MAINTAINERS: pass on hwpoison maintainership to Naoya Horiguchi
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * READ this before attempting to hack on futexes!
74  *
75  * Basic futex operation and ordering guarantees
76  * =============================================
77  *
78  * The waiter reads the futex value in user space and calls
79  * futex_wait(). This function computes the hash bucket and acquires
80  * the hash bucket lock. After that it reads the futex user space value
81  * again and verifies that the data has not changed. If it has not changed
82  * it enqueues itself into the hash bucket, releases the hash bucket lock
83  * and schedules.
84  *
85  * The waker side modifies the user space value of the futex and calls
86  * futex_wake(). This function computes the hash bucket and acquires the
87  * hash bucket lock. Then it looks for waiters on that futex in the hash
88  * bucket and wakes them.
89  *
90  * In futex wake up scenarios where no tasks are blocked on a futex, taking
91  * the hb spinlock can be avoided and simply return. In order for this
92  * optimization to work, ordering guarantees must exist so that the waiter
93  * being added to the list is acknowledged when the list is concurrently being
94  * checked by the waker, avoiding scenarios like the following:
95  *
96  * CPU 0                               CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *   uval = *futex;
101  *                                     *futex = newval;
102  *                                     sys_futex(WAKE, futex);
103  *                                       futex_wake(futex);
104  *                                       if (queue_empty())
105  *                                         return;
106  *   if (uval == val)
107  *      lock(hash_bucket(futex));
108  *      queue();
109  *     unlock(hash_bucket(futex));
110  *     schedule();
111  *
112  * This would cause the waiter on CPU 0 to wait forever because it
113  * missed the transition of the user space value from val to newval
114  * and the waker did not find the waiter in the hash bucket queue.
115  *
116  * The correct serialization ensures that a waiter either observes
117  * the changed user space value before blocking or is woken by a
118  * concurrent waker:
119  *
120  * CPU 0                                 CPU 1
121  * val = *futex;
122  * sys_futex(WAIT, futex, val);
123  *   futex_wait(futex, val);
124  *
125  *   waiters++; (a)
126  *   mb(); (A) <-- paired with -.
127  *                              |
128  *   lock(hash_bucket(futex));  |
129  *                              |
130  *   uval = *futex;             |
131  *                              |        *futex = newval;
132  *                              |        sys_futex(WAKE, futex);
133  *                              |          futex_wake(futex);
134  *                              |
135  *                              `------->  mb(); (B)
136  *   if (uval == val)
137  *     queue();
138  *     unlock(hash_bucket(futex));
139  *     schedule();                         if (waiters)
140  *                                           lock(hash_bucket(futex));
141  *   else                                    wake_waiters(futex);
142  *     waiters--; (b)                        unlock(hash_bucket(futex));
143  *
144  * Where (A) orders the waiters increment and the futex value read through
145  * atomic operations (see hb_waiters_inc) and where (B) orders the write
146  * to futex and the waiters read -- this is done by the barriers in
147  * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148  * futex type.
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264         atomic_inc(&key->private.mm->mm_count);
265         /*
266          * Ensure futex_get_mm() implies a full barrier such that
267          * get_futex_key() implies a full barrier. This is relied upon
268          * as full barrier (B), see the ordering comment above.
269          */
270         smp_mb__after_atomic();
271 }
272
273 /*
274  * Reflects a new waiter being added to the waitqueue.
275  */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279         atomic_inc(&hb->waiters);
280         /*
281          * Full barrier (A), see the ordering comment above.
282          */
283         smp_mb__after_atomic();
284 #endif
285 }
286
287 /*
288  * Reflects a waiter being removed from the waitqueue by wakeup
289  * paths.
290  */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294         atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301         return atomic_read(&hb->waiters);
302 #else
303         return 1;
304 #endif
305 }
306
307 /*
308  * We hash on the keys returned from get_futex_key (see below).
309  */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312         u32 hash = jhash2((u32*)&key->both.word,
313                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314                           key->both.offset);
315         return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319  * Return 1 if two futex_keys are equal, 0 otherwise.
320  */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323         return (key1 && key2
324                 && key1->both.word == key2->both.word
325                 && key1->both.ptr == key2->both.ptr
326                 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330  * Take a reference to the resource addressed by a key.
331  * Can be called while holding spinlocks.
332  *
333  */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336         if (!key->both.ptr)
337                 return;
338
339         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340         case FUT_OFF_INODE:
341                 ihold(key->shared.inode); /* implies MB (B) */
342                 break;
343         case FUT_OFF_MMSHARED:
344                 futex_get_mm(key); /* implies MB (B) */
345                 break;
346         }
347 }
348
349 /*
350  * Drop a reference to the resource addressed by a key.
351  * The hash bucket spinlock must not be held.
352  */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355         if (!key->both.ptr) {
356                 /* If we're here then we tried to put a key we failed to get */
357                 WARN_ON_ONCE(1);
358                 return;
359         }
360
361         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362         case FUT_OFF_INODE:
363                 iput(key->shared.inode);
364                 break;
365         case FUT_OFF_MMSHARED:
366                 mmdrop(key->private.mm);
367                 break;
368         }
369 }
370
371 /**
372  * get_futex_key() - Get parameters which are the keys for a futex
373  * @uaddr:      virtual address of the futex
374  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375  * @key:        address where result is stored.
376  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
377  *              VERIFY_WRITE)
378  *
379  * Return: a negative error code or 0
380  *
381  * The key words are stored in *key on success.
382  *
383  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
385  * We can usually work out the index without swapping in the page.
386  *
387  * lock_page() might sleep, the caller should not hold a spinlock.
388  */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392         unsigned long address = (unsigned long)uaddr;
393         struct mm_struct *mm = current->mm;
394         struct page *page, *page_head;
395         int err, ro = 0;
396
397         /*
398          * The futex address must be "naturally" aligned.
399          */
400         key->both.offset = address % PAGE_SIZE;
401         if (unlikely((address % sizeof(u32)) != 0))
402                 return -EINVAL;
403         address -= key->both.offset;
404
405         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406                 return -EFAULT;
407
408         /*
409          * PROCESS_PRIVATE futexes are fast.
410          * As the mm cannot disappear under us and the 'key' only needs
411          * virtual address, we dont even have to find the underlying vma.
412          * Note : We do have to check 'uaddr' is a valid user address,
413          *        but access_ok() should be faster than find_vma()
414          */
415         if (!fshared) {
416                 key->private.mm = mm;
417                 key->private.address = address;
418                 get_futex_key_refs(key);  /* implies MB (B) */
419                 return 0;
420         }
421
422 again:
423         err = get_user_pages_fast(address, 1, 1, &page);
424         /*
425          * If write access is not required (eg. FUTEX_WAIT), try
426          * and get read-only access.
427          */
428         if (err == -EFAULT && rw == VERIFY_READ) {
429                 err = get_user_pages_fast(address, 1, 0, &page);
430                 ro = 1;
431         }
432         if (err < 0)
433                 return err;
434         else
435                 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438         page_head = page;
439         if (unlikely(PageTail(page))) {
440                 put_page(page);
441                 /* serialize against __split_huge_page_splitting() */
442                 local_irq_disable();
443                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444                         page_head = compound_head(page);
445                         /*
446                          * page_head is valid pointer but we must pin
447                          * it before taking the PG_lock and/or
448                          * PG_compound_lock. The moment we re-enable
449                          * irqs __split_huge_page_splitting() can
450                          * return and the head page can be freed from
451                          * under us. We can't take the PG_lock and/or
452                          * PG_compound_lock on a page that could be
453                          * freed from under us.
454                          */
455                         if (page != page_head) {
456                                 get_page(page_head);
457                                 put_page(page);
458                         }
459                         local_irq_enable();
460                 } else {
461                         local_irq_enable();
462                         goto again;
463                 }
464         }
465 #else
466         page_head = compound_head(page);
467         if (page != page_head) {
468                 get_page(page_head);
469                 put_page(page);
470         }
471 #endif
472
473         lock_page(page_head);
474
475         /*
476          * If page_head->mapping is NULL, then it cannot be a PageAnon
477          * page; but it might be the ZERO_PAGE or in the gate area or
478          * in a special mapping (all cases which we are happy to fail);
479          * or it may have been a good file page when get_user_pages_fast
480          * found it, but truncated or holepunched or subjected to
481          * invalidate_complete_page2 before we got the page lock (also
482          * cases which we are happy to fail).  And we hold a reference,
483          * so refcount care in invalidate_complete_page's remove_mapping
484          * prevents drop_caches from setting mapping to NULL beneath us.
485          *
486          * The case we do have to guard against is when memory pressure made
487          * shmem_writepage move it from filecache to swapcache beneath us:
488          * an unlikely race, but we do need to retry for page_head->mapping.
489          */
490         if (!page_head->mapping) {
491                 int shmem_swizzled = PageSwapCache(page_head);
492                 unlock_page(page_head);
493                 put_page(page_head);
494                 if (shmem_swizzled)
495                         goto again;
496                 return -EFAULT;
497         }
498
499         /*
500          * Private mappings are handled in a simple way.
501          *
502          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503          * it's a read-only handle, it's expected that futexes attach to
504          * the object not the particular process.
505          */
506         if (PageAnon(page_head)) {
507                 /*
508                  * A RO anonymous page will never change and thus doesn't make
509                  * sense for futex operations.
510                  */
511                 if (ro) {
512                         err = -EFAULT;
513                         goto out;
514                 }
515
516                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517                 key->private.mm = mm;
518                 key->private.address = address;
519         } else {
520                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521                 key->shared.inode = page_head->mapping->host;
522                 key->shared.pgoff = basepage_index(page);
523         }
524
525         get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528         unlock_page(page_head);
529         put_page(page_head);
530         return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535         drop_futex_key_refs(key);
536 }
537
538 /**
539  * fault_in_user_writeable() - Fault in user address and verify RW access
540  * @uaddr:      pointer to faulting user space address
541  *
542  * Slow path to fixup the fault we just took in the atomic write
543  * access to @uaddr.
544  *
545  * We have no generic implementation of a non-destructive write to the
546  * user address. We know that we faulted in the atomic pagefault
547  * disabled section so we can as well avoid the #PF overhead by
548  * calling get_user_pages() right away.
549  */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552         struct mm_struct *mm = current->mm;
553         int ret;
554
555         down_read(&mm->mmap_sem);
556         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557                                FAULT_FLAG_WRITE);
558         up_read(&mm->mmap_sem);
559
560         return ret < 0 ? ret : 0;
561 }
562
563 /**
564  * futex_top_waiter() - Return the highest priority waiter on a futex
565  * @hb:         the hash bucket the futex_q's reside in
566  * @key:        the futex key (to distinguish it from other futex futex_q's)
567  *
568  * Must be called with the hb lock held.
569  */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571                                         union futex_key *key)
572 {
573         struct futex_q *this;
574
575         plist_for_each_entry(this, &hb->chain, list) {
576                 if (match_futex(&this->key, key))
577                         return this;
578         }
579         return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583                                       u32 uval, u32 newval)
584 {
585         int ret;
586
587         pagefault_disable();
588         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589         pagefault_enable();
590
591         return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596         int ret;
597
598         pagefault_disable();
599         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600         pagefault_enable();
601
602         return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607  * PI code:
608  */
609 static int refill_pi_state_cache(void)
610 {
611         struct futex_pi_state *pi_state;
612
613         if (likely(current->pi_state_cache))
614                 return 0;
615
616         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618         if (!pi_state)
619                 return -ENOMEM;
620
621         INIT_LIST_HEAD(&pi_state->list);
622         /* pi_mutex gets initialized later */
623         pi_state->owner = NULL;
624         atomic_set(&pi_state->refcount, 1);
625         pi_state->key = FUTEX_KEY_INIT;
626
627         current->pi_state_cache = pi_state;
628
629         return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634         struct futex_pi_state *pi_state = current->pi_state_cache;
635
636         WARN_ON(!pi_state);
637         current->pi_state_cache = NULL;
638
639         return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644         if (!atomic_dec_and_test(&pi_state->refcount))
645                 return;
646
647         /*
648          * If pi_state->owner is NULL, the owner is most probably dying
649          * and has cleaned up the pi_state already
650          */
651         if (pi_state->owner) {
652                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653                 list_del_init(&pi_state->list);
654                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657         }
658
659         if (current->pi_state_cache)
660                 kfree(pi_state);
661         else {
662                 /*
663                  * pi_state->list is already empty.
664                  * clear pi_state->owner.
665                  * refcount is at 0 - put it back to 1.
666                  */
667                 pi_state->owner = NULL;
668                 atomic_set(&pi_state->refcount, 1);
669                 current->pi_state_cache = pi_state;
670         }
671 }
672
673 /*
674  * Look up the task based on what TID userspace gave us.
675  * We dont trust it.
676  */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679         struct task_struct *p;
680
681         rcu_read_lock();
682         p = find_task_by_vpid(pid);
683         if (p)
684                 get_task_struct(p);
685
686         rcu_read_unlock();
687
688         return p;
689 }
690
691 /*
692  * This task is holding PI mutexes at exit time => bad.
693  * Kernel cleans up PI-state, but userspace is likely hosed.
694  * (Robust-futex cleanup is separate and might save the day for userspace.)
695  */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698         struct list_head *next, *head = &curr->pi_state_list;
699         struct futex_pi_state *pi_state;
700         struct futex_hash_bucket *hb;
701         union futex_key key = FUTEX_KEY_INIT;
702
703         if (!futex_cmpxchg_enabled)
704                 return;
705         /*
706          * We are a ZOMBIE and nobody can enqueue itself on
707          * pi_state_list anymore, but we have to be careful
708          * versus waiters unqueueing themselves:
709          */
710         raw_spin_lock_irq(&curr->pi_lock);
711         while (!list_empty(head)) {
712
713                 next = head->next;
714                 pi_state = list_entry(next, struct futex_pi_state, list);
715                 key = pi_state->key;
716                 hb = hash_futex(&key);
717                 raw_spin_unlock_irq(&curr->pi_lock);
718
719                 spin_lock(&hb->lock);
720
721                 raw_spin_lock_irq(&curr->pi_lock);
722                 /*
723                  * We dropped the pi-lock, so re-check whether this
724                  * task still owns the PI-state:
725                  */
726                 if (head->next != next) {
727                         spin_unlock(&hb->lock);
728                         continue;
729                 }
730
731                 WARN_ON(pi_state->owner != curr);
732                 WARN_ON(list_empty(&pi_state->list));
733                 list_del_init(&pi_state->list);
734                 pi_state->owner = NULL;
735                 raw_spin_unlock_irq(&curr->pi_lock);
736
737                 rt_mutex_unlock(&pi_state->pi_mutex);
738
739                 spin_unlock(&hb->lock);
740
741                 raw_spin_lock_irq(&curr->pi_lock);
742         }
743         raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 static int
747 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748                 union futex_key *key, struct futex_pi_state **ps,
749                 struct task_struct *task)
750 {
751         struct futex_pi_state *pi_state = NULL;
752         struct futex_q *this, *next;
753         struct task_struct *p;
754         pid_t pid = uval & FUTEX_TID_MASK;
755
756         plist_for_each_entry_safe(this, next, &hb->chain, list) {
757                 if (match_futex(&this->key, key)) {
758                         /*
759                          * Another waiter already exists - bump up
760                          * the refcount and return its pi_state:
761                          */
762                         pi_state = this->pi_state;
763                         /*
764                          * Userspace might have messed up non-PI and PI futexes
765                          */
766                         if (unlikely(!pi_state))
767                                 return -EINVAL;
768
769                         WARN_ON(!atomic_read(&pi_state->refcount));
770
771                         /*
772                          * When pi_state->owner is NULL then the owner died
773                          * and another waiter is on the fly. pi_state->owner
774                          * is fixed up by the task which acquires
775                          * pi_state->rt_mutex.
776                          *
777                          * We do not check for pid == 0 which can happen when
778                          * the owner died and robust_list_exit() cleared the
779                          * TID.
780                          */
781                         if (pid && pi_state->owner) {
782                                 /*
783                                  * Bail out if user space manipulated the
784                                  * futex value.
785                                  */
786                                 if (pid != task_pid_vnr(pi_state->owner))
787                                         return -EINVAL;
788                         }
789
790                         /*
791                          * Protect against a corrupted uval. If uval
792                          * is 0x80000000 then pid is 0 and the waiter
793                          * bit is set. So the deadlock check in the
794                          * calling code has failed and we did not fall
795                          * into the check above due to !pid.
796                          */
797                         if (task && pi_state->owner == task)
798                                 return -EDEADLK;
799
800                         atomic_inc(&pi_state->refcount);
801                         *ps = pi_state;
802
803                         return 0;
804                 }
805         }
806
807         /*
808          * We are the first waiter - try to look up the real owner and attach
809          * the new pi_state to it, but bail out when TID = 0
810          */
811         if (!pid)
812                 return -ESRCH;
813         p = futex_find_get_task(pid);
814         if (!p)
815                 return -ESRCH;
816
817         if (!p->mm) {
818                 put_task_struct(p);
819                 return -EPERM;
820         }
821
822         /*
823          * We need to look at the task state flags to figure out,
824          * whether the task is exiting. To protect against the do_exit
825          * change of the task flags, we do this protected by
826          * p->pi_lock:
827          */
828         raw_spin_lock_irq(&p->pi_lock);
829         if (unlikely(p->flags & PF_EXITING)) {
830                 /*
831                  * The task is on the way out. When PF_EXITPIDONE is
832                  * set, we know that the task has finished the
833                  * cleanup:
834                  */
835                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
836
837                 raw_spin_unlock_irq(&p->pi_lock);
838                 put_task_struct(p);
839                 return ret;
840         }
841
842         pi_state = alloc_pi_state();
843
844         /*
845          * Initialize the pi_mutex in locked state and make 'p'
846          * the owner of it:
847          */
848         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
849
850         /* Store the key for possible exit cleanups: */
851         pi_state->key = *key;
852
853         WARN_ON(!list_empty(&pi_state->list));
854         list_add(&pi_state->list, &p->pi_state_list);
855         pi_state->owner = p;
856         raw_spin_unlock_irq(&p->pi_lock);
857
858         put_task_struct(p);
859
860         *ps = pi_state;
861
862         return 0;
863 }
864
865 /**
866  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
867  * @uaddr:              the pi futex user address
868  * @hb:                 the pi futex hash bucket
869  * @key:                the futex key associated with uaddr and hb
870  * @ps:                 the pi_state pointer where we store the result of the
871  *                      lookup
872  * @task:               the task to perform the atomic lock work for.  This will
873  *                      be "current" except in the case of requeue pi.
874  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
875  *
876  * Return:
877  *  0 - ready to wait;
878  *  1 - acquired the lock;
879  * <0 - error
880  *
881  * The hb->lock and futex_key refs shall be held by the caller.
882  */
883 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
884                                 union futex_key *key,
885                                 struct futex_pi_state **ps,
886                                 struct task_struct *task, int set_waiters)
887 {
888         int lock_taken, ret, force_take = 0;
889         u32 uval, newval, curval, vpid = task_pid_vnr(task);
890
891 retry:
892         ret = lock_taken = 0;
893
894         /*
895          * To avoid races, we attempt to take the lock here again
896          * (by doing a 0 -> TID atomic cmpxchg), while holding all
897          * the locks. It will most likely not succeed.
898          */
899         newval = vpid;
900         if (set_waiters)
901                 newval |= FUTEX_WAITERS;
902
903         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
904                 return -EFAULT;
905
906         /*
907          * Detect deadlocks.
908          */
909         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
910                 return -EDEADLK;
911
912         /*
913          * Surprise - we got the lock. Just return to userspace:
914          */
915         if (unlikely(!curval))
916                 return 1;
917
918         uval = curval;
919
920         /*
921          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
922          * to wake at the next unlock.
923          */
924         newval = curval | FUTEX_WAITERS;
925
926         /*
927          * Should we force take the futex? See below.
928          */
929         if (unlikely(force_take)) {
930                 /*
931                  * Keep the OWNER_DIED and the WAITERS bit and set the
932                  * new TID value.
933                  */
934                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
935                 force_take = 0;
936                 lock_taken = 1;
937         }
938
939         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
940                 return -EFAULT;
941         if (unlikely(curval != uval))
942                 goto retry;
943
944         /*
945          * We took the lock due to forced take over.
946          */
947         if (unlikely(lock_taken))
948                 return 1;
949
950         /*
951          * We dont have the lock. Look up the PI state (or create it if
952          * we are the first waiter):
953          */
954         ret = lookup_pi_state(uval, hb, key, ps, task);
955
956         if (unlikely(ret)) {
957                 switch (ret) {
958                 case -ESRCH:
959                         /*
960                          * We failed to find an owner for this
961                          * futex. So we have no pi_state to block
962                          * on. This can happen in two cases:
963                          *
964                          * 1) The owner died
965                          * 2) A stale FUTEX_WAITERS bit
966                          *
967                          * Re-read the futex value.
968                          */
969                         if (get_futex_value_locked(&curval, uaddr))
970                                 return -EFAULT;
971
972                         /*
973                          * If the owner died or we have a stale
974                          * WAITERS bit the owner TID in the user space
975                          * futex is 0.
976                          */
977                         if (!(curval & FUTEX_TID_MASK)) {
978                                 force_take = 1;
979                                 goto retry;
980                         }
981                 default:
982                         break;
983                 }
984         }
985
986         return ret;
987 }
988
989 /**
990  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
991  * @q:  The futex_q to unqueue
992  *
993  * The q->lock_ptr must not be NULL and must be held by the caller.
994  */
995 static void __unqueue_futex(struct futex_q *q)
996 {
997         struct futex_hash_bucket *hb;
998
999         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1000             || WARN_ON(plist_node_empty(&q->list)))
1001                 return;
1002
1003         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1004         plist_del(&q->list, &hb->chain);
1005         hb_waiters_dec(hb);
1006 }
1007
1008 /*
1009  * The hash bucket lock must be held when this is called.
1010  * Afterwards, the futex_q must not be accessed.
1011  */
1012 static void wake_futex(struct futex_q *q)
1013 {
1014         struct task_struct *p = q->task;
1015
1016         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1017                 return;
1018
1019         /*
1020          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1021          * a non-futex wake up happens on another CPU then the task
1022          * might exit and p would dereference a non-existing task
1023          * struct. Prevent this by holding a reference on p across the
1024          * wake up.
1025          */
1026         get_task_struct(p);
1027
1028         __unqueue_futex(q);
1029         /*
1030          * The waiting task can free the futex_q as soon as
1031          * q->lock_ptr = NULL is written, without taking any locks. A
1032          * memory barrier is required here to prevent the following
1033          * store to lock_ptr from getting ahead of the plist_del.
1034          */
1035         smp_wmb();
1036         q->lock_ptr = NULL;
1037
1038         wake_up_state(p, TASK_NORMAL);
1039         put_task_struct(p);
1040 }
1041
1042 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1043 {
1044         struct task_struct *new_owner;
1045         struct futex_pi_state *pi_state = this->pi_state;
1046         u32 uninitialized_var(curval), newval;
1047
1048         if (!pi_state)
1049                 return -EINVAL;
1050
1051         /*
1052          * If current does not own the pi_state then the futex is
1053          * inconsistent and user space fiddled with the futex value.
1054          */
1055         if (pi_state->owner != current)
1056                 return -EINVAL;
1057
1058         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1059         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1060
1061         /*
1062          * It is possible that the next waiter (the one that brought
1063          * this owner to the kernel) timed out and is no longer
1064          * waiting on the lock.
1065          */
1066         if (!new_owner)
1067                 new_owner = this->task;
1068
1069         /*
1070          * We pass it to the next owner. (The WAITERS bit is always
1071          * kept enabled while there is PI state around. We must also
1072          * preserve the owner died bit.)
1073          */
1074         if (!(uval & FUTEX_OWNER_DIED)) {
1075                 int ret = 0;
1076
1077                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1078
1079                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1080                         ret = -EFAULT;
1081                 else if (curval != uval)
1082                         ret = -EINVAL;
1083                 if (ret) {
1084                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1085                         return ret;
1086                 }
1087         }
1088
1089         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1090         WARN_ON(list_empty(&pi_state->list));
1091         list_del_init(&pi_state->list);
1092         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1093
1094         raw_spin_lock_irq(&new_owner->pi_lock);
1095         WARN_ON(!list_empty(&pi_state->list));
1096         list_add(&pi_state->list, &new_owner->pi_state_list);
1097         pi_state->owner = new_owner;
1098         raw_spin_unlock_irq(&new_owner->pi_lock);
1099
1100         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1101         rt_mutex_unlock(&pi_state->pi_mutex);
1102
1103         return 0;
1104 }
1105
1106 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1107 {
1108         u32 uninitialized_var(oldval);
1109
1110         /*
1111          * There is no waiter, so we unlock the futex. The owner died
1112          * bit has not to be preserved here. We are the owner:
1113          */
1114         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1115                 return -EFAULT;
1116         if (oldval != uval)
1117                 return -EAGAIN;
1118
1119         return 0;
1120 }
1121
1122 /*
1123  * Express the locking dependencies for lockdep:
1124  */
1125 static inline void
1126 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1127 {
1128         if (hb1 <= hb2) {
1129                 spin_lock(&hb1->lock);
1130                 if (hb1 < hb2)
1131                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1132         } else { /* hb1 > hb2 */
1133                 spin_lock(&hb2->lock);
1134                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1135         }
1136 }
1137
1138 static inline void
1139 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1140 {
1141         spin_unlock(&hb1->lock);
1142         if (hb1 != hb2)
1143                 spin_unlock(&hb2->lock);
1144 }
1145
1146 /*
1147  * Wake up waiters matching bitset queued on this futex (uaddr).
1148  */
1149 static int
1150 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1151 {
1152         struct futex_hash_bucket *hb;
1153         struct futex_q *this, *next;
1154         union futex_key key = FUTEX_KEY_INIT;
1155         int ret;
1156
1157         if (!bitset)
1158                 return -EINVAL;
1159
1160         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1161         if (unlikely(ret != 0))
1162                 goto out;
1163
1164         hb = hash_futex(&key);
1165
1166         /* Make sure we really have tasks to wakeup */
1167         if (!hb_waiters_pending(hb))
1168                 goto out_put_key;
1169
1170         spin_lock(&hb->lock);
1171
1172         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1173                 if (match_futex (&this->key, &key)) {
1174                         if (this->pi_state || this->rt_waiter) {
1175                                 ret = -EINVAL;
1176                                 break;
1177                         }
1178
1179                         /* Check if one of the bits is set in both bitsets */
1180                         if (!(this->bitset & bitset))
1181                                 continue;
1182
1183                         wake_futex(this);
1184                         if (++ret >= nr_wake)
1185                                 break;
1186                 }
1187         }
1188
1189         spin_unlock(&hb->lock);
1190 out_put_key:
1191         put_futex_key(&key);
1192 out:
1193         return ret;
1194 }
1195
1196 /*
1197  * Wake up all waiters hashed on the physical page that is mapped
1198  * to this virtual address:
1199  */
1200 static int
1201 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1202               int nr_wake, int nr_wake2, int op)
1203 {
1204         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1205         struct futex_hash_bucket *hb1, *hb2;
1206         struct futex_q *this, *next;
1207         int ret, op_ret;
1208
1209 retry:
1210         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1211         if (unlikely(ret != 0))
1212                 goto out;
1213         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1214         if (unlikely(ret != 0))
1215                 goto out_put_key1;
1216
1217         hb1 = hash_futex(&key1);
1218         hb2 = hash_futex(&key2);
1219
1220 retry_private:
1221         double_lock_hb(hb1, hb2);
1222         op_ret = futex_atomic_op_inuser(op, uaddr2);
1223         if (unlikely(op_ret < 0)) {
1224
1225                 double_unlock_hb(hb1, hb2);
1226
1227 #ifndef CONFIG_MMU
1228                 /*
1229                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1230                  * but we might get them from range checking
1231                  */
1232                 ret = op_ret;
1233                 goto out_put_keys;
1234 #endif
1235
1236                 if (unlikely(op_ret != -EFAULT)) {
1237                         ret = op_ret;
1238                         goto out_put_keys;
1239                 }
1240
1241                 ret = fault_in_user_writeable(uaddr2);
1242                 if (ret)
1243                         goto out_put_keys;
1244
1245                 if (!(flags & FLAGS_SHARED))
1246                         goto retry_private;
1247
1248                 put_futex_key(&key2);
1249                 put_futex_key(&key1);
1250                 goto retry;
1251         }
1252
1253         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1254                 if (match_futex (&this->key, &key1)) {
1255                         if (this->pi_state || this->rt_waiter) {
1256                                 ret = -EINVAL;
1257                                 goto out_unlock;
1258                         }
1259                         wake_futex(this);
1260                         if (++ret >= nr_wake)
1261                                 break;
1262                 }
1263         }
1264
1265         if (op_ret > 0) {
1266                 op_ret = 0;
1267                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1268                         if (match_futex (&this->key, &key2)) {
1269                                 if (this->pi_state || this->rt_waiter) {
1270                                         ret = -EINVAL;
1271                                         goto out_unlock;
1272                                 }
1273                                 wake_futex(this);
1274                                 if (++op_ret >= nr_wake2)
1275                                         break;
1276                         }
1277                 }
1278                 ret += op_ret;
1279         }
1280
1281 out_unlock:
1282         double_unlock_hb(hb1, hb2);
1283 out_put_keys:
1284         put_futex_key(&key2);
1285 out_put_key1:
1286         put_futex_key(&key1);
1287 out:
1288         return ret;
1289 }
1290
1291 /**
1292  * requeue_futex() - Requeue a futex_q from one hb to another
1293  * @q:          the futex_q to requeue
1294  * @hb1:        the source hash_bucket
1295  * @hb2:        the target hash_bucket
1296  * @key2:       the new key for the requeued futex_q
1297  */
1298 static inline
1299 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1300                    struct futex_hash_bucket *hb2, union futex_key *key2)
1301 {
1302
1303         /*
1304          * If key1 and key2 hash to the same bucket, no need to
1305          * requeue.
1306          */
1307         if (likely(&hb1->chain != &hb2->chain)) {
1308                 plist_del(&q->list, &hb1->chain);
1309                 hb_waiters_dec(hb1);
1310                 plist_add(&q->list, &hb2->chain);
1311                 hb_waiters_inc(hb2);
1312                 q->lock_ptr = &hb2->lock;
1313         }
1314         get_futex_key_refs(key2);
1315         q->key = *key2;
1316 }
1317
1318 /**
1319  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1320  * @q:          the futex_q
1321  * @key:        the key of the requeue target futex
1322  * @hb:         the hash_bucket of the requeue target futex
1323  *
1324  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1325  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1326  * to the requeue target futex so the waiter can detect the wakeup on the right
1327  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1328  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1329  * to protect access to the pi_state to fixup the owner later.  Must be called
1330  * with both q->lock_ptr and hb->lock held.
1331  */
1332 static inline
1333 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1334                            struct futex_hash_bucket *hb)
1335 {
1336         get_futex_key_refs(key);
1337         q->key = *key;
1338
1339         __unqueue_futex(q);
1340
1341         WARN_ON(!q->rt_waiter);
1342         q->rt_waiter = NULL;
1343
1344         q->lock_ptr = &hb->lock;
1345
1346         wake_up_state(q->task, TASK_NORMAL);
1347 }
1348
1349 /**
1350  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1351  * @pifutex:            the user address of the to futex
1352  * @hb1:                the from futex hash bucket, must be locked by the caller
1353  * @hb2:                the to futex hash bucket, must be locked by the caller
1354  * @key1:               the from futex key
1355  * @key2:               the to futex key
1356  * @ps:                 address to store the pi_state pointer
1357  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1358  *
1359  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1360  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1361  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1362  * hb1 and hb2 must be held by the caller.
1363  *
1364  * Return:
1365  *  0 - failed to acquire the lock atomically;
1366  * >0 - acquired the lock, return value is vpid of the top_waiter
1367  * <0 - error
1368  */
1369 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1370                                  struct futex_hash_bucket *hb1,
1371                                  struct futex_hash_bucket *hb2,
1372                                  union futex_key *key1, union futex_key *key2,
1373                                  struct futex_pi_state **ps, int set_waiters)
1374 {
1375         struct futex_q *top_waiter = NULL;
1376         u32 curval;
1377         int ret, vpid;
1378
1379         if (get_futex_value_locked(&curval, pifutex))
1380                 return -EFAULT;
1381
1382         /*
1383          * Find the top_waiter and determine if there are additional waiters.
1384          * If the caller intends to requeue more than 1 waiter to pifutex,
1385          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1386          * as we have means to handle the possible fault.  If not, don't set
1387          * the bit unecessarily as it will force the subsequent unlock to enter
1388          * the kernel.
1389          */
1390         top_waiter = futex_top_waiter(hb1, key1);
1391
1392         /* There are no waiters, nothing for us to do. */
1393         if (!top_waiter)
1394                 return 0;
1395
1396         /* Ensure we requeue to the expected futex. */
1397         if (!match_futex(top_waiter->requeue_pi_key, key2))
1398                 return -EINVAL;
1399
1400         /*
1401          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1402          * the contended case or if set_waiters is 1.  The pi_state is returned
1403          * in ps in contended cases.
1404          */
1405         vpid = task_pid_vnr(top_waiter->task);
1406         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1407                                    set_waiters);
1408         if (ret == 1) {
1409                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1410                 return vpid;
1411         }
1412         return ret;
1413 }
1414
1415 /**
1416  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1417  * @uaddr1:     source futex user address
1418  * @flags:      futex flags (FLAGS_SHARED, etc.)
1419  * @uaddr2:     target futex user address
1420  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1421  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1422  * @cmpval:     @uaddr1 expected value (or %NULL)
1423  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1424  *              pi futex (pi to pi requeue is not supported)
1425  *
1426  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1427  * uaddr2 atomically on behalf of the top waiter.
1428  *
1429  * Return:
1430  * >=0 - on success, the number of tasks requeued or woken;
1431  *  <0 - on error
1432  */
1433 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1434                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1435                          u32 *cmpval, int requeue_pi)
1436 {
1437         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1438         int drop_count = 0, task_count = 0, ret;
1439         struct futex_pi_state *pi_state = NULL;
1440         struct futex_hash_bucket *hb1, *hb2;
1441         struct futex_q *this, *next;
1442
1443         if (requeue_pi) {
1444                 /*
1445                  * requeue_pi requires a pi_state, try to allocate it now
1446                  * without any locks in case it fails.
1447                  */
1448                 if (refill_pi_state_cache())
1449                         return -ENOMEM;
1450                 /*
1451                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1452                  * + nr_requeue, since it acquires the rt_mutex prior to
1453                  * returning to userspace, so as to not leave the rt_mutex with
1454                  * waiters and no owner.  However, second and third wake-ups
1455                  * cannot be predicted as they involve race conditions with the
1456                  * first wake and a fault while looking up the pi_state.  Both
1457                  * pthread_cond_signal() and pthread_cond_broadcast() should
1458                  * use nr_wake=1.
1459                  */
1460                 if (nr_wake != 1)
1461                         return -EINVAL;
1462         }
1463
1464 retry:
1465         if (pi_state != NULL) {
1466                 /*
1467                  * We will have to lookup the pi_state again, so free this one
1468                  * to keep the accounting correct.
1469                  */
1470                 free_pi_state(pi_state);
1471                 pi_state = NULL;
1472         }
1473
1474         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1475         if (unlikely(ret != 0))
1476                 goto out;
1477         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1478                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1479         if (unlikely(ret != 0))
1480                 goto out_put_key1;
1481
1482         hb1 = hash_futex(&key1);
1483         hb2 = hash_futex(&key2);
1484
1485 retry_private:
1486         hb_waiters_inc(hb2);
1487         double_lock_hb(hb1, hb2);
1488
1489         if (likely(cmpval != NULL)) {
1490                 u32 curval;
1491
1492                 ret = get_futex_value_locked(&curval, uaddr1);
1493
1494                 if (unlikely(ret)) {
1495                         double_unlock_hb(hb1, hb2);
1496                         hb_waiters_dec(hb2);
1497
1498                         ret = get_user(curval, uaddr1);
1499                         if (ret)
1500                                 goto out_put_keys;
1501
1502                         if (!(flags & FLAGS_SHARED))
1503                                 goto retry_private;
1504
1505                         put_futex_key(&key2);
1506                         put_futex_key(&key1);
1507                         goto retry;
1508                 }
1509                 if (curval != *cmpval) {
1510                         ret = -EAGAIN;
1511                         goto out_unlock;
1512                 }
1513         }
1514
1515         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1516                 /*
1517                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1518                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1519                  * bit.  We force this here where we are able to easily handle
1520                  * faults rather in the requeue loop below.
1521                  */
1522                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1523                                                  &key2, &pi_state, nr_requeue);
1524
1525                 /*
1526                  * At this point the top_waiter has either taken uaddr2 or is
1527                  * waiting on it.  If the former, then the pi_state will not
1528                  * exist yet, look it up one more time to ensure we have a
1529                  * reference to it. If the lock was taken, ret contains the
1530                  * vpid of the top waiter task.
1531                  */
1532                 if (ret > 0) {
1533                         WARN_ON(pi_state);
1534                         drop_count++;
1535                         task_count++;
1536                         /*
1537                          * If we acquired the lock, then the user
1538                          * space value of uaddr2 should be vpid. It
1539                          * cannot be changed by the top waiter as it
1540                          * is blocked on hb2 lock if it tries to do
1541                          * so. If something fiddled with it behind our
1542                          * back the pi state lookup might unearth
1543                          * it. So we rather use the known value than
1544                          * rereading and handing potential crap to
1545                          * lookup_pi_state.
1546                          */
1547                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1548                 }
1549
1550                 switch (ret) {
1551                 case 0:
1552                         break;
1553                 case -EFAULT:
1554                         double_unlock_hb(hb1, hb2);
1555                         hb_waiters_dec(hb2);
1556                         put_futex_key(&key2);
1557                         put_futex_key(&key1);
1558                         ret = fault_in_user_writeable(uaddr2);
1559                         if (!ret)
1560                                 goto retry;
1561                         goto out;
1562                 case -EAGAIN:
1563                         /* The owner was exiting, try again. */
1564                         double_unlock_hb(hb1, hb2);
1565                         hb_waiters_dec(hb2);
1566                         put_futex_key(&key2);
1567                         put_futex_key(&key1);
1568                         cond_resched();
1569                         goto retry;
1570                 default:
1571                         goto out_unlock;
1572                 }
1573         }
1574
1575         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1576                 if (task_count - nr_wake >= nr_requeue)
1577                         break;
1578
1579                 if (!match_futex(&this->key, &key1))
1580                         continue;
1581
1582                 /*
1583                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1584                  * be paired with each other and no other futex ops.
1585                  *
1586                  * We should never be requeueing a futex_q with a pi_state,
1587                  * which is awaiting a futex_unlock_pi().
1588                  */
1589                 if ((requeue_pi && !this->rt_waiter) ||
1590                     (!requeue_pi && this->rt_waiter) ||
1591                     this->pi_state) {
1592                         ret = -EINVAL;
1593                         break;
1594                 }
1595
1596                 /*
1597                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1598                  * lock, we already woke the top_waiter.  If not, it will be
1599                  * woken by futex_unlock_pi().
1600                  */
1601                 if (++task_count <= nr_wake && !requeue_pi) {
1602                         wake_futex(this);
1603                         continue;
1604                 }
1605
1606                 /* Ensure we requeue to the expected futex for requeue_pi. */
1607                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1608                         ret = -EINVAL;
1609                         break;
1610                 }
1611
1612                 /*
1613                  * Requeue nr_requeue waiters and possibly one more in the case
1614                  * of requeue_pi if we couldn't acquire the lock atomically.
1615                  */
1616                 if (requeue_pi) {
1617                         /* Prepare the waiter to take the rt_mutex. */
1618                         atomic_inc(&pi_state->refcount);
1619                         this->pi_state = pi_state;
1620                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1621                                                         this->rt_waiter,
1622                                                         this->task, 1);
1623                         if (ret == 1) {
1624                                 /* We got the lock. */
1625                                 requeue_pi_wake_futex(this, &key2, hb2);
1626                                 drop_count++;
1627                                 continue;
1628                         } else if (ret) {
1629                                 /* -EDEADLK */
1630                                 this->pi_state = NULL;
1631                                 free_pi_state(pi_state);
1632                                 goto out_unlock;
1633                         }
1634                 }
1635                 requeue_futex(this, hb1, hb2, &key2);
1636                 drop_count++;
1637         }
1638
1639 out_unlock:
1640         double_unlock_hb(hb1, hb2);
1641         hb_waiters_dec(hb2);
1642
1643         /*
1644          * drop_futex_key_refs() must be called outside the spinlocks. During
1645          * the requeue we moved futex_q's from the hash bucket at key1 to the
1646          * one at key2 and updated their key pointer.  We no longer need to
1647          * hold the references to key1.
1648          */
1649         while (--drop_count >= 0)
1650                 drop_futex_key_refs(&key1);
1651
1652 out_put_keys:
1653         put_futex_key(&key2);
1654 out_put_key1:
1655         put_futex_key(&key1);
1656 out:
1657         if (pi_state != NULL)
1658                 free_pi_state(pi_state);
1659         return ret ? ret : task_count;
1660 }
1661
1662 /* The key must be already stored in q->key. */
1663 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1664         __acquires(&hb->lock)
1665 {
1666         struct futex_hash_bucket *hb;
1667
1668         hb = hash_futex(&q->key);
1669
1670         /*
1671          * Increment the counter before taking the lock so that
1672          * a potential waker won't miss a to-be-slept task that is
1673          * waiting for the spinlock. This is safe as all queue_lock()
1674          * users end up calling queue_me(). Similarly, for housekeeping,
1675          * decrement the counter at queue_unlock() when some error has
1676          * occurred and we don't end up adding the task to the list.
1677          */
1678         hb_waiters_inc(hb);
1679
1680         q->lock_ptr = &hb->lock;
1681
1682         spin_lock(&hb->lock); /* implies MB (A) */
1683         return hb;
1684 }
1685
1686 static inline void
1687 queue_unlock(struct futex_hash_bucket *hb)
1688         __releases(&hb->lock)
1689 {
1690         spin_unlock(&hb->lock);
1691         hb_waiters_dec(hb);
1692 }
1693
1694 /**
1695  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1696  * @q:  The futex_q to enqueue
1697  * @hb: The destination hash bucket
1698  *
1699  * The hb->lock must be held by the caller, and is released here. A call to
1700  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1701  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1702  * or nothing if the unqueue is done as part of the wake process and the unqueue
1703  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1704  * an example).
1705  */
1706 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1707         __releases(&hb->lock)
1708 {
1709         int prio;
1710
1711         /*
1712          * The priority used to register this element is
1713          * - either the real thread-priority for the real-time threads
1714          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1715          * - or MAX_RT_PRIO for non-RT threads.
1716          * Thus, all RT-threads are woken first in priority order, and
1717          * the others are woken last, in FIFO order.
1718          */
1719         prio = min(current->normal_prio, MAX_RT_PRIO);
1720
1721         plist_node_init(&q->list, prio);
1722         plist_add(&q->list, &hb->chain);
1723         q->task = current;
1724         spin_unlock(&hb->lock);
1725 }
1726
1727 /**
1728  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1729  * @q:  The futex_q to unqueue
1730  *
1731  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1732  * be paired with exactly one earlier call to queue_me().
1733  *
1734  * Return:
1735  *   1 - if the futex_q was still queued (and we removed unqueued it);
1736  *   0 - if the futex_q was already removed by the waking thread
1737  */
1738 static int unqueue_me(struct futex_q *q)
1739 {
1740         spinlock_t *lock_ptr;
1741         int ret = 0;
1742
1743         /* In the common case we don't take the spinlock, which is nice. */
1744 retry:
1745         lock_ptr = q->lock_ptr;
1746         barrier();
1747         if (lock_ptr != NULL) {
1748                 spin_lock(lock_ptr);
1749                 /*
1750                  * q->lock_ptr can change between reading it and
1751                  * spin_lock(), causing us to take the wrong lock.  This
1752                  * corrects the race condition.
1753                  *
1754                  * Reasoning goes like this: if we have the wrong lock,
1755                  * q->lock_ptr must have changed (maybe several times)
1756                  * between reading it and the spin_lock().  It can
1757                  * change again after the spin_lock() but only if it was
1758                  * already changed before the spin_lock().  It cannot,
1759                  * however, change back to the original value.  Therefore
1760                  * we can detect whether we acquired the correct lock.
1761                  */
1762                 if (unlikely(lock_ptr != q->lock_ptr)) {
1763                         spin_unlock(lock_ptr);
1764                         goto retry;
1765                 }
1766                 __unqueue_futex(q);
1767
1768                 BUG_ON(q->pi_state);
1769
1770                 spin_unlock(lock_ptr);
1771                 ret = 1;
1772         }
1773
1774         drop_futex_key_refs(&q->key);
1775         return ret;
1776 }
1777
1778 /*
1779  * PI futexes can not be requeued and must remove themself from the
1780  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1781  * and dropped here.
1782  */
1783 static void unqueue_me_pi(struct futex_q *q)
1784         __releases(q->lock_ptr)
1785 {
1786         __unqueue_futex(q);
1787
1788         BUG_ON(!q->pi_state);
1789         free_pi_state(q->pi_state);
1790         q->pi_state = NULL;
1791
1792         spin_unlock(q->lock_ptr);
1793 }
1794
1795 /*
1796  * Fixup the pi_state owner with the new owner.
1797  *
1798  * Must be called with hash bucket lock held and mm->sem held for non
1799  * private futexes.
1800  */
1801 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1802                                 struct task_struct *newowner)
1803 {
1804         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1805         struct futex_pi_state *pi_state = q->pi_state;
1806         struct task_struct *oldowner = pi_state->owner;
1807         u32 uval, uninitialized_var(curval), newval;
1808         int ret;
1809
1810         /* Owner died? */
1811         if (!pi_state->owner)
1812                 newtid |= FUTEX_OWNER_DIED;
1813
1814         /*
1815          * We are here either because we stole the rtmutex from the
1816          * previous highest priority waiter or we are the highest priority
1817          * waiter but failed to get the rtmutex the first time.
1818          * We have to replace the newowner TID in the user space variable.
1819          * This must be atomic as we have to preserve the owner died bit here.
1820          *
1821          * Note: We write the user space value _before_ changing the pi_state
1822          * because we can fault here. Imagine swapped out pages or a fork
1823          * that marked all the anonymous memory readonly for cow.
1824          *
1825          * Modifying pi_state _before_ the user space value would
1826          * leave the pi_state in an inconsistent state when we fault
1827          * here, because we need to drop the hash bucket lock to
1828          * handle the fault. This might be observed in the PID check
1829          * in lookup_pi_state.
1830          */
1831 retry:
1832         if (get_futex_value_locked(&uval, uaddr))
1833                 goto handle_fault;
1834
1835         while (1) {
1836                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1837
1838                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1839                         goto handle_fault;
1840                 if (curval == uval)
1841                         break;
1842                 uval = curval;
1843         }
1844
1845         /*
1846          * We fixed up user space. Now we need to fix the pi_state
1847          * itself.
1848          */
1849         if (pi_state->owner != NULL) {
1850                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1851                 WARN_ON(list_empty(&pi_state->list));
1852                 list_del_init(&pi_state->list);
1853                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1854         }
1855
1856         pi_state->owner = newowner;
1857
1858         raw_spin_lock_irq(&newowner->pi_lock);
1859         WARN_ON(!list_empty(&pi_state->list));
1860         list_add(&pi_state->list, &newowner->pi_state_list);
1861         raw_spin_unlock_irq(&newowner->pi_lock);
1862         return 0;
1863
1864         /*
1865          * To handle the page fault we need to drop the hash bucket
1866          * lock here. That gives the other task (either the highest priority
1867          * waiter itself or the task which stole the rtmutex) the
1868          * chance to try the fixup of the pi_state. So once we are
1869          * back from handling the fault we need to check the pi_state
1870          * after reacquiring the hash bucket lock and before trying to
1871          * do another fixup. When the fixup has been done already we
1872          * simply return.
1873          */
1874 handle_fault:
1875         spin_unlock(q->lock_ptr);
1876
1877         ret = fault_in_user_writeable(uaddr);
1878
1879         spin_lock(q->lock_ptr);
1880
1881         /*
1882          * Check if someone else fixed it for us:
1883          */
1884         if (pi_state->owner != oldowner)
1885                 return 0;
1886
1887         if (ret)
1888                 return ret;
1889
1890         goto retry;
1891 }
1892
1893 static long futex_wait_restart(struct restart_block *restart);
1894
1895 /**
1896  * fixup_owner() - Post lock pi_state and corner case management
1897  * @uaddr:      user address of the futex
1898  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1899  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1900  *
1901  * After attempting to lock an rt_mutex, this function is called to cleanup
1902  * the pi_state owner as well as handle race conditions that may allow us to
1903  * acquire the lock. Must be called with the hb lock held.
1904  *
1905  * Return:
1906  *  1 - success, lock taken;
1907  *  0 - success, lock not taken;
1908  * <0 - on error (-EFAULT)
1909  */
1910 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1911 {
1912         struct task_struct *owner;
1913         int ret = 0;
1914
1915         if (locked) {
1916                 /*
1917                  * Got the lock. We might not be the anticipated owner if we
1918                  * did a lock-steal - fix up the PI-state in that case:
1919                  */
1920                 if (q->pi_state->owner != current)
1921                         ret = fixup_pi_state_owner(uaddr, q, current);
1922                 goto out;
1923         }
1924
1925         /*
1926          * Catch the rare case, where the lock was released when we were on the
1927          * way back before we locked the hash bucket.
1928          */
1929         if (q->pi_state->owner == current) {
1930                 /*
1931                  * Try to get the rt_mutex now. This might fail as some other
1932                  * task acquired the rt_mutex after we removed ourself from the
1933                  * rt_mutex waiters list.
1934                  */
1935                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1936                         locked = 1;
1937                         goto out;
1938                 }
1939
1940                 /*
1941                  * pi_state is incorrect, some other task did a lock steal and
1942                  * we returned due to timeout or signal without taking the
1943                  * rt_mutex. Too late.
1944                  */
1945                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1946                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1947                 if (!owner)
1948                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1949                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1950                 ret = fixup_pi_state_owner(uaddr, q, owner);
1951                 goto out;
1952         }
1953
1954         /*
1955          * Paranoia check. If we did not take the lock, then we should not be
1956          * the owner of the rt_mutex.
1957          */
1958         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1959                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1960                                 "pi-state %p\n", ret,
1961                                 q->pi_state->pi_mutex.owner,
1962                                 q->pi_state->owner);
1963
1964 out:
1965         return ret ? ret : locked;
1966 }
1967
1968 /**
1969  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1970  * @hb:         the futex hash bucket, must be locked by the caller
1971  * @q:          the futex_q to queue up on
1972  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1973  */
1974 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1975                                 struct hrtimer_sleeper *timeout)
1976 {
1977         /*
1978          * The task state is guaranteed to be set before another task can
1979          * wake it. set_current_state() is implemented using set_mb() and
1980          * queue_me() calls spin_unlock() upon completion, both serializing
1981          * access to the hash list and forcing another memory barrier.
1982          */
1983         set_current_state(TASK_INTERRUPTIBLE);
1984         queue_me(q, hb);
1985
1986         /* Arm the timer */
1987         if (timeout) {
1988                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1989                 if (!hrtimer_active(&timeout->timer))
1990                         timeout->task = NULL;
1991         }
1992
1993         /*
1994          * If we have been removed from the hash list, then another task
1995          * has tried to wake us, and we can skip the call to schedule().
1996          */
1997         if (likely(!plist_node_empty(&q->list))) {
1998                 /*
1999                  * If the timer has already expired, current will already be
2000                  * flagged for rescheduling. Only call schedule if there
2001                  * is no timeout, or if it has yet to expire.
2002                  */
2003                 if (!timeout || timeout->task)
2004                         freezable_schedule();
2005         }
2006         __set_current_state(TASK_RUNNING);
2007 }
2008
2009 /**
2010  * futex_wait_setup() - Prepare to wait on a futex
2011  * @uaddr:      the futex userspace address
2012  * @val:        the expected value
2013  * @flags:      futex flags (FLAGS_SHARED, etc.)
2014  * @q:          the associated futex_q
2015  * @hb:         storage for hash_bucket pointer to be returned to caller
2016  *
2017  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2018  * compare it with the expected value.  Handle atomic faults internally.
2019  * Return with the hb lock held and a q.key reference on success, and unlocked
2020  * with no q.key reference on failure.
2021  *
2022  * Return:
2023  *  0 - uaddr contains val and hb has been locked;
2024  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2025  */
2026 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2027                            struct futex_q *q, struct futex_hash_bucket **hb)
2028 {
2029         u32 uval;
2030         int ret;
2031
2032         /*
2033          * Access the page AFTER the hash-bucket is locked.
2034          * Order is important:
2035          *
2036          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2037          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2038          *
2039          * The basic logical guarantee of a futex is that it blocks ONLY
2040          * if cond(var) is known to be true at the time of blocking, for
2041          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2042          * would open a race condition where we could block indefinitely with
2043          * cond(var) false, which would violate the guarantee.
2044          *
2045          * On the other hand, we insert q and release the hash-bucket only
2046          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2047          * absorb a wakeup if *uaddr does not match the desired values
2048          * while the syscall executes.
2049          */
2050 retry:
2051         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2052         if (unlikely(ret != 0))
2053                 return ret;
2054
2055 retry_private:
2056         *hb = queue_lock(q);
2057
2058         ret = get_futex_value_locked(&uval, uaddr);
2059
2060         if (ret) {
2061                 queue_unlock(*hb);
2062
2063                 ret = get_user(uval, uaddr);
2064                 if (ret)
2065                         goto out;
2066
2067                 if (!(flags & FLAGS_SHARED))
2068                         goto retry_private;
2069
2070                 put_futex_key(&q->key);
2071                 goto retry;
2072         }
2073
2074         if (uval != val) {
2075                 queue_unlock(*hb);
2076                 ret = -EWOULDBLOCK;
2077         }
2078
2079 out:
2080         if (ret)
2081                 put_futex_key(&q->key);
2082         return ret;
2083 }
2084
2085 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2086                       ktime_t *abs_time, u32 bitset)
2087 {
2088         struct hrtimer_sleeper timeout, *to = NULL;
2089         struct restart_block *restart;
2090         struct futex_hash_bucket *hb;
2091         struct futex_q q = futex_q_init;
2092         int ret;
2093
2094         if (!bitset)
2095                 return -EINVAL;
2096         q.bitset = bitset;
2097
2098         if (abs_time) {
2099                 to = &timeout;
2100
2101                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2102                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2103                                       HRTIMER_MODE_ABS);
2104                 hrtimer_init_sleeper(to, current);
2105                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2106                                              current->timer_slack_ns);
2107         }
2108
2109 retry:
2110         /*
2111          * Prepare to wait on uaddr. On success, holds hb lock and increments
2112          * q.key refs.
2113          */
2114         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2115         if (ret)
2116                 goto out;
2117
2118         /* queue_me and wait for wakeup, timeout, or a signal. */
2119         futex_wait_queue_me(hb, &q, to);
2120
2121         /* If we were woken (and unqueued), we succeeded, whatever. */
2122         ret = 0;
2123         /* unqueue_me() drops q.key ref */
2124         if (!unqueue_me(&q))
2125                 goto out;
2126         ret = -ETIMEDOUT;
2127         if (to && !to->task)
2128                 goto out;
2129
2130         /*
2131          * We expect signal_pending(current), but we might be the
2132          * victim of a spurious wakeup as well.
2133          */
2134         if (!signal_pending(current))
2135                 goto retry;
2136
2137         ret = -ERESTARTSYS;
2138         if (!abs_time)
2139                 goto out;
2140
2141         restart = &current_thread_info()->restart_block;
2142         restart->fn = futex_wait_restart;
2143         restart->futex.uaddr = uaddr;
2144         restart->futex.val = val;
2145         restart->futex.time = abs_time->tv64;
2146         restart->futex.bitset = bitset;
2147         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2148
2149         ret = -ERESTART_RESTARTBLOCK;
2150
2151 out:
2152         if (to) {
2153                 hrtimer_cancel(&to->timer);
2154                 destroy_hrtimer_on_stack(&to->timer);
2155         }
2156         return ret;
2157 }
2158
2159
2160 static long futex_wait_restart(struct restart_block *restart)
2161 {
2162         u32 __user *uaddr = restart->futex.uaddr;
2163         ktime_t t, *tp = NULL;
2164
2165         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2166                 t.tv64 = restart->futex.time;
2167                 tp = &t;
2168         }
2169         restart->fn = do_no_restart_syscall;
2170
2171         return (long)futex_wait(uaddr, restart->futex.flags,
2172                                 restart->futex.val, tp, restart->futex.bitset);
2173 }
2174
2175
2176 /*
2177  * Userspace tried a 0 -> TID atomic transition of the futex value
2178  * and failed. The kernel side here does the whole locking operation:
2179  * if there are waiters then it will block, it does PI, etc. (Due to
2180  * races the kernel might see a 0 value of the futex too.)
2181  */
2182 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2183                          ktime_t *time, int trylock)
2184 {
2185         struct hrtimer_sleeper timeout, *to = NULL;
2186         struct futex_hash_bucket *hb;
2187         struct futex_q q = futex_q_init;
2188         int res, ret;
2189
2190         if (refill_pi_state_cache())
2191                 return -ENOMEM;
2192
2193         if (time) {
2194                 to = &timeout;
2195                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2196                                       HRTIMER_MODE_ABS);
2197                 hrtimer_init_sleeper(to, current);
2198                 hrtimer_set_expires(&to->timer, *time);
2199         }
2200
2201 retry:
2202         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2203         if (unlikely(ret != 0))
2204                 goto out;
2205
2206 retry_private:
2207         hb = queue_lock(&q);
2208
2209         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2210         if (unlikely(ret)) {
2211                 switch (ret) {
2212                 case 1:
2213                         /* We got the lock. */
2214                         ret = 0;
2215                         goto out_unlock_put_key;
2216                 case -EFAULT:
2217                         goto uaddr_faulted;
2218                 case -EAGAIN:
2219                         /*
2220                          * Task is exiting and we just wait for the
2221                          * exit to complete.
2222                          */
2223                         queue_unlock(hb);
2224                         put_futex_key(&q.key);
2225                         cond_resched();
2226                         goto retry;
2227                 default:
2228                         goto out_unlock_put_key;
2229                 }
2230         }
2231
2232         /*
2233          * Only actually queue now that the atomic ops are done:
2234          */
2235         queue_me(&q, hb);
2236
2237         WARN_ON(!q.pi_state);
2238         /*
2239          * Block on the PI mutex:
2240          */
2241         if (!trylock)
2242                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2243         else {
2244                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2245                 /* Fixup the trylock return value: */
2246                 ret = ret ? 0 : -EWOULDBLOCK;
2247         }
2248
2249         spin_lock(q.lock_ptr);
2250         /*
2251          * Fixup the pi_state owner and possibly acquire the lock if we
2252          * haven't already.
2253          */
2254         res = fixup_owner(uaddr, &q, !ret);
2255         /*
2256          * If fixup_owner() returned an error, proprogate that.  If it acquired
2257          * the lock, clear our -ETIMEDOUT or -EINTR.
2258          */
2259         if (res)
2260                 ret = (res < 0) ? res : 0;
2261
2262         /*
2263          * If fixup_owner() faulted and was unable to handle the fault, unlock
2264          * it and return the fault to userspace.
2265          */
2266         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2267                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2268
2269         /* Unqueue and drop the lock */
2270         unqueue_me_pi(&q);
2271
2272         goto out_put_key;
2273
2274 out_unlock_put_key:
2275         queue_unlock(hb);
2276
2277 out_put_key:
2278         put_futex_key(&q.key);
2279 out:
2280         if (to)
2281                 destroy_hrtimer_on_stack(&to->timer);
2282         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2283
2284 uaddr_faulted:
2285         queue_unlock(hb);
2286
2287         ret = fault_in_user_writeable(uaddr);
2288         if (ret)
2289                 goto out_put_key;
2290
2291         if (!(flags & FLAGS_SHARED))
2292                 goto retry_private;
2293
2294         put_futex_key(&q.key);
2295         goto retry;
2296 }
2297
2298 /*
2299  * Userspace attempted a TID -> 0 atomic transition, and failed.
2300  * This is the in-kernel slowpath: we look up the PI state (if any),
2301  * and do the rt-mutex unlock.
2302  */
2303 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2304 {
2305         struct futex_hash_bucket *hb;
2306         struct futex_q *this, *next;
2307         union futex_key key = FUTEX_KEY_INIT;
2308         u32 uval, vpid = task_pid_vnr(current);
2309         int ret;
2310
2311 retry:
2312         if (get_user(uval, uaddr))
2313                 return -EFAULT;
2314         /*
2315          * We release only a lock we actually own:
2316          */
2317         if ((uval & FUTEX_TID_MASK) != vpid)
2318                 return -EPERM;
2319
2320         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2321         if (unlikely(ret != 0))
2322                 goto out;
2323
2324         hb = hash_futex(&key);
2325         spin_lock(&hb->lock);
2326
2327         /*
2328          * To avoid races, try to do the TID -> 0 atomic transition
2329          * again. If it succeeds then we can return without waking
2330          * anyone else up:
2331          */
2332         if (!(uval & FUTEX_OWNER_DIED) &&
2333             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2334                 goto pi_faulted;
2335         /*
2336          * Rare case: we managed to release the lock atomically,
2337          * no need to wake anyone else up:
2338          */
2339         if (unlikely(uval == vpid))
2340                 goto out_unlock;
2341
2342         /*
2343          * Ok, other tasks may need to be woken up - check waiters
2344          * and do the wakeup if necessary:
2345          */
2346         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2347                 if (!match_futex (&this->key, &key))
2348                         continue;
2349                 ret = wake_futex_pi(uaddr, uval, this);
2350                 /*
2351                  * The atomic access to the futex value
2352                  * generated a pagefault, so retry the
2353                  * user-access and the wakeup:
2354                  */
2355                 if (ret == -EFAULT)
2356                         goto pi_faulted;
2357                 goto out_unlock;
2358         }
2359         /*
2360          * No waiters - kernel unlocks the futex:
2361          */
2362         if (!(uval & FUTEX_OWNER_DIED)) {
2363                 ret = unlock_futex_pi(uaddr, uval);
2364                 if (ret == -EFAULT)
2365                         goto pi_faulted;
2366         }
2367
2368 out_unlock:
2369         spin_unlock(&hb->lock);
2370         put_futex_key(&key);
2371
2372 out:
2373         return ret;
2374
2375 pi_faulted:
2376         spin_unlock(&hb->lock);
2377         put_futex_key(&key);
2378
2379         ret = fault_in_user_writeable(uaddr);
2380         if (!ret)
2381                 goto retry;
2382
2383         return ret;
2384 }
2385
2386 /**
2387  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2388  * @hb:         the hash_bucket futex_q was original enqueued on
2389  * @q:          the futex_q woken while waiting to be requeued
2390  * @key2:       the futex_key of the requeue target futex
2391  * @timeout:    the timeout associated with the wait (NULL if none)
2392  *
2393  * Detect if the task was woken on the initial futex as opposed to the requeue
2394  * target futex.  If so, determine if it was a timeout or a signal that caused
2395  * the wakeup and return the appropriate error code to the caller.  Must be
2396  * called with the hb lock held.
2397  *
2398  * Return:
2399  *  0 = no early wakeup detected;
2400  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2401  */
2402 static inline
2403 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2404                                    struct futex_q *q, union futex_key *key2,
2405                                    struct hrtimer_sleeper *timeout)
2406 {
2407         int ret = 0;
2408
2409         /*
2410          * With the hb lock held, we avoid races while we process the wakeup.
2411          * We only need to hold hb (and not hb2) to ensure atomicity as the
2412          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2413          * It can't be requeued from uaddr2 to something else since we don't
2414          * support a PI aware source futex for requeue.
2415          */
2416         if (!match_futex(&q->key, key2)) {
2417                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2418                 /*
2419                  * We were woken prior to requeue by a timeout or a signal.
2420                  * Unqueue the futex_q and determine which it was.
2421                  */
2422                 plist_del(&q->list, &hb->chain);
2423                 hb_waiters_dec(hb);
2424
2425                 /* Handle spurious wakeups gracefully */
2426                 ret = -EWOULDBLOCK;
2427                 if (timeout && !timeout->task)
2428                         ret = -ETIMEDOUT;
2429                 else if (signal_pending(current))
2430                         ret = -ERESTARTNOINTR;
2431         }
2432         return ret;
2433 }
2434
2435 /**
2436  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2437  * @uaddr:      the futex we initially wait on (non-pi)
2438  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2439  *              the same type, no requeueing from private to shared, etc.
2440  * @val:        the expected value of uaddr
2441  * @abs_time:   absolute timeout
2442  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2443  * @uaddr2:     the pi futex we will take prior to returning to user-space
2444  *
2445  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2446  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2447  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2448  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2449  * without one, the pi logic would not know which task to boost/deboost, if
2450  * there was a need to.
2451  *
2452  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2453  * via the following--
2454  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2455  * 2) wakeup on uaddr2 after a requeue
2456  * 3) signal
2457  * 4) timeout
2458  *
2459  * If 3, cleanup and return -ERESTARTNOINTR.
2460  *
2461  * If 2, we may then block on trying to take the rt_mutex and return via:
2462  * 5) successful lock
2463  * 6) signal
2464  * 7) timeout
2465  * 8) other lock acquisition failure
2466  *
2467  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2468  *
2469  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2470  *
2471  * Return:
2472  *  0 - On success;
2473  * <0 - On error
2474  */
2475 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2476                                  u32 val, ktime_t *abs_time, u32 bitset,
2477                                  u32 __user *uaddr2)
2478 {
2479         struct hrtimer_sleeper timeout, *to = NULL;
2480         struct rt_mutex_waiter rt_waiter;
2481         struct rt_mutex *pi_mutex = NULL;
2482         struct futex_hash_bucket *hb;
2483         union futex_key key2 = FUTEX_KEY_INIT;
2484         struct futex_q q = futex_q_init;
2485         int res, ret;
2486
2487         if (uaddr == uaddr2)
2488                 return -EINVAL;
2489
2490         if (!bitset)
2491                 return -EINVAL;
2492
2493         if (abs_time) {
2494                 to = &timeout;
2495                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2496                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2497                                       HRTIMER_MODE_ABS);
2498                 hrtimer_init_sleeper(to, current);
2499                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2500                                              current->timer_slack_ns);
2501         }
2502
2503         /*
2504          * The waiter is allocated on our stack, manipulated by the requeue
2505          * code while we sleep on uaddr.
2506          */
2507         debug_rt_mutex_init_waiter(&rt_waiter);
2508         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2509         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2510         rt_waiter.task = NULL;
2511
2512         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2513         if (unlikely(ret != 0))
2514                 goto out;
2515
2516         q.bitset = bitset;
2517         q.rt_waiter = &rt_waiter;
2518         q.requeue_pi_key = &key2;
2519
2520         /*
2521          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2522          * count.
2523          */
2524         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2525         if (ret)
2526                 goto out_key2;
2527
2528         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2529         futex_wait_queue_me(hb, &q, to);
2530
2531         spin_lock(&hb->lock);
2532         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2533         spin_unlock(&hb->lock);
2534         if (ret)
2535                 goto out_put_keys;
2536
2537         /*
2538          * In order for us to be here, we know our q.key == key2, and since
2539          * we took the hb->lock above, we also know that futex_requeue() has
2540          * completed and we no longer have to concern ourselves with a wakeup
2541          * race with the atomic proxy lock acquisition by the requeue code. The
2542          * futex_requeue dropped our key1 reference and incremented our key2
2543          * reference count.
2544          */
2545
2546         /* Check if the requeue code acquired the second futex for us. */
2547         if (!q.rt_waiter) {
2548                 /*
2549                  * Got the lock. We might not be the anticipated owner if we
2550                  * did a lock-steal - fix up the PI-state in that case.
2551                  */
2552                 if (q.pi_state && (q.pi_state->owner != current)) {
2553                         spin_lock(q.lock_ptr);
2554                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2555                         spin_unlock(q.lock_ptr);
2556                 }
2557         } else {
2558                 /*
2559                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2560                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2561                  * the pi_state.
2562                  */
2563                 WARN_ON(!q.pi_state);
2564                 pi_mutex = &q.pi_state->pi_mutex;
2565                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2566                 debug_rt_mutex_free_waiter(&rt_waiter);
2567
2568                 spin_lock(q.lock_ptr);
2569                 /*
2570                  * Fixup the pi_state owner and possibly acquire the lock if we
2571                  * haven't already.
2572                  */
2573                 res = fixup_owner(uaddr2, &q, !ret);
2574                 /*
2575                  * If fixup_owner() returned an error, proprogate that.  If it
2576                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2577                  */
2578                 if (res)
2579                         ret = (res < 0) ? res : 0;
2580
2581                 /* Unqueue and drop the lock. */
2582                 unqueue_me_pi(&q);
2583         }
2584
2585         /*
2586          * If fixup_pi_state_owner() faulted and was unable to handle the
2587          * fault, unlock the rt_mutex and return the fault to userspace.
2588          */
2589         if (ret == -EFAULT) {
2590                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2591                         rt_mutex_unlock(pi_mutex);
2592         } else if (ret == -EINTR) {
2593                 /*
2594                  * We've already been requeued, but cannot restart by calling
2595                  * futex_lock_pi() directly. We could restart this syscall, but
2596                  * it would detect that the user space "val" changed and return
2597                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2598                  * -EWOULDBLOCK directly.
2599                  */
2600                 ret = -EWOULDBLOCK;
2601         }
2602
2603 out_put_keys:
2604         put_futex_key(&q.key);
2605 out_key2:
2606         put_futex_key(&key2);
2607
2608 out:
2609         if (to) {
2610                 hrtimer_cancel(&to->timer);
2611                 destroy_hrtimer_on_stack(&to->timer);
2612         }
2613         return ret;
2614 }
2615
2616 /*
2617  * Support for robust futexes: the kernel cleans up held futexes at
2618  * thread exit time.
2619  *
2620  * Implementation: user-space maintains a per-thread list of locks it
2621  * is holding. Upon do_exit(), the kernel carefully walks this list,
2622  * and marks all locks that are owned by this thread with the
2623  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2624  * always manipulated with the lock held, so the list is private and
2625  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2626  * field, to allow the kernel to clean up if the thread dies after
2627  * acquiring the lock, but just before it could have added itself to
2628  * the list. There can only be one such pending lock.
2629  */
2630
2631 /**
2632  * sys_set_robust_list() - Set the robust-futex list head of a task
2633  * @head:       pointer to the list-head
2634  * @len:        length of the list-head, as userspace expects
2635  */
2636 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2637                 size_t, len)
2638 {
2639         if (!futex_cmpxchg_enabled)
2640                 return -ENOSYS;
2641         /*
2642          * The kernel knows only one size for now:
2643          */
2644         if (unlikely(len != sizeof(*head)))
2645                 return -EINVAL;
2646
2647         current->robust_list = head;
2648
2649         return 0;
2650 }
2651
2652 /**
2653  * sys_get_robust_list() - Get the robust-futex list head of a task
2654  * @pid:        pid of the process [zero for current task]
2655  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2656  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2657  */
2658 SYSCALL_DEFINE3(get_robust_list, int, pid,
2659                 struct robust_list_head __user * __user *, head_ptr,
2660                 size_t __user *, len_ptr)
2661 {
2662         struct robust_list_head __user *head;
2663         unsigned long ret;
2664         struct task_struct *p;
2665
2666         if (!futex_cmpxchg_enabled)
2667                 return -ENOSYS;
2668
2669         rcu_read_lock();
2670
2671         ret = -ESRCH;
2672         if (!pid)
2673                 p = current;
2674         else {
2675                 p = find_task_by_vpid(pid);
2676                 if (!p)
2677                         goto err_unlock;
2678         }
2679
2680         ret = -EPERM;
2681         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2682                 goto err_unlock;
2683
2684         head = p->robust_list;
2685         rcu_read_unlock();
2686
2687         if (put_user(sizeof(*head), len_ptr))
2688                 return -EFAULT;
2689         return put_user(head, head_ptr);
2690
2691 err_unlock:
2692         rcu_read_unlock();
2693
2694         return ret;
2695 }
2696
2697 /*
2698  * Process a futex-list entry, check whether it's owned by the
2699  * dying task, and do notification if so:
2700  */
2701 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2702 {
2703         u32 uval, uninitialized_var(nval), mval;
2704
2705 retry:
2706         if (get_user(uval, uaddr))
2707                 return -1;
2708
2709         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2710                 /*
2711                  * Ok, this dying thread is truly holding a futex
2712                  * of interest. Set the OWNER_DIED bit atomically
2713                  * via cmpxchg, and if the value had FUTEX_WAITERS
2714                  * set, wake up a waiter (if any). (We have to do a
2715                  * futex_wake() even if OWNER_DIED is already set -
2716                  * to handle the rare but possible case of recursive
2717                  * thread-death.) The rest of the cleanup is done in
2718                  * userspace.
2719                  */
2720                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2721                 /*
2722                  * We are not holding a lock here, but we want to have
2723                  * the pagefault_disable/enable() protection because
2724                  * we want to handle the fault gracefully. If the
2725                  * access fails we try to fault in the futex with R/W
2726                  * verification via get_user_pages. get_user() above
2727                  * does not guarantee R/W access. If that fails we
2728                  * give up and leave the futex locked.
2729                  */
2730                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2731                         if (fault_in_user_writeable(uaddr))
2732                                 return -1;
2733                         goto retry;
2734                 }
2735                 if (nval != uval)
2736                         goto retry;
2737
2738                 /*
2739                  * Wake robust non-PI futexes here. The wakeup of
2740                  * PI futexes happens in exit_pi_state():
2741                  */
2742                 if (!pi && (uval & FUTEX_WAITERS))
2743                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2744         }
2745         return 0;
2746 }
2747
2748 /*
2749  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2750  */
2751 static inline int fetch_robust_entry(struct robust_list __user **entry,
2752                                      struct robust_list __user * __user *head,
2753                                      unsigned int *pi)
2754 {
2755         unsigned long uentry;
2756
2757         if (get_user(uentry, (unsigned long __user *)head))
2758                 return -EFAULT;
2759
2760         *entry = (void __user *)(uentry & ~1UL);
2761         *pi = uentry & 1;
2762
2763         return 0;
2764 }
2765
2766 /*
2767  * Walk curr->robust_list (very carefully, it's a userspace list!)
2768  * and mark any locks found there dead, and notify any waiters.
2769  *
2770  * We silently return on any sign of list-walking problem.
2771  */
2772 void exit_robust_list(struct task_struct *curr)
2773 {
2774         struct robust_list_head __user *head = curr->robust_list;
2775         struct robust_list __user *entry, *next_entry, *pending;
2776         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2777         unsigned int uninitialized_var(next_pi);
2778         unsigned long futex_offset;
2779         int rc;
2780
2781         if (!futex_cmpxchg_enabled)
2782                 return;
2783
2784         /*
2785          * Fetch the list head (which was registered earlier, via
2786          * sys_set_robust_list()):
2787          */
2788         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2789                 return;
2790         /*
2791          * Fetch the relative futex offset:
2792          */
2793         if (get_user(futex_offset, &head->futex_offset))
2794                 return;
2795         /*
2796          * Fetch any possibly pending lock-add first, and handle it
2797          * if it exists:
2798          */
2799         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2800                 return;
2801
2802         next_entry = NULL;      /* avoid warning with gcc */
2803         while (entry != &head->list) {
2804                 /*
2805                  * Fetch the next entry in the list before calling
2806                  * handle_futex_death:
2807                  */
2808                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2809                 /*
2810                  * A pending lock might already be on the list, so
2811                  * don't process it twice:
2812                  */
2813                 if (entry != pending)
2814                         if (handle_futex_death((void __user *)entry + futex_offset,
2815                                                 curr, pi))
2816                                 return;
2817                 if (rc)
2818                         return;
2819                 entry = next_entry;
2820                 pi = next_pi;
2821                 /*
2822                  * Avoid excessively long or circular lists:
2823                  */
2824                 if (!--limit)
2825                         break;
2826
2827                 cond_resched();
2828         }
2829
2830         if (pending)
2831                 handle_futex_death((void __user *)pending + futex_offset,
2832                                    curr, pip);
2833 }
2834
2835 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2836                 u32 __user *uaddr2, u32 val2, u32 val3)
2837 {
2838         int cmd = op & FUTEX_CMD_MASK;
2839         unsigned int flags = 0;
2840
2841         if (!(op & FUTEX_PRIVATE_FLAG))
2842                 flags |= FLAGS_SHARED;
2843
2844         if (op & FUTEX_CLOCK_REALTIME) {
2845                 flags |= FLAGS_CLOCKRT;
2846                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2847                         return -ENOSYS;
2848         }
2849
2850         switch (cmd) {
2851         case FUTEX_LOCK_PI:
2852         case FUTEX_UNLOCK_PI:
2853         case FUTEX_TRYLOCK_PI:
2854         case FUTEX_WAIT_REQUEUE_PI:
2855         case FUTEX_CMP_REQUEUE_PI:
2856                 if (!futex_cmpxchg_enabled)
2857                         return -ENOSYS;
2858         }
2859
2860         switch (cmd) {
2861         case FUTEX_WAIT:
2862                 val3 = FUTEX_BITSET_MATCH_ANY;
2863         case FUTEX_WAIT_BITSET:
2864                 return futex_wait(uaddr, flags, val, timeout, val3);
2865         case FUTEX_WAKE:
2866                 val3 = FUTEX_BITSET_MATCH_ANY;
2867         case FUTEX_WAKE_BITSET:
2868                 return futex_wake(uaddr, flags, val, val3);
2869         case FUTEX_REQUEUE:
2870                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2871         case FUTEX_CMP_REQUEUE:
2872                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2873         case FUTEX_WAKE_OP:
2874                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2875         case FUTEX_LOCK_PI:
2876                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2877         case FUTEX_UNLOCK_PI:
2878                 return futex_unlock_pi(uaddr, flags);
2879         case FUTEX_TRYLOCK_PI:
2880                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2881         case FUTEX_WAIT_REQUEUE_PI:
2882                 val3 = FUTEX_BITSET_MATCH_ANY;
2883                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2884                                              uaddr2);
2885         case FUTEX_CMP_REQUEUE_PI:
2886                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2887         }
2888         return -ENOSYS;
2889 }
2890
2891
2892 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2893                 struct timespec __user *, utime, u32 __user *, uaddr2,
2894                 u32, val3)
2895 {
2896         struct timespec ts;
2897         ktime_t t, *tp = NULL;
2898         u32 val2 = 0;
2899         int cmd = op & FUTEX_CMD_MASK;
2900
2901         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2902                       cmd == FUTEX_WAIT_BITSET ||
2903                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2904                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2905                         return -EFAULT;
2906                 if (!timespec_valid(&ts))
2907                         return -EINVAL;
2908
2909                 t = timespec_to_ktime(ts);
2910                 if (cmd == FUTEX_WAIT)
2911                         t = ktime_add_safe(ktime_get(), t);
2912                 tp = &t;
2913         }
2914         /*
2915          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2916          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2917          */
2918         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2919             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2920                 val2 = (u32) (unsigned long) utime;
2921
2922         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2923 }
2924
2925 static void __init futex_detect_cmpxchg(void)
2926 {
2927 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2928         u32 curval;
2929
2930         /*
2931          * This will fail and we want it. Some arch implementations do
2932          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2933          * functionality. We want to know that before we call in any
2934          * of the complex code paths. Also we want to prevent
2935          * registration of robust lists in that case. NULL is
2936          * guaranteed to fault and we get -EFAULT on functional
2937          * implementation, the non-functional ones will return
2938          * -ENOSYS.
2939          */
2940         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2941                 futex_cmpxchg_enabled = 1;
2942 #endif
2943 }
2944
2945 static int __init futex_init(void)
2946 {
2947         unsigned int futex_shift;
2948         unsigned long i;
2949
2950 #if CONFIG_BASE_SMALL
2951         futex_hashsize = 16;
2952 #else
2953         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2954 #endif
2955
2956         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2957                                                futex_hashsize, 0,
2958                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2959                                                &futex_shift, NULL,
2960                                                futex_hashsize, futex_hashsize);
2961         futex_hashsize = 1UL << futex_shift;
2962
2963         futex_detect_cmpxchg();
2964
2965         for (i = 0; i < futex_hashsize; i++) {
2966                 atomic_set(&futex_queues[i].waiters, 0);
2967                 plist_head_init(&futex_queues[i].chain);
2968                 spin_lock_init(&futex_queues[i].lock);
2969         }
2970
2971         return 0;
2972 }
2973 __initcall(futex_init);