ctx) {
2133                 unclone_ctx(ctx);
2134                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2135         }
2136
2137         if (!ctx) {
2138                 ctx = alloc_perf_context(pmu, task);
2139                 err = -ENOMEM;
2140                 if (!ctx)
2141                         goto errout;
2142
2143                 get_ctx(ctx);
2144
2145                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2146                         /*
2147                          * We raced with some other task; use
2148                          * the context they set.
2149                          */
2150                         put_task_struct(task);
2151                         kfree(ctx);
2152                         goto retry;
2153                 }
2154         }
2155
2156         return ctx;
2157
2158 errout:
2159         return ERR_PTR(err);
2160 }
2161
2162 static void perf_event_free_filter(struct perf_event *event);
2163
2164 static void free_event_rcu(struct rcu_head *head)
2165 {
2166         struct perf_event *event;
2167
2168         event = container_of(head, struct perf_event, rcu_head);
2169         if (event->ns)
2170                 put_pid_ns(event->ns);
2171         perf_event_free_filter(event);
2172         kfree(event);
2173 }
2174
2175 static void perf_buffer_put(struct perf_buffer *buffer);
2176
2177 static void free_event(struct perf_event *event)
2178 {
2179         irq_work_sync(&event->pending);
2180
2181         if (!event->parent) {
2182                 if (event->attach_state & PERF_ATTACH_TASK)
2183                         jump_label_dec(&perf_task_events);
2184                 if (event->attr.mmap || event->attr.mmap_data)
2185                         atomic_dec(&nr_mmap_events);
2186                 if (event->attr.comm)
2187                         atomic_dec(&nr_comm_events);
2188                 if (event->attr.task)
2189                         atomic_dec(&nr_task_events);
2190                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2191                         put_callchain_buffers();
2192         }
2193
2194         if (event->buffer) {
2195                 perf_buffer_put(event->buffer);
2196                 event->buffer = NULL;
2197         }
2198
2199         if (event->destroy)
2200                 event->destroy(event);
2201
2202         if (event->ctx)
2203                 put_ctx(event->ctx);
2204
2205         call_rcu(&event->rcu_head, free_event_rcu);
2206 }
2207
2208 int perf_event_release_kernel(struct perf_event *event)
2209 {
2210         struct perf_event_context *ctx = event->ctx;
2211
2212         /*
2213          * Remove from the PMU, can't get re-enabled since we got
2214          * here because the last ref went.
2215          */
2216         perf_event_disable(event);
2217
2218         WARN_ON_ONCE(ctx->parent_ctx);
2219         /*
2220          * There are two ways this annotation is useful:
2221          *
2222          *  1) there is a lock recursion from perf_event_exit_task
2223          *     see the comment there.
2224          *
2225          *  2) there is a lock-inversion with mmap_sem through
2226          *     perf_event_read_group(), which takes faults while
2227          *     holding ctx->mutex, however this is called after
2228          *     the last filedesc died, so there is no possibility
2229          *     to trigger the AB-BA case.
2230          */
2231         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2232         raw_spin_lock_irq(&ctx->lock);
2233         perf_group_detach(event);
2234         list_del_event(event, ctx);
2235         raw_spin_unlock_irq(&ctx->lock);
2236         mutex_unlock(&ctx->mutex);
2237
2238         mutex_lock(&event->owner->perf_event_mutex);
2239         list_del_init(&event->owner_entry);
2240         mutex_unlock(&event->owner->perf_event_mutex);
2241         put_task_struct(event->owner);
2242
2243         free_event(event);
2244
2245         return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2248
2249 /*
2250  * Called when the last reference to the file is gone.
2251  */
2252 static int perf_release(struct inode *inode, struct file *file)
2253 {
2254         struct perf_event *event = file->private_data;
2255
2256         file->private_data = NULL;
2257
2258         return perf_event_release_kernel(event);
2259 }
2260
2261 static int perf_event_read_size(struct perf_event *event)
2262 {
2263         int entry = sizeof(u64); /* value */
2264         int size = 0;
2265         int nr = 1;
2266
2267         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2268                 size += sizeof(u64);
2269
2270         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2271                 size += sizeof(u64);
2272
2273         if (event->attr.read_format & PERF_FORMAT_ID)
2274                 entry += sizeof(u64);
2275
2276         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2277                 nr += event->group_leader->nr_siblings;
2278                 size += sizeof(u64);
2279         }
2280
2281         size += entry * nr;
2282
2283         return size;
2284 }
2285
2286 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2287 {
2288         struct perf_event *child;
2289         u64 total = 0;
2290
2291         *enabled = 0;
2292         *running = 0;
2293
2294         mutex_lock(&event->child_mutex);
2295         total += perf_event_read(event);
2296         *enabled += event->total_time_enabled +
2297                         atomic64_read(&event->child_total_time_enabled);
2298         *running += event->total_time_running +
2299                         atomic64_read(&event->child_total_time_running);
2300
2301         list_for_each_entry(child, &event->child_list, child_list) {
2302                 total += perf_event_read(child);
2303                 *enabled += child->total_time_enabled;
2304                 *running += child->total_time_running;
2305         }
2306         mutex_unlock(&event->child_mutex);
2307
2308         return total;
2309 }
2310 EXPORT_SYMBOL_GPL(perf_event_read_value);
2311
2312 static int perf_event_read_group(struct perf_event *event,
2313                                    u64 read_format, char __user *buf)
2314 {
2315         struct perf_event *leader = event->group_leader, *sub;
2316         int n = 0, size = 0, ret = -EFAULT;
2317         struct perf_event_context *ctx = leader->ctx;
2318         u64 values[5];
2319         u64 count, enabled, running;
2320
2321         mutex_lock(&ctx->mutex);
2322         count = perf_event_read_value(leader, &enabled, &running);
2323
2324         values[n++] = 1 + leader->nr_siblings;
2325         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2326                 values[n++] = enabled;
2327         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2328                 values[n++] = running;
2329         values[n++] = count;
2330         if (read_format & PERF_FORMAT_ID)
2331                 values[n++] = primary_event_id(leader);
2332
2333         size = n * sizeof(u64);
2334
2335         if (copy_to_user(buf, values, size))
2336                 goto unlock;
2337
2338         ret = size;
2339
2340         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2341                 n = 0;
2342
2343                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2344                 if (read_format & PERF_FORMAT_ID)
2345                         values[n++] = primary_event_id(sub);
2346
2347                 size = n * sizeof(u64);
2348
2349                 if (copy_to_user(buf + ret, values, size)) {
2350                         ret = -EFAULT;
2351                         goto unlock;
2352                 }
2353
2354                 ret += size;
2355         }
2356 unlock:
2357         mutex_unlock(&ctx->mutex);
2358
2359         return ret;
2360 }
2361
2362 static int perf_event_read_one(struct perf_event *event,
2363                                  u64 read_format, char __user *buf)
2364 {
2365         u64 enabled, running;
2366         u64 values[4];
2367         int n = 0;
2368
2369         values[n++] = perf_event_read_value(event, &enabled, &running);
2370         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2371                 values[n++] = enabled;
2372         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2373                 values[n++] = running;
2374         if (read_format & PERF_FORMAT_ID)
2375                 values[n++] = primary_event_id(event);
2376
2377         if (copy_to_user(buf, values, n * sizeof(u64)))
2378                 return -EFAULT;
2379
2380         return n * sizeof(u64);
2381 }
2382
2383 /*
2384  * Read the performance event - simple non blocking version for now
2385  */
2386 static ssize_t
2387 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2388 {
2389         u64 read_format = event->attr.read_format;
2390         int ret;
2391
2392         /*
2393          * Return end-of-file for a read on a event that is in
2394          * error state (i.e. because it was pinned but it couldn't be
2395          * scheduled on to the CPU at some point).
2396          */
2397         if (event->state == PERF_EVENT_STATE_ERROR)
2398                 return 0;
2399
2400         if (count < perf_event_read_size(event))
2401                 return -ENOSPC;
2402
2403         WARN_ON_ONCE(event->ctx->parent_ctx);
2404         if (read_format & PERF_FORMAT_GROUP)
2405                 ret = perf_event_read_group(event, read_format, buf);
2406         else
2407                 ret = perf_event_read_one(event, read_format, buf);
2408
2409         return ret;
2410 }
2411
2412 static ssize_t
2413 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2414 {
2415         struct perf_event *event = file->private_data;
2416
2417         return perf_read_hw(event, buf, count);
2418 }
2419
2420 static unsigned int perf_poll(struct file *file, poll_table *wait)
2421 {
2422         struct perf_event *event = file->private_data;
2423         struct perf_buffer *buffer;
2424         unsigned int events = POLL_HUP;
2425
2426         rcu_read_lock();
2427         buffer = rcu_dereference(event->buffer);
2428         if (buffer)
2429                 events = atomic_xchg(&buffer->poll, 0);
2430         rcu_read_unlock();
2431
2432         poll_wait(file, &event->waitq, wait);
2433
2434         return events;
2435 }
2436
2437 static void perf_event_reset(struct perf_event *event)
2438 {
2439         (void)perf_event_read(event);
2440         local64_set(&event->count, 0);
2441         perf_event_update_userpage(event);
2442 }
2443
2444 /*
2445  * Holding the top-level event's child_mutex means that any
2446  * descendant process that has inherited this event will block
2447  * in sync_child_event if it goes to exit, thus satisfying the
2448  * task existence requirements of perf_event_enable/disable.
2449  */
2450 static void perf_event_for_each_child(struct perf_event *event,
2451                                         void (*func)(struct perf_event *))
2452 {
2453         struct perf_event *child;
2454
2455         WARN_ON_ONCE(event->ctx->parent_ctx);
2456         mutex_lock(&event->child_mutex);
2457         func(event);
2458         list_for_each_entry(child, &event->child_list, child_list)
2459                 func(child);
2460         mutex_unlock(&event->child_mutex);
2461 }
2462
2463 static void perf_event_for_each(struct perf_event *event,
2464                                   void (*func)(struct perf_event *))
2465 {
2466         struct perf_event_context *ctx = event->ctx;
2467         struct perf_event *sibling;
2468
2469         WARN_ON_ONCE(ctx->parent_ctx);
2470         mutex_lock(&ctx->mutex);
2471         event = event->group_leader;
2472
2473         perf_event_for_each_child(event, func);
2474         func(event);
2475         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2476                 perf_event_for_each_child(event, func);
2477         mutex_unlock(&ctx->mutex);
2478 }
2479
2480 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2481 {
2482         struct perf_event_context *ctx = event->ctx;
2483         int ret = 0;
2484         u64 value;
2485
2486         if (!event->attr.sample_period)
2487                 return -EINVAL;
2488
2489         if (copy_from_user(&value, arg, sizeof(value)))
2490                 return -EFAULT;
2491
2492         if (!value)
2493                 return -EINVAL;
2494
2495         raw_spin_lock_irq(&ctx->lock);
2496         if (event->attr.freq) {
2497                 if (value > sysctl_perf_event_sample_rate) {
2498                         ret = -EINVAL;
2499                         goto unlock;
2500                 }
2501
2502                 event->attr.sample_freq = value;
2503         } else {
2504                 event->attr.sample_period = value;
2505                 event->hw.sample_period = value;
2506         }
2507 unlock:
2508         raw_spin_unlock_irq(&ctx->lock);
2509
2510         return ret;
2511 }
2512
2513 static const struct file_operations perf_fops;
2514
2515 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2516 {
2517         struct file *file;
2518
2519         file = fget_light(fd, fput_needed);
2520         if (!file)
2521                 return ERR_PTR(-EBADF);
2522
2523         if (file->f_op != &perf_fops) {
2524                 fput_light(file, *fput_needed);
2525                 *fput_needed = 0;
2526                 return ERR_PTR(-EBADF);
2527         }
2528
2529         return file->private_data;
2530 }
2531
2532 static int perf_event_set_output(struct perf_event *event,
2533                                  struct perf_event *output_event);
2534 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2535
2536 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2537 {
2538         struct perf_event *event = file->private_data;
2539         void (*func)(struct perf_event *);
2540         u32 flags = arg;
2541
2542         switch (cmd) {
2543         case PERF_EVENT_IOC_ENABLE:
2544                 func = perf_event_enable;
2545                 break;
2546         case PERF_EVENT_IOC_DISABLE:
2547                 func = perf_event_disable;
2548                 break;
2549         case PERF_EVENT_IOC_RESET:
2550                 func = perf_event_reset;
2551                 break;
2552
2553         case PERF_EVENT_IOC_REFRESH:
2554                 return perf_event_refresh(event, arg);
2555
2556         case PERF_EVENT_IOC_PERIOD:
2557                 return perf_event_period(event, (u64 __user *)arg);
2558
2559         case PERF_EVENT_IOC_SET_OUTPUT:
2560         {
2561                 struct perf_event *output_event = NULL;
2562                 int fput_needed = 0;
2563                 int ret;
2564
2565                 if (arg != -1) {
2566                         output_event = perf_fget_light(arg, &fput_needed);
2567                         if (IS_ERR(output_event))
2568                                 return PTR_ERR(output_event);
2569                 }
2570
2571                 ret = perf_event_set_output(event, output_event);
2572                 if (output_event)
2573                         fput_light(output_event->filp, fput_needed);
2574
2575                 return ret;
2576         }
2577
2578         case PERF_EVENT_IOC_SET_FILTER:
2579                 return perf_event_set_filter(event, (void __user *)arg);
2580
2581         default:
2582                 return -ENOTTY;
2583         }
2584
2585         if (flags & PERF_IOC_FLAG_GROUP)
2586                 perf_event_for_each(event, func);
2587         else
2588                 perf_event_for_each_child(event, func);
2589
2590         return 0;
2591 }
2592
2593 int perf_event_task_enable(void)
2594 {
2595         struct perf_event *event;
2596
2597         mutex_lock(&current->perf_event_mutex);
2598         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2599                 perf_event_for_each_child(event, perf_event_enable);
2600         mutex_unlock(&current->perf_event_mutex);
2601
2602         return 0;
2603 }
2604
2605 int perf_event_task_disable(void)
2606 {
2607         struct perf_event *event;
2608
2609         mutex_lock(&current->perf_event_mutex);
2610         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2611                 perf_event_for_each_child(event, perf_event_disable);
2612         mutex_unlock(&current->perf_event_mutex);
2613
2614         return 0;
2615 }
2616
2617 #ifndef PERF_EVENT_INDEX_OFFSET
2618 # define PERF_EVENT_INDEX_OFFSET 0
2619 #endif
2620
2621 static int perf_event_index(struct perf_event *event)
2622 {
2623         if (event->hw.state & PERF_HES_STOPPED)
2624                 return 0;
2625
2626         if (event->state != PERF_EVENT_STATE_ACTIVE)
2627                 return 0;
2628
2629         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2630 }
2631
2632 /*
2633  * Callers need to ensure there can be no nesting of this function, otherwise
2634  * the seqlock logic goes bad. We can not serialize this because the arch
2635  * code calls this from NMI context.
2636  */
2637 void perf_event_update_userpage(struct perf_event *event)
2638 {
2639         struct perf_event_mmap_page *userpg;
2640         struct perf_buffer *buffer;
2641
2642         rcu_read_lock();
2643         buffer = rcu_dereference(event->buffer);
2644         if (!buffer)
2645                 goto unlock;
2646
2647         userpg = buffer->user_page;
2648
2649         /*
2650          * Disable preemption so as to not let the corresponding user-space
2651          * spin too long if we get preempted.
2652          */
2653         preempt_disable();
2654         ++userpg->lock;
2655         barrier();
2656         userpg->index = perf_event_index(event);
2657         userpg->offset = perf_event_count(event);
2658         if (event->state == PERF_EVENT_STATE_ACTIVE)
2659                 userpg->offset -= local64_read(&event->hw.prev_count);
2660
2661         userpg->time_enabled = event->total_time_enabled +
2662                         atomic64_read(&event->child_total_time_enabled);
2663
2664         userpg->time_running = event->total_time_running +
2665                         atomic64_read(&event->child_total_time_running);
2666
2667         barrier();
2668         ++userpg->lock;
2669         preempt_enable();
2670 unlock:
2671         rcu_read_unlock();
2672 }
2673
2674 static unsigned long perf_data_size(struct perf_buffer *buffer);
2675
2676 static void
2677 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2678 {
2679         long max_size = perf_data_size(buffer);
2680
2681         if (watermark)
2682                 buffer->watermark = min(max_size, watermark);
2683
2684         if (!buffer->watermark)
2685                 buffer->watermark = max_size / 2;
2686
2687         if (flags & PERF_BUFFER_WRITABLE)
2688                 buffer->writable = 1;
2689
2690         atomic_set(&buffer->refcount, 1);
2691 }
2692
2693 #ifndef CONFIG_PERF_USE_VMALLOC
2694
2695 /*
2696  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2697  */
2698
2699 static struct page *
2700 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2701 {
2702         if (pgoff > buffer->nr_pages)
2703                 return NULL;
2704
2705         if (pgoff == 0)
2706                 return virt_to_page(buffer->user_page);
2707
2708         return virt_to_page(buffer->data_pages[pgoff - 1]);
2709 }
2710
2711 static void *perf_mmap_alloc_page(int cpu)
2712 {
2713         struct page *page;
2714         int node;
2715
2716         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2717         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2718         if (!page)
2719                 return NULL;
2720
2721         return page_address(page);
2722 }
2723
2724 static struct perf_buffer *
2725 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2726 {
2727         struct perf_buffer *buffer;
2728         unsigned long size;
2729         int i;
2730
2731         size = sizeof(struct perf_buffer);
2732         size += nr_pages * sizeof(void *);
2733
2734         buffer = kzalloc(size, GFP_KERNEL);
2735         if (!buffer)
2736                 goto fail;
2737
2738         buffer->user_page = perf_mmap_alloc_page(cpu);
2739         if (!buffer->user_page)
2740                 goto fail_user_page;
2741
2742         for (i = 0; i < nr_pages; i++) {
2743                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2744                 if (!buffer->data_pages[i])
2745                         goto fail_data_pages;
2746         }
2747
2748         buffer->nr_pages = nr_pages;
2749
2750         perf_buffer_init(buffer, watermark, flags);
2751
2752         return buffer;
2753
2754 fail_data_pages:
2755         for (i--; i >= 0; i--)
2756                 free_page((unsigned long)buffer->data_pages[i]);
2757
2758         free_page((unsigned long)buffer->user_page);
2759
2760 fail_user_page:
2761         kfree(buffer);
2762
2763 fail:
2764         return NULL;
2765 }
2766
2767 static void perf_mmap_free_page(unsigned long addr)
2768 {
2769         struct page *page = virt_to_page((void *)addr);
2770
2771         page->mapping = NULL;
2772         __free_page(page);
2773 }
2774
2775 static void perf_buffer_free(struct perf_buffer *buffer)
2776 {
2777         int i;
2778
2779         perf_mmap_free_page((unsigned long)buffer->user_page);
2780         for (i = 0; i < buffer->nr_pages; i++)
2781                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2782         kfree(buffer);
2783 }
2784
2785 static inline int page_order(struct perf_buffer *buffer)
2786 {
2787         return 0;
2788 }
2789
2790 #else
2791
2792 /*
2793  * Back perf_mmap() with vmalloc memory.
2794  *
2795  * Required for architectures that have d-cache aliasing issues.
2796  */
2797
2798 static inline int page_order(struct perf_buffer *buffer)
2799 {
2800         return buffer->page_order;
2801 }
2802
2803 static struct page *
2804 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2805 {
2806         if (pgoff > (1UL << page_order(buffer)))
2807                 return NULL;
2808
2809         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2810 }
2811
2812 static void perf_mmap_unmark_page(void *addr)
2813 {
2814         struct page *page = vmalloc_to_page(addr);
2815
2816         page->mapping = NULL;
2817 }
2818
2819 static void perf_buffer_free_work(struct work_struct *work)
2820 {
2821         struct perf_buffer *buffer;
2822         void *base;
2823         int i, nr;
2824
2825         buffer = container_of(work, struct perf_buffer, work);
2826         nr = 1 << page_order(buffer);
2827
2828         base = buffer->user_page;
2829         for (i = 0; i < nr + 1; i++)
2830                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2831
2832         vfree(base);
2833         kfree(buffer);
2834 }
2835
2836 static void perf_buffer_free(struct perf_buffer *buffer)
2837 {
2838         schedule_work(&buffer->work);
2839 }
2840
2841 static struct perf_buffer *
2842 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2843 {
2844         struct perf_buffer *buffer;
2845         unsigned long size;
2846         void *all_buf;
2847
2848         size = sizeof(struct perf_buffer);
2849         size += sizeof(void *);
2850
2851         buffer = kzalloc(size, GFP_KERNEL);
2852         if (!buffer)
2853                 goto fail;
2854
2855         INIT_WORK(&buffer->work, perf_buffer_free_work);
2856
2857         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2858         if (!all_buf)
2859                 goto fail_all_buf;
2860
2861         buffer->user_page = all_buf;
2862         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2863         buffer->page_order = ilog2(nr_pages);
2864         buffer->nr_pages = 1;
2865
2866         perf_buffer_init(buffer, watermark, flags);
2867
2868         return buffer;
2869
2870 fail_all_buf:
2871         kfree(buffer);
2872
2873 fail:
2874         return NULL;
2875 }
2876
2877 #endif
2878
2879 static unsigned long perf_data_size(struct perf_buffer *buffer)
2880 {
2881         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2882 }
2883
2884 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2885 {
2886         struct perf_event *event = vma->vm_file->private_data;
2887         struct perf_buffer *buffer;
2888         int ret = VM_FAULT_SIGBUS;
2889
2890         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2891                 if (vmf->pgoff == 0)
2892                         ret = 0;
2893                 return ret;
2894         }
2895
2896         rcu_read_lock();
2897         buffer = rcu_dereference(event->buffer);
2898         if (!buffer)
2899                 goto unlock;
2900
2901         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2902                 goto unlock;
2903
2904         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2905         if (!vmf->page)
2906                 goto unlock;
2907
2908         get_page(vmf->page);
2909         vmf->page->mapping = vma->vm_file->f_mapping;
2910         vmf->page->index   = vmf->pgoff;
2911
2912         ret = 0;
2913 unlock:
2914         rcu_read_unlock();
2915
2916         return ret;
2917 }
2918
2919 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2920 {
2921         struct perf_buffer *buffer;
2922
2923         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2924         perf_buffer_free(buffer);
2925 }
2926
2927 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2928 {
2929         struct perf_buffer *buffer;
2930
2931         rcu_read_lock();
2932         buffer = rcu_dereference(event->buffer);
2933         if (buffer) {
2934                 if (!atomic_inc_not_zero(&buffer->refcount))
2935                         buffer = NULL;
2936         }
2937         rcu_read_unlock();
2938
2939         return buffer;
2940 }
2941
2942 static void perf_buffer_put(struct perf_buffer *buffer)
2943 {
2944         if (!atomic_dec_and_test(&buffer->refcount))
2945                 return;
2946
2947         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2948 }
2949
2950 static void perf_mmap_open(struct vm_area_struct *vma)
2951 {
2952         struct perf_event *event = vma->vm_file->private_data;
2953
2954         atomic_inc(&event->mmap_count);
2955 }
2956
2957 static void perf_mmap_close(struct vm_area_struct *vma)
2958 {
2959         struct perf_event *event = vma->vm_file->private_data;
2960
2961         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2962                 unsigned long size = perf_data_size(event->buffer);
2963                 struct user_struct *user = event->mmap_user;
2964                 struct perf_buffer *buffer = event->buffer;
2965
2966                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2967                 vma->vm_mm->locked_vm -= event->mmap_locked;
2968                 rcu_assign_pointer(event->buffer, NULL);
2969                 mutex_unlock(&event->mmap_mutex);
2970
2971                 perf_buffer_put(buffer);
2972                 free_uid(user);
2973         }
2974 }
2975
2976 static const struct vm_operations_struct perf_mmap_vmops = {
2977         .open           = perf_mmap_open,
2978         .close          = perf_mmap_close,
2979         .fault          = perf_mmap_fault,
2980         .page_mkwrite   = perf_mmap_fault,
2981 };
2982
2983 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2984 {
2985         struct perf_event *event = file->private_data;
2986         unsigned long user_locked, user_lock_limit;
2987         struct user_struct *user = current_user();
2988         unsigned long locked, lock_limit;
2989         struct perf_buffer *buffer;
2990         unsigned long vma_size;
2991         unsigned long nr_pages;
2992         long user_extra, extra;
2993         int ret = 0, flags = 0;
2994
2995         /*
2996          * Don't allow mmap() of inherited per-task counters. This would
2997          * create a performance issue due to all children writing to the
2998          * same buffer.
2999          */
3000         if (event->cpu == -1 && event->attr.inherit)
3001                 return -EINVAL;
3002
3003         if (!(vma->vm_flags & VM_SHARED))
3004                 return -EINVAL;
3005
3006         vma_size = vma->vm_end - vma->vm_start;
3007         nr_pages = (vma_size / PAGE_SIZE) - 1;
3008
3009         /*
3010          * If we have buffer pages ensure they're a power-of-two number, so we
3011          * can do bitmasks instead of modulo.
3012          */
3013         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3014                 return -EINVAL;
3015
3016         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3017                 return -EINVAL;
3018
3019         if (vma->vm_pgoff != 0)
3020                 return -EINVAL;
3021
3022         WARN_ON_ONCE(event->ctx->parent_ctx);
3023         mutex_lock(&event->mmap_mutex);
3024         if (event->buffer) {
3025                 if (event->buffer->nr_pages == nr_pages)
3026                         atomic_inc(&event->buffer->refcount);
3027                 else
3028                         ret = -EINVAL;
3029                 goto unlock;
3030         }
3031
3032         user_extra = nr_pages + 1;
3033         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3034
3035         /*
3036          * Increase the limit linearly with more CPUs:
3037          */
3038         user_lock_limit *= num_online_cpus();
3039
3040         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3041
3042         extra = 0;
3043         if (user_locked > user_lock_limit)
3044                 extra = user_locked - user_lock_limit;
3045
3046         lock_limit = rlimit(RLIMIT_MEMLOCK);
3047         lock_limit >>= PAGE_SHIFT;
3048         locked = vma->vm_mm->locked_vm + extra;
3049
3050         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3051                 !capable(CAP_IPC_LOCK)) {
3052                 ret = -EPERM;
3053                 goto unlock;
3054         }
3055
3056         WARN_ON(event->buffer);
3057
3058         if (vma->vm_flags & VM_WRITE)
3059                 flags |= PERF_BUFFER_WRITABLE;
3060
3061         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3062                                    event->cpu, flags);
3063         if (!buffer) {
3064                 ret = -ENOMEM;
3065                 goto unlock;
3066         }
3067         rcu_assign_pointer(event->buffer, buffer);
3068
3069         atomic_long_add(user_extra, &user->locked_vm);
3070         event->mmap_locked = extra;
3071         event->mmap_user = get_current_user();
3072         vma->vm_mm->locked_vm += event->mmap_locked;
3073
3074 unlock:
3075         if (!ret)
3076                 atomic_inc(&event->mmap_count);
3077         mutex_unlock(&event->mmap_mutex);
3078
3079         vma->vm_flags |= VM_RESERVED;
3080         vma->vm_ops = &perf_mmap_vmops;
3081
3082         return ret;
3083 }
3084
3085 static int perf_fasync(int fd, struct file *filp, int on)
3086 {
3087         struct inode *inode = filp->f_path.dentry->d_inode;
3088         struct perf_event *event = filp->private_data;
3089         int retval;
3090
3091         mutex_lock(&inode->i_mutex);
3092         retval = fasync_helper(fd, filp, on, &event->fasync);
3093         mutex_unlock(&inode->i_mutex);
3094
3095         if (retval < 0)
3096                 return retval;
3097
3098         return 0;
3099 }
3100
3101 static const struct file_operations perf_fops = {
3102         .llseek                 = no_llseek,
3103         .release                = perf_release,
3104         .read                   = perf_read,
3105         .poll                   = perf_poll,
3106         .unlocked_ioctl         = perf_ioctl,
3107         .compat_ioctl           = perf_ioctl,
3108         .mmap                   = perf_mmap,
3109         .fasync                 = perf_fasync,
3110 };
3111
3112 /*
3113  * Perf event wakeup
3114  *
3115  * If there's data, ensure we set the poll() state and publish everything
3116  * to user-space before waking everybody up.
3117  */
3118
3119 void perf_event_wakeup(struct perf_event *event)
3120 {
3121         wake_up_all(&event->waitq);
3122
3123         if (event->pending_kill) {
3124                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3125                 event->pending_kill = 0;
3126         }
3127 }
3128
3129 static void perf_pending_event(struct irq_work *entry)
3130 {
3131         struct perf_event *event = container_of(entry,
3132                         struct perf_event, pending);
3133
3134         if (event->pending_disable) {
3135                 event->pending_disable = 0;
3136                 __perf_event_disable(event);
3137         }
3138
3139         if (event->pending_wakeup) {
3140                 event->pending_wakeup = 0;
3141                 perf_event_wakeup(event);
3142         }
3143 }
3144
3145 /*
3146  * We assume there is only KVM supporting the callbacks.
3147  * Later on, we might change it to a list if there is
3148  * another virtualization implementation supporting the callbacks.
3149  */
3150 struct perf_guest_info_callbacks *perf_guest_cbs;
3151
3152 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3153 {
3154         perf_guest_cbs = cbs;
3155         return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3158
3159 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3160 {
3161         perf_guest_cbs = NULL;
3162         return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3165
3166 /*
3167  * Output
3168  */
3169 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3170                               unsigned long offset, unsigned long head)
3171 {
3172         unsigned long mask;
3173
3174         if (!buffer->writable)
3175                 return true;
3176
3177         mask = perf_data_size(buffer) - 1;
3178
3179         offset = (offset - tail) & mask;
3180         head   = (head   - tail) & mask;
3181
3182         if ((int)(head - offset) < 0)
3183                 return false;
3184
3185         return true;
3186 }
3187
3188 static void perf_output_wakeup(struct perf_output_handle *handle)
3189 {
3190         atomic_set(&handle->buffer->poll, POLL_IN);
3191
3192         if (handle->nmi) {
3193                 handle->event->pending_wakeup = 1;
3194                 irq_work_queue(&handle->event->pending);
3195         } else
3196                 perf_event_wakeup(handle->event);
3197 }
3198
3199 /*
3200  * We need to ensure a later event_id doesn't publish a head when a former
3201  * event isn't done writing. However since we need to deal with NMIs we
3202  * cannot fully serialize things.
3203  *
3204  * We only publish the head (and generate a wakeup) when the outer-most
3205  * event completes.
3206  */
3207 static void perf_output_get_handle(struct perf_output_handle *handle)
3208 {
3209         struct perf_buffer *buffer = handle->buffer;
3210
3211         preempt_disable();
3212         local_inc(&buffer->nest);
3213         handle->wakeup = local_read(&buffer->wakeup);
3214 }
3215
3216 static void perf_output_put_handle(struct perf_output_handle *handle)
3217 {
3218         struct perf_buffer *buffer = handle->buffer;
3219         unsigned long head;
3220
3221 again:
3222         head = local_read(&buffer->head);
3223
3224         /*
3225          * IRQ/NMI can happen here, which means we can miss a head update.
3226          */
3227
3228         if (!local_dec_and_test(&buffer->nest))
3229                 goto out;
3230
3231         /*
3232          * Publish the known good head. Rely on the full barrier implied
3233          * by atomic_dec_and_test() order the buffer->head read and this
3234          * write.
3235          */
3236         buffer->user_page->data_head = head;
3237
3238         /*
3239          * Now check if we missed an update, rely on the (compiler)
3240          * barrier in atomic_dec_and_test() to re-read buffer->head.
3241          */
3242         if (unlikely(head != local_read(&buffer->head))) {
3243                 local_inc(&buffer->nest);
3244                 goto again;
3245         }
3246
3247         if (handle->wakeup != local_read(&buffer->wakeup))
3248                 perf_output_wakeup(handle);
3249
3250 out:
3251         preempt_enable();
3252 }
3253
3254 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3255                       const void *buf, unsigned int len)
3256 {
3257         do {
3258                 unsigned long size = min_t(unsigned long, handle->size, len);
3259
3260                 memcpy(handle->addr, buf, size);
3261
3262                 len -= size;
3263                 handle->addr += size;
3264                 buf += size;
3265                 handle->size -= size;
3266                 if (!handle->size) {
3267                         struct perf_buffer *buffer = handle->buffer;
3268
3269                         handle->page++;
3270                         handle->page &= buffer->nr_pages - 1;
3271                         handle->addr = buffer->data_pages[handle->page];
3272                         handle->size = PAGE_SIZE << page_order(buffer);
3273                 }
3274         } while (len);
3275 }
3276
3277 int perf_output_begin(struct perf_output_handle *handle,
3278                       struct perf_event *event, unsigned int size,
3279                       int nmi, int sample)
3280 {
3281         struct perf_buffer *buffer;
3282         unsigned long tail, offset, head;
3283         int have_lost;
3284         struct {
3285                 struct perf_event_header header;
3286                 u64                      id;
3287                 u64                      lost;
3288         } lost_event;
3289
3290         rcu_read_lock();
3291         /*
3292          * For inherited events we send all the output towards the parent.
3293          */
3294         if (event->parent)
3295                 event = event->parent;
3296
3297         buffer = rcu_dereference(event->buffer);
3298         if (!buffer)
3299                 goto out;
3300
3301         handle->buffer  = buffer;
3302         handle->event   = event;
3303         handle->nmi     = nmi;
3304         handle->sample  = sample;
3305
3306         if (!buffer->nr_pages)
3307                 goto out;
3308
3309         have_lost = local_read(&buffer->lost);
3310         if (have_lost)
3311                 size += sizeof(lost_event);
3312
3313         perf_output_get_handle(handle);
3314
3315         do {
3316                 /*
3317                  * Userspace could choose to issue a mb() before updating the
3318                  * tail pointer. So that all reads will be completed before the
3319                  * write is issued.
3320                  */
3321                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3322                 smp_rmb();
3323                 offset = head = local_read(&buffer->head);
3324                 head += size;
3325                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3326                         goto fail;
3327         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3328
3329         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3330                 local_add(buffer->watermark, &buffer->wakeup);
3331
3332         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3333         handle->page &= buffer->nr_pages - 1;
3334         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3335         handle->addr = buffer->data_pages[handle->page];
3336         handle->addr += handle->size;
3337         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3338
3339         if (have_lost) {
3340                 lost_event.header.type = PERF_RECORD_LOST;
3341                 lost_event.header.misc = 0;
3342                 lost_event.header.size = sizeof(lost_event);
3343                 lost_event.id          = event->id;
3344                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3345
3346                 perf_output_put(handle, lost_event);
3347         }
3348
3349         return 0;
3350
3351 fail:
3352         local_inc(&buffer->lost);
3353         perf_output_put_handle(handle);
3354 out:
3355         rcu_read_unlock();
3356
3357         return -ENOSPC;
3358 }
3359
3360 void perf_output_end(struct perf_output_handle *handle)
3361 {
3362         struct perf_event *event = handle->event;
3363         struct perf_buffer *buffer = handle->buffer;
3364
3365         int wakeup_events = event->attr.wakeup_events;
3366
3367         if (handle->sample && wakeup_events) {
3368                 int events = local_inc_return(&buffer->events);
3369                 if (events >= wakeup_events) {
3370                         local_sub(wakeup_events, &buffer->events);
3371                         local_inc(&buffer->wakeup);
3372                 }
3373         }
3374
3375         perf_output_put_handle(handle);
3376         rcu_read_unlock();
3377 }
3378
3379 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3380 {
3381         /*
3382          * only top level events have the pid namespace they were created in
3383          */
3384         if (event->parent)
3385                 event = event->parent;
3386
3387         return task_tgid_nr_ns(p, event->ns);
3388 }
3389
3390 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3391 {
3392         /*
3393          * only top level events have the pid namespace they were created in
3394          */
3395         if (event->parent)
3396                 event = event->parent;
3397
3398         return task_pid_nr_ns(p, event->ns);
3399 }
3400
3401 static void perf_output_read_one(struct perf_output_handle *handle,
3402                                  struct perf_event *event,
3403                                  u64 enabled, u64 running)
3404 {
3405         u64 read_format = event->attr.read_format;
3406         u64 values[4];
3407         int n = 0;
3408
3409         values[n++] = perf_event_count(event);
3410         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3411                 values[n++] = enabled +
3412                         atomic64_read(&event->child_total_time_enabled);
3413         }
3414         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3415                 values[n++] = running +
3416                         atomic64_read(&event->child_total_time_running);
3417         }
3418         if (read_format & PERF_FORMAT_ID)
3419                 values[n++] = primary_event_id(event);
3420
3421         perf_output_copy(handle, values, n * sizeof(u64));
3422 }
3423
3424 /*
3425  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3426  */
3427 static void perf_output_read_group(struct perf_output_handle *handle,
3428                             struct perf_event *event,
3429                             u64 enabled, u64 running)
3430 {
3431         struct perf_event *leader = event->group_leader, *sub;
3432         u64 read_format = event->attr.read_format;
3433         u64 values[5];
3434         int n = 0;
3435
3436         values[n++] = 1 + leader->nr_siblings;
3437
3438         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3439                 values[n++] = enabled;
3440
3441         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3442                 values[n++] = running;
3443
3444         if (leader != event)
3445                 leader->pmu->read(leader);
3446
3447         values[n++] = perf_event_count(leader);
3448         if (read_format & PERF_FORMAT_ID)
3449                 values[n++] = primary_event_id(leader);
3450
3451         perf_output_copy(handle, values, n * sizeof(u64));
3452
3453         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3454                 n = 0;
3455
3456                 if (sub != event)
3457                         sub->pmu->read(sub);
3458
3459                 values[n++] = perf_event_count(sub);
3460                 if (read_format & PERF_FORMAT_ID)
3461                         values[n++] = primary_event_id(sub);
3462
3463                 perf_output_copy(handle, values, n * sizeof(u64));
3464         }
3465 }
3466
3467 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3468                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3469
3470 static void perf_output_read(struct perf_output_handle *handle,
3471                              struct perf_event *event)
3472 {
3473         u64 enabled = 0, running = 0, now, ctx_time;
3474         u64 read_format = event->attr.read_format;
3475
3476         /*
3477          * compute total_time_enabled, total_time_running
3478          * based on snapshot values taken when the event
3479          * was last scheduled in.
3480          *
3481          * we cannot simply called update_context_time()
3482          * because of locking issue as we are called in
3483          * NMI context
3484          */
3485         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3486                 now = perf_clock();
3487                 ctx_time = event->shadow_ctx_time + now;
3488                 enabled = ctx_time - event->tstamp_enabled;
3489                 running = ctx_time - event->tstamp_running;
3490         }
3491
3492         if (event->attr.read_format & PERF_FORMAT_GROUP)
3493                 perf_output_read_group(handle, event, enabled, running);
3494         else
3495                 perf_output_read_one(handle, event, enabled, running);
3496 }
3497
3498 void perf_output_sample(struct perf_output_handle *handle,
3499                         struct perf_event_header *header,
3500                         struct perf_sample_data *data,
3501                         struct perf_event *event)
3502 {
3503         u64 sample_type = data->type;
3504
3505         perf_output_put(handle, *header);
3506
3507         if (sample_type & PERF_SAMPLE_IP)
3508                 perf_output_put(handle, data->ip);
3509
3510         if (sample_type & PERF_SAMPLE_TID)
3511                 perf_output_put(handle, data->tid_entry);
3512
3513         if (sample_type & PERF_SAMPLE_TIME)
3514                 perf_output_put(handle, data->time);
3515
3516         if (sample_type & PERF_SAMPLE_ADDR)
3517                 perf_output_put(handle, data->addr);
3518
3519         if (sample_type & PERF_SAMPLE_ID)
3520                 perf_output_put(handle, data->id);
3521
3522         if (sample_type & PERF_SAMPLE_STREAM_ID)
3523                 perf_output_put(handle, data->stream_id);
3524
3525         if (sample_type & PERF_SAMPLE_CPU)
3526                 perf_output_put(handle, data->cpu_entry);
3527
3528         if (sample_type & PERF_SAMPLE_PERIOD)
3529                 perf_output_put(handle, data->period);
3530
3531         if (sample_type & PERF_SAMPLE_READ)
3532                 perf_output_read(handle, event);
3533
3534         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3535                 if (data->callchain) {
3536                         int size = 1;
3537
3538                         if (data->callchain)
3539                                 size += data->callchain->nr;
3540
3541                         size *= sizeof(u64);
3542
3543                         perf_output_copy(handle, data->callchain, size);
3544                 } else {
3545                         u64 nr = 0;
3546                         perf_output_put(handle, nr);
3547                 }
3548         }
3549
3550         if (sample_type & PERF_SAMPLE_RAW) {
3551                 if (data->raw) {
3552                         perf_output_put(handle, data->raw->size);
3553                         perf_output_copy(handle, data->raw->data,
3554                                          data->raw->size);
3555                 } else {
3556                         struct {
3557                                 u32     size;
3558                                 u32     data;
3559                         } raw = {
3560                                 .size = sizeof(u32),
3561                                 .data = 0,
3562                         };
3563                         perf_output_put(handle, raw);
3564                 }
3565         }
3566 }
3567
3568 void perf_prepare_sample(struct perf_event_header *header,
3569                          struct perf_sample_data *data,
3570                          struct perf_event *event,
3571                          struct pt_regs *regs)
3572 {
3573         u64 sample_type = event->attr.sample_type;
3574
3575         data->type = sample_type;
3576
3577         header->type = PERF_RECORD_SAMPLE;
3578         header->size = sizeof(*header);
3579
3580         header->misc = 0;
3581         header->misc |= perf_misc_flags(regs);
3582
3583         if (sample_type & PERF_SAMPLE_IP) {
3584                 data->ip = perf_instruction_pointer(regs);
3585
3586                 header->size += sizeof(data->ip);
3587         }
3588
3589         if (sample_type & PERF_SAMPLE_TID) {
3590                 /* namespace issues */
3591                 data->tid_entry.pid = perf_event_pid(event, current);
3592                 data->tid_entry.tid = perf_event_tid(event, current);
3593
3594                 header->size += sizeof(data->tid_entry);
3595         }
3596
3597         if (sample_type & PERF_SAMPLE_TIME) {
3598                 data->time = perf_clock();
3599
3600                 header->size += sizeof(data->time);
3601         }
3602
3603         if (sample_type & PERF_SAMPLE_ADDR)
3604                 header->size += sizeof(data->addr);
3605
3606         if (sample_type & PERF_SAMPLE_ID) {
3607                 data->id = primary_event_id(event);
3608
3609                 header->size += sizeof(data->id);
3610         }
3611
3612         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3613                 data->stream_id = event->id;
3614
3615                 header->size += sizeof(data->stream_id);
3616         }
3617
3618         if (sample_type & PERF_SAMPLE_CPU) {
3619                 data->cpu_entry.cpu             = raw_smp_processor_id();
3620                 data->cpu_entry.reserved        = 0;
3621
3622                 header->size += sizeof(data->cpu_entry);
3623         }
3624
3625         if (sample_type & PERF_SAMPLE_PERIOD)
3626                 header->size += sizeof(data->period);
3627
3628         if (sample_type & PERF_SAMPLE_READ)
3629                 header->size += perf_event_read_size(event);
3630
3631         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3632                 int size = 1;
3633
3634                 data->callchain = perf_callchain(regs);
3635
3636                 if (data->callchain)
3637                         size += data->callchain->nr;
3638
3639                 header->size += size * sizeof(u64);
3640         }
3641
3642         if (sample_type & PERF_SAMPLE_RAW) {
3643                 int size = sizeof(u32);
3644
3645                 if (data->raw)
3646                         size += data->raw->size;
3647                 else
3648                         size += sizeof(u32);
3649
3650                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3651                 header->size += size;
3652         }
3653 }
3654
3655 static void perf_event_output(struct perf_event *event, int nmi,
3656                                 struct perf_sample_data *data,
3657                                 struct pt_regs *regs)
3658 {
3659         struct perf_output_handle handle;
3660         struct perf_event_header header;
3661
3662         /* protect the callchain buffers */
3663         rcu_read_lock();
3664
3665         perf_prepare_sample(&header, data, event, regs);
3666
3667         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3668                 goto exit;
3669
3670         perf_output_sample(&handle, &header, data, event);
3671
3672         perf_output_end(&handle);
3673
3674 exit:
3675         rcu_read_unlock();
3676 }
3677
3678 /*
3679  * read event_id
3680  */
3681
3682 struct perf_read_event {
3683         struct perf_event_header        header;
3684
3685         u32                             pid;
3686         u32                             tid;
3687 };
3688
3689 static void
3690 perf_event_read_event(struct perf_event *event,
3691                         struct task_struct *task)
3692 {
3693         struct perf_output_handle handle;
3694         struct perf_read_event read_event = {
3695                 .header = {
3696                         .type = PERF_RECORD_READ,
3697                         .misc = 0,
3698                         .size = sizeof(read_event) + perf_event_read_size(event),
3699                 },
3700                 .pid = perf_event_pid(event, task),
3701                 .tid = perf_event_tid(event, task),
3702         };
3703         int ret;
3704
3705         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3706         if (ret)
3707                 return;
3708
3709         perf_output_put(&handle, read_event);
3710         perf_output_read(&handle, event);
3711
3712         perf_output_end(&handle);
3713 }
3714
3715 /*
3716  * task tracking -- fork/exit
3717  *
3718  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3719  */
3720
3721 struct perf_task_event {
3722         struct task_struct              *task;
3723         struct perf_event_context       *task_ctx;
3724
3725         struct {
3726                 struct perf_event_header        header;
3727
3728                 u32                             pid;
3729                 u32                             ppid;
3730                 u32                             tid;
3731                 u32                             ptid;
3732                 u64                             time;
3733         } event_id;
3734 };
3735
3736 static void perf_event_task_output(struct perf_event *event,
3737                                      struct perf_task_event *task_event)
3738 {
3739         struct perf_output_handle handle;
3740         struct task_struct *task = task_event->task;
3741         int size, ret;
3742
3743         size  = task_event->event_id.header.size;
3744         ret = perf_output_begin(&handle, event, size, 0, 0);
3745
3746         if (ret)
3747                 return;
3748
3749         task_event->event_id.pid = perf_event_pid(event, task);
3750         task_event->event_id.ppid = perf_event_pid(event, current);
3751
3752         task_event->event_id.tid = perf_event_tid(event, task);
3753         task_event->event_id.ptid = perf_event_tid(event, current);
3754
3755         perf_output_put(&handle, task_event->event_id);
3756
3757         perf_output_end(&handle);
3758 }
3759
3760 static int perf_event_task_match(struct perf_event *event)
3761 {
3762         if (event->state < PERF_EVENT_STATE_INACTIVE)
3763                 return 0;
3764
3765         if (event->cpu != -1 && event->cpu != smp_processor_id())
3766                 return 0;
3767
3768         if (event->attr.comm || event->attr.mmap ||
3769             event->attr.mmap_data || event->attr.task)
3770                 return 1;
3771
3772         return 0;
3773 }
3774
3775 static void perf_event_task_ctx(struct perf_event_context *ctx,
3776                                   struct perf_task_event *task_event)
3777 {
3778         struct perf_event *event;
3779
3780         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3781                 if (perf_event_task_match(event))
3782                         perf_event_task_output(event, task_event);
3783         }
3784 }
3785
3786 static void perf_event_task_event(struct perf_task_event *task_event)
3787 {
3788         struct perf_cpu_context *cpuctx;
3789         struct perf_event_context *ctx;
3790         struct pmu *pmu;
3791         int ctxn;
3792
3793         rcu_read_lock();
3794         list_for_each_entry_rcu(pmu, &pmus, entry) {
3795                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3796                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3797
3798                 ctx = task_event->task_ctx;
3799                 if (!ctx) {
3800                         ctxn = pmu->task_ctx_nr;
3801                         if (ctxn < 0)
3802                                 goto next;
3803                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3804                 }
3805                 if (ctx)
3806                         perf_event_task_ctx(ctx, task_event);
3807 next:
3808                 put_cpu_ptr(pmu->pmu_cpu_context);
3809         }
3810         rcu_read_unlock();
3811 }
3812
3813 static void perf_event_task(struct task_struct *task,
3814                               struct perf_event_context *task_ctx,
3815                               int new)
3816 {
3817         struct perf_task_event task_event;
3818
3819         if (!atomic_read(&nr_comm_events) &&
3820             !atomic_read(&nr_mmap_events) &&
3821             !atomic_read(&nr_task_events))
3822                 return;
3823
3824         task_event = (struct perf_task_event){
3825                 .task     = task,
3826                 .task_ctx = task_ctx,
3827                 .event_id    = {
3828                         .header = {
3829                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3830                                 .misc = 0,
3831                                 .size = sizeof(task_event.event_id),
3832                         },
3833                         /* .pid  */
3834                         /* .ppid */
3835                         /* .tid  */
3836                         /* .ptid */
3837                         .time = perf_clock(),
3838                 },
3839         };
3840
3841         perf_event_task_event(&task_event);
3842 }
3843
3844 void perf_event_fork(struct task_struct *task)
3845 {
3846         perf_event_task(task, NULL, 1);
3847 }
3848
3849 /*
3850  * comm tracking
3851  */
3852
3853 struct perf_comm_event {
3854         struct task_struct      *task;
3855         char                    *comm;
3856         int                     comm_size;
3857
3858         struct {
3859                 struct perf_event_header        header;
3860
3861                 u32                             pid;
3862                 u32                             tid;
3863         } event_id;
3864 };
3865
3866 static void perf_event_comm_output(struct perf_event *event,
3867                                      struct perf_comm_event *comm_event)
3868 {
3869         struct perf_output_handle handle;
3870         int size = comm_event->event_id.header.size;
3871         int ret = perf_output_begin(&handle, event, size, 0, 0);
3872
3873         if (ret)
3874                 return;
3875
3876         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3877         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3878
3879         perf_output_put(&handle, comm_event->event_id);
3880         perf_output_copy(&handle, comm_event->comm,
3881                                    comm_event->comm_size);
3882         perf_output_end(&handle);
3883 }
3884
3885 static int perf_event_comm_match(struct perf_event *event)
3886 {
3887         if (event->state < PERF_EVENT_STATE_INACTIVE)
3888                 return 0;
3889
3890         if (event->cpu != -1 && event->cpu != smp_processor_id())
3891                 return 0;
3892
3893         if (event->attr.comm)
3894                 return 1;
3895
3896         return 0;
3897 }
3898
3899 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3900                                   struct perf_comm_event *comm_event)
3901 {
3902         struct perf_event *event;
3903
3904         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3905                 if (perf_event_comm_match(event))
3906                         perf_event_comm_output(event, comm_event);
3907         }
3908 }
3909
3910 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3911 {
3912         struct perf_cpu_context *cpuctx;
3913         struct perf_event_context *ctx;
3914         char comm[TASK_COMM_LEN];
3915         unsigned int size;
3916         struct pmu *pmu;
3917         int ctxn;
3918
3919         memset(comm, 0, sizeof(comm));
3920         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3921         size = ALIGN(strlen(comm)+1, sizeof(u64));
3922
3923         comm_event->comm = comm;
3924         comm_event->comm_size = size;
3925
3926         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3927
3928         rcu_read_lock();
3929         list_for_each_entry_rcu(pmu, &pmus, entry) {
3930                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3931                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3932
3933                 ctxn = pmu->task_ctx_nr;
3934                 if (ctxn < 0)
3935                         goto next;
3936
3937                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3938                 if (ctx)
3939                         perf_event_comm_ctx(ctx, comm_event);
3940 next:
3941                 put_cpu_ptr(pmu->pmu_cpu_context);
3942         }
3943         rcu_read_unlock();
3944 }
3945
3946 void perf_event_comm(struct task_struct *task)
3947 {
3948         struct perf_comm_event comm_event;
3949         struct perf_event_context *ctx;
3950         int ctxn;
3951
3952         for_each_task_context_nr(ctxn) {
3953                 ctx = task->perf_event_ctxp[ctxn];
3954                 if (!ctx)
3955                         continue;
3956
3957                 perf_event_enable_on_exec(ctx);
3958         }
3959
3960         if (!atomic_read(&nr_comm_events))
3961                 return;
3962
3963         comm_event = (struct perf_comm_event){
3964                 .task   = task,
3965                 /* .comm      */
3966                 /* .comm_size */
3967                 .event_id  = {
3968                         .header = {
3969                                 .type = PERF_RECORD_COMM,
3970                                 .misc = 0,
3971                                 /* .size */
3972                         },
3973                         /* .pid */
3974                         /* .tid */
3975                 },
3976         };
3977
3978         perf_event_comm_event(&comm_event);
3979 }
3980
3981 /*
3982  * mmap tracking
3983  */
3984
3985 struct perf_mmap_event {
3986         struct vm_area_struct   *vma;
3987
3988         const char              *file_name;
3989         int                     file_size;
3990
3991         struct {
3992                 struct perf_event_header        header;
3993
3994                 u32                             pid;
3995                 u32                             tid;
3996                 u64                             start;
3997                 u64                             len;
3998                 u64                             pgoff;
3999         } event_id;
4000 };
4001
4002 static void perf_event_mmap_output(struct perf_event *event,
4003                                      struct perf_mmap_event *mmap_event)
4004 {
4005         struct perf_output_handle handle;
4006         int size = mmap_event->event_id.header.size;
4007         int ret = perf_output_begin(&handle, event, size, 0, 0);
4008
4009         if (ret)
4010                 return;
4011
4012         mmap_event->event_id.pid = perf_event_pid(event, current);
4013         mmap_event->event_id.tid = perf_event_tid(event, current);
4014
4015         perf_output_put(&handle, mmap_event->event_id);
4016         perf_output_copy(&handle, mmap_event->file_name,
4017                                    mmap_event->file_size);
4018         perf_output_end(&handle);
4019 }
4020
4021 static int perf_event_mmap_match(struct perf_event *event,
4022                                    struct perf_mmap_event *mmap_event,
4023                                    int executable)
4024 {
4025         if (event->state < PERF_EVENT_STATE_INACTIVE)
4026                 return 0;
4027
4028         if (event->cpu != -1 && event->cpu != smp_processor_id())
4029                 return 0;
4030
4031         if ((!executable && event->attr.mmap_data) ||
4032             (executable && event->attr.mmap))
4033                 return 1;
4034
4035         return 0;
4036 }
4037
4038 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4039                                   struct perf_mmap_event *mmap_event,
4040                                   int executable)
4041 {
4042         struct perf_event *event;
4043
4044         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4045                 if (perf_event_mmap_match(event, mmap_event, executable))
4046                         perf_event_mmap_output(event, mmap_event);
4047         }
4048 }
4049
4050 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4051 {
4052         struct perf_cpu_context *cpuctx;
4053         struct perf_event_context *ctx;
4054         struct vm_area_struct *vma = mmap_event->vma;
4055         struct file *file = vma->vm_file;
4056         unsigned int size;
4057         char tmp[16];
4058         char *buf = NULL;
4059         const char *name;
4060         struct pmu *pmu;
4061         int ctxn;
4062
4063         memset(tmp, 0, sizeof(tmp));
4064
4065         if (file) {
4066                 /*
4067                  * d_path works from the end of the buffer backwards, so we
4068                  * need to add enough zero bytes after the string to handle
4069                  * the 64bit alignment we do later.
4070                  */
4071                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4072                 if (!buf) {
4073                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4074                         goto got_name;
4075                 }
4076                 name = d_path(&file->f_path, buf, PATH_MAX);
4077                 if (IS_ERR(name)) {
4078                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4079                         goto got_name;
4080                 }
4081         } else {
4082                 if (arch_vma_name(mmap_event->vma)) {
4083                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4084                                        sizeof(tmp));
4085                         goto got_name;
4086                 }
4087
4088                 if (!vma->vm_mm) {
4089                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4090                         goto got_name;
4091                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4092                                 vma->vm_end >= vma->vm_mm->brk) {
4093                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4094                         goto got_name;
4095                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4096                                 vma->vm_end >= vma->vm_mm->start_stack) {
4097                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4098                         goto got_name;
4099                 }
4100
4101                 name = strncpy(tmp, "//anon", sizeof(tmp));
4102                 goto got_name;
4103         }
4104
4105 got_name:
4106         size = ALIGN(strlen(name)+1, sizeof(u64));
4107
4108         mmap_event->file_name = name;
4109         mmap_event->file_size = size;
4110
4111         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4112
4113         rcu_read_lock();
4114         list_for_each_entry_rcu(pmu, &pmus, entry) {
4115                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4116                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4117                                         vma->vm_flags & VM_EXEC);
4118
4119                 ctxn = pmu->task_ctx_nr;
4120                 if (ctxn < 0)
4121                         goto next;
4122
4123                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4124                 if (ctx) {
4125                         perf_event_mmap_ctx(ctx, mmap_event,
4126                                         vma->vm_flags & VM_EXEC);
4127                 }
4128 next:
4129                 put_cpu_ptr(pmu->pmu_cpu_context);
4130         }
4131         rcu_read_unlock();
4132
4133         kfree(buf);
4134 }
4135
4136 void perf_event_mmap(struct vm_area_struct *vma)
4137 {
4138         struct perf_mmap_event mmap_event;
4139
4140         if (!atomic_read(&nr_mmap_events))
4141                 return;
4142
4143         mmap_event = (struct perf_mmap_event){
4144                 .vma    = vma,
4145                 /* .file_name */
4146                 /* .file_size */
4147                 .event_id  = {
4148                         .header = {
4149                                 .type = PERF_RECORD_MMAP,
4150                                 .misc = PERF_RECORD_MISC_USER,
4151                                 /* .size */
4152                         },
4153                         /* .pid */
4154                         /* .tid */
4155                         .start  = vma->vm_start,
4156                         .len    = vma->vm_end - vma->vm_start,
4157                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4158                 },
4159         };
4160
4161         perf_event_mmap_event(&mmap_event);
4162 }
4163
4164 /*
4165  * IRQ throttle logging
4166  */
4167
4168 static void perf_log_throttle(struct perf_event *event, int enable)
4169 {
4170         struct perf_output_handle handle;
4171         int ret;
4172
4173         struct {
4174                 struct perf_event_header        header;
4175                 u64                             time;
4176                 u64                             id;
4177                 u64                             stream_id;
4178         } throttle_event = {
4179                 .header = {
4180                         .type = PERF_RECORD_THROTTLE,
4181                         .misc = 0,
4182                         .size = sizeof(throttle_event),
4183                 },
4184                 .time           = perf_clock(),
4185                 .id             = primary_event_id(event),
4186                 .stream_id      = event->id,
4187         };
4188
4189         if (enable)
4190                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4191
4192         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4193         if (ret)
4194                 return;
4195
4196         perf_output_put(&handle, throttle_event);
4197         perf_output_end(&handle);
4198 }
4199
4200 /*
4201  * Generic event overflow handling, sampling.
4202  */
4203
4204 static int __perf_event_overflow(struct perf_event *event, int nmi,
4205                                    int throttle, struct perf_sample_data *data,
4206                                    struct pt_regs *regs)
4207 {
4208         int events = atomic_read(&event->event_limit);
4209         struct hw_perf_event *hwc = &event->hw;
4210         int ret = 0;
4211
4212         if (!throttle) {
4213                 hwc->interrupts++;
4214         } else {
4215                 if (hwc->interrupts != MAX_INTERRUPTS) {
4216                         hwc->interrupts++;
4217                         if (HZ * hwc->interrupts >
4218                                         (u64)sysctl_perf_event_sample_rate) {
4219                                 hwc->interrupts = MAX_INTERRUPTS;
4220                                 perf_log_throttle(event, 0);
4221                                 ret = 1;
4222                         }
4223                 } else {
4224                         /*
4225                          * Keep re-disabling events even though on the previous
4226                          * pass we disabled it - just in case we raced with a
4227                          * sched-in and the event got enabled again:
4228                          */
4229                         ret = 1;
4230                 }
4231         }
4232
4233         if (event->attr.freq) {
4234                 u64 now = perf_clock();
4235                 s64 delta = now - hwc->freq_time_stamp;
4236
4237                 hwc->freq_time_stamp = now;
4238
4239                 if (delta > 0 && delta < 2*TICK_NSEC)
4240                         perf_adjust_period(event, delta, hwc->last_period);
4241         }
4242
4243         /*
4244          * XXX event_limit might not quite work as expected on inherited
4245          * events
4246          */
4247
4248         event->pending_kill = POLL_IN;
4249         if (events && atomic_dec_and_test(&event->event_limit)) {
4250                 ret = 1;
4251                 event->pending_kill = POLL_HUP;
4252                 if (nmi) {
4253                         event->pending_disable = 1;
4254                         irq_work_queue(&event->pending);
4255                 } else
4256                         perf_event_disable(event);
4257         }
4258
4259         if (event->overflow_handler)
4260                 event->overflow_handler(event, nmi, data, regs);
4261         else
4262                 perf_event_output(event, nmi, data, regs);
4263
4264         return ret;
4265 }
4266
4267 int perf_event_overflow(struct perf_event *event, int nmi,
4268                           struct perf_sample_data *data,
4269                           struct pt_regs *regs)
4270 {
4271         return __perf_event_overflow(event, nmi, 1, data, regs);
4272 }
4273
4274 /*
4275  * Generic software event infrastructure
4276  */
4277
4278 struct swevent_htable {
4279         struct swevent_hlist            *swevent_hlist;
4280         struct mutex                    hlist_mutex;
4281         int                             hlist_refcount;
4282
4283         /* Recursion avoidance in each contexts */
4284         int                             recursion[PERF_NR_CONTEXTS];
4285 };
4286
4287 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4288
4289 /*
4290  * We directly increment event->count and keep a second value in
4291  * event->hw.period_left to count intervals. This period event
4292  * is kept in the range [-sample_period, 0] so that we can use the
4293  * sign as trigger.
4294  */
4295
4296 static u64 perf_swevent_set_period(struct perf_event *event)
4297 {
4298         struct hw_perf_event *hwc = &event->hw;
4299         u64 period = hwc->last_period;
4300         u64 nr, offset;
4301         s64 old, val;
4302
4303         hwc->last_period = hwc->sample_period;
4304
4305 again:
4306         old = val = local64_read(&hwc->period_left);
4307         if (val < 0)
4308                 return 0;
4309
4310         nr = div64_u64(period + val, period);
4311         offset = nr * period;
4312         val -= offset;
4313         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4314                 goto again;
4315
4316         return nr;
4317 }
4318
4319 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4320                                     int nmi, struct perf_sample_data *data,
4321                                     struct pt_regs *regs)
4322 {
4323         struct hw_perf_event *hwc = &event->hw;
4324         int throttle = 0;
4325
4326         data->period = event->hw.last_period;
4327         if (!overflow)
4328                 overflow = perf_swevent_set_period(event);
4329
4330         if (hwc->interrupts == MAX_INTERRUPTS)
4331                 return;
4332
4333         for (; overflow; overflow--) {
4334                 if (__perf_event_overflow(event, nmi, throttle,
4335                                             data, regs)) {
4336                         /*
4337                          * We inhibit the overflow from happening when
4338                          * hwc->interrupts == MAX_INTERRUPTS.
4339                          */
4340                         break;
4341                 }
4342                 throttle = 1;
4343         }
4344 }
4345
4346 static void perf_swevent_event(struct perf_event *event, u64 nr,
4347                                int nmi, struct perf_sample_data *data,
4348                                struct pt_regs *regs)
4349 {
4350         struct hw_perf_event *hwc = &event->hw;
4351
4352         local64_add(nr, &event->count);
4353
4354         if (!regs)
4355                 return;
4356
4357         if (!hwc->sample_period)
4358                 return;
4359
4360         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4361                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4362
4363         if (local64_add_negative(nr, &hwc->period_left))
4364                 return;
4365
4366         perf_swevent_overflow(event, 0, nmi, data, regs);
4367 }
4368
4369 static int perf_exclude_event(struct perf_event *event,
4370                               struct pt_regs *regs)
4371 {
4372         if (event->hw.state & PERF_HES_STOPPED)
4373                 return 0;
4374
4375         if (regs) {
4376                 if (event->attr.exclude_user && user_mode(regs))
4377                         return 1;
4378
4379                 if (event->attr.exclude_kernel && !user_mode(regs))
4380                         return 1;
4381         }
4382
4383         return 0;
4384 }
4385
4386 static int perf_swevent_match(struct perf_event *event,
4387                                 enum perf_type_id type,
4388                                 u32 event_id,
4389                                 struct perf_sample_data *data,
4390                                 struct pt_regs *regs)
4391 {
4392         if (event->attr.type != type)
4393                 return 0;
4394
4395         if (event->attr.config != event_id)
4396                 return 0;
4397
4398         if (perf_exclude_event(event, regs))
4399                 return 0;
4400
4401         return 1;
4402 }
4403
4404 static inline u64 swevent_hash(u64 type, u32 event_id)
4405 {
4406         u64 val = event_id | (type << 32);
4407
4408         return hash_64(val, SWEVENT_HLIST_BITS);
4409 }
4410
4411 static inline struct hlist_head *
4412 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4413 {
4414         u64 hash = swevent_hash(type, event_id);
4415
4416         return &hlist->heads[hash];
4417 }
4418
4419 /* For the read side: events when they trigger */
4420 static inline struct hlist_head *
4421 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4422 {
4423         struct swevent_hlist *hlist;
4424
4425         hlist = rcu_dereference(swhash->swevent_hlist);
4426         if (!hlist)
4427                 return NULL;
4428
4429         return __find_swevent_head(hlist, type, event_id);
4430 }
4431
4432 /* For the event head insertion and removal in the hlist */
4433 static inline struct hlist_head *
4434 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4435 {
4436         struct swevent_hlist *hlist;
4437         u32 event_id = event->attr.config;
4438         u64 type = event->attr.type;
4439
4440         /*
4441          * Event scheduling is always serialized against hlist allocation
4442          * and release. Which makes the protected version suitable here.
4443          * The context lock guarantees that.
4444          */
4445         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4446                                           lockdep_is_held(&event->ctx->lock));
4447         if (!hlist)
4448                 return NULL;
4449
4450         return __find_swevent_head(hlist, type, event_id);
4451 }
4452
4453 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4454                                     u64 nr, int nmi,
4455                                     struct perf_sample_data *data,
4456                                     struct pt_regs *regs)
4457 {
4458         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4459         struct perf_event *event;
4460         struct hlist_node *node;
4461         struct hlist_head *head;
4462
4463         rcu_read_lock();
4464         head = find_swevent_head_rcu(swhash, type, event_id);
4465         if (!head)
4466                 goto end;
4467
4468         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4469                 if (perf_swevent_match(event, type, event_id, data, regs))
4470                         perf_swevent_event(event, nr, nmi, data, regs);
4471         }
4472 end:
4473         rcu_read_unlock();
4474 }
4475
4476 int perf_swevent_get_recursion_context(void)
4477 {
4478         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4479
4480         return get_recursion_context(swhash->recursion);
4481 }
4482 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4483
4484 void inline perf_swevent_put_recursion_context(int rctx)
4485 {
4486         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4487
4488         put_recursion_context(swhash->recursion, rctx);
4489 }
4490
4491 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4492                             struct pt_regs *regs, u64 addr)
4493 {
4494         struct perf_sample_data data;
4495         int rctx;
4496
4497         preempt_disable_notrace();
4498         rctx = perf_swevent_get_recursion_context();
4499         if (rctx < 0)
4500                 return;
4501
4502         perf_sample_data_init(&data, addr);
4503
4504         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4505
4506         perf_swevent_put_recursion_context(rctx);
4507         preempt_enable_notrace();
4508 }
4509
4510 static void perf_swevent_read(struct perf_event *event)
4511 {
4512 }
4513
4514 static int perf_swevent_add(struct perf_event *event, int flags)
4515 {
4516         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4517         struct hw_perf_event *hwc = &event->hw;
4518         struct hlist_head *head;
4519
4520         if (hwc->sample_period) {
4521                 hwc->last_period = hwc->sample_period;
4522                 perf_swevent_set_period(event);
4523         }
4524
4525         hwc->state = !(flags & PERF_EF_START);
4526
4527         head = find_swevent_head(swhash, event);
4528         if (WARN_ON_ONCE(!head))
4529                 return -EINVAL;
4530
4531         hlist_add_head_rcu(&event->hlist_entry, head);
4532
4533         return 0;
4534 }
4535
4536 static void perf_swevent_del(struct perf_event *event, int flags)
4537 {
4538         hlist_del_rcu(&event->hlist_entry);
4539 }
4540
4541 static void perf_swevent_start(struct perf_event *event, int flags)
4542 {
4543         event->hw.state = 0;
4544 }
4545
4546 static void perf_swevent_stop(struct perf_event *event, int flags)
4547 {
4548         event->hw.state = PERF_HES_STOPPED;
4549 }
4550
4551 /* Deref the hlist from the update side */
4552 static inline struct swevent_hlist *
4553 swevent_hlist_deref(struct swevent_htable *swhash)
4554 {
4555         return rcu_dereference_protected(swhash->swevent_hlist,
4556                                          lockdep_is_held(&swhash->hlist_mutex));
4557 }
4558
4559 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4560 {
4561         struct swevent_hlist *hlist;
4562
4563         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4564         kfree(hlist);
4565 }
4566
4567 static void swevent_hlist_release(struct swevent_htable *swhash)
4568 {
4569         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4570
4571         if (!hlist)
4572                 return;
4573
4574         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4575         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4576 }
4577
4578 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4579 {
4580         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4581
4582         mutex_lock(&swhash->hlist_mutex);
4583
4584         if (!--swhash->hlist_refcount)
4585                 swevent_hlist_release(swhash);
4586
4587         mutex_unlock(&swhash->hlist_mutex);
4588 }
4589
4590 static void swevent_hlist_put(struct perf_event *event)
4591 {
4592         int cpu;
4593
4594         if (event->cpu != -1) {
4595                 swevent_hlist_put_cpu(event, event->cpu);
4596                 return;
4597         }
4598
4599         for_each_possible_cpu(cpu)
4600                 swevent_hlist_put_cpu(event, cpu);
4601 }
4602
4603 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4604 {
4605         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4606         int err = 0;
4607
4608         mutex_lock(&swhash->hlist_mutex);
4609
4610         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4611                 struct swevent_hlist *hlist;
4612
4613                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4614                 if (!hlist) {
4615                         err = -ENOMEM;
4616                         goto exit;
4617                 }
4618                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4619         }
4620         swhash->hlist_refcount++;
4621 exit:
4622         mutex_unlock(&swhash->hlist_mutex);
4623
4624         return err;
4625 }
4626
4627 static int swevent_hlist_get(struct perf_event *event)
4628 {
4629         int err;
4630         int cpu, failed_cpu;
4631
4632         if (event->cpu != -1)
4633                 return swevent_hlist_get_cpu(event, event->cpu);
4634
4635         get_online_cpus();
4636         for_each_possible_cpu(cpu) {
4637                 err = swevent_hlist_get_cpu(event, cpu);
4638                 if (err) {
4639                         failed_cpu = cpu;
4640                         goto fail;
4641                 }
4642         }
4643         put_online_cpus();
4644
4645         return 0;
4646 fail:
4647         for_each_possible_cpu(cpu) {
4648                 if (cpu == failed_cpu)
4649                         break;
4650                 swevent_hlist_put_cpu(event, cpu);
4651         }
4652
4653         put_online_cpus();
4654         return err;
4655 }
4656
4657 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4658
4659 static void sw_perf_event_destroy(struct perf_event *event)
4660 {
4661         u64 event_id = event->attr.config;
4662
4663         WARN_ON(event->parent);
4664
4665         jump_label_dec(&perf_swevent_enabled[event_id]);
4666         swevent_hlist_put(event);
4667 }
4668
4669 static int perf_swevent_init(struct perf_event *event)
4670 {
4671         int event_id = event->attr.config;
4672
4673         if (event->attr.type != PERF_TYPE_SOFTWARE)
4674                 return -ENOENT;
4675
4676         switch (event_id) {
4677         case PERF_COUNT_SW_CPU_CLOCK:
4678         case PERF_COUNT_SW_TASK_CLOCK:
4679                 return -ENOENT;
4680
4681         default:
4682                 break;
4683         }
4684
4685         if (event_id > PERF_COUNT_SW_MAX)
4686                 return -ENOENT;
4687
4688         if (!event->parent) {
4689                 int err;
4690
4691                 err = swevent_hlist_get(event);
4692                 if (err)
4693                         return err;
4694
4695                 jump_label_inc(&perf_swevent_enabled[event_id]);
4696                 event->destroy = sw_perf_event_destroy;
4697         }
4698
4699         return 0;
4700 }
4701
4702 static struct pmu perf_swevent = {
4703         .task_ctx_nr    = perf_sw_context,
4704
4705         .event_init     = perf_swevent_init,
4706         .add            = perf_swevent_add,
4707         .del            = perf_swevent_del,
4708         .start          = perf_swevent_start,
4709         .stop           = perf_swevent_stop,
4710         .read           = perf_swevent_read,
4711 };
4712
4713 #ifdef CONFIG_EVENT_TRACING
4714
4715 static int perf_tp_filter_match(struct perf_event *event,
4716                                 struct perf_sample_data *data)
4717 {
4718         void *record = data->raw->data;
4719
4720         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4721                 return 1;
4722         return 0;
4723 }
4724
4725 static int perf_tp_event_match(struct perf_event *event,
4726                                 struct perf_sample_data *data,
4727                                 struct pt_regs *regs)
4728 {
4729         /*
4730          * All tracepoints are from kernel-space.
4731          */
4732         if (event->attr.exclude_kernel)
4733                 return 0;
4734
4735         if (!perf_tp_filter_match(event, data))
4736                 return 0;
4737
4738         return 1;
4739 }
4740
4741 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4742                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4743 {
4744         struct perf_sample_data data;
4745         struct perf_event *event;
4746         struct hlist_node *node;
4747
4748         struct perf_raw_record raw = {
4749                 .size = entry_size,
4750                 .data = record,
4751         };
4752
4753         perf_sample_data_init(&data, addr);
4754         data.raw = &raw;
4755
4756         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4757                 if (perf_tp_event_match(event, &data, regs))
4758                         perf_swevent_event(event, count, 1, &data, regs);
4759         }
4760
4761         perf_swevent_put_recursion_context(rctx);
4762 }
4763 EXPORT_SYMBOL_GPL(perf_tp_event);
4764
4765 static void tp_perf_event_destroy(struct perf_event *event)
4766 {
4767         perf_trace_destroy(event);
4768 }
4769
4770 static int perf_tp_event_init(struct perf_event *event)
4771 {
4772         int err;
4773
4774         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4775                 return -ENOENT;
4776
4777         /*
4778          * Raw tracepoint data is a severe data leak, only allow root to
4779          * have these.
4780          */
4781         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4782                         perf_paranoid_tracepoint_raw() &&
4783                         !capable(CAP_SYS_ADMIN))
4784                 return -EPERM;
4785
4786         err = perf_trace_init(event);
4787         if (err)
4788                 return err;
4789
4790         event->destroy = tp_perf_event_destroy;
4791
4792         return 0;
4793 }
4794
4795 static struct pmu perf_tracepoint = {
4796         .task_ctx_nr    = perf_sw_context,
4797
4798         .event_init     = perf_tp_event_init,
4799         .add            = perf_trace_add,
4800         .del            = perf_trace_del,
4801         .start          = perf_swevent_start,
4802         .stop           = perf_swevent_stop,
4803         .read           = perf_swevent_read,
4804 };
4805
4806 static inline void perf_tp_register(void)
4807 {
4808         perf_pmu_register(&perf_tracepoint);
4809 }
4810
4811 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4812 {
4813         char *filter_str;
4814         int ret;
4815
4816         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4817                 return -EINVAL;
4818
4819         filter_str = strndup_user(arg, PAGE_SIZE);
4820         if (IS_ERR(filter_str))
4821                 return PTR_ERR(filter_str);
4822
4823         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4824
4825         kfree(filter_str);
4826         return ret;
4827 }
4828
4829 static void perf_event_free_filter(struct perf_event *event)
4830 {
4831         ftrace_profile_free_filter(event);
4832 }
4833
4834 #else
4835
4836 static inline void perf_tp_register(void)
4837 {
4838 }
4839
4840 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4841 {
4842         return -ENOENT;
4843 }
4844
4845 static void perf_event_free_filter(struct perf_event *event)
4846 {
4847 }
4848
4849 #endif /* CONFIG_EVENT_TRACING */
4850
4851 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4852 void perf_bp_event(struct perf_event *bp, void *data)
4853 {
4854         struct perf_sample_data sample;
4855         struct pt_regs *regs = data;
4856
4857         perf_sample_data_init(&sample, bp->attr.bp_addr);
4858
4859         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4860                 perf_swevent_event(bp, 1, 1, &sample, regs);
4861 }
4862 #endif
4863
4864 /*
4865  * hrtimer based swevent callback
4866  */
4867
4868 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4869 {
4870         enum hrtimer_restart ret = HRTIMER_RESTART;
4871         struct perf_sample_data data;
4872         struct pt_regs *regs;
4873         struct perf_event *event;
4874         u64 period;
4875
4876         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4877         event->pmu->read(event);
4878
4879         perf_sample_data_init(&data, 0);
4880         data.period = event->hw.last_period;
4881         regs = get_irq_regs();
4882
4883         if (regs && !perf_exclude_event(event, regs)) {
4884                 if (!(event->attr.exclude_idle && current->pid == 0))
4885                         if (perf_event_overflow(event, 0, &data, regs))
4886                                 ret = HRTIMER_NORESTART;
4887         }
4888
4889         period = max_t(u64, 10000, event->hw.sample_period);
4890         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4891
4892         return ret;
4893 }
4894
4895 static void perf_swevent_start_hrtimer(struct perf_event *event)
4896 {
4897         struct hw_perf_event *hwc = &event->hw;
4898
4899         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4900         hwc->hrtimer.function = perf_swevent_hrtimer;
4901         if (hwc->sample_period) {
4902                 s64 period = local64_read(&hwc->period_left);
4903
4904                 if (period) {
4905                         if (period < 0)
4906                                 period = 10000;
4907
4908                         local64_set(&hwc->period_left, 0);
4909                 } else {
4910                         period = max_t(u64, 10000, hwc->sample_period);
4911                 }
4912                 __hrtimer_start_range_ns(&hwc->hrtimer,
4913                                 ns_to_ktime(period), 0,
4914                                 HRTIMER_MODE_REL_PINNED, 0);
4915         }
4916 }
4917
4918 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4919 {
4920         struct hw_perf_event *hwc = &event->hw;
4921
4922         if (hwc->sample_period) {
4923                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4924                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4925
4926                 hrtimer_cancel(&hwc->hrtimer);
4927         }
4928 }
4929
4930 /*
4931  * Software event: cpu wall time clock
4932  */
4933
4934 static void cpu_clock_event_update(struct perf_event *event)
4935 {
4936         s64 prev;
4937         u64 now;
4938
4939         now = local_clock();
4940         prev = local64_xchg(&event->hw.prev_count, now);
4941         local64_add(now - prev, &event->count);
4942 }
4943
4944 static void cpu_clock_event_start(struct perf_event *event, int flags)
4945 {
4946         local64_set(&event->hw.prev_count, local_clock());
4947         perf_swevent_start_hrtimer(event);
4948 }
4949
4950 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4951 {
4952         perf_swevent_cancel_hrtimer(event);
4953         cpu_clock_event_update(event);
4954 }
4955
4956 static int cpu_clock_event_add(struct perf_event *event, int flags)
4957 {
4958         if (flags & PERF_EF_START)
4959                 cpu_clock_event_start(event, flags);
4960
4961         return 0;
4962 }
4963
4964 static void cpu_clock_event_del(struct perf_event *event, int flags)
4965 {
4966         cpu_clock_event_stop(event, flags);
4967 }
4968
4969 static void cpu_clock_event_read(struct perf_event *event)
4970 {
4971         cpu_clock_event_update(event);
4972 }
4973
4974 static int cpu_clock_event_init(struct perf_event *event)
4975 {
4976         if (event->attr.type != PERF_TYPE_SOFTWARE)
4977                 return -ENOENT;
4978
4979         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4980                 return -ENOENT;
4981
4982         return 0;
4983 }
4984
4985 static struct pmu perf_cpu_clock = {
4986         .task_ctx_nr    = perf_sw_context,
4987
4988         .event_init     = cpu_clock_event_init,
4989         .add            = cpu_clock_event_add,
4990         .del            = cpu_clock_event_del,
4991         .start          = cpu_clock_event_start,
4992         .stop           = cpu_clock_event_stop,
4993         .read           = cpu_clock_event_read,
4994 };
4995
4996 /*
4997  * Software event: task time clock
4998  */
4999
5000 static void task_clock_event_update(struct perf_event *event, u64 now)
5001 {
5002         u64 prev;
5003         s64 delta;
5004
5005         prev = local64_xchg(&event->hw.prev_count, now);
5006         delta = now - prev;
5007         local64_add(delta, &event->count);
5008 }
5009
5010 static void task_clock_event_start(struct perf_event *event, int flags)
5011 {
5012         local64_set(&event->hw.prev_count, event->ctx->time);
5013         perf_swevent_start_hrtimer(event);
5014 }
5015
5016 static void task_clock_event_stop(struct perf_event *event, int flags)
5017 {
5018         perf_swevent_cancel_hrtimer(event);
5019         task_clock_event_update(event, event->ctx->time);
5020 }
5021
5022 static int task_clock_event_add(struct perf_event *event, int flags)
5023 {
5024         if (flags & PERF_EF_START)
5025                 task_clock_event_start(event, flags);
5026
5027         return 0;
5028 }
5029
5030 static void task_clock_event_del(struct perf_event *event, int flags)
5031 {
5032         task_clock_event_stop(event, PERF_EF_UPDATE);
5033 }
5034
5035 static void task_clock_event_read(struct perf_event *event)
5036 {
5037         u64 time;
5038
5039         if (!in_nmi()) {
5040                 update_context_time(event->ctx);
5041                 time = event->ctx->time;
5042         } else {
5043                 u64 now = perf_clock();
5044                 u64 delta = now - event->ctx->timestamp;
5045                 time = event->ctx->time + delta;
5046         }
5047
5048         task_clock_event_update(event, time);
5049 }
5050
5051 static int task_clock_event_init(struct perf_event *event)
5052 {
5053         if (event->attr.type != PERF_TYPE_SOFTWARE)
5054                 return -ENOENT;
5055
5056         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5057                 return -ENOENT;
5058
5059         return 0;
5060 }
5061
5062 static struct pmu perf_task_clock = {
5063         .task_ctx_nr    = perf_sw_context,
5064
5065         .event_init     = task_clock_event_init,
5066         .add            = task_clock_event_add,
5067         .del            = task_clock_event_del,
5068         .start          = task_clock_event_start,
5069         .stop           = task_clock_event_stop,
5070         .read           = task_clock_event_read,
5071 };
5072
5073 static void perf_pmu_nop_void(struct pmu *pmu)
5074 {
5075 }
5076
5077 static int perf_pmu_nop_int(struct pmu *pmu)
5078 {
5079         return 0;
5080 }
5081
5082 static void perf_pmu_start_txn(struct pmu *pmu)
5083 {
5084         perf_pmu_disable(pmu);
5085 }
5086
5087 static int perf_pmu_commit_txn(struct pmu *pmu)
5088 {
5089         perf_pmu_enable(pmu);
5090         return 0;
5091 }
5092
5093 static void perf_pmu_cancel_txn(struct pmu *pmu)
5094 {
5095         perf_pmu_enable(pmu);
5096 }
5097
5098 /*
5099  * Ensures all contexts with the same task_ctx_nr have the same
5100  * pmu_cpu_context too.
5101  */
5102 static void *find_pmu_context(int ctxn)
5103 {
5104         struct pmu *pmu;
5105
5106         if (ctxn < 0)
5107                 return NULL;
5108
5109         list_for_each_entry(pmu, &pmus, entry) {
5110                 if (pmu->task_ctx_nr == ctxn)
5111                         return pmu->pmu_cpu_context;
5112         }
5113
5114         return NULL;
5115 }
5116
5117 static void free_pmu_context(void * __percpu cpu_context)
5118 {
5119         struct pmu *pmu;
5120
5121         mutex_lock(&pmus_lock);
5122         /*
5123          * Like a real lame refcount.
5124          */
5125         list_for_each_entry(pmu, &pmus, entry) {
5126                 if (pmu->pmu_cpu_context == cpu_context)
5127                         goto out;
5128         }
5129
5130         free_percpu(cpu_context);
5131 out:
5132         mutex_unlock(&pmus_lock);
5133 }
5134
5135 int perf_pmu_register(struct pmu *pmu)
5136 {
5137         int cpu, ret;
5138
5139         mutex_lock(&pmus_lock);
5140         ret = -ENOMEM;
5141         pmu->pmu_disable_count = alloc_percpu(int);
5142         if (!pmu->pmu_disable_count)
5143                 goto unlock;
5144
5145         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5146         if (pmu->pmu_cpu_context)
5147                 goto got_cpu_context;
5148
5149         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5150         if (!pmu->pmu_cpu_context)
5151                 goto free_pdc;
5152
5153         for_each_possible_cpu(cpu) {
5154                 struct perf_cpu_context *cpuctx;
5155
5156                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5157                 __perf_event_init_context(&cpuctx->ctx);
5158                 cpuctx->ctx.type = cpu_context;
5159                 cpuctx->ctx.pmu = pmu;
5160                 cpuctx->jiffies_interval = 1;
5161                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5162         }
5163
5164 got_cpu_context:
5165         if (!pmu->start_txn) {
5166                 if (pmu->pmu_enable) {
5167                         /*
5168                          * If we have pmu_enable/pmu_disable calls, install
5169                          * transaction stubs that use that to try and batch
5170                          * hardware accesses.
5171                          */
5172                         pmu->start_txn  = perf_pmu_start_txn;
5173                         pmu->commit_txn = perf_pmu_commit_txn;
5174                         pmu->cancel_txn = perf_pmu_cancel_txn;
5175                 } else {
5176                         pmu->start_txn  = perf_pmu_nop_void;
5177                         pmu->commit_txn = perf_pmu_nop_int;
5178                         pmu->cancel_txn = perf_pmu_nop_void;
5179                 }
5180         }
5181
5182         if (!pmu->pmu_enable) {
5183                 pmu->pmu_enable  = perf_pmu_nop_void;
5184                 pmu->pmu_disable = perf_pmu_nop_void;
5185         }
5186
5187         list_add_rcu(&pmu->entry, &pmus);
5188         ret = 0;
5189 unlock:
5190         mutex_unlock(&pmus_lock);
5191
5192         return ret;
5193
5194 free_pdc:
5195         free_percpu(pmu->pmu_disable_count);
5196         goto unlock;
5197 }
5198
5199 void perf_pmu_unregister(struct pmu *pmu)
5200 {
5201         mutex_lock(&pmus_lock);
5202         list_del_rcu(&pmu->entry);
5203         mutex_unlock(&pmus_lock);
5204
5205         /*
5206          * We dereference the pmu list under both SRCU and regular RCU, so
5207          * synchronize against both of those.
5208          */
5209         synchronize_srcu(&pmus_srcu);
5210         synchronize_rcu();
5211
5212         free_percpu(pmu->pmu_disable_count);
5213         free_pmu_context(pmu->pmu_cpu_context);
5214 }
5215
5216 struct pmu *perf_init_event(struct perf_event *event)
5217 {
5218         struct pmu *pmu = NULL;
5219         int idx;
5220
5221         idx = srcu_read_lock(&pmus_srcu);
5222         list_for_each_entry_rcu(pmu, &pmus, entry) {
5223                 int ret = pmu->event_init(event);
5224                 if (!ret)
5225                         goto unlock;
5226
5227                 if (ret != -ENOENT) {
5228                         pmu = ERR_PTR(ret);
5229                         goto unlock;
5230                 }
5231         }
5232         pmu = ERR_PTR(-ENOENT);
5233 unlock:
5234         srcu_read_unlock(&pmus_srcu, idx);
5235
5236         return pmu;
5237 }
5238
5239 /*
5240  * Allocate and initialize a event structure
5241  */
5242 static struct perf_event *
5243 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5244                  struct task_struct *task,
5245                  struct perf_event *group_leader,
5246                  struct perf_event *parent_event,
5247                  perf_overflow_handler_t overflow_handler)
5248 {
5249         struct pmu *pmu;
5250         struct perf_event *event;
5251         struct hw_perf_event *hwc;
5252         long err;
5253
5254         event = kzalloc(sizeof(*event), GFP_KERNEL);
5255         if (!event)
5256                 return ERR_PTR(-ENOMEM);
5257
5258         /*
5259          * Single events are their own group leaders, with an
5260          * empty sibling list:
5261          */
5262         if (!group_leader)
5263                 group_leader = event;
5264
5265         mutex_init(&event->child_mutex);
5266         INIT_LIST_HEAD(&event->child_list);
5267
5268         INIT_LIST_HEAD(&event->group_entry);
5269         INIT_LIST_HEAD(&event->event_entry);
5270         INIT_LIST_HEAD(&event->sibling_list);
5271         init_waitqueue_head(&event->waitq);
5272         init_irq_work(&event->pending, perf_pending_event);
5273
5274         mutex_init(&event->mmap_mutex);
5275
5276         event->cpu              = cpu;
5277         event->attr             = *attr;
5278         event->group_leader     = group_leader;
5279         event->pmu              = NULL;
5280         event->oncpu            = -1;
5281
5282         event->parent           = parent_event;
5283
5284         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5285         event->id               = atomic64_inc_return(&perf_event_id);
5286
5287         event->state            = PERF_EVENT_STATE_INACTIVE;
5288
5289         if (task) {
5290                 event->attach_state = PERF_ATTACH_TASK;
5291 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5292                 /*
5293                  * hw_breakpoint is a bit difficult here..
5294                  */
5295                 if (attr->type == PERF_TYPE_BREAKPOINT)
5296                         event->hw.bp_target = task;
5297 #endif
5298         }
5299
5300         if (!overflow_handler && parent_event)
5301                 overflow_handler = parent_event->overflow_handler;
5302         
5303         event->overflow_handler = overflow_handler;
5304
5305         if (attr->disabled)
5306                 event->state = PERF_EVENT_STATE_OFF;
5307
5308         pmu = NULL;
5309
5310         hwc = &event->hw;
5311         hwc->sample_period = attr->sample_period;
5312         if (attr->freq && attr->sample_freq)
5313                 hwc->sample_period = 1;
5314         hwc->last_period = hwc->sample_period;
5315
5316         local64_set(&hwc->period_left, hwc->sample_period);
5317
5318         /*
5319          * we currently do not support PERF_FORMAT_GROUP on inherited events
5320          */
5321         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5322                 goto done;
5323
5324         pmu = perf_init_event(event);
5325
5326 done:
5327         err = 0;
5328         if (!pmu)
5329                 err = -EINVAL;
5330         else if (IS_ERR(pmu))
5331                 err = PTR_ERR(pmu);
5332
5333         if (err) {
5334                 if (event->ns)
5335                         put_pid_ns(event->ns);
5336                 kfree(event);
5337                 return ERR_PTR(err);
5338         }
5339
5340         event->pmu = pmu;
5341
5342         if (!event->parent) {
5343                 if (event->attach_state & PERF_ATTACH_TASK)
5344                         jump_label_inc(&perf_task_events);
5345                 if (event->attr.mmap || event->attr.mmap_data)
5346                         atomic_inc(&nr_mmap_events);
5347                 if (event->attr.comm)
5348                         atomic_inc(&nr_comm_events);
5349                 if (event->attr.task)
5350                         atomic_inc(&nr_task_events);
5351                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5352                         err = get_callchain_buffers();
5353                         if (err) {
5354                                 free_event(event);
5355                                 return ERR_PTR(err);
5356                         }
5357                 }
5358         }
5359
5360         return event;
5361 }
5362
5363 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5364                           struct perf_event_attr *attr)
5365 {
5366         u32 size;
5367         int ret;
5368
5369         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5370                 return -EFAULT;
5371
5372         /*
5373          * zero the full structure, so that a short copy will be nice.
5374          */
5375         memset(attr, 0, sizeof(*attr));
5376
5377         ret = get_user(size, &uattr->size);
5378         if (ret)
5379                 return ret;
5380
5381         if (size > PAGE_SIZE)   /* silly large */
5382                 goto err_size;
5383
5384         if (!size)              /* abi compat */
5385                 size = PERF_ATTR_SIZE_VER0;
5386
5387         if (size < PERF_ATTR_SIZE_VER0)
5388                 goto err_size;
5389
5390         /*
5391          * If we're handed a bigger struct than we know of,
5392          * ensure all the unknown bits are 0 - i.e. new
5393          * user-space does not rely on any kernel feature
5394          * extensions we dont know about yet.
5395          */
5396         if (size > sizeof(*attr)) {
5397                 unsigned char __user *addr;
5398                 unsigned char __user *end;
5399                 unsigned char val;
5400
5401                 addr = (void __user *)uattr + sizeof(*attr);
5402                 end  = (void __user *)uattr + size;
5403
5404                 for (; addr < end; addr++) {
5405                         ret = get_user(val, addr);
5406                         if (ret)
5407                                 return ret;
5408                         if (val)
5409                                 goto err_size;
5410                 }
5411                 size = sizeof(*attr);
5412         }
5413
5414         ret = copy_from_user(attr, uattr, size);
5415         if (ret)
5416                 return -EFAULT;
5417
5418         /*
5419          * If the type exists, the corresponding creation will verify
5420          * the attr->config.
5421          */
5422         if (attr->type >= PERF_TYPE_MAX)
5423                 return -EINVAL;
5424
5425         if (attr->__reserved_1)
5426                 return -EINVAL;
5427
5428         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5429                 return -EINVAL;
5430
5431         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5432                 return -EINVAL;
5433
5434 out:
5435         return ret;
5436
5437 err_size:
5438         put_user(sizeof(*attr), &uattr->size);
5439         ret = -E2BIG;
5440         goto out;
5441 }
5442
5443 static int
5444 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5445 {
5446         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5447         int ret = -EINVAL;
5448
5449         if (!output_event)
5450                 goto set;
5451
5452         /* don't allow circular references */
5453         if (event == output_event)
5454                 goto out;
5455
5456         /*
5457          * Don't allow cross-cpu buffers
5458          */
5459         if (output_event->cpu != event->cpu)
5460                 goto out;
5461
5462         /*
5463          * If its not a per-cpu buffer, it must be the same task.
5464          */
5465         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5466                 goto out;
5467
5468 set:
5469         mutex_lock(&event->mmap_mutex);
5470         /* Can't redirect output if we've got an active mmap() */
5471         if (atomic_read(&event->mmap_count))
5472                 goto unlock;
5473
5474         if (output_event) {
5475                 /* get the buffer we want to redirect to */
5476                 buffer = perf_buffer_get(output_event);
5477                 if (!buffer)
5478                         goto unlock;
5479         }
5480
5481         old_buffer = event->buffer;
5482         rcu_assign_pointer(event->buffer, buffer);
5483         ret = 0;
5484 unlock:
5485         mutex_unlock(&event->mmap_mutex);
5486
5487         if (old_buffer)
5488                 perf_buffer_put(old_buffer);
5489 out:
5490         return ret;
5491 }
5492
5493 /**
5494  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5495  *
5496  * @attr_uptr:  event_id type attributes for monitoring/sampling
5497  * @pid:                target pid
5498  * @cpu:                target cpu
5499  * @group_fd:           group leader event fd
5500  */
5501 SYSCALL_DEFINE5(perf_event_open,
5502                 struct perf_event_attr __user *, attr_uptr,
5503                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5504 {
5505         struct perf_event *group_leader = NULL, *output_event = NULL;
5506         struct perf_event *event, *sibling;
5507         struct perf_event_attr attr;
5508         struct perf_event_context *ctx;
5509         struct file *event_file = NULL;
5510         struct file *group_file = NULL;
5511         struct task_struct *task = NULL;
5512         struct pmu *pmu;
5513         int event_fd;
5514         int move_group = 0;
5515         int fput_needed = 0;
5516         int err;
5517
5518         /* for future expandability... */
5519         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5520                 return -EINVAL;
5521
5522         err = perf_copy_attr(attr_uptr, &attr);
5523         if (err)
5524                 return err;
5525
5526         if (!attr.exclude_kernel) {
5527                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5528                         return -EACCES;
5529         }
5530
5531         if (attr.freq) {
5532                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5533                         return -EINVAL;
5534         }
5535
5536         event_fd = get_unused_fd_flags(O_RDWR);
5537         if (event_fd < 0)
5538                 return event_fd;
5539
5540         if (group_fd != -1) {
5541                 group_leader = perf_fget_light(group_fd, &fput_needed);
5542                 if (IS_ERR(group_leader)) {
5543                         err = PTR_ERR(group_leader);
5544                         goto err_fd;
5545                 }
5546                 group_file = group_leader->filp;
5547                 if (flags & PERF_FLAG_FD_OUTPUT)
5548                         output_event = group_leader;
5549                 if (flags & PERF_FLAG_FD_NO_GROUP)
5550                         group_leader = NULL;
5551         }
5552
5553         if (pid != -1) {
5554                 task = find_lively_task_by_vpid(pid);
5555                 if (IS_ERR(task)) {
5556                         err = PTR_ERR(task);
5557                         goto err_group_fd;
5558                 }
5559         }
5560
5561         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5562         if (IS_ERR(event)) {
5563                 err = PTR_ERR(event);
5564                 goto err_task;
5565         }
5566
5567         /*
5568          * Special case software events and allow them to be part of
5569          * any hardware group.
5570          */
5571         pmu = event->pmu;
5572
5573         if (group_leader &&
5574             (is_software_event(event) != is_software_event(group_leader))) {
5575                 if (is_software_event(event)) {
5576                         /*
5577                          * If event and group_leader are not both a software
5578                          * event, and event is, then group leader is not.
5579                          *
5580                          * Allow the addition of software events to !software
5581                          * groups, this is safe because software events never
5582                          * fail to schedule.
5583                          */
5584                         pmu = group_leader->pmu;
5585                 } else if (is_software_event(group_leader) &&
5586                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5587                         /*
5588                          * In case the group is a pure software group, and we
5589                          * try to add a hardware event, move the whole group to
5590                          * the hardware context.
5591                          */
5592                         move_group = 1;
5593                 }
5594         }
5595
5596         /*
5597          * Get the target context (task or percpu):
5598          */
5599         ctx = find_get_context(pmu, task, cpu);
5600         if (IS_ERR(ctx)) {
5601                 err = PTR_ERR(ctx);
5602                 goto err_alloc;
5603         }
5604
5605         /*
5606          * Look up the group leader (we will attach this event to it):
5607          */
5608         if (group_leader) {
5609                 err = -EINVAL;
5610
5611                 /*
5612                  * Do not allow a recursive hierarchy (this new sibling
5613                  * becoming part of another group-sibling):
5614                  */
5615                 if (group_leader->group_leader != group_leader)
5616                         goto err_context;
5617                 /*
5618                  * Do not allow to attach to a group in a different
5619                  * task or CPU context:
5620                  */
5621                 if (move_group) {
5622                         if (group_leader->ctx->type != ctx->type)
5623                                 goto err_context;
5624                 } else {
5625                         if (group_leader->ctx != ctx)
5626                                 goto err_context;
5627                 }
5628
5629                 /*
5630                  * Only a group leader can be exclusive or pinned
5631                  */
5632                 if (attr.exclusive || attr.pinned)
5633                         goto err_context;
5634         }
5635
5636         if (output_event) {
5637                 err = perf_event_set_output(event, output_event);
5638                 if (err)
5639                         goto err_context;
5640         }
5641
5642         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5643         if (IS_ERR(event_file)) {
5644                 err = PTR_ERR(event_file);
5645                 goto err_context;
5646         }
5647
5648         if (move_group) {
5649                 struct perf_event_context *gctx = group_leader->ctx;
5650
5651                 mutex_lock(&gctx->mutex);
5652                 perf_event_remove_from_context(group_leader);
5653                 list_for_each_entry(sibling, &group_leader->sibling_list,
5654                                     group_entry) {
5655                         perf_event_remove_from_context(sibling);
5656                         put_ctx(gctx);
5657                 }
5658                 mutex_unlock(&gctx->mutex);
5659                 put_ctx(gctx);
5660         }
5661
5662         event->filp = event_file;
5663         WARN_ON_ONCE(ctx->parent_ctx);
5664         mutex_lock(&ctx->mutex);
5665
5666         if (move_group) {
5667                 perf_install_in_context(ctx, group_leader, cpu);
5668                 get_ctx(ctx);
5669                 list_for_each_entry(sibling, &group_leader->sibling_list,
5670                                     group_entry) {
5671                         perf_install_in_context(ctx, sibling, cpu);
5672                         get_ctx(ctx);
5673                 }
5674         }
5675
5676         perf_install_in_context(ctx, event, cpu);
5677         ++ctx->generation;
5678         mutex_unlock(&ctx->mutex);
5679
5680         event->owner = current;
5681         get_task_struct(current);
5682         mutex_lock(&current->perf_event_mutex);
5683         list_add_tail(&event->owner_entry, &current->perf_event_list);
5684         mutex_unlock(&current->perf_event_mutex);
5685
5686         /*
5687          * Drop the reference on the group_event after placing the
5688          * new event on the sibling_list. This ensures destruction
5689          * of the group leader will find the pointer to itself in
5690          * perf_group_detach().
5691          */
5692         fput_light(group_file, fput_needed);
5693         fd_install(event_fd, event_file);
5694         return event_fd;
5695
5696 err_context:
5697         put_ctx(ctx);
5698 err_alloc:
5699         free_event(event);
5700 err_task:
5701         if (task)
5702                 put_task_struct(task);
5703 err_group_fd:
5704         fput_light(group_file, fput_needed);
5705 err_fd:
5706         put_unused_fd(event_fd);
5707         return err;
5708 }
5709
5710 /**
5711  * perf_event_create_kernel_counter
5712  *
5713  * @attr: attributes of the counter to create
5714  * @cpu: cpu in which the counter is bound
5715  * @task: task to profile (NULL for percpu)
5716  */
5717 struct perf_event *
5718 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5719                                  struct task_struct *task,
5720                                  perf_overflow_handler_t overflow_handler)
5721 {
5722         struct perf_event_context *ctx;
5723         struct perf_event *event;
5724         int err;
5725
5726         /*
5727          * Get the target context (task or percpu):
5728          */
5729
5730         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5731         if (IS_ERR(event)) {
5732                 err = PTR_ERR(event);
5733                 goto err;
5734         }
5735
5736         ctx = find_get_context(event->pmu, task, cpu);
5737         if (IS_ERR(ctx)) {
5738                 err = PTR_ERR(ctx);
5739                 goto err_free;
5740         }
5741
5742         event->filp = NULL;
5743         WARN_ON_ONCE(ctx->parent_ctx);
5744         mutex_lock(&ctx->mutex);
5745         perf_install_in_context(ctx, event, cpu);
5746         ++ctx->generation;
5747         mutex_unlock(&ctx->mutex);
5748
5749         event->owner = current;
5750         get_task_struct(current);
5751         mutex_lock(&current->perf_event_mutex);
5752         list_add_tail(&event->owner_entry, &current->perf_event_list);
5753         mutex_unlock(&current->perf_event_mutex);
5754
5755         return event;
5756
5757 err_free:
5758         free_event(event);
5759 err:
5760         return ERR_PTR(err);
5761 }
5762 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5763
5764 static void sync_child_event(struct perf_event *child_event,
5765                                struct task_struct *child)
5766 {
5767         struct perf_event *parent_event = child_event->parent;
5768         u64 child_val;
5769
5770         if (child_event->attr.inherit_stat)
5771                 perf_event_read_event(child_event, child);
5772
5773         child_val = perf_event_count(child_event);
5774
5775         /*
5776          * Add back the child's count to the parent's count:
5777          */
5778         atomic64_add(child_val, &parent_event->child_count);
5779         atomic64_add(child_event->total_time_enabled,
5780                      &parent_event->child_total_time_enabled);
5781         atomic64_add(child_event->total_time_running,
5782                      &parent_event->child_total_time_running);
5783
5784         /*
5785          * Remove this event from the parent's list
5786          */
5787         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5788         mutex_lock(&parent_event->child_mutex);
5789         list_del_init(&child_event->child_list);
5790         mutex_unlock(&parent_event->child_mutex);
5791
5792         /*
5793          * Release the parent event, if this was the last
5794          * reference to it.
5795          */
5796         fput(parent_event->filp);
5797 }
5798
5799 static void
5800 __perf_event_exit_task(struct perf_event *child_event,
5801                          struct perf_event_context *child_ctx,
5802                          struct task_struct *child)
5803 {
5804         struct perf_event *parent_event;
5805
5806         perf_event_remove_from_context(child_event);
5807
5808         parent_event = child_event->parent;
5809         /*
5810          * It can happen that parent exits first, and has events
5811          * that are still around due to the child reference. These
5812          * events need to be zapped - but otherwise linger.
5813          */
5814         if (parent_event) {
5815                 sync_child_event(child_event, child);
5816                 free_event(child_event);
5817         }
5818 }
5819
5820 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5821 {
5822         struct perf_event *child_event, *tmp;
5823         struct perf_event_context *child_ctx;
5824         unsigned long flags;
5825
5826         if (likely(!child->perf_event_ctxp[ctxn])) {
5827                 perf_event_task(child, NULL, 0);
5828                 return;
5829         }
5830
5831         local_irq_save(flags);
5832         /*
5833          * We can't reschedule here because interrupts are disabled,
5834          * and either child is current or it is a task that can't be
5835          * scheduled, so we are now safe from rescheduling changing
5836          * our context.
5837          */
5838         child_ctx = child->perf_event_ctxp[ctxn];
5839         task_ctx_sched_out(child_ctx, EVENT_ALL);
5840
5841         /*
5842          * Take the context lock here so that if find_get_context is
5843          * reading child->perf_event_ctxp, we wait until it has
5844          * incremented the context's refcount before we do put_ctx below.
5845          */
5846         raw_spin_lock(&child_ctx->lock);
5847         child->perf_event_ctxp[ctxn] = NULL;
5848         /*
5849          * If this context is a clone; unclone it so it can't get
5850          * swapped to another process while we're removing all
5851          * the events from it.
5852          */
5853         unclone_ctx(child_ctx);
5854         update_context_time(child_ctx);
5855         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5856
5857         /*
5858          * Report the task dead after unscheduling the events so that we
5859          * won't get any samples after PERF_RECORD_EXIT. We can however still
5860          * get a few PERF_RECORD_READ events.
5861          */
5862         perf_event_task(child, child_ctx, 0);
5863
5864         /*
5865          * We can recurse on the same lock type through:
5866          *
5867          *   __perf_event_exit_task()
5868          *     sync_child_event()
5869          *       fput(parent_event->filp)
5870          *         perf_release()
5871          *           mutex_lock(&ctx->mutex)
5872          *
5873          * But since its the parent context it won't be the same instance.
5874          */
5875         mutex_lock(&child_ctx->mutex);
5876
5877 again:
5878         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5879                                  group_entry)
5880                 __perf_event_exit_task(child_event, child_ctx, child);
5881
5882         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5883                                  group_entry)
5884                 __perf_event_exit_task(child_event, child_ctx, child);
5885
5886         /*
5887          * If the last event was a group event, it will have appended all
5888          * its siblings to the list, but we obtained 'tmp' before that which
5889          * will still point to the list head terminating the iteration.
5890          */
5891         if (!list_empty(&child_ctx->pinned_groups) ||
5892             !list_empty(&child_ctx->flexible_groups))
5893                 goto again;
5894
5895         mutex_unlock(&child_ctx->mutex);
5896
5897         put_ctx(child_ctx);
5898 }
5899
5900 /*
5901  * When a child task exits, feed back event values to parent events.
5902  */
5903 void perf_event_exit_task(struct task_struct *child)
5904 {
5905         int ctxn;
5906
5907         for_each_task_context_nr(ctxn)
5908                 perf_event_exit_task_context(child, ctxn);
5909 }
5910
5911 static void perf_free_event(struct perf_event *event,
5912                             struct perf_event_context *ctx)
5913 {
5914         struct perf_event *parent = event->parent;
5915
5916         if (WARN_ON_ONCE(!parent))
5917                 return;
5918
5919         mutex_lock(&parent->child_mutex);
5920         list_del_init(&event->child_list);
5921         mutex_unlock(&parent->child_mutex);
5922
5923         fput(parent->filp);
5924
5925         perf_group_detach(event);
5926         list_del_event(event, ctx);
5927         free_event(event);
5928 }
5929
5930 /*
5931  * free an unexposed, unused context as created by inheritance by
5932  * perf_event_init_task below, used by fork() in case of fail.
5933  */
5934 void perf_event_free_task(struct task_struct *task)
5935 {
5936         struct perf_event_context *ctx;
5937         struct perf_event *event, *tmp;
5938         int ctxn;
5939
5940         for_each_task_context_nr(ctxn) {
5941                 ctx = task->perf_event_ctxp[ctxn];
5942                 if (!ctx)
5943                         continue;
5944
5945                 mutex_lock(&ctx->mutex);
5946 again:
5947                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5948                                 group_entry)
5949                         perf_free_event(event, ctx);
5950
5951                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5952                                 group_entry)
5953                         perf_free_event(event, ctx);
5954
5955                 if (!list_empty(&ctx->pinned_groups) ||
5956                                 !list_empty(&ctx->flexible_groups))
5957                         goto again;
5958
5959                 mutex_unlock(&ctx->mutex);
5960
5961                 put_ctx(ctx);
5962         }
5963 }
5964
5965 void perf_event_delayed_put(struct task_struct *task)
5966 {
5967         int ctxn;
5968
5969         for_each_task_context_nr(ctxn)
5970                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5971 }
5972
5973 /*
5974  * inherit a event from parent task to child task:
5975  */
5976 static struct perf_event *
5977 inherit_event(struct perf_event *parent_event,
5978               struct task_struct *parent,
5979               struct perf_event_context *parent_ctx,
5980               struct task_struct *child,
5981               struct perf_event *group_leader,
5982               struct perf_event_context *child_ctx)
5983 {
5984         struct perf_event *child_event;
5985         unsigned long flags;
5986
5987         /*
5988          * Instead of creating recursive hierarchies of events,
5989          * we link inherited events back to the original parent,
5990          * which has a filp for sure, which we use as the reference
5991          * count:
5992          */
5993         if (parent_event->parent)
5994                 parent_event = parent_event->parent;
5995
5996         child_event = perf_event_alloc(&parent_event->attr,
5997                                            parent_event->cpu,
5998                                            child,
5999                                            group_leader, parent_event,
6000                                            NULL);
6001         if (IS_ERR(child_event))
6002                 return child_event;
6003         get_ctx(child_ctx);
6004
6005         /*
6006          * Make the child state follow the state of the parent event,
6007          * not its attr.disabled bit.  We hold the parent's mutex,
6008          * so we won't race with perf_event_{en, dis}able_family.
6009          */
6010         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6011                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6012         else
6013                 child_event->state = PERF_EVENT_STATE_OFF;
6014
6015         if (parent_event->attr.freq) {
6016                 u64 sample_period = parent_event->hw.sample_period;
6017                 struct hw_perf_event *hwc = &child_event->hw;
6018
6019                 hwc->sample_period = sample_period;
6020                 hwc->last_period   = sample_period;
6021
6022                 local64_set(&hwc->period_left, sample_period);
6023         }
6024
6025         child_event->ctx = child_ctx;
6026         child_event->overflow_handler = parent_event->overflow_handler;
6027
6028         /*
6029          * Link it up in the child's context:
6030          */
6031         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6032         add_event_to_ctx(child_event, child_ctx);
6033         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6034
6035         /*
6036          * Get a reference to the parent filp - we will fput it
6037          * when the child event exits. This is safe to do because
6038          * we are in the parent and we know that the filp still
6039          * exists and has a nonzero count:
6040          */
6041         atomic_long_inc(&parent_event->filp->f_count);
6042
6043         /*
6044          * Link this into the parent event's child list
6045          */
6046         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6047         mutex_lock(&parent_event->child_mutex);
6048         list_add_tail(&child_event->child_list, &parent_event->child_list);
6049         mutex_unlock(&parent_event->child_mutex);
6050
6051         return child_event;
6052 }
6053
6054 static int inherit_group(struct perf_event *parent_event,
6055               struct task_struct *parent,
6056               struct perf_event_context *parent_ctx,
6057               struct task_struct *child,
6058               struct perf_event_context *child_ctx)
6059 {
6060         struct perf_event *leader;
6061         struct perf_event *sub;
6062         struct perf_event *child_ctr;
6063
6064         leader = inherit_event(parent_event, parent, parent_ctx,
6065                                  child, NULL, child_ctx);
6066         if (IS_ERR(leader))
6067                 return PTR_ERR(leader);
6068         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6069                 child_ctr = inherit_event(sub, parent, parent_ctx,
6070                                             child, leader, child_ctx);
6071                 if (IS_ERR(child_ctr))
6072                         return PTR_ERR(child_ctr);
6073         }
6074         return 0;
6075 }
6076
6077 static int
6078 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6079                    struct perf_event_context *parent_ctx,
6080                    struct task_struct *child, int ctxn,
6081                    int *inherited_all)
6082 {
6083         int ret;
6084         struct perf_event_context *child_ctx;
6085
6086         if (!event->attr.inherit) {
6087                 *inherited_all = 0;
6088                 return 0;
6089         }
6090
6091         child_ctx = child->perf_event_ctxp[ctxn];
6092         if (!child_ctx) {
6093                 /*
6094                  * This is executed from the parent task context, so
6095                  * inherit events that have been marked for cloning.
6096                  * First allocate and initialize a context for the
6097                  * child.
6098                  */
6099
6100                 child_ctx = alloc_perf_context(event->pmu, child);
6101                 if (!child_ctx)
6102                         return -ENOMEM;
6103
6104                 child->perf_event_ctxp[ctxn] = child_ctx;
6105         }
6106
6107         ret = inherit_group(event, parent, parent_ctx,
6108                             child, child_ctx);
6109
6110         if (ret)
6111                 *inherited_all = 0;
6112
6113         return ret;
6114 }
6115
6116 /*
6117  * Initialize the perf_event context in task_struct
6118  */
6119 int perf_event_init_context(struct task_struct *child, int ctxn)
6120 {
6121         struct perf_event_context *child_ctx, *parent_ctx;
6122         struct perf_event_context *cloned_ctx;
6123         struct perf_event *event;
6124         struct task_struct *parent = current;
6125         int inherited_all = 1;
6126         int ret = 0;
6127
6128         child->perf_event_ctxp[ctxn] = NULL;
6129
6130         mutex_init(&child->perf_event_mutex);
6131         INIT_LIST_HEAD(&child->perf_event_list);
6132
6133         if (likely(!parent->perf_event_ctxp[ctxn]))
6134                 return 0;
6135
6136         /*
6137          * If the parent's context is a clone, pin it so it won't get
6138          * swapped under us.
6139          */
6140         parent_ctx = perf_pin_task_context(parent, ctxn);
6141
6142         /*
6143          * No need to check if parent_ctx != NULL here; since we saw
6144          * it non-NULL earlier, the only reason for it to become NULL
6145          * is if we exit, and since we're currently in the middle of
6146          * a fork we can't be exiting at the same time.
6147          */
6148
6149         /*
6150          * Lock the parent list. No need to lock the child - not PID
6151          * hashed yet and not running, so nobody can access it.
6152          */
6153         mutex_lock(&parent_ctx->mutex);
6154
6155         /*
6156          * We dont have to disable NMIs - we are only looking at
6157          * the list, not manipulating it:
6158          */
6159         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6160                 ret = inherit_task_group(event, parent, parent_ctx,
6161                                          child, ctxn, &inherited_all);
6162                 if (ret)
6163                         break;
6164         }
6165
6166         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6167                 ret = inherit_task_group(event, parent, parent_ctx,
6168                                          child, ctxn, &inherited_all);
6169                 if (ret)
6170                         break;
6171         }
6172
6173         child_ctx = child->perf_event_ctxp[ctxn];
6174
6175         if (child_ctx && inherited_all) {
6176                 /*
6177                  * Mark the child context as a clone of the parent
6178                  * context, or of whatever the parent is a clone of.
6179                  * Note that if the parent is a clone, it could get
6180                  * uncloned at any point, but that doesn't matter
6181                  * because the list of events and the generation
6182                  * count can't have changed since we took the mutex.
6183                  */
6184                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6185                 if (cloned_ctx) {
6186                         child_ctx->parent_ctx = cloned_ctx;
6187                         child_ctx->parent_gen = parent_ctx->parent_gen;
6188                 } else {
6189                         child_ctx->parent_ctx = parent_ctx;
6190                         child_ctx->parent_gen = parent_ctx->generation;
6191                 }
6192                 get_ctx(child_ctx->parent_ctx);
6193         }
6194
6195         mutex_unlock(&parent_ctx->mutex);
6196
6197         perf_unpin_context(parent_ctx);
6198
6199         return ret;
6200 }
6201
6202 /*
6203  * Initialize the perf_event context in task_struct
6204  */
6205 int perf_event_init_task(struct task_struct *child)
6206 {
6207         int ctxn, ret;
6208
6209         for_each_task_context_nr(ctxn) {
6210                 ret = perf_event_init_context(child, ctxn);
6211                 if (ret)
6212                         return ret;
6213         }
6214
6215         return 0;
6216 }
6217
6218 static void __init perf_event_init_all_cpus(void)
6219 {
6220         struct swevent_htable *swhash;
6221         int cpu;
6222
6223         for_each_possible_cpu(cpu) {
6224                 swhash = &per_cpu(swevent_htable, cpu);
6225                 mutex_init(&swhash->hlist_mutex);
6226                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6227         }
6228 }
6229
6230 static void __cpuinit perf_event_init_cpu(int cpu)
6231 {
6232         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6233
6234         mutex_lock(&swhash->hlist_mutex);
6235         if (swhash->hlist_refcount > 0) {
6236                 struct swevent_hlist *hlist;
6237
6238                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6239                 WARN_ON(!hlist);
6240                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6241         }
6242         mutex_unlock(&swhash->hlist_mutex);
6243 }
6244
6245 #ifdef CONFIG_HOTPLUG_CPU
6246 static void perf_pmu_rotate_stop(struct pmu *pmu)
6247 {
6248         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6249
6250         WARN_ON(!irqs_disabled());
6251
6252         list_del_init(&cpuctx->rotation_list);
6253 }
6254
6255 static void __perf_event_exit_context(void *__info)
6256 {
6257         struct perf_event_context *ctx = __info;
6258         struct perf_event *event, *tmp;
6259
6260         perf_pmu_rotate_stop(ctx->pmu);
6261
6262         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6263                 __perf_event_remove_from_context(event);
6264         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6265                 __perf_event_remove_from_context(event);
6266 }
6267
6268 static void perf_event_exit_cpu_context(int cpu)
6269 {
6270         struct perf_event_context *ctx;
6271         struct pmu *pmu;
6272         int idx;
6273
6274         idx = srcu_read_lock(&pmus_srcu);
6275         list_for_each_entry_rcu(pmu, &pmus, entry) {
6276                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6277
6278                 mutex_lock(&ctx->mutex);
6279                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6280                 mutex_unlock(&ctx->mutex);
6281         }
6282         srcu_read_unlock(&pmus_srcu, idx);
6283 }
6284
6285 static void perf_event_exit_cpu(int cpu)
6286 {
6287         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6288
6289         mutex_lock(&swhash->hlist_mutex);
6290         swevent_hlist_release(swhash);
6291         mutex_unlock(&swhash->hlist_mutex);
6292
6293         perf_event_exit_cpu_context(cpu);
6294 }
6295 #else
6296 static inline void perf_event_exit_cpu(int cpu) { }
6297 #endif
6298
6299 static int __cpuinit
6300 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6301 {
6302         unsigned int cpu = (long)hcpu;
6303
6304         switch (action & ~CPU_TASKS_FROZEN) {
6305
6306         case CPU_UP_PREPARE:
6307         case CPU_DOWN_FAILED:
6308                 perf_event_init_cpu(cpu);
6309                 break;
6310
6311         case CPU_UP_CANCELED:
6312         case CPU_DOWN_PREPARE:
6313                 perf_event_exit_cpu(cpu);
6314                 break;
6315
6316         default:
6317                 break;
6318         }
6319
6320         return NOTIFY_OK;
6321 }
6322
6323 void __init perf_event_init(void)
6324 {
6325         int ret;
6326
6327         perf_event_init_all_cpus();
6328         init_srcu_struct(&pmus_srcu);
6329         perf_pmu_register(&perf_swevent);
6330         perf_pmu_register(&perf_cpu_clock);
6331         perf_pmu_register(&perf_task_clock);
6332         perf_tp_register();
6333         perf_cpu_notifier(perf_cpu_notify);
6334
6335         ret = init_hw_breakpoint();
6336         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6337 }