Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[pandora-kernel.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         /*
319          * We can have double attach due to group movement in perf_event_open.
320          */
321         if (event->attach_state & PERF_ATTACH_GROUP)
322                 return;
323
324         event->attach_state |= PERF_ATTACH_GROUP;
325
326         if (group_leader == event)
327                 return;
328
329         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330                         !is_software_event(event))
331                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333         list_add_tail(&event->group_entry, &group_leader->sibling_list);
334         group_leader->nr_siblings++;
335 }
336
337 /*
338  * Remove a event from the lists for its context.
339  * Must be called with ctx->mutex and ctx->lock held.
340  */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344         /*
345          * We can have double detach due to exit/hot-unplug + close.
346          */
347         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348                 return;
349
350         event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352         ctx->nr_events--;
353         if (event->attr.inherit_stat)
354                 ctx->nr_stat--;
355
356         list_del_rcu(&event->event_entry);
357
358         if (event->group_leader == event)
359                 list_del_init(&event->group_entry);
360
361         update_group_times(event);
362
363         /*
364          * If event was in error state, then keep it
365          * that way, otherwise bogus counts will be
366          * returned on read(). The only way to get out
367          * of error state is by explicit re-enabling
368          * of the event
369          */
370         if (event->state > PERF_EVENT_STATE_OFF)
371                 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376         struct perf_event *sibling, *tmp;
377         struct list_head *list = NULL;
378
379         /*
380          * We can have double detach due to exit/hot-unplug + close.
381          */
382         if (!(event->attach_state & PERF_ATTACH_GROUP))
383                 return;
384
385         event->attach_state &= ~PERF_ATTACH_GROUP;
386
387         /*
388          * If this is a sibling, remove it from its group.
389          */
390         if (event->group_leader != event) {
391                 list_del_init(&event->group_entry);
392                 event->group_leader->nr_siblings--;
393                 return;
394         }
395
396         if (!list_empty(&event->group_entry))
397                 list = &event->group_entry;
398
399         /*
400          * If this was a group event with sibling events then
401          * upgrade the siblings to singleton events by adding them
402          * to whatever list we are on.
403          */
404         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405                 if (list)
406                         list_move_tail(&sibling->group_entry, list);
407                 sibling->group_leader = sibling;
408
409                 /* Inherit group flags from the previous leader */
410                 sibling->group_flags = event->group_flags;
411         }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417         return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static void
421 event_sched_out(struct perf_event *event,
422                   struct perf_cpu_context *cpuctx,
423                   struct perf_event_context *ctx)
424 {
425         u64 delta;
426         /*
427          * An event which could not be activated because of
428          * filter mismatch still needs to have its timings
429          * maintained, otherwise bogus information is return
430          * via read() for time_enabled, time_running:
431          */
432         if (event->state == PERF_EVENT_STATE_INACTIVE
433             && !event_filter_match(event)) {
434                 delta = ctx->time - event->tstamp_stopped;
435                 event->tstamp_running += delta;
436                 event->tstamp_stopped = ctx->time;
437         }
438
439         if (event->state != PERF_EVENT_STATE_ACTIVE)
440                 return;
441
442         event->state = PERF_EVENT_STATE_INACTIVE;
443         if (event->pending_disable) {
444                 event->pending_disable = 0;
445                 event->state = PERF_EVENT_STATE_OFF;
446         }
447         event->tstamp_stopped = ctx->time;
448         event->pmu->del(event, 0);
449         event->oncpu = -1;
450
451         if (!is_software_event(event))
452                 cpuctx->active_oncpu--;
453         ctx->nr_active--;
454         if (event->attr.exclusive || !cpuctx->active_oncpu)
455                 cpuctx->exclusive = 0;
456 }
457
458 static void
459 group_sched_out(struct perf_event *group_event,
460                 struct perf_cpu_context *cpuctx,
461                 struct perf_event_context *ctx)
462 {
463         struct perf_event *event;
464         int state = group_event->state;
465
466         event_sched_out(group_event, cpuctx, ctx);
467
468         /*
469          * Schedule out siblings (if any):
470          */
471         list_for_each_entry(event, &group_event->sibling_list, group_entry)
472                 event_sched_out(event, cpuctx, ctx);
473
474         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
475                 cpuctx->exclusive = 0;
476 }
477
478 static inline struct perf_cpu_context *
479 __get_cpu_context(struct perf_event_context *ctx)
480 {
481         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
482 }
483
484 /*
485  * Cross CPU call to remove a performance event
486  *
487  * We disable the event on the hardware level first. After that we
488  * remove it from the context list.
489  */
490 static void __perf_event_remove_from_context(void *info)
491 {
492         struct perf_event *event = info;
493         struct perf_event_context *ctx = event->ctx;
494         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
495
496         /*
497          * If this is a task context, we need to check whether it is
498          * the current task context of this cpu. If not it has been
499          * scheduled out before the smp call arrived.
500          */
501         if (ctx->task && cpuctx->task_ctx != ctx)
502                 return;
503
504         raw_spin_lock(&ctx->lock);
505
506         event_sched_out(event, cpuctx, ctx);
507
508         list_del_event(event, ctx);
509
510         raw_spin_unlock(&ctx->lock);
511 }
512
513
514 /*
515  * Remove the event from a task's (or a CPU's) list of events.
516  *
517  * Must be called with ctx->mutex held.
518  *
519  * CPU events are removed with a smp call. For task events we only
520  * call when the task is on a CPU.
521  *
522  * If event->ctx is a cloned context, callers must make sure that
523  * every task struct that event->ctx->task could possibly point to
524  * remains valid.  This is OK when called from perf_release since
525  * that only calls us on the top-level context, which can't be a clone.
526  * When called from perf_event_exit_task, it's OK because the
527  * context has been detached from its task.
528  */
529 static void perf_event_remove_from_context(struct perf_event *event)
530 {
531         struct perf_event_context *ctx = event->ctx;
532         struct task_struct *task = ctx->task;
533
534         if (!task) {
535                 /*
536                  * Per cpu events are removed via an smp call and
537                  * the removal is always successful.
538                  */
539                 smp_call_function_single(event->cpu,
540                                          __perf_event_remove_from_context,
541                                          event, 1);
542                 return;
543         }
544
545 retry:
546         task_oncpu_function_call(task, __perf_event_remove_from_context,
547                                  event);
548
549         raw_spin_lock_irq(&ctx->lock);
550         /*
551          * If the context is active we need to retry the smp call.
552          */
553         if (ctx->nr_active && !list_empty(&event->group_entry)) {
554                 raw_spin_unlock_irq(&ctx->lock);
555                 goto retry;
556         }
557
558         /*
559          * The lock prevents that this context is scheduled in so we
560          * can remove the event safely, if the call above did not
561          * succeed.
562          */
563         if (!list_empty(&event->group_entry))
564                 list_del_event(event, ctx);
565         raw_spin_unlock_irq(&ctx->lock);
566 }
567
568 /*
569  * Cross CPU call to disable a performance event
570  */
571 static void __perf_event_disable(void *info)
572 {
573         struct perf_event *event = info;
574         struct perf_event_context *ctx = event->ctx;
575         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
576
577         /*
578          * If this is a per-task event, need to check whether this
579          * event's task is the current task on this cpu.
580          */
581         if (ctx->task && cpuctx->task_ctx != ctx)
582                 return;
583
584         raw_spin_lock(&ctx->lock);
585
586         /*
587          * If the event is on, turn it off.
588          * If it is in error state, leave it in error state.
589          */
590         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
591                 update_context_time(ctx);
592                 update_group_times(event);
593                 if (event == event->group_leader)
594                         group_sched_out(event, cpuctx, ctx);
595                 else
596                         event_sched_out(event, cpuctx, ctx);
597                 event->state = PERF_EVENT_STATE_OFF;
598         }
599
600         raw_spin_unlock(&ctx->lock);
601 }
602
603 /*
604  * Disable a event.
605  *
606  * If event->ctx is a cloned context, callers must make sure that
607  * every task struct that event->ctx->task could possibly point to
608  * remains valid.  This condition is satisifed when called through
609  * perf_event_for_each_child or perf_event_for_each because they
610  * hold the top-level event's child_mutex, so any descendant that
611  * goes to exit will block in sync_child_event.
612  * When called from perf_pending_event it's OK because event->ctx
613  * is the current context on this CPU and preemption is disabled,
614  * hence we can't get into perf_event_task_sched_out for this context.
615  */
616 void perf_event_disable(struct perf_event *event)
617 {
618         struct perf_event_context *ctx = event->ctx;
619         struct task_struct *task = ctx->task;
620
621         if (!task) {
622                 /*
623                  * Disable the event on the cpu that it's on
624                  */
625                 smp_call_function_single(event->cpu, __perf_event_disable,
626                                          event, 1);
627                 return;
628         }
629
630 retry:
631         task_oncpu_function_call(task, __perf_event_disable, event);
632
633         raw_spin_lock_irq(&ctx->lock);
634         /*
635          * If the event is still active, we need to retry the cross-call.
636          */
637         if (event->state == PERF_EVENT_STATE_ACTIVE) {
638                 raw_spin_unlock_irq(&ctx->lock);
639                 goto retry;
640         }
641
642         /*
643          * Since we have the lock this context can't be scheduled
644          * in, so we can change the state safely.
645          */
646         if (event->state == PERF_EVENT_STATE_INACTIVE) {
647                 update_group_times(event);
648                 event->state = PERF_EVENT_STATE_OFF;
649         }
650
651         raw_spin_unlock_irq(&ctx->lock);
652 }
653
654 static int
655 event_sched_in(struct perf_event *event,
656                  struct perf_cpu_context *cpuctx,
657                  struct perf_event_context *ctx)
658 {
659         if (event->state <= PERF_EVENT_STATE_OFF)
660                 return 0;
661
662         event->state = PERF_EVENT_STATE_ACTIVE;
663         event->oncpu = smp_processor_id();
664         /*
665          * The new state must be visible before we turn it on in the hardware:
666          */
667         smp_wmb();
668
669         if (event->pmu->add(event, PERF_EF_START)) {
670                 event->state = PERF_EVENT_STATE_INACTIVE;
671                 event->oncpu = -1;
672                 return -EAGAIN;
673         }
674
675         event->tstamp_running += ctx->time - event->tstamp_stopped;
676
677         if (!is_software_event(event))
678                 cpuctx->active_oncpu++;
679         ctx->nr_active++;
680
681         if (event->attr.exclusive)
682                 cpuctx->exclusive = 1;
683
684         return 0;
685 }
686
687 static int
688 group_sched_in(struct perf_event *group_event,
689                struct perf_cpu_context *cpuctx,
690                struct perf_event_context *ctx)
691 {
692         struct perf_event *event, *partial_group = NULL;
693         struct pmu *pmu = group_event->pmu;
694         u64 now = ctx->time;
695         bool simulate = false;
696
697         if (group_event->state == PERF_EVENT_STATE_OFF)
698                 return 0;
699
700         pmu->start_txn(pmu);
701
702         if (event_sched_in(group_event, cpuctx, ctx)) {
703                 pmu->cancel_txn(pmu);
704                 return -EAGAIN;
705         }
706
707         /*
708          * Schedule in siblings as one group (if any):
709          */
710         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
711                 if (event_sched_in(event, cpuctx, ctx)) {
712                         partial_group = event;
713                         goto group_error;
714                 }
715         }
716
717         if (!pmu->commit_txn(pmu))
718                 return 0;
719
720 group_error:
721         /*
722          * Groups can be scheduled in as one unit only, so undo any
723          * partial group before returning:
724          * The events up to the failed event are scheduled out normally,
725          * tstamp_stopped will be updated.
726          *
727          * The failed events and the remaining siblings need to have
728          * their timings updated as if they had gone thru event_sched_in()
729          * and event_sched_out(). This is required to get consistent timings
730          * across the group. This also takes care of the case where the group
731          * could never be scheduled by ensuring tstamp_stopped is set to mark
732          * the time the event was actually stopped, such that time delta
733          * calculation in update_event_times() is correct.
734          */
735         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
736                 if (event == partial_group)
737                         simulate = true;
738
739                 if (simulate) {
740                         event->tstamp_running += now - event->tstamp_stopped;
741                         event->tstamp_stopped = now;
742                 } else {
743                         event_sched_out(event, cpuctx, ctx);
744                 }
745         }
746         event_sched_out(group_event, cpuctx, ctx);
747
748         pmu->cancel_txn(pmu);
749
750         return -EAGAIN;
751 }
752
753 /*
754  * Work out whether we can put this event group on the CPU now.
755  */
756 static int group_can_go_on(struct perf_event *event,
757                            struct perf_cpu_context *cpuctx,
758                            int can_add_hw)
759 {
760         /*
761          * Groups consisting entirely of software events can always go on.
762          */
763         if (event->group_flags & PERF_GROUP_SOFTWARE)
764                 return 1;
765         /*
766          * If an exclusive group is already on, no other hardware
767          * events can go on.
768          */
769         if (cpuctx->exclusive)
770                 return 0;
771         /*
772          * If this group is exclusive and there are already
773          * events on the CPU, it can't go on.
774          */
775         if (event->attr.exclusive && cpuctx->active_oncpu)
776                 return 0;
777         /*
778          * Otherwise, try to add it if all previous groups were able
779          * to go on.
780          */
781         return can_add_hw;
782 }
783
784 static void add_event_to_ctx(struct perf_event *event,
785                                struct perf_event_context *ctx)
786 {
787         list_add_event(event, ctx);
788         perf_group_attach(event);
789         event->tstamp_enabled = ctx->time;
790         event->tstamp_running = ctx->time;
791         event->tstamp_stopped = ctx->time;
792 }
793
794 /*
795  * Cross CPU call to install and enable a performance event
796  *
797  * Must be called with ctx->mutex held
798  */
799 static void __perf_install_in_context(void *info)
800 {
801         struct perf_event *event = info;
802         struct perf_event_context *ctx = event->ctx;
803         struct perf_event *leader = event->group_leader;
804         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
805         int err;
806
807         /*
808          * If this is a task context, we need to check whether it is
809          * the current task context of this cpu. If not it has been
810          * scheduled out before the smp call arrived.
811          * Or possibly this is the right context but it isn't
812          * on this cpu because it had no events.
813          */
814         if (ctx->task && cpuctx->task_ctx != ctx) {
815                 if (cpuctx->task_ctx || ctx->task != current)
816                         return;
817                 cpuctx->task_ctx = ctx;
818         }
819
820         raw_spin_lock(&ctx->lock);
821         ctx->is_active = 1;
822         update_context_time(ctx);
823
824         add_event_to_ctx(event, ctx);
825
826         if (event->cpu != -1 && event->cpu != smp_processor_id())
827                 goto unlock;
828
829         /*
830          * Don't put the event on if it is disabled or if
831          * it is in a group and the group isn't on.
832          */
833         if (event->state != PERF_EVENT_STATE_INACTIVE ||
834             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
835                 goto unlock;
836
837         /*
838          * An exclusive event can't go on if there are already active
839          * hardware events, and no hardware event can go on if there
840          * is already an exclusive event on.
841          */
842         if (!group_can_go_on(event, cpuctx, 1))
843                 err = -EEXIST;
844         else
845                 err = event_sched_in(event, cpuctx, ctx);
846
847         if (err) {
848                 /*
849                  * This event couldn't go on.  If it is in a group
850                  * then we have to pull the whole group off.
851                  * If the event group is pinned then put it in error state.
852                  */
853                 if (leader != event)
854                         group_sched_out(leader, cpuctx, ctx);
855                 if (leader->attr.pinned) {
856                         update_group_times(leader);
857                         leader->state = PERF_EVENT_STATE_ERROR;
858                 }
859         }
860
861 unlock:
862         raw_spin_unlock(&ctx->lock);
863 }
864
865 /*
866  * Attach a performance event to a context
867  *
868  * First we add the event to the list with the hardware enable bit
869  * in event->hw_config cleared.
870  *
871  * If the event is attached to a task which is on a CPU we use a smp
872  * call to enable it in the task context. The task might have been
873  * scheduled away, but we check this in the smp call again.
874  *
875  * Must be called with ctx->mutex held.
876  */
877 static void
878 perf_install_in_context(struct perf_event_context *ctx,
879                         struct perf_event *event,
880                         int cpu)
881 {
882         struct task_struct *task = ctx->task;
883
884         event->ctx = ctx;
885
886         if (!task) {
887                 /*
888                  * Per cpu events are installed via an smp call and
889                  * the install is always successful.
890                  */
891                 smp_call_function_single(cpu, __perf_install_in_context,
892                                          event, 1);
893                 return;
894         }
895
896 retry:
897         task_oncpu_function_call(task, __perf_install_in_context,
898                                  event);
899
900         raw_spin_lock_irq(&ctx->lock);
901         /*
902          * we need to retry the smp call.
903          */
904         if (ctx->is_active && list_empty(&event->group_entry)) {
905                 raw_spin_unlock_irq(&ctx->lock);
906                 goto retry;
907         }
908
909         /*
910          * The lock prevents that this context is scheduled in so we
911          * can add the event safely, if it the call above did not
912          * succeed.
913          */
914         if (list_empty(&event->group_entry))
915                 add_event_to_ctx(event, ctx);
916         raw_spin_unlock_irq(&ctx->lock);
917 }
918
919 /*
920  * Put a event into inactive state and update time fields.
921  * Enabling the leader of a group effectively enables all
922  * the group members that aren't explicitly disabled, so we
923  * have to update their ->tstamp_enabled also.
924  * Note: this works for group members as well as group leaders
925  * since the non-leader members' sibling_lists will be empty.
926  */
927 static void __perf_event_mark_enabled(struct perf_event *event,
928                                         struct perf_event_context *ctx)
929 {
930         struct perf_event *sub;
931
932         event->state = PERF_EVENT_STATE_INACTIVE;
933         event->tstamp_enabled = ctx->time - event->total_time_enabled;
934         list_for_each_entry(sub, &event->sibling_list, group_entry) {
935                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
936                         sub->tstamp_enabled =
937                                 ctx->time - sub->total_time_enabled;
938                 }
939         }
940 }
941
942 /*
943  * Cross CPU call to enable a performance event
944  */
945 static void __perf_event_enable(void *info)
946 {
947         struct perf_event *event = info;
948         struct perf_event_context *ctx = event->ctx;
949         struct perf_event *leader = event->group_leader;
950         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
951         int err;
952
953         /*
954          * If this is a per-task event, need to check whether this
955          * event's task is the current task on this cpu.
956          */
957         if (ctx->task && cpuctx->task_ctx != ctx) {
958                 if (cpuctx->task_ctx || ctx->task != current)
959                         return;
960                 cpuctx->task_ctx = ctx;
961         }
962
963         raw_spin_lock(&ctx->lock);
964         ctx->is_active = 1;
965         update_context_time(ctx);
966
967         if (event->state >= PERF_EVENT_STATE_INACTIVE)
968                 goto unlock;
969         __perf_event_mark_enabled(event, ctx);
970
971         if (event->cpu != -1 && event->cpu != smp_processor_id())
972                 goto unlock;
973
974         /*
975          * If the event is in a group and isn't the group leader,
976          * then don't put it on unless the group is on.
977          */
978         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
979                 goto unlock;
980
981         if (!group_can_go_on(event, cpuctx, 1)) {
982                 err = -EEXIST;
983         } else {
984                 if (event == leader)
985                         err = group_sched_in(event, cpuctx, ctx);
986                 else
987                         err = event_sched_in(event, cpuctx, ctx);
988         }
989
990         if (err) {
991                 /*
992                  * If this event can't go on and it's part of a
993                  * group, then the whole group has to come off.
994                  */
995                 if (leader != event)
996                         group_sched_out(leader, cpuctx, ctx);
997                 if (leader->attr.pinned) {
998                         update_group_times(leader);
999                         leader->state = PERF_EVENT_STATE_ERROR;
1000                 }
1001         }
1002
1003 unlock:
1004         raw_spin_unlock(&ctx->lock);
1005 }
1006
1007 /*
1008  * Enable a event.
1009  *
1010  * If event->ctx is a cloned context, callers must make sure that
1011  * every task struct that event->ctx->task could possibly point to
1012  * remains valid.  This condition is satisfied when called through
1013  * perf_event_for_each_child or perf_event_for_each as described
1014  * for perf_event_disable.
1015  */
1016 void perf_event_enable(struct perf_event *event)
1017 {
1018         struct perf_event_context *ctx = event->ctx;
1019         struct task_struct *task = ctx->task;
1020
1021         if (!task) {
1022                 /*
1023                  * Enable the event on the cpu that it's on
1024                  */
1025                 smp_call_function_single(event->cpu, __perf_event_enable,
1026                                          event, 1);
1027                 return;
1028         }
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032                 goto out;
1033
1034         /*
1035          * If the event is in error state, clear that first.
1036          * That way, if we see the event in error state below, we
1037          * know that it has gone back into error state, as distinct
1038          * from the task having been scheduled away before the
1039          * cross-call arrived.
1040          */
1041         if (event->state == PERF_EVENT_STATE_ERROR)
1042                 event->state = PERF_EVENT_STATE_OFF;
1043
1044 retry:
1045         raw_spin_unlock_irq(&ctx->lock);
1046         task_oncpu_function_call(task, __perf_event_enable, event);
1047
1048         raw_spin_lock_irq(&ctx->lock);
1049
1050         /*
1051          * If the context is active and the event is still off,
1052          * we need to retry the cross-call.
1053          */
1054         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055                 goto retry;
1056
1057         /*
1058          * Since we have the lock this context can't be scheduled
1059          * in, so we can change the state safely.
1060          */
1061         if (event->state == PERF_EVENT_STATE_OFF)
1062                 __perf_event_mark_enabled(event, ctx);
1063
1064 out:
1065         raw_spin_unlock_irq(&ctx->lock);
1066 }
1067
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1069 {
1070         /*
1071          * not supported on inherited events
1072          */
1073         if (event->attr.inherit)
1074                 return -EINVAL;
1075
1076         atomic_add(refresh, &event->event_limit);
1077         perf_event_enable(event);
1078
1079         return 0;
1080 }
1081
1082 enum event_type_t {
1083         EVENT_FLEXIBLE = 0x1,
1084         EVENT_PINNED = 0x2,
1085         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1086 };
1087
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089                           struct perf_cpu_context *cpuctx,
1090                           enum event_type_t event_type)
1091 {
1092         struct perf_event *event;
1093
1094         raw_spin_lock(&ctx->lock);
1095         perf_pmu_disable(ctx->pmu);
1096         ctx->is_active = 0;
1097         if (likely(!ctx->nr_events))
1098                 goto out;
1099         update_context_time(ctx);
1100
1101         if (!ctx->nr_active)
1102                 goto out;
1103
1104         if (event_type & EVENT_PINNED) {
1105                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106                         group_sched_out(event, cpuctx, ctx);
1107         }
1108
1109         if (event_type & EVENT_FLEXIBLE) {
1110                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1111                         group_sched_out(event, cpuctx, ctx);
1112         }
1113 out:
1114         perf_pmu_enable(ctx->pmu);
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Test whether two contexts are equivalent, i.e. whether they
1120  * have both been cloned from the same version of the same context
1121  * and they both have the same number of enabled events.
1122  * If the number of enabled events is the same, then the set
1123  * of enabled events should be the same, because these are both
1124  * inherited contexts, therefore we can't access individual events
1125  * in them directly with an fd; we can only enable/disable all
1126  * events via prctl, or enable/disable all events in a family
1127  * via ioctl, which will have the same effect on both contexts.
1128  */
1129 static int context_equiv(struct perf_event_context *ctx1,
1130                          struct perf_event_context *ctx2)
1131 {
1132         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133                 && ctx1->parent_gen == ctx2->parent_gen
1134                 && !ctx1->pin_count && !ctx2->pin_count;
1135 }
1136
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138                                      struct perf_event *next_event)
1139 {
1140         u64 value;
1141
1142         if (!event->attr.inherit_stat)
1143                 return;
1144
1145         /*
1146          * Update the event value, we cannot use perf_event_read()
1147          * because we're in the middle of a context switch and have IRQs
1148          * disabled, which upsets smp_call_function_single(), however
1149          * we know the event must be on the current CPU, therefore we
1150          * don't need to use it.
1151          */
1152         switch (event->state) {
1153         case PERF_EVENT_STATE_ACTIVE:
1154                 event->pmu->read(event);
1155                 /* fall-through */
1156
1157         case PERF_EVENT_STATE_INACTIVE:
1158                 update_event_times(event);
1159                 break;
1160
1161         default:
1162                 break;
1163         }
1164
1165         /*
1166          * In order to keep per-task stats reliable we need to flip the event
1167          * values when we flip the contexts.
1168          */
1169         value = local64_read(&next_event->count);
1170         value = local64_xchg(&event->count, value);
1171         local64_set(&next_event->count, value);
1172
1173         swap(event->total_time_enabled, next_event->total_time_enabled);
1174         swap(event->total_time_running, next_event->total_time_running);
1175
1176         /*
1177          * Since we swizzled the values, update the user visible data too.
1178          */
1179         perf_event_update_userpage(event);
1180         perf_event_update_userpage(next_event);
1181 }
1182
1183 #define list_next_entry(pos, member) \
1184         list_entry(pos->member.next, typeof(*pos), member)
1185
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187                                    struct perf_event_context *next_ctx)
1188 {
1189         struct perf_event *event, *next_event;
1190
1191         if (!ctx->nr_stat)
1192                 return;
1193
1194         update_context_time(ctx);
1195
1196         event = list_first_entry(&ctx->event_list,
1197                                    struct perf_event, event_entry);
1198
1199         next_event = list_first_entry(&next_ctx->event_list,
1200                                         struct perf_event, event_entry);
1201
1202         while (&event->event_entry != &ctx->event_list &&
1203                &next_event->event_entry != &next_ctx->event_list) {
1204
1205                 __perf_event_sync_stat(event, next_event);
1206
1207                 event = list_next_entry(event, event_entry);
1208                 next_event = list_next_entry(next_event, event_entry);
1209         }
1210 }
1211
1212 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1213                                   struct task_struct *next)
1214 {
1215         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1216         struct perf_event_context *next_ctx;
1217         struct perf_event_context *parent;
1218         struct perf_cpu_context *cpuctx;
1219         int do_switch = 1;
1220
1221         if (likely(!ctx))
1222                 return;
1223
1224         cpuctx = __get_cpu_context(ctx);
1225         if (!cpuctx->task_ctx)
1226                 return;
1227
1228         rcu_read_lock();
1229         parent = rcu_dereference(ctx->parent_ctx);
1230         next_ctx = next->perf_event_ctxp[ctxn];
1231         if (parent && next_ctx &&
1232             rcu_dereference(next_ctx->parent_ctx) == parent) {
1233                 /*
1234                  * Looks like the two contexts are clones, so we might be
1235                  * able to optimize the context switch.  We lock both
1236                  * contexts and check that they are clones under the
1237                  * lock (including re-checking that neither has been
1238                  * uncloned in the meantime).  It doesn't matter which
1239                  * order we take the locks because no other cpu could
1240                  * be trying to lock both of these tasks.
1241                  */
1242                 raw_spin_lock(&ctx->lock);
1243                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1244                 if (context_equiv(ctx, next_ctx)) {
1245                         /*
1246                          * XXX do we need a memory barrier of sorts
1247                          * wrt to rcu_dereference() of perf_event_ctxp
1248                          */
1249                         task->perf_event_ctxp[ctxn] = next_ctx;
1250                         next->perf_event_ctxp[ctxn] = ctx;
1251                         ctx->task = next;
1252                         next_ctx->task = task;
1253                         do_switch = 0;
1254
1255                         perf_event_sync_stat(ctx, next_ctx);
1256                 }
1257                 raw_spin_unlock(&next_ctx->lock);
1258                 raw_spin_unlock(&ctx->lock);
1259         }
1260         rcu_read_unlock();
1261
1262         if (do_switch) {
1263                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1264                 cpuctx->task_ctx = NULL;
1265         }
1266 }
1267
1268 #define for_each_task_context_nr(ctxn)                                  \
1269         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1270
1271 /*
1272  * Called from scheduler to remove the events of the current task,
1273  * with interrupts disabled.
1274  *
1275  * We stop each event and update the event value in event->count.
1276  *
1277  * This does not protect us against NMI, but disable()
1278  * sets the disabled bit in the control field of event _before_
1279  * accessing the event control register. If a NMI hits, then it will
1280  * not restart the event.
1281  */
1282 void __perf_event_task_sched_out(struct task_struct *task,
1283                                  struct task_struct *next)
1284 {
1285         int ctxn;
1286
1287         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1288
1289         for_each_task_context_nr(ctxn)
1290                 perf_event_context_sched_out(task, ctxn, next);
1291 }
1292
1293 static void task_ctx_sched_out(struct perf_event_context *ctx,
1294                                enum event_type_t event_type)
1295 {
1296         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1297
1298         if (!cpuctx->task_ctx)
1299                 return;
1300
1301         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1302                 return;
1303
1304         ctx_sched_out(ctx, cpuctx, event_type);
1305         cpuctx->task_ctx = NULL;
1306 }
1307
1308 /*
1309  * Called with IRQs disabled
1310  */
1311 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1312                               enum event_type_t event_type)
1313 {
1314         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1315 }
1316
1317 static void
1318 ctx_pinned_sched_in(struct perf_event_context *ctx,
1319                     struct perf_cpu_context *cpuctx)
1320 {
1321         struct perf_event *event;
1322
1323         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1324                 if (event->state <= PERF_EVENT_STATE_OFF)
1325                         continue;
1326                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1327                         continue;
1328
1329                 if (group_can_go_on(event, cpuctx, 1))
1330                         group_sched_in(event, cpuctx, ctx);
1331
1332                 /*
1333                  * If this pinned group hasn't been scheduled,
1334                  * put it in error state.
1335                  */
1336                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1337                         update_group_times(event);
1338                         event->state = PERF_EVENT_STATE_ERROR;
1339                 }
1340         }
1341 }
1342
1343 static void
1344 ctx_flexible_sched_in(struct perf_event_context *ctx,
1345                       struct perf_cpu_context *cpuctx)
1346 {
1347         struct perf_event *event;
1348         int can_add_hw = 1;
1349
1350         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1351                 /* Ignore events in OFF or ERROR state */
1352                 if (event->state <= PERF_EVENT_STATE_OFF)
1353                         continue;
1354                 /*
1355                  * Listen to the 'cpu' scheduling filter constraint
1356                  * of events:
1357                  */
1358                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1359                         continue;
1360
1361                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1362                         if (group_sched_in(event, cpuctx, ctx))
1363                                 can_add_hw = 0;
1364                 }
1365         }
1366 }
1367
1368 static void
1369 ctx_sched_in(struct perf_event_context *ctx,
1370              struct perf_cpu_context *cpuctx,
1371              enum event_type_t event_type)
1372 {
1373         raw_spin_lock(&ctx->lock);
1374         ctx->is_active = 1;
1375         if (likely(!ctx->nr_events))
1376                 goto out;
1377
1378         ctx->timestamp = perf_clock();
1379
1380         /*
1381          * First go through the list and put on any pinned groups
1382          * in order to give them the best chance of going on.
1383          */
1384         if (event_type & EVENT_PINNED)
1385                 ctx_pinned_sched_in(ctx, cpuctx);
1386
1387         /* Then walk through the lower prio flexible groups */
1388         if (event_type & EVENT_FLEXIBLE)
1389                 ctx_flexible_sched_in(ctx, cpuctx);
1390
1391 out:
1392         raw_spin_unlock(&ctx->lock);
1393 }
1394
1395 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1396                              enum event_type_t event_type)
1397 {
1398         struct perf_event_context *ctx = &cpuctx->ctx;
1399
1400         ctx_sched_in(ctx, cpuctx, event_type);
1401 }
1402
1403 static void task_ctx_sched_in(struct perf_event_context *ctx,
1404                               enum event_type_t event_type)
1405 {
1406         struct perf_cpu_context *cpuctx;
1407
1408         cpuctx = __get_cpu_context(ctx);
1409         if (cpuctx->task_ctx == ctx)
1410                 return;
1411
1412         ctx_sched_in(ctx, cpuctx, event_type);
1413         cpuctx->task_ctx = ctx;
1414 }
1415
1416 void perf_event_context_sched_in(struct perf_event_context *ctx)
1417 {
1418         struct perf_cpu_context *cpuctx;
1419
1420         cpuctx = __get_cpu_context(ctx);
1421         if (cpuctx->task_ctx == ctx)
1422                 return;
1423
1424         perf_pmu_disable(ctx->pmu);
1425         /*
1426          * We want to keep the following priority order:
1427          * cpu pinned (that don't need to move), task pinned,
1428          * cpu flexible, task flexible.
1429          */
1430         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1431
1432         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1433         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1434         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1435
1436         cpuctx->task_ctx = ctx;
1437
1438         /*
1439          * Since these rotations are per-cpu, we need to ensure the
1440          * cpu-context we got scheduled on is actually rotating.
1441          */
1442         perf_pmu_rotate_start(ctx->pmu);
1443         perf_pmu_enable(ctx->pmu);
1444 }
1445
1446 /*
1447  * Called from scheduler to add the events of the current task
1448  * with interrupts disabled.
1449  *
1450  * We restore the event value and then enable it.
1451  *
1452  * This does not protect us against NMI, but enable()
1453  * sets the enabled bit in the control field of event _before_
1454  * accessing the event control register. If a NMI hits, then it will
1455  * keep the event running.
1456  */
1457 void __perf_event_task_sched_in(struct task_struct *task)
1458 {
1459         struct perf_event_context *ctx;
1460         int ctxn;
1461
1462         for_each_task_context_nr(ctxn) {
1463                 ctx = task->perf_event_ctxp[ctxn];
1464                 if (likely(!ctx))
1465                         continue;
1466
1467                 perf_event_context_sched_in(ctx);
1468         }
1469 }
1470
1471 #define MAX_INTERRUPTS (~0ULL)
1472
1473 static void perf_log_throttle(struct perf_event *event, int enable);
1474
1475 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1476 {
1477         u64 frequency = event->attr.sample_freq;
1478         u64 sec = NSEC_PER_SEC;
1479         u64 divisor, dividend;
1480
1481         int count_fls, nsec_fls, frequency_fls, sec_fls;
1482
1483         count_fls = fls64(count);
1484         nsec_fls = fls64(nsec);
1485         frequency_fls = fls64(frequency);
1486         sec_fls = 30;
1487
1488         /*
1489          * We got @count in @nsec, with a target of sample_freq HZ
1490          * the target period becomes:
1491          *
1492          *             @count * 10^9
1493          * period = -------------------
1494          *          @nsec * sample_freq
1495          *
1496          */
1497
1498         /*
1499          * Reduce accuracy by one bit such that @a and @b converge
1500          * to a similar magnitude.
1501          */
1502 #define REDUCE_FLS(a, b)                \
1503 do {                                    \
1504         if (a##_fls > b##_fls) {        \
1505                 a >>= 1;                \
1506                 a##_fls--;              \
1507         } else {                        \
1508                 b >>= 1;                \
1509                 b##_fls--;              \
1510         }                               \
1511 } while (0)
1512
1513         /*
1514          * Reduce accuracy until either term fits in a u64, then proceed with
1515          * the other, so that finally we can do a u64/u64 division.
1516          */
1517         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1518                 REDUCE_FLS(nsec, frequency);
1519                 REDUCE_FLS(sec, count);
1520         }
1521
1522         if (count_fls + sec_fls > 64) {
1523                 divisor = nsec * frequency;
1524
1525                 while (count_fls + sec_fls > 64) {
1526                         REDUCE_FLS(count, sec);
1527                         divisor >>= 1;
1528                 }
1529
1530                 dividend = count * sec;
1531         } else {
1532                 dividend = count * sec;
1533
1534                 while (nsec_fls + frequency_fls > 64) {
1535                         REDUCE_FLS(nsec, frequency);
1536                         dividend >>= 1;
1537                 }
1538
1539                 divisor = nsec * frequency;
1540         }
1541
1542         if (!divisor)
1543                 return dividend;
1544
1545         return div64_u64(dividend, divisor);
1546 }
1547
1548 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1549 {
1550         struct hw_perf_event *hwc = &event->hw;
1551         s64 period, sample_period;
1552         s64 delta;
1553
1554         period = perf_calculate_period(event, nsec, count);
1555
1556         delta = (s64)(period - hwc->sample_period);
1557         delta = (delta + 7) / 8; /* low pass filter */
1558
1559         sample_period = hwc->sample_period + delta;
1560
1561         if (!sample_period)
1562                 sample_period = 1;
1563
1564         hwc->sample_period = sample_period;
1565
1566         if (local64_read(&hwc->period_left) > 8*sample_period) {
1567                 event->pmu->stop(event, PERF_EF_UPDATE);
1568                 local64_set(&hwc->period_left, 0);
1569                 event->pmu->start(event, PERF_EF_RELOAD);
1570         }
1571 }
1572
1573 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1574 {
1575         struct perf_event *event;
1576         struct hw_perf_event *hwc;
1577         u64 interrupts, now;
1578         s64 delta;
1579
1580         raw_spin_lock(&ctx->lock);
1581         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1582                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1583                         continue;
1584
1585                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1586                         continue;
1587
1588                 hwc = &event->hw;
1589
1590                 interrupts = hwc->interrupts;
1591                 hwc->interrupts = 0;
1592
1593                 /*
1594                  * unthrottle events on the tick
1595                  */
1596                 if (interrupts == MAX_INTERRUPTS) {
1597                         perf_log_throttle(event, 1);
1598                         event->pmu->start(event, 0);
1599                 }
1600
1601                 if (!event->attr.freq || !event->attr.sample_freq)
1602                         continue;
1603
1604                 event->pmu->read(event);
1605                 now = local64_read(&event->count);
1606                 delta = now - hwc->freq_count_stamp;
1607                 hwc->freq_count_stamp = now;
1608
1609                 if (delta > 0)
1610                         perf_adjust_period(event, period, delta);
1611         }
1612         raw_spin_unlock(&ctx->lock);
1613 }
1614
1615 /*
1616  * Round-robin a context's events:
1617  */
1618 static void rotate_ctx(struct perf_event_context *ctx)
1619 {
1620         raw_spin_lock(&ctx->lock);
1621
1622         /* Rotate the first entry last of non-pinned groups */
1623         list_rotate_left(&ctx->flexible_groups);
1624
1625         raw_spin_unlock(&ctx->lock);
1626 }
1627
1628 /*
1629  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1630  * because they're strictly cpu affine and rotate_start is called with IRQs
1631  * disabled, while rotate_context is called from IRQ context.
1632  */
1633 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1634 {
1635         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1636         struct perf_event_context *ctx = NULL;
1637         int rotate = 0, remove = 1;
1638
1639         if (cpuctx->ctx.nr_events) {
1640                 remove = 0;
1641                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1642                         rotate = 1;
1643         }
1644
1645         ctx = cpuctx->task_ctx;
1646         if (ctx && ctx->nr_events) {
1647                 remove = 0;
1648                 if (ctx->nr_events != ctx->nr_active)
1649                         rotate = 1;
1650         }
1651
1652         perf_pmu_disable(cpuctx->ctx.pmu);
1653         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1654         if (ctx)
1655                 perf_ctx_adjust_freq(ctx, interval);
1656
1657         if (!rotate)
1658                 goto done;
1659
1660         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1661         if (ctx)
1662                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1663
1664         rotate_ctx(&cpuctx->ctx);
1665         if (ctx)
1666                 rotate_ctx(ctx);
1667
1668         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1669         if (ctx)
1670                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1671
1672 done:
1673         if (remove)
1674                 list_del_init(&cpuctx->rotation_list);
1675
1676         perf_pmu_enable(cpuctx->ctx.pmu);
1677 }
1678
1679 void perf_event_task_tick(void)
1680 {
1681         struct list_head *head = &__get_cpu_var(rotation_list);
1682         struct perf_cpu_context *cpuctx, *tmp;
1683
1684         WARN_ON(!irqs_disabled());
1685
1686         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1687                 if (cpuctx->jiffies_interval == 1 ||
1688                                 !(jiffies % cpuctx->jiffies_interval))
1689                         perf_rotate_context(cpuctx);
1690         }
1691 }
1692
1693 static int event_enable_on_exec(struct perf_event *event,
1694                                 struct perf_event_context *ctx)
1695 {
1696         if (!event->attr.enable_on_exec)
1697                 return 0;
1698
1699         event->attr.enable_on_exec = 0;
1700         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701                 return 0;
1702
1703         __perf_event_mark_enabled(event, ctx);
1704
1705         return 1;
1706 }
1707
1708 /*
1709  * Enable all of a task's events that have been marked enable-on-exec.
1710  * This expects task == current.
1711  */
1712 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1713 {
1714         struct perf_event *event;
1715         unsigned long flags;
1716         int enabled = 0;
1717         int ret;
1718
1719         local_irq_save(flags);
1720         if (!ctx || !ctx->nr_events)
1721                 goto out;
1722
1723         task_ctx_sched_out(ctx, EVENT_ALL);
1724
1725         raw_spin_lock(&ctx->lock);
1726
1727         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1728                 ret = event_enable_on_exec(event, ctx);
1729                 if (ret)
1730                         enabled = 1;
1731         }
1732
1733         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1734                 ret = event_enable_on_exec(event, ctx);
1735                 if (ret)
1736                         enabled = 1;
1737         }
1738
1739         /*
1740          * Unclone this context if we enabled any event.
1741          */
1742         if (enabled)
1743                 unclone_ctx(ctx);
1744
1745         raw_spin_unlock(&ctx->lock);
1746
1747         perf_event_context_sched_in(ctx);
1748 out:
1749         local_irq_restore(flags);
1750 }
1751
1752 /*
1753  * Cross CPU call to read the hardware event
1754  */
1755 static void __perf_event_read(void *info)
1756 {
1757         struct perf_event *event = info;
1758         struct perf_event_context *ctx = event->ctx;
1759         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1760
1761         /*
1762          * If this is a task context, we need to check whether it is
1763          * the current task context of this cpu.  If not it has been
1764          * scheduled out before the smp call arrived.  In that case
1765          * event->count would have been updated to a recent sample
1766          * when the event was scheduled out.
1767          */
1768         if (ctx->task && cpuctx->task_ctx != ctx)
1769                 return;
1770
1771         raw_spin_lock(&ctx->lock);
1772         update_context_time(ctx);
1773         update_event_times(event);
1774         raw_spin_unlock(&ctx->lock);
1775
1776         event->pmu->read(event);
1777 }
1778
1779 static inline u64 perf_event_count(struct perf_event *event)
1780 {
1781         return local64_read(&event->count) + atomic64_read(&event->child_count);
1782 }
1783
1784 static u64 perf_event_read(struct perf_event *event)
1785 {
1786         /*
1787          * If event is enabled and currently active on a CPU, update the
1788          * value in the event structure:
1789          */
1790         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1791                 smp_call_function_single(event->oncpu,
1792                                          __perf_event_read, event, 1);
1793         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1794                 struct perf_event_context *ctx = event->ctx;
1795                 unsigned long flags;
1796
1797                 raw_spin_lock_irqsave(&ctx->lock, flags);
1798                 /*
1799                  * may read while context is not active
1800                  * (e.g., thread is blocked), in that case
1801                  * we cannot update context time
1802                  */
1803                 if (ctx->is_active)
1804                         update_context_time(ctx);
1805                 update_event_times(event);
1806                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1807         }
1808
1809         return perf_event_count(event);
1810 }
1811
1812 /*
1813  * Callchain support
1814  */
1815
1816 struct callchain_cpus_entries {
1817         struct rcu_head                 rcu_head;
1818         struct perf_callchain_entry     *cpu_entries[0];
1819 };
1820
1821 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1822 static atomic_t nr_callchain_events;
1823 static DEFINE_MUTEX(callchain_mutex);
1824 struct callchain_cpus_entries *callchain_cpus_entries;
1825
1826
1827 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1828                                   struct pt_regs *regs)
1829 {
1830 }
1831
1832 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1833                                 struct pt_regs *regs)
1834 {
1835 }
1836
1837 static void release_callchain_buffers_rcu(struct rcu_head *head)
1838 {
1839         struct callchain_cpus_entries *entries;
1840         int cpu;
1841
1842         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1843
1844         for_each_possible_cpu(cpu)
1845                 kfree(entries->cpu_entries[cpu]);
1846
1847         kfree(entries);
1848 }
1849
1850 static void release_callchain_buffers(void)
1851 {
1852         struct callchain_cpus_entries *entries;
1853
1854         entries = callchain_cpus_entries;
1855         rcu_assign_pointer(callchain_cpus_entries, NULL);
1856         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1857 }
1858
1859 static int alloc_callchain_buffers(void)
1860 {
1861         int cpu;
1862         int size;
1863         struct callchain_cpus_entries *entries;
1864
1865         /*
1866          * We can't use the percpu allocation API for data that can be
1867          * accessed from NMI. Use a temporary manual per cpu allocation
1868          * until that gets sorted out.
1869          */
1870         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1871                 num_possible_cpus();
1872
1873         entries = kzalloc(size, GFP_KERNEL);
1874         if (!entries)
1875                 return -ENOMEM;
1876
1877         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1878
1879         for_each_possible_cpu(cpu) {
1880                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1881                                                          cpu_to_node(cpu));
1882                 if (!entries->cpu_entries[cpu])
1883                         goto fail;
1884         }
1885
1886         rcu_assign_pointer(callchain_cpus_entries, entries);
1887
1888         return 0;
1889
1890 fail:
1891         for_each_possible_cpu(cpu)
1892                 kfree(entries->cpu_entries[cpu]);
1893         kfree(entries);
1894
1895         return -ENOMEM;
1896 }
1897
1898 static int get_callchain_buffers(void)
1899 {
1900         int err = 0;
1901         int count;
1902
1903         mutex_lock(&callchain_mutex);
1904
1905         count = atomic_inc_return(&nr_callchain_events);
1906         if (WARN_ON_ONCE(count < 1)) {
1907                 err = -EINVAL;
1908                 goto exit;
1909         }
1910
1911         if (count > 1) {
1912                 /* If the allocation failed, give up */
1913                 if (!callchain_cpus_entries)
1914                         err = -ENOMEM;
1915                 goto exit;
1916         }
1917
1918         err = alloc_callchain_buffers();
1919         if (err)
1920                 release_callchain_buffers();
1921 exit:
1922         mutex_unlock(&callchain_mutex);
1923
1924         return err;
1925 }
1926
1927 static void put_callchain_buffers(void)
1928 {
1929         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1930                 release_callchain_buffers();
1931                 mutex_unlock(&callchain_mutex);
1932         }
1933 }
1934
1935 static int get_recursion_context(int *recursion)
1936 {
1937         int rctx;
1938
1939         if (in_nmi())
1940                 rctx = 3;
1941         else if (in_irq())
1942                 rctx = 2;
1943         else if (in_softirq())
1944                 rctx = 1;
1945         else
1946                 rctx = 0;
1947
1948         if (recursion[rctx])
1949                 return -1;
1950
1951         recursion[rctx]++;
1952         barrier();
1953
1954         return rctx;
1955 }
1956
1957 static inline void put_recursion_context(int *recursion, int rctx)
1958 {
1959         barrier();
1960         recursion[rctx]--;
1961 }
1962
1963 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1964 {
1965         int cpu;
1966         struct callchain_cpus_entries *entries;
1967
1968         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1969         if (*rctx == -1)
1970                 return NULL;
1971
1972         entries = rcu_dereference(callchain_cpus_entries);
1973         if (!entries)
1974                 return NULL;
1975
1976         cpu = smp_processor_id();
1977
1978         return &entries->cpu_entries[cpu][*rctx];
1979 }
1980
1981 static void
1982 put_callchain_entry(int rctx)
1983 {
1984         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1985 }
1986
1987 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1988 {
1989         int rctx;
1990         struct perf_callchain_entry *entry;
1991
1992
1993         entry = get_callchain_entry(&rctx);
1994         if (rctx == -1)
1995                 return NULL;
1996
1997         if (!entry)
1998                 goto exit_put;
1999
2000         entry->nr = 0;
2001
2002         if (!user_mode(regs)) {
2003                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2004                 perf_callchain_kernel(entry, regs);
2005                 if (current->mm)
2006                         regs = task_pt_regs(current);
2007                 else
2008                         regs = NULL;
2009         }
2010
2011         if (regs) {
2012                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2013                 perf_callchain_user(entry, regs);
2014         }
2015
2016 exit_put:
2017         put_callchain_entry(rctx);
2018
2019         return entry;
2020 }
2021
2022 /*
2023  * Initialize the perf_event context in a task_struct:
2024  */
2025 static void __perf_event_init_context(struct perf_event_context *ctx)
2026 {
2027         raw_spin_lock_init(&ctx->lock);
2028         mutex_init(&ctx->mutex);
2029         INIT_LIST_HEAD(&ctx->pinned_groups);
2030         INIT_LIST_HEAD(&ctx->flexible_groups);
2031         INIT_LIST_HEAD(&ctx->event_list);
2032         atomic_set(&ctx->refcount, 1);
2033 }
2034
2035 static struct perf_event_context *
2036 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2037 {
2038         struct perf_event_context *ctx;
2039
2040         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2041         if (!ctx)
2042                 return NULL;
2043
2044         __perf_event_init_context(ctx);
2045         if (task) {
2046                 ctx->task = task;
2047                 get_task_struct(task);
2048         }
2049         ctx->pmu = pmu;
2050
2051         return ctx;
2052 }
2053
2054 static struct task_struct *
2055 find_lively_task_by_vpid(pid_t vpid)
2056 {
2057         struct task_struct *task;
2058         int err;
2059
2060         rcu_read_lock();
2061         if (!vpid)
2062                 task = current;
2063         else
2064                 task = find_task_by_vpid(vpid);
2065         if (task)
2066                 get_task_struct(task);
2067         rcu_read_unlock();
2068
2069         if (!task)
2070                 return ERR_PTR(-ESRCH);
2071
2072         /*
2073          * Can't attach events to a dying task.
2074          */
2075         err = -ESRCH;
2076         if (task->flags & PF_EXITING)
2077                 goto errout;
2078
2079         /* Reuse ptrace permission checks for now. */
2080         err = -EACCES;
2081         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2082                 goto errout;
2083
2084         return task;
2085 errout:
2086         put_task_struct(task);
2087         return ERR_PTR(err);
2088
2089 }
2090
2091 static struct perf_event_context *
2092 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2093 {
2094         struct perf_event_context *ctx;
2095         struct perf_cpu_context *cpuctx;
2096         unsigned long flags;
2097         int ctxn, err;
2098
2099         if (!task && cpu != -1) {
2100                 /* Must be root to operate on a CPU event: */
2101                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2102                         return ERR_PTR(-EACCES);
2103
2104                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2105                         return ERR_PTR(-EINVAL);
2106
2107                 /*
2108                  * We could be clever and allow to attach a event to an
2109                  * offline CPU and activate it when the CPU comes up, but
2110                  * that's for later.
2111                  */
2112                 if (!cpu_online(cpu))
2113                         return ERR_PTR(-ENODEV);
2114
2115                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2116                 ctx = &cpuctx->ctx;
2117                 get_ctx(ctx);
2118
2119                 return ctx;
2120         }
2121
2122         err = -EINVAL;
2123         ctxn = pmu->task_ctx_nr;
2124         if (ctxn < 0)
2125                 goto errout;
2126
2127 retry:
2128         ctx = perf_lock_task_context(task, ctxn, &flags);
2129         if (ctx) {
2130                 unclone_ctx(ctx);
2131                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2132         }
2133
2134         if (!ctx) {
2135                 ctx = alloc_perf_context(pmu, task);
2136                 err = -ENOMEM;
2137                 if (!ctx)
2138                         goto errout;
2139
2140                 get_ctx(ctx);
2141
2142                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2143                         /*
2144                          * We raced with some other task; use
2145                          * the context they set.
2146                          */
2147                         put_task_struct(task);
2148                         kfree(ctx);
2149                         goto retry;
2150                 }
2151         }
2152
2153         return ctx;
2154
2155 errout:
2156         return ERR_PTR(err);
2157 }
2158
2159 static void perf_event_free_filter(struct perf_event *event);
2160
2161 static void free_event_rcu(struct rcu_head *head)
2162 {
2163         struct perf_event *event;
2164
2165         event = container_of(head, struct perf_event, rcu_head);
2166         if (event->ns)
2167                 put_pid_ns(event->ns);
2168         perf_event_free_filter(event);
2169         kfree(event);
2170 }
2171
2172 static void perf_buffer_put(struct perf_buffer *buffer);
2173
2174 static void free_event(struct perf_event *event)
2175 {
2176         irq_work_sync(&event->pending);
2177
2178         if (!event->parent) {
2179                 if (event->attach_state & PERF_ATTACH_TASK)
2180                         jump_label_dec(&perf_task_events);
2181                 if (event->attr.mmap || event->attr.mmap_data)
2182                         atomic_dec(&nr_mmap_events);
2183                 if (event->attr.comm)
2184                         atomic_dec(&nr_comm_events);
2185                 if (event->attr.task)
2186                         atomic_dec(&nr_task_events);
2187                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2188                         put_callchain_buffers();
2189         }
2190
2191         if (event->buffer) {
2192                 perf_buffer_put(event->buffer);
2193                 event->buffer = NULL;
2194         }
2195
2196         if (event->destroy)
2197                 event->destroy(event);
2198
2199         if (event->ctx)
2200                 put_ctx(event->ctx);
2201
2202         call_rcu(&event->rcu_head, free_event_rcu);
2203 }
2204
2205 int perf_event_release_kernel(struct perf_event *event)
2206 {
2207         struct perf_event_context *ctx = event->ctx;
2208
2209         /*
2210          * Remove from the PMU, can't get re-enabled since we got
2211          * here because the last ref went.
2212          */
2213         perf_event_disable(event);
2214
2215         WARN_ON_ONCE(ctx->parent_ctx);
2216         /*
2217          * There are two ways this annotation is useful:
2218          *
2219          *  1) there is a lock recursion from perf_event_exit_task
2220          *     see the comment there.
2221          *
2222          *  2) there is a lock-inversion with mmap_sem through
2223          *     perf_event_read_group(), which takes faults while
2224          *     holding ctx->mutex, however this is called after
2225          *     the last filedesc died, so there is no possibility
2226          *     to trigger the AB-BA case.
2227          */
2228         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2229         raw_spin_lock_irq(&ctx->lock);
2230         perf_group_detach(event);
2231         list_del_event(event, ctx);
2232         raw_spin_unlock_irq(&ctx->lock);
2233         mutex_unlock(&ctx->mutex);
2234
2235         mutex_lock(&event->owner->perf_event_mutex);
2236         list_del_init(&event->owner_entry);
2237         mutex_unlock(&event->owner->perf_event_mutex);
2238         put_task_struct(event->owner);
2239
2240         free_event(event);
2241
2242         return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2245
2246 /*
2247  * Called when the last reference to the file is gone.
2248  */
2249 static int perf_release(struct inode *inode, struct file *file)
2250 {
2251         struct perf_event *event = file->private_data;
2252
2253         file->private_data = NULL;
2254
2255         return perf_event_release_kernel(event);
2256 }
2257
2258 static int perf_event_read_size(struct perf_event *event)
2259 {
2260         int entry = sizeof(u64); /* value */
2261         int size = 0;
2262         int nr = 1;
2263
2264         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2265                 size += sizeof(u64);
2266
2267         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2268                 size += sizeof(u64);
2269
2270         if (event->attr.read_format & PERF_FORMAT_ID)
2271                 entry += sizeof(u64);
2272
2273         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2274                 nr += event->group_leader->nr_siblings;
2275                 size += sizeof(u64);
2276         }
2277
2278         size += entry * nr;
2279
2280         return size;
2281 }
2282
2283 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2284 {
2285         struct perf_event *child;
2286         u64 total = 0;
2287
2288         *enabled = 0;
2289         *running = 0;
2290
2291         mutex_lock(&event->child_mutex);
2292         total += perf_event_read(event);
2293         *enabled += event->total_time_enabled +
2294                         atomic64_read(&event->child_total_time_enabled);
2295         *running += event->total_time_running +
2296                         atomic64_read(&event->child_total_time_running);
2297
2298         list_for_each_entry(child, &event->child_list, child_list) {
2299                 total += perf_event_read(child);
2300                 *enabled += child->total_time_enabled;
2301                 *running += child->total_time_running;
2302         }
2303         mutex_unlock(&event->child_mutex);
2304
2305         return total;
2306 }
2307 EXPORT_SYMBOL_GPL(perf_event_read_value);
2308
2309 static int perf_event_read_group(struct perf_event *event,
2310                                    u64 read_format, char __user *buf)
2311 {
2312         struct perf_event *leader = event->group_leader, *sub;
2313         int n = 0, size = 0, ret = -EFAULT;
2314         struct perf_event_context *ctx = leader->ctx;
2315         u64 values[5];
2316         u64 count, enabled, running;
2317
2318         mutex_lock(&ctx->mutex);
2319         count = perf_event_read_value(leader, &enabled, &running);
2320
2321         values[n++] = 1 + leader->nr_siblings;
2322         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2323                 values[n++] = enabled;
2324         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2325                 values[n++] = running;
2326         values[n++] = count;
2327         if (read_format & PERF_FORMAT_ID)
2328                 values[n++] = primary_event_id(leader);
2329
2330         size = n * sizeof(u64);
2331
2332         if (copy_to_user(buf, values, size))
2333                 goto unlock;
2334
2335         ret = size;
2336
2337         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2338                 n = 0;
2339
2340                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2341                 if (read_format & PERF_FORMAT_ID)
2342                         values[n++] = primary_event_id(sub);
2343
2344                 size = n * sizeof(u64);
2345
2346                 if (copy_to_user(buf + ret, values, size)) {
2347                         ret = -EFAULT;
2348                         goto unlock;
2349                 }
2350
2351                 ret += size;
2352         }
2353 unlock:
2354         mutex_unlock(&ctx->mutex);
2355
2356         return ret;
2357 }
2358
2359 static int perf_event_read_one(struct perf_event *event,
2360                                  u64 read_format, char __user *buf)
2361 {
2362         u64 enabled, running;
2363         u64 values[4];
2364         int n = 0;
2365
2366         values[n++] = perf_event_read_value(event, &enabled, &running);
2367         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2368                 values[n++] = enabled;
2369         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2370                 values[n++] = running;
2371         if (read_format & PERF_FORMAT_ID)
2372                 values[n++] = primary_event_id(event);
2373
2374         if (copy_to_user(buf, values, n * sizeof(u64)))
2375                 return -EFAULT;
2376
2377         return n * sizeof(u64);
2378 }
2379
2380 /*
2381  * Read the performance event - simple non blocking version for now
2382  */
2383 static ssize_t
2384 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2385 {
2386         u64 read_format = event->attr.read_format;
2387         int ret;
2388
2389         /*
2390          * Return end-of-file for a read on a event that is in
2391          * error state (i.e. because it was pinned but it couldn't be
2392          * scheduled on to the CPU at some point).
2393          */
2394         if (event->state == PERF_EVENT_STATE_ERROR)
2395                 return 0;
2396
2397         if (count < perf_event_read_size(event))
2398                 return -ENOSPC;
2399
2400         WARN_ON_ONCE(event->ctx->parent_ctx);
2401         if (read_format & PERF_FORMAT_GROUP)
2402                 ret = perf_event_read_group(event, read_format, buf);
2403         else
2404                 ret = perf_event_read_one(event, read_format, buf);
2405
2406         return ret;
2407 }
2408
2409 static ssize_t
2410 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2411 {
2412         struct perf_event *event = file->private_data;
2413
2414         return perf_read_hw(event, buf, count);
2415 }
2416
2417 static unsigned int perf_poll(struct file *file, poll_table *wait)
2418 {
2419         struct perf_event *event = file->private_data;
2420         struct perf_buffer *buffer;
2421         unsigned int events = POLL_HUP;
2422
2423         rcu_read_lock();
2424         buffer = rcu_dereference(event->buffer);
2425         if (buffer)
2426                 events = atomic_xchg(&buffer->poll, 0);
2427         rcu_read_unlock();
2428
2429         poll_wait(file, &event->waitq, wait);
2430
2431         return events;
2432 }
2433
2434 static void perf_event_reset(struct perf_event *event)
2435 {
2436         (void)perf_event_read(event);
2437         local64_set(&event->count, 0);
2438         perf_event_update_userpage(event);
2439 }
2440
2441 /*
2442  * Holding the top-level event's child_mutex means that any
2443  * descendant process that has inherited this event will block
2444  * in sync_child_event if it goes to exit, thus satisfying the
2445  * task existence requirements of perf_event_enable/disable.
2446  */
2447 static void perf_event_for_each_child(struct perf_event *event,
2448                                         void (*func)(struct perf_event *))
2449 {
2450         struct perf_event *child;
2451
2452         WARN_ON_ONCE(event->ctx->parent_ctx);
2453         mutex_lock(&event->child_mutex);
2454         func(event);
2455         list_for_each_entry(child, &event->child_list, child_list)
2456                 func(child);
2457         mutex_unlock(&event->child_mutex);
2458 }
2459
2460 static void perf_event_for_each(struct perf_event *event,
2461                                   void (*func)(struct perf_event *))
2462 {
2463         struct perf_event_context *ctx = event->ctx;
2464         struct perf_event *sibling;
2465
2466         WARN_ON_ONCE(ctx->parent_ctx);
2467         mutex_lock(&ctx->mutex);
2468         event = event->group_leader;
2469
2470         perf_event_for_each_child(event, func);
2471         func(event);
2472         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2473                 perf_event_for_each_child(event, func);
2474         mutex_unlock(&ctx->mutex);
2475 }
2476
2477 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2478 {
2479         struct perf_event_context *ctx = event->ctx;
2480         int ret = 0;
2481         u64 value;
2482
2483         if (!event->attr.sample_period)
2484                 return -EINVAL;
2485
2486         if (copy_from_user(&value, arg, sizeof(value)))
2487                 return -EFAULT;
2488
2489         if (!value)
2490                 return -EINVAL;
2491
2492         raw_spin_lock_irq(&ctx->lock);
2493         if (event->attr.freq) {
2494                 if (value > sysctl_perf_event_sample_rate) {
2495                         ret = -EINVAL;
2496                         goto unlock;
2497                 }
2498
2499                 event->attr.sample_freq = value;
2500         } else {
2501                 event->attr.sample_period = value;
2502                 event->hw.sample_period = value;
2503         }
2504 unlock:
2505         raw_spin_unlock_irq(&ctx->lock);
2506
2507         return ret;
2508 }
2509
2510 static const struct file_operations perf_fops;
2511
2512 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2513 {
2514         struct file *file;
2515
2516         file = fget_light(fd, fput_needed);
2517         if (!file)
2518                 return ERR_PTR(-EBADF);
2519
2520         if (file->f_op != &perf_fops) {
2521                 fput_light(file, *fput_needed);
2522                 *fput_needed = 0;
2523                 return ERR_PTR(-EBADF);
2524         }
2525
2526         return file->private_data;
2527 }
2528
2529 static int perf_event_set_output(struct perf_event *event,
2530                                  struct perf_event *output_event);
2531 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2532
2533 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2534 {
2535         struct perf_event *event = file->private_data;
2536         void (*func)(struct perf_event *);
2537         u32 flags = arg;
2538
2539         switch (cmd) {
2540         case PERF_EVENT_IOC_ENABLE:
2541                 func = perf_event_enable;
2542                 break;
2543         case PERF_EVENT_IOC_DISABLE:
2544                 func = perf_event_disable;
2545                 break;
2546         case PERF_EVENT_IOC_RESET:
2547                 func = perf_event_reset;
2548                 break;
2549
2550         case PERF_EVENT_IOC_REFRESH:
2551                 return perf_event_refresh(event, arg);
2552
2553         case PERF_EVENT_IOC_PERIOD:
2554                 return perf_event_period(event, (u64 __user *)arg);
2555
2556         case PERF_EVENT_IOC_SET_OUTPUT:
2557         {
2558                 struct perf_event *output_event = NULL;
2559                 int fput_needed = 0;
2560                 int ret;
2561
2562                 if (arg != -1) {
2563                         output_event = perf_fget_light(arg, &fput_needed);
2564                         if (IS_ERR(output_event))
2565                                 return PTR_ERR(output_event);
2566                 }
2567
2568                 ret = perf_event_set_output(event, output_event);
2569                 if (output_event)
2570                         fput_light(output_event->filp, fput_needed);
2571
2572                 return ret;
2573         }
2574
2575         case PERF_EVENT_IOC_SET_FILTER:
2576                 return perf_event_set_filter(event, (void __user *)arg);
2577
2578         default:
2579                 return -ENOTTY;
2580         }
2581
2582         if (flags & PERF_IOC_FLAG_GROUP)
2583                 perf_event_for_each(event, func);
2584         else
2585                 perf_event_for_each_child(event, func);
2586
2587         return 0;
2588 }
2589
2590 int perf_event_task_enable(void)
2591 {
2592         struct perf_event *event;
2593
2594         mutex_lock(&current->perf_event_mutex);
2595         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2596                 perf_event_for_each_child(event, perf_event_enable);
2597         mutex_unlock(&current->perf_event_mutex);
2598
2599         return 0;
2600 }
2601
2602 int perf_event_task_disable(void)
2603 {
2604         struct perf_event *event;
2605
2606         mutex_lock(&current->perf_event_mutex);
2607         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2608                 perf_event_for_each_child(event, perf_event_disable);
2609         mutex_unlock(&current->perf_event_mutex);
2610
2611         return 0;
2612 }
2613
2614 #ifndef PERF_EVENT_INDEX_OFFSET
2615 # define PERF_EVENT_INDEX_OFFSET 0
2616 #endif
2617
2618 static int perf_event_index(struct perf_event *event)
2619 {
2620         if (event->hw.state & PERF_HES_STOPPED)
2621                 return 0;
2622
2623         if (event->state != PERF_EVENT_STATE_ACTIVE)
2624                 return 0;
2625
2626         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2627 }
2628
2629 /*
2630  * Callers need to ensure there can be no nesting of this function, otherwise
2631  * the seqlock logic goes bad. We can not serialize this because the arch
2632  * code calls this from NMI context.
2633  */
2634 void perf_event_update_userpage(struct perf_event *event)
2635 {
2636         struct perf_event_mmap_page *userpg;
2637         struct perf_buffer *buffer;
2638
2639         rcu_read_lock();
2640         buffer = rcu_dereference(event->buffer);
2641         if (!buffer)
2642                 goto unlock;
2643
2644         userpg = buffer->user_page;
2645
2646         /*
2647          * Disable preemption so as to not let the corresponding user-space
2648          * spin too long if we get preempted.
2649          */
2650         preempt_disable();
2651         ++userpg->lock;
2652         barrier();
2653         userpg->index = perf_event_index(event);
2654         userpg->offset = perf_event_count(event);
2655         if (event->state == PERF_EVENT_STATE_ACTIVE)
2656                 userpg->offset -= local64_read(&event->hw.prev_count);
2657
2658         userpg->time_enabled = event->total_time_enabled +
2659                         atomic64_read(&event->child_total_time_enabled);
2660
2661         userpg->time_running = event->total_time_running +
2662                         atomic64_read(&event->child_total_time_running);
2663
2664         barrier();
2665         ++userpg->lock;
2666         preempt_enable();
2667 unlock:
2668         rcu_read_unlock();
2669 }
2670
2671 static unsigned long perf_data_size(struct perf_buffer *buffer);
2672
2673 static void
2674 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2675 {
2676         long max_size = perf_data_size(buffer);
2677
2678         if (watermark)
2679                 buffer->watermark = min(max_size, watermark);
2680
2681         if (!buffer->watermark)
2682                 buffer->watermark = max_size / 2;
2683
2684         if (flags & PERF_BUFFER_WRITABLE)
2685                 buffer->writable = 1;
2686
2687         atomic_set(&buffer->refcount, 1);
2688 }
2689
2690 #ifndef CONFIG_PERF_USE_VMALLOC
2691
2692 /*
2693  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2694  */
2695
2696 static struct page *
2697 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2698 {
2699         if (pgoff > buffer->nr_pages)
2700                 return NULL;
2701
2702         if (pgoff == 0)
2703                 return virt_to_page(buffer->user_page);
2704
2705         return virt_to_page(buffer->data_pages[pgoff - 1]);
2706 }
2707
2708 static void *perf_mmap_alloc_page(int cpu)
2709 {
2710         struct page *page;
2711         int node;
2712
2713         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2714         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2715         if (!page)
2716                 return NULL;
2717
2718         return page_address(page);
2719 }
2720
2721 static struct perf_buffer *
2722 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2723 {
2724         struct perf_buffer *buffer;
2725         unsigned long size;
2726         int i;
2727
2728         size = sizeof(struct perf_buffer);
2729         size += nr_pages * sizeof(void *);
2730
2731         buffer = kzalloc(size, GFP_KERNEL);
2732         if (!buffer)
2733                 goto fail;
2734
2735         buffer->user_page = perf_mmap_alloc_page(cpu);
2736         if (!buffer->user_page)
2737                 goto fail_user_page;
2738
2739         for (i = 0; i < nr_pages; i++) {
2740                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2741                 if (!buffer->data_pages[i])
2742                         goto fail_data_pages;
2743         }
2744
2745         buffer->nr_pages = nr_pages;
2746
2747         perf_buffer_init(buffer, watermark, flags);
2748
2749         return buffer;
2750
2751 fail_data_pages:
2752         for (i--; i >= 0; i--)
2753                 free_page((unsigned long)buffer->data_pages[i]);
2754
2755         free_page((unsigned long)buffer->user_page);
2756
2757 fail_user_page:
2758         kfree(buffer);
2759
2760 fail:
2761         return NULL;
2762 }
2763
2764 static void perf_mmap_free_page(unsigned long addr)
2765 {
2766         struct page *page = virt_to_page((void *)addr);
2767
2768         page->mapping = NULL;
2769         __free_page(page);
2770 }
2771
2772 static void perf_buffer_free(struct perf_buffer *buffer)
2773 {
2774         int i;
2775
2776         perf_mmap_free_page((unsigned long)buffer->user_page);
2777         for (i = 0; i < buffer->nr_pages; i++)
2778                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2779         kfree(buffer);
2780 }
2781
2782 static inline int page_order(struct perf_buffer *buffer)
2783 {
2784         return 0;
2785 }
2786
2787 #else
2788
2789 /*
2790  * Back perf_mmap() with vmalloc memory.
2791  *
2792  * Required for architectures that have d-cache aliasing issues.
2793  */
2794
2795 static inline int page_order(struct perf_buffer *buffer)
2796 {
2797         return buffer->page_order;
2798 }
2799
2800 static struct page *
2801 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2802 {
2803         if (pgoff > (1UL << page_order(buffer)))
2804                 return NULL;
2805
2806         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2807 }
2808
2809 static void perf_mmap_unmark_page(void *addr)
2810 {
2811         struct page *page = vmalloc_to_page(addr);
2812
2813         page->mapping = NULL;
2814 }
2815
2816 static void perf_buffer_free_work(struct work_struct *work)
2817 {
2818         struct perf_buffer *buffer;
2819         void *base;
2820         int i, nr;
2821
2822         buffer = container_of(work, struct perf_buffer, work);
2823         nr = 1 << page_order(buffer);
2824
2825         base = buffer->user_page;
2826         for (i = 0; i < nr + 1; i++)
2827                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2828
2829         vfree(base);
2830         kfree(buffer);
2831 }
2832
2833 static void perf_buffer_free(struct perf_buffer *buffer)
2834 {
2835         schedule_work(&buffer->work);
2836 }
2837
2838 static struct perf_buffer *
2839 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2840 {
2841         struct perf_buffer *buffer;
2842         unsigned long size;
2843         void *all_buf;
2844
2845         size = sizeof(struct perf_buffer);
2846         size += sizeof(void *);
2847
2848         buffer = kzalloc(size, GFP_KERNEL);
2849         if (!buffer)
2850                 goto fail;
2851
2852         INIT_WORK(&buffer->work, perf_buffer_free_work);
2853
2854         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2855         if (!all_buf)
2856                 goto fail_all_buf;
2857
2858         buffer->user_page = all_buf;
2859         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2860         buffer->page_order = ilog2(nr_pages);
2861         buffer->nr_pages = 1;
2862
2863         perf_buffer_init(buffer, watermark, flags);
2864
2865         return buffer;
2866
2867 fail_all_buf:
2868         kfree(buffer);
2869
2870 fail:
2871         return NULL;
2872 }
2873
2874 #endif
2875
2876 static unsigned long perf_data_size(struct perf_buffer *buffer)
2877 {
2878         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2879 }
2880
2881 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2882 {
2883         struct perf_event *event = vma->vm_file->private_data;
2884         struct perf_buffer *buffer;
2885         int ret = VM_FAULT_SIGBUS;
2886
2887         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2888                 if (vmf->pgoff == 0)
2889                         ret = 0;
2890                 return ret;
2891         }
2892
2893         rcu_read_lock();
2894         buffer = rcu_dereference(event->buffer);
2895         if (!buffer)
2896                 goto unlock;
2897
2898         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2899                 goto unlock;
2900
2901         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2902         if (!vmf->page)
2903                 goto unlock;
2904
2905         get_page(vmf->page);
2906         vmf->page->mapping = vma->vm_file->f_mapping;
2907         vmf->page->index   = vmf->pgoff;
2908
2909         ret = 0;
2910 unlock:
2911         rcu_read_unlock();
2912
2913         return ret;
2914 }
2915
2916 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2917 {
2918         struct perf_buffer *buffer;
2919
2920         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2921         perf_buffer_free(buffer);
2922 }
2923
2924 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2925 {
2926         struct perf_buffer *buffer;
2927
2928         rcu_read_lock();
2929         buffer = rcu_dereference(event->buffer);
2930         if (buffer) {
2931                 if (!atomic_inc_not_zero(&buffer->refcount))
2932                         buffer = NULL;
2933         }
2934         rcu_read_unlock();
2935
2936         return buffer;
2937 }
2938
2939 static void perf_buffer_put(struct perf_buffer *buffer)
2940 {
2941         if (!atomic_dec_and_test(&buffer->refcount))
2942                 return;
2943
2944         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2945 }
2946
2947 static void perf_mmap_open(struct vm_area_struct *vma)
2948 {
2949         struct perf_event *event = vma->vm_file->private_data;
2950
2951         atomic_inc(&event->mmap_count);
2952 }
2953
2954 static void perf_mmap_close(struct vm_area_struct *vma)
2955 {
2956         struct perf_event *event = vma->vm_file->private_data;
2957
2958         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2959                 unsigned long size = perf_data_size(event->buffer);
2960                 struct user_struct *user = event->mmap_user;
2961                 struct perf_buffer *buffer = event->buffer;
2962
2963                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2964                 vma->vm_mm->locked_vm -= event->mmap_locked;
2965                 rcu_assign_pointer(event->buffer, NULL);
2966                 mutex_unlock(&event->mmap_mutex);
2967
2968                 perf_buffer_put(buffer);
2969                 free_uid(user);
2970         }
2971 }
2972
2973 static const struct vm_operations_struct perf_mmap_vmops = {
2974         .open           = perf_mmap_open,
2975         .close          = perf_mmap_close,
2976         .fault          = perf_mmap_fault,
2977         .page_mkwrite   = perf_mmap_fault,
2978 };
2979
2980 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2981 {
2982         struct perf_event *event = file->private_data;
2983         unsigned long user_locked, user_lock_limit;
2984         struct user_struct *user = current_user();
2985         unsigned long locked, lock_limit;
2986         struct perf_buffer *buffer;
2987         unsigned long vma_size;
2988         unsigned long nr_pages;
2989         long user_extra, extra;
2990         int ret = 0, flags = 0;
2991
2992         /*
2993          * Don't allow mmap() of inherited per-task counters. This would
2994          * create a performance issue due to all children writing to the
2995          * same buffer.
2996          */
2997         if (event->cpu == -1 && event->attr.inherit)
2998                 return -EINVAL;
2999
3000         if (!(vma->vm_flags & VM_SHARED))
3001                 return -EINVAL;
3002
3003         vma_size = vma->vm_end - vma->vm_start;
3004         nr_pages = (vma_size / PAGE_SIZE) - 1;
3005
3006         /*
3007          * If we have buffer pages ensure they're a power-of-two number, so we
3008          * can do bitmasks instead of modulo.
3009          */
3010         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3011                 return -EINVAL;
3012
3013         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3014                 return -EINVAL;
3015
3016         if (vma->vm_pgoff != 0)
3017                 return -EINVAL;
3018
3019         WARN_ON_ONCE(event->ctx->parent_ctx);
3020         mutex_lock(&event->mmap_mutex);
3021         if (event->buffer) {
3022                 if (event->buffer->nr_pages == nr_pages)
3023                         atomic_inc(&event->buffer->refcount);
3024                 else
3025                         ret = -EINVAL;
3026                 goto unlock;
3027         }
3028
3029         user_extra = nr_pages + 1;
3030         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3031
3032         /*
3033          * Increase the limit linearly with more CPUs:
3034          */
3035         user_lock_limit *= num_online_cpus();
3036
3037         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3038
3039         extra = 0;
3040         if (user_locked > user_lock_limit)
3041                 extra = user_locked - user_lock_limit;
3042
3043         lock_limit = rlimit(RLIMIT_MEMLOCK);
3044         lock_limit >>= PAGE_SHIFT;
3045         locked = vma->vm_mm->locked_vm + extra;
3046
3047         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3048                 !capable(CAP_IPC_LOCK)) {
3049                 ret = -EPERM;
3050                 goto unlock;
3051         }
3052
3053         WARN_ON(event->buffer);
3054
3055         if (vma->vm_flags & VM_WRITE)
3056                 flags |= PERF_BUFFER_WRITABLE;
3057
3058         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3059                                    event->cpu, flags);
3060         if (!buffer) {
3061                 ret = -ENOMEM;
3062                 goto unlock;
3063         }
3064         rcu_assign_pointer(event->buffer, buffer);
3065
3066         atomic_long_add(user_extra, &user->locked_vm);
3067         event->mmap_locked = extra;
3068         event->mmap_user = get_current_user();
3069         vma->vm_mm->locked_vm += event->mmap_locked;
3070
3071 unlock:
3072         if (!ret)
3073                 atomic_inc(&event->mmap_count);
3074         mutex_unlock(&event->mmap_mutex);
3075
3076         vma->vm_flags |= VM_RESERVED;
3077         vma->vm_ops = &perf_mmap_vmops;
3078
3079         return ret;
3080 }
3081
3082 static int perf_fasync(int fd, struct file *filp, int on)
3083 {
3084         struct inode *inode = filp->f_path.dentry->d_inode;
3085         struct perf_event *event = filp->private_data;
3086         int retval;
3087
3088         mutex_lock(&inode->i_mutex);
3089         retval = fasync_helper(fd, filp, on, &event->fasync);
3090         mutex_unlock(&inode->i_mutex);
3091
3092         if (retval < 0)
3093                 return retval;
3094
3095         return 0;
3096 }
3097
3098 static const struct file_operations perf_fops = {
3099         .llseek                 = no_llseek,
3100         .release                = perf_release,
3101         .read                   = perf_read,
3102         .poll                   = perf_poll,
3103         .unlocked_ioctl         = perf_ioctl,
3104         .compat_ioctl           = perf_ioctl,
3105         .mmap                   = perf_mmap,
3106         .fasync                 = perf_fasync,
3107 };
3108
3109 /*
3110  * Perf event wakeup
3111  *
3112  * If there's data, ensure we set the poll() state and publish everything
3113  * to user-space before waking everybody up.
3114  */
3115
3116 void perf_event_wakeup(struct perf_event *event)
3117 {
3118         wake_up_all(&event->waitq);
3119
3120         if (event->pending_kill) {
3121                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3122                 event->pending_kill = 0;
3123         }
3124 }
3125
3126 static void perf_pending_event(struct irq_work *entry)
3127 {
3128         struct perf_event *event = container_of(entry,
3129                         struct perf_event, pending);
3130
3131         if (event->pending_disable) {
3132                 event->pending_disable = 0;
3133                 __perf_event_disable(event);
3134         }
3135
3136         if (event->pending_wakeup) {
3137                 event->pending_wakeup = 0;
3138                 perf_event_wakeup(event);
3139         }
3140 }
3141
3142 /*
3143  * We assume there is only KVM supporting the callbacks.
3144  * Later on, we might change it to a list if there is
3145  * another virtualization implementation supporting the callbacks.
3146  */
3147 struct perf_guest_info_callbacks *perf_guest_cbs;
3148
3149 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3150 {
3151         perf_guest_cbs = cbs;
3152         return 0;
3153 }
3154 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3155
3156 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3157 {
3158         perf_guest_cbs = NULL;
3159         return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3162
3163 /*
3164  * Output
3165  */
3166 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3167                               unsigned long offset, unsigned long head)
3168 {
3169         unsigned long mask;
3170
3171         if (!buffer->writable)
3172                 return true;
3173
3174         mask = perf_data_size(buffer) - 1;
3175
3176         offset = (offset - tail) & mask;
3177         head   = (head   - tail) & mask;
3178
3179         if ((int)(head - offset) < 0)
3180                 return false;
3181
3182         return true;
3183 }
3184
3185 static void perf_output_wakeup(struct perf_output_handle *handle)
3186 {
3187         atomic_set(&handle->buffer->poll, POLL_IN);
3188
3189         if (handle->nmi) {
3190                 handle->event->pending_wakeup = 1;
3191                 irq_work_queue(&handle->event->pending);
3192         } else
3193                 perf_event_wakeup(handle->event);
3194 }
3195
3196 /*
3197  * We need to ensure a later event_id doesn't publish a head when a former
3198  * event isn't done writing. However since we need to deal with NMIs we
3199  * cannot fully serialize things.
3200  *
3201  * We only publish the head (and generate a wakeup) when the outer-most
3202  * event completes.
3203  */
3204 static void perf_output_get_handle(struct perf_output_handle *handle)
3205 {
3206         struct perf_buffer *buffer = handle->buffer;
3207
3208         preempt_disable();
3209         local_inc(&buffer->nest);
3210         handle->wakeup = local_read(&buffer->wakeup);
3211 }
3212
3213 static void perf_output_put_handle(struct perf_output_handle *handle)
3214 {
3215         struct perf_buffer *buffer = handle->buffer;
3216         unsigned long head;
3217
3218 again:
3219         head = local_read(&buffer->head);
3220
3221         /*
3222          * IRQ/NMI can happen here, which means we can miss a head update.
3223          */
3224
3225         if (!local_dec_and_test(&buffer->nest))
3226                 goto out;
3227
3228         /*
3229          * Publish the known good head. Rely on the full barrier implied
3230          * by atomic_dec_and_test() order the buffer->head read and this
3231          * write.
3232          */
3233         buffer->user_page->data_head = head;
3234
3235         /*
3236          * Now check if we missed an update, rely on the (compiler)
3237          * barrier in atomic_dec_and_test() to re-read buffer->head.
3238          */
3239         if (unlikely(head != local_read(&buffer->head))) {
3240                 local_inc(&buffer->nest);
3241                 goto again;
3242         }
3243
3244         if (handle->wakeup != local_read(&buffer->wakeup))
3245                 perf_output_wakeup(handle);
3246
3247 out:
3248         preempt_enable();
3249 }
3250
3251 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3252                       const void *buf, unsigned int len)
3253 {
3254         do {
3255                 unsigned long size = min_t(unsigned long, handle->size, len);
3256
3257                 memcpy(handle->addr, buf, size);
3258
3259                 len -= size;
3260                 handle->addr += size;
3261                 buf += size;
3262                 handle->size -= size;
3263                 if (!handle->size) {
3264                         struct perf_buffer *buffer = handle->buffer;
3265
3266                         handle->page++;
3267                         handle->page &= buffer->nr_pages - 1;
3268                         handle->addr = buffer->data_pages[handle->page];
3269                         handle->size = PAGE_SIZE << page_order(buffer);
3270                 }
3271         } while (len);
3272 }
3273
3274 int perf_output_begin(struct perf_output_handle *handle,
3275                       struct perf_event *event, unsigned int size,
3276                       int nmi, int sample)
3277 {
3278         struct perf_buffer *buffer;
3279         unsigned long tail, offset, head;
3280         int have_lost;
3281         struct {
3282                 struct perf_event_header header;
3283                 u64                      id;
3284                 u64                      lost;
3285         } lost_event;
3286
3287         rcu_read_lock();
3288         /*
3289          * For inherited events we send all the output towards the parent.
3290          */
3291         if (event->parent)
3292                 event = event->parent;
3293
3294         buffer = rcu_dereference(event->buffer);
3295         if (!buffer)
3296                 goto out;
3297
3298         handle->buffer  = buffer;
3299         handle->event   = event;
3300         handle->nmi     = nmi;
3301         handle->sample  = sample;
3302
3303         if (!buffer->nr_pages)
3304                 goto out;
3305
3306         have_lost = local_read(&buffer->lost);
3307         if (have_lost)
3308                 size += sizeof(lost_event);
3309
3310         perf_output_get_handle(handle);
3311
3312         do {
3313                 /*
3314                  * Userspace could choose to issue a mb() before updating the
3315                  * tail pointer. So that all reads will be completed before the
3316                  * write is issued.
3317                  */
3318                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3319                 smp_rmb();
3320                 offset = head = local_read(&buffer->head);
3321                 head += size;
3322                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3323                         goto fail;
3324         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3325
3326         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3327                 local_add(buffer->watermark, &buffer->wakeup);
3328
3329         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3330         handle->page &= buffer->nr_pages - 1;
3331         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3332         handle->addr = buffer->data_pages[handle->page];
3333         handle->addr += handle->size;
3334         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3335
3336         if (have_lost) {
3337                 lost_event.header.type = PERF_RECORD_LOST;
3338                 lost_event.header.misc = 0;
3339                 lost_event.header.size = sizeof(lost_event);
3340                 lost_event.id          = event->id;
3341                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3342
3343                 perf_output_put(handle, lost_event);
3344         }
3345
3346         return 0;
3347
3348 fail:
3349         local_inc(&buffer->lost);
3350         perf_output_put_handle(handle);
3351 out:
3352         rcu_read_unlock();
3353
3354         return -ENOSPC;
3355 }
3356
3357 void perf_output_end(struct perf_output_handle *handle)
3358 {
3359         struct perf_event *event = handle->event;
3360         struct perf_buffer *buffer = handle->buffer;
3361
3362         int wakeup_events = event->attr.wakeup_events;
3363
3364         if (handle->sample && wakeup_events) {
3365                 int events = local_inc_return(&buffer->events);
3366                 if (events >= wakeup_events) {
3367                         local_sub(wakeup_events, &buffer->events);
3368                         local_inc(&buffer->wakeup);
3369                 }
3370         }
3371
3372         perf_output_put_handle(handle);
3373         rcu_read_unlock();
3374 }
3375
3376 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3377 {
3378         /*
3379          * only top level events have the pid namespace they were created in
3380          */
3381         if (event->parent)
3382                 event = event->parent;
3383
3384         return task_tgid_nr_ns(p, event->ns);
3385 }
3386
3387 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3388 {
3389         /*
3390          * only top level events have the pid namespace they were created in
3391          */
3392         if (event->parent)
3393                 event = event->parent;
3394
3395         return task_pid_nr_ns(p, event->ns);
3396 }
3397
3398 static void perf_output_read_one(struct perf_output_handle *handle,
3399                                  struct perf_event *event)
3400 {
3401         u64 read_format = event->attr.read_format;
3402         u64 values[4];
3403         int n = 0;
3404
3405         values[n++] = perf_event_count(event);
3406         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3407                 values[n++] = event->total_time_enabled +
3408                         atomic64_read(&event->child_total_time_enabled);
3409         }
3410         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3411                 values[n++] = event->total_time_running +
3412                         atomic64_read(&event->child_total_time_running);
3413         }
3414         if (read_format & PERF_FORMAT_ID)
3415                 values[n++] = primary_event_id(event);
3416
3417         perf_output_copy(handle, values, n * sizeof(u64));
3418 }
3419
3420 /*
3421  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3422  */
3423 static void perf_output_read_group(struct perf_output_handle *handle,
3424                             struct perf_event *event)
3425 {
3426         struct perf_event *leader = event->group_leader, *sub;
3427         u64 read_format = event->attr.read_format;
3428         u64 values[5];
3429         int n = 0;
3430
3431         values[n++] = 1 + leader->nr_siblings;
3432
3433         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3434                 values[n++] = leader->total_time_enabled;
3435
3436         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3437                 values[n++] = leader->total_time_running;
3438
3439         if (leader != event)
3440                 leader->pmu->read(leader);
3441
3442         values[n++] = perf_event_count(leader);
3443         if (read_format & PERF_FORMAT_ID)
3444                 values[n++] = primary_event_id(leader);
3445
3446         perf_output_copy(handle, values, n * sizeof(u64));
3447
3448         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3449                 n = 0;
3450
3451                 if (sub != event)
3452                         sub->pmu->read(sub);
3453
3454                 values[n++] = perf_event_count(sub);
3455                 if (read_format & PERF_FORMAT_ID)
3456                         values[n++] = primary_event_id(sub);
3457
3458                 perf_output_copy(handle, values, n * sizeof(u64));
3459         }
3460 }
3461
3462 static void perf_output_read(struct perf_output_handle *handle,
3463                              struct perf_event *event)
3464 {
3465         if (event->attr.read_format & PERF_FORMAT_GROUP)
3466                 perf_output_read_group(handle, event);
3467         else
3468                 perf_output_read_one(handle, event);
3469 }
3470
3471 void perf_output_sample(struct perf_output_handle *handle,
3472                         struct perf_event_header *header,
3473                         struct perf_sample_data *data,
3474                         struct perf_event *event)
3475 {
3476         u64 sample_type = data->type;
3477
3478         perf_output_put(handle, *header);
3479
3480         if (sample_type & PERF_SAMPLE_IP)
3481                 perf_output_put(handle, data->ip);
3482
3483         if (sample_type & PERF_SAMPLE_TID)
3484                 perf_output_put(handle, data->tid_entry);
3485
3486         if (sample_type & PERF_SAMPLE_TIME)
3487                 perf_output_put(handle, data->time);
3488
3489         if (sample_type & PERF_SAMPLE_ADDR)
3490                 perf_output_put(handle, data->addr);
3491
3492         if (sample_type & PERF_SAMPLE_ID)
3493                 perf_output_put(handle, data->id);
3494
3495         if (sample_type & PERF_SAMPLE_STREAM_ID)
3496                 perf_output_put(handle, data->stream_id);
3497
3498         if (sample_type & PERF_SAMPLE_CPU)
3499                 perf_output_put(handle, data->cpu_entry);
3500
3501         if (sample_type & PERF_SAMPLE_PERIOD)
3502                 perf_output_put(handle, data->period);
3503
3504         if (sample_type & PERF_SAMPLE_READ)
3505                 perf_output_read(handle, event);
3506
3507         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3508                 if (data->callchain) {
3509                         int size = 1;
3510
3511                         if (data->callchain)
3512                                 size += data->callchain->nr;
3513
3514                         size *= sizeof(u64);
3515
3516                         perf_output_copy(handle, data->callchain, size);
3517                 } else {
3518                         u64 nr = 0;
3519                         perf_output_put(handle, nr);
3520                 }
3521         }
3522
3523         if (sample_type & PERF_SAMPLE_RAW) {
3524                 if (data->raw) {
3525                         perf_output_put(handle, data->raw->size);
3526                         perf_output_copy(handle, data->raw->data,
3527                                          data->raw->size);
3528                 } else {
3529                         struct {
3530                                 u32     size;
3531                                 u32     data;
3532                         } raw = {
3533                                 .size = sizeof(u32),
3534                                 .data = 0,
3535                         };
3536                         perf_output_put(handle, raw);
3537                 }
3538         }
3539 }
3540
3541 void perf_prepare_sample(struct perf_event_header *header,
3542                          struct perf_sample_data *data,
3543                          struct perf_event *event,
3544                          struct pt_regs *regs)
3545 {
3546         u64 sample_type = event->attr.sample_type;
3547
3548         data->type = sample_type;
3549
3550         header->type = PERF_RECORD_SAMPLE;
3551         header->size = sizeof(*header);
3552
3553         header->misc = 0;
3554         header->misc |= perf_misc_flags(regs);
3555
3556         if (sample_type & PERF_SAMPLE_IP) {
3557                 data->ip = perf_instruction_pointer(regs);
3558
3559                 header->size += sizeof(data->ip);
3560         }
3561
3562         if (sample_type & PERF_SAMPLE_TID) {
3563                 /* namespace issues */
3564                 data->tid_entry.pid = perf_event_pid(event, current);
3565                 data->tid_entry.tid = perf_event_tid(event, current);
3566
3567                 header->size += sizeof(data->tid_entry);
3568         }
3569
3570         if (sample_type & PERF_SAMPLE_TIME) {
3571                 data->time = perf_clock();
3572
3573                 header->size += sizeof(data->time);
3574         }
3575
3576         if (sample_type & PERF_SAMPLE_ADDR)
3577                 header->size += sizeof(data->addr);
3578
3579         if (sample_type & PERF_SAMPLE_ID) {
3580                 data->id = primary_event_id(event);
3581
3582                 header->size += sizeof(data->id);
3583         }
3584
3585         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3586                 data->stream_id = event->id;
3587
3588                 header->size += sizeof(data->stream_id);
3589         }
3590
3591         if (sample_type & PERF_SAMPLE_CPU) {
3592                 data->cpu_entry.cpu             = raw_smp_processor_id();
3593                 data->cpu_entry.reserved        = 0;
3594
3595                 header->size += sizeof(data->cpu_entry);
3596         }
3597
3598         if (sample_type & PERF_SAMPLE_PERIOD)
3599                 header->size += sizeof(data->period);
3600
3601         if (sample_type & PERF_SAMPLE_READ)
3602                 header->size += perf_event_read_size(event);
3603
3604         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3605                 int size = 1;
3606
3607                 data->callchain = perf_callchain(regs);
3608
3609                 if (data->callchain)
3610                         size += data->callchain->nr;
3611
3612                 header->size += size * sizeof(u64);
3613         }
3614
3615         if (sample_type & PERF_SAMPLE_RAW) {
3616                 int size = sizeof(u32);
3617
3618                 if (data->raw)
3619                         size += data->raw->size;
3620                 else
3621                         size += sizeof(u32);
3622
3623                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3624                 header->size += size;
3625         }
3626 }
3627
3628 static void perf_event_output(struct perf_event *event, int nmi,
3629                                 struct perf_sample_data *data,
3630                                 struct pt_regs *regs)
3631 {
3632         struct perf_output_handle handle;
3633         struct perf_event_header header;
3634
3635         /* protect the callchain buffers */
3636         rcu_read_lock();
3637
3638         perf_prepare_sample(&header, data, event, regs);
3639
3640         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3641                 goto exit;
3642
3643         perf_output_sample(&handle, &header, data, event);
3644
3645         perf_output_end(&handle);
3646
3647 exit:
3648         rcu_read_unlock();
3649 }
3650
3651 /*
3652  * read event_id
3653  */
3654
3655 struct perf_read_event {
3656         struct perf_event_header        header;
3657
3658         u32                             pid;
3659         u32                             tid;
3660 };
3661
3662 static void
3663 perf_event_read_event(struct perf_event *event,
3664                         struct task_struct *task)
3665 {
3666         struct perf_output_handle handle;
3667         struct perf_read_event read_event = {
3668                 .header = {
3669                         .type = PERF_RECORD_READ,
3670                         .misc = 0,
3671                         .size = sizeof(read_event) + perf_event_read_size(event),
3672                 },
3673                 .pid = perf_event_pid(event, task),
3674                 .tid = perf_event_tid(event, task),
3675         };
3676         int ret;
3677
3678         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3679         if (ret)
3680                 return;
3681
3682         perf_output_put(&handle, read_event);
3683         perf_output_read(&handle, event);
3684
3685         perf_output_end(&handle);
3686 }
3687
3688 /*
3689  * task tracking -- fork/exit
3690  *
3691  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3692  */
3693
3694 struct perf_task_event {
3695         struct task_struct              *task;
3696         struct perf_event_context       *task_ctx;
3697
3698         struct {
3699                 struct perf_event_header        header;
3700
3701                 u32                             pid;
3702                 u32                             ppid;
3703                 u32                             tid;
3704                 u32                             ptid;
3705                 u64                             time;
3706         } event_id;
3707 };
3708
3709 static void perf_event_task_output(struct perf_event *event,
3710                                      struct perf_task_event *task_event)
3711 {
3712         struct perf_output_handle handle;
3713         struct task_struct *task = task_event->task;
3714         int size, ret;
3715
3716         size  = task_event->event_id.header.size;
3717         ret = perf_output_begin(&handle, event, size, 0, 0);
3718
3719         if (ret)
3720                 return;
3721
3722         task_event->event_id.pid = perf_event_pid(event, task);
3723         task_event->event_id.ppid = perf_event_pid(event, current);
3724
3725         task_event->event_id.tid = perf_event_tid(event, task);
3726         task_event->event_id.ptid = perf_event_tid(event, current);
3727
3728         perf_output_put(&handle, task_event->event_id);
3729
3730         perf_output_end(&handle);
3731 }
3732
3733 static int perf_event_task_match(struct perf_event *event)
3734 {
3735         if (event->state < PERF_EVENT_STATE_INACTIVE)
3736                 return 0;
3737
3738         if (event->cpu != -1 && event->cpu != smp_processor_id())
3739                 return 0;
3740
3741         if (event->attr.comm || event->attr.mmap ||
3742             event->attr.mmap_data || event->attr.task)
3743                 return 1;
3744
3745         return 0;
3746 }
3747
3748 static void perf_event_task_ctx(struct perf_event_context *ctx,
3749                                   struct perf_task_event *task_event)
3750 {
3751         struct perf_event *event;
3752
3753         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3754                 if (perf_event_task_match(event))
3755                         perf_event_task_output(event, task_event);
3756         }
3757 }
3758
3759 static void perf_event_task_event(struct perf_task_event *task_event)
3760 {
3761         struct perf_cpu_context *cpuctx;
3762         struct perf_event_context *ctx;
3763         struct pmu *pmu;
3764         int ctxn;
3765
3766         rcu_read_lock();
3767         list_for_each_entry_rcu(pmu, &pmus, entry) {
3768                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3769                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3770
3771                 ctx = task_event->task_ctx;
3772                 if (!ctx) {
3773                         ctxn = pmu->task_ctx_nr;
3774                         if (ctxn < 0)
3775                                 goto next;
3776                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3777                 }
3778                 if (ctx)
3779                         perf_event_task_ctx(ctx, task_event);
3780 next:
3781                 put_cpu_ptr(pmu->pmu_cpu_context);
3782         }
3783         rcu_read_unlock();
3784 }
3785
3786 static void perf_event_task(struct task_struct *task,
3787                               struct perf_event_context *task_ctx,
3788                               int new)
3789 {
3790         struct perf_task_event task_event;
3791
3792         if (!atomic_read(&nr_comm_events) &&
3793             !atomic_read(&nr_mmap_events) &&
3794             !atomic_read(&nr_task_events))
3795                 return;
3796
3797         task_event = (struct perf_task_event){
3798                 .task     = task,
3799                 .task_ctx = task_ctx,
3800                 .event_id    = {
3801                         .header = {
3802                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3803                                 .misc = 0,
3804                                 .size = sizeof(task_event.event_id),
3805                         },
3806                         /* .pid  */
3807                         /* .ppid */
3808                         /* .tid  */
3809                         /* .ptid */
3810                         .time = perf_clock(),
3811                 },
3812         };
3813
3814         perf_event_task_event(&task_event);
3815 }
3816
3817 void perf_event_fork(struct task_struct *task)
3818 {
3819         perf_event_task(task, NULL, 1);
3820 }
3821
3822 /*
3823  * comm tracking
3824  */
3825
3826 struct perf_comm_event {
3827         struct task_struct      *task;
3828         char                    *comm;
3829         int                     comm_size;
3830
3831         struct {
3832                 struct perf_event_header        header;
3833
3834                 u32                             pid;
3835                 u32                             tid;
3836         } event_id;
3837 };
3838
3839 static void perf_event_comm_output(struct perf_event *event,
3840                                      struct perf_comm_event *comm_event)
3841 {
3842         struct perf_output_handle handle;
3843         int size = comm_event->event_id.header.size;
3844         int ret = perf_output_begin(&handle, event, size, 0, 0);
3845
3846         if (ret)
3847                 return;
3848
3849         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3850         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3851
3852         perf_output_put(&handle, comm_event->event_id);
3853         perf_output_copy(&handle, comm_event->comm,
3854                                    comm_event->comm_size);
3855         perf_output_end(&handle);
3856 }
3857
3858 static int perf_event_comm_match(struct perf_event *event)
3859 {
3860         if (event->state < PERF_EVENT_STATE_INACTIVE)
3861                 return 0;
3862
3863         if (event->cpu != -1 && event->cpu != smp_processor_id())
3864                 return 0;
3865
3866         if (event->attr.comm)
3867                 return 1;
3868
3869         return 0;
3870 }
3871
3872 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3873                                   struct perf_comm_event *comm_event)
3874 {
3875         struct perf_event *event;
3876
3877         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3878                 if (perf_event_comm_match(event))
3879                         perf_event_comm_output(event, comm_event);
3880         }
3881 }
3882
3883 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3884 {
3885         struct perf_cpu_context *cpuctx;
3886         struct perf_event_context *ctx;
3887         char comm[TASK_COMM_LEN];
3888         unsigned int size;
3889         struct pmu *pmu;
3890         int ctxn;
3891
3892         memset(comm, 0, sizeof(comm));
3893         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3894         size = ALIGN(strlen(comm)+1, sizeof(u64));
3895
3896         comm_event->comm = comm;
3897         comm_event->comm_size = size;
3898
3899         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3900
3901         rcu_read_lock();
3902         list_for_each_entry_rcu(pmu, &pmus, entry) {
3903                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3904                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3905
3906                 ctxn = pmu->task_ctx_nr;
3907                 if (ctxn < 0)
3908                         goto next;
3909
3910                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3911                 if (ctx)
3912                         perf_event_comm_ctx(ctx, comm_event);
3913 next:
3914                 put_cpu_ptr(pmu->pmu_cpu_context);
3915         }
3916         rcu_read_unlock();
3917 }
3918
3919 void perf_event_comm(struct task_struct *task)
3920 {
3921         struct perf_comm_event comm_event;
3922         struct perf_event_context *ctx;
3923         int ctxn;
3924
3925         for_each_task_context_nr(ctxn) {
3926                 ctx = task->perf_event_ctxp[ctxn];
3927                 if (!ctx)
3928                         continue;
3929
3930                 perf_event_enable_on_exec(ctx);
3931         }
3932
3933         if (!atomic_read(&nr_comm_events))
3934                 return;
3935
3936         comm_event = (struct perf_comm_event){
3937                 .task   = task,
3938                 /* .comm      */
3939                 /* .comm_size */
3940                 .event_id  = {
3941                         .header = {
3942                                 .type = PERF_RECORD_COMM,
3943                                 .misc = 0,
3944                                 /* .size */
3945                         },
3946                         /* .pid */
3947                         /* .tid */
3948                 },
3949         };
3950
3951         perf_event_comm_event(&comm_event);
3952 }
3953
3954 /*
3955  * mmap tracking
3956  */
3957
3958 struct perf_mmap_event {
3959         struct vm_area_struct   *vma;
3960
3961         const char              *file_name;
3962         int                     file_size;
3963
3964         struct {
3965                 struct perf_event_header        header;
3966
3967                 u32                             pid;
3968                 u32                             tid;
3969                 u64                             start;
3970                 u64                             len;
3971                 u64                             pgoff;
3972         } event_id;
3973 };
3974
3975 static void perf_event_mmap_output(struct perf_event *event,
3976                                      struct perf_mmap_event *mmap_event)
3977 {
3978         struct perf_output_handle handle;
3979         int size = mmap_event->event_id.header.size;
3980         int ret = perf_output_begin(&handle, event, size, 0, 0);
3981
3982         if (ret)
3983                 return;
3984
3985         mmap_event->event_id.pid = perf_event_pid(event, current);
3986         mmap_event->event_id.tid = perf_event_tid(event, current);
3987
3988         perf_output_put(&handle, mmap_event->event_id);
3989         perf_output_copy(&handle, mmap_event->file_name,
3990                                    mmap_event->file_size);
3991         perf_output_end(&handle);
3992 }
3993
3994 static int perf_event_mmap_match(struct perf_event *event,
3995                                    struct perf_mmap_event *mmap_event,
3996                                    int executable)
3997 {
3998         if (event->state < PERF_EVENT_STATE_INACTIVE)
3999                 return 0;
4000
4001         if (event->cpu != -1 && event->cpu != smp_processor_id())
4002                 return 0;
4003
4004         if ((!executable && event->attr.mmap_data) ||
4005             (executable && event->attr.mmap))
4006                 return 1;
4007
4008         return 0;
4009 }
4010
4011 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4012                                   struct perf_mmap_event *mmap_event,
4013                                   int executable)
4014 {
4015         struct perf_event *event;
4016
4017         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4018                 if (perf_event_mmap_match(event, mmap_event, executable))
4019                         perf_event_mmap_output(event, mmap_event);
4020         }
4021 }
4022
4023 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4024 {
4025         struct perf_cpu_context *cpuctx;
4026         struct perf_event_context *ctx;
4027         struct vm_area_struct *vma = mmap_event->vma;
4028         struct file *file = vma->vm_file;
4029         unsigned int size;
4030         char tmp[16];
4031         char *buf = NULL;
4032         const char *name;
4033         struct pmu *pmu;
4034         int ctxn;
4035
4036         memset(tmp, 0, sizeof(tmp));
4037
4038         if (file) {
4039                 /*
4040                  * d_path works from the end of the buffer backwards, so we
4041                  * need to add enough zero bytes after the string to handle
4042                  * the 64bit alignment we do later.
4043                  */
4044                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4045                 if (!buf) {
4046                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4047                         goto got_name;
4048                 }
4049                 name = d_path(&file->f_path, buf, PATH_MAX);
4050                 if (IS_ERR(name)) {
4051                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4052                         goto got_name;
4053                 }
4054         } else {
4055                 if (arch_vma_name(mmap_event->vma)) {
4056                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4057                                        sizeof(tmp));
4058                         goto got_name;
4059                 }
4060
4061                 if (!vma->vm_mm) {
4062                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4063                         goto got_name;
4064                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4065                                 vma->vm_end >= vma->vm_mm->brk) {
4066                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4067                         goto got_name;
4068                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4069                                 vma->vm_end >= vma->vm_mm->start_stack) {
4070                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4071                         goto got_name;
4072                 }
4073
4074                 name = strncpy(tmp, "//anon", sizeof(tmp));
4075                 goto got_name;
4076         }
4077
4078 got_name:
4079         size = ALIGN(strlen(name)+1, sizeof(u64));
4080
4081         mmap_event->file_name = name;
4082         mmap_event->file_size = size;
4083
4084         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4085
4086         rcu_read_lock();
4087         list_for_each_entry_rcu(pmu, &pmus, entry) {
4088                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4089                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4090                                         vma->vm_flags & VM_EXEC);
4091
4092                 ctxn = pmu->task_ctx_nr;
4093                 if (ctxn < 0)
4094                         goto next;
4095
4096                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4097                 if (ctx) {
4098                         perf_event_mmap_ctx(ctx, mmap_event,
4099                                         vma->vm_flags & VM_EXEC);
4100                 }
4101 next:
4102                 put_cpu_ptr(pmu->pmu_cpu_context);
4103         }
4104         rcu_read_unlock();
4105
4106         kfree(buf);
4107 }
4108
4109 void perf_event_mmap(struct vm_area_struct *vma)
4110 {
4111         struct perf_mmap_event mmap_event;
4112
4113         if (!atomic_read(&nr_mmap_events))
4114                 return;
4115
4116         mmap_event = (struct perf_mmap_event){
4117                 .vma    = vma,
4118                 /* .file_name */
4119                 /* .file_size */
4120                 .event_id  = {
4121                         .header = {
4122                                 .type = PERF_RECORD_MMAP,
4123                                 .misc = PERF_RECORD_MISC_USER,
4124                                 /* .size */
4125                         },
4126                         /* .pid */
4127                         /* .tid */
4128                         .start  = vma->vm_start,
4129                         .len    = vma->vm_end - vma->vm_start,
4130                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4131                 },
4132         };
4133
4134         perf_event_mmap_event(&mmap_event);
4135 }
4136
4137 /*
4138  * IRQ throttle logging
4139  */
4140
4141 static void perf_log_throttle(struct perf_event *event, int enable)
4142 {
4143         struct perf_output_handle handle;
4144         int ret;
4145
4146         struct {
4147                 struct perf_event_header        header;
4148                 u64                             time;
4149                 u64                             id;
4150                 u64                             stream_id;
4151         } throttle_event = {
4152                 .header = {
4153                         .type = PERF_RECORD_THROTTLE,
4154                         .misc = 0,
4155                         .size = sizeof(throttle_event),
4156                 },
4157                 .time           = perf_clock(),
4158                 .id             = primary_event_id(event),
4159                 .stream_id      = event->id,
4160         };
4161
4162         if (enable)
4163                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4164
4165         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4166         if (ret)
4167                 return;
4168
4169         perf_output_put(&handle, throttle_event);
4170         perf_output_end(&handle);
4171 }
4172
4173 /*
4174  * Generic event overflow handling, sampling.
4175  */
4176
4177 static int __perf_event_overflow(struct perf_event *event, int nmi,
4178                                    int throttle, struct perf_sample_data *data,
4179                                    struct pt_regs *regs)
4180 {
4181         int events = atomic_read(&event->event_limit);
4182         struct hw_perf_event *hwc = &event->hw;
4183         int ret = 0;
4184
4185         if (!throttle) {
4186                 hwc->interrupts++;
4187         } else {
4188                 if (hwc->interrupts != MAX_INTERRUPTS) {
4189                         hwc->interrupts++;
4190                         if (HZ * hwc->interrupts >
4191                                         (u64)sysctl_perf_event_sample_rate) {
4192                                 hwc->interrupts = MAX_INTERRUPTS;
4193                                 perf_log_throttle(event, 0);
4194                                 ret = 1;
4195                         }
4196                 } else {
4197                         /*
4198                          * Keep re-disabling events even though on the previous
4199                          * pass we disabled it - just in case we raced with a
4200                          * sched-in and the event got enabled again:
4201                          */
4202                         ret = 1;
4203                 }
4204         }
4205
4206         if (event->attr.freq) {
4207                 u64 now = perf_clock();
4208                 s64 delta = now - hwc->freq_time_stamp;
4209
4210                 hwc->freq_time_stamp = now;
4211
4212                 if (delta > 0 && delta < 2*TICK_NSEC)
4213                         perf_adjust_period(event, delta, hwc->last_period);
4214         }
4215
4216         /*
4217          * XXX event_limit might not quite work as expected on inherited
4218          * events
4219          */
4220
4221         event->pending_kill = POLL_IN;
4222         if (events && atomic_dec_and_test(&event->event_limit)) {
4223                 ret = 1;
4224                 event->pending_kill = POLL_HUP;
4225                 if (nmi) {
4226                         event->pending_disable = 1;
4227                         irq_work_queue(&event->pending);
4228                 } else
4229                         perf_event_disable(event);
4230         }
4231
4232         if (event->overflow_handler)
4233                 event->overflow_handler(event, nmi, data, regs);
4234         else
4235                 perf_event_output(event, nmi, data, regs);
4236
4237         return ret;
4238 }
4239
4240 int perf_event_overflow(struct perf_event *event, int nmi,
4241                           struct perf_sample_data *data,
4242                           struct pt_regs *regs)
4243 {
4244         return __perf_event_overflow(event, nmi, 1, data, regs);
4245 }
4246
4247 /*
4248  * Generic software event infrastructure
4249  */
4250
4251 struct swevent_htable {
4252         struct swevent_hlist            *swevent_hlist;
4253         struct mutex                    hlist_mutex;
4254         int                             hlist_refcount;
4255
4256         /* Recursion avoidance in each contexts */
4257         int                             recursion[PERF_NR_CONTEXTS];
4258 };
4259
4260 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4261
4262 /*
4263  * We directly increment event->count and keep a second value in
4264  * event->hw.period_left to count intervals. This period event
4265  * is kept in the range [-sample_period, 0] so that we can use the
4266  * sign as trigger.
4267  */
4268
4269 static u64 perf_swevent_set_period(struct perf_event *event)
4270 {
4271         struct hw_perf_event *hwc = &event->hw;
4272         u64 period = hwc->last_period;
4273         u64 nr, offset;
4274         s64 old, val;
4275
4276         hwc->last_period = hwc->sample_period;
4277
4278 again:
4279         old = val = local64_read(&hwc->period_left);
4280         if (val < 0)
4281                 return 0;
4282
4283         nr = div64_u64(period + val, period);
4284         offset = nr * period;
4285         val -= offset;
4286         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4287                 goto again;
4288
4289         return nr;
4290 }
4291
4292 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4293                                     int nmi, struct perf_sample_data *data,
4294                                     struct pt_regs *regs)
4295 {
4296         struct hw_perf_event *hwc = &event->hw;
4297         int throttle = 0;
4298
4299         data->period = event->hw.last_period;
4300         if (!overflow)
4301                 overflow = perf_swevent_set_period(event);
4302
4303         if (hwc->interrupts == MAX_INTERRUPTS)
4304                 return;
4305
4306         for (; overflow; overflow--) {
4307                 if (__perf_event_overflow(event, nmi, throttle,
4308                                             data, regs)) {
4309                         /*
4310                          * We inhibit the overflow from happening when
4311                          * hwc->interrupts == MAX_INTERRUPTS.
4312                          */
4313                         break;
4314                 }
4315                 throttle = 1;
4316         }
4317 }
4318
4319 static void perf_swevent_event(struct perf_event *event, u64 nr,
4320                                int nmi, struct perf_sample_data *data,
4321                                struct pt_regs *regs)
4322 {
4323         struct hw_perf_event *hwc = &event->hw;
4324
4325         local64_add(nr, &event->count);
4326
4327         if (!regs)
4328                 return;
4329
4330         if (!hwc->sample_period)
4331                 return;
4332
4333         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4334                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4335
4336         if (local64_add_negative(nr, &hwc->period_left))
4337                 return;
4338
4339         perf_swevent_overflow(event, 0, nmi, data, regs);
4340 }
4341
4342 static int perf_exclude_event(struct perf_event *event,
4343                               struct pt_regs *regs)
4344 {
4345         if (event->hw.state & PERF_HES_STOPPED)
4346                 return 0;
4347
4348         if (regs) {
4349                 if (event->attr.exclude_user && user_mode(regs))
4350                         return 1;
4351
4352                 if (event->attr.exclude_kernel && !user_mode(regs))
4353                         return 1;
4354         }
4355
4356         return 0;
4357 }
4358
4359 static int perf_swevent_match(struct perf_event *event,
4360                                 enum perf_type_id type,
4361                                 u32 event_id,
4362                                 struct perf_sample_data *data,
4363                                 struct pt_regs *regs)
4364 {
4365         if (event->attr.type != type)
4366                 return 0;
4367
4368         if (event->attr.config != event_id)
4369                 return 0;
4370
4371         if (perf_exclude_event(event, regs))
4372                 return 0;
4373
4374         return 1;
4375 }
4376
4377 static inline u64 swevent_hash(u64 type, u32 event_id)
4378 {
4379         u64 val = event_id | (type << 32);
4380
4381         return hash_64(val, SWEVENT_HLIST_BITS);
4382 }
4383
4384 static inline struct hlist_head *
4385 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4386 {
4387         u64 hash = swevent_hash(type, event_id);
4388
4389         return &hlist->heads[hash];
4390 }
4391
4392 /* For the read side: events when they trigger */
4393 static inline struct hlist_head *
4394 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4395 {
4396         struct swevent_hlist *hlist;
4397
4398         hlist = rcu_dereference(swhash->swevent_hlist);
4399         if (!hlist)
4400                 return NULL;
4401
4402         return __find_swevent_head(hlist, type, event_id);
4403 }
4404
4405 /* For the event head insertion and removal in the hlist */
4406 static inline struct hlist_head *
4407 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4408 {
4409         struct swevent_hlist *hlist;
4410         u32 event_id = event->attr.config;
4411         u64 type = event->attr.type;
4412
4413         /*
4414          * Event scheduling is always serialized against hlist allocation
4415          * and release. Which makes the protected version suitable here.
4416          * The context lock guarantees that.
4417          */
4418         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4419                                           lockdep_is_held(&event->ctx->lock));
4420         if (!hlist)
4421                 return NULL;
4422
4423         return __find_swevent_head(hlist, type, event_id);
4424 }
4425
4426 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4427                                     u64 nr, int nmi,
4428                                     struct perf_sample_data *data,
4429                                     struct pt_regs *regs)
4430 {
4431         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4432         struct perf_event *event;
4433         struct hlist_node *node;
4434         struct hlist_head *head;
4435
4436         rcu_read_lock();
4437         head = find_swevent_head_rcu(swhash, type, event_id);
4438         if (!head)
4439                 goto end;
4440
4441         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4442                 if (perf_swevent_match(event, type, event_id, data, regs))
4443                         perf_swevent_event(event, nr, nmi, data, regs);
4444         }
4445 end:
4446         rcu_read_unlock();
4447 }
4448
4449 int perf_swevent_get_recursion_context(void)
4450 {
4451         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4452
4453         return get_recursion_context(swhash->recursion);
4454 }
4455 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4456
4457 void inline perf_swevent_put_recursion_context(int rctx)
4458 {
4459         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4460
4461         put_recursion_context(swhash->recursion, rctx);
4462 }
4463
4464 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4465                             struct pt_regs *regs, u64 addr)
4466 {
4467         struct perf_sample_data data;
4468         int rctx;
4469
4470         preempt_disable_notrace();
4471         rctx = perf_swevent_get_recursion_context();
4472         if (rctx < 0)
4473                 return;
4474
4475         perf_sample_data_init(&data, addr);
4476
4477         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4478
4479         perf_swevent_put_recursion_context(rctx);
4480         preempt_enable_notrace();
4481 }
4482
4483 static void perf_swevent_read(struct perf_event *event)
4484 {
4485 }
4486
4487 static int perf_swevent_add(struct perf_event *event, int flags)
4488 {
4489         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4490         struct hw_perf_event *hwc = &event->hw;
4491         struct hlist_head *head;
4492
4493         if (hwc->sample_period) {
4494                 hwc->last_period = hwc->sample_period;
4495                 perf_swevent_set_period(event);
4496         }
4497
4498         hwc->state = !(flags & PERF_EF_START);
4499
4500         head = find_swevent_head(swhash, event);
4501         if (WARN_ON_ONCE(!head))
4502                 return -EINVAL;
4503
4504         hlist_add_head_rcu(&event->hlist_entry, head);
4505
4506         return 0;
4507 }
4508
4509 static void perf_swevent_del(struct perf_event *event, int flags)
4510 {
4511         hlist_del_rcu(&event->hlist_entry);
4512 }
4513
4514 static void perf_swevent_start(struct perf_event *event, int flags)
4515 {
4516         event->hw.state = 0;
4517 }
4518
4519 static void perf_swevent_stop(struct perf_event *event, int flags)
4520 {
4521         event->hw.state = PERF_HES_STOPPED;
4522 }
4523
4524 /* Deref the hlist from the update side */
4525 static inline struct swevent_hlist *
4526 swevent_hlist_deref(struct swevent_htable *swhash)
4527 {
4528         return rcu_dereference_protected(swhash->swevent_hlist,
4529                                          lockdep_is_held(&swhash->hlist_mutex));
4530 }
4531
4532 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4533 {
4534         struct swevent_hlist *hlist;
4535
4536         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4537         kfree(hlist);
4538 }
4539
4540 static void swevent_hlist_release(struct swevent_htable *swhash)
4541 {
4542         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4543
4544         if (!hlist)
4545                 return;
4546
4547         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4548         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4549 }
4550
4551 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4552 {
4553         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4554
4555         mutex_lock(&swhash->hlist_mutex);
4556
4557         if (!--swhash->hlist_refcount)
4558                 swevent_hlist_release(swhash);
4559
4560         mutex_unlock(&swhash->hlist_mutex);
4561 }
4562
4563 static void swevent_hlist_put(struct perf_event *event)
4564 {
4565         int cpu;
4566
4567         if (event->cpu != -1) {
4568                 swevent_hlist_put_cpu(event, event->cpu);
4569                 return;
4570         }
4571
4572         for_each_possible_cpu(cpu)
4573                 swevent_hlist_put_cpu(event, cpu);
4574 }
4575
4576 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4577 {
4578         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4579         int err = 0;
4580
4581         mutex_lock(&swhash->hlist_mutex);
4582
4583         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4584                 struct swevent_hlist *hlist;
4585
4586                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4587                 if (!hlist) {
4588                         err = -ENOMEM;
4589                         goto exit;
4590                 }
4591                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4592         }
4593         swhash->hlist_refcount++;
4594 exit:
4595         mutex_unlock(&swhash->hlist_mutex);
4596
4597         return err;
4598 }
4599
4600 static int swevent_hlist_get(struct perf_event *event)
4601 {
4602         int err;
4603         int cpu, failed_cpu;
4604
4605         if (event->cpu != -1)
4606                 return swevent_hlist_get_cpu(event, event->cpu);
4607
4608         get_online_cpus();
4609         for_each_possible_cpu(cpu) {
4610                 err = swevent_hlist_get_cpu(event, cpu);
4611                 if (err) {
4612                         failed_cpu = cpu;
4613                         goto fail;
4614                 }
4615         }
4616         put_online_cpus();
4617
4618         return 0;
4619 fail:
4620         for_each_possible_cpu(cpu) {
4621                 if (cpu == failed_cpu)
4622                         break;
4623                 swevent_hlist_put_cpu(event, cpu);
4624         }
4625
4626         put_online_cpus();
4627         return err;
4628 }
4629
4630 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4631
4632 static void sw_perf_event_destroy(struct perf_event *event)
4633 {
4634         u64 event_id = event->attr.config;
4635
4636         WARN_ON(event->parent);
4637
4638         jump_label_dec(&perf_swevent_enabled[event_id]);
4639         swevent_hlist_put(event);
4640 }
4641
4642 static int perf_swevent_init(struct perf_event *event)
4643 {
4644         int event_id = event->attr.config;
4645
4646         if (event->attr.type != PERF_TYPE_SOFTWARE)
4647                 return -ENOENT;
4648
4649         switch (event_id) {
4650         case PERF_COUNT_SW_CPU_CLOCK:
4651         case PERF_COUNT_SW_TASK_CLOCK:
4652                 return -ENOENT;
4653
4654         default:
4655                 break;
4656         }
4657
4658         if (event_id > PERF_COUNT_SW_MAX)
4659                 return -ENOENT;
4660
4661         if (!event->parent) {
4662                 int err;
4663
4664                 err = swevent_hlist_get(event);
4665                 if (err)
4666                         return err;
4667
4668                 jump_label_inc(&perf_swevent_enabled[event_id]);
4669                 event->destroy = sw_perf_event_destroy;
4670         }
4671
4672         return 0;
4673 }
4674
4675 static struct pmu perf_swevent = {
4676         .task_ctx_nr    = perf_sw_context,
4677
4678         .event_init     = perf_swevent_init,
4679         .add            = perf_swevent_add,
4680         .del            = perf_swevent_del,
4681         .start          = perf_swevent_start,
4682         .stop           = perf_swevent_stop,
4683         .read           = perf_swevent_read,
4684 };
4685
4686 #ifdef CONFIG_EVENT_TRACING
4687
4688 static int perf_tp_filter_match(struct perf_event *event,
4689                                 struct perf_sample_data *data)
4690 {
4691         void *record = data->raw->data;
4692
4693         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4694                 return 1;
4695         return 0;
4696 }
4697
4698 static int perf_tp_event_match(struct perf_event *event,
4699                                 struct perf_sample_data *data,
4700                                 struct pt_regs *regs)
4701 {
4702         /*
4703          * All tracepoints are from kernel-space.
4704          */
4705         if (event->attr.exclude_kernel)
4706                 return 0;
4707
4708         if (!perf_tp_filter_match(event, data))
4709                 return 0;
4710
4711         return 1;
4712 }
4713
4714 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4715                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4716 {
4717         struct perf_sample_data data;
4718         struct perf_event *event;
4719         struct hlist_node *node;
4720
4721         struct perf_raw_record raw = {
4722                 .size = entry_size,
4723                 .data = record,
4724         };
4725
4726         perf_sample_data_init(&data, addr);
4727         data.raw = &raw;
4728
4729         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4730                 if (perf_tp_event_match(event, &data, regs))
4731                         perf_swevent_event(event, count, 1, &data, regs);
4732         }
4733
4734         perf_swevent_put_recursion_context(rctx);
4735 }
4736 EXPORT_SYMBOL_GPL(perf_tp_event);
4737
4738 static void tp_perf_event_destroy(struct perf_event *event)
4739 {
4740         perf_trace_destroy(event);
4741 }
4742
4743 static int perf_tp_event_init(struct perf_event *event)
4744 {
4745         int err;
4746
4747         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4748                 return -ENOENT;
4749
4750         /*
4751          * Raw tracepoint data is a severe data leak, only allow root to
4752          * have these.
4753          */
4754         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4755                         perf_paranoid_tracepoint_raw() &&
4756                         !capable(CAP_SYS_ADMIN))
4757                 return -EPERM;
4758
4759         err = perf_trace_init(event);
4760         if (err)
4761                 return err;
4762
4763         event->destroy = tp_perf_event_destroy;
4764
4765         return 0;
4766 }
4767
4768 static struct pmu perf_tracepoint = {
4769         .task_ctx_nr    = perf_sw_context,
4770
4771         .event_init     = perf_tp_event_init,
4772         .add            = perf_trace_add,
4773         .del            = perf_trace_del,
4774         .start          = perf_swevent_start,
4775         .stop           = perf_swevent_stop,
4776         .read           = perf_swevent_read,
4777 };
4778
4779 static inline void perf_tp_register(void)
4780 {
4781         perf_pmu_register(&perf_tracepoint);
4782 }
4783
4784 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4785 {
4786         char *filter_str;
4787         int ret;
4788
4789         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4790                 return -EINVAL;
4791
4792         filter_str = strndup_user(arg, PAGE_SIZE);
4793         if (IS_ERR(filter_str))
4794                 return PTR_ERR(filter_str);
4795
4796         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4797
4798         kfree(filter_str);
4799         return ret;
4800 }
4801
4802 static void perf_event_free_filter(struct perf_event *event)
4803 {
4804         ftrace_profile_free_filter(event);
4805 }
4806
4807 #else
4808
4809 static inline void perf_tp_register(void)
4810 {
4811 }
4812
4813 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4814 {
4815         return -ENOENT;
4816 }
4817
4818 static void perf_event_free_filter(struct perf_event *event)
4819 {
4820 }
4821
4822 #endif /* CONFIG_EVENT_TRACING */
4823
4824 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4825 void perf_bp_event(struct perf_event *bp, void *data)
4826 {
4827         struct perf_sample_data sample;
4828         struct pt_regs *regs = data;
4829
4830         perf_sample_data_init(&sample, bp->attr.bp_addr);
4831
4832         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4833                 perf_swevent_event(bp, 1, 1, &sample, regs);
4834 }
4835 #endif
4836
4837 /*
4838  * hrtimer based swevent callback
4839  */
4840
4841 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4842 {
4843         enum hrtimer_restart ret = HRTIMER_RESTART;
4844         struct perf_sample_data data;
4845         struct pt_regs *regs;
4846         struct perf_event *event;
4847         u64 period;
4848
4849         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4850         event->pmu->read(event);
4851
4852         perf_sample_data_init(&data, 0);
4853         data.period = event->hw.last_period;
4854         regs = get_irq_regs();
4855
4856         if (regs && !perf_exclude_event(event, regs)) {
4857                 if (!(event->attr.exclude_idle && current->pid == 0))
4858                         if (perf_event_overflow(event, 0, &data, regs))
4859                                 ret = HRTIMER_NORESTART;
4860         }
4861
4862         period = max_t(u64, 10000, event->hw.sample_period);
4863         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4864
4865         return ret;
4866 }
4867
4868 static void perf_swevent_start_hrtimer(struct perf_event *event)
4869 {
4870         struct hw_perf_event *hwc = &event->hw;
4871
4872         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4873         hwc->hrtimer.function = perf_swevent_hrtimer;
4874         if (hwc->sample_period) {
4875                 s64 period = local64_read(&hwc->period_left);
4876
4877                 if (period) {
4878                         if (period < 0)
4879                                 period = 10000;
4880
4881                         local64_set(&hwc->period_left, 0);
4882                 } else {
4883                         period = max_t(u64, 10000, hwc->sample_period);
4884                 }
4885                 __hrtimer_start_range_ns(&hwc->hrtimer,
4886                                 ns_to_ktime(period), 0,
4887                                 HRTIMER_MODE_REL_PINNED, 0);
4888         }
4889 }
4890
4891 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4892 {
4893         struct hw_perf_event *hwc = &event->hw;
4894
4895         if (hwc->sample_period) {
4896                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4897                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4898
4899                 hrtimer_cancel(&hwc->hrtimer);
4900         }
4901 }
4902
4903 /*
4904  * Software event: cpu wall time clock
4905  */
4906
4907 static void cpu_clock_event_update(struct perf_event *event)
4908 {
4909         s64 prev;
4910         u64 now;
4911
4912         now = local_clock();
4913         prev = local64_xchg(&event->hw.prev_count, now);
4914         local64_add(now - prev, &event->count);
4915 }
4916
4917 static void cpu_clock_event_start(struct perf_event *event, int flags)
4918 {
4919         local64_set(&event->hw.prev_count, local_clock());
4920         perf_swevent_start_hrtimer(event);
4921 }
4922
4923 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4924 {
4925         perf_swevent_cancel_hrtimer(event);
4926         cpu_clock_event_update(event);
4927 }
4928
4929 static int cpu_clock_event_add(struct perf_event *event, int flags)
4930 {
4931         if (flags & PERF_EF_START)
4932                 cpu_clock_event_start(event, flags);
4933
4934         return 0;
4935 }
4936
4937 static void cpu_clock_event_del(struct perf_event *event, int flags)
4938 {
4939         cpu_clock_event_stop(event, flags);
4940 }
4941
4942 static void cpu_clock_event_read(struct perf_event *event)
4943 {
4944         cpu_clock_event_update(event);
4945 }
4946
4947 static int cpu_clock_event_init(struct perf_event *event)
4948 {
4949         if (event->attr.type != PERF_TYPE_SOFTWARE)
4950                 return -ENOENT;
4951
4952         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4953                 return -ENOENT;
4954
4955         return 0;
4956 }
4957
4958 static struct pmu perf_cpu_clock = {
4959         .task_ctx_nr    = perf_sw_context,
4960
4961         .event_init     = cpu_clock_event_init,
4962         .add            = cpu_clock_event_add,
4963         .del            = cpu_clock_event_del,
4964         .start          = cpu_clock_event_start,
4965         .stop           = cpu_clock_event_stop,
4966         .read           = cpu_clock_event_read,
4967 };
4968
4969 /*
4970  * Software event: task time clock
4971  */
4972
4973 static void task_clock_event_update(struct perf_event *event, u64 now)
4974 {
4975         u64 prev;
4976         s64 delta;
4977
4978         prev = local64_xchg(&event->hw.prev_count, now);
4979         delta = now - prev;
4980         local64_add(delta, &event->count);
4981 }
4982
4983 static void task_clock_event_start(struct perf_event *event, int flags)
4984 {
4985         local64_set(&event->hw.prev_count, event->ctx->time);
4986         perf_swevent_start_hrtimer(event);
4987 }
4988
4989 static void task_clock_event_stop(struct perf_event *event, int flags)
4990 {
4991         perf_swevent_cancel_hrtimer(event);
4992         task_clock_event_update(event, event->ctx->time);
4993 }
4994
4995 static int task_clock_event_add(struct perf_event *event, int flags)
4996 {
4997         if (flags & PERF_EF_START)
4998                 task_clock_event_start(event, flags);
4999
5000         return 0;
5001 }
5002
5003 static void task_clock_event_del(struct perf_event *event, int flags)
5004 {
5005         task_clock_event_stop(event, PERF_EF_UPDATE);
5006 }
5007
5008 static void task_clock_event_read(struct perf_event *event)
5009 {
5010         u64 time;
5011
5012         if (!in_nmi()) {
5013                 update_context_time(event->ctx);
5014                 time = event->ctx->time;
5015         } else {
5016                 u64 now = perf_clock();
5017                 u64 delta = now - event->ctx->timestamp;
5018                 time = event->ctx->time + delta;
5019         }
5020
5021         task_clock_event_update(event, time);
5022 }
5023
5024 static int task_clock_event_init(struct perf_event *event)
5025 {
5026         if (event->attr.type != PERF_TYPE_SOFTWARE)
5027                 return -ENOENT;
5028
5029         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5030                 return -ENOENT;
5031
5032         return 0;
5033 }
5034
5035 static struct pmu perf_task_clock = {
5036         .task_ctx_nr    = perf_sw_context,
5037
5038         .event_init     = task_clock_event_init,
5039         .add            = task_clock_event_add,
5040         .del            = task_clock_event_del,
5041         .start          = task_clock_event_start,
5042         .stop           = task_clock_event_stop,
5043         .read           = task_clock_event_read,
5044 };
5045
5046 static void perf_pmu_nop_void(struct pmu *pmu)
5047 {
5048 }
5049
5050 static int perf_pmu_nop_int(struct pmu *pmu)
5051 {
5052         return 0;
5053 }
5054
5055 static void perf_pmu_start_txn(struct pmu *pmu)
5056 {
5057         perf_pmu_disable(pmu);
5058 }
5059
5060 static int perf_pmu_commit_txn(struct pmu *pmu)
5061 {
5062         perf_pmu_enable(pmu);
5063         return 0;
5064 }
5065
5066 static void perf_pmu_cancel_txn(struct pmu *pmu)
5067 {
5068         perf_pmu_enable(pmu);
5069 }
5070
5071 /*
5072  * Ensures all contexts with the same task_ctx_nr have the same
5073  * pmu_cpu_context too.
5074  */
5075 static void *find_pmu_context(int ctxn)
5076 {
5077         struct pmu *pmu;
5078
5079         if (ctxn < 0)
5080                 return NULL;
5081
5082         list_for_each_entry(pmu, &pmus, entry) {
5083                 if (pmu->task_ctx_nr == ctxn)
5084                         return pmu->pmu_cpu_context;
5085         }
5086
5087         return NULL;
5088 }
5089
5090 static void free_pmu_context(void * __percpu cpu_context)
5091 {
5092         struct pmu *pmu;
5093
5094         mutex_lock(&pmus_lock);
5095         /*
5096          * Like a real lame refcount.
5097          */
5098         list_for_each_entry(pmu, &pmus, entry) {
5099                 if (pmu->pmu_cpu_context == cpu_context)
5100                         goto out;
5101         }
5102
5103         free_percpu(cpu_context);
5104 out:
5105         mutex_unlock(&pmus_lock);
5106 }
5107
5108 int perf_pmu_register(struct pmu *pmu)
5109 {
5110         int cpu, ret;
5111
5112         mutex_lock(&pmus_lock);
5113         ret = -ENOMEM;
5114         pmu->pmu_disable_count = alloc_percpu(int);
5115         if (!pmu->pmu_disable_count)
5116                 goto unlock;
5117
5118         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5119         if (pmu->pmu_cpu_context)
5120                 goto got_cpu_context;
5121
5122         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5123         if (!pmu->pmu_cpu_context)
5124                 goto free_pdc;
5125
5126         for_each_possible_cpu(cpu) {
5127                 struct perf_cpu_context *cpuctx;
5128
5129                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5130                 __perf_event_init_context(&cpuctx->ctx);
5131                 cpuctx->ctx.type = cpu_context;
5132                 cpuctx->ctx.pmu = pmu;
5133                 cpuctx->jiffies_interval = 1;
5134                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5135         }
5136
5137 got_cpu_context:
5138         if (!pmu->start_txn) {
5139                 if (pmu->pmu_enable) {
5140                         /*
5141                          * If we have pmu_enable/pmu_disable calls, install
5142                          * transaction stubs that use that to try and batch
5143                          * hardware accesses.
5144                          */
5145                         pmu->start_txn  = perf_pmu_start_txn;
5146                         pmu->commit_txn = perf_pmu_commit_txn;
5147                         pmu->cancel_txn = perf_pmu_cancel_txn;
5148                 } else {
5149                         pmu->start_txn  = perf_pmu_nop_void;
5150                         pmu->commit_txn = perf_pmu_nop_int;
5151                         pmu->cancel_txn = perf_pmu_nop_void;
5152                 }
5153         }
5154
5155         if (!pmu->pmu_enable) {
5156                 pmu->pmu_enable  = perf_pmu_nop_void;
5157                 pmu->pmu_disable = perf_pmu_nop_void;
5158         }
5159
5160         list_add_rcu(&pmu->entry, &pmus);
5161         ret = 0;
5162 unlock:
5163         mutex_unlock(&pmus_lock);
5164
5165         return ret;
5166
5167 free_pdc:
5168         free_percpu(pmu->pmu_disable_count);
5169         goto unlock;
5170 }
5171
5172 void perf_pmu_unregister(struct pmu *pmu)
5173 {
5174         mutex_lock(&pmus_lock);
5175         list_del_rcu(&pmu->entry);
5176         mutex_unlock(&pmus_lock);
5177
5178         /*
5179          * We dereference the pmu list under both SRCU and regular RCU, so
5180          * synchronize against both of those.
5181          */
5182         synchronize_srcu(&pmus_srcu);
5183         synchronize_rcu();
5184
5185         free_percpu(pmu->pmu_disable_count);
5186         free_pmu_context(pmu->pmu_cpu_context);
5187 }
5188
5189 struct pmu *perf_init_event(struct perf_event *event)
5190 {
5191         struct pmu *pmu = NULL;
5192         int idx;
5193
5194         idx = srcu_read_lock(&pmus_srcu);
5195         list_for_each_entry_rcu(pmu, &pmus, entry) {
5196                 int ret = pmu->event_init(event);
5197                 if (!ret)
5198                         goto unlock;
5199
5200                 if (ret != -ENOENT) {
5201                         pmu = ERR_PTR(ret);
5202                         goto unlock;
5203                 }
5204         }
5205         pmu = ERR_PTR(-ENOENT);
5206 unlock:
5207         srcu_read_unlock(&pmus_srcu, idx);
5208
5209         return pmu;
5210 }
5211
5212 /*
5213  * Allocate and initialize a event structure
5214  */
5215 static struct perf_event *
5216 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5217                  struct task_struct *task,
5218                  struct perf_event *group_leader,
5219                  struct perf_event *parent_event,
5220                  perf_overflow_handler_t overflow_handler)
5221 {
5222         struct pmu *pmu;
5223         struct perf_event *event;
5224         struct hw_perf_event *hwc;
5225         long err;
5226
5227         event = kzalloc(sizeof(*event), GFP_KERNEL);
5228         if (!event)
5229                 return ERR_PTR(-ENOMEM);
5230
5231         /*
5232          * Single events are their own group leaders, with an
5233          * empty sibling list:
5234          */
5235         if (!group_leader)
5236                 group_leader = event;
5237
5238         mutex_init(&event->child_mutex);
5239         INIT_LIST_HEAD(&event->child_list);
5240
5241         INIT_LIST_HEAD(&event->group_entry);
5242         INIT_LIST_HEAD(&event->event_entry);
5243         INIT_LIST_HEAD(&event->sibling_list);
5244         init_waitqueue_head(&event->waitq);
5245         init_irq_work(&event->pending, perf_pending_event);
5246
5247         mutex_init(&event->mmap_mutex);
5248
5249         event->cpu              = cpu;
5250         event->attr             = *attr;
5251         event->group_leader     = group_leader;
5252         event->pmu              = NULL;
5253         event->oncpu            = -1;
5254
5255         event->parent           = parent_event;
5256
5257         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5258         event->id               = atomic64_inc_return(&perf_event_id);
5259
5260         event->state            = PERF_EVENT_STATE_INACTIVE;
5261
5262         if (task) {
5263                 event->attach_state = PERF_ATTACH_TASK;
5264 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5265                 /*
5266                  * hw_breakpoint is a bit difficult here..
5267                  */
5268                 if (attr->type == PERF_TYPE_BREAKPOINT)
5269                         event->hw.bp_target = task;
5270 #endif
5271         }
5272
5273         if (!overflow_handler && parent_event)
5274                 overflow_handler = parent_event->overflow_handler;
5275         
5276         event->overflow_handler = overflow_handler;
5277
5278         if (attr->disabled)
5279                 event->state = PERF_EVENT_STATE_OFF;
5280
5281         pmu = NULL;
5282
5283         hwc = &event->hw;
5284         hwc->sample_period = attr->sample_period;
5285         if (attr->freq && attr->sample_freq)
5286                 hwc->sample_period = 1;
5287         hwc->last_period = hwc->sample_period;
5288
5289         local64_set(&hwc->period_left, hwc->sample_period);
5290
5291         /*
5292          * we currently do not support PERF_FORMAT_GROUP on inherited events
5293          */
5294         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5295                 goto done;
5296
5297         pmu = perf_init_event(event);
5298
5299 done:
5300         err = 0;
5301         if (!pmu)
5302                 err = -EINVAL;
5303         else if (IS_ERR(pmu))
5304                 err = PTR_ERR(pmu);
5305
5306         if (err) {
5307                 if (event->ns)
5308                         put_pid_ns(event->ns);
5309                 kfree(event);
5310                 return ERR_PTR(err);
5311         }
5312
5313         event->pmu = pmu;
5314
5315         if (!event->parent) {
5316                 if (event->attach_state & PERF_ATTACH_TASK)
5317                         jump_label_inc(&perf_task_events);
5318                 if (event->attr.mmap || event->attr.mmap_data)
5319                         atomic_inc(&nr_mmap_events);
5320                 if (event->attr.comm)
5321                         atomic_inc(&nr_comm_events);
5322                 if (event->attr.task)
5323                         atomic_inc(&nr_task_events);
5324                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5325                         err = get_callchain_buffers();
5326                         if (err) {
5327                                 free_event(event);
5328                                 return ERR_PTR(err);
5329                         }
5330                 }
5331         }
5332
5333         return event;
5334 }
5335
5336 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5337                           struct perf_event_attr *attr)
5338 {
5339         u32 size;
5340         int ret;
5341
5342         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5343                 return -EFAULT;
5344
5345         /*
5346          * zero the full structure, so that a short copy will be nice.
5347          */
5348         memset(attr, 0, sizeof(*attr));
5349
5350         ret = get_user(size, &uattr->size);
5351         if (ret)
5352                 return ret;
5353
5354         if (size > PAGE_SIZE)   /* silly large */
5355                 goto err_size;
5356
5357         if (!size)              /* abi compat */
5358                 size = PERF_ATTR_SIZE_VER0;
5359
5360         if (size < PERF_ATTR_SIZE_VER0)
5361                 goto err_size;
5362
5363         /*
5364          * If we're handed a bigger struct than we know of,
5365          * ensure all the unknown bits are 0 - i.e. new
5366          * user-space does not rely on any kernel feature
5367          * extensions we dont know about yet.
5368          */
5369         if (size > sizeof(*attr)) {
5370                 unsigned char __user *addr;
5371                 unsigned char __user *end;
5372                 unsigned char val;
5373
5374                 addr = (void __user *)uattr + sizeof(*attr);
5375                 end  = (void __user *)uattr + size;
5376
5377                 for (; addr < end; addr++) {
5378                         ret = get_user(val, addr);
5379                         if (ret)
5380                                 return ret;
5381                         if (val)
5382                                 goto err_size;
5383                 }
5384                 size = sizeof(*attr);
5385         }
5386
5387         ret = copy_from_user(attr, uattr, size);
5388         if (ret)
5389                 return -EFAULT;
5390
5391         /*
5392          * If the type exists, the corresponding creation will verify
5393          * the attr->config.
5394          */
5395         if (attr->type >= PERF_TYPE_MAX)
5396                 return -EINVAL;
5397
5398         if (attr->__reserved_1)
5399                 return -EINVAL;
5400
5401         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5402                 return -EINVAL;
5403
5404         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5405                 return -EINVAL;
5406
5407 out:
5408         return ret;
5409
5410 err_size:
5411         put_user(sizeof(*attr), &uattr->size);
5412         ret = -E2BIG;
5413         goto out;
5414 }
5415
5416 static int
5417 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5418 {
5419         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5420         int ret = -EINVAL;
5421
5422         if (!output_event)
5423                 goto set;
5424
5425         /* don't allow circular references */
5426         if (event == output_event)
5427                 goto out;
5428
5429         /*
5430          * Don't allow cross-cpu buffers
5431          */
5432         if (output_event->cpu != event->cpu)
5433                 goto out;
5434
5435         /*
5436          * If its not a per-cpu buffer, it must be the same task.
5437          */
5438         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5439                 goto out;
5440
5441 set:
5442         mutex_lock(&event->mmap_mutex);
5443         /* Can't redirect output if we've got an active mmap() */
5444         if (atomic_read(&event->mmap_count))
5445                 goto unlock;
5446
5447         if (output_event) {
5448                 /* get the buffer we want to redirect to */
5449                 buffer = perf_buffer_get(output_event);
5450                 if (!buffer)
5451                         goto unlock;
5452         }
5453
5454         old_buffer = event->buffer;
5455         rcu_assign_pointer(event->buffer, buffer);
5456         ret = 0;
5457 unlock:
5458         mutex_unlock(&event->mmap_mutex);
5459
5460         if (old_buffer)
5461                 perf_buffer_put(old_buffer);
5462 out:
5463         return ret;
5464 }
5465
5466 /**
5467  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5468  *
5469  * @attr_uptr:  event_id type attributes for monitoring/sampling
5470  * @pid:                target pid
5471  * @cpu:                target cpu
5472  * @group_fd:           group leader event fd
5473  */
5474 SYSCALL_DEFINE5(perf_event_open,
5475                 struct perf_event_attr __user *, attr_uptr,
5476                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5477 {
5478         struct perf_event *group_leader = NULL, *output_event = NULL;
5479         struct perf_event *event, *sibling;
5480         struct perf_event_attr attr;
5481         struct perf_event_context *ctx;
5482         struct file *event_file = NULL;
5483         struct file *group_file = NULL;
5484         struct task_struct *task = NULL;
5485         struct pmu *pmu;
5486         int event_fd;
5487         int move_group = 0;
5488         int fput_needed = 0;
5489         int err;
5490
5491         /* for future expandability... */
5492         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5493                 return -EINVAL;
5494
5495         err = perf_copy_attr(attr_uptr, &attr);
5496         if (err)
5497                 return err;
5498
5499         if (!attr.exclude_kernel) {
5500                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5501                         return -EACCES;
5502         }
5503
5504         if (attr.freq) {
5505                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5506                         return -EINVAL;
5507         }
5508
5509         event_fd = get_unused_fd_flags(O_RDWR);
5510         if (event_fd < 0)
5511                 return event_fd;
5512
5513         if (group_fd != -1) {
5514                 group_leader = perf_fget_light(group_fd, &fput_needed);
5515                 if (IS_ERR(group_leader)) {
5516                         err = PTR_ERR(group_leader);
5517                         goto err_fd;
5518                 }
5519                 group_file = group_leader->filp;
5520                 if (flags & PERF_FLAG_FD_OUTPUT)
5521                         output_event = group_leader;
5522                 if (flags & PERF_FLAG_FD_NO_GROUP)
5523                         group_leader = NULL;
5524         }
5525
5526         if (pid != -1) {
5527                 task = find_lively_task_by_vpid(pid);
5528                 if (IS_ERR(task)) {
5529                         err = PTR_ERR(task);
5530                         goto err_group_fd;
5531                 }
5532         }
5533
5534         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5535         if (IS_ERR(event)) {
5536                 err = PTR_ERR(event);
5537                 goto err_task;
5538         }
5539
5540         /*
5541          * Special case software events and allow them to be part of
5542          * any hardware group.
5543          */
5544         pmu = event->pmu;
5545
5546         if (group_leader &&
5547             (is_software_event(event) != is_software_event(group_leader))) {
5548                 if (is_software_event(event)) {
5549                         /*
5550                          * If event and group_leader are not both a software
5551                          * event, and event is, then group leader is not.
5552                          *
5553                          * Allow the addition of software events to !software
5554                          * groups, this is safe because software events never
5555                          * fail to schedule.
5556                          */
5557                         pmu = group_leader->pmu;
5558                 } else if (is_software_event(group_leader) &&
5559                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5560                         /*
5561                          * In case the group is a pure software group, and we
5562                          * try to add a hardware event, move the whole group to
5563                          * the hardware context.
5564                          */
5565                         move_group = 1;
5566                 }
5567         }
5568
5569         /*
5570          * Get the target context (task or percpu):
5571          */
5572         ctx = find_get_context(pmu, task, cpu);
5573         if (IS_ERR(ctx)) {
5574                 err = PTR_ERR(ctx);
5575                 goto err_alloc;
5576         }
5577
5578         /*
5579          * Look up the group leader (we will attach this event to it):
5580          */
5581         if (group_leader) {
5582                 err = -EINVAL;
5583
5584                 /*
5585                  * Do not allow a recursive hierarchy (this new sibling
5586                  * becoming part of another group-sibling):
5587                  */
5588                 if (group_leader->group_leader != group_leader)
5589                         goto err_context;
5590                 /*
5591                  * Do not allow to attach to a group in a different
5592                  * task or CPU context:
5593                  */
5594                 if (move_group) {
5595                         if (group_leader->ctx->type != ctx->type)
5596                                 goto err_context;
5597                 } else {
5598                         if (group_leader->ctx != ctx)
5599                                 goto err_context;
5600                 }
5601
5602                 /*
5603                  * Only a group leader can be exclusive or pinned
5604                  */
5605                 if (attr.exclusive || attr.pinned)
5606                         goto err_context;
5607         }
5608
5609         if (output_event) {
5610                 err = perf_event_set_output(event, output_event);
5611                 if (err)
5612                         goto err_context;
5613         }
5614
5615         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5616         if (IS_ERR(event_file)) {
5617                 err = PTR_ERR(event_file);
5618                 goto err_context;
5619         }
5620
5621         if (move_group) {
5622                 struct perf_event_context *gctx = group_leader->ctx;
5623
5624                 mutex_lock(&gctx->mutex);
5625                 perf_event_remove_from_context(group_leader);
5626                 list_for_each_entry(sibling, &group_leader->sibling_list,
5627                                     group_entry) {
5628                         perf_event_remove_from_context(sibling);
5629                         put_ctx(gctx);
5630                 }
5631                 mutex_unlock(&gctx->mutex);
5632                 put_ctx(gctx);
5633         }
5634
5635         event->filp = event_file;
5636         WARN_ON_ONCE(ctx->parent_ctx);
5637         mutex_lock(&ctx->mutex);
5638
5639         if (move_group) {
5640                 perf_install_in_context(ctx, group_leader, cpu);
5641                 get_ctx(ctx);
5642                 list_for_each_entry(sibling, &group_leader->sibling_list,
5643                                     group_entry) {
5644                         perf_install_in_context(ctx, sibling, cpu);
5645                         get_ctx(ctx);
5646                 }
5647         }
5648
5649         perf_install_in_context(ctx, event, cpu);
5650         ++ctx->generation;
5651         mutex_unlock(&ctx->mutex);
5652
5653         event->owner = current;
5654         get_task_struct(current);
5655         mutex_lock(&current->perf_event_mutex);
5656         list_add_tail(&event->owner_entry, &current->perf_event_list);
5657         mutex_unlock(&current->perf_event_mutex);
5658
5659         /*
5660          * Drop the reference on the group_event after placing the
5661          * new event on the sibling_list. This ensures destruction
5662          * of the group leader will find the pointer to itself in
5663          * perf_group_detach().
5664          */
5665         fput_light(group_file, fput_needed);
5666         fd_install(event_fd, event_file);
5667         return event_fd;
5668
5669 err_context:
5670         put_ctx(ctx);
5671 err_alloc:
5672         free_event(event);
5673 err_task:
5674         if (task)
5675                 put_task_struct(task);
5676 err_group_fd:
5677         fput_light(group_file, fput_needed);
5678 err_fd:
5679         put_unused_fd(event_fd);
5680         return err;
5681 }
5682
5683 /**
5684  * perf_event_create_kernel_counter
5685  *
5686  * @attr: attributes of the counter to create
5687  * @cpu: cpu in which the counter is bound
5688  * @task: task to profile (NULL for percpu)
5689  */
5690 struct perf_event *
5691 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5692                                  struct task_struct *task,
5693                                  perf_overflow_handler_t overflow_handler)
5694 {
5695         struct perf_event_context *ctx;
5696         struct perf_event *event;
5697         int err;
5698
5699         /*
5700          * Get the target context (task or percpu):
5701          */
5702
5703         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5704         if (IS_ERR(event)) {
5705                 err = PTR_ERR(event);
5706                 goto err;
5707         }
5708
5709         ctx = find_get_context(event->pmu, task, cpu);
5710         if (IS_ERR(ctx)) {
5711                 err = PTR_ERR(ctx);
5712                 goto err_free;
5713         }
5714
5715         event->filp = NULL;
5716         WARN_ON_ONCE(ctx->parent_ctx);
5717         mutex_lock(&ctx->mutex);
5718         perf_install_in_context(ctx, event, cpu);
5719         ++ctx->generation;
5720         mutex_unlock(&ctx->mutex);
5721
5722         event->owner = current;
5723         get_task_struct(current);
5724         mutex_lock(&current->perf_event_mutex);
5725         list_add_tail(&event->owner_entry, &current->perf_event_list);
5726         mutex_unlock(&current->perf_event_mutex);
5727
5728         return event;
5729
5730 err_free:
5731         free_event(event);
5732 err:
5733         return ERR_PTR(err);
5734 }
5735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5736
5737 static void sync_child_event(struct perf_event *child_event,
5738                                struct task_struct *child)
5739 {
5740         struct perf_event *parent_event = child_event->parent;
5741         u64 child_val;
5742
5743         if (child_event->attr.inherit_stat)
5744                 perf_event_read_event(child_event, child);
5745
5746         child_val = perf_event_count(child_event);
5747
5748         /*
5749          * Add back the child's count to the parent's count:
5750          */
5751         atomic64_add(child_val, &parent_event->child_count);
5752         atomic64_add(child_event->total_time_enabled,
5753                      &parent_event->child_total_time_enabled);
5754         atomic64_add(child_event->total_time_running,
5755                      &parent_event->child_total_time_running);
5756
5757         /*
5758          * Remove this event from the parent's list
5759          */
5760         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5761         mutex_lock(&parent_event->child_mutex);
5762         list_del_init(&child_event->child_list);
5763         mutex_unlock(&parent_event->child_mutex);
5764
5765         /*
5766          * Release the parent event, if this was the last
5767          * reference to it.
5768          */
5769         fput(parent_event->filp);
5770 }
5771
5772 static void
5773 __perf_event_exit_task(struct perf_event *child_event,
5774                          struct perf_event_context *child_ctx,
5775                          struct task_struct *child)
5776 {
5777         struct perf_event *parent_event;
5778
5779         perf_event_remove_from_context(child_event);
5780
5781         parent_event = child_event->parent;
5782         /*
5783          * It can happen that parent exits first, and has events
5784          * that are still around due to the child reference. These
5785          * events need to be zapped - but otherwise linger.
5786          */
5787         if (parent_event) {
5788                 sync_child_event(child_event, child);
5789                 free_event(child_event);
5790         }
5791 }
5792
5793 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5794 {
5795         struct perf_event *child_event, *tmp;
5796         struct perf_event_context *child_ctx;
5797         unsigned long flags;
5798
5799         if (likely(!child->perf_event_ctxp[ctxn])) {
5800                 perf_event_task(child, NULL, 0);
5801                 return;
5802         }
5803
5804         local_irq_save(flags);
5805         /*
5806          * We can't reschedule here because interrupts are disabled,
5807          * and either child is current or it is a task that can't be
5808          * scheduled, so we are now safe from rescheduling changing
5809          * our context.
5810          */
5811         child_ctx = child->perf_event_ctxp[ctxn];
5812         task_ctx_sched_out(child_ctx, EVENT_ALL);
5813
5814         /*
5815          * Take the context lock here so that if find_get_context is
5816          * reading child->perf_event_ctxp, we wait until it has
5817          * incremented the context's refcount before we do put_ctx below.
5818          */
5819         raw_spin_lock(&child_ctx->lock);
5820         child->perf_event_ctxp[ctxn] = NULL;
5821         /*
5822          * If this context is a clone; unclone it so it can't get
5823          * swapped to another process while we're removing all
5824          * the events from it.
5825          */
5826         unclone_ctx(child_ctx);
5827         update_context_time(child_ctx);
5828         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5829
5830         /*
5831          * Report the task dead after unscheduling the events so that we
5832          * won't get any samples after PERF_RECORD_EXIT. We can however still
5833          * get a few PERF_RECORD_READ events.
5834          */
5835         perf_event_task(child, child_ctx, 0);
5836
5837         /*
5838          * We can recurse on the same lock type through:
5839          *
5840          *   __perf_event_exit_task()
5841          *     sync_child_event()
5842          *       fput(parent_event->filp)
5843          *         perf_release()
5844          *           mutex_lock(&ctx->mutex)
5845          *
5846          * But since its the parent context it won't be the same instance.
5847          */
5848         mutex_lock(&child_ctx->mutex);
5849
5850 again:
5851         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5852                                  group_entry)
5853                 __perf_event_exit_task(child_event, child_ctx, child);
5854
5855         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5856                                  group_entry)
5857                 __perf_event_exit_task(child_event, child_ctx, child);
5858
5859         /*
5860          * If the last event was a group event, it will have appended all
5861          * its siblings to the list, but we obtained 'tmp' before that which
5862          * will still point to the list head terminating the iteration.
5863          */
5864         if (!list_empty(&child_ctx->pinned_groups) ||
5865             !list_empty(&child_ctx->flexible_groups))
5866                 goto again;
5867
5868         mutex_unlock(&child_ctx->mutex);
5869
5870         put_ctx(child_ctx);
5871 }
5872
5873 /*
5874  * When a child task exits, feed back event values to parent events.
5875  */
5876 void perf_event_exit_task(struct task_struct *child)
5877 {
5878         int ctxn;
5879
5880         for_each_task_context_nr(ctxn)
5881                 perf_event_exit_task_context(child, ctxn);
5882 }
5883
5884 static void perf_free_event(struct perf_event *event,
5885                             struct perf_event_context *ctx)
5886 {
5887         struct perf_event *parent = event->parent;
5888
5889         if (WARN_ON_ONCE(!parent))
5890                 return;
5891
5892         mutex_lock(&parent->child_mutex);
5893         list_del_init(&event->child_list);
5894         mutex_unlock(&parent->child_mutex);
5895
5896         fput(parent->filp);
5897
5898         perf_group_detach(event);
5899         list_del_event(event, ctx);
5900         free_event(event);
5901 }
5902
5903 /*
5904  * free an unexposed, unused context as created by inheritance by
5905  * perf_event_init_task below, used by fork() in case of fail.
5906  */
5907 void perf_event_free_task(struct task_struct *task)
5908 {
5909         struct perf_event_context *ctx;
5910         struct perf_event *event, *tmp;
5911         int ctxn;
5912
5913         for_each_task_context_nr(ctxn) {
5914                 ctx = task->perf_event_ctxp[ctxn];
5915                 if (!ctx)
5916                         continue;
5917
5918                 mutex_lock(&ctx->mutex);
5919 again:
5920                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5921                                 group_entry)
5922                         perf_free_event(event, ctx);
5923
5924                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5925                                 group_entry)
5926                         perf_free_event(event, ctx);
5927
5928                 if (!list_empty(&ctx->pinned_groups) ||
5929                                 !list_empty(&ctx->flexible_groups))
5930                         goto again;
5931
5932                 mutex_unlock(&ctx->mutex);
5933
5934                 put_ctx(ctx);
5935         }
5936 }
5937
5938 void perf_event_delayed_put(struct task_struct *task)
5939 {
5940         int ctxn;
5941
5942         for_each_task_context_nr(ctxn)
5943                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5944 }
5945
5946 /*
5947  * inherit a event from parent task to child task:
5948  */
5949 static struct perf_event *
5950 inherit_event(struct perf_event *parent_event,
5951               struct task_struct *parent,
5952               struct perf_event_context *parent_ctx,
5953               struct task_struct *child,
5954               struct perf_event *group_leader,
5955               struct perf_event_context *child_ctx)
5956 {
5957         struct perf_event *child_event;
5958         unsigned long flags;
5959
5960         /*
5961          * Instead of creating recursive hierarchies of events,
5962          * we link inherited events back to the original parent,
5963          * which has a filp for sure, which we use as the reference
5964          * count:
5965          */
5966         if (parent_event->parent)
5967                 parent_event = parent_event->parent;
5968
5969         child_event = perf_event_alloc(&parent_event->attr,
5970                                            parent_event->cpu,
5971                                            child,
5972                                            group_leader, parent_event,
5973                                            NULL);
5974         if (IS_ERR(child_event))
5975                 return child_event;
5976         get_ctx(child_ctx);
5977
5978         /*
5979          * Make the child state follow the state of the parent event,
5980          * not its attr.disabled bit.  We hold the parent's mutex,
5981          * so we won't race with perf_event_{en, dis}able_family.
5982          */
5983         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5984                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5985         else
5986                 child_event->state = PERF_EVENT_STATE_OFF;
5987
5988         if (parent_event->attr.freq) {
5989                 u64 sample_period = parent_event->hw.sample_period;
5990                 struct hw_perf_event *hwc = &child_event->hw;
5991
5992                 hwc->sample_period = sample_period;
5993                 hwc->last_period   = sample_period;
5994
5995                 local64_set(&hwc->period_left, sample_period);
5996         }
5997
5998         child_event->ctx = child_ctx;
5999         child_event->overflow_handler = parent_event->overflow_handler;
6000
6001         /*
6002          * Link it up in the child's context:
6003          */
6004         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6005         add_event_to_ctx(child_event, child_ctx);
6006         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6007
6008         /*
6009          * Get a reference to the parent filp - we will fput it
6010          * when the child event exits. This is safe to do because
6011          * we are in the parent and we know that the filp still
6012          * exists and has a nonzero count:
6013          */
6014         atomic_long_inc(&parent_event->filp->f_count);
6015
6016         /*
6017          * Link this into the parent event's child list
6018          */
6019         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6020         mutex_lock(&parent_event->child_mutex);
6021         list_add_tail(&child_event->child_list, &parent_event->child_list);
6022         mutex_unlock(&parent_event->child_mutex);
6023
6024         return child_event;
6025 }
6026
6027 static int inherit_group(struct perf_event *parent_event,
6028               struct task_struct *parent,
6029               struct perf_event_context *parent_ctx,
6030               struct task_struct *child,
6031               struct perf_event_context *child_ctx)
6032 {
6033         struct perf_event *leader;
6034         struct perf_event *sub;
6035         struct perf_event *child_ctr;
6036
6037         leader = inherit_event(parent_event, parent, parent_ctx,
6038                                  child, NULL, child_ctx);
6039         if (IS_ERR(leader))
6040                 return PTR_ERR(leader);
6041         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6042                 child_ctr = inherit_event(sub, parent, parent_ctx,
6043                                             child, leader, child_ctx);
6044                 if (IS_ERR(child_ctr))
6045                         return PTR_ERR(child_ctr);
6046         }
6047         return 0;
6048 }
6049
6050 static int
6051 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6052                    struct perf_event_context *parent_ctx,
6053                    struct task_struct *child, int ctxn,
6054                    int *inherited_all)
6055 {
6056         int ret;
6057         struct perf_event_context *child_ctx;
6058
6059         if (!event->attr.inherit) {
6060                 *inherited_all = 0;
6061                 return 0;
6062         }
6063
6064         child_ctx = child->perf_event_ctxp[ctxn];
6065         if (!child_ctx) {
6066                 /*
6067                  * This is executed from the parent task context, so
6068                  * inherit events that have been marked for cloning.
6069                  * First allocate and initialize a context for the
6070                  * child.
6071                  */
6072
6073                 child_ctx = alloc_perf_context(event->pmu, child);
6074                 if (!child_ctx)
6075                         return -ENOMEM;
6076
6077                 child->perf_event_ctxp[ctxn] = child_ctx;
6078         }
6079
6080         ret = inherit_group(event, parent, parent_ctx,
6081                             child, child_ctx);
6082
6083         if (ret)
6084                 *inherited_all = 0;
6085
6086         return ret;
6087 }
6088
6089 /*
6090  * Initialize the perf_event context in task_struct
6091  */
6092 int perf_event_init_context(struct task_struct *child, int ctxn)
6093 {
6094         struct perf_event_context *child_ctx, *parent_ctx;
6095         struct perf_event_context *cloned_ctx;
6096         struct perf_event *event;
6097         struct task_struct *parent = current;
6098         int inherited_all = 1;
6099         int ret = 0;
6100
6101         child->perf_event_ctxp[ctxn] = NULL;
6102
6103         mutex_init(&child->perf_event_mutex);
6104         INIT_LIST_HEAD(&child->perf_event_list);
6105
6106         if (likely(!parent->perf_event_ctxp[ctxn]))
6107                 return 0;
6108
6109         /*
6110          * If the parent's context is a clone, pin it so it won't get
6111          * swapped under us.
6112          */
6113         parent_ctx = perf_pin_task_context(parent, ctxn);
6114
6115         /*
6116          * No need to check if parent_ctx != NULL here; since we saw
6117          * it non-NULL earlier, the only reason for it to become NULL
6118          * is if we exit, and since we're currently in the middle of
6119          * a fork we can't be exiting at the same time.
6120          */
6121
6122         /*
6123          * Lock the parent list. No need to lock the child - not PID
6124          * hashed yet and not running, so nobody can access it.
6125          */
6126         mutex_lock(&parent_ctx->mutex);
6127
6128         /*
6129          * We dont have to disable NMIs - we are only looking at
6130          * the list, not manipulating it:
6131          */
6132         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6133                 ret = inherit_task_group(event, parent, parent_ctx,
6134                                          child, ctxn, &inherited_all);
6135                 if (ret)
6136                         break;
6137         }
6138
6139         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6140                 ret = inherit_task_group(event, parent, parent_ctx,
6141                                          child, ctxn, &inherited_all);
6142                 if (ret)
6143                         break;
6144         }
6145
6146         child_ctx = child->perf_event_ctxp[ctxn];
6147
6148         if (child_ctx && inherited_all) {
6149                 /*
6150                  * Mark the child context as a clone of the parent
6151                  * context, or of whatever the parent is a clone of.
6152                  * Note that if the parent is a clone, it could get
6153                  * uncloned at any point, but that doesn't matter
6154                  * because the list of events and the generation
6155                  * count can't have changed since we took the mutex.
6156                  */
6157                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6158                 if (cloned_ctx) {
6159                         child_ctx->parent_ctx = cloned_ctx;
6160                         child_ctx->parent_gen = parent_ctx->parent_gen;
6161                 } else {
6162                         child_ctx->parent_ctx = parent_ctx;
6163                         child_ctx->parent_gen = parent_ctx->generation;
6164                 }
6165                 get_ctx(child_ctx->parent_ctx);
6166         }
6167
6168         mutex_unlock(&parent_ctx->mutex);
6169
6170         perf_unpin_context(parent_ctx);
6171
6172         return ret;
6173 }
6174
6175 /*
6176  * Initialize the perf_event context in task_struct
6177  */
6178 int perf_event_init_task(struct task_struct *child)
6179 {
6180         int ctxn, ret;
6181
6182         for_each_task_context_nr(ctxn) {
6183                 ret = perf_event_init_context(child, ctxn);
6184                 if (ret)
6185                         return ret;
6186         }
6187
6188         return 0;
6189 }
6190
6191 static void __init perf_event_init_all_cpus(void)
6192 {
6193         struct swevent_htable *swhash;
6194         int cpu;
6195
6196         for_each_possible_cpu(cpu) {
6197                 swhash = &per_cpu(swevent_htable, cpu);
6198                 mutex_init(&swhash->hlist_mutex);
6199                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6200         }
6201 }
6202
6203 static void __cpuinit perf_event_init_cpu(int cpu)
6204 {
6205         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6206
6207         mutex_lock(&swhash->hlist_mutex);
6208         if (swhash->hlist_refcount > 0) {
6209                 struct swevent_hlist *hlist;
6210
6211                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6212                 WARN_ON(!hlist);
6213                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6214         }
6215         mutex_unlock(&swhash->hlist_mutex);
6216 }
6217
6218 #ifdef CONFIG_HOTPLUG_CPU
6219 static void perf_pmu_rotate_stop(struct pmu *pmu)
6220 {
6221         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6222
6223         WARN_ON(!irqs_disabled());
6224
6225         list_del_init(&cpuctx->rotation_list);
6226 }
6227
6228 static void __perf_event_exit_context(void *__info)
6229 {
6230         struct perf_event_context *ctx = __info;
6231         struct perf_event *event, *tmp;
6232
6233         perf_pmu_rotate_stop(ctx->pmu);
6234
6235         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6236                 __perf_event_remove_from_context(event);
6237         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6238                 __perf_event_remove_from_context(event);
6239 }
6240
6241 static void perf_event_exit_cpu_context(int cpu)
6242 {
6243         struct perf_event_context *ctx;
6244         struct pmu *pmu;
6245         int idx;
6246
6247         idx = srcu_read_lock(&pmus_srcu);
6248         list_for_each_entry_rcu(pmu, &pmus, entry) {
6249                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6250
6251                 mutex_lock(&ctx->mutex);
6252                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6253                 mutex_unlock(&ctx->mutex);
6254         }
6255         srcu_read_unlock(&pmus_srcu, idx);
6256 }
6257
6258 static void perf_event_exit_cpu(int cpu)
6259 {
6260         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6261
6262         mutex_lock(&swhash->hlist_mutex);
6263         swevent_hlist_release(swhash);
6264         mutex_unlock(&swhash->hlist_mutex);
6265
6266         perf_event_exit_cpu_context(cpu);
6267 }
6268 #else
6269 static inline void perf_event_exit_cpu(int cpu) { }
6270 #endif
6271
6272 static int __cpuinit
6273 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6274 {
6275         unsigned int cpu = (long)hcpu;
6276
6277         switch (action & ~CPU_TASKS_FROZEN) {
6278
6279         case CPU_UP_PREPARE:
6280         case CPU_DOWN_FAILED:
6281                 perf_event_init_cpu(cpu);
6282                 break;
6283
6284         case CPU_UP_CANCELED:
6285         case CPU_DOWN_PREPARE:
6286                 perf_event_exit_cpu(cpu);
6287                 break;
6288
6289         default:
6290                 break;
6291         }
6292
6293         return NOTIFY_OK;
6294 }
6295
6296 void __init perf_event_init(void)
6297 {
6298         perf_event_init_all_cpus();
6299         init_srcu_struct(&pmus_srcu);
6300         perf_pmu_register(&perf_swevent);
6301         perf_pmu_register(&perf_cpu_clock);
6302         perf_pmu_register(&perf_task_clock);
6303         perf_tp_register();
6304         perf_cpu_notifier(perf_cpu_notify);
6305 }