dn_getsockoptdecnet: move nf_{get/set}sockopt outside sock lock
[pandora-kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/hugetlb.h>
64
65 #include <asm/futex.h>
66
67 #include "rtmutex_common.h"
68
69 int __read_mostly futex_cmpxchg_enabled;
70
71 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72
73 /*
74  * Futex flags used to encode options to functions and preserve them across
75  * restarts.
76  */
77 #define FLAGS_SHARED            0x01
78 #define FLAGS_CLOCKRT           0x02
79 #define FLAGS_HAS_TIMEOUT       0x04
80
81 /*
82  * Priority Inheritance state:
83  */
84 struct futex_pi_state {
85         /*
86          * list of 'owned' pi_state instances - these have to be
87          * cleaned up in do_exit() if the task exits prematurely:
88          */
89         struct list_head list;
90
91         /*
92          * The PI object:
93          */
94         struct rt_mutex pi_mutex;
95
96         struct task_struct *owner;
97         atomic_t refcount;
98
99         union futex_key key;
100 };
101
102 /**
103  * struct futex_q - The hashed futex queue entry, one per waiting task
104  * @list:               priority-sorted list of tasks waiting on this futex
105  * @task:               the task waiting on the futex
106  * @lock_ptr:           the hash bucket lock
107  * @key:                the key the futex is hashed on
108  * @pi_state:           optional priority inheritance state
109  * @rt_waiter:          rt_waiter storage for use with requeue_pi
110  * @requeue_pi_key:     the requeue_pi target futex key
111  * @bitset:             bitset for the optional bitmasked wakeup
112  *
113  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
114  * we can wake only the relevant ones (hashed queues may be shared).
115  *
116  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
117  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118  * The order of wakeup is always to make the first condition true, then
119  * the second.
120  *
121  * PI futexes are typically woken before they are removed from the hash list via
122  * the rt_mutex code. See unqueue_me_pi().
123  */
124 struct futex_q {
125         struct plist_node list;
126
127         struct task_struct *task;
128         spinlock_t *lock_ptr;
129         union futex_key key;
130         struct futex_pi_state *pi_state;
131         struct rt_mutex_waiter *rt_waiter;
132         union futex_key *requeue_pi_key;
133         u32 bitset;
134 };
135
136 static const struct futex_q futex_q_init = {
137         /* list gets initialized in queue_me()*/
138         .key = FUTEX_KEY_INIT,
139         .bitset = FUTEX_BITSET_MATCH_ANY
140 };
141
142 /*
143  * Hash buckets are shared by all the futex_keys that hash to the same
144  * location.  Each key may have multiple futex_q structures, one for each task
145  * waiting on a futex.
146  */
147 struct futex_hash_bucket {
148         spinlock_t lock;
149         struct plist_head chain;
150 };
151
152 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153
154 /*
155  * We hash on the keys returned from get_futex_key (see below).
156  */
157 static struct futex_hash_bucket *hash_futex(union futex_key *key)
158 {
159         u32 hash = jhash2((u32*)&key->both.word,
160                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161                           key->both.offset);
162         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
163 }
164
165 /*
166  * Return 1 if two futex_keys are equal, 0 otherwise.
167  */
168 static inline int match_futex(union futex_key *key1, union futex_key *key2)
169 {
170         return (key1 && key2
171                 && key1->both.word == key2->both.word
172                 && key1->both.ptr == key2->both.ptr
173                 && key1->both.offset == key2->both.offset);
174 }
175
176 /*
177  * Take a reference to the resource addressed by a key.
178  * Can be called while holding spinlocks.
179  *
180  */
181 static void get_futex_key_refs(union futex_key *key)
182 {
183         if (!key->both.ptr)
184                 return;
185
186         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187         case FUT_OFF_INODE:
188                 ihold(key->shared.inode);
189                 break;
190         case FUT_OFF_MMSHARED:
191                 atomic_inc(&key->private.mm->mm_count);
192                 break;
193         }
194 }
195
196 /*
197  * Drop a reference to the resource addressed by a key.
198  * The hash bucket spinlock must not be held.
199  */
200 static void drop_futex_key_refs(union futex_key *key)
201 {
202         if (!key->both.ptr) {
203                 /* If we're here then we tried to put a key we failed to get */
204                 WARN_ON_ONCE(1);
205                 return;
206         }
207
208         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209         case FUT_OFF_INODE:
210                 iput(key->shared.inode);
211                 break;
212         case FUT_OFF_MMSHARED:
213                 mmdrop(key->private.mm);
214                 break;
215         }
216 }
217
218 /**
219  * get_futex_key() - Get parameters which are the keys for a futex
220  * @uaddr:      virtual address of the futex
221  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222  * @key:        address where result is stored.
223  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
224  *              VERIFY_WRITE)
225  *
226  * Returns a negative error code or 0
227  * The key words are stored in *key on success.
228  *
229  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
230  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
231  * We can usually work out the index without swapping in the page.
232  *
233  * lock_page() might sleep, the caller should not hold a spinlock.
234  */
235 static int
236 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
237 {
238         unsigned long address = (unsigned long)uaddr;
239         struct mm_struct *mm = current->mm;
240         struct page *page, *page_head;
241         int err, ro = 0;
242
243         /*
244          * The futex address must be "naturally" aligned.
245          */
246         key->both.offset = address % PAGE_SIZE;
247         if (unlikely((address % sizeof(u32)) != 0))
248                 return -EINVAL;
249         address -= key->both.offset;
250
251         /*
252          * PROCESS_PRIVATE futexes are fast.
253          * As the mm cannot disappear under us and the 'key' only needs
254          * virtual address, we dont even have to find the underlying vma.
255          * Note : We do have to check 'uaddr' is a valid user address,
256          *        but access_ok() should be faster than find_vma()
257          */
258         if (!fshared) {
259                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
260                         return -EFAULT;
261                 key->private.mm = mm;
262                 key->private.address = address;
263                 get_futex_key_refs(key);
264                 return 0;
265         }
266
267 again:
268         err = get_user_pages_fast(address, 1, 1, &page);
269         /*
270          * If write access is not required (eg. FUTEX_WAIT), try
271          * and get read-only access.
272          */
273         if (err == -EFAULT && rw == VERIFY_READ) {
274                 err = get_user_pages_fast(address, 1, 0, &page);
275                 ro = 1;
276         }
277         if (err < 0)
278                 return err;
279         else
280                 err = 0;
281
282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
283         page_head = page;
284         if (unlikely(PageTail(page))) {
285                 put_page(page);
286                 /* serialize against __split_huge_page_splitting() */
287                 local_irq_disable();
288                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
289                         page_head = compound_head(page);
290                         /*
291                          * page_head is valid pointer but we must pin
292                          * it before taking the PG_lock and/or
293                          * PG_compound_lock. The moment we re-enable
294                          * irqs __split_huge_page_splitting() can
295                          * return and the head page can be freed from
296                          * under us. We can't take the PG_lock and/or
297                          * PG_compound_lock on a page that could be
298                          * freed from under us.
299                          */
300                         if (page != page_head) {
301                                 get_page(page_head);
302                                 put_page(page);
303                         }
304                         local_irq_enable();
305                 } else {
306                         local_irq_enable();
307                         goto again;
308                 }
309         }
310 #else
311         page_head = compound_head(page);
312         if (page != page_head) {
313                 get_page(page_head);
314                 put_page(page);
315         }
316 #endif
317
318         lock_page(page_head);
319
320         /*
321          * If page_head->mapping is NULL, then it cannot be a PageAnon
322          * page; but it might be the ZERO_PAGE or in the gate area or
323          * in a special mapping (all cases which we are happy to fail);
324          * or it may have been a good file page when get_user_pages_fast
325          * found it, but truncated or holepunched or subjected to
326          * invalidate_complete_page2 before we got the page lock (also
327          * cases which we are happy to fail).  And we hold a reference,
328          * so refcount care in invalidate_complete_page's remove_mapping
329          * prevents drop_caches from setting mapping to NULL beneath us.
330          *
331          * The case we do have to guard against is when memory pressure made
332          * shmem_writepage move it from filecache to swapcache beneath us:
333          * an unlikely race, but we do need to retry for page_head->mapping.
334          */
335         if (!page_head->mapping) {
336                 int shmem_swizzled = PageSwapCache(page_head);
337                 unlock_page(page_head);
338                 put_page(page_head);
339                 if (shmem_swizzled)
340                         goto again;
341                 return -EFAULT;
342         }
343
344         /*
345          * Private mappings are handled in a simple way.
346          *
347          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
348          * it's a read-only handle, it's expected that futexes attach to
349          * the object not the particular process.
350          */
351         if (PageAnon(page_head)) {
352                 /*
353                  * A RO anonymous page will never change and thus doesn't make
354                  * sense for futex operations.
355                  */
356                 if (ro) {
357                         err = -EFAULT;
358                         goto out;
359                 }
360
361                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
362                 key->private.mm = mm;
363                 key->private.address = address;
364         } else {
365                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
366                 key->shared.inode = page_head->mapping->host;
367                 key->shared.pgoff = basepage_index(page);
368         }
369
370         get_futex_key_refs(key);
371
372 out:
373         unlock_page(page_head);
374         put_page(page_head);
375         return err;
376 }
377
378 static inline void put_futex_key(union futex_key *key)
379 {
380         drop_futex_key_refs(key);
381 }
382
383 /**
384  * fault_in_user_writeable() - Fault in user address and verify RW access
385  * @uaddr:      pointer to faulting user space address
386  *
387  * Slow path to fixup the fault we just took in the atomic write
388  * access to @uaddr.
389  *
390  * We have no generic implementation of a non-destructive write to the
391  * user address. We know that we faulted in the atomic pagefault
392  * disabled section so we can as well avoid the #PF overhead by
393  * calling get_user_pages() right away.
394  */
395 static int fault_in_user_writeable(u32 __user *uaddr)
396 {
397         struct mm_struct *mm = current->mm;
398         int ret;
399
400         down_read(&mm->mmap_sem);
401         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
402                                FAULT_FLAG_WRITE);
403         up_read(&mm->mmap_sem);
404
405         return ret < 0 ? ret : 0;
406 }
407
408 /**
409  * futex_top_waiter() - Return the highest priority waiter on a futex
410  * @hb:         the hash bucket the futex_q's reside in
411  * @key:        the futex key (to distinguish it from other futex futex_q's)
412  *
413  * Must be called with the hb lock held.
414  */
415 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
416                                         union futex_key *key)
417 {
418         struct futex_q *this;
419
420         plist_for_each_entry(this, &hb->chain, list) {
421                 if (match_futex(&this->key, key))
422                         return this;
423         }
424         return NULL;
425 }
426
427 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
428                                       u32 uval, u32 newval)
429 {
430         int ret;
431
432         pagefault_disable();
433         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
434         pagefault_enable();
435
436         return ret;
437 }
438
439 static int get_futex_value_locked(u32 *dest, u32 __user *from)
440 {
441         int ret;
442
443         pagefault_disable();
444         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
445         pagefault_enable();
446
447         return ret ? -EFAULT : 0;
448 }
449
450
451 /*
452  * PI code:
453  */
454 static int refill_pi_state_cache(void)
455 {
456         struct futex_pi_state *pi_state;
457
458         if (likely(current->pi_state_cache))
459                 return 0;
460
461         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462
463         if (!pi_state)
464                 return -ENOMEM;
465
466         INIT_LIST_HEAD(&pi_state->list);
467         /* pi_mutex gets initialized later */
468         pi_state->owner = NULL;
469         atomic_set(&pi_state->refcount, 1);
470         pi_state->key = FUTEX_KEY_INIT;
471
472         current->pi_state_cache = pi_state;
473
474         return 0;
475 }
476
477 static struct futex_pi_state * alloc_pi_state(void)
478 {
479         struct futex_pi_state *pi_state = current->pi_state_cache;
480
481         WARN_ON(!pi_state);
482         current->pi_state_cache = NULL;
483
484         return pi_state;
485 }
486
487 /*
488  * Must be called with the hb lock held.
489  */
490 static void free_pi_state(struct futex_pi_state *pi_state)
491 {
492         if (!pi_state)
493                 return;
494
495         if (!atomic_dec_and_test(&pi_state->refcount))
496                 return;
497
498         /*
499          * If pi_state->owner is NULL, the owner is most probably dying
500          * and has cleaned up the pi_state already
501          */
502         if (pi_state->owner) {
503                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
504                 list_del_init(&pi_state->list);
505                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
506
507                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
508         }
509
510         if (current->pi_state_cache)
511                 kfree(pi_state);
512         else {
513                 /*
514                  * pi_state->list is already empty.
515                  * clear pi_state->owner.
516                  * refcount is at 0 - put it back to 1.
517                  */
518                 pi_state->owner = NULL;
519                 atomic_set(&pi_state->refcount, 1);
520                 current->pi_state_cache = pi_state;
521         }
522 }
523
524 /*
525  * Look up the task based on what TID userspace gave us.
526  * We dont trust it.
527  */
528 static struct task_struct * futex_find_get_task(pid_t pid)
529 {
530         struct task_struct *p;
531
532         rcu_read_lock();
533         p = find_task_by_vpid(pid);
534         if (p)
535                 get_task_struct(p);
536
537         rcu_read_unlock();
538
539         return p;
540 }
541
542 /*
543  * This task is holding PI mutexes at exit time => bad.
544  * Kernel cleans up PI-state, but userspace is likely hosed.
545  * (Robust-futex cleanup is separate and might save the day for userspace.)
546  */
547 void exit_pi_state_list(struct task_struct *curr)
548 {
549         struct list_head *next, *head = &curr->pi_state_list;
550         struct futex_pi_state *pi_state;
551         struct futex_hash_bucket *hb;
552         union futex_key key = FUTEX_KEY_INIT;
553
554         if (!futex_cmpxchg_enabled)
555                 return;
556         /*
557          * We are a ZOMBIE and nobody can enqueue itself on
558          * pi_state_list anymore, but we have to be careful
559          * versus waiters unqueueing themselves:
560          */
561         raw_spin_lock_irq(&curr->pi_lock);
562         while (!list_empty(head)) {
563
564                 next = head->next;
565                 pi_state = list_entry(next, struct futex_pi_state, list);
566                 key = pi_state->key;
567                 hb = hash_futex(&key);
568                 raw_spin_unlock_irq(&curr->pi_lock);
569
570                 spin_lock(&hb->lock);
571
572                 raw_spin_lock_irq(&curr->pi_lock);
573                 /*
574                  * We dropped the pi-lock, so re-check whether this
575                  * task still owns the PI-state:
576                  */
577                 if (head->next != next) {
578                         spin_unlock(&hb->lock);
579                         continue;
580                 }
581
582                 WARN_ON(pi_state->owner != curr);
583                 WARN_ON(list_empty(&pi_state->list));
584                 list_del_init(&pi_state->list);
585                 pi_state->owner = NULL;
586                 raw_spin_unlock_irq(&curr->pi_lock);
587
588                 rt_mutex_unlock(&pi_state->pi_mutex);
589
590                 spin_unlock(&hb->lock);
591
592                 raw_spin_lock_irq(&curr->pi_lock);
593         }
594         raw_spin_unlock_irq(&curr->pi_lock);
595 }
596
597 /*
598  * We need to check the following states:
599  *
600  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
601  *
602  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
603  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
604  *
605  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
606  *
607  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
608  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
609  *
610  * [6]  Found  | Found    | task      | 0         | 1      | Valid
611  *
612  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
613  *
614  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
615  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
616  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
617  *
618  * [1]  Indicates that the kernel can acquire the futex atomically. We
619  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
620  *
621  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
622  *      thread is found then it indicates that the owner TID has died.
623  *
624  * [3]  Invalid. The waiter is queued on a non PI futex
625  *
626  * [4]  Valid state after exit_robust_list(), which sets the user space
627  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
628  *
629  * [5]  The user space value got manipulated between exit_robust_list()
630  *      and exit_pi_state_list()
631  *
632  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
633  *      the pi_state but cannot access the user space value.
634  *
635  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
636  *
637  * [8]  Owner and user space value match
638  *
639  * [9]  There is no transient state which sets the user space TID to 0
640  *      except exit_robust_list(), but this is indicated by the
641  *      FUTEX_OWNER_DIED bit. See [4]
642  *
643  * [10] There is no transient state which leaves owner and user space
644  *      TID out of sync.
645  */
646 static int
647 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
648                 union futex_key *key, struct futex_pi_state **ps)
649 {
650         struct futex_pi_state *pi_state = NULL;
651         struct futex_q *this, *next;
652         struct plist_head *head;
653         struct task_struct *p;
654         pid_t pid = uval & FUTEX_TID_MASK;
655
656         head = &hb->chain;
657
658         plist_for_each_entry_safe(this, next, head, list) {
659                 if (match_futex(&this->key, key)) {
660                         /*
661                          * Sanity check the waiter before increasing
662                          * the refcount and attaching to it.
663                          */
664                         pi_state = this->pi_state;
665                         /*
666                          * Userspace might have messed up non-PI and
667                          * PI futexes [3]
668                          */
669                         if (unlikely(!pi_state))
670                                 return -EINVAL;
671
672                         WARN_ON(!atomic_read(&pi_state->refcount));
673
674                         /*
675                          * Handle the owner died case:
676                          */
677                         if (uval & FUTEX_OWNER_DIED) {
678                                 /*
679                                  * exit_pi_state_list sets owner to NULL and
680                                  * wakes the topmost waiter. The task which
681                                  * acquires the pi_state->rt_mutex will fixup
682                                  * owner.
683                                  */
684                                 if (!pi_state->owner) {
685                                         /*
686                                          * No pi state owner, but the user
687                                          * space TID is not 0. Inconsistent
688                                          * state. [5]
689                                          */
690                                         if (pid)
691                                                 return -EINVAL;
692                                         /*
693                                          * Take a ref on the state and
694                                          * return. [4]
695                                          */
696                                         goto out_state;
697                                 }
698
699                                 /*
700                                  * If TID is 0, then either the dying owner
701                                  * has not yet executed exit_pi_state_list()
702                                  * or some waiter acquired the rtmutex in the
703                                  * pi state, but did not yet fixup the TID in
704                                  * user space.
705                                  *
706                                  * Take a ref on the state and return. [6]
707                                  */
708                                 if (!pid)
709                                         goto out_state;
710                         } else {
711                                 /*
712                                  * If the owner died bit is not set,
713                                  * then the pi_state must have an
714                                  * owner. [7]
715                                  */
716                                 if (!pi_state->owner)
717                                         return -EINVAL;
718                         }
719
720                         /*
721                          * Bail out if user space manipulated the
722                          * futex value. If pi state exists then the
723                          * owner TID must be the same as the user
724                          * space TID. [9/10]
725                          */
726                         if (pid != task_pid_vnr(pi_state->owner))
727                                 return -EINVAL;
728
729                 out_state:
730                         atomic_inc(&pi_state->refcount);
731                         *ps = pi_state;
732                         return 0;
733                 }
734         }
735
736         /*
737          * We are the first waiter - try to look up the real owner and attach
738          * the new pi_state to it, but bail out when TID = 0 [1]
739          */
740         if (!pid)
741                 return -ESRCH;
742         p = futex_find_get_task(pid);
743         if (!p)
744                 return -ESRCH;
745
746         if (!p->mm) {
747                 put_task_struct(p);
748                 return -EPERM;
749         }
750
751         /*
752          * We need to look at the task state flags to figure out,
753          * whether the task is exiting. To protect against the do_exit
754          * change of the task flags, we do this protected by
755          * p->pi_lock:
756          */
757         raw_spin_lock_irq(&p->pi_lock);
758         if (unlikely(p->flags & PF_EXITING)) {
759                 /*
760                  * The task is on the way out. When PF_EXITPIDONE is
761                  * set, we know that the task has finished the
762                  * cleanup:
763                  */
764                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
765
766                 raw_spin_unlock_irq(&p->pi_lock);
767                 put_task_struct(p);
768                 return ret;
769         }
770
771         /*
772          * No existing pi state. First waiter. [2]
773          */
774         pi_state = alloc_pi_state();
775
776         /*
777          * Initialize the pi_mutex in locked state and make 'p'
778          * the owner of it:
779          */
780         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
781
782         /* Store the key for possible exit cleanups: */
783         pi_state->key = *key;
784
785         WARN_ON(!list_empty(&pi_state->list));
786         list_add(&pi_state->list, &p->pi_state_list);
787         pi_state->owner = p;
788         raw_spin_unlock_irq(&p->pi_lock);
789
790         put_task_struct(p);
791
792         *ps = pi_state;
793
794         return 0;
795 }
796
797 /**
798  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
799  * @uaddr:              the pi futex user address
800  * @hb:                 the pi futex hash bucket
801  * @key:                the futex key associated with uaddr and hb
802  * @ps:                 the pi_state pointer where we store the result of the
803  *                      lookup
804  * @task:               the task to perform the atomic lock work for.  This will
805  *                      be "current" except in the case of requeue pi.
806  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
807  *
808  * Returns:
809  *  0 - ready to wait
810  *  1 - acquired the lock
811  * <0 - error
812  *
813  * The hb->lock and futex_key refs shall be held by the caller.
814  */
815 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
816                                 union futex_key *key,
817                                 struct futex_pi_state **ps,
818                                 struct task_struct *task, int set_waiters)
819 {
820         int lock_taken, ret, force_take = 0;
821         u32 uval, newval, curval, vpid = task_pid_vnr(task);
822
823 retry:
824         ret = lock_taken = 0;
825
826         /*
827          * To avoid races, we attempt to take the lock here again
828          * (by doing a 0 -> TID atomic cmpxchg), while holding all
829          * the locks. It will most likely not succeed.
830          */
831         newval = vpid;
832         if (set_waiters)
833                 newval |= FUTEX_WAITERS;
834
835         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
836                 return -EFAULT;
837
838         /*
839          * Detect deadlocks.
840          */
841         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
842                 return -EDEADLK;
843
844         /*
845          * Surprise - we got the lock, but we do not trust user space at all.
846          */
847         if (unlikely(!curval)) {
848                 /*
849                  * We verify whether there is kernel state for this
850                  * futex. If not, we can safely assume, that the 0 ->
851                  * TID transition is correct. If state exists, we do
852                  * not bother to fixup the user space state as it was
853                  * corrupted already.
854                  */
855                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
856         }
857
858         uval = curval;
859
860         /*
861          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
862          * to wake at the next unlock.
863          */
864         newval = curval | FUTEX_WAITERS;
865
866         /*
867          * Should we force take the futex? See below.
868          */
869         if (unlikely(force_take)) {
870                 /*
871                  * Keep the OWNER_DIED and the WAITERS bit and set the
872                  * new TID value.
873                  */
874                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
875                 force_take = 0;
876                 lock_taken = 1;
877         }
878
879         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
880                 return -EFAULT;
881         if (unlikely(curval != uval))
882                 goto retry;
883
884         /*
885          * We took the lock due to forced take over.
886          */
887         if (unlikely(lock_taken))
888                 return 1;
889
890         /*
891          * We dont have the lock. Look up the PI state (or create it if
892          * we are the first waiter):
893          */
894         ret = lookup_pi_state(uval, hb, key, ps);
895
896         if (unlikely(ret)) {
897                 switch (ret) {
898                 case -ESRCH:
899                         /*
900                          * We failed to find an owner for this
901                          * futex. So we have no pi_state to block
902                          * on. This can happen in two cases:
903                          *
904                          * 1) The owner died
905                          * 2) A stale FUTEX_WAITERS bit
906                          *
907                          * Re-read the futex value.
908                          */
909                         if (get_futex_value_locked(&curval, uaddr))
910                                 return -EFAULT;
911
912                         /*
913                          * If the owner died or we have a stale
914                          * WAITERS bit the owner TID in the user space
915                          * futex is 0.
916                          */
917                         if (!(curval & FUTEX_TID_MASK)) {
918                                 force_take = 1;
919                                 goto retry;
920                         }
921                 default:
922                         break;
923                 }
924         }
925
926         return ret;
927 }
928
929 /**
930  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
931  * @q:  The futex_q to unqueue
932  *
933  * The q->lock_ptr must not be NULL and must be held by the caller.
934  */
935 static void __unqueue_futex(struct futex_q *q)
936 {
937         struct futex_hash_bucket *hb;
938
939         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
940             || WARN_ON(plist_node_empty(&q->list)))
941                 return;
942
943         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
944         plist_del(&q->list, &hb->chain);
945 }
946
947 /*
948  * The hash bucket lock must be held when this is called.
949  * Afterwards, the futex_q must not be accessed.
950  */
951 static void wake_futex(struct futex_q *q)
952 {
953         struct task_struct *p = q->task;
954
955         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
956                 return;
957
958         /*
959          * We set q->lock_ptr = NULL _before_ we wake up the task. If
960          * a non-futex wake up happens on another CPU then the task
961          * might exit and p would dereference a non-existing task
962          * struct. Prevent this by holding a reference on p across the
963          * wake up.
964          */
965         get_task_struct(p);
966
967         __unqueue_futex(q);
968         /*
969          * The waiting task can free the futex_q as soon as
970          * q->lock_ptr = NULL is written, without taking any locks. A
971          * memory barrier is required here to prevent the following
972          * store to lock_ptr from getting ahead of the plist_del.
973          */
974         smp_wmb();
975         q->lock_ptr = NULL;
976
977         wake_up_state(p, TASK_NORMAL);
978         put_task_struct(p);
979 }
980
981 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
982 {
983         struct task_struct *new_owner;
984         struct futex_pi_state *pi_state = this->pi_state;
985         u32 uninitialized_var(curval), newval;
986         int ret = 0;
987
988         if (!pi_state)
989                 return -EINVAL;
990
991         /*
992          * If current does not own the pi_state then the futex is
993          * inconsistent and user space fiddled with the futex value.
994          */
995         if (pi_state->owner != current)
996                 return -EINVAL;
997
998         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
999         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1000
1001         /*
1002          * It is possible that the next waiter (the one that brought
1003          * this owner to the kernel) timed out and is no longer
1004          * waiting on the lock.
1005          */
1006         if (!new_owner)
1007                 new_owner = this->task;
1008
1009         /*
1010          * We pass it to the next owner. The WAITERS bit is always
1011          * kept enabled while there is PI state around. We cleanup the
1012          * owner died bit, because we are the owner.
1013          */
1014         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1015
1016         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1017                 ret = -EFAULT;
1018         else if (curval != uval)
1019                 ret = -EINVAL;
1020         if (ret) {
1021                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1022                 return ret;
1023         }
1024
1025         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1026         WARN_ON(list_empty(&pi_state->list));
1027         list_del_init(&pi_state->list);
1028         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1029
1030         raw_spin_lock_irq(&new_owner->pi_lock);
1031         WARN_ON(!list_empty(&pi_state->list));
1032         list_add(&pi_state->list, &new_owner->pi_state_list);
1033         pi_state->owner = new_owner;
1034         raw_spin_unlock_irq(&new_owner->pi_lock);
1035
1036         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1037         rt_mutex_unlock(&pi_state->pi_mutex);
1038
1039         return 0;
1040 }
1041
1042 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1043 {
1044         u32 uninitialized_var(oldval);
1045
1046         /*
1047          * There is no waiter, so we unlock the futex. The owner died
1048          * bit has not to be preserved here. We are the owner:
1049          */
1050         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1051                 return -EFAULT;
1052         if (oldval != uval)
1053                 return -EAGAIN;
1054
1055         return 0;
1056 }
1057
1058 /*
1059  * Express the locking dependencies for lockdep:
1060  */
1061 static inline void
1062 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1063 {
1064         if (hb1 <= hb2) {
1065                 spin_lock(&hb1->lock);
1066                 if (hb1 < hb2)
1067                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1068         } else { /* hb1 > hb2 */
1069                 spin_lock(&hb2->lock);
1070                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1071         }
1072 }
1073
1074 static inline void
1075 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1076 {
1077         spin_unlock(&hb1->lock);
1078         if (hb1 != hb2)
1079                 spin_unlock(&hb2->lock);
1080 }
1081
1082 /*
1083  * Wake up waiters matching bitset queued on this futex (uaddr).
1084  */
1085 static int
1086 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1087 {
1088         struct futex_hash_bucket *hb;
1089         struct futex_q *this, *next;
1090         struct plist_head *head;
1091         union futex_key key = FUTEX_KEY_INIT;
1092         int ret;
1093
1094         if (!bitset)
1095                 return -EINVAL;
1096
1097         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1098         if (unlikely(ret != 0))
1099                 goto out;
1100
1101         hb = hash_futex(&key);
1102         spin_lock(&hb->lock);
1103         head = &hb->chain;
1104
1105         plist_for_each_entry_safe(this, next, head, list) {
1106                 if (match_futex (&this->key, &key)) {
1107                         if (this->pi_state || this->rt_waiter) {
1108                                 ret = -EINVAL;
1109                                 break;
1110                         }
1111
1112                         /* Check if one of the bits is set in both bitsets */
1113                         if (!(this->bitset & bitset))
1114                                 continue;
1115
1116                         wake_futex(this);
1117                         if (++ret >= nr_wake)
1118                                 break;
1119                 }
1120         }
1121
1122         spin_unlock(&hb->lock);
1123         put_futex_key(&key);
1124 out:
1125         return ret;
1126 }
1127
1128 /*
1129  * Wake up all waiters hashed on the physical page that is mapped
1130  * to this virtual address:
1131  */
1132 static int
1133 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1134               int nr_wake, int nr_wake2, int op)
1135 {
1136         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1137         struct futex_hash_bucket *hb1, *hb2;
1138         struct plist_head *head;
1139         struct futex_q *this, *next;
1140         int ret, op_ret;
1141
1142 retry:
1143         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1144         if (unlikely(ret != 0))
1145                 goto out;
1146         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1147         if (unlikely(ret != 0))
1148                 goto out_put_key1;
1149
1150         hb1 = hash_futex(&key1);
1151         hb2 = hash_futex(&key2);
1152
1153 retry_private:
1154         double_lock_hb(hb1, hb2);
1155         op_ret = futex_atomic_op_inuser(op, uaddr2);
1156         if (unlikely(op_ret < 0)) {
1157
1158                 double_unlock_hb(hb1, hb2);
1159
1160 #ifndef CONFIG_MMU
1161                 /*
1162                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1163                  * but we might get them from range checking
1164                  */
1165                 ret = op_ret;
1166                 goto out_put_keys;
1167 #endif
1168
1169                 if (unlikely(op_ret != -EFAULT)) {
1170                         ret = op_ret;
1171                         goto out_put_keys;
1172                 }
1173
1174                 ret = fault_in_user_writeable(uaddr2);
1175                 if (ret)
1176                         goto out_put_keys;
1177
1178                 if (!(flags & FLAGS_SHARED))
1179                         goto retry_private;
1180
1181                 put_futex_key(&key2);
1182                 put_futex_key(&key1);
1183                 goto retry;
1184         }
1185
1186         head = &hb1->chain;
1187
1188         plist_for_each_entry_safe(this, next, head, list) {
1189                 if (match_futex (&this->key, &key1)) {
1190                         if (this->pi_state || this->rt_waiter) {
1191                                 ret = -EINVAL;
1192                                 goto out_unlock;
1193                         }
1194                         wake_futex(this);
1195                         if (++ret >= nr_wake)
1196                                 break;
1197                 }
1198         }
1199
1200         if (op_ret > 0) {
1201                 head = &hb2->chain;
1202
1203                 op_ret = 0;
1204                 plist_for_each_entry_safe(this, next, head, list) {
1205                         if (match_futex (&this->key, &key2)) {
1206                                 if (this->pi_state || this->rt_waiter) {
1207                                         ret = -EINVAL;
1208                                         goto out_unlock;
1209                                 }
1210                                 wake_futex(this);
1211                                 if (++op_ret >= nr_wake2)
1212                                         break;
1213                         }
1214                 }
1215                 ret += op_ret;
1216         }
1217
1218 out_unlock:
1219         double_unlock_hb(hb1, hb2);
1220 out_put_keys:
1221         put_futex_key(&key2);
1222 out_put_key1:
1223         put_futex_key(&key1);
1224 out:
1225         return ret;
1226 }
1227
1228 /**
1229  * requeue_futex() - Requeue a futex_q from one hb to another
1230  * @q:          the futex_q to requeue
1231  * @hb1:        the source hash_bucket
1232  * @hb2:        the target hash_bucket
1233  * @key2:       the new key for the requeued futex_q
1234  */
1235 static inline
1236 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1237                    struct futex_hash_bucket *hb2, union futex_key *key2)
1238 {
1239
1240         /*
1241          * If key1 and key2 hash to the same bucket, no need to
1242          * requeue.
1243          */
1244         if (likely(&hb1->chain != &hb2->chain)) {
1245                 plist_del(&q->list, &hb1->chain);
1246                 plist_add(&q->list, &hb2->chain);
1247                 q->lock_ptr = &hb2->lock;
1248         }
1249         get_futex_key_refs(key2);
1250         q->key = *key2;
1251 }
1252
1253 /**
1254  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1255  * @q:          the futex_q
1256  * @key:        the key of the requeue target futex
1257  * @hb:         the hash_bucket of the requeue target futex
1258  *
1259  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1260  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1261  * to the requeue target futex so the waiter can detect the wakeup on the right
1262  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1263  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1264  * to protect access to the pi_state to fixup the owner later.  Must be called
1265  * with both q->lock_ptr and hb->lock held.
1266  */
1267 static inline
1268 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1269                            struct futex_hash_bucket *hb)
1270 {
1271         get_futex_key_refs(key);
1272         q->key = *key;
1273
1274         __unqueue_futex(q);
1275
1276         WARN_ON(!q->rt_waiter);
1277         q->rt_waiter = NULL;
1278
1279         q->lock_ptr = &hb->lock;
1280
1281         wake_up_state(q->task, TASK_NORMAL);
1282 }
1283
1284 /**
1285  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1286  * @pifutex:            the user address of the to futex
1287  * @hb1:                the from futex hash bucket, must be locked by the caller
1288  * @hb2:                the to futex hash bucket, must be locked by the caller
1289  * @key1:               the from futex key
1290  * @key2:               the to futex key
1291  * @ps:                 address to store the pi_state pointer
1292  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1293  *
1294  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1295  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1296  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1297  * hb1 and hb2 must be held by the caller.
1298  *
1299  * Returns:
1300  *  0 - failed to acquire the lock atomicly
1301  * >0 - acquired the lock, return value is vpid of the top_waiter
1302  * <0 - error
1303  */
1304 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1305                                  struct futex_hash_bucket *hb1,
1306                                  struct futex_hash_bucket *hb2,
1307                                  union futex_key *key1, union futex_key *key2,
1308                                  struct futex_pi_state **ps, int set_waiters)
1309 {
1310         struct futex_q *top_waiter = NULL;
1311         u32 curval;
1312         int ret, vpid;
1313
1314         if (get_futex_value_locked(&curval, pifutex))
1315                 return -EFAULT;
1316
1317         /*
1318          * Find the top_waiter and determine if there are additional waiters.
1319          * If the caller intends to requeue more than 1 waiter to pifutex,
1320          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1321          * as we have means to handle the possible fault.  If not, don't set
1322          * the bit unecessarily as it will force the subsequent unlock to enter
1323          * the kernel.
1324          */
1325         top_waiter = futex_top_waiter(hb1, key1);
1326
1327         /* There are no waiters, nothing for us to do. */
1328         if (!top_waiter)
1329                 return 0;
1330
1331         /* Ensure we requeue to the expected futex. */
1332         if (!match_futex(top_waiter->requeue_pi_key, key2))
1333                 return -EINVAL;
1334
1335         /*
1336          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1337          * the contended case or if set_waiters is 1.  The pi_state is returned
1338          * in ps in contended cases.
1339          */
1340         vpid = task_pid_vnr(top_waiter->task);
1341         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1342                                    set_waiters);
1343         if (ret == 1) {
1344                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1345                 return vpid;
1346         }
1347         return ret;
1348 }
1349
1350 /**
1351  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1352  * @uaddr1:     source futex user address
1353  * @flags:      futex flags (FLAGS_SHARED, etc.)
1354  * @uaddr2:     target futex user address
1355  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1356  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1357  * @cmpval:     @uaddr1 expected value (or %NULL)
1358  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1359  *              pi futex (pi to pi requeue is not supported)
1360  *
1361  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1362  * uaddr2 atomically on behalf of the top waiter.
1363  *
1364  * Returns:
1365  * >=0 - on success, the number of tasks requeued or woken
1366  *  <0 - on error
1367  */
1368 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1369                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1370                          u32 *cmpval, int requeue_pi)
1371 {
1372         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1373         int drop_count = 0, task_count = 0, ret;
1374         struct futex_pi_state *pi_state = NULL;
1375         struct futex_hash_bucket *hb1, *hb2;
1376         struct plist_head *head1;
1377         struct futex_q *this, *next;
1378
1379         if (nr_wake < 0 || nr_requeue < 0)
1380                 return -EINVAL;
1381
1382         if (requeue_pi) {
1383                 /*
1384                  * Requeue PI only works on two distinct uaddrs. This
1385                  * check is only valid for private futexes. See below.
1386                  */
1387                 if (uaddr1 == uaddr2)
1388                         return -EINVAL;
1389
1390                 /*
1391                  * requeue_pi requires a pi_state, try to allocate it now
1392                  * without any locks in case it fails.
1393                  */
1394                 if (refill_pi_state_cache())
1395                         return -ENOMEM;
1396                 /*
1397                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1398                  * + nr_requeue, since it acquires the rt_mutex prior to
1399                  * returning to userspace, so as to not leave the rt_mutex with
1400                  * waiters and no owner.  However, second and third wake-ups
1401                  * cannot be predicted as they involve race conditions with the
1402                  * first wake and a fault while looking up the pi_state.  Both
1403                  * pthread_cond_signal() and pthread_cond_broadcast() should
1404                  * use nr_wake=1.
1405                  */
1406                 if (nr_wake != 1)
1407                         return -EINVAL;
1408         }
1409
1410 retry:
1411         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1412         if (unlikely(ret != 0))
1413                 goto out;
1414         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1415                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1416         if (unlikely(ret != 0))
1417                 goto out_put_key1;
1418
1419         /*
1420          * The check above which compares uaddrs is not sufficient for
1421          * shared futexes. We need to compare the keys:
1422          */
1423         if (requeue_pi && match_futex(&key1, &key2)) {
1424                 ret = -EINVAL;
1425                 goto out_put_keys;
1426         }
1427
1428         hb1 = hash_futex(&key1);
1429         hb2 = hash_futex(&key2);
1430
1431 retry_private:
1432         double_lock_hb(hb1, hb2);
1433
1434         if (likely(cmpval != NULL)) {
1435                 u32 curval;
1436
1437                 ret = get_futex_value_locked(&curval, uaddr1);
1438
1439                 if (unlikely(ret)) {
1440                         double_unlock_hb(hb1, hb2);
1441
1442                         ret = get_user(curval, uaddr1);
1443                         if (ret)
1444                                 goto out_put_keys;
1445
1446                         if (!(flags & FLAGS_SHARED))
1447                                 goto retry_private;
1448
1449                         put_futex_key(&key2);
1450                         put_futex_key(&key1);
1451                         goto retry;
1452                 }
1453                 if (curval != *cmpval) {
1454                         ret = -EAGAIN;
1455                         goto out_unlock;
1456                 }
1457         }
1458
1459         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1460                 /*
1461                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1462                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1463                  * bit.  We force this here where we are able to easily handle
1464                  * faults rather in the requeue loop below.
1465                  */
1466                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1467                                                  &key2, &pi_state, nr_requeue);
1468
1469                 /*
1470                  * At this point the top_waiter has either taken uaddr2 or is
1471                  * waiting on it.  If the former, then the pi_state will not
1472                  * exist yet, look it up one more time to ensure we have a
1473                  * reference to it. If the lock was taken, ret contains the
1474                  * vpid of the top waiter task.
1475                  */
1476                 if (ret > 0) {
1477                         WARN_ON(pi_state);
1478                         drop_count++;
1479                         task_count++;
1480                         /*
1481                          * If we acquired the lock, then the user
1482                          * space value of uaddr2 should be vpid. It
1483                          * cannot be changed by the top waiter as it
1484                          * is blocked on hb2 lock if it tries to do
1485                          * so. If something fiddled with it behind our
1486                          * back the pi state lookup might unearth
1487                          * it. So we rather use the known value than
1488                          * rereading and handing potential crap to
1489                          * lookup_pi_state.
1490                          */
1491                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1492                 }
1493
1494                 switch (ret) {
1495                 case 0:
1496                         break;
1497                 case -EFAULT:
1498                         free_pi_state(pi_state);
1499                         pi_state = NULL;
1500                         double_unlock_hb(hb1, hb2);
1501                         put_futex_key(&key2);
1502                         put_futex_key(&key1);
1503                         ret = fault_in_user_writeable(uaddr2);
1504                         if (!ret)
1505                                 goto retry;
1506                         goto out;
1507                 case -EAGAIN:
1508                         /* The owner was exiting, try again. */
1509                         free_pi_state(pi_state);
1510                         pi_state = NULL;
1511                         double_unlock_hb(hb1, hb2);
1512                         put_futex_key(&key2);
1513                         put_futex_key(&key1);
1514                         cond_resched();
1515                         goto retry;
1516                 default:
1517                         goto out_unlock;
1518                 }
1519         }
1520
1521         head1 = &hb1->chain;
1522         plist_for_each_entry_safe(this, next, head1, list) {
1523                 if (task_count - nr_wake >= nr_requeue)
1524                         break;
1525
1526                 if (!match_futex(&this->key, &key1))
1527                         continue;
1528
1529                 /*
1530                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1531                  * be paired with each other and no other futex ops.
1532                  *
1533                  * We should never be requeueing a futex_q with a pi_state,
1534                  * which is awaiting a futex_unlock_pi().
1535                  */
1536                 if ((requeue_pi && !this->rt_waiter) ||
1537                     (!requeue_pi && this->rt_waiter) ||
1538                     this->pi_state) {
1539                         ret = -EINVAL;
1540                         break;
1541                 }
1542
1543                 /*
1544                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1545                  * lock, we already woke the top_waiter.  If not, it will be
1546                  * woken by futex_unlock_pi().
1547                  */
1548                 if (++task_count <= nr_wake && !requeue_pi) {
1549                         wake_futex(this);
1550                         continue;
1551                 }
1552
1553                 /* Ensure we requeue to the expected futex for requeue_pi. */
1554                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1555                         ret = -EINVAL;
1556                         break;
1557                 }
1558
1559                 /*
1560                  * Requeue nr_requeue waiters and possibly one more in the case
1561                  * of requeue_pi if we couldn't acquire the lock atomically.
1562                  */
1563                 if (requeue_pi) {
1564                         /* Prepare the waiter to take the rt_mutex. */
1565                         atomic_inc(&pi_state->refcount);
1566                         this->pi_state = pi_state;
1567                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1568                                                         this->rt_waiter,
1569                                                         this->task, 1);
1570                         if (ret == 1) {
1571                                 /* We got the lock. */
1572                                 requeue_pi_wake_futex(this, &key2, hb2);
1573                                 drop_count++;
1574                                 continue;
1575                         } else if (ret) {
1576                                 /* -EDEADLK */
1577                                 this->pi_state = NULL;
1578                                 free_pi_state(pi_state);
1579                                 goto out_unlock;
1580                         }
1581                 }
1582                 requeue_futex(this, hb1, hb2, &key2);
1583                 drop_count++;
1584         }
1585
1586 out_unlock:
1587         free_pi_state(pi_state);
1588         double_unlock_hb(hb1, hb2);
1589
1590         /*
1591          * drop_futex_key_refs() must be called outside the spinlocks. During
1592          * the requeue we moved futex_q's from the hash bucket at key1 to the
1593          * one at key2 and updated their key pointer.  We no longer need to
1594          * hold the references to key1.
1595          */
1596         while (--drop_count >= 0)
1597                 drop_futex_key_refs(&key1);
1598
1599 out_put_keys:
1600         put_futex_key(&key2);
1601 out_put_key1:
1602         put_futex_key(&key1);
1603 out:
1604         return ret ? ret : task_count;
1605 }
1606
1607 /* The key must be already stored in q->key. */
1608 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1609         __acquires(&hb->lock)
1610 {
1611         struct futex_hash_bucket *hb;
1612
1613         hb = hash_futex(&q->key);
1614         q->lock_ptr = &hb->lock;
1615
1616         spin_lock(&hb->lock);
1617         return hb;
1618 }
1619
1620 static inline void
1621 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1622         __releases(&hb->lock)
1623 {
1624         spin_unlock(&hb->lock);
1625 }
1626
1627 /**
1628  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1629  * @q:  The futex_q to enqueue
1630  * @hb: The destination hash bucket
1631  *
1632  * The hb->lock must be held by the caller, and is released here. A call to
1633  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1634  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1635  * or nothing if the unqueue is done as part of the wake process and the unqueue
1636  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1637  * an example).
1638  */
1639 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1640         __releases(&hb->lock)
1641 {
1642         int prio;
1643
1644         /*
1645          * The priority used to register this element is
1646          * - either the real thread-priority for the real-time threads
1647          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1648          * - or MAX_RT_PRIO for non-RT threads.
1649          * Thus, all RT-threads are woken first in priority order, and
1650          * the others are woken last, in FIFO order.
1651          */
1652         prio = min(current->normal_prio, MAX_RT_PRIO);
1653
1654         plist_node_init(&q->list, prio);
1655         plist_add(&q->list, &hb->chain);
1656         q->task = current;
1657         spin_unlock(&hb->lock);
1658 }
1659
1660 /**
1661  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1662  * @q:  The futex_q to unqueue
1663  *
1664  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1665  * be paired with exactly one earlier call to queue_me().
1666  *
1667  * Returns:
1668  *   1 - if the futex_q was still queued (and we removed unqueued it)
1669  *   0 - if the futex_q was already removed by the waking thread
1670  */
1671 static int unqueue_me(struct futex_q *q)
1672 {
1673         spinlock_t *lock_ptr;
1674         int ret = 0;
1675
1676         /* In the common case we don't take the spinlock, which is nice. */
1677 retry:
1678         lock_ptr = q->lock_ptr;
1679         barrier();
1680         if (lock_ptr != NULL) {
1681                 spin_lock(lock_ptr);
1682                 /*
1683                  * q->lock_ptr can change between reading it and
1684                  * spin_lock(), causing us to take the wrong lock.  This
1685                  * corrects the race condition.
1686                  *
1687                  * Reasoning goes like this: if we have the wrong lock,
1688                  * q->lock_ptr must have changed (maybe several times)
1689                  * between reading it and the spin_lock().  It can
1690                  * change again after the spin_lock() but only if it was
1691                  * already changed before the spin_lock().  It cannot,
1692                  * however, change back to the original value.  Therefore
1693                  * we can detect whether we acquired the correct lock.
1694                  */
1695                 if (unlikely(lock_ptr != q->lock_ptr)) {
1696                         spin_unlock(lock_ptr);
1697                         goto retry;
1698                 }
1699                 __unqueue_futex(q);
1700
1701                 BUG_ON(q->pi_state);
1702
1703                 spin_unlock(lock_ptr);
1704                 ret = 1;
1705         }
1706
1707         drop_futex_key_refs(&q->key);
1708         return ret;
1709 }
1710
1711 /*
1712  * PI futexes can not be requeued and must remove themself from the
1713  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1714  * and dropped here.
1715  */
1716 static void unqueue_me_pi(struct futex_q *q)
1717         __releases(q->lock_ptr)
1718 {
1719         __unqueue_futex(q);
1720
1721         BUG_ON(!q->pi_state);
1722         free_pi_state(q->pi_state);
1723         q->pi_state = NULL;
1724
1725         spin_unlock(q->lock_ptr);
1726 }
1727
1728 /*
1729  * Fixup the pi_state owner with the new owner.
1730  *
1731  * Must be called with hash bucket lock held and mm->sem held for non
1732  * private futexes.
1733  */
1734 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1735                                 struct task_struct *newowner)
1736 {
1737         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1738         struct futex_pi_state *pi_state = q->pi_state;
1739         struct task_struct *oldowner = pi_state->owner;
1740         u32 uval, uninitialized_var(curval), newval;
1741         int ret;
1742
1743         /* Owner died? */
1744         if (!pi_state->owner)
1745                 newtid |= FUTEX_OWNER_DIED;
1746
1747         /*
1748          * We are here either because we stole the rtmutex from the
1749          * previous highest priority waiter or we are the highest priority
1750          * waiter but failed to get the rtmutex the first time.
1751          * We have to replace the newowner TID in the user space variable.
1752          * This must be atomic as we have to preserve the owner died bit here.
1753          *
1754          * Note: We write the user space value _before_ changing the pi_state
1755          * because we can fault here. Imagine swapped out pages or a fork
1756          * that marked all the anonymous memory readonly for cow.
1757          *
1758          * Modifying pi_state _before_ the user space value would
1759          * leave the pi_state in an inconsistent state when we fault
1760          * here, because we need to drop the hash bucket lock to
1761          * handle the fault. This might be observed in the PID check
1762          * in lookup_pi_state.
1763          */
1764 retry:
1765         if (get_futex_value_locked(&uval, uaddr))
1766                 goto handle_fault;
1767
1768         while (1) {
1769                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1770
1771                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1772                         goto handle_fault;
1773                 if (curval == uval)
1774                         break;
1775                 uval = curval;
1776         }
1777
1778         /*
1779          * We fixed up user space. Now we need to fix the pi_state
1780          * itself.
1781          */
1782         if (pi_state->owner != NULL) {
1783                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1784                 WARN_ON(list_empty(&pi_state->list));
1785                 list_del_init(&pi_state->list);
1786                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1787         }
1788
1789         pi_state->owner = newowner;
1790
1791         raw_spin_lock_irq(&newowner->pi_lock);
1792         WARN_ON(!list_empty(&pi_state->list));
1793         list_add(&pi_state->list, &newowner->pi_state_list);
1794         raw_spin_unlock_irq(&newowner->pi_lock);
1795         return 0;
1796
1797         /*
1798          * To handle the page fault we need to drop the hash bucket
1799          * lock here. That gives the other task (either the highest priority
1800          * waiter itself or the task which stole the rtmutex) the
1801          * chance to try the fixup of the pi_state. So once we are
1802          * back from handling the fault we need to check the pi_state
1803          * after reacquiring the hash bucket lock and before trying to
1804          * do another fixup. When the fixup has been done already we
1805          * simply return.
1806          */
1807 handle_fault:
1808         spin_unlock(q->lock_ptr);
1809
1810         ret = fault_in_user_writeable(uaddr);
1811
1812         spin_lock(q->lock_ptr);
1813
1814         /*
1815          * Check if someone else fixed it for us:
1816          */
1817         if (pi_state->owner != oldowner)
1818                 return 0;
1819
1820         if (ret)
1821                 return ret;
1822
1823         goto retry;
1824 }
1825
1826 static long futex_wait_restart(struct restart_block *restart);
1827
1828 /**
1829  * fixup_owner() - Post lock pi_state and corner case management
1830  * @uaddr:      user address of the futex
1831  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1832  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1833  *
1834  * After attempting to lock an rt_mutex, this function is called to cleanup
1835  * the pi_state owner as well as handle race conditions that may allow us to
1836  * acquire the lock. Must be called with the hb lock held.
1837  *
1838  * Returns:
1839  *  1 - success, lock taken
1840  *  0 - success, lock not taken
1841  * <0 - on error (-EFAULT)
1842  */
1843 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1844 {
1845         struct task_struct *owner;
1846         int ret = 0;
1847
1848         if (locked) {
1849                 /*
1850                  * Got the lock. We might not be the anticipated owner if we
1851                  * did a lock-steal - fix up the PI-state in that case:
1852                  */
1853                 if (q->pi_state->owner != current)
1854                         ret = fixup_pi_state_owner(uaddr, q, current);
1855                 goto out;
1856         }
1857
1858         /*
1859          * Catch the rare case, where the lock was released when we were on the
1860          * way back before we locked the hash bucket.
1861          */
1862         if (q->pi_state->owner == current) {
1863                 /*
1864                  * Try to get the rt_mutex now. This might fail as some other
1865                  * task acquired the rt_mutex after we removed ourself from the
1866                  * rt_mutex waiters list.
1867                  */
1868                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1869                         locked = 1;
1870                         goto out;
1871                 }
1872
1873                 /*
1874                  * pi_state is incorrect, some other task did a lock steal and
1875                  * we returned due to timeout or signal without taking the
1876                  * rt_mutex. Too late.
1877                  */
1878                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1879                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1880                 if (!owner)
1881                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1882                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1883                 ret = fixup_pi_state_owner(uaddr, q, owner);
1884                 goto out;
1885         }
1886
1887         /*
1888          * Paranoia check. If we did not take the lock, then we should not be
1889          * the owner of the rt_mutex.
1890          */
1891         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1892                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1893                                 "pi-state %p\n", ret,
1894                                 q->pi_state->pi_mutex.owner,
1895                                 q->pi_state->owner);
1896
1897 out:
1898         return ret ? ret : locked;
1899 }
1900
1901 /**
1902  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1903  * @hb:         the futex hash bucket, must be locked by the caller
1904  * @q:          the futex_q to queue up on
1905  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1906  */
1907 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1908                                 struct hrtimer_sleeper *timeout)
1909 {
1910         /*
1911          * The task state is guaranteed to be set before another task can
1912          * wake it. set_current_state() is implemented using set_mb() and
1913          * queue_me() calls spin_unlock() upon completion, both serializing
1914          * access to the hash list and forcing another memory barrier.
1915          */
1916         set_current_state(TASK_INTERRUPTIBLE);
1917         queue_me(q, hb);
1918
1919         /* Arm the timer */
1920         if (timeout) {
1921                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1922                 if (!hrtimer_active(&timeout->timer))
1923                         timeout->task = NULL;
1924         }
1925
1926         /*
1927          * If we have been removed from the hash list, then another task
1928          * has tried to wake us, and we can skip the call to schedule().
1929          */
1930         if (likely(!plist_node_empty(&q->list))) {
1931                 /*
1932                  * If the timer has already expired, current will already be
1933                  * flagged for rescheduling. Only call schedule if there
1934                  * is no timeout, or if it has yet to expire.
1935                  */
1936                 if (!timeout || timeout->task)
1937                         schedule();
1938         }
1939         __set_current_state(TASK_RUNNING);
1940 }
1941
1942 /**
1943  * futex_wait_setup() - Prepare to wait on a futex
1944  * @uaddr:      the futex userspace address
1945  * @val:        the expected value
1946  * @flags:      futex flags (FLAGS_SHARED, etc.)
1947  * @q:          the associated futex_q
1948  * @hb:         storage for hash_bucket pointer to be returned to caller
1949  *
1950  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1951  * compare it with the expected value.  Handle atomic faults internally.
1952  * Return with the hb lock held and a q.key reference on success, and unlocked
1953  * with no q.key reference on failure.
1954  *
1955  * Returns:
1956  *  0 - uaddr contains val and hb has been locked
1957  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1958  */
1959 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1960                            struct futex_q *q, struct futex_hash_bucket **hb)
1961 {
1962         u32 uval;
1963         int ret;
1964
1965         /*
1966          * Access the page AFTER the hash-bucket is locked.
1967          * Order is important:
1968          *
1969          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1970          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1971          *
1972          * The basic logical guarantee of a futex is that it blocks ONLY
1973          * if cond(var) is known to be true at the time of blocking, for
1974          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1975          * would open a race condition where we could block indefinitely with
1976          * cond(var) false, which would violate the guarantee.
1977          *
1978          * On the other hand, we insert q and release the hash-bucket only
1979          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1980          * absorb a wakeup if *uaddr does not match the desired values
1981          * while the syscall executes.
1982          */
1983 retry:
1984         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1985         if (unlikely(ret != 0))
1986                 return ret;
1987
1988 retry_private:
1989         *hb = queue_lock(q);
1990
1991         ret = get_futex_value_locked(&uval, uaddr);
1992
1993         if (ret) {
1994                 queue_unlock(q, *hb);
1995
1996                 ret = get_user(uval, uaddr);
1997                 if (ret)
1998                         goto out;
1999
2000                 if (!(flags & FLAGS_SHARED))
2001                         goto retry_private;
2002
2003                 put_futex_key(&q->key);
2004                 goto retry;
2005         }
2006
2007         if (uval != val) {
2008                 queue_unlock(q, *hb);
2009                 ret = -EWOULDBLOCK;
2010         }
2011
2012 out:
2013         if (ret)
2014                 put_futex_key(&q->key);
2015         return ret;
2016 }
2017
2018 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2019                       ktime_t *abs_time, u32 bitset)
2020 {
2021         struct hrtimer_sleeper timeout, *to = NULL;
2022         struct restart_block *restart;
2023         struct futex_hash_bucket *hb;
2024         struct futex_q q = futex_q_init;
2025         int ret;
2026
2027         if (!bitset)
2028                 return -EINVAL;
2029         q.bitset = bitset;
2030
2031         if (abs_time) {
2032                 to = &timeout;
2033
2034                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2035                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2036                                       HRTIMER_MODE_ABS);
2037                 hrtimer_init_sleeper(to, current);
2038                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2039                                              current->timer_slack_ns);
2040         }
2041
2042 retry:
2043         /*
2044          * Prepare to wait on uaddr. On success, holds hb lock and increments
2045          * q.key refs.
2046          */
2047         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2048         if (ret)
2049                 goto out;
2050
2051         /* queue_me and wait for wakeup, timeout, or a signal. */
2052         futex_wait_queue_me(hb, &q, to);
2053
2054         /* If we were woken (and unqueued), we succeeded, whatever. */
2055         ret = 0;
2056         /* unqueue_me() drops q.key ref */
2057         if (!unqueue_me(&q))
2058                 goto out;
2059         ret = -ETIMEDOUT;
2060         if (to && !to->task)
2061                 goto out;
2062
2063         /*
2064          * We expect signal_pending(current), but we might be the
2065          * victim of a spurious wakeup as well.
2066          */
2067         if (!signal_pending(current))
2068                 goto retry;
2069
2070         ret = -ERESTARTSYS;
2071         if (!abs_time)
2072                 goto out;
2073
2074         restart = &current_thread_info()->restart_block;
2075         restart->fn = futex_wait_restart;
2076         restart->futex.uaddr = uaddr;
2077         restart->futex.val = val;
2078         restart->futex.time = abs_time->tv64;
2079         restart->futex.bitset = bitset;
2080         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2081
2082         ret = -ERESTART_RESTARTBLOCK;
2083
2084 out:
2085         if (to) {
2086                 hrtimer_cancel(&to->timer);
2087                 destroy_hrtimer_on_stack(&to->timer);
2088         }
2089         return ret;
2090 }
2091
2092
2093 static long futex_wait_restart(struct restart_block *restart)
2094 {
2095         u32 __user *uaddr = restart->futex.uaddr;
2096         ktime_t t, *tp = NULL;
2097
2098         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2099                 t.tv64 = restart->futex.time;
2100                 tp = &t;
2101         }
2102         restart->fn = do_no_restart_syscall;
2103
2104         return (long)futex_wait(uaddr, restart->futex.flags,
2105                                 restart->futex.val, tp, restart->futex.bitset);
2106 }
2107
2108
2109 /*
2110  * Userspace tried a 0 -> TID atomic transition of the futex value
2111  * and failed. The kernel side here does the whole locking operation:
2112  * if there are waiters then it will block, it does PI, etc. (Due to
2113  * races the kernel might see a 0 value of the futex too.)
2114  */
2115 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2116                          ktime_t *time, int trylock)
2117 {
2118         struct hrtimer_sleeper timeout, *to = NULL;
2119         struct futex_hash_bucket *hb;
2120         struct futex_q q = futex_q_init;
2121         int res, ret;
2122
2123         if (refill_pi_state_cache())
2124                 return -ENOMEM;
2125
2126         if (time) {
2127                 to = &timeout;
2128                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2129                                       HRTIMER_MODE_ABS);
2130                 hrtimer_init_sleeper(to, current);
2131                 hrtimer_set_expires(&to->timer, *time);
2132         }
2133
2134 retry:
2135         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2136         if (unlikely(ret != 0))
2137                 goto out;
2138
2139 retry_private:
2140         hb = queue_lock(&q);
2141
2142         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2143         if (unlikely(ret)) {
2144                 switch (ret) {
2145                 case 1:
2146                         /* We got the lock. */
2147                         ret = 0;
2148                         goto out_unlock_put_key;
2149                 case -EFAULT:
2150                         goto uaddr_faulted;
2151                 case -EAGAIN:
2152                         /*
2153                          * Task is exiting and we just wait for the
2154                          * exit to complete.
2155                          */
2156                         queue_unlock(&q, hb);
2157                         put_futex_key(&q.key);
2158                         cond_resched();
2159                         goto retry;
2160                 default:
2161                         goto out_unlock_put_key;
2162                 }
2163         }
2164
2165         /*
2166          * Only actually queue now that the atomic ops are done:
2167          */
2168         queue_me(&q, hb);
2169
2170         WARN_ON(!q.pi_state);
2171         /*
2172          * Block on the PI mutex:
2173          */
2174         if (!trylock)
2175                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2176         else {
2177                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2178                 /* Fixup the trylock return value: */
2179                 ret = ret ? 0 : -EWOULDBLOCK;
2180         }
2181
2182         spin_lock(q.lock_ptr);
2183         /*
2184          * Fixup the pi_state owner and possibly acquire the lock if we
2185          * haven't already.
2186          */
2187         res = fixup_owner(uaddr, &q, !ret);
2188         /*
2189          * If fixup_owner() returned an error, proprogate that.  If it acquired
2190          * the lock, clear our -ETIMEDOUT or -EINTR.
2191          */
2192         if (res)
2193                 ret = (res < 0) ? res : 0;
2194
2195         /*
2196          * If fixup_owner() faulted and was unable to handle the fault, unlock
2197          * it and return the fault to userspace.
2198          */
2199         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2200                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2201
2202         /* Unqueue and drop the lock */
2203         unqueue_me_pi(&q);
2204
2205         goto out_put_key;
2206
2207 out_unlock_put_key:
2208         queue_unlock(&q, hb);
2209
2210 out_put_key:
2211         put_futex_key(&q.key);
2212 out:
2213         if (to)
2214                 destroy_hrtimer_on_stack(&to->timer);
2215         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2216
2217 uaddr_faulted:
2218         queue_unlock(&q, hb);
2219
2220         ret = fault_in_user_writeable(uaddr);
2221         if (ret)
2222                 goto out_put_key;
2223
2224         if (!(flags & FLAGS_SHARED))
2225                 goto retry_private;
2226
2227         put_futex_key(&q.key);
2228         goto retry;
2229 }
2230
2231 /*
2232  * Userspace attempted a TID -> 0 atomic transition, and failed.
2233  * This is the in-kernel slowpath: we look up the PI state (if any),
2234  * and do the rt-mutex unlock.
2235  */
2236 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2237 {
2238         struct futex_hash_bucket *hb;
2239         struct futex_q *this, *next;
2240         struct plist_head *head;
2241         union futex_key key = FUTEX_KEY_INIT;
2242         u32 uval, vpid = task_pid_vnr(current);
2243         int ret;
2244
2245 retry:
2246         if (get_user(uval, uaddr))
2247                 return -EFAULT;
2248         /*
2249          * We release only a lock we actually own:
2250          */
2251         if ((uval & FUTEX_TID_MASK) != vpid)
2252                 return -EPERM;
2253
2254         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2255         if (unlikely(ret != 0))
2256                 goto out;
2257
2258         hb = hash_futex(&key);
2259         spin_lock(&hb->lock);
2260
2261         /*
2262          * To avoid races, try to do the TID -> 0 atomic transition
2263          * again. If it succeeds then we can return without waking
2264          * anyone else up. We only try this if neither the waiters nor
2265          * the owner died bit are set.
2266          */
2267         if (!(uval & ~FUTEX_TID_MASK) &&
2268             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2269                 goto pi_faulted;
2270         /*
2271          * Rare case: we managed to release the lock atomically,
2272          * no need to wake anyone else up:
2273          */
2274         if (unlikely(uval == vpid))
2275                 goto out_unlock;
2276
2277         /*
2278          * Ok, other tasks may need to be woken up - check waiters
2279          * and do the wakeup if necessary:
2280          */
2281         head = &hb->chain;
2282
2283         plist_for_each_entry_safe(this, next, head, list) {
2284                 if (!match_futex (&this->key, &key))
2285                         continue;
2286                 ret = wake_futex_pi(uaddr, uval, this);
2287                 /*
2288                  * The atomic access to the futex value
2289                  * generated a pagefault, so retry the
2290                  * user-access and the wakeup:
2291                  */
2292                 if (ret == -EFAULT)
2293                         goto pi_faulted;
2294                 goto out_unlock;
2295         }
2296         /*
2297          * No waiters - kernel unlocks the futex:
2298          */
2299         ret = unlock_futex_pi(uaddr, uval);
2300         if (ret == -EFAULT)
2301                 goto pi_faulted;
2302
2303 out_unlock:
2304         spin_unlock(&hb->lock);
2305         put_futex_key(&key);
2306
2307 out:
2308         return ret;
2309
2310 pi_faulted:
2311         spin_unlock(&hb->lock);
2312         put_futex_key(&key);
2313
2314         ret = fault_in_user_writeable(uaddr);
2315         if (!ret)
2316                 goto retry;
2317
2318         return ret;
2319 }
2320
2321 /**
2322  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2323  * @hb:         the hash_bucket futex_q was original enqueued on
2324  * @q:          the futex_q woken while waiting to be requeued
2325  * @key2:       the futex_key of the requeue target futex
2326  * @timeout:    the timeout associated with the wait (NULL if none)
2327  *
2328  * Detect if the task was woken on the initial futex as opposed to the requeue
2329  * target futex.  If so, determine if it was a timeout or a signal that caused
2330  * the wakeup and return the appropriate error code to the caller.  Must be
2331  * called with the hb lock held.
2332  *
2333  * Returns
2334  *  0 - no early wakeup detected
2335  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2336  */
2337 static inline
2338 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2339                                    struct futex_q *q, union futex_key *key2,
2340                                    struct hrtimer_sleeper *timeout)
2341 {
2342         int ret = 0;
2343
2344         /*
2345          * With the hb lock held, we avoid races while we process the wakeup.
2346          * We only need to hold hb (and not hb2) to ensure atomicity as the
2347          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2348          * It can't be requeued from uaddr2 to something else since we don't
2349          * support a PI aware source futex for requeue.
2350          */
2351         if (!match_futex(&q->key, key2)) {
2352                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2353                 /*
2354                  * We were woken prior to requeue by a timeout or a signal.
2355                  * Unqueue the futex_q and determine which it was.
2356                  */
2357                 plist_del(&q->list, &hb->chain);
2358
2359                 /* Handle spurious wakeups gracefully */
2360                 ret = -EWOULDBLOCK;
2361                 if (timeout && !timeout->task)
2362                         ret = -ETIMEDOUT;
2363                 else if (signal_pending(current))
2364                         ret = -ERESTARTNOINTR;
2365         }
2366         return ret;
2367 }
2368
2369 /**
2370  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2371  * @uaddr:      the futex we initially wait on (non-pi)
2372  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2373  *              the same type, no requeueing from private to shared, etc.
2374  * @val:        the expected value of uaddr
2375  * @abs_time:   absolute timeout
2376  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2377  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2378  * @uaddr2:     the pi futex we will take prior to returning to user-space
2379  *
2380  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2381  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2382  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2383  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2384  * without one, the pi logic would not know which task to boost/deboost, if
2385  * there was a need to.
2386  *
2387  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2388  * via the following:
2389  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2390  * 2) wakeup on uaddr2 after a requeue
2391  * 3) signal
2392  * 4) timeout
2393  *
2394  * If 3, cleanup and return -ERESTARTNOINTR.
2395  *
2396  * If 2, we may then block on trying to take the rt_mutex and return via:
2397  * 5) successful lock
2398  * 6) signal
2399  * 7) timeout
2400  * 8) other lock acquisition failure
2401  *
2402  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2403  *
2404  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2405  *
2406  * Returns:
2407  *  0 - On success
2408  * <0 - On error
2409  */
2410 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2411                                  u32 val, ktime_t *abs_time, u32 bitset,
2412                                  u32 __user *uaddr2)
2413 {
2414         struct hrtimer_sleeper timeout, *to = NULL;
2415         struct rt_mutex_waiter rt_waiter;
2416         struct futex_hash_bucket *hb;
2417         union futex_key key2 = FUTEX_KEY_INIT;
2418         struct futex_q q = futex_q_init;
2419         int res, ret;
2420
2421         if (uaddr == uaddr2)
2422                 return -EINVAL;
2423
2424         if (!bitset)
2425                 return -EINVAL;
2426
2427         if (abs_time) {
2428                 to = &timeout;
2429                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2430                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2431                                       HRTIMER_MODE_ABS);
2432                 hrtimer_init_sleeper(to, current);
2433                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2434                                              current->timer_slack_ns);
2435         }
2436
2437         /*
2438          * The waiter is allocated on our stack, manipulated by the requeue
2439          * code while we sleep on uaddr.
2440          */
2441         debug_rt_mutex_init_waiter(&rt_waiter);
2442         rt_waiter.task = NULL;
2443
2444         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2445         if (unlikely(ret != 0))
2446                 goto out;
2447
2448         q.bitset = bitset;
2449         q.rt_waiter = &rt_waiter;
2450         q.requeue_pi_key = &key2;
2451
2452         /*
2453          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2454          * count.
2455          */
2456         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2457         if (ret)
2458                 goto out_key2;
2459
2460         /*
2461          * The check above which compares uaddrs is not sufficient for
2462          * shared futexes. We need to compare the keys:
2463          */
2464         if (match_futex(&q.key, &key2)) {
2465                 queue_unlock(&q, hb);
2466                 ret = -EINVAL;
2467                 goto out_put_keys;
2468         }
2469
2470         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2471         futex_wait_queue_me(hb, &q, to);
2472
2473         spin_lock(&hb->lock);
2474         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2475         spin_unlock(&hb->lock);
2476         if (ret)
2477                 goto out_put_keys;
2478
2479         /*
2480          * In order for us to be here, we know our q.key == key2, and since
2481          * we took the hb->lock above, we also know that futex_requeue() has
2482          * completed and we no longer have to concern ourselves with a wakeup
2483          * race with the atomic proxy lock acquisition by the requeue code. The
2484          * futex_requeue dropped our key1 reference and incremented our key2
2485          * reference count.
2486          */
2487
2488         /* Check if the requeue code acquired the second futex for us. */
2489         if (!q.rt_waiter) {
2490                 /*
2491                  * Got the lock. We might not be the anticipated owner if we
2492                  * did a lock-steal - fix up the PI-state in that case.
2493                  */
2494                 if (q.pi_state && (q.pi_state->owner != current)) {
2495                         spin_lock(q.lock_ptr);
2496                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2497                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2498                                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2499                         /*
2500                          * Drop the reference to the pi state which
2501                          * the requeue_pi() code acquired for us.
2502                          */
2503                         free_pi_state(q.pi_state);
2504                         spin_unlock(q.lock_ptr);
2505                 }
2506         } else {
2507                 struct rt_mutex *pi_mutex;
2508
2509                 /*
2510                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2511                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2512                  * the pi_state.
2513                  */
2514                 WARN_ON(!q.pi_state);
2515                 pi_mutex = &q.pi_state->pi_mutex;
2516                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2517                 debug_rt_mutex_free_waiter(&rt_waiter);
2518
2519                 spin_lock(q.lock_ptr);
2520                 /*
2521                  * Fixup the pi_state owner and possibly acquire the lock if we
2522                  * haven't already.
2523                  */
2524                 res = fixup_owner(uaddr2, &q, !ret);
2525                 /*
2526                  * If fixup_owner() returned an error, proprogate that.  If it
2527                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2528                  */
2529                 if (res)
2530                         ret = (res < 0) ? res : 0;
2531
2532                 /*
2533                  * If fixup_pi_state_owner() faulted and was unable to handle
2534                  * the fault, unlock the rt_mutex and return the fault to
2535                  * userspace.
2536                  */
2537                 if (ret && rt_mutex_owner(pi_mutex) == current)
2538                         rt_mutex_unlock(pi_mutex);
2539
2540                 /* Unqueue and drop the lock. */
2541                 unqueue_me_pi(&q);
2542         }
2543
2544         if (ret == -EINTR) {
2545                 /*
2546                  * We've already been requeued, but cannot restart by calling
2547                  * futex_lock_pi() directly. We could restart this syscall, but
2548                  * it would detect that the user space "val" changed and return
2549                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2550                  * -EWOULDBLOCK directly.
2551                  */
2552                 ret = -EWOULDBLOCK;
2553         }
2554
2555 out_put_keys:
2556         put_futex_key(&q.key);
2557 out_key2:
2558         put_futex_key(&key2);
2559
2560 out:
2561         if (to) {
2562                 hrtimer_cancel(&to->timer);
2563                 destroy_hrtimer_on_stack(&to->timer);
2564         }
2565         return ret;
2566 }
2567
2568 /*
2569  * Support for robust futexes: the kernel cleans up held futexes at
2570  * thread exit time.
2571  *
2572  * Implementation: user-space maintains a per-thread list of locks it
2573  * is holding. Upon do_exit(), the kernel carefully walks this list,
2574  * and marks all locks that are owned by this thread with the
2575  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2576  * always manipulated with the lock held, so the list is private and
2577  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2578  * field, to allow the kernel to clean up if the thread dies after
2579  * acquiring the lock, but just before it could have added itself to
2580  * the list. There can only be one such pending lock.
2581  */
2582
2583 /**
2584  * sys_set_robust_list() - Set the robust-futex list head of a task
2585  * @head:       pointer to the list-head
2586  * @len:        length of the list-head, as userspace expects
2587  */
2588 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2589                 size_t, len)
2590 {
2591         if (!futex_cmpxchg_enabled)
2592                 return -ENOSYS;
2593         /*
2594          * The kernel knows only one size for now:
2595          */
2596         if (unlikely(len != sizeof(*head)))
2597                 return -EINVAL;
2598
2599         current->robust_list = head;
2600
2601         return 0;
2602 }
2603
2604 /**
2605  * sys_get_robust_list() - Get the robust-futex list head of a task
2606  * @pid:        pid of the process [zero for current task]
2607  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2608  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2609  */
2610 SYSCALL_DEFINE3(get_robust_list, int, pid,
2611                 struct robust_list_head __user * __user *, head_ptr,
2612                 size_t __user *, len_ptr)
2613 {
2614         struct robust_list_head __user *head;
2615         unsigned long ret;
2616         struct task_struct *p;
2617
2618         if (!futex_cmpxchg_enabled)
2619                 return -ENOSYS;
2620
2621         rcu_read_lock();
2622
2623         ret = -ESRCH;
2624         if (!pid)
2625                 p = current;
2626         else {
2627                 p = find_task_by_vpid(pid);
2628                 if (!p)
2629                         goto err_unlock;
2630         }
2631
2632         ret = -EPERM;
2633         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2634                 goto err_unlock;
2635
2636         head = p->robust_list;
2637         rcu_read_unlock();
2638
2639         if (put_user(sizeof(*head), len_ptr))
2640                 return -EFAULT;
2641         return put_user(head, head_ptr);
2642
2643 err_unlock:
2644         rcu_read_unlock();
2645
2646         return ret;
2647 }
2648
2649 /*
2650  * Process a futex-list entry, check whether it's owned by the
2651  * dying task, and do notification if so:
2652  */
2653 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2654 {
2655         u32 uval, uninitialized_var(nval), mval;
2656
2657 retry:
2658         if (get_user(uval, uaddr))
2659                 return -1;
2660
2661         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2662                 /*
2663                  * Ok, this dying thread is truly holding a futex
2664                  * of interest. Set the OWNER_DIED bit atomically
2665                  * via cmpxchg, and if the value had FUTEX_WAITERS
2666                  * set, wake up a waiter (if any). (We have to do a
2667                  * futex_wake() even if OWNER_DIED is already set -
2668                  * to handle the rare but possible case of recursive
2669                  * thread-death.) The rest of the cleanup is done in
2670                  * userspace.
2671                  */
2672                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2673                 /*
2674                  * We are not holding a lock here, but we want to have
2675                  * the pagefault_disable/enable() protection because
2676                  * we want to handle the fault gracefully. If the
2677                  * access fails we try to fault in the futex with R/W
2678                  * verification via get_user_pages. get_user() above
2679                  * does not guarantee R/W access. If that fails we
2680                  * give up and leave the futex locked.
2681                  */
2682                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2683                         if (fault_in_user_writeable(uaddr))
2684                                 return -1;
2685                         goto retry;
2686                 }
2687                 if (nval != uval)
2688                         goto retry;
2689
2690                 /*
2691                  * Wake robust non-PI futexes here. The wakeup of
2692                  * PI futexes happens in exit_pi_state():
2693                  */
2694                 if (!pi && (uval & FUTEX_WAITERS))
2695                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2696         }
2697         return 0;
2698 }
2699
2700 /*
2701  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2702  */
2703 static inline int fetch_robust_entry(struct robust_list __user **entry,
2704                                      struct robust_list __user * __user *head,
2705                                      unsigned int *pi)
2706 {
2707         unsigned long uentry;
2708
2709         if (get_user(uentry, (unsigned long __user *)head))
2710                 return -EFAULT;
2711
2712         *entry = (void __user *)(uentry & ~1UL);
2713         *pi = uentry & 1;
2714
2715         return 0;
2716 }
2717
2718 /*
2719  * Walk curr->robust_list (very carefully, it's a userspace list!)
2720  * and mark any locks found there dead, and notify any waiters.
2721  *
2722  * We silently return on any sign of list-walking problem.
2723  */
2724 void exit_robust_list(struct task_struct *curr)
2725 {
2726         struct robust_list_head __user *head = curr->robust_list;
2727         struct robust_list __user *entry, *next_entry, *pending;
2728         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2729         unsigned int uninitialized_var(next_pi);
2730         unsigned long futex_offset;
2731         int rc;
2732
2733         if (!futex_cmpxchg_enabled)
2734                 return;
2735
2736         /*
2737          * Fetch the list head (which was registered earlier, via
2738          * sys_set_robust_list()):
2739          */
2740         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2741                 return;
2742         /*
2743          * Fetch the relative futex offset:
2744          */
2745         if (get_user(futex_offset, &head->futex_offset))
2746                 return;
2747         /*
2748          * Fetch any possibly pending lock-add first, and handle it
2749          * if it exists:
2750          */
2751         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2752                 return;
2753
2754         next_entry = NULL;      /* avoid warning with gcc */
2755         while (entry != &head->list) {
2756                 /*
2757                  * Fetch the next entry in the list before calling
2758                  * handle_futex_death:
2759                  */
2760                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2761                 /*
2762                  * A pending lock might already be on the list, so
2763                  * don't process it twice:
2764                  */
2765                 if (entry != pending)
2766                         if (handle_futex_death((void __user *)entry + futex_offset,
2767                                                 curr, pi))
2768                                 return;
2769                 if (rc)
2770                         return;
2771                 entry = next_entry;
2772                 pi = next_pi;
2773                 /*
2774                  * Avoid excessively long or circular lists:
2775                  */
2776                 if (!--limit)
2777                         break;
2778
2779                 cond_resched();
2780         }
2781
2782         if (pending)
2783                 handle_futex_death((void __user *)pending + futex_offset,
2784                                    curr, pip);
2785 }
2786
2787 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2788                 u32 __user *uaddr2, u32 val2, u32 val3)
2789 {
2790         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2791         unsigned int flags = 0;
2792
2793         if (!(op & FUTEX_PRIVATE_FLAG))
2794                 flags |= FLAGS_SHARED;
2795
2796         if (op & FUTEX_CLOCK_REALTIME) {
2797                 flags |= FLAGS_CLOCKRT;
2798                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2799                         return -ENOSYS;
2800         }
2801
2802         switch (cmd) {
2803         case FUTEX_LOCK_PI:
2804         case FUTEX_UNLOCK_PI:
2805         case FUTEX_TRYLOCK_PI:
2806         case FUTEX_WAIT_REQUEUE_PI:
2807         case FUTEX_CMP_REQUEUE_PI:
2808                 if (!futex_cmpxchg_enabled)
2809                         return -ENOSYS;
2810         }
2811
2812         switch (cmd) {
2813         case FUTEX_WAIT:
2814                 val3 = FUTEX_BITSET_MATCH_ANY;
2815         case FUTEX_WAIT_BITSET:
2816                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2817                 break;
2818         case FUTEX_WAKE:
2819                 val3 = FUTEX_BITSET_MATCH_ANY;
2820         case FUTEX_WAKE_BITSET:
2821                 ret = futex_wake(uaddr, flags, val, val3);
2822                 break;
2823         case FUTEX_REQUEUE:
2824                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2825                 break;
2826         case FUTEX_CMP_REQUEUE:
2827                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2828                 break;
2829         case FUTEX_WAKE_OP:
2830                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2831                 break;
2832         case FUTEX_LOCK_PI:
2833                 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2834                 break;
2835         case FUTEX_UNLOCK_PI:
2836                 ret = futex_unlock_pi(uaddr, flags);
2837                 break;
2838         case FUTEX_TRYLOCK_PI:
2839                 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2840                 break;
2841         case FUTEX_WAIT_REQUEUE_PI:
2842                 val3 = FUTEX_BITSET_MATCH_ANY;
2843                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2844                                             uaddr2);
2845                 break;
2846         case FUTEX_CMP_REQUEUE_PI:
2847                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2848                 break;
2849         default:
2850                 ret = -ENOSYS;
2851         }
2852         return ret;
2853 }
2854
2855
2856 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2857                 struct timespec __user *, utime, u32 __user *, uaddr2,
2858                 u32, val3)
2859 {
2860         struct timespec ts;
2861         ktime_t t, *tp = NULL;
2862         u32 val2 = 0;
2863         int cmd = op & FUTEX_CMD_MASK;
2864
2865         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2866                       cmd == FUTEX_WAIT_BITSET ||
2867                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2868                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2869                         return -EFAULT;
2870                 if (!timespec_valid(&ts))
2871                         return -EINVAL;
2872
2873                 t = timespec_to_ktime(ts);
2874                 if (cmd == FUTEX_WAIT)
2875                         t = ktime_add_safe(ktime_get(), t);
2876                 tp = &t;
2877         }
2878         /*
2879          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2880          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2881          */
2882         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2883             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2884                 val2 = (u32) (unsigned long) utime;
2885
2886         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2887 }
2888
2889 static int __init futex_init(void)
2890 {
2891         u32 curval;
2892         int i;
2893
2894         /*
2895          * This will fail and we want it. Some arch implementations do
2896          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2897          * functionality. We want to know that before we call in any
2898          * of the complex code paths. Also we want to prevent
2899          * registration of robust lists in that case. NULL is
2900          * guaranteed to fault and we get -EFAULT on functional
2901          * implementation, the non-functional ones will return
2902          * -ENOSYS.
2903          */
2904         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2905                 futex_cmpxchg_enabled = 1;
2906
2907         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2908                 plist_head_init(&futex_queues[i].chain);
2909                 spin_lock_init(&futex_queues[i].lock);
2910         }
2911
2912         return 0;
2913 }
2914 core_initcall(futex_init);