futex: Always cleanup owner tid in unlock_pi
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/hugetlb.h>
64
65 #include <asm/futex.h>
66
67 #include "rtmutex_common.h"
68
69 int __read_mostly futex_cmpxchg_enabled;
70
71 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72
73 /*
74  * Futex flags used to encode options to functions and preserve them across
75  * restarts.
76  */
77 #define FLAGS_SHARED            0x01
78 #define FLAGS_CLOCKRT           0x02
79 #define FLAGS_HAS_TIMEOUT       0x04
80
81 /*
82  * Priority Inheritance state:
83  */
84 struct futex_pi_state {
85         /*
86          * list of 'owned' pi_state instances - these have to be
87          * cleaned up in do_exit() if the task exits prematurely:
88          */
89         struct list_head list;
90
91         /*
92          * The PI object:
93          */
94         struct rt_mutex pi_mutex;
95
96         struct task_struct *owner;
97         atomic_t refcount;
98
99         union futex_key key;
100 };
101
102 /**
103  * struct futex_q - The hashed futex queue entry, one per waiting task
104  * @list:               priority-sorted list of tasks waiting on this futex
105  * @task:               the task waiting on the futex
106  * @lock_ptr:           the hash bucket lock
107  * @key:                the key the futex is hashed on
108  * @pi_state:           optional priority inheritance state
109  * @rt_waiter:          rt_waiter storage for use with requeue_pi
110  * @requeue_pi_key:     the requeue_pi target futex key
111  * @bitset:             bitset for the optional bitmasked wakeup
112  *
113  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
114  * we can wake only the relevant ones (hashed queues may be shared).
115  *
116  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
117  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118  * The order of wakeup is always to make the first condition true, then
119  * the second.
120  *
121  * PI futexes are typically woken before they are removed from the hash list via
122  * the rt_mutex code. See unqueue_me_pi().
123  */
124 struct futex_q {
125         struct plist_node list;
126
127         struct task_struct *task;
128         spinlock_t *lock_ptr;
129         union futex_key key;
130         struct futex_pi_state *pi_state;
131         struct rt_mutex_waiter *rt_waiter;
132         union futex_key *requeue_pi_key;
133         u32 bitset;
134 };
135
136 static const struct futex_q futex_q_init = {
137         /* list gets initialized in queue_me()*/
138         .key = FUTEX_KEY_INIT,
139         .bitset = FUTEX_BITSET_MATCH_ANY
140 };
141
142 /*
143  * Hash buckets are shared by all the futex_keys that hash to the same
144  * location.  Each key may have multiple futex_q structures, one for each task
145  * waiting on a futex.
146  */
147 struct futex_hash_bucket {
148         spinlock_t lock;
149         struct plist_head chain;
150 };
151
152 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153
154 /*
155  * We hash on the keys returned from get_futex_key (see below).
156  */
157 static struct futex_hash_bucket *hash_futex(union futex_key *key)
158 {
159         u32 hash = jhash2((u32*)&key->both.word,
160                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161                           key->both.offset);
162         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
163 }
164
165 /*
166  * Return 1 if two futex_keys are equal, 0 otherwise.
167  */
168 static inline int match_futex(union futex_key *key1, union futex_key *key2)
169 {
170         return (key1 && key2
171                 && key1->both.word == key2->both.word
172                 && key1->both.ptr == key2->both.ptr
173                 && key1->both.offset == key2->both.offset);
174 }
175
176 /*
177  * Take a reference to the resource addressed by a key.
178  * Can be called while holding spinlocks.
179  *
180  */
181 static void get_futex_key_refs(union futex_key *key)
182 {
183         if (!key->both.ptr)
184                 return;
185
186         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187         case FUT_OFF_INODE:
188                 ihold(key->shared.inode);
189                 break;
190         case FUT_OFF_MMSHARED:
191                 atomic_inc(&key->private.mm->mm_count);
192                 break;
193         }
194 }
195
196 /*
197  * Drop a reference to the resource addressed by a key.
198  * The hash bucket spinlock must not be held.
199  */
200 static void drop_futex_key_refs(union futex_key *key)
201 {
202         if (!key->both.ptr) {
203                 /* If we're here then we tried to put a key we failed to get */
204                 WARN_ON_ONCE(1);
205                 return;
206         }
207
208         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209         case FUT_OFF_INODE:
210                 iput(key->shared.inode);
211                 break;
212         case FUT_OFF_MMSHARED:
213                 mmdrop(key->private.mm);
214                 break;
215         }
216 }
217
218 /**
219  * get_futex_key() - Get parameters which are the keys for a futex
220  * @uaddr:      virtual address of the futex
221  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222  * @key:        address where result is stored.
223  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
224  *              VERIFY_WRITE)
225  *
226  * Returns a negative error code or 0
227  * The key words are stored in *key on success.
228  *
229  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
230  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
231  * We can usually work out the index without swapping in the page.
232  *
233  * lock_page() might sleep, the caller should not hold a spinlock.
234  */
235 static int
236 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
237 {
238         unsigned long address = (unsigned long)uaddr;
239         struct mm_struct *mm = current->mm;
240         struct page *page, *page_head;
241         int err, ro = 0;
242
243         /*
244          * The futex address must be "naturally" aligned.
245          */
246         key->both.offset = address % PAGE_SIZE;
247         if (unlikely((address % sizeof(u32)) != 0))
248                 return -EINVAL;
249         address -= key->both.offset;
250
251         /*
252          * PROCESS_PRIVATE futexes are fast.
253          * As the mm cannot disappear under us and the 'key' only needs
254          * virtual address, we dont even have to find the underlying vma.
255          * Note : We do have to check 'uaddr' is a valid user address,
256          *        but access_ok() should be faster than find_vma()
257          */
258         if (!fshared) {
259                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
260                         return -EFAULT;
261                 key->private.mm = mm;
262                 key->private.address = address;
263                 get_futex_key_refs(key);
264                 return 0;
265         }
266
267 again:
268         err = get_user_pages_fast(address, 1, 1, &page);
269         /*
270          * If write access is not required (eg. FUTEX_WAIT), try
271          * and get read-only access.
272          */
273         if (err == -EFAULT && rw == VERIFY_READ) {
274                 err = get_user_pages_fast(address, 1, 0, &page);
275                 ro = 1;
276         }
277         if (err < 0)
278                 return err;
279         else
280                 err = 0;
281
282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
283         page_head = page;
284         if (unlikely(PageTail(page))) {
285                 put_page(page);
286                 /* serialize against __split_huge_page_splitting() */
287                 local_irq_disable();
288                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
289                         page_head = compound_head(page);
290                         /*
291                          * page_head is valid pointer but we must pin
292                          * it before taking the PG_lock and/or
293                          * PG_compound_lock. The moment we re-enable
294                          * irqs __split_huge_page_splitting() can
295                          * return and the head page can be freed from
296                          * under us. We can't take the PG_lock and/or
297                          * PG_compound_lock on a page that could be
298                          * freed from under us.
299                          */
300                         if (page != page_head) {
301                                 get_page(page_head);
302                                 put_page(page);
303                         }
304                         local_irq_enable();
305                 } else {
306                         local_irq_enable();
307                         goto again;
308                 }
309         }
310 #else
311         page_head = compound_head(page);
312         if (page != page_head) {
313                 get_page(page_head);
314                 put_page(page);
315         }
316 #endif
317
318         lock_page(page_head);
319
320         /*
321          * If page_head->mapping is NULL, then it cannot be a PageAnon
322          * page; but it might be the ZERO_PAGE or in the gate area or
323          * in a special mapping (all cases which we are happy to fail);
324          * or it may have been a good file page when get_user_pages_fast
325          * found it, but truncated or holepunched or subjected to
326          * invalidate_complete_page2 before we got the page lock (also
327          * cases which we are happy to fail).  And we hold a reference,
328          * so refcount care in invalidate_complete_page's remove_mapping
329          * prevents drop_caches from setting mapping to NULL beneath us.
330          *
331          * The case we do have to guard against is when memory pressure made
332          * shmem_writepage move it from filecache to swapcache beneath us:
333          * an unlikely race, but we do need to retry for page_head->mapping.
334          */
335         if (!page_head->mapping) {
336                 int shmem_swizzled = PageSwapCache(page_head);
337                 unlock_page(page_head);
338                 put_page(page_head);
339                 if (shmem_swizzled)
340                         goto again;
341                 return -EFAULT;
342         }
343
344         /*
345          * Private mappings are handled in a simple way.
346          *
347          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
348          * it's a read-only handle, it's expected that futexes attach to
349          * the object not the particular process.
350          */
351         if (PageAnon(page_head)) {
352                 /*
353                  * A RO anonymous page will never change and thus doesn't make
354                  * sense for futex operations.
355                  */
356                 if (ro) {
357                         err = -EFAULT;
358                         goto out;
359                 }
360
361                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
362                 key->private.mm = mm;
363                 key->private.address = address;
364         } else {
365                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
366                 key->shared.inode = page_head->mapping->host;
367                 key->shared.pgoff = basepage_index(page);
368         }
369
370         get_futex_key_refs(key);
371
372 out:
373         unlock_page(page_head);
374         put_page(page_head);
375         return err;
376 }
377
378 static inline void put_futex_key(union futex_key *key)
379 {
380         drop_futex_key_refs(key);
381 }
382
383 /**
384  * fault_in_user_writeable() - Fault in user address and verify RW access
385  * @uaddr:      pointer to faulting user space address
386  *
387  * Slow path to fixup the fault we just took in the atomic write
388  * access to @uaddr.
389  *
390  * We have no generic implementation of a non-destructive write to the
391  * user address. We know that we faulted in the atomic pagefault
392  * disabled section so we can as well avoid the #PF overhead by
393  * calling get_user_pages() right away.
394  */
395 static int fault_in_user_writeable(u32 __user *uaddr)
396 {
397         struct mm_struct *mm = current->mm;
398         int ret;
399
400         down_read(&mm->mmap_sem);
401         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
402                                FAULT_FLAG_WRITE);
403         up_read(&mm->mmap_sem);
404
405         return ret < 0 ? ret : 0;
406 }
407
408 /**
409  * futex_top_waiter() - Return the highest priority waiter on a futex
410  * @hb:         the hash bucket the futex_q's reside in
411  * @key:        the futex key (to distinguish it from other futex futex_q's)
412  *
413  * Must be called with the hb lock held.
414  */
415 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
416                                         union futex_key *key)
417 {
418         struct futex_q *this;
419
420         plist_for_each_entry(this, &hb->chain, list) {
421                 if (match_futex(&this->key, key))
422                         return this;
423         }
424         return NULL;
425 }
426
427 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
428                                       u32 uval, u32 newval)
429 {
430         int ret;
431
432         pagefault_disable();
433         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
434         pagefault_enable();
435
436         return ret;
437 }
438
439 static int get_futex_value_locked(u32 *dest, u32 __user *from)
440 {
441         int ret;
442
443         pagefault_disable();
444         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
445         pagefault_enable();
446
447         return ret ? -EFAULT : 0;
448 }
449
450
451 /*
452  * PI code:
453  */
454 static int refill_pi_state_cache(void)
455 {
456         struct futex_pi_state *pi_state;
457
458         if (likely(current->pi_state_cache))
459                 return 0;
460
461         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462
463         if (!pi_state)
464                 return -ENOMEM;
465
466         INIT_LIST_HEAD(&pi_state->list);
467         /* pi_mutex gets initialized later */
468         pi_state->owner = NULL;
469         atomic_set(&pi_state->refcount, 1);
470         pi_state->key = FUTEX_KEY_INIT;
471
472         current->pi_state_cache = pi_state;
473
474         return 0;
475 }
476
477 static struct futex_pi_state * alloc_pi_state(void)
478 {
479         struct futex_pi_state *pi_state = current->pi_state_cache;
480
481         WARN_ON(!pi_state);
482         current->pi_state_cache = NULL;
483
484         return pi_state;
485 }
486
487 static void free_pi_state(struct futex_pi_state *pi_state)
488 {
489         if (!atomic_dec_and_test(&pi_state->refcount))
490                 return;
491
492         /*
493          * If pi_state->owner is NULL, the owner is most probably dying
494          * and has cleaned up the pi_state already
495          */
496         if (pi_state->owner) {
497                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
498                 list_del_init(&pi_state->list);
499                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
500
501                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
502         }
503
504         if (current->pi_state_cache)
505                 kfree(pi_state);
506         else {
507                 /*
508                  * pi_state->list is already empty.
509                  * clear pi_state->owner.
510                  * refcount is at 0 - put it back to 1.
511                  */
512                 pi_state->owner = NULL;
513                 atomic_set(&pi_state->refcount, 1);
514                 current->pi_state_cache = pi_state;
515         }
516 }
517
518 /*
519  * Look up the task based on what TID userspace gave us.
520  * We dont trust it.
521  */
522 static struct task_struct * futex_find_get_task(pid_t pid)
523 {
524         struct task_struct *p;
525
526         rcu_read_lock();
527         p = find_task_by_vpid(pid);
528         if (p)
529                 get_task_struct(p);
530
531         rcu_read_unlock();
532
533         return p;
534 }
535
536 /*
537  * This task is holding PI mutexes at exit time => bad.
538  * Kernel cleans up PI-state, but userspace is likely hosed.
539  * (Robust-futex cleanup is separate and might save the day for userspace.)
540  */
541 void exit_pi_state_list(struct task_struct *curr)
542 {
543         struct list_head *next, *head = &curr->pi_state_list;
544         struct futex_pi_state *pi_state;
545         struct futex_hash_bucket *hb;
546         union futex_key key = FUTEX_KEY_INIT;
547
548         if (!futex_cmpxchg_enabled)
549                 return;
550         /*
551          * We are a ZOMBIE and nobody can enqueue itself on
552          * pi_state_list anymore, but we have to be careful
553          * versus waiters unqueueing themselves:
554          */
555         raw_spin_lock_irq(&curr->pi_lock);
556         while (!list_empty(head)) {
557
558                 next = head->next;
559                 pi_state = list_entry(next, struct futex_pi_state, list);
560                 key = pi_state->key;
561                 hb = hash_futex(&key);
562                 raw_spin_unlock_irq(&curr->pi_lock);
563
564                 spin_lock(&hb->lock);
565
566                 raw_spin_lock_irq(&curr->pi_lock);
567                 /*
568                  * We dropped the pi-lock, so re-check whether this
569                  * task still owns the PI-state:
570                  */
571                 if (head->next != next) {
572                         spin_unlock(&hb->lock);
573                         continue;
574                 }
575
576                 WARN_ON(pi_state->owner != curr);
577                 WARN_ON(list_empty(&pi_state->list));
578                 list_del_init(&pi_state->list);
579                 pi_state->owner = NULL;
580                 raw_spin_unlock_irq(&curr->pi_lock);
581
582                 rt_mutex_unlock(&pi_state->pi_mutex);
583
584                 spin_unlock(&hb->lock);
585
586                 raw_spin_lock_irq(&curr->pi_lock);
587         }
588         raw_spin_unlock_irq(&curr->pi_lock);
589 }
590
591 static int
592 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
593                 union futex_key *key, struct futex_pi_state **ps,
594                 struct task_struct *task)
595 {
596         struct futex_pi_state *pi_state = NULL;
597         struct futex_q *this, *next;
598         struct plist_head *head;
599         struct task_struct *p;
600         pid_t pid = uval & FUTEX_TID_MASK;
601
602         head = &hb->chain;
603
604         plist_for_each_entry_safe(this, next, head, list) {
605                 if (match_futex(&this->key, key)) {
606                         /*
607                          * Another waiter already exists - bump up
608                          * the refcount and return its pi_state:
609                          */
610                         pi_state = this->pi_state;
611                         /*
612                          * Userspace might have messed up non-PI and PI futexes
613                          */
614                         if (unlikely(!pi_state))
615                                 return -EINVAL;
616
617                         WARN_ON(!atomic_read(&pi_state->refcount));
618
619                         /*
620                          * When pi_state->owner is NULL then the owner died
621                          * and another waiter is on the fly. pi_state->owner
622                          * is fixed up by the task which acquires
623                          * pi_state->rt_mutex.
624                          *
625                          * We do not check for pid == 0 which can happen when
626                          * the owner died and robust_list_exit() cleared the
627                          * TID.
628                          */
629                         if (pid && pi_state->owner) {
630                                 /*
631                                  * Bail out if user space manipulated the
632                                  * futex value.
633                                  */
634                                 if (pid != task_pid_vnr(pi_state->owner))
635                                         return -EINVAL;
636                         }
637
638                         /*
639                          * Protect against a corrupted uval. If uval
640                          * is 0x80000000 then pid is 0 and the waiter
641                          * bit is set. So the deadlock check in the
642                          * calling code has failed and we did not fall
643                          * into the check above due to !pid.
644                          */
645                         if (task && pi_state->owner == task)
646                                 return -EDEADLK;
647
648                         atomic_inc(&pi_state->refcount);
649                         *ps = pi_state;
650
651                         return 0;
652                 }
653         }
654
655         /*
656          * We are the first waiter - try to look up the real owner and attach
657          * the new pi_state to it, but bail out when TID = 0
658          */
659         if (!pid)
660                 return -ESRCH;
661         p = futex_find_get_task(pid);
662         if (!p)
663                 return -ESRCH;
664
665         if (!p->mm) {
666                 put_task_struct(p);
667                 return -EPERM;
668         }
669
670         /*
671          * We need to look at the task state flags to figure out,
672          * whether the task is exiting. To protect against the do_exit
673          * change of the task flags, we do this protected by
674          * p->pi_lock:
675          */
676         raw_spin_lock_irq(&p->pi_lock);
677         if (unlikely(p->flags & PF_EXITING)) {
678                 /*
679                  * The task is on the way out. When PF_EXITPIDONE is
680                  * set, we know that the task has finished the
681                  * cleanup:
682                  */
683                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
684
685                 raw_spin_unlock_irq(&p->pi_lock);
686                 put_task_struct(p);
687                 return ret;
688         }
689
690         pi_state = alloc_pi_state();
691
692         /*
693          * Initialize the pi_mutex in locked state and make 'p'
694          * the owner of it:
695          */
696         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
697
698         /* Store the key for possible exit cleanups: */
699         pi_state->key = *key;
700
701         WARN_ON(!list_empty(&pi_state->list));
702         list_add(&pi_state->list, &p->pi_state_list);
703         pi_state->owner = p;
704         raw_spin_unlock_irq(&p->pi_lock);
705
706         put_task_struct(p);
707
708         *ps = pi_state;
709
710         return 0;
711 }
712
713 /**
714  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
715  * @uaddr:              the pi futex user address
716  * @hb:                 the pi futex hash bucket
717  * @key:                the futex key associated with uaddr and hb
718  * @ps:                 the pi_state pointer where we store the result of the
719  *                      lookup
720  * @task:               the task to perform the atomic lock work for.  This will
721  *                      be "current" except in the case of requeue pi.
722  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
723  *
724  * Returns:
725  *  0 - ready to wait
726  *  1 - acquired the lock
727  * <0 - error
728  *
729  * The hb->lock and futex_key refs shall be held by the caller.
730  */
731 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
732                                 union futex_key *key,
733                                 struct futex_pi_state **ps,
734                                 struct task_struct *task, int set_waiters)
735 {
736         int lock_taken, ret, force_take = 0;
737         u32 uval, newval, curval, vpid = task_pid_vnr(task);
738
739 retry:
740         ret = lock_taken = 0;
741
742         /*
743          * To avoid races, we attempt to take the lock here again
744          * (by doing a 0 -> TID atomic cmpxchg), while holding all
745          * the locks. It will most likely not succeed.
746          */
747         newval = vpid;
748         if (set_waiters)
749                 newval |= FUTEX_WAITERS;
750
751         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
752                 return -EFAULT;
753
754         /*
755          * Detect deadlocks.
756          */
757         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
758                 return -EDEADLK;
759
760         /*
761          * Surprise - we got the lock, but we do not trust user space at all.
762          */
763         if (unlikely(!curval)) {
764                 /*
765                  * We verify whether there is kernel state for this
766                  * futex. If not, we can safely assume, that the 0 ->
767                  * TID transition is correct. If state exists, we do
768                  * not bother to fixup the user space state as it was
769                  * corrupted already.
770                  */
771                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
772         }
773
774         uval = curval;
775
776         /*
777          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
778          * to wake at the next unlock.
779          */
780         newval = curval | FUTEX_WAITERS;
781
782         /*
783          * Should we force take the futex? See below.
784          */
785         if (unlikely(force_take)) {
786                 /*
787                  * Keep the OWNER_DIED and the WAITERS bit and set the
788                  * new TID value.
789                  */
790                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
791                 force_take = 0;
792                 lock_taken = 1;
793         }
794
795         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
796                 return -EFAULT;
797         if (unlikely(curval != uval))
798                 goto retry;
799
800         /*
801          * We took the lock due to forced take over.
802          */
803         if (unlikely(lock_taken))
804                 return 1;
805
806         /*
807          * We dont have the lock. Look up the PI state (or create it if
808          * we are the first waiter):
809          */
810         ret = lookup_pi_state(uval, hb, key, ps, task);
811
812         if (unlikely(ret)) {
813                 switch (ret) {
814                 case -ESRCH:
815                         /*
816                          * We failed to find an owner for this
817                          * futex. So we have no pi_state to block
818                          * on. This can happen in two cases:
819                          *
820                          * 1) The owner died
821                          * 2) A stale FUTEX_WAITERS bit
822                          *
823                          * Re-read the futex value.
824                          */
825                         if (get_futex_value_locked(&curval, uaddr))
826                                 return -EFAULT;
827
828                         /*
829                          * If the owner died or we have a stale
830                          * WAITERS bit the owner TID in the user space
831                          * futex is 0.
832                          */
833                         if (!(curval & FUTEX_TID_MASK)) {
834                                 force_take = 1;
835                                 goto retry;
836                         }
837                 default:
838                         break;
839                 }
840         }
841
842         return ret;
843 }
844
845 /**
846  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
847  * @q:  The futex_q to unqueue
848  *
849  * The q->lock_ptr must not be NULL and must be held by the caller.
850  */
851 static void __unqueue_futex(struct futex_q *q)
852 {
853         struct futex_hash_bucket *hb;
854
855         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
856             || WARN_ON(plist_node_empty(&q->list)))
857                 return;
858
859         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
860         plist_del(&q->list, &hb->chain);
861 }
862
863 /*
864  * The hash bucket lock must be held when this is called.
865  * Afterwards, the futex_q must not be accessed.
866  */
867 static void wake_futex(struct futex_q *q)
868 {
869         struct task_struct *p = q->task;
870
871         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
872                 return;
873
874         /*
875          * We set q->lock_ptr = NULL _before_ we wake up the task. If
876          * a non-futex wake up happens on another CPU then the task
877          * might exit and p would dereference a non-existing task
878          * struct. Prevent this by holding a reference on p across the
879          * wake up.
880          */
881         get_task_struct(p);
882
883         __unqueue_futex(q);
884         /*
885          * The waiting task can free the futex_q as soon as
886          * q->lock_ptr = NULL is written, without taking any locks. A
887          * memory barrier is required here to prevent the following
888          * store to lock_ptr from getting ahead of the plist_del.
889          */
890         smp_wmb();
891         q->lock_ptr = NULL;
892
893         wake_up_state(p, TASK_NORMAL);
894         put_task_struct(p);
895 }
896
897 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
898 {
899         struct task_struct *new_owner;
900         struct futex_pi_state *pi_state = this->pi_state;
901         u32 uninitialized_var(curval), newval;
902         int ret = 0;
903
904         if (!pi_state)
905                 return -EINVAL;
906
907         /*
908          * If current does not own the pi_state then the futex is
909          * inconsistent and user space fiddled with the futex value.
910          */
911         if (pi_state->owner != current)
912                 return -EINVAL;
913
914         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
915         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
916
917         /*
918          * It is possible that the next waiter (the one that brought
919          * this owner to the kernel) timed out and is no longer
920          * waiting on the lock.
921          */
922         if (!new_owner)
923                 new_owner = this->task;
924
925         /*
926          * We pass it to the next owner. The WAITERS bit is always
927          * kept enabled while there is PI state around. We cleanup the
928          * owner died bit, because we are the owner.
929          */
930         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
931
932         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
933                 ret = -EFAULT;
934         else if (curval != uval)
935                 ret = -EINVAL;
936         if (ret) {
937                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
938                 return ret;
939         }
940
941         raw_spin_lock_irq(&pi_state->owner->pi_lock);
942         WARN_ON(list_empty(&pi_state->list));
943         list_del_init(&pi_state->list);
944         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
945
946         raw_spin_lock_irq(&new_owner->pi_lock);
947         WARN_ON(!list_empty(&pi_state->list));
948         list_add(&pi_state->list, &new_owner->pi_state_list);
949         pi_state->owner = new_owner;
950         raw_spin_unlock_irq(&new_owner->pi_lock);
951
952         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
953         rt_mutex_unlock(&pi_state->pi_mutex);
954
955         return 0;
956 }
957
958 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
959 {
960         u32 uninitialized_var(oldval);
961
962         /*
963          * There is no waiter, so we unlock the futex. The owner died
964          * bit has not to be preserved here. We are the owner:
965          */
966         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
967                 return -EFAULT;
968         if (oldval != uval)
969                 return -EAGAIN;
970
971         return 0;
972 }
973
974 /*
975  * Express the locking dependencies for lockdep:
976  */
977 static inline void
978 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
979 {
980         if (hb1 <= hb2) {
981                 spin_lock(&hb1->lock);
982                 if (hb1 < hb2)
983                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
984         } else { /* hb1 > hb2 */
985                 spin_lock(&hb2->lock);
986                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
987         }
988 }
989
990 static inline void
991 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
992 {
993         spin_unlock(&hb1->lock);
994         if (hb1 != hb2)
995                 spin_unlock(&hb2->lock);
996 }
997
998 /*
999  * Wake up waiters matching bitset queued on this futex (uaddr).
1000  */
1001 static int
1002 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1003 {
1004         struct futex_hash_bucket *hb;
1005         struct futex_q *this, *next;
1006         struct plist_head *head;
1007         union futex_key key = FUTEX_KEY_INIT;
1008         int ret;
1009
1010         if (!bitset)
1011                 return -EINVAL;
1012
1013         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1014         if (unlikely(ret != 0))
1015                 goto out;
1016
1017         hb = hash_futex(&key);
1018         spin_lock(&hb->lock);
1019         head = &hb->chain;
1020
1021         plist_for_each_entry_safe(this, next, head, list) {
1022                 if (match_futex (&this->key, &key)) {
1023                         if (this->pi_state || this->rt_waiter) {
1024                                 ret = -EINVAL;
1025                                 break;
1026                         }
1027
1028                         /* Check if one of the bits is set in both bitsets */
1029                         if (!(this->bitset & bitset))
1030                                 continue;
1031
1032                         wake_futex(this);
1033                         if (++ret >= nr_wake)
1034                                 break;
1035                 }
1036         }
1037
1038         spin_unlock(&hb->lock);
1039         put_futex_key(&key);
1040 out:
1041         return ret;
1042 }
1043
1044 /*
1045  * Wake up all waiters hashed on the physical page that is mapped
1046  * to this virtual address:
1047  */
1048 static int
1049 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1050               int nr_wake, int nr_wake2, int op)
1051 {
1052         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1053         struct futex_hash_bucket *hb1, *hb2;
1054         struct plist_head *head;
1055         struct futex_q *this, *next;
1056         int ret, op_ret;
1057
1058 retry:
1059         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1060         if (unlikely(ret != 0))
1061                 goto out;
1062         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1063         if (unlikely(ret != 0))
1064                 goto out_put_key1;
1065
1066         hb1 = hash_futex(&key1);
1067         hb2 = hash_futex(&key2);
1068
1069 retry_private:
1070         double_lock_hb(hb1, hb2);
1071         op_ret = futex_atomic_op_inuser(op, uaddr2);
1072         if (unlikely(op_ret < 0)) {
1073
1074                 double_unlock_hb(hb1, hb2);
1075
1076 #ifndef CONFIG_MMU
1077                 /*
1078                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1079                  * but we might get them from range checking
1080                  */
1081                 ret = op_ret;
1082                 goto out_put_keys;
1083 #endif
1084
1085                 if (unlikely(op_ret != -EFAULT)) {
1086                         ret = op_ret;
1087                         goto out_put_keys;
1088                 }
1089
1090                 ret = fault_in_user_writeable(uaddr2);
1091                 if (ret)
1092                         goto out_put_keys;
1093
1094                 if (!(flags & FLAGS_SHARED))
1095                         goto retry_private;
1096
1097                 put_futex_key(&key2);
1098                 put_futex_key(&key1);
1099                 goto retry;
1100         }
1101
1102         head = &hb1->chain;
1103
1104         plist_for_each_entry_safe(this, next, head, list) {
1105                 if (match_futex (&this->key, &key1)) {
1106                         if (this->pi_state || this->rt_waiter) {
1107                                 ret = -EINVAL;
1108                                 goto out_unlock;
1109                         }
1110                         wake_futex(this);
1111                         if (++ret >= nr_wake)
1112                                 break;
1113                 }
1114         }
1115
1116         if (op_ret > 0) {
1117                 head = &hb2->chain;
1118
1119                 op_ret = 0;
1120                 plist_for_each_entry_safe(this, next, head, list) {
1121                         if (match_futex (&this->key, &key2)) {
1122                                 if (this->pi_state || this->rt_waiter) {
1123                                         ret = -EINVAL;
1124                                         goto out_unlock;
1125                                 }
1126                                 wake_futex(this);
1127                                 if (++op_ret >= nr_wake2)
1128                                         break;
1129                         }
1130                 }
1131                 ret += op_ret;
1132         }
1133
1134 out_unlock:
1135         double_unlock_hb(hb1, hb2);
1136 out_put_keys:
1137         put_futex_key(&key2);
1138 out_put_key1:
1139         put_futex_key(&key1);
1140 out:
1141         return ret;
1142 }
1143
1144 /**
1145  * requeue_futex() - Requeue a futex_q from one hb to another
1146  * @q:          the futex_q to requeue
1147  * @hb1:        the source hash_bucket
1148  * @hb2:        the target hash_bucket
1149  * @key2:       the new key for the requeued futex_q
1150  */
1151 static inline
1152 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1153                    struct futex_hash_bucket *hb2, union futex_key *key2)
1154 {
1155
1156         /*
1157          * If key1 and key2 hash to the same bucket, no need to
1158          * requeue.
1159          */
1160         if (likely(&hb1->chain != &hb2->chain)) {
1161                 plist_del(&q->list, &hb1->chain);
1162                 plist_add(&q->list, &hb2->chain);
1163                 q->lock_ptr = &hb2->lock;
1164         }
1165         get_futex_key_refs(key2);
1166         q->key = *key2;
1167 }
1168
1169 /**
1170  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1171  * @q:          the futex_q
1172  * @key:        the key of the requeue target futex
1173  * @hb:         the hash_bucket of the requeue target futex
1174  *
1175  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1176  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1177  * to the requeue target futex so the waiter can detect the wakeup on the right
1178  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1179  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1180  * to protect access to the pi_state to fixup the owner later.  Must be called
1181  * with both q->lock_ptr and hb->lock held.
1182  */
1183 static inline
1184 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1185                            struct futex_hash_bucket *hb)
1186 {
1187         get_futex_key_refs(key);
1188         q->key = *key;
1189
1190         __unqueue_futex(q);
1191
1192         WARN_ON(!q->rt_waiter);
1193         q->rt_waiter = NULL;
1194
1195         q->lock_ptr = &hb->lock;
1196
1197         wake_up_state(q->task, TASK_NORMAL);
1198 }
1199
1200 /**
1201  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1202  * @pifutex:            the user address of the to futex
1203  * @hb1:                the from futex hash bucket, must be locked by the caller
1204  * @hb2:                the to futex hash bucket, must be locked by the caller
1205  * @key1:               the from futex key
1206  * @key2:               the to futex key
1207  * @ps:                 address to store the pi_state pointer
1208  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1209  *
1210  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1211  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1212  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1213  * hb1 and hb2 must be held by the caller.
1214  *
1215  * Returns:
1216  *  0 - failed to acquire the lock atomicly
1217  * >0 - acquired the lock, return value is vpid of the top_waiter
1218  * <0 - error
1219  */
1220 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1221                                  struct futex_hash_bucket *hb1,
1222                                  struct futex_hash_bucket *hb2,
1223                                  union futex_key *key1, union futex_key *key2,
1224                                  struct futex_pi_state **ps, int set_waiters)
1225 {
1226         struct futex_q *top_waiter = NULL;
1227         u32 curval;
1228         int ret, vpid;
1229
1230         if (get_futex_value_locked(&curval, pifutex))
1231                 return -EFAULT;
1232
1233         /*
1234          * Find the top_waiter and determine if there are additional waiters.
1235          * If the caller intends to requeue more than 1 waiter to pifutex,
1236          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1237          * as we have means to handle the possible fault.  If not, don't set
1238          * the bit unecessarily as it will force the subsequent unlock to enter
1239          * the kernel.
1240          */
1241         top_waiter = futex_top_waiter(hb1, key1);
1242
1243         /* There are no waiters, nothing for us to do. */
1244         if (!top_waiter)
1245                 return 0;
1246
1247         /* Ensure we requeue to the expected futex. */
1248         if (!match_futex(top_waiter->requeue_pi_key, key2))
1249                 return -EINVAL;
1250
1251         /*
1252          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1253          * the contended case or if set_waiters is 1.  The pi_state is returned
1254          * in ps in contended cases.
1255          */
1256         vpid = task_pid_vnr(top_waiter->task);
1257         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1258                                    set_waiters);
1259         if (ret == 1) {
1260                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1261                 return vpid;
1262         }
1263         return ret;
1264 }
1265
1266 /**
1267  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1268  * @uaddr1:     source futex user address
1269  * @flags:      futex flags (FLAGS_SHARED, etc.)
1270  * @uaddr2:     target futex user address
1271  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1272  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1273  * @cmpval:     @uaddr1 expected value (or %NULL)
1274  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1275  *              pi futex (pi to pi requeue is not supported)
1276  *
1277  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1278  * uaddr2 atomically on behalf of the top waiter.
1279  *
1280  * Returns:
1281  * >=0 - on success, the number of tasks requeued or woken
1282  *  <0 - on error
1283  */
1284 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1285                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1286                          u32 *cmpval, int requeue_pi)
1287 {
1288         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1289         int drop_count = 0, task_count = 0, ret;
1290         struct futex_pi_state *pi_state = NULL;
1291         struct futex_hash_bucket *hb1, *hb2;
1292         struct plist_head *head1;
1293         struct futex_q *this, *next;
1294
1295         if (requeue_pi) {
1296                 /*
1297                  * Requeue PI only works on two distinct uaddrs. This
1298                  * check is only valid for private futexes. See below.
1299                  */
1300                 if (uaddr1 == uaddr2)
1301                         return -EINVAL;
1302
1303                 /*
1304                  * requeue_pi requires a pi_state, try to allocate it now
1305                  * without any locks in case it fails.
1306                  */
1307                 if (refill_pi_state_cache())
1308                         return -ENOMEM;
1309                 /*
1310                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1311                  * + nr_requeue, since it acquires the rt_mutex prior to
1312                  * returning to userspace, so as to not leave the rt_mutex with
1313                  * waiters and no owner.  However, second and third wake-ups
1314                  * cannot be predicted as they involve race conditions with the
1315                  * first wake and a fault while looking up the pi_state.  Both
1316                  * pthread_cond_signal() and pthread_cond_broadcast() should
1317                  * use nr_wake=1.
1318                  */
1319                 if (nr_wake != 1)
1320                         return -EINVAL;
1321         }
1322
1323 retry:
1324         if (pi_state != NULL) {
1325                 /*
1326                  * We will have to lookup the pi_state again, so free this one
1327                  * to keep the accounting correct.
1328                  */
1329                 free_pi_state(pi_state);
1330                 pi_state = NULL;
1331         }
1332
1333         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1334         if (unlikely(ret != 0))
1335                 goto out;
1336         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1337                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1338         if (unlikely(ret != 0))
1339                 goto out_put_key1;
1340
1341         /*
1342          * The check above which compares uaddrs is not sufficient for
1343          * shared futexes. We need to compare the keys:
1344          */
1345         if (requeue_pi && match_futex(&key1, &key2)) {
1346                 ret = -EINVAL;
1347                 goto out_put_keys;
1348         }
1349
1350         hb1 = hash_futex(&key1);
1351         hb2 = hash_futex(&key2);
1352
1353 retry_private:
1354         double_lock_hb(hb1, hb2);
1355
1356         if (likely(cmpval != NULL)) {
1357                 u32 curval;
1358
1359                 ret = get_futex_value_locked(&curval, uaddr1);
1360
1361                 if (unlikely(ret)) {
1362                         double_unlock_hb(hb1, hb2);
1363
1364                         ret = get_user(curval, uaddr1);
1365                         if (ret)
1366                                 goto out_put_keys;
1367
1368                         if (!(flags & FLAGS_SHARED))
1369                                 goto retry_private;
1370
1371                         put_futex_key(&key2);
1372                         put_futex_key(&key1);
1373                         goto retry;
1374                 }
1375                 if (curval != *cmpval) {
1376                         ret = -EAGAIN;
1377                         goto out_unlock;
1378                 }
1379         }
1380
1381         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1382                 /*
1383                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1384                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1385                  * bit.  We force this here where we are able to easily handle
1386                  * faults rather in the requeue loop below.
1387                  */
1388                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1389                                                  &key2, &pi_state, nr_requeue);
1390
1391                 /*
1392                  * At this point the top_waiter has either taken uaddr2 or is
1393                  * waiting on it.  If the former, then the pi_state will not
1394                  * exist yet, look it up one more time to ensure we have a
1395                  * reference to it. If the lock was taken, ret contains the
1396                  * vpid of the top waiter task.
1397                  */
1398                 if (ret > 0) {
1399                         WARN_ON(pi_state);
1400                         drop_count++;
1401                         task_count++;
1402                         /*
1403                          * If we acquired the lock, then the user
1404                          * space value of uaddr2 should be vpid. It
1405                          * cannot be changed by the top waiter as it
1406                          * is blocked on hb2 lock if it tries to do
1407                          * so. If something fiddled with it behind our
1408                          * back the pi state lookup might unearth
1409                          * it. So we rather use the known value than
1410                          * rereading and handing potential crap to
1411                          * lookup_pi_state.
1412                          */
1413                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1414                 }
1415
1416                 switch (ret) {
1417                 case 0:
1418                         break;
1419                 case -EFAULT:
1420                         double_unlock_hb(hb1, hb2);
1421                         put_futex_key(&key2);
1422                         put_futex_key(&key1);
1423                         ret = fault_in_user_writeable(uaddr2);
1424                         if (!ret)
1425                                 goto retry;
1426                         goto out;
1427                 case -EAGAIN:
1428                         /* The owner was exiting, try again. */
1429                         double_unlock_hb(hb1, hb2);
1430                         put_futex_key(&key2);
1431                         put_futex_key(&key1);
1432                         cond_resched();
1433                         goto retry;
1434                 default:
1435                         goto out_unlock;
1436                 }
1437         }
1438
1439         head1 = &hb1->chain;
1440         plist_for_each_entry_safe(this, next, head1, list) {
1441                 if (task_count - nr_wake >= nr_requeue)
1442                         break;
1443
1444                 if (!match_futex(&this->key, &key1))
1445                         continue;
1446
1447                 /*
1448                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1449                  * be paired with each other and no other futex ops.
1450                  *
1451                  * We should never be requeueing a futex_q with a pi_state,
1452                  * which is awaiting a futex_unlock_pi().
1453                  */
1454                 if ((requeue_pi && !this->rt_waiter) ||
1455                     (!requeue_pi && this->rt_waiter) ||
1456                     this->pi_state) {
1457                         ret = -EINVAL;
1458                         break;
1459                 }
1460
1461                 /*
1462                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1463                  * lock, we already woke the top_waiter.  If not, it will be
1464                  * woken by futex_unlock_pi().
1465                  */
1466                 if (++task_count <= nr_wake && !requeue_pi) {
1467                         wake_futex(this);
1468                         continue;
1469                 }
1470
1471                 /* Ensure we requeue to the expected futex for requeue_pi. */
1472                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1473                         ret = -EINVAL;
1474                         break;
1475                 }
1476
1477                 /*
1478                  * Requeue nr_requeue waiters and possibly one more in the case
1479                  * of requeue_pi if we couldn't acquire the lock atomically.
1480                  */
1481                 if (requeue_pi) {
1482                         /* Prepare the waiter to take the rt_mutex. */
1483                         atomic_inc(&pi_state->refcount);
1484                         this->pi_state = pi_state;
1485                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1486                                                         this->rt_waiter,
1487                                                         this->task, 1);
1488                         if (ret == 1) {
1489                                 /* We got the lock. */
1490                                 requeue_pi_wake_futex(this, &key2, hb2);
1491                                 drop_count++;
1492                                 continue;
1493                         } else if (ret) {
1494                                 /* -EDEADLK */
1495                                 this->pi_state = NULL;
1496                                 free_pi_state(pi_state);
1497                                 goto out_unlock;
1498                         }
1499                 }
1500                 requeue_futex(this, hb1, hb2, &key2);
1501                 drop_count++;
1502         }
1503
1504 out_unlock:
1505         double_unlock_hb(hb1, hb2);
1506
1507         /*
1508          * drop_futex_key_refs() must be called outside the spinlocks. During
1509          * the requeue we moved futex_q's from the hash bucket at key1 to the
1510          * one at key2 and updated their key pointer.  We no longer need to
1511          * hold the references to key1.
1512          */
1513         while (--drop_count >= 0)
1514                 drop_futex_key_refs(&key1);
1515
1516 out_put_keys:
1517         put_futex_key(&key2);
1518 out_put_key1:
1519         put_futex_key(&key1);
1520 out:
1521         if (pi_state != NULL)
1522                 free_pi_state(pi_state);
1523         return ret ? ret : task_count;
1524 }
1525
1526 /* The key must be already stored in q->key. */
1527 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1528         __acquires(&hb->lock)
1529 {
1530         struct futex_hash_bucket *hb;
1531
1532         hb = hash_futex(&q->key);
1533         q->lock_ptr = &hb->lock;
1534
1535         spin_lock(&hb->lock);
1536         return hb;
1537 }
1538
1539 static inline void
1540 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1541         __releases(&hb->lock)
1542 {
1543         spin_unlock(&hb->lock);
1544 }
1545
1546 /**
1547  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1548  * @q:  The futex_q to enqueue
1549  * @hb: The destination hash bucket
1550  *
1551  * The hb->lock must be held by the caller, and is released here. A call to
1552  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1553  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1554  * or nothing if the unqueue is done as part of the wake process and the unqueue
1555  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1556  * an example).
1557  */
1558 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1559         __releases(&hb->lock)
1560 {
1561         int prio;
1562
1563         /*
1564          * The priority used to register this element is
1565          * - either the real thread-priority for the real-time threads
1566          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1567          * - or MAX_RT_PRIO for non-RT threads.
1568          * Thus, all RT-threads are woken first in priority order, and
1569          * the others are woken last, in FIFO order.
1570          */
1571         prio = min(current->normal_prio, MAX_RT_PRIO);
1572
1573         plist_node_init(&q->list, prio);
1574         plist_add(&q->list, &hb->chain);
1575         q->task = current;
1576         spin_unlock(&hb->lock);
1577 }
1578
1579 /**
1580  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1581  * @q:  The futex_q to unqueue
1582  *
1583  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1584  * be paired with exactly one earlier call to queue_me().
1585  *
1586  * Returns:
1587  *   1 - if the futex_q was still queued (and we removed unqueued it)
1588  *   0 - if the futex_q was already removed by the waking thread
1589  */
1590 static int unqueue_me(struct futex_q *q)
1591 {
1592         spinlock_t *lock_ptr;
1593         int ret = 0;
1594
1595         /* In the common case we don't take the spinlock, which is nice. */
1596 retry:
1597         lock_ptr = q->lock_ptr;
1598         barrier();
1599         if (lock_ptr != NULL) {
1600                 spin_lock(lock_ptr);
1601                 /*
1602                  * q->lock_ptr can change between reading it and
1603                  * spin_lock(), causing us to take the wrong lock.  This
1604                  * corrects the race condition.
1605                  *
1606                  * Reasoning goes like this: if we have the wrong lock,
1607                  * q->lock_ptr must have changed (maybe several times)
1608                  * between reading it and the spin_lock().  It can
1609                  * change again after the spin_lock() but only if it was
1610                  * already changed before the spin_lock().  It cannot,
1611                  * however, change back to the original value.  Therefore
1612                  * we can detect whether we acquired the correct lock.
1613                  */
1614                 if (unlikely(lock_ptr != q->lock_ptr)) {
1615                         spin_unlock(lock_ptr);
1616                         goto retry;
1617                 }
1618                 __unqueue_futex(q);
1619
1620                 BUG_ON(q->pi_state);
1621
1622                 spin_unlock(lock_ptr);
1623                 ret = 1;
1624         }
1625
1626         drop_futex_key_refs(&q->key);
1627         return ret;
1628 }
1629
1630 /*
1631  * PI futexes can not be requeued and must remove themself from the
1632  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1633  * and dropped here.
1634  */
1635 static void unqueue_me_pi(struct futex_q *q)
1636         __releases(q->lock_ptr)
1637 {
1638         __unqueue_futex(q);
1639
1640         BUG_ON(!q->pi_state);
1641         free_pi_state(q->pi_state);
1642         q->pi_state = NULL;
1643
1644         spin_unlock(q->lock_ptr);
1645 }
1646
1647 /*
1648  * Fixup the pi_state owner with the new owner.
1649  *
1650  * Must be called with hash bucket lock held and mm->sem held for non
1651  * private futexes.
1652  */
1653 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1654                                 struct task_struct *newowner)
1655 {
1656         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1657         struct futex_pi_state *pi_state = q->pi_state;
1658         struct task_struct *oldowner = pi_state->owner;
1659         u32 uval, uninitialized_var(curval), newval;
1660         int ret;
1661
1662         /* Owner died? */
1663         if (!pi_state->owner)
1664                 newtid |= FUTEX_OWNER_DIED;
1665
1666         /*
1667          * We are here either because we stole the rtmutex from the
1668          * previous highest priority waiter or we are the highest priority
1669          * waiter but failed to get the rtmutex the first time.
1670          * We have to replace the newowner TID in the user space variable.
1671          * This must be atomic as we have to preserve the owner died bit here.
1672          *
1673          * Note: We write the user space value _before_ changing the pi_state
1674          * because we can fault here. Imagine swapped out pages or a fork
1675          * that marked all the anonymous memory readonly for cow.
1676          *
1677          * Modifying pi_state _before_ the user space value would
1678          * leave the pi_state in an inconsistent state when we fault
1679          * here, because we need to drop the hash bucket lock to
1680          * handle the fault. This might be observed in the PID check
1681          * in lookup_pi_state.
1682          */
1683 retry:
1684         if (get_futex_value_locked(&uval, uaddr))
1685                 goto handle_fault;
1686
1687         while (1) {
1688                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1689
1690                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1691                         goto handle_fault;
1692                 if (curval == uval)
1693                         break;
1694                 uval = curval;
1695         }
1696
1697         /*
1698          * We fixed up user space. Now we need to fix the pi_state
1699          * itself.
1700          */
1701         if (pi_state->owner != NULL) {
1702                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1703                 WARN_ON(list_empty(&pi_state->list));
1704                 list_del_init(&pi_state->list);
1705                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1706         }
1707
1708         pi_state->owner = newowner;
1709
1710         raw_spin_lock_irq(&newowner->pi_lock);
1711         WARN_ON(!list_empty(&pi_state->list));
1712         list_add(&pi_state->list, &newowner->pi_state_list);
1713         raw_spin_unlock_irq(&newowner->pi_lock);
1714         return 0;
1715
1716         /*
1717          * To handle the page fault we need to drop the hash bucket
1718          * lock here. That gives the other task (either the highest priority
1719          * waiter itself or the task which stole the rtmutex) the
1720          * chance to try the fixup of the pi_state. So once we are
1721          * back from handling the fault we need to check the pi_state
1722          * after reacquiring the hash bucket lock and before trying to
1723          * do another fixup. When the fixup has been done already we
1724          * simply return.
1725          */
1726 handle_fault:
1727         spin_unlock(q->lock_ptr);
1728
1729         ret = fault_in_user_writeable(uaddr);
1730
1731         spin_lock(q->lock_ptr);
1732
1733         /*
1734          * Check if someone else fixed it for us:
1735          */
1736         if (pi_state->owner != oldowner)
1737                 return 0;
1738
1739         if (ret)
1740                 return ret;
1741
1742         goto retry;
1743 }
1744
1745 static long futex_wait_restart(struct restart_block *restart);
1746
1747 /**
1748  * fixup_owner() - Post lock pi_state and corner case management
1749  * @uaddr:      user address of the futex
1750  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1751  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1752  *
1753  * After attempting to lock an rt_mutex, this function is called to cleanup
1754  * the pi_state owner as well as handle race conditions that may allow us to
1755  * acquire the lock. Must be called with the hb lock held.
1756  *
1757  * Returns:
1758  *  1 - success, lock taken
1759  *  0 - success, lock not taken
1760  * <0 - on error (-EFAULT)
1761  */
1762 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1763 {
1764         struct task_struct *owner;
1765         int ret = 0;
1766
1767         if (locked) {
1768                 /*
1769                  * Got the lock. We might not be the anticipated owner if we
1770                  * did a lock-steal - fix up the PI-state in that case:
1771                  */
1772                 if (q->pi_state->owner != current)
1773                         ret = fixup_pi_state_owner(uaddr, q, current);
1774                 goto out;
1775         }
1776
1777         /*
1778          * Catch the rare case, where the lock was released when we were on the
1779          * way back before we locked the hash bucket.
1780          */
1781         if (q->pi_state->owner == current) {
1782                 /*
1783                  * Try to get the rt_mutex now. This might fail as some other
1784                  * task acquired the rt_mutex after we removed ourself from the
1785                  * rt_mutex waiters list.
1786                  */
1787                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1788                         locked = 1;
1789                         goto out;
1790                 }
1791
1792                 /*
1793                  * pi_state is incorrect, some other task did a lock steal and
1794                  * we returned due to timeout or signal without taking the
1795                  * rt_mutex. Too late.
1796                  */
1797                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1798                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1799                 if (!owner)
1800                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1801                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1802                 ret = fixup_pi_state_owner(uaddr, q, owner);
1803                 goto out;
1804         }
1805
1806         /*
1807          * Paranoia check. If we did not take the lock, then we should not be
1808          * the owner of the rt_mutex.
1809          */
1810         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1811                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1812                                 "pi-state %p\n", ret,
1813                                 q->pi_state->pi_mutex.owner,
1814                                 q->pi_state->owner);
1815
1816 out:
1817         return ret ? ret : locked;
1818 }
1819
1820 /**
1821  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1822  * @hb:         the futex hash bucket, must be locked by the caller
1823  * @q:          the futex_q to queue up on
1824  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1825  */
1826 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1827                                 struct hrtimer_sleeper *timeout)
1828 {
1829         /*
1830          * The task state is guaranteed to be set before another task can
1831          * wake it. set_current_state() is implemented using set_mb() and
1832          * queue_me() calls spin_unlock() upon completion, both serializing
1833          * access to the hash list and forcing another memory barrier.
1834          */
1835         set_current_state(TASK_INTERRUPTIBLE);
1836         queue_me(q, hb);
1837
1838         /* Arm the timer */
1839         if (timeout) {
1840                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1841                 if (!hrtimer_active(&timeout->timer))
1842                         timeout->task = NULL;
1843         }
1844
1845         /*
1846          * If we have been removed from the hash list, then another task
1847          * has tried to wake us, and we can skip the call to schedule().
1848          */
1849         if (likely(!plist_node_empty(&q->list))) {
1850                 /*
1851                  * If the timer has already expired, current will already be
1852                  * flagged for rescheduling. Only call schedule if there
1853                  * is no timeout, or if it has yet to expire.
1854                  */
1855                 if (!timeout || timeout->task)
1856                         schedule();
1857         }
1858         __set_current_state(TASK_RUNNING);
1859 }
1860
1861 /**
1862  * futex_wait_setup() - Prepare to wait on a futex
1863  * @uaddr:      the futex userspace address
1864  * @val:        the expected value
1865  * @flags:      futex flags (FLAGS_SHARED, etc.)
1866  * @q:          the associated futex_q
1867  * @hb:         storage for hash_bucket pointer to be returned to caller
1868  *
1869  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1870  * compare it with the expected value.  Handle atomic faults internally.
1871  * Return with the hb lock held and a q.key reference on success, and unlocked
1872  * with no q.key reference on failure.
1873  *
1874  * Returns:
1875  *  0 - uaddr contains val and hb has been locked
1876  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1877  */
1878 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1879                            struct futex_q *q, struct futex_hash_bucket **hb)
1880 {
1881         u32 uval;
1882         int ret;
1883
1884         /*
1885          * Access the page AFTER the hash-bucket is locked.
1886          * Order is important:
1887          *
1888          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1889          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1890          *
1891          * The basic logical guarantee of a futex is that it blocks ONLY
1892          * if cond(var) is known to be true at the time of blocking, for
1893          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1894          * would open a race condition where we could block indefinitely with
1895          * cond(var) false, which would violate the guarantee.
1896          *
1897          * On the other hand, we insert q and release the hash-bucket only
1898          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1899          * absorb a wakeup if *uaddr does not match the desired values
1900          * while the syscall executes.
1901          */
1902 retry:
1903         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1904         if (unlikely(ret != 0))
1905                 return ret;
1906
1907 retry_private:
1908         *hb = queue_lock(q);
1909
1910         ret = get_futex_value_locked(&uval, uaddr);
1911
1912         if (ret) {
1913                 queue_unlock(q, *hb);
1914
1915                 ret = get_user(uval, uaddr);
1916                 if (ret)
1917                         goto out;
1918
1919                 if (!(flags & FLAGS_SHARED))
1920                         goto retry_private;
1921
1922                 put_futex_key(&q->key);
1923                 goto retry;
1924         }
1925
1926         if (uval != val) {
1927                 queue_unlock(q, *hb);
1928                 ret = -EWOULDBLOCK;
1929         }
1930
1931 out:
1932         if (ret)
1933                 put_futex_key(&q->key);
1934         return ret;
1935 }
1936
1937 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1938                       ktime_t *abs_time, u32 bitset)
1939 {
1940         struct hrtimer_sleeper timeout, *to = NULL;
1941         struct restart_block *restart;
1942         struct futex_hash_bucket *hb;
1943         struct futex_q q = futex_q_init;
1944         int ret;
1945
1946         if (!bitset)
1947                 return -EINVAL;
1948         q.bitset = bitset;
1949
1950         if (abs_time) {
1951                 to = &timeout;
1952
1953                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1954                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1955                                       HRTIMER_MODE_ABS);
1956                 hrtimer_init_sleeper(to, current);
1957                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1958                                              current->timer_slack_ns);
1959         }
1960
1961 retry:
1962         /*
1963          * Prepare to wait on uaddr. On success, holds hb lock and increments
1964          * q.key refs.
1965          */
1966         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1967         if (ret)
1968                 goto out;
1969
1970         /* queue_me and wait for wakeup, timeout, or a signal. */
1971         futex_wait_queue_me(hb, &q, to);
1972
1973         /* If we were woken (and unqueued), we succeeded, whatever. */
1974         ret = 0;
1975         /* unqueue_me() drops q.key ref */
1976         if (!unqueue_me(&q))
1977                 goto out;
1978         ret = -ETIMEDOUT;
1979         if (to && !to->task)
1980                 goto out;
1981
1982         /*
1983          * We expect signal_pending(current), but we might be the
1984          * victim of a spurious wakeup as well.
1985          */
1986         if (!signal_pending(current))
1987                 goto retry;
1988
1989         ret = -ERESTARTSYS;
1990         if (!abs_time)
1991                 goto out;
1992
1993         restart = &current_thread_info()->restart_block;
1994         restart->fn = futex_wait_restart;
1995         restart->futex.uaddr = uaddr;
1996         restart->futex.val = val;
1997         restart->futex.time = abs_time->tv64;
1998         restart->futex.bitset = bitset;
1999         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2000
2001         ret = -ERESTART_RESTARTBLOCK;
2002
2003 out:
2004         if (to) {
2005                 hrtimer_cancel(&to->timer);
2006                 destroy_hrtimer_on_stack(&to->timer);
2007         }
2008         return ret;
2009 }
2010
2011
2012 static long futex_wait_restart(struct restart_block *restart)
2013 {
2014         u32 __user *uaddr = restart->futex.uaddr;
2015         ktime_t t, *tp = NULL;
2016
2017         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2018                 t.tv64 = restart->futex.time;
2019                 tp = &t;
2020         }
2021         restart->fn = do_no_restart_syscall;
2022
2023         return (long)futex_wait(uaddr, restart->futex.flags,
2024                                 restart->futex.val, tp, restart->futex.bitset);
2025 }
2026
2027
2028 /*
2029  * Userspace tried a 0 -> TID atomic transition of the futex value
2030  * and failed. The kernel side here does the whole locking operation:
2031  * if there are waiters then it will block, it does PI, etc. (Due to
2032  * races the kernel might see a 0 value of the futex too.)
2033  */
2034 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2035                          ktime_t *time, int trylock)
2036 {
2037         struct hrtimer_sleeper timeout, *to = NULL;
2038         struct futex_hash_bucket *hb;
2039         struct futex_q q = futex_q_init;
2040         int res, ret;
2041
2042         if (refill_pi_state_cache())
2043                 return -ENOMEM;
2044
2045         if (time) {
2046                 to = &timeout;
2047                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2048                                       HRTIMER_MODE_ABS);
2049                 hrtimer_init_sleeper(to, current);
2050                 hrtimer_set_expires(&to->timer, *time);
2051         }
2052
2053 retry:
2054         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2055         if (unlikely(ret != 0))
2056                 goto out;
2057
2058 retry_private:
2059         hb = queue_lock(&q);
2060
2061         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2062         if (unlikely(ret)) {
2063                 switch (ret) {
2064                 case 1:
2065                         /* We got the lock. */
2066                         ret = 0;
2067                         goto out_unlock_put_key;
2068                 case -EFAULT:
2069                         goto uaddr_faulted;
2070                 case -EAGAIN:
2071                         /*
2072                          * Task is exiting and we just wait for the
2073                          * exit to complete.
2074                          */
2075                         queue_unlock(&q, hb);
2076                         put_futex_key(&q.key);
2077                         cond_resched();
2078                         goto retry;
2079                 default:
2080                         goto out_unlock_put_key;
2081                 }
2082         }
2083
2084         /*
2085          * Only actually queue now that the atomic ops are done:
2086          */
2087         queue_me(&q, hb);
2088
2089         WARN_ON(!q.pi_state);
2090         /*
2091          * Block on the PI mutex:
2092          */
2093         if (!trylock)
2094                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2095         else {
2096                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2097                 /* Fixup the trylock return value: */
2098                 ret = ret ? 0 : -EWOULDBLOCK;
2099         }
2100
2101         spin_lock(q.lock_ptr);
2102         /*
2103          * Fixup the pi_state owner and possibly acquire the lock if we
2104          * haven't already.
2105          */
2106         res = fixup_owner(uaddr, &q, !ret);
2107         /*
2108          * If fixup_owner() returned an error, proprogate that.  If it acquired
2109          * the lock, clear our -ETIMEDOUT or -EINTR.
2110          */
2111         if (res)
2112                 ret = (res < 0) ? res : 0;
2113
2114         /*
2115          * If fixup_owner() faulted and was unable to handle the fault, unlock
2116          * it and return the fault to userspace.
2117          */
2118         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2119                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2120
2121         /* Unqueue and drop the lock */
2122         unqueue_me_pi(&q);
2123
2124         goto out_put_key;
2125
2126 out_unlock_put_key:
2127         queue_unlock(&q, hb);
2128
2129 out_put_key:
2130         put_futex_key(&q.key);
2131 out:
2132         if (to)
2133                 destroy_hrtimer_on_stack(&to->timer);
2134         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2135
2136 uaddr_faulted:
2137         queue_unlock(&q, hb);
2138
2139         ret = fault_in_user_writeable(uaddr);
2140         if (ret)
2141                 goto out_put_key;
2142
2143         if (!(flags & FLAGS_SHARED))
2144                 goto retry_private;
2145
2146         put_futex_key(&q.key);
2147         goto retry;
2148 }
2149
2150 /*
2151  * Userspace attempted a TID -> 0 atomic transition, and failed.
2152  * This is the in-kernel slowpath: we look up the PI state (if any),
2153  * and do the rt-mutex unlock.
2154  */
2155 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2156 {
2157         struct futex_hash_bucket *hb;
2158         struct futex_q *this, *next;
2159         struct plist_head *head;
2160         union futex_key key = FUTEX_KEY_INIT;
2161         u32 uval, vpid = task_pid_vnr(current);
2162         int ret;
2163
2164 retry:
2165         if (get_user(uval, uaddr))
2166                 return -EFAULT;
2167         /*
2168          * We release only a lock we actually own:
2169          */
2170         if ((uval & FUTEX_TID_MASK) != vpid)
2171                 return -EPERM;
2172
2173         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2174         if (unlikely(ret != 0))
2175                 goto out;
2176
2177         hb = hash_futex(&key);
2178         spin_lock(&hb->lock);
2179
2180         /*
2181          * To avoid races, try to do the TID -> 0 atomic transition
2182          * again. If it succeeds then we can return without waking
2183          * anyone else up. We only try this if neither the waiters nor
2184          * the owner died bit are set.
2185          */
2186         if (!(uval & ~FUTEX_TID_MASK) &&
2187             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2188                 goto pi_faulted;
2189         /*
2190          * Rare case: we managed to release the lock atomically,
2191          * no need to wake anyone else up:
2192          */
2193         if (unlikely(uval == vpid))
2194                 goto out_unlock;
2195
2196         /*
2197          * Ok, other tasks may need to be woken up - check waiters
2198          * and do the wakeup if necessary:
2199          */
2200         head = &hb->chain;
2201
2202         plist_for_each_entry_safe(this, next, head, list) {
2203                 if (!match_futex (&this->key, &key))
2204                         continue;
2205                 ret = wake_futex_pi(uaddr, uval, this);
2206                 /*
2207                  * The atomic access to the futex value
2208                  * generated a pagefault, so retry the
2209                  * user-access and the wakeup:
2210                  */
2211                 if (ret == -EFAULT)
2212                         goto pi_faulted;
2213                 goto out_unlock;
2214         }
2215         /*
2216          * No waiters - kernel unlocks the futex:
2217          */
2218         ret = unlock_futex_pi(uaddr, uval);
2219         if (ret == -EFAULT)
2220                 goto pi_faulted;
2221
2222 out_unlock:
2223         spin_unlock(&hb->lock);
2224         put_futex_key(&key);
2225
2226 out:
2227         return ret;
2228
2229 pi_faulted:
2230         spin_unlock(&hb->lock);
2231         put_futex_key(&key);
2232
2233         ret = fault_in_user_writeable(uaddr);
2234         if (!ret)
2235                 goto retry;
2236
2237         return ret;
2238 }
2239
2240 /**
2241  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2242  * @hb:         the hash_bucket futex_q was original enqueued on
2243  * @q:          the futex_q woken while waiting to be requeued
2244  * @key2:       the futex_key of the requeue target futex
2245  * @timeout:    the timeout associated with the wait (NULL if none)
2246  *
2247  * Detect if the task was woken on the initial futex as opposed to the requeue
2248  * target futex.  If so, determine if it was a timeout or a signal that caused
2249  * the wakeup and return the appropriate error code to the caller.  Must be
2250  * called with the hb lock held.
2251  *
2252  * Returns
2253  *  0 - no early wakeup detected
2254  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2255  */
2256 static inline
2257 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2258                                    struct futex_q *q, union futex_key *key2,
2259                                    struct hrtimer_sleeper *timeout)
2260 {
2261         int ret = 0;
2262
2263         /*
2264          * With the hb lock held, we avoid races while we process the wakeup.
2265          * We only need to hold hb (and not hb2) to ensure atomicity as the
2266          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2267          * It can't be requeued from uaddr2 to something else since we don't
2268          * support a PI aware source futex for requeue.
2269          */
2270         if (!match_futex(&q->key, key2)) {
2271                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2272                 /*
2273                  * We were woken prior to requeue by a timeout or a signal.
2274                  * Unqueue the futex_q and determine which it was.
2275                  */
2276                 plist_del(&q->list, &hb->chain);
2277
2278                 /* Handle spurious wakeups gracefully */
2279                 ret = -EWOULDBLOCK;
2280                 if (timeout && !timeout->task)
2281                         ret = -ETIMEDOUT;
2282                 else if (signal_pending(current))
2283                         ret = -ERESTARTNOINTR;
2284         }
2285         return ret;
2286 }
2287
2288 /**
2289  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2290  * @uaddr:      the futex we initially wait on (non-pi)
2291  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2292  *              the same type, no requeueing from private to shared, etc.
2293  * @val:        the expected value of uaddr
2294  * @abs_time:   absolute timeout
2295  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2296  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2297  * @uaddr2:     the pi futex we will take prior to returning to user-space
2298  *
2299  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2300  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2301  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2302  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2303  * without one, the pi logic would not know which task to boost/deboost, if
2304  * there was a need to.
2305  *
2306  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2307  * via the following:
2308  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2309  * 2) wakeup on uaddr2 after a requeue
2310  * 3) signal
2311  * 4) timeout
2312  *
2313  * If 3, cleanup and return -ERESTARTNOINTR.
2314  *
2315  * If 2, we may then block on trying to take the rt_mutex and return via:
2316  * 5) successful lock
2317  * 6) signal
2318  * 7) timeout
2319  * 8) other lock acquisition failure
2320  *
2321  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2322  *
2323  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2324  *
2325  * Returns:
2326  *  0 - On success
2327  * <0 - On error
2328  */
2329 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2330                                  u32 val, ktime_t *abs_time, u32 bitset,
2331                                  u32 __user *uaddr2)
2332 {
2333         struct hrtimer_sleeper timeout, *to = NULL;
2334         struct rt_mutex_waiter rt_waiter;
2335         struct rt_mutex *pi_mutex = NULL;
2336         struct futex_hash_bucket *hb;
2337         union futex_key key2 = FUTEX_KEY_INIT;
2338         struct futex_q q = futex_q_init;
2339         int res, ret;
2340
2341         if (uaddr == uaddr2)
2342                 return -EINVAL;
2343
2344         if (!bitset)
2345                 return -EINVAL;
2346
2347         if (abs_time) {
2348                 to = &timeout;
2349                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2350                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2351                                       HRTIMER_MODE_ABS);
2352                 hrtimer_init_sleeper(to, current);
2353                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2354                                              current->timer_slack_ns);
2355         }
2356
2357         /*
2358          * The waiter is allocated on our stack, manipulated by the requeue
2359          * code while we sleep on uaddr.
2360          */
2361         debug_rt_mutex_init_waiter(&rt_waiter);
2362         rt_waiter.task = NULL;
2363
2364         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2365         if (unlikely(ret != 0))
2366                 goto out;
2367
2368         q.bitset = bitset;
2369         q.rt_waiter = &rt_waiter;
2370         q.requeue_pi_key = &key2;
2371
2372         /*
2373          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2374          * count.
2375          */
2376         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2377         if (ret)
2378                 goto out_key2;
2379
2380         /*
2381          * The check above which compares uaddrs is not sufficient for
2382          * shared futexes. We need to compare the keys:
2383          */
2384         if (match_futex(&q.key, &key2)) {
2385                 ret = -EINVAL;
2386                 goto out_put_keys;
2387         }
2388
2389         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2390         futex_wait_queue_me(hb, &q, to);
2391
2392         spin_lock(&hb->lock);
2393         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2394         spin_unlock(&hb->lock);
2395         if (ret)
2396                 goto out_put_keys;
2397
2398         /*
2399          * In order for us to be here, we know our q.key == key2, and since
2400          * we took the hb->lock above, we also know that futex_requeue() has
2401          * completed and we no longer have to concern ourselves with a wakeup
2402          * race with the atomic proxy lock acquisition by the requeue code. The
2403          * futex_requeue dropped our key1 reference and incremented our key2
2404          * reference count.
2405          */
2406
2407         /* Check if the requeue code acquired the second futex for us. */
2408         if (!q.rt_waiter) {
2409                 /*
2410                  * Got the lock. We might not be the anticipated owner if we
2411                  * did a lock-steal - fix up the PI-state in that case.
2412                  */
2413                 if (q.pi_state && (q.pi_state->owner != current)) {
2414                         spin_lock(q.lock_ptr);
2415                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2416                         spin_unlock(q.lock_ptr);
2417                 }
2418         } else {
2419                 /*
2420                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2421                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2422                  * the pi_state.
2423                  */
2424                 WARN_ON(!q.pi_state);
2425                 pi_mutex = &q.pi_state->pi_mutex;
2426                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2427                 debug_rt_mutex_free_waiter(&rt_waiter);
2428
2429                 spin_lock(q.lock_ptr);
2430                 /*
2431                  * Fixup the pi_state owner and possibly acquire the lock if we
2432                  * haven't already.
2433                  */
2434                 res = fixup_owner(uaddr2, &q, !ret);
2435                 /*
2436                  * If fixup_owner() returned an error, proprogate that.  If it
2437                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2438                  */
2439                 if (res)
2440                         ret = (res < 0) ? res : 0;
2441
2442                 /* Unqueue and drop the lock. */
2443                 unqueue_me_pi(&q);
2444         }
2445
2446         /*
2447          * If fixup_pi_state_owner() faulted and was unable to handle the
2448          * fault, unlock the rt_mutex and return the fault to userspace.
2449          */
2450         if (ret == -EFAULT) {
2451                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2452                         rt_mutex_unlock(pi_mutex);
2453         } else if (ret == -EINTR) {
2454                 /*
2455                  * We've already been requeued, but cannot restart by calling
2456                  * futex_lock_pi() directly. We could restart this syscall, but
2457                  * it would detect that the user space "val" changed and return
2458                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2459                  * -EWOULDBLOCK directly.
2460                  */
2461                 ret = -EWOULDBLOCK;
2462         }
2463
2464 out_put_keys:
2465         put_futex_key(&q.key);
2466 out_key2:
2467         put_futex_key(&key2);
2468
2469 out:
2470         if (to) {
2471                 hrtimer_cancel(&to->timer);
2472                 destroy_hrtimer_on_stack(&to->timer);
2473         }
2474         return ret;
2475 }
2476
2477 /*
2478  * Support for robust futexes: the kernel cleans up held futexes at
2479  * thread exit time.
2480  *
2481  * Implementation: user-space maintains a per-thread list of locks it
2482  * is holding. Upon do_exit(), the kernel carefully walks this list,
2483  * and marks all locks that are owned by this thread with the
2484  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2485  * always manipulated with the lock held, so the list is private and
2486  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2487  * field, to allow the kernel to clean up if the thread dies after
2488  * acquiring the lock, but just before it could have added itself to
2489  * the list. There can only be one such pending lock.
2490  */
2491
2492 /**
2493  * sys_set_robust_list() - Set the robust-futex list head of a task
2494  * @head:       pointer to the list-head
2495  * @len:        length of the list-head, as userspace expects
2496  */
2497 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2498                 size_t, len)
2499 {
2500         if (!futex_cmpxchg_enabled)
2501                 return -ENOSYS;
2502         /*
2503          * The kernel knows only one size for now:
2504          */
2505         if (unlikely(len != sizeof(*head)))
2506                 return -EINVAL;
2507
2508         current->robust_list = head;
2509
2510         return 0;
2511 }
2512
2513 /**
2514  * sys_get_robust_list() - Get the robust-futex list head of a task
2515  * @pid:        pid of the process [zero for current task]
2516  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2517  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2518  */
2519 SYSCALL_DEFINE3(get_robust_list, int, pid,
2520                 struct robust_list_head __user * __user *, head_ptr,
2521                 size_t __user *, len_ptr)
2522 {
2523         struct robust_list_head __user *head;
2524         unsigned long ret;
2525         struct task_struct *p;
2526
2527         if (!futex_cmpxchg_enabled)
2528                 return -ENOSYS;
2529
2530         rcu_read_lock();
2531
2532         ret = -ESRCH;
2533         if (!pid)
2534                 p = current;
2535         else {
2536                 p = find_task_by_vpid(pid);
2537                 if (!p)
2538                         goto err_unlock;
2539         }
2540
2541         ret = -EPERM;
2542         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2543                 goto err_unlock;
2544
2545         head = p->robust_list;
2546         rcu_read_unlock();
2547
2548         if (put_user(sizeof(*head), len_ptr))
2549                 return -EFAULT;
2550         return put_user(head, head_ptr);
2551
2552 err_unlock:
2553         rcu_read_unlock();
2554
2555         return ret;
2556 }
2557
2558 /*
2559  * Process a futex-list entry, check whether it's owned by the
2560  * dying task, and do notification if so:
2561  */
2562 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2563 {
2564         u32 uval, uninitialized_var(nval), mval;
2565
2566 retry:
2567         if (get_user(uval, uaddr))
2568                 return -1;
2569
2570         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2571                 /*
2572                  * Ok, this dying thread is truly holding a futex
2573                  * of interest. Set the OWNER_DIED bit atomically
2574                  * via cmpxchg, and if the value had FUTEX_WAITERS
2575                  * set, wake up a waiter (if any). (We have to do a
2576                  * futex_wake() even if OWNER_DIED is already set -
2577                  * to handle the rare but possible case of recursive
2578                  * thread-death.) The rest of the cleanup is done in
2579                  * userspace.
2580                  */
2581                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2582                 /*
2583                  * We are not holding a lock here, but we want to have
2584                  * the pagefault_disable/enable() protection because
2585                  * we want to handle the fault gracefully. If the
2586                  * access fails we try to fault in the futex with R/W
2587                  * verification via get_user_pages. get_user() above
2588                  * does not guarantee R/W access. If that fails we
2589                  * give up and leave the futex locked.
2590                  */
2591                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2592                         if (fault_in_user_writeable(uaddr))
2593                                 return -1;
2594                         goto retry;
2595                 }
2596                 if (nval != uval)
2597                         goto retry;
2598
2599                 /*
2600                  * Wake robust non-PI futexes here. The wakeup of
2601                  * PI futexes happens in exit_pi_state():
2602                  */
2603                 if (!pi && (uval & FUTEX_WAITERS))
2604                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2605         }
2606         return 0;
2607 }
2608
2609 /*
2610  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2611  */
2612 static inline int fetch_robust_entry(struct robust_list __user **entry,
2613                                      struct robust_list __user * __user *head,
2614                                      unsigned int *pi)
2615 {
2616         unsigned long uentry;
2617
2618         if (get_user(uentry, (unsigned long __user *)head))
2619                 return -EFAULT;
2620
2621         *entry = (void __user *)(uentry & ~1UL);
2622         *pi = uentry & 1;
2623
2624         return 0;
2625 }
2626
2627 /*
2628  * Walk curr->robust_list (very carefully, it's a userspace list!)
2629  * and mark any locks found there dead, and notify any waiters.
2630  *
2631  * We silently return on any sign of list-walking problem.
2632  */
2633 void exit_robust_list(struct task_struct *curr)
2634 {
2635         struct robust_list_head __user *head = curr->robust_list;
2636         struct robust_list __user *entry, *next_entry, *pending;
2637         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2638         unsigned int uninitialized_var(next_pi);
2639         unsigned long futex_offset;
2640         int rc;
2641
2642         if (!futex_cmpxchg_enabled)
2643                 return;
2644
2645         /*
2646          * Fetch the list head (which was registered earlier, via
2647          * sys_set_robust_list()):
2648          */
2649         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2650                 return;
2651         /*
2652          * Fetch the relative futex offset:
2653          */
2654         if (get_user(futex_offset, &head->futex_offset))
2655                 return;
2656         /*
2657          * Fetch any possibly pending lock-add first, and handle it
2658          * if it exists:
2659          */
2660         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2661                 return;
2662
2663         next_entry = NULL;      /* avoid warning with gcc */
2664         while (entry != &head->list) {
2665                 /*
2666                  * Fetch the next entry in the list before calling
2667                  * handle_futex_death:
2668                  */
2669                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2670                 /*
2671                  * A pending lock might already be on the list, so
2672                  * don't process it twice:
2673                  */
2674                 if (entry != pending)
2675                         if (handle_futex_death((void __user *)entry + futex_offset,
2676                                                 curr, pi))
2677                                 return;
2678                 if (rc)
2679                         return;
2680                 entry = next_entry;
2681                 pi = next_pi;
2682                 /*
2683                  * Avoid excessively long or circular lists:
2684                  */
2685                 if (!--limit)
2686                         break;
2687
2688                 cond_resched();
2689         }
2690
2691         if (pending)
2692                 handle_futex_death((void __user *)pending + futex_offset,
2693                                    curr, pip);
2694 }
2695
2696 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2697                 u32 __user *uaddr2, u32 val2, u32 val3)
2698 {
2699         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2700         unsigned int flags = 0;
2701
2702         if (!(op & FUTEX_PRIVATE_FLAG))
2703                 flags |= FLAGS_SHARED;
2704
2705         if (op & FUTEX_CLOCK_REALTIME) {
2706                 flags |= FLAGS_CLOCKRT;
2707                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2708                         return -ENOSYS;
2709         }
2710
2711         switch (cmd) {
2712         case FUTEX_LOCK_PI:
2713         case FUTEX_UNLOCK_PI:
2714         case FUTEX_TRYLOCK_PI:
2715         case FUTEX_WAIT_REQUEUE_PI:
2716         case FUTEX_CMP_REQUEUE_PI:
2717                 if (!futex_cmpxchg_enabled)
2718                         return -ENOSYS;
2719         }
2720
2721         switch (cmd) {
2722         case FUTEX_WAIT:
2723                 val3 = FUTEX_BITSET_MATCH_ANY;
2724         case FUTEX_WAIT_BITSET:
2725                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2726                 break;
2727         case FUTEX_WAKE:
2728                 val3 = FUTEX_BITSET_MATCH_ANY;
2729         case FUTEX_WAKE_BITSET:
2730                 ret = futex_wake(uaddr, flags, val, val3);
2731                 break;
2732         case FUTEX_REQUEUE:
2733                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2734                 break;
2735         case FUTEX_CMP_REQUEUE:
2736                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2737                 break;
2738         case FUTEX_WAKE_OP:
2739                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2740                 break;
2741         case FUTEX_LOCK_PI:
2742                 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2743                 break;
2744         case FUTEX_UNLOCK_PI:
2745                 ret = futex_unlock_pi(uaddr, flags);
2746                 break;
2747         case FUTEX_TRYLOCK_PI:
2748                 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2749                 break;
2750         case FUTEX_WAIT_REQUEUE_PI:
2751                 val3 = FUTEX_BITSET_MATCH_ANY;
2752                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2753                                             uaddr2);
2754                 break;
2755         case FUTEX_CMP_REQUEUE_PI:
2756                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2757                 break;
2758         default:
2759                 ret = -ENOSYS;
2760         }
2761         return ret;
2762 }
2763
2764
2765 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2766                 struct timespec __user *, utime, u32 __user *, uaddr2,
2767                 u32, val3)
2768 {
2769         struct timespec ts;
2770         ktime_t t, *tp = NULL;
2771         u32 val2 = 0;
2772         int cmd = op & FUTEX_CMD_MASK;
2773
2774         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2775                       cmd == FUTEX_WAIT_BITSET ||
2776                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2777                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2778                         return -EFAULT;
2779                 if (!timespec_valid(&ts))
2780                         return -EINVAL;
2781
2782                 t = timespec_to_ktime(ts);
2783                 if (cmd == FUTEX_WAIT)
2784                         t = ktime_add_safe(ktime_get(), t);
2785                 tp = &t;
2786         }
2787         /*
2788          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2789          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2790          */
2791         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2792             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2793                 val2 = (u32) (unsigned long) utime;
2794
2795         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2796 }
2797
2798 static int __init futex_init(void)
2799 {
2800         u32 curval;
2801         int i;
2802
2803         /*
2804          * This will fail and we want it. Some arch implementations do
2805          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2806          * functionality. We want to know that before we call in any
2807          * of the complex code paths. Also we want to prevent
2808          * registration of robust lists in that case. NULL is
2809          * guaranteed to fault and we get -EFAULT on functional
2810          * implementation, the non-functional ones will return
2811          * -ENOSYS.
2812          */
2813         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2814                 futex_cmpxchg_enabled = 1;
2815
2816         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2817                 plist_head_init(&futex_queues[i].chain);
2818                 spin_lock_init(&futex_queues[i].lock);
2819         }
2820
2821         return 0;
2822 }
2823 __initcall(futex_init);