Merge branch 'misc' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc...
[pandora-kernel.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;      /* Handle normal Linux uptimes. */
59 int nr_threads;                 /* The idle threads do not count.. */
60
61 int max_threads;                /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71         int cpu;
72         int total = 0;
73
74         for_each_online_cpu(cpu)
75                 total += per_cpu(process_counts, cpu);
76
77         return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106         free_thread_info(tsk->thread_info);
107         free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110
111 void __put_task_struct(struct task_struct *tsk)
112 {
113         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114         WARN_ON(atomic_read(&tsk->usage));
115         WARN_ON(tsk == current);
116
117         if (unlikely(tsk->audit_context))
118                 audit_free(tsk);
119         security_task_free(tsk);
120         free_uid(tsk->user);
121         put_group_info(tsk->group_info);
122
123         if (!profile_handoff_task(tsk))
124                 free_task(tsk);
125 }
126
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
132 #endif
133         /* create a slab on which task_structs can be allocated */
134         task_struct_cachep =
135                 kmem_cache_create("task_struct", sizeof(struct task_struct),
136                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138
139         /*
140          * The default maximum number of threads is set to a safe
141          * value: the thread structures can take up at most half
142          * of memory.
143          */
144         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146         /*
147          * we need to allow at least 20 threads to boot a system
148          */
149         if(max_threads < 20)
150                 max_threads = 20;
151
152         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154         init_task.signal->rlim[RLIMIT_SIGPENDING] =
155                 init_task.signal->rlim[RLIMIT_NPROC];
156 }
157
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160         struct task_struct *tsk;
161         struct thread_info *ti;
162
163         prepare_to_copy(orig);
164
165         tsk = alloc_task_struct();
166         if (!tsk)
167                 return NULL;
168
169         ti = alloc_thread_info(tsk);
170         if (!ti) {
171                 free_task_struct(tsk);
172                 return NULL;
173         }
174
175         *tsk = *orig;
176         tsk->thread_info = ti;
177         setup_thread_stack(tsk, orig);
178
179         /* One for us, one for whoever does the "release_task()" (usually parent) */
180         atomic_set(&tsk->usage,2);
181         atomic_set(&tsk->fs_excl, 0);
182         tsk->btrace_seq = 0;
183         tsk->splice_pipe = NULL;
184         return tsk;
185 }
186
187 #ifdef CONFIG_MMU
188 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
189 {
190         struct vm_area_struct *mpnt, *tmp, **pprev;
191         struct rb_node **rb_link, *rb_parent;
192         int retval;
193         unsigned long charge;
194         struct mempolicy *pol;
195
196         down_write(&oldmm->mmap_sem);
197         flush_cache_mm(oldmm);
198         down_write(&mm->mmap_sem);
199
200         mm->locked_vm = 0;
201         mm->mmap = NULL;
202         mm->mmap_cache = NULL;
203         mm->free_area_cache = oldmm->mmap_base;
204         mm->cached_hole_size = ~0UL;
205         mm->map_count = 0;
206         cpus_clear(mm->cpu_vm_mask);
207         mm->mm_rb = RB_ROOT;
208         rb_link = &mm->mm_rb.rb_node;
209         rb_parent = NULL;
210         pprev = &mm->mmap;
211
212         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
213                 struct file *file;
214
215                 if (mpnt->vm_flags & VM_DONTCOPY) {
216                         long pages = vma_pages(mpnt);
217                         mm->total_vm -= pages;
218                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
219                                                                 -pages);
220                         continue;
221                 }
222                 charge = 0;
223                 if (mpnt->vm_flags & VM_ACCOUNT) {
224                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
225                         if (security_vm_enough_memory(len))
226                                 goto fail_nomem;
227                         charge = len;
228                 }
229                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
230                 if (!tmp)
231                         goto fail_nomem;
232                 *tmp = *mpnt;
233                 pol = mpol_copy(vma_policy(mpnt));
234                 retval = PTR_ERR(pol);
235                 if (IS_ERR(pol))
236                         goto fail_nomem_policy;
237                 vma_set_policy(tmp, pol);
238                 tmp->vm_flags &= ~VM_LOCKED;
239                 tmp->vm_mm = mm;
240                 tmp->vm_next = NULL;
241                 anon_vma_link(tmp);
242                 file = tmp->vm_file;
243                 if (file) {
244                         struct inode *inode = file->f_dentry->d_inode;
245                         get_file(file);
246                         if (tmp->vm_flags & VM_DENYWRITE)
247                                 atomic_dec(&inode->i_writecount);
248       
249                         /* insert tmp into the share list, just after mpnt */
250                         spin_lock(&file->f_mapping->i_mmap_lock);
251                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
252                         flush_dcache_mmap_lock(file->f_mapping);
253                         vma_prio_tree_add(tmp, mpnt);
254                         flush_dcache_mmap_unlock(file->f_mapping);
255                         spin_unlock(&file->f_mapping->i_mmap_lock);
256                 }
257
258                 /*
259                  * Link in the new vma and copy the page table entries.
260                  */
261                 *pprev = tmp;
262                 pprev = &tmp->vm_next;
263
264                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
265                 rb_link = &tmp->vm_rb.rb_right;
266                 rb_parent = &tmp->vm_rb;
267
268                 mm->map_count++;
269                 retval = copy_page_range(mm, oldmm, mpnt);
270
271                 if (tmp->vm_ops && tmp->vm_ops->open)
272                         tmp->vm_ops->open(tmp);
273
274                 if (retval)
275                         goto out;
276         }
277         retval = 0;
278 out:
279         up_write(&mm->mmap_sem);
280         flush_tlb_mm(oldmm);
281         up_write(&oldmm->mmap_sem);
282         return retval;
283 fail_nomem_policy:
284         kmem_cache_free(vm_area_cachep, tmp);
285 fail_nomem:
286         retval = -ENOMEM;
287         vm_unacct_memory(charge);
288         goto out;
289 }
290
291 static inline int mm_alloc_pgd(struct mm_struct * mm)
292 {
293         mm->pgd = pgd_alloc(mm);
294         if (unlikely(!mm->pgd))
295                 return -ENOMEM;
296         return 0;
297 }
298
299 static inline void mm_free_pgd(struct mm_struct * mm)
300 {
301         pgd_free(mm->pgd);
302 }
303 #else
304 #define dup_mmap(mm, oldmm)     (0)
305 #define mm_alloc_pgd(mm)        (0)
306 #define mm_free_pgd(mm)
307 #endif /* CONFIG_MMU */
308
309  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
310
311 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
312 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
313
314 #include <linux/init_task.h>
315
316 static struct mm_struct * mm_init(struct mm_struct * mm)
317 {
318         atomic_set(&mm->mm_users, 1);
319         atomic_set(&mm->mm_count, 1);
320         init_rwsem(&mm->mmap_sem);
321         INIT_LIST_HEAD(&mm->mmlist);
322         mm->core_waiters = 0;
323         mm->nr_ptes = 0;
324         set_mm_counter(mm, file_rss, 0);
325         set_mm_counter(mm, anon_rss, 0);
326         spin_lock_init(&mm->page_table_lock);
327         rwlock_init(&mm->ioctx_list_lock);
328         mm->ioctx_list = NULL;
329         mm->free_area_cache = TASK_UNMAPPED_BASE;
330         mm->cached_hole_size = ~0UL;
331
332         if (likely(!mm_alloc_pgd(mm))) {
333                 mm->def_flags = 0;
334                 return mm;
335         }
336         free_mm(mm);
337         return NULL;
338 }
339
340 /*
341  * Allocate and initialize an mm_struct.
342  */
343 struct mm_struct * mm_alloc(void)
344 {
345         struct mm_struct * mm;
346
347         mm = allocate_mm();
348         if (mm) {
349                 memset(mm, 0, sizeof(*mm));
350                 mm = mm_init(mm);
351         }
352         return mm;
353 }
354
355 /*
356  * Called when the last reference to the mm
357  * is dropped: either by a lazy thread or by
358  * mmput. Free the page directory and the mm.
359  */
360 void fastcall __mmdrop(struct mm_struct *mm)
361 {
362         BUG_ON(mm == &init_mm);
363         mm_free_pgd(mm);
364         destroy_context(mm);
365         free_mm(mm);
366 }
367
368 /*
369  * Decrement the use count and release all resources for an mm.
370  */
371 void mmput(struct mm_struct *mm)
372 {
373         if (atomic_dec_and_test(&mm->mm_users)) {
374                 exit_aio(mm);
375                 exit_mmap(mm);
376                 if (!list_empty(&mm->mmlist)) {
377                         spin_lock(&mmlist_lock);
378                         list_del(&mm->mmlist);
379                         spin_unlock(&mmlist_lock);
380                 }
381                 put_swap_token(mm);
382                 mmdrop(mm);
383         }
384 }
385 EXPORT_SYMBOL_GPL(mmput);
386
387 /**
388  * get_task_mm - acquire a reference to the task's mm
389  *
390  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
391  * this kernel workthread has transiently adopted a user mm with use_mm,
392  * to do its AIO) is not set and if so returns a reference to it, after
393  * bumping up the use count.  User must release the mm via mmput()
394  * after use.  Typically used by /proc and ptrace.
395  */
396 struct mm_struct *get_task_mm(struct task_struct *task)
397 {
398         struct mm_struct *mm;
399
400         task_lock(task);
401         mm = task->mm;
402         if (mm) {
403                 if (task->flags & PF_BORROWED_MM)
404                         mm = NULL;
405                 else
406                         atomic_inc(&mm->mm_users);
407         }
408         task_unlock(task);
409         return mm;
410 }
411 EXPORT_SYMBOL_GPL(get_task_mm);
412
413 /* Please note the differences between mmput and mm_release.
414  * mmput is called whenever we stop holding onto a mm_struct,
415  * error success whatever.
416  *
417  * mm_release is called after a mm_struct has been removed
418  * from the current process.
419  *
420  * This difference is important for error handling, when we
421  * only half set up a mm_struct for a new process and need to restore
422  * the old one.  Because we mmput the new mm_struct before
423  * restoring the old one. . .
424  * Eric Biederman 10 January 1998
425  */
426 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 {
428         struct completion *vfork_done = tsk->vfork_done;
429
430         /* Get rid of any cached register state */
431         deactivate_mm(tsk, mm);
432
433         /* notify parent sleeping on vfork() */
434         if (vfork_done) {
435                 tsk->vfork_done = NULL;
436                 complete(vfork_done);
437         }
438         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
439                 u32 __user * tidptr = tsk->clear_child_tid;
440                 tsk->clear_child_tid = NULL;
441
442                 /*
443                  * We don't check the error code - if userspace has
444                  * not set up a proper pointer then tough luck.
445                  */
446                 put_user(0, tidptr);
447                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
448         }
449 }
450
451 /*
452  * Allocate a new mm structure and copy contents from the
453  * mm structure of the passed in task structure.
454  */
455 static struct mm_struct *dup_mm(struct task_struct *tsk)
456 {
457         struct mm_struct *mm, *oldmm = current->mm;
458         int err;
459
460         if (!oldmm)
461                 return NULL;
462
463         mm = allocate_mm();
464         if (!mm)
465                 goto fail_nomem;
466
467         memcpy(mm, oldmm, sizeof(*mm));
468
469         if (!mm_init(mm))
470                 goto fail_nomem;
471
472         if (init_new_context(tsk, mm))
473                 goto fail_nocontext;
474
475         err = dup_mmap(mm, oldmm);
476         if (err)
477                 goto free_pt;
478
479         mm->hiwater_rss = get_mm_rss(mm);
480         mm->hiwater_vm = mm->total_vm;
481
482         return mm;
483
484 free_pt:
485         mmput(mm);
486
487 fail_nomem:
488         return NULL;
489
490 fail_nocontext:
491         /*
492          * If init_new_context() failed, we cannot use mmput() to free the mm
493          * because it calls destroy_context()
494          */
495         mm_free_pgd(mm);
496         free_mm(mm);
497         return NULL;
498 }
499
500 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
501 {
502         struct mm_struct * mm, *oldmm;
503         int retval;
504
505         tsk->min_flt = tsk->maj_flt = 0;
506         tsk->nvcsw = tsk->nivcsw = 0;
507
508         tsk->mm = NULL;
509         tsk->active_mm = NULL;
510
511         /*
512          * Are we cloning a kernel thread?
513          *
514          * We need to steal a active VM for that..
515          */
516         oldmm = current->mm;
517         if (!oldmm)
518                 return 0;
519
520         if (clone_flags & CLONE_VM) {
521                 atomic_inc(&oldmm->mm_users);
522                 mm = oldmm;
523                 goto good_mm;
524         }
525
526         retval = -ENOMEM;
527         mm = dup_mm(tsk);
528         if (!mm)
529                 goto fail_nomem;
530
531 good_mm:
532         tsk->mm = mm;
533         tsk->active_mm = mm;
534         return 0;
535
536 fail_nomem:
537         return retval;
538 }
539
540 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
541 {
542         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
543         /* We don't need to lock fs - think why ;-) */
544         if (fs) {
545                 atomic_set(&fs->count, 1);
546                 rwlock_init(&fs->lock);
547                 fs->umask = old->umask;
548                 read_lock(&old->lock);
549                 fs->rootmnt = mntget(old->rootmnt);
550                 fs->root = dget(old->root);
551                 fs->pwdmnt = mntget(old->pwdmnt);
552                 fs->pwd = dget(old->pwd);
553                 if (old->altroot) {
554                         fs->altrootmnt = mntget(old->altrootmnt);
555                         fs->altroot = dget(old->altroot);
556                 } else {
557                         fs->altrootmnt = NULL;
558                         fs->altroot = NULL;
559                 }
560                 read_unlock(&old->lock);
561         }
562         return fs;
563 }
564
565 struct fs_struct *copy_fs_struct(struct fs_struct *old)
566 {
567         return __copy_fs_struct(old);
568 }
569
570 EXPORT_SYMBOL_GPL(copy_fs_struct);
571
572 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
573 {
574         if (clone_flags & CLONE_FS) {
575                 atomic_inc(&current->fs->count);
576                 return 0;
577         }
578         tsk->fs = __copy_fs_struct(current->fs);
579         if (!tsk->fs)
580                 return -ENOMEM;
581         return 0;
582 }
583
584 static int count_open_files(struct fdtable *fdt)
585 {
586         int size = fdt->max_fdset;
587         int i;
588
589         /* Find the last open fd */
590         for (i = size/(8*sizeof(long)); i > 0; ) {
591                 if (fdt->open_fds->fds_bits[--i])
592                         break;
593         }
594         i = (i+1) * 8 * sizeof(long);
595         return i;
596 }
597
598 static struct files_struct *alloc_files(void)
599 {
600         struct files_struct *newf;
601         struct fdtable *fdt;
602
603         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
604         if (!newf)
605                 goto out;
606
607         atomic_set(&newf->count, 1);
608
609         spin_lock_init(&newf->file_lock);
610         newf->next_fd = 0;
611         fdt = &newf->fdtab;
612         fdt->max_fds = NR_OPEN_DEFAULT;
613         fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
614         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
615         fdt->open_fds = (fd_set *)&newf->open_fds_init;
616         fdt->fd = &newf->fd_array[0];
617         INIT_RCU_HEAD(&fdt->rcu);
618         fdt->free_files = NULL;
619         fdt->next = NULL;
620         rcu_assign_pointer(newf->fdt, fdt);
621 out:
622         return newf;
623 }
624
625 /*
626  * Allocate a new files structure and copy contents from the
627  * passed in files structure.
628  */
629 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
630 {
631         struct files_struct *newf;
632         struct file **old_fds, **new_fds;
633         int open_files, size, i, expand;
634         struct fdtable *old_fdt, *new_fdt;
635
636         newf = alloc_files();
637         if (!newf)
638                 goto out;
639
640         spin_lock(&oldf->file_lock);
641         old_fdt = files_fdtable(oldf);
642         new_fdt = files_fdtable(newf);
643         size = old_fdt->max_fdset;
644         open_files = count_open_files(old_fdt);
645         expand = 0;
646
647         /*
648          * Check whether we need to allocate a larger fd array or fd set.
649          * Note: we're not a clone task, so the open count won't  change.
650          */
651         if (open_files > new_fdt->max_fdset) {
652                 new_fdt->max_fdset = 0;
653                 expand = 1;
654         }
655         if (open_files > new_fdt->max_fds) {
656                 new_fdt->max_fds = 0;
657                 expand = 1;
658         }
659
660         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
661         if (expand) {
662                 spin_unlock(&oldf->file_lock);
663                 spin_lock(&newf->file_lock);
664                 *errorp = expand_files(newf, open_files-1);
665                 spin_unlock(&newf->file_lock);
666                 if (*errorp < 0)
667                         goto out_release;
668                 new_fdt = files_fdtable(newf);
669                 /*
670                  * Reacquire the oldf lock and a pointer to its fd table
671                  * who knows it may have a new bigger fd table. We need
672                  * the latest pointer.
673                  */
674                 spin_lock(&oldf->file_lock);
675                 old_fdt = files_fdtable(oldf);
676         }
677
678         old_fds = old_fdt->fd;
679         new_fds = new_fdt->fd;
680
681         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
682         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
683
684         for (i = open_files; i != 0; i--) {
685                 struct file *f = *old_fds++;
686                 if (f) {
687                         get_file(f);
688                 } else {
689                         /*
690                          * The fd may be claimed in the fd bitmap but not yet
691                          * instantiated in the files array if a sibling thread
692                          * is partway through open().  So make sure that this
693                          * fd is available to the new process.
694                          */
695                         FD_CLR(open_files - i, new_fdt->open_fds);
696                 }
697                 rcu_assign_pointer(*new_fds++, f);
698         }
699         spin_unlock(&oldf->file_lock);
700
701         /* compute the remainder to be cleared */
702         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
703
704         /* This is long word aligned thus could use a optimized version */ 
705         memset(new_fds, 0, size); 
706
707         if (new_fdt->max_fdset > open_files) {
708                 int left = (new_fdt->max_fdset-open_files)/8;
709                 int start = open_files / (8 * sizeof(unsigned long));
710
711                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
712                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
713         }
714
715 out:
716         return newf;
717
718 out_release:
719         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
720         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
721         free_fd_array(new_fdt->fd, new_fdt->max_fds);
722         kmem_cache_free(files_cachep, newf);
723         return NULL;
724 }
725
726 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
727 {
728         struct files_struct *oldf, *newf;
729         int error = 0;
730
731         /*
732          * A background process may not have any files ...
733          */
734         oldf = current->files;
735         if (!oldf)
736                 goto out;
737
738         if (clone_flags & CLONE_FILES) {
739                 atomic_inc(&oldf->count);
740                 goto out;
741         }
742
743         /*
744          * Note: we may be using current for both targets (See exec.c)
745          * This works because we cache current->files (old) as oldf. Don't
746          * break this.
747          */
748         tsk->files = NULL;
749         error = -ENOMEM;
750         newf = dup_fd(oldf, &error);
751         if (!newf)
752                 goto out;
753
754         tsk->files = newf;
755         error = 0;
756 out:
757         return error;
758 }
759
760 /*
761  *      Helper to unshare the files of the current task.
762  *      We don't want to expose copy_files internals to
763  *      the exec layer of the kernel.
764  */
765
766 int unshare_files(void)
767 {
768         struct files_struct *files  = current->files;
769         int rc;
770
771         BUG_ON(!files);
772
773         /* This can race but the race causes us to copy when we don't
774            need to and drop the copy */
775         if(atomic_read(&files->count) == 1)
776         {
777                 atomic_inc(&files->count);
778                 return 0;
779         }
780         rc = copy_files(0, current);
781         if(rc)
782                 current->files = files;
783         return rc;
784 }
785
786 EXPORT_SYMBOL(unshare_files);
787
788 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
789 {
790         struct sighand_struct *sig;
791
792         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
793                 atomic_inc(&current->sighand->count);
794                 return 0;
795         }
796         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
797         rcu_assign_pointer(tsk->sighand, sig);
798         if (!sig)
799                 return -ENOMEM;
800         atomic_set(&sig->count, 1);
801         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
802         return 0;
803 }
804
805 void __cleanup_sighand(struct sighand_struct *sighand)
806 {
807         if (atomic_dec_and_test(&sighand->count))
808                 kmem_cache_free(sighand_cachep, sighand);
809 }
810
811 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
812 {
813         struct signal_struct *sig;
814         int ret;
815
816         if (clone_flags & CLONE_THREAD) {
817                 atomic_inc(&current->signal->count);
818                 atomic_inc(&current->signal->live);
819                 return 0;
820         }
821         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
822         tsk->signal = sig;
823         if (!sig)
824                 return -ENOMEM;
825
826         ret = copy_thread_group_keys(tsk);
827         if (ret < 0) {
828                 kmem_cache_free(signal_cachep, sig);
829                 return ret;
830         }
831
832         atomic_set(&sig->count, 1);
833         atomic_set(&sig->live, 1);
834         init_waitqueue_head(&sig->wait_chldexit);
835         sig->flags = 0;
836         sig->group_exit_code = 0;
837         sig->group_exit_task = NULL;
838         sig->group_stop_count = 0;
839         sig->curr_target = NULL;
840         init_sigpending(&sig->shared_pending);
841         INIT_LIST_HEAD(&sig->posix_timers);
842
843         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
844         sig->it_real_incr.tv64 = 0;
845         sig->real_timer.function = it_real_fn;
846         sig->tsk = tsk;
847
848         sig->it_virt_expires = cputime_zero;
849         sig->it_virt_incr = cputime_zero;
850         sig->it_prof_expires = cputime_zero;
851         sig->it_prof_incr = cputime_zero;
852
853         sig->leader = 0;        /* session leadership doesn't inherit */
854         sig->tty_old_pgrp = 0;
855
856         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
857         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
858         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
859         sig->sched_time = 0;
860         INIT_LIST_HEAD(&sig->cpu_timers[0]);
861         INIT_LIST_HEAD(&sig->cpu_timers[1]);
862         INIT_LIST_HEAD(&sig->cpu_timers[2]);
863
864         task_lock(current->group_leader);
865         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
866         task_unlock(current->group_leader);
867
868         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
869                 /*
870                  * New sole thread in the process gets an expiry time
871                  * of the whole CPU time limit.
872                  */
873                 tsk->it_prof_expires =
874                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
875         }
876
877         return 0;
878 }
879
880 void __cleanup_signal(struct signal_struct *sig)
881 {
882         exit_thread_group_keys(sig);
883         kmem_cache_free(signal_cachep, sig);
884 }
885
886 static inline void cleanup_signal(struct task_struct *tsk)
887 {
888         struct signal_struct *sig = tsk->signal;
889
890         atomic_dec(&sig->live);
891
892         if (atomic_dec_and_test(&sig->count))
893                 __cleanup_signal(sig);
894 }
895
896 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
897 {
898         unsigned long new_flags = p->flags;
899
900         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
901         new_flags |= PF_FORKNOEXEC;
902         if (!(clone_flags & CLONE_PTRACE))
903                 p->ptrace = 0;
904         p->flags = new_flags;
905 }
906
907 asmlinkage long sys_set_tid_address(int __user *tidptr)
908 {
909         current->clear_child_tid = tidptr;
910
911         return current->pid;
912 }
913
914 /*
915  * This creates a new process as a copy of the old one,
916  * but does not actually start it yet.
917  *
918  * It copies the registers, and all the appropriate
919  * parts of the process environment (as per the clone
920  * flags). The actual kick-off is left to the caller.
921  */
922 static task_t *copy_process(unsigned long clone_flags,
923                                  unsigned long stack_start,
924                                  struct pt_regs *regs,
925                                  unsigned long stack_size,
926                                  int __user *parent_tidptr,
927                                  int __user *child_tidptr,
928                                  int pid)
929 {
930         int retval;
931         struct task_struct *p = NULL;
932
933         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
934                 return ERR_PTR(-EINVAL);
935
936         /*
937          * Thread groups must share signals as well, and detached threads
938          * can only be started up within the thread group.
939          */
940         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
941                 return ERR_PTR(-EINVAL);
942
943         /*
944          * Shared signal handlers imply shared VM. By way of the above,
945          * thread groups also imply shared VM. Blocking this case allows
946          * for various simplifications in other code.
947          */
948         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
949                 return ERR_PTR(-EINVAL);
950
951         retval = security_task_create(clone_flags);
952         if (retval)
953                 goto fork_out;
954
955         retval = -ENOMEM;
956         p = dup_task_struct(current);
957         if (!p)
958                 goto fork_out;
959
960         retval = -EAGAIN;
961         if (atomic_read(&p->user->processes) >=
962                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
963                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
964                                 p->user != &root_user)
965                         goto bad_fork_free;
966         }
967
968         atomic_inc(&p->user->__count);
969         atomic_inc(&p->user->processes);
970         get_group_info(p->group_info);
971
972         /*
973          * If multiple threads are within copy_process(), then this check
974          * triggers too late. This doesn't hurt, the check is only there
975          * to stop root fork bombs.
976          */
977         if (nr_threads >= max_threads)
978                 goto bad_fork_cleanup_count;
979
980         if (!try_module_get(task_thread_info(p)->exec_domain->module))
981                 goto bad_fork_cleanup_count;
982
983         if (p->binfmt && !try_module_get(p->binfmt->module))
984                 goto bad_fork_cleanup_put_domain;
985
986         p->did_exec = 0;
987         copy_flags(clone_flags, p);
988         p->pid = pid;
989         retval = -EFAULT;
990         if (clone_flags & CLONE_PARENT_SETTID)
991                 if (put_user(p->pid, parent_tidptr))
992                         goto bad_fork_cleanup;
993
994         p->proc_dentry = NULL;
995
996         INIT_LIST_HEAD(&p->children);
997         INIT_LIST_HEAD(&p->sibling);
998         p->vfork_done = NULL;
999         spin_lock_init(&p->alloc_lock);
1000         spin_lock_init(&p->proc_lock);
1001
1002         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1003         init_sigpending(&p->pending);
1004
1005         p->utime = cputime_zero;
1006         p->stime = cputime_zero;
1007         p->sched_time = 0;
1008         p->rchar = 0;           /* I/O counter: bytes read */
1009         p->wchar = 0;           /* I/O counter: bytes written */
1010         p->syscr = 0;           /* I/O counter: read syscalls */
1011         p->syscw = 0;           /* I/O counter: write syscalls */
1012         acct_clear_integrals(p);
1013
1014         p->it_virt_expires = cputime_zero;
1015         p->it_prof_expires = cputime_zero;
1016         p->it_sched_expires = 0;
1017         INIT_LIST_HEAD(&p->cpu_timers[0]);
1018         INIT_LIST_HEAD(&p->cpu_timers[1]);
1019         INIT_LIST_HEAD(&p->cpu_timers[2]);
1020
1021         p->lock_depth = -1;             /* -1 = no lock */
1022         do_posix_clock_monotonic_gettime(&p->start_time);
1023         p->security = NULL;
1024         p->io_context = NULL;
1025         p->io_wait = NULL;
1026         p->audit_context = NULL;
1027         cpuset_fork(p);
1028 #ifdef CONFIG_NUMA
1029         p->mempolicy = mpol_copy(p->mempolicy);
1030         if (IS_ERR(p->mempolicy)) {
1031                 retval = PTR_ERR(p->mempolicy);
1032                 p->mempolicy = NULL;
1033                 goto bad_fork_cleanup_cpuset;
1034         }
1035         mpol_fix_fork_child_flag(p);
1036 #endif
1037
1038 #ifdef CONFIG_DEBUG_MUTEXES
1039         p->blocked_on = NULL; /* not blocked yet */
1040 #endif
1041
1042         p->tgid = p->pid;
1043         if (clone_flags & CLONE_THREAD)
1044                 p->tgid = current->tgid;
1045
1046         if ((retval = security_task_alloc(p)))
1047                 goto bad_fork_cleanup_policy;
1048         if ((retval = audit_alloc(p)))
1049                 goto bad_fork_cleanup_security;
1050         /* copy all the process information */
1051         if ((retval = copy_semundo(clone_flags, p)))
1052                 goto bad_fork_cleanup_audit;
1053         if ((retval = copy_files(clone_flags, p)))
1054                 goto bad_fork_cleanup_semundo;
1055         if ((retval = copy_fs(clone_flags, p)))
1056                 goto bad_fork_cleanup_files;
1057         if ((retval = copy_sighand(clone_flags, p)))
1058                 goto bad_fork_cleanup_fs;
1059         if ((retval = copy_signal(clone_flags, p)))
1060                 goto bad_fork_cleanup_sighand;
1061         if ((retval = copy_mm(clone_flags, p)))
1062                 goto bad_fork_cleanup_signal;
1063         if ((retval = copy_keys(clone_flags, p)))
1064                 goto bad_fork_cleanup_mm;
1065         if ((retval = copy_namespace(clone_flags, p)))
1066                 goto bad_fork_cleanup_keys;
1067         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1068         if (retval)
1069                 goto bad_fork_cleanup_namespace;
1070
1071         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1072         /*
1073          * Clear TID on mm_release()?
1074          */
1075         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1076         p->robust_list = NULL;
1077 #ifdef CONFIG_COMPAT
1078         p->compat_robust_list = NULL;
1079 #endif
1080         /*
1081          * sigaltstack should be cleared when sharing the same VM
1082          */
1083         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1084                 p->sas_ss_sp = p->sas_ss_size = 0;
1085
1086         /*
1087          * Syscall tracing should be turned off in the child regardless
1088          * of CLONE_PTRACE.
1089          */
1090         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1091 #ifdef TIF_SYSCALL_EMU
1092         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1093 #endif
1094
1095         /* Our parent execution domain becomes current domain
1096            These must match for thread signalling to apply */
1097            
1098         p->parent_exec_id = p->self_exec_id;
1099
1100         /* ok, now we should be set up.. */
1101         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1102         p->pdeath_signal = 0;
1103         p->exit_state = 0;
1104
1105         /*
1106          * Ok, make it visible to the rest of the system.
1107          * We dont wake it up yet.
1108          */
1109         p->group_leader = p;
1110         INIT_LIST_HEAD(&p->thread_group);
1111         INIT_LIST_HEAD(&p->ptrace_children);
1112         INIT_LIST_HEAD(&p->ptrace_list);
1113
1114         /* Perform scheduler related setup. Assign this task to a CPU. */
1115         sched_fork(p, clone_flags);
1116
1117         /* Need tasklist lock for parent etc handling! */
1118         write_lock_irq(&tasklist_lock);
1119
1120         /*
1121          * The task hasn't been attached yet, so its cpus_allowed mask will
1122          * not be changed, nor will its assigned CPU.
1123          *
1124          * The cpus_allowed mask of the parent may have changed after it was
1125          * copied first time - so re-copy it here, then check the child's CPU
1126          * to ensure it is on a valid CPU (and if not, just force it back to
1127          * parent's CPU). This avoids alot of nasty races.
1128          */
1129         p->cpus_allowed = current->cpus_allowed;
1130         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1131                         !cpu_online(task_cpu(p))))
1132                 set_task_cpu(p, smp_processor_id());
1133
1134         /* CLONE_PARENT re-uses the old parent */
1135         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1136                 p->real_parent = current->real_parent;
1137         else
1138                 p->real_parent = current;
1139         p->parent = p->real_parent;
1140
1141         spin_lock(&current->sighand->siglock);
1142
1143         /*
1144          * Process group and session signals need to be delivered to just the
1145          * parent before the fork or both the parent and the child after the
1146          * fork. Restart if a signal comes in before we add the new process to
1147          * it's process group.
1148          * A fatal signal pending means that current will exit, so the new
1149          * thread can't slip out of an OOM kill (or normal SIGKILL).
1150          */
1151         recalc_sigpending();
1152         if (signal_pending(current)) {
1153                 spin_unlock(&current->sighand->siglock);
1154                 write_unlock_irq(&tasklist_lock);
1155                 retval = -ERESTARTNOINTR;
1156                 goto bad_fork_cleanup_namespace;
1157         }
1158
1159         if (clone_flags & CLONE_THREAD) {
1160                 /*
1161                  * Important: if an exit-all has been started then
1162                  * do not create this new thread - the whole thread
1163                  * group is supposed to exit anyway.
1164                  */
1165                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1166                         spin_unlock(&current->sighand->siglock);
1167                         write_unlock_irq(&tasklist_lock);
1168                         retval = -EAGAIN;
1169                         goto bad_fork_cleanup_namespace;
1170                 }
1171
1172                 p->group_leader = current->group_leader;
1173                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1174
1175                 if (!cputime_eq(current->signal->it_virt_expires,
1176                                 cputime_zero) ||
1177                     !cputime_eq(current->signal->it_prof_expires,
1178                                 cputime_zero) ||
1179                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1180                     !list_empty(&current->signal->cpu_timers[0]) ||
1181                     !list_empty(&current->signal->cpu_timers[1]) ||
1182                     !list_empty(&current->signal->cpu_timers[2])) {
1183                         /*
1184                          * Have child wake up on its first tick to check
1185                          * for process CPU timers.
1186                          */
1187                         p->it_prof_expires = jiffies_to_cputime(1);
1188                 }
1189         }
1190
1191         /*
1192          * inherit ioprio
1193          */
1194         p->ioprio = current->ioprio;
1195
1196         if (likely(p->pid)) {
1197                 add_parent(p);
1198                 if (unlikely(p->ptrace & PT_PTRACED))
1199                         __ptrace_link(p, current->parent);
1200
1201                 if (thread_group_leader(p)) {
1202                         p->signal->tty = current->signal->tty;
1203                         p->signal->pgrp = process_group(current);
1204                         p->signal->session = current->signal->session;
1205                         attach_pid(p, PIDTYPE_PGID, process_group(p));
1206                         attach_pid(p, PIDTYPE_SID, p->signal->session);
1207
1208                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1209                         __get_cpu_var(process_counts)++;
1210                 }
1211                 attach_pid(p, PIDTYPE_PID, p->pid);
1212                 nr_threads++;
1213         }
1214
1215         total_forks++;
1216         spin_unlock(&current->sighand->siglock);
1217         write_unlock_irq(&tasklist_lock);
1218         proc_fork_connector(p);
1219         return p;
1220
1221 bad_fork_cleanup_namespace:
1222         exit_namespace(p);
1223 bad_fork_cleanup_keys:
1224         exit_keys(p);
1225 bad_fork_cleanup_mm:
1226         if (p->mm)
1227                 mmput(p->mm);
1228 bad_fork_cleanup_signal:
1229         cleanup_signal(p);
1230 bad_fork_cleanup_sighand:
1231         __cleanup_sighand(p->sighand);
1232 bad_fork_cleanup_fs:
1233         exit_fs(p); /* blocking */
1234 bad_fork_cleanup_files:
1235         exit_files(p); /* blocking */
1236 bad_fork_cleanup_semundo:
1237         exit_sem(p);
1238 bad_fork_cleanup_audit:
1239         audit_free(p);
1240 bad_fork_cleanup_security:
1241         security_task_free(p);
1242 bad_fork_cleanup_policy:
1243 #ifdef CONFIG_NUMA
1244         mpol_free(p->mempolicy);
1245 bad_fork_cleanup_cpuset:
1246 #endif
1247         cpuset_exit(p);
1248 bad_fork_cleanup:
1249         if (p->binfmt)
1250                 module_put(p->binfmt->module);
1251 bad_fork_cleanup_put_domain:
1252         module_put(task_thread_info(p)->exec_domain->module);
1253 bad_fork_cleanup_count:
1254         put_group_info(p->group_info);
1255         atomic_dec(&p->user->processes);
1256         free_uid(p->user);
1257 bad_fork_free:
1258         free_task(p);
1259 fork_out:
1260         return ERR_PTR(retval);
1261 }
1262
1263 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1264 {
1265         memset(regs, 0, sizeof(struct pt_regs));
1266         return regs;
1267 }
1268
1269 task_t * __devinit fork_idle(int cpu)
1270 {
1271         task_t *task;
1272         struct pt_regs regs;
1273
1274         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1275         if (!task)
1276                 return ERR_PTR(-ENOMEM);
1277         init_idle(task, cpu);
1278
1279         return task;
1280 }
1281
1282 static inline int fork_traceflag (unsigned clone_flags)
1283 {
1284         if (clone_flags & CLONE_UNTRACED)
1285                 return 0;
1286         else if (clone_flags & CLONE_VFORK) {
1287                 if (current->ptrace & PT_TRACE_VFORK)
1288                         return PTRACE_EVENT_VFORK;
1289         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1290                 if (current->ptrace & PT_TRACE_CLONE)
1291                         return PTRACE_EVENT_CLONE;
1292         } else if (current->ptrace & PT_TRACE_FORK)
1293                 return PTRACE_EVENT_FORK;
1294
1295         return 0;
1296 }
1297
1298 /*
1299  *  Ok, this is the main fork-routine.
1300  *
1301  * It copies the process, and if successful kick-starts
1302  * it and waits for it to finish using the VM if required.
1303  */
1304 long do_fork(unsigned long clone_flags,
1305               unsigned long stack_start,
1306               struct pt_regs *regs,
1307               unsigned long stack_size,
1308               int __user *parent_tidptr,
1309               int __user *child_tidptr)
1310 {
1311         struct task_struct *p;
1312         int trace = 0;
1313         struct pid *pid = alloc_pid();
1314         long nr;
1315
1316         if (!pid)
1317                 return -EAGAIN;
1318         nr = pid->nr;
1319         if (unlikely(current->ptrace)) {
1320                 trace = fork_traceflag (clone_flags);
1321                 if (trace)
1322                         clone_flags |= CLONE_PTRACE;
1323         }
1324
1325         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1326         /*
1327          * Do this prior waking up the new thread - the thread pointer
1328          * might get invalid after that point, if the thread exits quickly.
1329          */
1330         if (!IS_ERR(p)) {
1331                 struct completion vfork;
1332
1333                 if (clone_flags & CLONE_VFORK) {
1334                         p->vfork_done = &vfork;
1335                         init_completion(&vfork);
1336                 }
1337
1338                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1339                         /*
1340                          * We'll start up with an immediate SIGSTOP.
1341                          */
1342                         sigaddset(&p->pending.signal, SIGSTOP);
1343                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1344                 }
1345
1346                 if (!(clone_flags & CLONE_STOPPED))
1347                         wake_up_new_task(p, clone_flags);
1348                 else
1349                         p->state = TASK_STOPPED;
1350
1351                 if (unlikely (trace)) {
1352                         current->ptrace_message = nr;
1353                         ptrace_notify ((trace << 8) | SIGTRAP);
1354                 }
1355
1356                 if (clone_flags & CLONE_VFORK) {
1357                         wait_for_completion(&vfork);
1358                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1359                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1360                 }
1361         } else {
1362                 free_pid(pid);
1363                 nr = PTR_ERR(p);
1364         }
1365         return nr;
1366 }
1367
1368 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1369 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1370 #endif
1371
1372 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1373 {
1374         struct sighand_struct *sighand = data;
1375
1376         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1377                                         SLAB_CTOR_CONSTRUCTOR)
1378                 spin_lock_init(&sighand->siglock);
1379 }
1380
1381 void __init proc_caches_init(void)
1382 {
1383         sighand_cachep = kmem_cache_create("sighand_cache",
1384                         sizeof(struct sighand_struct), 0,
1385                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1386                         sighand_ctor, NULL);
1387         signal_cachep = kmem_cache_create("signal_cache",
1388                         sizeof(struct signal_struct), 0,
1389                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1390         files_cachep = kmem_cache_create("files_cache", 
1391                         sizeof(struct files_struct), 0,
1392                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1393         fs_cachep = kmem_cache_create("fs_cache", 
1394                         sizeof(struct fs_struct), 0,
1395                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1396         vm_area_cachep = kmem_cache_create("vm_area_struct",
1397                         sizeof(struct vm_area_struct), 0,
1398                         SLAB_PANIC, NULL, NULL);
1399         mm_cachep = kmem_cache_create("mm_struct",
1400                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1401                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1402 }
1403
1404
1405 /*
1406  * Check constraints on flags passed to the unshare system call and
1407  * force unsharing of additional process context as appropriate.
1408  */
1409 static inline void check_unshare_flags(unsigned long *flags_ptr)
1410 {
1411         /*
1412          * If unsharing a thread from a thread group, must also
1413          * unshare vm.
1414          */
1415         if (*flags_ptr & CLONE_THREAD)
1416                 *flags_ptr |= CLONE_VM;
1417
1418         /*
1419          * If unsharing vm, must also unshare signal handlers.
1420          */
1421         if (*flags_ptr & CLONE_VM)
1422                 *flags_ptr |= CLONE_SIGHAND;
1423
1424         /*
1425          * If unsharing signal handlers and the task was created
1426          * using CLONE_THREAD, then must unshare the thread
1427          */
1428         if ((*flags_ptr & CLONE_SIGHAND) &&
1429             (atomic_read(&current->signal->count) > 1))
1430                 *flags_ptr |= CLONE_THREAD;
1431
1432         /*
1433          * If unsharing namespace, must also unshare filesystem information.
1434          */
1435         if (*flags_ptr & CLONE_NEWNS)
1436                 *flags_ptr |= CLONE_FS;
1437 }
1438
1439 /*
1440  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1441  */
1442 static int unshare_thread(unsigned long unshare_flags)
1443 {
1444         if (unshare_flags & CLONE_THREAD)
1445                 return -EINVAL;
1446
1447         return 0;
1448 }
1449
1450 /*
1451  * Unshare the filesystem structure if it is being shared
1452  */
1453 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1454 {
1455         struct fs_struct *fs = current->fs;
1456
1457         if ((unshare_flags & CLONE_FS) &&
1458             (fs && atomic_read(&fs->count) > 1)) {
1459                 *new_fsp = __copy_fs_struct(current->fs);
1460                 if (!*new_fsp)
1461                         return -ENOMEM;
1462         }
1463
1464         return 0;
1465 }
1466
1467 /*
1468  * Unshare the namespace structure if it is being shared
1469  */
1470 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1471 {
1472         struct namespace *ns = current->namespace;
1473
1474         if ((unshare_flags & CLONE_NEWNS) &&
1475             (ns && atomic_read(&ns->count) > 1)) {
1476                 if (!capable(CAP_SYS_ADMIN))
1477                         return -EPERM;
1478
1479                 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1480                 if (!*new_nsp)
1481                         return -ENOMEM;
1482         }
1483
1484         return 0;
1485 }
1486
1487 /*
1488  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1489  * supported yet
1490  */
1491 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1492 {
1493         struct sighand_struct *sigh = current->sighand;
1494
1495         if ((unshare_flags & CLONE_SIGHAND) &&
1496             (sigh && atomic_read(&sigh->count) > 1))
1497                 return -EINVAL;
1498         else
1499                 return 0;
1500 }
1501
1502 /*
1503  * Unshare vm if it is being shared
1504  */
1505 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1506 {
1507         struct mm_struct *mm = current->mm;
1508
1509         if ((unshare_flags & CLONE_VM) &&
1510             (mm && atomic_read(&mm->mm_users) > 1)) {
1511                 return -EINVAL;
1512         }
1513
1514         return 0;
1515 }
1516
1517 /*
1518  * Unshare file descriptor table if it is being shared
1519  */
1520 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1521 {
1522         struct files_struct *fd = current->files;
1523         int error = 0;
1524
1525         if ((unshare_flags & CLONE_FILES) &&
1526             (fd && atomic_read(&fd->count) > 1)) {
1527                 *new_fdp = dup_fd(fd, &error);
1528                 if (!*new_fdp)
1529                         return error;
1530         }
1531
1532         return 0;
1533 }
1534
1535 /*
1536  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1537  * supported yet
1538  */
1539 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1540 {
1541         if (unshare_flags & CLONE_SYSVSEM)
1542                 return -EINVAL;
1543
1544         return 0;
1545 }
1546
1547 /*
1548  * unshare allows a process to 'unshare' part of the process
1549  * context which was originally shared using clone.  copy_*
1550  * functions used by do_fork() cannot be used here directly
1551  * because they modify an inactive task_struct that is being
1552  * constructed. Here we are modifying the current, active,
1553  * task_struct.
1554  */
1555 asmlinkage long sys_unshare(unsigned long unshare_flags)
1556 {
1557         int err = 0;
1558         struct fs_struct *fs, *new_fs = NULL;
1559         struct namespace *ns, *new_ns = NULL;
1560         struct sighand_struct *sigh, *new_sigh = NULL;
1561         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1562         struct files_struct *fd, *new_fd = NULL;
1563         struct sem_undo_list *new_ulist = NULL;
1564
1565         check_unshare_flags(&unshare_flags);
1566
1567         /* Return -EINVAL for all unsupported flags */
1568         err = -EINVAL;
1569         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1570                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1571                 goto bad_unshare_out;
1572
1573         if ((err = unshare_thread(unshare_flags)))
1574                 goto bad_unshare_out;
1575         if ((err = unshare_fs(unshare_flags, &new_fs)))
1576                 goto bad_unshare_cleanup_thread;
1577         if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1578                 goto bad_unshare_cleanup_fs;
1579         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1580                 goto bad_unshare_cleanup_ns;
1581         if ((err = unshare_vm(unshare_flags, &new_mm)))
1582                 goto bad_unshare_cleanup_sigh;
1583         if ((err = unshare_fd(unshare_flags, &new_fd)))
1584                 goto bad_unshare_cleanup_vm;
1585         if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1586                 goto bad_unshare_cleanup_fd;
1587
1588         if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1589
1590                 task_lock(current);
1591
1592                 if (new_fs) {
1593                         fs = current->fs;
1594                         current->fs = new_fs;
1595                         new_fs = fs;
1596                 }
1597
1598                 if (new_ns) {
1599                         ns = current->namespace;
1600                         current->namespace = new_ns;
1601                         new_ns = ns;
1602                 }
1603
1604                 if (new_sigh) {
1605                         sigh = current->sighand;
1606                         rcu_assign_pointer(current->sighand, new_sigh);
1607                         new_sigh = sigh;
1608                 }
1609
1610                 if (new_mm) {
1611                         mm = current->mm;
1612                         active_mm = current->active_mm;
1613                         current->mm = new_mm;
1614                         current->active_mm = new_mm;
1615                         activate_mm(active_mm, new_mm);
1616                         new_mm = mm;
1617                 }
1618
1619                 if (new_fd) {
1620                         fd = current->files;
1621                         current->files = new_fd;
1622                         new_fd = fd;
1623                 }
1624
1625                 task_unlock(current);
1626         }
1627
1628 bad_unshare_cleanup_fd:
1629         if (new_fd)
1630                 put_files_struct(new_fd);
1631
1632 bad_unshare_cleanup_vm:
1633         if (new_mm)
1634                 mmput(new_mm);
1635
1636 bad_unshare_cleanup_sigh:
1637         if (new_sigh)
1638                 if (atomic_dec_and_test(&new_sigh->count))
1639                         kmem_cache_free(sighand_cachep, new_sigh);
1640
1641 bad_unshare_cleanup_ns:
1642         if (new_ns)
1643                 put_namespace(new_ns);
1644
1645 bad_unshare_cleanup_fs:
1646         if (new_fs)
1647                 put_fs_struct(new_fs);
1648
1649 bad_unshare_cleanup_thread:
1650 bad_unshare_out:
1651         return err;
1652 }