kprobes: Use text_poke_smp_batch for optimizing
[pandora-kernel.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97         {"preempt_schedule",},
98         {"native_get_debugreg",},
99         {"irq_entries_start",},
100         {"common_interrupt",},
101         {"mcount",},    /* mcount can be called from everywhere */
102         {NULL}    /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113         struct list_head list;
114         kprobe_opcode_t *insns;         /* Page of instruction slots */
115         int nused;
116         int ngarbage;
117         char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
121         (offsetof(struct kprobe_insn_page, slot_used) + \
122          (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125         struct list_head pages; /* list of kprobe_insn_page */
126         size_t insn_size;       /* size of instruction slot */
127         int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136         SLOT_CLEAN = 0,
137         SLOT_DIRTY = 1,
138         SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144         .insn_size = MAX_INSN_SIZE,
145         .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155         struct kprobe_insn_page *kip;
156
157  retry:
158         list_for_each_entry(kip, &c->pages, list) {
159                 if (kip->nused < slots_per_page(c)) {
160                         int i;
161                         for (i = 0; i < slots_per_page(c); i++) {
162                                 if (kip->slot_used[i] == SLOT_CLEAN) {
163                                         kip->slot_used[i] = SLOT_USED;
164                                         kip->nused++;
165                                         return kip->insns + (i * c->insn_size);
166                                 }
167                         }
168                         /* kip->nused is broken. Fix it. */
169                         kip->nused = slots_per_page(c);
170                         WARN_ON(1);
171                 }
172         }
173
174         /* If there are any garbage slots, collect it and try again. */
175         if (c->nr_garbage && collect_garbage_slots(c) == 0)
176                 goto retry;
177
178         /* All out of space.  Need to allocate a new page. */
179         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180         if (!kip)
181                 return NULL;
182
183         /*
184          * Use module_alloc so this page is within +/- 2GB of where the
185          * kernel image and loaded module images reside. This is required
186          * so x86_64 can correctly handle the %rip-relative fixups.
187          */
188         kip->insns = module_alloc(PAGE_SIZE);
189         if (!kip->insns) {
190                 kfree(kip);
191                 return NULL;
192         }
193         INIT_LIST_HEAD(&kip->list);
194         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195         kip->slot_used[0] = SLOT_USED;
196         kip->nused = 1;
197         kip->ngarbage = 0;
198         list_add(&kip->list, &c->pages);
199         return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205         kprobe_opcode_t *ret = NULL;
206
207         mutex_lock(&kprobe_insn_mutex);
208         ret = __get_insn_slot(&kprobe_insn_slots);
209         mutex_unlock(&kprobe_insn_mutex);
210
211         return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217         kip->slot_used[idx] = SLOT_CLEAN;
218         kip->nused--;
219         if (kip->nused == 0) {
220                 /*
221                  * Page is no longer in use.  Free it unless
222                  * it's the last one.  We keep the last one
223                  * so as not to have to set it up again the
224                  * next time somebody inserts a probe.
225                  */
226                 if (!list_is_singular(&kip->list)) {
227                         list_del(&kip->list);
228                         module_free(NULL, kip->insns);
229                         kfree(kip);
230                 }
231                 return 1;
232         }
233         return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238         struct kprobe_insn_page *kip, *next;
239
240         /* Ensure no-one is interrupted on the garbages */
241         synchronize_sched();
242
243         list_for_each_entry_safe(kip, next, &c->pages, list) {
244                 int i;
245                 if (kip->ngarbage == 0)
246                         continue;
247                 kip->ngarbage = 0;      /* we will collect all garbages */
248                 for (i = 0; i < slots_per_page(c); i++) {
249                         if (kip->slot_used[i] == SLOT_DIRTY &&
250                             collect_one_slot(kip, i))
251                                 break;
252                 }
253         }
254         c->nr_garbage = 0;
255         return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259                                        kprobe_opcode_t *slot, int dirty)
260 {
261         struct kprobe_insn_page *kip;
262
263         list_for_each_entry(kip, &c->pages, list) {
264                 long idx = ((long)slot - (long)kip->insns) /
265                                 (c->insn_size * sizeof(kprobe_opcode_t));
266                 if (idx >= 0 && idx < slots_per_page(c)) {
267                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
268                         if (dirty) {
269                                 kip->slot_used[idx] = SLOT_DIRTY;
270                                 kip->ngarbage++;
271                                 if (++c->nr_garbage > slots_per_page(c))
272                                         collect_garbage_slots(c);
273                         } else
274                                 collect_one_slot(kip, idx);
275                         return;
276                 }
277         }
278         /* Could not free this slot. */
279         WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284         mutex_lock(&kprobe_insn_mutex);
285         __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286         mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293         /* .insn_size is initialized later */
294         .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299         kprobe_opcode_t *ret = NULL;
300
301         mutex_lock(&kprobe_optinsn_mutex);
302         ret = __get_insn_slot(&kprobe_optinsn_slots);
303         mutex_unlock(&kprobe_optinsn_mutex);
304
305         return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310         mutex_lock(&kprobe_optinsn_mutex);
311         __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312         mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320         __get_cpu_var(kprobe_instance) = kp;
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325         __get_cpu_var(kprobe_instance) = NULL;
326 }
327
328 /*
329  * This routine is called either:
330  *      - under the kprobe_mutex - during kprobe_[un]register()
331  *                              OR
332  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336         struct hlist_head *head;
337         struct hlist_node *node;
338         struct kprobe *p;
339
340         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341         hlist_for_each_entry_rcu(p, node, head, hlist) {
342                 if (p->addr == addr)
343                         return p;
344         }
345
346         return NULL;
347 }
348
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354         return p->pre_handler == aggr_pre_handler;
355 }
356
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361                list_empty(&p->list);
362 }
363
364 /*
365  * Keep all fields in the kprobe consistent
366  */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376
377 /*
378  * Call all pre_handler on the list, but ignores its return value.
379  * This must be called from arch-dep optimized caller.
380  */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383         struct kprobe *kp;
384
385         list_for_each_entry_rcu(kp, &p->list, list) {
386                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387                         set_kprobe_instance(kp);
388                         kp->pre_handler(kp, regs);
389                 }
390                 reset_kprobe_instance();
391         }
392 }
393
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397         struct optimized_kprobe *op;
398
399         op = container_of(p, struct optimized_kprobe, kp);
400         arch_remove_optimized_kprobe(op);
401         arch_remove_kprobe(p);
402         kfree(op);
403 }
404
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408         struct optimized_kprobe *op;
409
410         if (kprobe_aggrprobe(p)) {
411                 op = container_of(p, struct optimized_kprobe, kp);
412                 return arch_prepared_optinsn(&op->optinsn);
413         }
414
415         return 0;
416 }
417
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421         struct optimized_kprobe *op;
422
423         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424         if (!kprobe_aggrprobe(p))
425                 return kprobe_disabled(p);
426
427         op = container_of(p, struct optimized_kprobe, kp);
428
429         return kprobe_disabled(p) && list_empty(&op->list);
430 }
431
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435         struct optimized_kprobe *op;
436
437         if (kprobe_aggrprobe(p)) {
438                 op = container_of(p, struct optimized_kprobe, kp);
439                 if (!list_empty(&op->list))
440                         return 1;
441         }
442         return 0;
443 }
444
445 /*
446  * Return an optimized kprobe whose optimizing code replaces
447  * instructions including addr (exclude breakpoint).
448  */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451         int i;
452         struct kprobe *p = NULL;
453         struct optimized_kprobe *op;
454
455         /* Don't check i == 0, since that is a breakpoint case. */
456         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457                 p = get_kprobe((void *)(addr - i));
458
459         if (p && kprobe_optready(p)) {
460                 op = container_of(p, struct optimized_kprobe, kp);
461                 if (arch_within_optimized_kprobe(op, addr))
462                         return p;
463         }
464
465         return NULL;
466 }
467
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 static DECLARE_COMPLETION(optimizer_comp);
475 #define OPTIMIZE_DELAY 5
476
477 /*
478  * Optimize (replace a breakpoint with a jump) kprobes listed on
479  * optimizing_list.
480  */
481 static __kprobes void do_optimize_kprobes(void)
482 {
483         /* Optimization never be done when disarmed */
484         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485             list_empty(&optimizing_list))
486                 return;
487
488         /*
489          * The optimization/unoptimization refers online_cpus via
490          * stop_machine() and cpu-hotplug modifies online_cpus.
491          * And same time, text_mutex will be held in cpu-hotplug and here.
492          * This combination can cause a deadlock (cpu-hotplug try to lock
493          * text_mutex but stop_machine can not be done because online_cpus
494          * has been changed)
495          * To avoid this deadlock, we need to call get_online_cpus()
496          * for preventing cpu-hotplug outside of text_mutex locking.
497          */
498         get_online_cpus();
499         mutex_lock(&text_mutex);
500         arch_optimize_kprobes(&optimizing_list);
501         mutex_unlock(&text_mutex);
502         put_online_cpus();
503 }
504
505 /*
506  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507  * if need) kprobes listed on unoptimizing_list.
508  */
509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510 {
511         struct optimized_kprobe *op, *tmp;
512
513         /* Unoptimization must be done anytime */
514         if (list_empty(&unoptimizing_list))
515                 return;
516
517         /* Ditto to do_optimize_kprobes */
518         get_online_cpus();
519         mutex_lock(&text_mutex);
520         list_for_each_entry_safe(op, tmp, &unoptimizing_list, list) {
521                 /* Unoptimize kprobes */
522                 arch_unoptimize_kprobe(op);
523                 /* Disarm probes if marked disabled */
524                 if (kprobe_disabled(&op->kp))
525                         arch_disarm_kprobe(&op->kp);
526                 if (kprobe_unused(&op->kp)) {
527                         /*
528                          * Remove unused probes from hash list. After waiting
529                          * for synchronization, these probes are reclaimed.
530                          * (reclaiming is done by do_free_cleaned_kprobes.)
531                          */
532                         hlist_del_rcu(&op->kp.hlist);
533                         /* Move only unused probes on free_list */
534                         list_move(&op->list, free_list);
535                 } else
536                         list_del_init(&op->list);
537         }
538         mutex_unlock(&text_mutex);
539         put_online_cpus();
540 }
541
542 /* Reclaim all kprobes on the free_list */
543 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
544 {
545         struct optimized_kprobe *op, *tmp;
546
547         list_for_each_entry_safe(op, tmp, free_list, list) {
548                 BUG_ON(!kprobe_unused(&op->kp));
549                 list_del_init(&op->list);
550                 free_aggr_kprobe(&op->kp);
551         }
552 }
553
554 /* Start optimizer after OPTIMIZE_DELAY passed */
555 static __kprobes void kick_kprobe_optimizer(void)
556 {
557         if (!delayed_work_pending(&optimizing_work))
558                 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static __kprobes void kprobe_optimizer(struct work_struct *work)
563 {
564         LIST_HEAD(free_list);
565
566         /* Lock modules while optimizing kprobes */
567         mutex_lock(&module_mutex);
568         mutex_lock(&kprobe_mutex);
569
570         /*
571          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
572          * kprobes before waiting for quiesence period.
573          */
574         do_unoptimize_kprobes(&free_list);
575
576         /*
577          * Step 2: Wait for quiesence period to ensure all running interrupts
578          * are done. Because optprobe may modify multiple instructions
579          * there is a chance that Nth instruction is interrupted. In that
580          * case, running interrupt can return to 2nd-Nth byte of jump
581          * instruction. This wait is for avoiding it.
582          */
583         synchronize_sched();
584
585         /* Step 3: Optimize kprobes after quiesence period */
586         do_optimize_kprobes();
587
588         /* Step 4: Free cleaned kprobes after quiesence period */
589         do_free_cleaned_kprobes(&free_list);
590
591         mutex_unlock(&kprobe_mutex);
592         mutex_unlock(&module_mutex);
593
594         /* Step 5: Kick optimizer again if needed */
595         if (!list_empty(&optimizing_list))
596                 kick_kprobe_optimizer();
597         else
598                 /* Wake up all waiters */
599                 complete_all(&optimizer_comp);
600 }
601
602 /* Wait for completing optimization and unoptimization */
603 static __kprobes void wait_for_kprobe_optimizer(void)
604 {
605         if (delayed_work_pending(&optimizing_work))
606                 wait_for_completion(&optimizer_comp);
607 }
608
609 /* Optimize kprobe if p is ready to be optimized */
610 static __kprobes void optimize_kprobe(struct kprobe *p)
611 {
612         struct optimized_kprobe *op;
613
614         /* Check if the kprobe is disabled or not ready for optimization. */
615         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
616             (kprobe_disabled(p) || kprobes_all_disarmed))
617                 return;
618
619         /* Both of break_handler and post_handler are not supported. */
620         if (p->break_handler || p->post_handler)
621                 return;
622
623         op = container_of(p, struct optimized_kprobe, kp);
624
625         /* Check there is no other kprobes at the optimized instructions */
626         if (arch_check_optimized_kprobe(op) < 0)
627                 return;
628
629         /* Check if it is already optimized. */
630         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
631                 return;
632         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
633
634         if (!list_empty(&op->list))
635                 /* This is under unoptimizing. Just dequeue the probe */
636                 list_del_init(&op->list);
637         else {
638                 list_add(&op->list, &optimizing_list);
639                 kick_kprobe_optimizer();
640         }
641 }
642
643 /* Short cut to direct unoptimizing */
644 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
645 {
646         get_online_cpus();
647         arch_unoptimize_kprobe(op);
648         put_online_cpus();
649         if (kprobe_disabled(&op->kp))
650                 arch_disarm_kprobe(&op->kp);
651 }
652
653 /* Unoptimize a kprobe if p is optimized */
654 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
655 {
656         struct optimized_kprobe *op;
657
658         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
659                 return; /* This is not an optprobe nor optimized */
660
661         op = container_of(p, struct optimized_kprobe, kp);
662         if (!kprobe_optimized(p)) {
663                 /* Unoptimized or unoptimizing case */
664                 if (force && !list_empty(&op->list)) {
665                         /*
666                          * Only if this is unoptimizing kprobe and forced,
667                          * forcibly unoptimize it. (No need to unoptimize
668                          * unoptimized kprobe again :)
669                          */
670                         list_del_init(&op->list);
671                         force_unoptimize_kprobe(op);
672                 }
673                 return;
674         }
675
676         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
677         if (!list_empty(&op->list)) {
678                 /* Dequeue from the optimization queue */
679                 list_del_init(&op->list);
680                 return;
681         }
682         /* Optimized kprobe case */
683         if (force)
684                 /* Forcibly update the code: this is a special case */
685                 force_unoptimize_kprobe(op);
686         else {
687                 list_add(&op->list, &unoptimizing_list);
688                 kick_kprobe_optimizer();
689         }
690 }
691
692 /* Cancel unoptimizing for reusing */
693 static void reuse_unused_kprobe(struct kprobe *ap)
694 {
695         struct optimized_kprobe *op;
696
697         BUG_ON(!kprobe_unused(ap));
698         /*
699          * Unused kprobe MUST be on the way of delayed unoptimizing (means
700          * there is still a relative jump) and disabled.
701          */
702         op = container_of(ap, struct optimized_kprobe, kp);
703         if (unlikely(list_empty(&op->list)))
704                 printk(KERN_WARNING "Warning: found a stray unused "
705                         "aggrprobe@%p\n", ap->addr);
706         /* Enable the probe again */
707         ap->flags &= ~KPROBE_FLAG_DISABLED;
708         /* Optimize it again (remove from op->list) */
709         BUG_ON(!kprobe_optready(ap));
710         optimize_kprobe(ap);
711 }
712
713 /* Remove optimized instructions */
714 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
715 {
716         struct optimized_kprobe *op;
717
718         op = container_of(p, struct optimized_kprobe, kp);
719         if (!list_empty(&op->list))
720                 /* Dequeue from the (un)optimization queue */
721                 list_del_init(&op->list);
722
723         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724         /* Don't touch the code, because it is already freed. */
725         arch_remove_optimized_kprobe(op);
726 }
727
728 /* Try to prepare optimized instructions */
729 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
730 {
731         struct optimized_kprobe *op;
732
733         op = container_of(p, struct optimized_kprobe, kp);
734         arch_prepare_optimized_kprobe(op);
735 }
736
737 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
738 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
739 {
740         struct optimized_kprobe *op;
741
742         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
743         if (!op)
744                 return NULL;
745
746         INIT_LIST_HEAD(&op->list);
747         op->kp.addr = p->addr;
748         arch_prepare_optimized_kprobe(op);
749
750         return &op->kp;
751 }
752
753 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
754
755 /*
756  * Prepare an optimized_kprobe and optimize it
757  * NOTE: p must be a normal registered kprobe
758  */
759 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
760 {
761         struct kprobe *ap;
762         struct optimized_kprobe *op;
763
764         ap = alloc_aggr_kprobe(p);
765         if (!ap)
766                 return;
767
768         op = container_of(ap, struct optimized_kprobe, kp);
769         if (!arch_prepared_optinsn(&op->optinsn)) {
770                 /* If failed to setup optimizing, fallback to kprobe */
771                 arch_remove_optimized_kprobe(op);
772                 kfree(op);
773                 return;
774         }
775
776         init_aggr_kprobe(ap, p);
777         optimize_kprobe(ap);
778 }
779
780 #ifdef CONFIG_SYSCTL
781 /* This should be called with kprobe_mutex locked */
782 static void __kprobes optimize_all_kprobes(void)
783 {
784         struct hlist_head *head;
785         struct hlist_node *node;
786         struct kprobe *p;
787         unsigned int i;
788
789         /* If optimization is already allowed, just return */
790         if (kprobes_allow_optimization)
791                 return;
792
793         kprobes_allow_optimization = true;
794         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
795                 head = &kprobe_table[i];
796                 hlist_for_each_entry_rcu(p, node, head, hlist)
797                         if (!kprobe_disabled(p))
798                                 optimize_kprobe(p);
799         }
800         printk(KERN_INFO "Kprobes globally optimized\n");
801 }
802
803 /* This should be called with kprobe_mutex locked */
804 static void __kprobes unoptimize_all_kprobes(void)
805 {
806         struct hlist_head *head;
807         struct hlist_node *node;
808         struct kprobe *p;
809         unsigned int i;
810
811         /* If optimization is already prohibited, just return */
812         if (!kprobes_allow_optimization)
813                 return;
814
815         kprobes_allow_optimization = false;
816         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817                 head = &kprobe_table[i];
818                 hlist_for_each_entry_rcu(p, node, head, hlist) {
819                         if (!kprobe_disabled(p))
820                                 unoptimize_kprobe(p, false);
821                 }
822         }
823         /* Wait for unoptimizing completion */
824         wait_for_kprobe_optimizer();
825         printk(KERN_INFO "Kprobes globally unoptimized\n");
826 }
827
828 int sysctl_kprobes_optimization;
829 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
830                                       void __user *buffer, size_t *length,
831                                       loff_t *ppos)
832 {
833         int ret;
834
835         mutex_lock(&kprobe_mutex);
836         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
837         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
838
839         if (sysctl_kprobes_optimization)
840                 optimize_all_kprobes();
841         else
842                 unoptimize_all_kprobes();
843         mutex_unlock(&kprobe_mutex);
844
845         return ret;
846 }
847 #endif /* CONFIG_SYSCTL */
848
849 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
850 static void __kprobes __arm_kprobe(struct kprobe *p)
851 {
852         struct kprobe *_p;
853
854         /* Check collision with other optimized kprobes */
855         _p = get_optimized_kprobe((unsigned long)p->addr);
856         if (unlikely(_p))
857                 /* Fallback to unoptimized kprobe */
858                 unoptimize_kprobe(_p, true);
859
860         arch_arm_kprobe(p);
861         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
862 }
863
864 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
865 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
866 {
867         struct kprobe *_p;
868
869         unoptimize_kprobe(p, false);    /* Try to unoptimize */
870
871         if (!kprobe_queued(p)) {
872                 arch_disarm_kprobe(p);
873                 /* If another kprobe was blocked, optimize it. */
874                 _p = get_optimized_kprobe((unsigned long)p->addr);
875                 if (unlikely(_p) && reopt)
876                         optimize_kprobe(_p);
877         }
878         /* TODO: reoptimize others after unoptimized this probe */
879 }
880
881 #else /* !CONFIG_OPTPROBES */
882
883 #define optimize_kprobe(p)                      do {} while (0)
884 #define unoptimize_kprobe(p, f)                 do {} while (0)
885 #define kill_optimized_kprobe(p)                do {} while (0)
886 #define prepare_optimized_kprobe(p)             do {} while (0)
887 #define try_to_optimize_kprobe(p)               do {} while (0)
888 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
889 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
890 #define kprobe_disarmed(p)                      kprobe_disabled(p)
891 #define wait_for_kprobe_optimizer()             do {} while (0)
892
893 /* There should be no unused kprobes can be reused without optimization */
894 static void reuse_unused_kprobe(struct kprobe *ap)
895 {
896         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
897         BUG_ON(kprobe_unused(ap));
898 }
899
900 static __kprobes void free_aggr_kprobe(struct kprobe *p)
901 {
902         arch_remove_kprobe(p);
903         kfree(p);
904 }
905
906 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
907 {
908         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
909 }
910 #endif /* CONFIG_OPTPROBES */
911
912 /* Arm a kprobe with text_mutex */
913 static void __kprobes arm_kprobe(struct kprobe *kp)
914 {
915         /*
916          * Here, since __arm_kprobe() doesn't use stop_machine(),
917          * this doesn't cause deadlock on text_mutex. So, we don't
918          * need get_online_cpus().
919          */
920         mutex_lock(&text_mutex);
921         __arm_kprobe(kp);
922         mutex_unlock(&text_mutex);
923 }
924
925 /* Disarm a kprobe with text_mutex */
926 static void __kprobes disarm_kprobe(struct kprobe *kp)
927 {
928         /* Ditto */
929         mutex_lock(&text_mutex);
930         __disarm_kprobe(kp, true);
931         mutex_unlock(&text_mutex);
932 }
933
934 /*
935  * Aggregate handlers for multiple kprobes support - these handlers
936  * take care of invoking the individual kprobe handlers on p->list
937  */
938 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
939 {
940         struct kprobe *kp;
941
942         list_for_each_entry_rcu(kp, &p->list, list) {
943                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
944                         set_kprobe_instance(kp);
945                         if (kp->pre_handler(kp, regs))
946                                 return 1;
947                 }
948                 reset_kprobe_instance();
949         }
950         return 0;
951 }
952
953 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
954                                         unsigned long flags)
955 {
956         struct kprobe *kp;
957
958         list_for_each_entry_rcu(kp, &p->list, list) {
959                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
960                         set_kprobe_instance(kp);
961                         kp->post_handler(kp, regs, flags);
962                         reset_kprobe_instance();
963                 }
964         }
965 }
966
967 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
968                                         int trapnr)
969 {
970         struct kprobe *cur = __get_cpu_var(kprobe_instance);
971
972         /*
973          * if we faulted "during" the execution of a user specified
974          * probe handler, invoke just that probe's fault handler
975          */
976         if (cur && cur->fault_handler) {
977                 if (cur->fault_handler(cur, regs, trapnr))
978                         return 1;
979         }
980         return 0;
981 }
982
983 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
984 {
985         struct kprobe *cur = __get_cpu_var(kprobe_instance);
986         int ret = 0;
987
988         if (cur && cur->break_handler) {
989                 if (cur->break_handler(cur, regs))
990                         ret = 1;
991         }
992         reset_kprobe_instance();
993         return ret;
994 }
995
996 /* Walks the list and increments nmissed count for multiprobe case */
997 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
998 {
999         struct kprobe *kp;
1000         if (!kprobe_aggrprobe(p)) {
1001                 p->nmissed++;
1002         } else {
1003                 list_for_each_entry_rcu(kp, &p->list, list)
1004                         kp->nmissed++;
1005         }
1006         return;
1007 }
1008
1009 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1010                                 struct hlist_head *head)
1011 {
1012         struct kretprobe *rp = ri->rp;
1013
1014         /* remove rp inst off the rprobe_inst_table */
1015         hlist_del(&ri->hlist);
1016         INIT_HLIST_NODE(&ri->hlist);
1017         if (likely(rp)) {
1018                 spin_lock(&rp->lock);
1019                 hlist_add_head(&ri->hlist, &rp->free_instances);
1020                 spin_unlock(&rp->lock);
1021         } else
1022                 /* Unregistering */
1023                 hlist_add_head(&ri->hlist, head);
1024 }
1025
1026 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1027                          struct hlist_head **head, unsigned long *flags)
1028 __acquires(hlist_lock)
1029 {
1030         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1031         spinlock_t *hlist_lock;
1032
1033         *head = &kretprobe_inst_table[hash];
1034         hlist_lock = kretprobe_table_lock_ptr(hash);
1035         spin_lock_irqsave(hlist_lock, *flags);
1036 }
1037
1038 static void __kprobes kretprobe_table_lock(unsigned long hash,
1039         unsigned long *flags)
1040 __acquires(hlist_lock)
1041 {
1042         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1043         spin_lock_irqsave(hlist_lock, *flags);
1044 }
1045
1046 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1047         unsigned long *flags)
1048 __releases(hlist_lock)
1049 {
1050         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1051         spinlock_t *hlist_lock;
1052
1053         hlist_lock = kretprobe_table_lock_ptr(hash);
1054         spin_unlock_irqrestore(hlist_lock, *flags);
1055 }
1056
1057 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1058        unsigned long *flags)
1059 __releases(hlist_lock)
1060 {
1061         spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1062         spin_unlock_irqrestore(hlist_lock, *flags);
1063 }
1064
1065 /*
1066  * This function is called from finish_task_switch when task tk becomes dead,
1067  * so that we can recycle any function-return probe instances associated
1068  * with this task. These left over instances represent probed functions
1069  * that have been called but will never return.
1070  */
1071 void __kprobes kprobe_flush_task(struct task_struct *tk)
1072 {
1073         struct kretprobe_instance *ri;
1074         struct hlist_head *head, empty_rp;
1075         struct hlist_node *node, *tmp;
1076         unsigned long hash, flags = 0;
1077
1078         if (unlikely(!kprobes_initialized))
1079                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1080                 return;
1081
1082         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1083         head = &kretprobe_inst_table[hash];
1084         kretprobe_table_lock(hash, &flags);
1085         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1086                 if (ri->task == tk)
1087                         recycle_rp_inst(ri, &empty_rp);
1088         }
1089         kretprobe_table_unlock(hash, &flags);
1090         INIT_HLIST_HEAD(&empty_rp);
1091         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1092                 hlist_del(&ri->hlist);
1093                 kfree(ri);
1094         }
1095 }
1096
1097 static inline void free_rp_inst(struct kretprobe *rp)
1098 {
1099         struct kretprobe_instance *ri;
1100         struct hlist_node *pos, *next;
1101
1102         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1103                 hlist_del(&ri->hlist);
1104                 kfree(ri);
1105         }
1106 }
1107
1108 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1109 {
1110         unsigned long flags, hash;
1111         struct kretprobe_instance *ri;
1112         struct hlist_node *pos, *next;
1113         struct hlist_head *head;
1114
1115         /* No race here */
1116         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1117                 kretprobe_table_lock(hash, &flags);
1118                 head = &kretprobe_inst_table[hash];
1119                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1120                         if (ri->rp == rp)
1121                                 ri->rp = NULL;
1122                 }
1123                 kretprobe_table_unlock(hash, &flags);
1124         }
1125         free_rp_inst(rp);
1126 }
1127
1128 /*
1129 * Add the new probe to ap->list. Fail if this is the
1130 * second jprobe at the address - two jprobes can't coexist
1131 */
1132 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1133 {
1134         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1135
1136         if (p->break_handler || p->post_handler)
1137                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1138
1139         if (p->break_handler) {
1140                 if (ap->break_handler)
1141                         return -EEXIST;
1142                 list_add_tail_rcu(&p->list, &ap->list);
1143                 ap->break_handler = aggr_break_handler;
1144         } else
1145                 list_add_rcu(&p->list, &ap->list);
1146         if (p->post_handler && !ap->post_handler)
1147                 ap->post_handler = aggr_post_handler;
1148
1149         if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1150                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1151                 if (!kprobes_all_disarmed)
1152                         /* Arm the breakpoint again. */
1153                         __arm_kprobe(ap);
1154         }
1155         return 0;
1156 }
1157
1158 /*
1159  * Fill in the required fields of the "manager kprobe". Replace the
1160  * earlier kprobe in the hlist with the manager kprobe
1161  */
1162 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1163 {
1164         /* Copy p's insn slot to ap */
1165         copy_kprobe(p, ap);
1166         flush_insn_slot(ap);
1167         ap->addr = p->addr;
1168         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1169         ap->pre_handler = aggr_pre_handler;
1170         ap->fault_handler = aggr_fault_handler;
1171         /* We don't care the kprobe which has gone. */
1172         if (p->post_handler && !kprobe_gone(p))
1173                 ap->post_handler = aggr_post_handler;
1174         if (p->break_handler && !kprobe_gone(p))
1175                 ap->break_handler = aggr_break_handler;
1176
1177         INIT_LIST_HEAD(&ap->list);
1178         INIT_HLIST_NODE(&ap->hlist);
1179
1180         list_add_rcu(&p->list, &ap->list);
1181         hlist_replace_rcu(&p->hlist, &ap->hlist);
1182 }
1183
1184 /*
1185  * This is the second or subsequent kprobe at the address - handle
1186  * the intricacies
1187  */
1188 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1189                                           struct kprobe *p)
1190 {
1191         int ret = 0;
1192         struct kprobe *ap = orig_p;
1193
1194         if (!kprobe_aggrprobe(orig_p)) {
1195                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1196                 ap = alloc_aggr_kprobe(orig_p);
1197                 if (!ap)
1198                         return -ENOMEM;
1199                 init_aggr_kprobe(ap, orig_p);
1200         } else if (kprobe_unused(ap))
1201                 /* This probe is going to die. Rescue it */
1202                 reuse_unused_kprobe(ap);
1203
1204         if (kprobe_gone(ap)) {
1205                 /*
1206                  * Attempting to insert new probe at the same location that
1207                  * had a probe in the module vaddr area which already
1208                  * freed. So, the instruction slot has already been
1209                  * released. We need a new slot for the new probe.
1210                  */
1211                 ret = arch_prepare_kprobe(ap);
1212                 if (ret)
1213                         /*
1214                          * Even if fail to allocate new slot, don't need to
1215                          * free aggr_probe. It will be used next time, or
1216                          * freed by unregister_kprobe.
1217                          */
1218                         return ret;
1219
1220                 /* Prepare optimized instructions if possible. */
1221                 prepare_optimized_kprobe(ap);
1222
1223                 /*
1224                  * Clear gone flag to prevent allocating new slot again, and
1225                  * set disabled flag because it is not armed yet.
1226                  */
1227                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1228                             | KPROBE_FLAG_DISABLED;
1229         }
1230
1231         /* Copy ap's insn slot to p */
1232         copy_kprobe(ap, p);
1233         return add_new_kprobe(ap, p);
1234 }
1235
1236 static int __kprobes in_kprobes_functions(unsigned long addr)
1237 {
1238         struct kprobe_blackpoint *kb;
1239
1240         if (addr >= (unsigned long)__kprobes_text_start &&
1241             addr < (unsigned long)__kprobes_text_end)
1242                 return -EINVAL;
1243         /*
1244          * If there exists a kprobe_blacklist, verify and
1245          * fail any probe registration in the prohibited area
1246          */
1247         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1248                 if (kb->start_addr) {
1249                         if (addr >= kb->start_addr &&
1250                             addr < (kb->start_addr + kb->range))
1251                                 return -EINVAL;
1252                 }
1253         }
1254         return 0;
1255 }
1256
1257 /*
1258  * If we have a symbol_name argument, look it up and add the offset field
1259  * to it. This way, we can specify a relative address to a symbol.
1260  */
1261 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1262 {
1263         kprobe_opcode_t *addr = p->addr;
1264         if (p->symbol_name) {
1265                 if (addr)
1266                         return NULL;
1267                 kprobe_lookup_name(p->symbol_name, addr);
1268         }
1269
1270         if (!addr)
1271                 return NULL;
1272         return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1273 }
1274
1275 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1276 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1277 {
1278         struct kprobe *ap, *list_p;
1279
1280         ap = get_kprobe(p->addr);
1281         if (unlikely(!ap))
1282                 return NULL;
1283
1284         if (p != ap) {
1285                 list_for_each_entry_rcu(list_p, &ap->list, list)
1286                         if (list_p == p)
1287                         /* kprobe p is a valid probe */
1288                                 goto valid;
1289                 return NULL;
1290         }
1291 valid:
1292         return ap;
1293 }
1294
1295 /* Return error if the kprobe is being re-registered */
1296 static inline int check_kprobe_rereg(struct kprobe *p)
1297 {
1298         int ret = 0;
1299
1300         mutex_lock(&kprobe_mutex);
1301         if (__get_valid_kprobe(p))
1302                 ret = -EINVAL;
1303         mutex_unlock(&kprobe_mutex);
1304
1305         return ret;
1306 }
1307
1308 int __kprobes register_kprobe(struct kprobe *p)
1309 {
1310         int ret = 0;
1311         struct kprobe *old_p;
1312         struct module *probed_mod;
1313         kprobe_opcode_t *addr;
1314
1315         addr = kprobe_addr(p);
1316         if (!addr)
1317                 return -EINVAL;
1318         p->addr = addr;
1319
1320         ret = check_kprobe_rereg(p);
1321         if (ret)
1322                 return ret;
1323
1324         jump_label_lock();
1325         preempt_disable();
1326         if (!kernel_text_address((unsigned long) p->addr) ||
1327             in_kprobes_functions((unsigned long) p->addr) ||
1328             ftrace_text_reserved(p->addr, p->addr) ||
1329             jump_label_text_reserved(p->addr, p->addr))
1330                 goto fail_with_jump_label;
1331
1332         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1333         p->flags &= KPROBE_FLAG_DISABLED;
1334
1335         /*
1336          * Check if are we probing a module.
1337          */
1338         probed_mod = __module_text_address((unsigned long) p->addr);
1339         if (probed_mod) {
1340                 /*
1341                  * We must hold a refcount of the probed module while updating
1342                  * its code to prohibit unexpected unloading.
1343                  */
1344                 if (unlikely(!try_module_get(probed_mod)))
1345                         goto fail_with_jump_label;
1346
1347                 /*
1348                  * If the module freed .init.text, we couldn't insert
1349                  * kprobes in there.
1350                  */
1351                 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1352                     probed_mod->state != MODULE_STATE_COMING) {
1353                         module_put(probed_mod);
1354                         goto fail_with_jump_label;
1355                 }
1356         }
1357         preempt_enable();
1358         jump_label_unlock();
1359
1360         p->nmissed = 0;
1361         INIT_LIST_HEAD(&p->list);
1362         mutex_lock(&kprobe_mutex);
1363
1364         jump_label_lock(); /* needed to call jump_label_text_reserved() */
1365
1366         get_online_cpus();      /* For avoiding text_mutex deadlock. */
1367         mutex_lock(&text_mutex);
1368
1369         old_p = get_kprobe(p->addr);
1370         if (old_p) {
1371                 /* Since this may unoptimize old_p, locking text_mutex. */
1372                 ret = register_aggr_kprobe(old_p, p);
1373                 goto out;
1374         }
1375
1376         ret = arch_prepare_kprobe(p);
1377         if (ret)
1378                 goto out;
1379
1380         INIT_HLIST_NODE(&p->hlist);
1381         hlist_add_head_rcu(&p->hlist,
1382                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1383
1384         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1385                 __arm_kprobe(p);
1386
1387         /* Try to optimize kprobe */
1388         try_to_optimize_kprobe(p);
1389
1390 out:
1391         mutex_unlock(&text_mutex);
1392         put_online_cpus();
1393         jump_label_unlock();
1394         mutex_unlock(&kprobe_mutex);
1395
1396         if (probed_mod)
1397                 module_put(probed_mod);
1398
1399         return ret;
1400
1401 fail_with_jump_label:
1402         preempt_enable();
1403         jump_label_unlock();
1404         return -EINVAL;
1405 }
1406 EXPORT_SYMBOL_GPL(register_kprobe);
1407
1408 /* Check if all probes on the aggrprobe are disabled */
1409 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1410 {
1411         struct kprobe *kp;
1412
1413         list_for_each_entry_rcu(kp, &ap->list, list)
1414                 if (!kprobe_disabled(kp))
1415                         /*
1416                          * There is an active probe on the list.
1417                          * We can't disable this ap.
1418                          */
1419                         return 0;
1420
1421         return 1;
1422 }
1423
1424 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1425 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1426 {
1427         struct kprobe *orig_p;
1428
1429         /* Get an original kprobe for return */
1430         orig_p = __get_valid_kprobe(p);
1431         if (unlikely(orig_p == NULL))
1432                 return NULL;
1433
1434         if (!kprobe_disabled(p)) {
1435                 /* Disable probe if it is a child probe */
1436                 if (p != orig_p)
1437                         p->flags |= KPROBE_FLAG_DISABLED;
1438
1439                 /* Try to disarm and disable this/parent probe */
1440                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1441                         disarm_kprobe(orig_p);
1442                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1443                 }
1444         }
1445
1446         return orig_p;
1447 }
1448
1449 /*
1450  * Unregister a kprobe without a scheduler synchronization.
1451  */
1452 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1453 {
1454         struct kprobe *ap, *list_p;
1455
1456         /* Disable kprobe. This will disarm it if needed. */
1457         ap = __disable_kprobe(p);
1458         if (ap == NULL)
1459                 return -EINVAL;
1460
1461         if (ap == p)
1462                 /*
1463                  * This probe is an independent(and non-optimized) kprobe
1464                  * (not an aggrprobe). Remove from the hash list.
1465                  */
1466                 goto disarmed;
1467
1468         /* Following process expects this probe is an aggrprobe */
1469         WARN_ON(!kprobe_aggrprobe(ap));
1470
1471         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1472                 /*
1473                  * !disarmed could be happen if the probe is under delayed
1474                  * unoptimizing.
1475                  */
1476                 goto disarmed;
1477         else {
1478                 /* If disabling probe has special handlers, update aggrprobe */
1479                 if (p->break_handler && !kprobe_gone(p))
1480                         ap->break_handler = NULL;
1481                 if (p->post_handler && !kprobe_gone(p)) {
1482                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1483                                 if ((list_p != p) && (list_p->post_handler))
1484                                         goto noclean;
1485                         }
1486                         ap->post_handler = NULL;
1487                 }
1488 noclean:
1489                 /*
1490                  * Remove from the aggrprobe: this path will do nothing in
1491                  * __unregister_kprobe_bottom().
1492                  */
1493                 list_del_rcu(&p->list);
1494                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1495                         /*
1496                          * Try to optimize this probe again, because post
1497                          * handler may have been changed.
1498                          */
1499                         optimize_kprobe(ap);
1500         }
1501         return 0;
1502
1503 disarmed:
1504         BUG_ON(!kprobe_disarmed(ap));
1505         hlist_del_rcu(&ap->hlist);
1506         return 0;
1507 }
1508
1509 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1510 {
1511         struct kprobe *ap;
1512
1513         if (list_empty(&p->list))
1514                 /* This is an independent kprobe */
1515                 arch_remove_kprobe(p);
1516         else if (list_is_singular(&p->list)) {
1517                 /* This is the last child of an aggrprobe */
1518                 ap = list_entry(p->list.next, struct kprobe, list);
1519                 list_del(&p->list);
1520                 free_aggr_kprobe(ap);
1521         }
1522         /* Otherwise, do nothing. */
1523 }
1524
1525 int __kprobes register_kprobes(struct kprobe **kps, int num)
1526 {
1527         int i, ret = 0;
1528
1529         if (num <= 0)
1530                 return -EINVAL;
1531         for (i = 0; i < num; i++) {
1532                 ret = register_kprobe(kps[i]);
1533                 if (ret < 0) {
1534                         if (i > 0)
1535                                 unregister_kprobes(kps, i);
1536                         break;
1537                 }
1538         }
1539         return ret;
1540 }
1541 EXPORT_SYMBOL_GPL(register_kprobes);
1542
1543 void __kprobes unregister_kprobe(struct kprobe *p)
1544 {
1545         unregister_kprobes(&p, 1);
1546 }
1547 EXPORT_SYMBOL_GPL(unregister_kprobe);
1548
1549 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1550 {
1551         int i;
1552
1553         if (num <= 0)
1554                 return;
1555         mutex_lock(&kprobe_mutex);
1556         for (i = 0; i < num; i++)
1557                 if (__unregister_kprobe_top(kps[i]) < 0)
1558                         kps[i]->addr = NULL;
1559         mutex_unlock(&kprobe_mutex);
1560
1561         synchronize_sched();
1562         for (i = 0; i < num; i++)
1563                 if (kps[i]->addr)
1564                         __unregister_kprobe_bottom(kps[i]);
1565 }
1566 EXPORT_SYMBOL_GPL(unregister_kprobes);
1567
1568 static struct notifier_block kprobe_exceptions_nb = {
1569         .notifier_call = kprobe_exceptions_notify,
1570         .priority = 0x7fffffff /* we need to be notified first */
1571 };
1572
1573 unsigned long __weak arch_deref_entry_point(void *entry)
1574 {
1575         return (unsigned long)entry;
1576 }
1577
1578 int __kprobes register_jprobes(struct jprobe **jps, int num)
1579 {
1580         struct jprobe *jp;
1581         int ret = 0, i;
1582
1583         if (num <= 0)
1584                 return -EINVAL;
1585         for (i = 0; i < num; i++) {
1586                 unsigned long addr, offset;
1587                 jp = jps[i];
1588                 addr = arch_deref_entry_point(jp->entry);
1589
1590                 /* Verify probepoint is a function entry point */
1591                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1592                     offset == 0) {
1593                         jp->kp.pre_handler = setjmp_pre_handler;
1594                         jp->kp.break_handler = longjmp_break_handler;
1595                         ret = register_kprobe(&jp->kp);
1596                 } else
1597                         ret = -EINVAL;
1598
1599                 if (ret < 0) {
1600                         if (i > 0)
1601                                 unregister_jprobes(jps, i);
1602                         break;
1603                 }
1604         }
1605         return ret;
1606 }
1607 EXPORT_SYMBOL_GPL(register_jprobes);
1608
1609 int __kprobes register_jprobe(struct jprobe *jp)
1610 {
1611         return register_jprobes(&jp, 1);
1612 }
1613 EXPORT_SYMBOL_GPL(register_jprobe);
1614
1615 void __kprobes unregister_jprobe(struct jprobe *jp)
1616 {
1617         unregister_jprobes(&jp, 1);
1618 }
1619 EXPORT_SYMBOL_GPL(unregister_jprobe);
1620
1621 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1622 {
1623         int i;
1624
1625         if (num <= 0)
1626                 return;
1627         mutex_lock(&kprobe_mutex);
1628         for (i = 0; i < num; i++)
1629                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1630                         jps[i]->kp.addr = NULL;
1631         mutex_unlock(&kprobe_mutex);
1632
1633         synchronize_sched();
1634         for (i = 0; i < num; i++) {
1635                 if (jps[i]->kp.addr)
1636                         __unregister_kprobe_bottom(&jps[i]->kp);
1637         }
1638 }
1639 EXPORT_SYMBOL_GPL(unregister_jprobes);
1640
1641 #ifdef CONFIG_KRETPROBES
1642 /*
1643  * This kprobe pre_handler is registered with every kretprobe. When probe
1644  * hits it will set up the return probe.
1645  */
1646 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1647                                            struct pt_regs *regs)
1648 {
1649         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1650         unsigned long hash, flags = 0;
1651         struct kretprobe_instance *ri;
1652
1653         /*TODO: consider to only swap the RA after the last pre_handler fired */
1654         hash = hash_ptr(current, KPROBE_HASH_BITS);
1655         spin_lock_irqsave(&rp->lock, flags);
1656         if (!hlist_empty(&rp->free_instances)) {
1657                 ri = hlist_entry(rp->free_instances.first,
1658                                 struct kretprobe_instance, hlist);
1659                 hlist_del(&ri->hlist);
1660                 spin_unlock_irqrestore(&rp->lock, flags);
1661
1662                 ri->rp = rp;
1663                 ri->task = current;
1664
1665                 if (rp->entry_handler && rp->entry_handler(ri, regs))
1666                         return 0;
1667
1668                 arch_prepare_kretprobe(ri, regs);
1669
1670                 /* XXX(hch): why is there no hlist_move_head? */
1671                 INIT_HLIST_NODE(&ri->hlist);
1672                 kretprobe_table_lock(hash, &flags);
1673                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1674                 kretprobe_table_unlock(hash, &flags);
1675         } else {
1676                 rp->nmissed++;
1677                 spin_unlock_irqrestore(&rp->lock, flags);
1678         }
1679         return 0;
1680 }
1681
1682 int __kprobes register_kretprobe(struct kretprobe *rp)
1683 {
1684         int ret = 0;
1685         struct kretprobe_instance *inst;
1686         int i;
1687         void *addr;
1688
1689         if (kretprobe_blacklist_size) {
1690                 addr = kprobe_addr(&rp->kp);
1691                 if (!addr)
1692                         return -EINVAL;
1693
1694                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1695                         if (kretprobe_blacklist[i].addr == addr)
1696                                 return -EINVAL;
1697                 }
1698         }
1699
1700         rp->kp.pre_handler = pre_handler_kretprobe;
1701         rp->kp.post_handler = NULL;
1702         rp->kp.fault_handler = NULL;
1703         rp->kp.break_handler = NULL;
1704
1705         /* Pre-allocate memory for max kretprobe instances */
1706         if (rp->maxactive <= 0) {
1707 #ifdef CONFIG_PREEMPT
1708                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1709 #else
1710                 rp->maxactive = num_possible_cpus();
1711 #endif
1712         }
1713         spin_lock_init(&rp->lock);
1714         INIT_HLIST_HEAD(&rp->free_instances);
1715         for (i = 0; i < rp->maxactive; i++) {
1716                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1717                                rp->data_size, GFP_KERNEL);
1718                 if (inst == NULL) {
1719                         free_rp_inst(rp);
1720                         return -ENOMEM;
1721                 }
1722                 INIT_HLIST_NODE(&inst->hlist);
1723                 hlist_add_head(&inst->hlist, &rp->free_instances);
1724         }
1725
1726         rp->nmissed = 0;
1727         /* Establish function entry probe point */
1728         ret = register_kprobe(&rp->kp);
1729         if (ret != 0)
1730                 free_rp_inst(rp);
1731         return ret;
1732 }
1733 EXPORT_SYMBOL_GPL(register_kretprobe);
1734
1735 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1736 {
1737         int ret = 0, i;
1738
1739         if (num <= 0)
1740                 return -EINVAL;
1741         for (i = 0; i < num; i++) {
1742                 ret = register_kretprobe(rps[i]);
1743                 if (ret < 0) {
1744                         if (i > 0)
1745                                 unregister_kretprobes(rps, i);
1746                         break;
1747                 }
1748         }
1749         return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(register_kretprobes);
1752
1753 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1754 {
1755         unregister_kretprobes(&rp, 1);
1756 }
1757 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1758
1759 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1760 {
1761         int i;
1762
1763         if (num <= 0)
1764                 return;
1765         mutex_lock(&kprobe_mutex);
1766         for (i = 0; i < num; i++)
1767                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1768                         rps[i]->kp.addr = NULL;
1769         mutex_unlock(&kprobe_mutex);
1770
1771         synchronize_sched();
1772         for (i = 0; i < num; i++) {
1773                 if (rps[i]->kp.addr) {
1774                         __unregister_kprobe_bottom(&rps[i]->kp);
1775                         cleanup_rp_inst(rps[i]);
1776                 }
1777         }
1778 }
1779 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1780
1781 #else /* CONFIG_KRETPROBES */
1782 int __kprobes register_kretprobe(struct kretprobe *rp)
1783 {
1784         return -ENOSYS;
1785 }
1786 EXPORT_SYMBOL_GPL(register_kretprobe);
1787
1788 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1789 {
1790         return -ENOSYS;
1791 }
1792 EXPORT_SYMBOL_GPL(register_kretprobes);
1793
1794 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1795 {
1796 }
1797 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1798
1799 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1800 {
1801 }
1802 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1803
1804 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1805                                            struct pt_regs *regs)
1806 {
1807         return 0;
1808 }
1809
1810 #endif /* CONFIG_KRETPROBES */
1811
1812 /* Set the kprobe gone and remove its instruction buffer. */
1813 static void __kprobes kill_kprobe(struct kprobe *p)
1814 {
1815         struct kprobe *kp;
1816
1817         p->flags |= KPROBE_FLAG_GONE;
1818         if (kprobe_aggrprobe(p)) {
1819                 /*
1820                  * If this is an aggr_kprobe, we have to list all the
1821                  * chained probes and mark them GONE.
1822                  */
1823                 list_for_each_entry_rcu(kp, &p->list, list)
1824                         kp->flags |= KPROBE_FLAG_GONE;
1825                 p->post_handler = NULL;
1826                 p->break_handler = NULL;
1827                 kill_optimized_kprobe(p);
1828         }
1829         /*
1830          * Here, we can remove insn_slot safely, because no thread calls
1831          * the original probed function (which will be freed soon) any more.
1832          */
1833         arch_remove_kprobe(p);
1834 }
1835
1836 /* Disable one kprobe */
1837 int __kprobes disable_kprobe(struct kprobe *kp)
1838 {
1839         int ret = 0;
1840
1841         mutex_lock(&kprobe_mutex);
1842
1843         /* Disable this kprobe */
1844         if (__disable_kprobe(kp) == NULL)
1845                 ret = -EINVAL;
1846
1847         mutex_unlock(&kprobe_mutex);
1848         return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(disable_kprobe);
1851
1852 /* Enable one kprobe */
1853 int __kprobes enable_kprobe(struct kprobe *kp)
1854 {
1855         int ret = 0;
1856         struct kprobe *p;
1857
1858         mutex_lock(&kprobe_mutex);
1859
1860         /* Check whether specified probe is valid. */
1861         p = __get_valid_kprobe(kp);
1862         if (unlikely(p == NULL)) {
1863                 ret = -EINVAL;
1864                 goto out;
1865         }
1866
1867         if (kprobe_gone(kp)) {
1868                 /* This kprobe has gone, we couldn't enable it. */
1869                 ret = -EINVAL;
1870                 goto out;
1871         }
1872
1873         if (p != kp)
1874                 kp->flags &= ~KPROBE_FLAG_DISABLED;
1875
1876         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1877                 p->flags &= ~KPROBE_FLAG_DISABLED;
1878                 arm_kprobe(p);
1879         }
1880 out:
1881         mutex_unlock(&kprobe_mutex);
1882         return ret;
1883 }
1884 EXPORT_SYMBOL_GPL(enable_kprobe);
1885
1886 void __kprobes dump_kprobe(struct kprobe *kp)
1887 {
1888         printk(KERN_WARNING "Dumping kprobe:\n");
1889         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1890                kp->symbol_name, kp->addr, kp->offset);
1891 }
1892
1893 /* Module notifier call back, checking kprobes on the module */
1894 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1895                                              unsigned long val, void *data)
1896 {
1897         struct module *mod = data;
1898         struct hlist_head *head;
1899         struct hlist_node *node;
1900         struct kprobe *p;
1901         unsigned int i;
1902         int checkcore = (val == MODULE_STATE_GOING);
1903
1904         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1905                 return NOTIFY_DONE;
1906
1907         /*
1908          * When MODULE_STATE_GOING was notified, both of module .text and
1909          * .init.text sections would be freed. When MODULE_STATE_LIVE was
1910          * notified, only .init.text section would be freed. We need to
1911          * disable kprobes which have been inserted in the sections.
1912          */
1913         mutex_lock(&kprobe_mutex);
1914         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1915                 head = &kprobe_table[i];
1916                 hlist_for_each_entry_rcu(p, node, head, hlist)
1917                         if (within_module_init((unsigned long)p->addr, mod) ||
1918                             (checkcore &&
1919                              within_module_core((unsigned long)p->addr, mod))) {
1920                                 /*
1921                                  * The vaddr this probe is installed will soon
1922                                  * be vfreed buy not synced to disk. Hence,
1923                                  * disarming the breakpoint isn't needed.
1924                                  */
1925                                 kill_kprobe(p);
1926                         }
1927         }
1928         mutex_unlock(&kprobe_mutex);
1929         return NOTIFY_DONE;
1930 }
1931
1932 static struct notifier_block kprobe_module_nb = {
1933         .notifier_call = kprobes_module_callback,
1934         .priority = 0
1935 };
1936
1937 static int __init init_kprobes(void)
1938 {
1939         int i, err = 0;
1940         unsigned long offset = 0, size = 0;
1941         char *modname, namebuf[128];
1942         const char *symbol_name;
1943         void *addr;
1944         struct kprobe_blackpoint *kb;
1945
1946         /* FIXME allocate the probe table, currently defined statically */
1947         /* initialize all list heads */
1948         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1949                 INIT_HLIST_HEAD(&kprobe_table[i]);
1950                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1951                 spin_lock_init(&(kretprobe_table_locks[i].lock));
1952         }
1953
1954         /*
1955          * Lookup and populate the kprobe_blacklist.
1956          *
1957          * Unlike the kretprobe blacklist, we'll need to determine
1958          * the range of addresses that belong to the said functions,
1959          * since a kprobe need not necessarily be at the beginning
1960          * of a function.
1961          */
1962         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1963                 kprobe_lookup_name(kb->name, addr);
1964                 if (!addr)
1965                         continue;
1966
1967                 kb->start_addr = (unsigned long)addr;
1968                 symbol_name = kallsyms_lookup(kb->start_addr,
1969                                 &size, &offset, &modname, namebuf);
1970                 if (!symbol_name)
1971                         kb->range = 0;
1972                 else
1973                         kb->range = size;
1974         }
1975
1976         if (kretprobe_blacklist_size) {
1977                 /* lookup the function address from its name */
1978                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1979                         kprobe_lookup_name(kretprobe_blacklist[i].name,
1980                                            kretprobe_blacklist[i].addr);
1981                         if (!kretprobe_blacklist[i].addr)
1982                                 printk("kretprobe: lookup failed: %s\n",
1983                                        kretprobe_blacklist[i].name);
1984                 }
1985         }
1986
1987 #if defined(CONFIG_OPTPROBES)
1988 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1989         /* Init kprobe_optinsn_slots */
1990         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1991 #endif
1992         /* By default, kprobes can be optimized */
1993         kprobes_allow_optimization = true;
1994 #endif
1995
1996         /* By default, kprobes are armed */
1997         kprobes_all_disarmed = false;
1998
1999         err = arch_init_kprobes();
2000         if (!err)
2001                 err = register_die_notifier(&kprobe_exceptions_nb);
2002         if (!err)
2003                 err = register_module_notifier(&kprobe_module_nb);
2004
2005         kprobes_initialized = (err == 0);
2006
2007         if (!err)
2008                 init_test_probes();
2009         return err;
2010 }
2011
2012 #ifdef CONFIG_DEBUG_FS
2013 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2014                 const char *sym, int offset, char *modname, struct kprobe *pp)
2015 {
2016         char *kprobe_type;
2017
2018         if (p->pre_handler == pre_handler_kretprobe)
2019                 kprobe_type = "r";
2020         else if (p->pre_handler == setjmp_pre_handler)
2021                 kprobe_type = "j";
2022         else
2023                 kprobe_type = "k";
2024
2025         if (sym)
2026                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2027                         p->addr, kprobe_type, sym, offset,
2028                         (modname ? modname : " "));
2029         else
2030                 seq_printf(pi, "%p  %s  %p ",
2031                         p->addr, kprobe_type, p->addr);
2032
2033         if (!pp)
2034                 pp = p;
2035         seq_printf(pi, "%s%s%s\n",
2036                 (kprobe_gone(p) ? "[GONE]" : ""),
2037                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2038                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2039 }
2040
2041 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2042 {
2043         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2044 }
2045
2046 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2047 {
2048         (*pos)++;
2049         if (*pos >= KPROBE_TABLE_SIZE)
2050                 return NULL;
2051         return pos;
2052 }
2053
2054 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2055 {
2056         /* Nothing to do */
2057 }
2058
2059 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2060 {
2061         struct hlist_head *head;
2062         struct hlist_node *node;
2063         struct kprobe *p, *kp;
2064         const char *sym = NULL;
2065         unsigned int i = *(loff_t *) v;
2066         unsigned long offset = 0;
2067         char *modname, namebuf[128];
2068
2069         head = &kprobe_table[i];
2070         preempt_disable();
2071         hlist_for_each_entry_rcu(p, node, head, hlist) {
2072                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2073                                         &offset, &modname, namebuf);
2074                 if (kprobe_aggrprobe(p)) {
2075                         list_for_each_entry_rcu(kp, &p->list, list)
2076                                 report_probe(pi, kp, sym, offset, modname, p);
2077                 } else
2078                         report_probe(pi, p, sym, offset, modname, NULL);
2079         }
2080         preempt_enable();
2081         return 0;
2082 }
2083
2084 static const struct seq_operations kprobes_seq_ops = {
2085         .start = kprobe_seq_start,
2086         .next  = kprobe_seq_next,
2087         .stop  = kprobe_seq_stop,
2088         .show  = show_kprobe_addr
2089 };
2090
2091 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2092 {
2093         return seq_open(filp, &kprobes_seq_ops);
2094 }
2095
2096 static const struct file_operations debugfs_kprobes_operations = {
2097         .open           = kprobes_open,
2098         .read           = seq_read,
2099         .llseek         = seq_lseek,
2100         .release        = seq_release,
2101 };
2102
2103 static void __kprobes arm_all_kprobes(void)
2104 {
2105         struct hlist_head *head;
2106         struct hlist_node *node;
2107         struct kprobe *p;
2108         unsigned int i;
2109
2110         mutex_lock(&kprobe_mutex);
2111
2112         /* If kprobes are armed, just return */
2113         if (!kprobes_all_disarmed)
2114                 goto already_enabled;
2115
2116         /* Arming kprobes doesn't optimize kprobe itself */
2117         mutex_lock(&text_mutex);
2118         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2119                 head = &kprobe_table[i];
2120                 hlist_for_each_entry_rcu(p, node, head, hlist)
2121                         if (!kprobe_disabled(p))
2122                                 __arm_kprobe(p);
2123         }
2124         mutex_unlock(&text_mutex);
2125
2126         kprobes_all_disarmed = false;
2127         printk(KERN_INFO "Kprobes globally enabled\n");
2128
2129 already_enabled:
2130         mutex_unlock(&kprobe_mutex);
2131         return;
2132 }
2133
2134 static void __kprobes disarm_all_kprobes(void)
2135 {
2136         struct hlist_head *head;
2137         struct hlist_node *node;
2138         struct kprobe *p;
2139         unsigned int i;
2140
2141         mutex_lock(&kprobe_mutex);
2142
2143         /* If kprobes are already disarmed, just return */
2144         if (kprobes_all_disarmed) {
2145                 mutex_unlock(&kprobe_mutex);
2146                 return;
2147         }
2148
2149         kprobes_all_disarmed = true;
2150         printk(KERN_INFO "Kprobes globally disabled\n");
2151
2152         mutex_lock(&text_mutex);
2153         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2154                 head = &kprobe_table[i];
2155                 hlist_for_each_entry_rcu(p, node, head, hlist) {
2156                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2157                                 __disarm_kprobe(p, false);
2158                 }
2159         }
2160         mutex_unlock(&text_mutex);
2161         mutex_unlock(&kprobe_mutex);
2162
2163         /* Wait for disarming all kprobes by optimizer */
2164         wait_for_kprobe_optimizer();
2165 }
2166
2167 /*
2168  * XXX: The debugfs bool file interface doesn't allow for callbacks
2169  * when the bool state is switched. We can reuse that facility when
2170  * available
2171  */
2172 static ssize_t read_enabled_file_bool(struct file *file,
2173                char __user *user_buf, size_t count, loff_t *ppos)
2174 {
2175         char buf[3];
2176
2177         if (!kprobes_all_disarmed)
2178                 buf[0] = '1';
2179         else
2180                 buf[0] = '0';
2181         buf[1] = '\n';
2182         buf[2] = 0x00;
2183         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2184 }
2185
2186 static ssize_t write_enabled_file_bool(struct file *file,
2187                const char __user *user_buf, size_t count, loff_t *ppos)
2188 {
2189         char buf[32];
2190         int buf_size;
2191
2192         buf_size = min(count, (sizeof(buf)-1));
2193         if (copy_from_user(buf, user_buf, buf_size))
2194                 return -EFAULT;
2195
2196         switch (buf[0]) {
2197         case 'y':
2198         case 'Y':
2199         case '1':
2200                 arm_all_kprobes();
2201                 break;
2202         case 'n':
2203         case 'N':
2204         case '0':
2205                 disarm_all_kprobes();
2206                 break;
2207         }
2208
2209         return count;
2210 }
2211
2212 static const struct file_operations fops_kp = {
2213         .read =         read_enabled_file_bool,
2214         .write =        write_enabled_file_bool,
2215         .llseek =       default_llseek,
2216 };
2217
2218 static int __kprobes debugfs_kprobe_init(void)
2219 {
2220         struct dentry *dir, *file;
2221         unsigned int value = 1;
2222
2223         dir = debugfs_create_dir("kprobes", NULL);
2224         if (!dir)
2225                 return -ENOMEM;
2226
2227         file = debugfs_create_file("list", 0444, dir, NULL,
2228                                 &debugfs_kprobes_operations);
2229         if (!file) {
2230                 debugfs_remove(dir);
2231                 return -ENOMEM;
2232         }
2233
2234         file = debugfs_create_file("enabled", 0600, dir,
2235                                         &value, &fops_kp);
2236         if (!file) {
2237                 debugfs_remove(dir);
2238                 return -ENOMEM;
2239         }
2240
2241         return 0;
2242 }
2243
2244 late_initcall(debugfs_kprobe_init);
2245 #endif /* CONFIG_DEBUG_FS */
2246
2247 module_init(init_kprobes);
2248
2249 /* defined in arch/.../kernel/kprobes.c */
2250 EXPORT_SYMBOL_GPL(jprobe_return);