Remove bogus BUG() in kernel/exit.c
[pandora-kernel.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/cpuset.h>
29 #include <linux/syscalls.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/pgtable.h>
34 #include <asm/mmu_context.h>
35
36 extern void sem_exit (void);
37 extern struct task_struct *child_reaper;
38
39 int getrusage(struct task_struct *, int, struct rusage __user *);
40
41 static void __unhash_process(struct task_struct *p)
42 {
43         nr_threads--;
44         detach_pid(p, PIDTYPE_PID);
45         detach_pid(p, PIDTYPE_TGID);
46         if (thread_group_leader(p)) {
47                 detach_pid(p, PIDTYPE_PGID);
48                 detach_pid(p, PIDTYPE_SID);
49                 if (p->pid)
50                         __get_cpu_var(process_counts)--;
51         }
52
53         REMOVE_LINKS(p);
54 }
55
56 void release_task(struct task_struct * p)
57 {
58         int zap_leader;
59         task_t *leader;
60         struct dentry *proc_dentry;
61
62 repeat: 
63         atomic_dec(&p->user->processes);
64         spin_lock(&p->proc_lock);
65         proc_dentry = proc_pid_unhash(p);
66         write_lock_irq(&tasklist_lock);
67         if (unlikely(p->ptrace))
68                 __ptrace_unlink(p);
69         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
70         __exit_signal(p);
71         __exit_sighand(p);
72         __unhash_process(p);
73
74         /*
75          * If we are the last non-leader member of the thread
76          * group, and the leader is zombie, then notify the
77          * group leader's parent process. (if it wants notification.)
78          */
79         zap_leader = 0;
80         leader = p->group_leader;
81         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
82                 BUG_ON(leader->exit_signal == -1);
83                 do_notify_parent(leader, leader->exit_signal);
84                 /*
85                  * If we were the last child thread and the leader has
86                  * exited already, and the leader's parent ignores SIGCHLD,
87                  * then we are the one who should release the leader.
88                  *
89                  * do_notify_parent() will have marked it self-reaping in
90                  * that case.
91                  */
92                 zap_leader = (leader->exit_signal == -1);
93         }
94
95         sched_exit(p);
96         write_unlock_irq(&tasklist_lock);
97         spin_unlock(&p->proc_lock);
98         proc_pid_flush(proc_dentry);
99         release_thread(p);
100         put_task_struct(p);
101
102         p = leader;
103         if (unlikely(zap_leader))
104                 goto repeat;
105 }
106
107 /* we are using it only for SMP init */
108
109 void unhash_process(struct task_struct *p)
110 {
111         struct dentry *proc_dentry;
112
113         spin_lock(&p->proc_lock);
114         proc_dentry = proc_pid_unhash(p);
115         write_lock_irq(&tasklist_lock);
116         __unhash_process(p);
117         write_unlock_irq(&tasklist_lock);
118         spin_unlock(&p->proc_lock);
119         proc_pid_flush(proc_dentry);
120 }
121
122 /*
123  * This checks not only the pgrp, but falls back on the pid if no
124  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
125  * without this...
126  */
127 int session_of_pgrp(int pgrp)
128 {
129         struct task_struct *p;
130         int sid = -1;
131
132         read_lock(&tasklist_lock);
133         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
134                 if (p->signal->session > 0) {
135                         sid = p->signal->session;
136                         goto out;
137                 }
138         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
139         p = find_task_by_pid(pgrp);
140         if (p)
141                 sid = p->signal->session;
142 out:
143         read_unlock(&tasklist_lock);
144         
145         return sid;
146 }
147
148 /*
149  * Determine if a process group is "orphaned", according to the POSIX
150  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
151  * by terminal-generated stop signals.  Newly orphaned process groups are
152  * to receive a SIGHUP and a SIGCONT.
153  *
154  * "I ask you, have you ever known what it is to be an orphan?"
155  */
156 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
157 {
158         struct task_struct *p;
159         int ret = 1;
160
161         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
162                 if (p == ignored_task
163                                 || p->exit_state
164                                 || p->real_parent->pid == 1)
165                         continue;
166                 if (process_group(p->real_parent) != pgrp
167                             && p->real_parent->signal->session == p->signal->session) {
168                         ret = 0;
169                         break;
170                 }
171         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
172         return ret;     /* (sighing) "Often!" */
173 }
174
175 int is_orphaned_pgrp(int pgrp)
176 {
177         int retval;
178
179         read_lock(&tasklist_lock);
180         retval = will_become_orphaned_pgrp(pgrp, NULL);
181         read_unlock(&tasklist_lock);
182
183         return retval;
184 }
185
186 static inline int has_stopped_jobs(int pgrp)
187 {
188         int retval = 0;
189         struct task_struct *p;
190
191         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
192                 if (p->state != TASK_STOPPED)
193                         continue;
194
195                 /* If p is stopped by a debugger on a signal that won't
196                    stop it, then don't count p as stopped.  This isn't
197                    perfect but it's a good approximation.  */
198                 if (unlikely (p->ptrace)
199                     && p->exit_code != SIGSTOP
200                     && p->exit_code != SIGTSTP
201                     && p->exit_code != SIGTTOU
202                     && p->exit_code != SIGTTIN)
203                         continue;
204
205                 retval = 1;
206                 break;
207         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
208         return retval;
209 }
210
211 /**
212  * reparent_to_init() - Reparent the calling kernel thread to the init task.
213  *
214  * If a kernel thread is launched as a result of a system call, or if
215  * it ever exits, it should generally reparent itself to init so that
216  * it is correctly cleaned up on exit.
217  *
218  * The various task state such as scheduling policy and priority may have
219  * been inherited from a user process, so we reset them to sane values here.
220  *
221  * NOTE that reparent_to_init() gives the caller full capabilities.
222  */
223 static inline void reparent_to_init(void)
224 {
225         write_lock_irq(&tasklist_lock);
226
227         ptrace_unlink(current);
228         /* Reparent to init */
229         REMOVE_LINKS(current);
230         current->parent = child_reaper;
231         current->real_parent = child_reaper;
232         SET_LINKS(current);
233
234         /* Set the exit signal to SIGCHLD so we signal init on exit */
235         current->exit_signal = SIGCHLD;
236
237         if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0))
238                 set_user_nice(current, 0);
239         /* cpus_allowed? */
240         /* rt_priority? */
241         /* signals? */
242         security_task_reparent_to_init(current);
243         memcpy(current->signal->rlim, init_task.signal->rlim,
244                sizeof(current->signal->rlim));
245         atomic_inc(&(INIT_USER->__count));
246         write_unlock_irq(&tasklist_lock);
247         switch_uid(INIT_USER);
248 }
249
250 void __set_special_pids(pid_t session, pid_t pgrp)
251 {
252         struct task_struct *curr = current;
253
254         if (curr->signal->session != session) {
255                 detach_pid(curr, PIDTYPE_SID);
256                 curr->signal->session = session;
257                 attach_pid(curr, PIDTYPE_SID, session);
258         }
259         if (process_group(curr) != pgrp) {
260                 detach_pid(curr, PIDTYPE_PGID);
261                 curr->signal->pgrp = pgrp;
262                 attach_pid(curr, PIDTYPE_PGID, pgrp);
263         }
264 }
265
266 void set_special_pids(pid_t session, pid_t pgrp)
267 {
268         write_lock_irq(&tasklist_lock);
269         __set_special_pids(session, pgrp);
270         write_unlock_irq(&tasklist_lock);
271 }
272
273 /*
274  * Let kernel threads use this to say that they
275  * allow a certain signal (since daemonize() will
276  * have disabled all of them by default).
277  */
278 int allow_signal(int sig)
279 {
280         if (sig < 1 || sig > _NSIG)
281                 return -EINVAL;
282
283         spin_lock_irq(&current->sighand->siglock);
284         sigdelset(&current->blocked, sig);
285         if (!current->mm) {
286                 /* Kernel threads handle their own signals.
287                    Let the signal code know it'll be handled, so
288                    that they don't get converted to SIGKILL or
289                    just silently dropped */
290                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
291         }
292         recalc_sigpending();
293         spin_unlock_irq(&current->sighand->siglock);
294         return 0;
295 }
296
297 EXPORT_SYMBOL(allow_signal);
298
299 int disallow_signal(int sig)
300 {
301         if (sig < 1 || sig > _NSIG)
302                 return -EINVAL;
303
304         spin_lock_irq(&current->sighand->siglock);
305         sigaddset(&current->blocked, sig);
306         recalc_sigpending();
307         spin_unlock_irq(&current->sighand->siglock);
308         return 0;
309 }
310
311 EXPORT_SYMBOL(disallow_signal);
312
313 /*
314  *      Put all the gunge required to become a kernel thread without
315  *      attached user resources in one place where it belongs.
316  */
317
318 void daemonize(const char *name, ...)
319 {
320         va_list args;
321         struct fs_struct *fs;
322         sigset_t blocked;
323
324         va_start(args, name);
325         vsnprintf(current->comm, sizeof(current->comm), name, args);
326         va_end(args);
327
328         /*
329          * If we were started as result of loading a module, close all of the
330          * user space pages.  We don't need them, and if we didn't close them
331          * they would be locked into memory.
332          */
333         exit_mm(current);
334
335         set_special_pids(1, 1);
336         down(&tty_sem);
337         current->signal->tty = NULL;
338         up(&tty_sem);
339
340         /* Block and flush all signals */
341         sigfillset(&blocked);
342         sigprocmask(SIG_BLOCK, &blocked, NULL);
343         flush_signals(current);
344
345         /* Become as one with the init task */
346
347         exit_fs(current);       /* current->fs->count--; */
348         fs = init_task.fs;
349         current->fs = fs;
350         atomic_inc(&fs->count);
351         exit_files(current);
352         current->files = init_task.files;
353         atomic_inc(&current->files->count);
354
355         reparent_to_init();
356 }
357
358 EXPORT_SYMBOL(daemonize);
359
360 static inline void close_files(struct files_struct * files)
361 {
362         int i, j;
363
364         j = 0;
365         for (;;) {
366                 unsigned long set;
367                 i = j * __NFDBITS;
368                 if (i >= files->max_fdset || i >= files->max_fds)
369                         break;
370                 set = files->open_fds->fds_bits[j++];
371                 while (set) {
372                         if (set & 1) {
373                                 struct file * file = xchg(&files->fd[i], NULL);
374                                 if (file)
375                                         filp_close(file, files);
376                         }
377                         i++;
378                         set >>= 1;
379                 }
380         }
381 }
382
383 struct files_struct *get_files_struct(struct task_struct *task)
384 {
385         struct files_struct *files;
386
387         task_lock(task);
388         files = task->files;
389         if (files)
390                 atomic_inc(&files->count);
391         task_unlock(task);
392
393         return files;
394 }
395
396 void fastcall put_files_struct(struct files_struct *files)
397 {
398         if (atomic_dec_and_test(&files->count)) {
399                 close_files(files);
400                 /*
401                  * Free the fd and fdset arrays if we expanded them.
402                  */
403                 if (files->fd != &files->fd_array[0])
404                         free_fd_array(files->fd, files->max_fds);
405                 if (files->max_fdset > __FD_SETSIZE) {
406                         free_fdset(files->open_fds, files->max_fdset);
407                         free_fdset(files->close_on_exec, files->max_fdset);
408                 }
409                 kmem_cache_free(files_cachep, files);
410         }
411 }
412
413 EXPORT_SYMBOL(put_files_struct);
414
415 static inline void __exit_files(struct task_struct *tsk)
416 {
417         struct files_struct * files = tsk->files;
418
419         if (files) {
420                 task_lock(tsk);
421                 tsk->files = NULL;
422                 task_unlock(tsk);
423                 put_files_struct(files);
424         }
425 }
426
427 void exit_files(struct task_struct *tsk)
428 {
429         __exit_files(tsk);
430 }
431
432 static inline void __put_fs_struct(struct fs_struct *fs)
433 {
434         /* No need to hold fs->lock if we are killing it */
435         if (atomic_dec_and_test(&fs->count)) {
436                 dput(fs->root);
437                 mntput(fs->rootmnt);
438                 dput(fs->pwd);
439                 mntput(fs->pwdmnt);
440                 if (fs->altroot) {
441                         dput(fs->altroot);
442                         mntput(fs->altrootmnt);
443                 }
444                 kmem_cache_free(fs_cachep, fs);
445         }
446 }
447
448 void put_fs_struct(struct fs_struct *fs)
449 {
450         __put_fs_struct(fs);
451 }
452
453 static inline void __exit_fs(struct task_struct *tsk)
454 {
455         struct fs_struct * fs = tsk->fs;
456
457         if (fs) {
458                 task_lock(tsk);
459                 tsk->fs = NULL;
460                 task_unlock(tsk);
461                 __put_fs_struct(fs);
462         }
463 }
464
465 void exit_fs(struct task_struct *tsk)
466 {
467         __exit_fs(tsk);
468 }
469
470 EXPORT_SYMBOL_GPL(exit_fs);
471
472 /*
473  * Turn us into a lazy TLB process if we
474  * aren't already..
475  */
476 void exit_mm(struct task_struct * tsk)
477 {
478         struct mm_struct *mm = tsk->mm;
479
480         mm_release(tsk, mm);
481         if (!mm)
482                 return;
483         /*
484          * Serialize with any possible pending coredump.
485          * We must hold mmap_sem around checking core_waiters
486          * and clearing tsk->mm.  The core-inducing thread
487          * will increment core_waiters for each thread in the
488          * group with ->mm != NULL.
489          */
490         down_read(&mm->mmap_sem);
491         if (mm->core_waiters) {
492                 up_read(&mm->mmap_sem);
493                 down_write(&mm->mmap_sem);
494                 if (!--mm->core_waiters)
495                         complete(mm->core_startup_done);
496                 up_write(&mm->mmap_sem);
497
498                 wait_for_completion(&mm->core_done);
499                 down_read(&mm->mmap_sem);
500         }
501         atomic_inc(&mm->mm_count);
502         if (mm != tsk->active_mm) BUG();
503         /* more a memory barrier than a real lock */
504         task_lock(tsk);
505         tsk->mm = NULL;
506         up_read(&mm->mmap_sem);
507         enter_lazy_tlb(mm, current);
508         task_unlock(tsk);
509         mmput(mm);
510 }
511
512 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
513 {
514         /*
515          * Make sure we're not reparenting to ourselves and that
516          * the parent is not a zombie.
517          */
518         BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
519         p->real_parent = reaper;
520 }
521
522 static inline void reparent_thread(task_t *p, task_t *father, int traced)
523 {
524         /* We don't want people slaying init.  */
525         if (p->exit_signal != -1)
526                 p->exit_signal = SIGCHLD;
527
528         if (p->pdeath_signal)
529                 /* We already hold the tasklist_lock here.  */
530                 group_send_sig_info(p->pdeath_signal, (void *) 0, p);
531
532         /* Move the child from its dying parent to the new one.  */
533         if (unlikely(traced)) {
534                 /* Preserve ptrace links if someone else is tracing this child.  */
535                 list_del_init(&p->ptrace_list);
536                 if (p->parent != p->real_parent)
537                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
538         } else {
539                 /* If this child is being traced, then we're the one tracing it
540                  * anyway, so let go of it.
541                  */
542                 p->ptrace = 0;
543                 list_del_init(&p->sibling);
544                 p->parent = p->real_parent;
545                 list_add_tail(&p->sibling, &p->parent->children);
546
547                 /* If we'd notified the old parent about this child's death,
548                  * also notify the new parent.
549                  */
550                 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
551                     thread_group_empty(p))
552                         do_notify_parent(p, p->exit_signal);
553                 else if (p->state == TASK_TRACED) {
554                         /*
555                          * If it was at a trace stop, turn it into
556                          * a normal stop since it's no longer being
557                          * traced.
558                          */
559                         ptrace_untrace(p);
560                 }
561         }
562
563         /*
564          * process group orphan check
565          * Case ii: Our child is in a different pgrp
566          * than we are, and it was the only connection
567          * outside, so the child pgrp is now orphaned.
568          */
569         if ((process_group(p) != process_group(father)) &&
570             (p->signal->session == father->signal->session)) {
571                 int pgrp = process_group(p);
572
573                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
574                         __kill_pg_info(SIGHUP, (void *)1, pgrp);
575                         __kill_pg_info(SIGCONT, (void *)1, pgrp);
576                 }
577         }
578 }
579
580 /*
581  * When we die, we re-parent all our children.
582  * Try to give them to another thread in our thread
583  * group, and if no such member exists, give it to
584  * the global child reaper process (ie "init")
585  */
586 static inline void forget_original_parent(struct task_struct * father,
587                                           struct list_head *to_release)
588 {
589         struct task_struct *p, *reaper = father;
590         struct list_head *_p, *_n;
591
592         do {
593                 reaper = next_thread(reaper);
594                 if (reaper == father) {
595                         reaper = child_reaper;
596                         break;
597                 }
598         } while (reaper->exit_state);
599
600         /*
601          * There are only two places where our children can be:
602          *
603          * - in our child list
604          * - in our ptraced child list
605          *
606          * Search them and reparent children.
607          */
608         list_for_each_safe(_p, _n, &father->children) {
609                 int ptrace;
610                 p = list_entry(_p,struct task_struct,sibling);
611
612                 ptrace = p->ptrace;
613
614                 /* if father isn't the real parent, then ptrace must be enabled */
615                 BUG_ON(father != p->real_parent && !ptrace);
616
617                 if (father == p->real_parent) {
618                         /* reparent with a reaper, real father it's us */
619                         choose_new_parent(p, reaper, child_reaper);
620                         reparent_thread(p, father, 0);
621                 } else {
622                         /* reparent ptraced task to its real parent */
623                         __ptrace_unlink (p);
624                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
625                             thread_group_empty(p))
626                                 do_notify_parent(p, p->exit_signal);
627                 }
628
629                 /*
630                  * if the ptraced child is a zombie with exit_signal == -1
631                  * we must collect it before we exit, or it will remain
632                  * zombie forever since we prevented it from self-reap itself
633                  * while it was being traced by us, to be able to see it in wait4.
634                  */
635                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
636                         list_add(&p->ptrace_list, to_release);
637         }
638         list_for_each_safe(_p, _n, &father->ptrace_children) {
639                 p = list_entry(_p,struct task_struct,ptrace_list);
640                 choose_new_parent(p, reaper, child_reaper);
641                 reparent_thread(p, father, 1);
642         }
643 }
644
645 /*
646  * Send signals to all our closest relatives so that they know
647  * to properly mourn us..
648  */
649 static void exit_notify(struct task_struct *tsk)
650 {
651         int state;
652         struct task_struct *t;
653         struct list_head ptrace_dead, *_p, *_n;
654
655         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
656             && !thread_group_empty(tsk)) {
657                 /*
658                  * This occurs when there was a race between our exit
659                  * syscall and a group signal choosing us as the one to
660                  * wake up.  It could be that we are the only thread
661                  * alerted to check for pending signals, but another thread
662                  * should be woken now to take the signal since we will not.
663                  * Now we'll wake all the threads in the group just to make
664                  * sure someone gets all the pending signals.
665                  */
666                 read_lock(&tasklist_lock);
667                 spin_lock_irq(&tsk->sighand->siglock);
668                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
669                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
670                                 recalc_sigpending_tsk(t);
671                                 if (signal_pending(t))
672                                         signal_wake_up(t, 0);
673                         }
674                 spin_unlock_irq(&tsk->sighand->siglock);
675                 read_unlock(&tasklist_lock);
676         }
677
678         write_lock_irq(&tasklist_lock);
679
680         /*
681          * This does two things:
682          *
683          * A.  Make init inherit all the child processes
684          * B.  Check to see if any process groups have become orphaned
685          *      as a result of our exiting, and if they have any stopped
686          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687          */
688
689         INIT_LIST_HEAD(&ptrace_dead);
690         forget_original_parent(tsk, &ptrace_dead);
691         BUG_ON(!list_empty(&tsk->children));
692         BUG_ON(!list_empty(&tsk->ptrace_children));
693
694         /*
695          * Check to see if any process groups have become orphaned
696          * as a result of our exiting, and if they have any stopped
697          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
698          *
699          * Case i: Our father is in a different pgrp than we are
700          * and we were the only connection outside, so our pgrp
701          * is about to become orphaned.
702          */
703          
704         t = tsk->real_parent;
705         
706         if ((process_group(t) != process_group(tsk)) &&
707             (t->signal->session == tsk->signal->session) &&
708             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
709             has_stopped_jobs(process_group(tsk))) {
710                 __kill_pg_info(SIGHUP, (void *)1, process_group(tsk));
711                 __kill_pg_info(SIGCONT, (void *)1, process_group(tsk));
712         }
713
714         /* Let father know we died 
715          *
716          * Thread signals are configurable, but you aren't going to use
717          * that to send signals to arbitary processes. 
718          * That stops right now.
719          *
720          * If the parent exec id doesn't match the exec id we saved
721          * when we started then we know the parent has changed security
722          * domain.
723          *
724          * If our self_exec id doesn't match our parent_exec_id then
725          * we have changed execution domain as these two values started
726          * the same after a fork.
727          *      
728          */
729         
730         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
731             ( tsk->parent_exec_id != t->self_exec_id  ||
732               tsk->self_exec_id != tsk->parent_exec_id)
733             && !capable(CAP_KILL))
734                 tsk->exit_signal = SIGCHLD;
735
736
737         /* If something other than our normal parent is ptracing us, then
738          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
739          * only has special meaning to our real parent.
740          */
741         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
742                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
743                 do_notify_parent(tsk, signal);
744         } else if (tsk->ptrace) {
745                 do_notify_parent(tsk, SIGCHLD);
746         }
747
748         state = EXIT_ZOMBIE;
749         if (tsk->exit_signal == -1 &&
750             (likely(tsk->ptrace == 0) ||
751              unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
752                 state = EXIT_DEAD;
753         tsk->exit_state = state;
754
755         write_unlock_irq(&tasklist_lock);
756
757         list_for_each_safe(_p, _n, &ptrace_dead) {
758                 list_del_init(_p);
759                 t = list_entry(_p,struct task_struct,ptrace_list);
760                 release_task(t);
761         }
762
763         /* If the process is dead, release it - nobody will wait for it */
764         if (state == EXIT_DEAD)
765                 release_task(tsk);
766
767         /* PF_DEAD causes final put_task_struct after we schedule. */
768         preempt_disable();
769         tsk->flags |= PF_DEAD;
770 }
771
772 fastcall NORET_TYPE void do_exit(long code)
773 {
774         struct task_struct *tsk = current;
775         int group_dead;
776
777         profile_task_exit(tsk);
778
779         if (unlikely(in_interrupt()))
780                 panic("Aiee, killing interrupt handler!");
781         if (unlikely(!tsk->pid))
782                 panic("Attempted to kill the idle task!");
783         if (unlikely(tsk->pid == 1))
784                 panic("Attempted to kill init!");
785         if (tsk->io_context)
786                 exit_io_context();
787
788         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
789                 current->ptrace_message = code;
790                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
791         }
792
793         tsk->flags |= PF_EXITING;
794
795         /*
796          * Make sure we don't try to process any timer firings
797          * while we are already exiting.
798          */
799         tsk->it_virt_expires = cputime_zero;
800         tsk->it_prof_expires = cputime_zero;
801         tsk->it_sched_expires = 0;
802
803         if (unlikely(in_atomic()))
804                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
805                                 current->comm, current->pid,
806                                 preempt_count());
807
808         acct_update_integrals(tsk);
809         update_mem_hiwater(tsk);
810         group_dead = atomic_dec_and_test(&tsk->signal->live);
811         if (group_dead) {
812                 del_timer_sync(&tsk->signal->real_timer);
813                 acct_process(code);
814         }
815         exit_mm(tsk);
816
817         exit_sem(tsk);
818         __exit_files(tsk);
819         __exit_fs(tsk);
820         exit_namespace(tsk);
821         exit_thread();
822         cpuset_exit(tsk);
823         exit_keys(tsk);
824
825         if (group_dead && tsk->signal->leader)
826                 disassociate_ctty(1);
827
828         module_put(tsk->thread_info->exec_domain->module);
829         if (tsk->binfmt)
830                 module_put(tsk->binfmt->module);
831
832         tsk->exit_code = code;
833         exit_notify(tsk);
834 #ifdef CONFIG_NUMA
835         mpol_free(tsk->mempolicy);
836         tsk->mempolicy = NULL;
837 #endif
838
839         BUG_ON(!(current->flags & PF_DEAD));
840         schedule();
841         BUG();
842         /* Avoid "noreturn function does return".  */
843         for (;;) ;
844 }
845
846 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
847 {
848         if (comp)
849                 complete(comp);
850         
851         do_exit(code);
852 }
853
854 EXPORT_SYMBOL(complete_and_exit);
855
856 asmlinkage long sys_exit(int error_code)
857 {
858         do_exit((error_code&0xff)<<8);
859 }
860
861 task_t fastcall *next_thread(const task_t *p)
862 {
863         return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
864 }
865
866 EXPORT_SYMBOL(next_thread);
867
868 /*
869  * Take down every thread in the group.  This is called by fatal signals
870  * as well as by sys_exit_group (below).
871  */
872 NORET_TYPE void
873 do_group_exit(int exit_code)
874 {
875         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
876
877         if (current->signal->flags & SIGNAL_GROUP_EXIT)
878                 exit_code = current->signal->group_exit_code;
879         else if (!thread_group_empty(current)) {
880                 struct signal_struct *const sig = current->signal;
881                 struct sighand_struct *const sighand = current->sighand;
882                 read_lock(&tasklist_lock);
883                 spin_lock_irq(&sighand->siglock);
884                 if (sig->flags & SIGNAL_GROUP_EXIT)
885                         /* Another thread got here before we took the lock.  */
886                         exit_code = sig->group_exit_code;
887                 else {
888                         sig->flags = SIGNAL_GROUP_EXIT;
889                         sig->group_exit_code = exit_code;
890                         zap_other_threads(current);
891                 }
892                 spin_unlock_irq(&sighand->siglock);
893                 read_unlock(&tasklist_lock);
894         }
895
896         do_exit(exit_code);
897         /* NOTREACHED */
898 }
899
900 /*
901  * this kills every thread in the thread group. Note that any externally
902  * wait4()-ing process will get the correct exit code - even if this
903  * thread is not the thread group leader.
904  */
905 asmlinkage void sys_exit_group(int error_code)
906 {
907         do_group_exit((error_code & 0xff) << 8);
908 }
909
910 static int eligible_child(pid_t pid, int options, task_t *p)
911 {
912         if (pid > 0) {
913                 if (p->pid != pid)
914                         return 0;
915         } else if (!pid) {
916                 if (process_group(p) != process_group(current))
917                         return 0;
918         } else if (pid != -1) {
919                 if (process_group(p) != -pid)
920                         return 0;
921         }
922
923         /*
924          * Do not consider detached threads that are
925          * not ptraced:
926          */
927         if (p->exit_signal == -1 && !p->ptrace)
928                 return 0;
929
930         /* Wait for all children (clone and not) if __WALL is set;
931          * otherwise, wait for clone children *only* if __WCLONE is
932          * set; otherwise, wait for non-clone children *only*.  (Note:
933          * A "clone" child here is one that reports to its parent
934          * using a signal other than SIGCHLD.) */
935         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
936             && !(options & __WALL))
937                 return 0;
938         /*
939          * Do not consider thread group leaders that are
940          * in a non-empty thread group:
941          */
942         if (current->tgid != p->tgid && delay_group_leader(p))
943                 return 2;
944
945         if (security_task_wait(p))
946                 return 0;
947
948         return 1;
949 }
950
951 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
952                                int why, int status,
953                                struct siginfo __user *infop,
954                                struct rusage __user *rusagep)
955 {
956         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
957         put_task_struct(p);
958         if (!retval)
959                 retval = put_user(SIGCHLD, &infop->si_signo);
960         if (!retval)
961                 retval = put_user(0, &infop->si_errno);
962         if (!retval)
963                 retval = put_user((short)why, &infop->si_code);
964         if (!retval)
965                 retval = put_user(pid, &infop->si_pid);
966         if (!retval)
967                 retval = put_user(uid, &infop->si_uid);
968         if (!retval)
969                 retval = put_user(status, &infop->si_status);
970         if (!retval)
971                 retval = pid;
972         return retval;
973 }
974
975 /*
976  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
977  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
978  * the lock and this task is uninteresting.  If we return nonzero, we have
979  * released the lock and the system call should return.
980  */
981 static int wait_task_zombie(task_t *p, int noreap,
982                             struct siginfo __user *infop,
983                             int __user *stat_addr, struct rusage __user *ru)
984 {
985         unsigned long state;
986         int retval;
987         int status;
988
989         if (unlikely(noreap)) {
990                 pid_t pid = p->pid;
991                 uid_t uid = p->uid;
992                 int exit_code = p->exit_code;
993                 int why, status;
994
995                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
996                         return 0;
997                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
998                         return 0;
999                 get_task_struct(p);
1000                 read_unlock(&tasklist_lock);
1001                 if ((exit_code & 0x7f) == 0) {
1002                         why = CLD_EXITED;
1003                         status = exit_code >> 8;
1004                 } else {
1005                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1006                         status = exit_code & 0x7f;
1007                 }
1008                 return wait_noreap_copyout(p, pid, uid, why,
1009                                            status, infop, ru);
1010         }
1011
1012         /*
1013          * Try to move the task's state to DEAD
1014          * only one thread is allowed to do this:
1015          */
1016         state = xchg(&p->exit_state, EXIT_DEAD);
1017         if (state != EXIT_ZOMBIE) {
1018                 BUG_ON(state != EXIT_DEAD);
1019                 return 0;
1020         }
1021         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1022                 /*
1023                  * This can only happen in a race with a ptraced thread
1024                  * dying on another processor.
1025                  */
1026                 return 0;
1027         }
1028
1029         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1030                 /*
1031                  * The resource counters for the group leader are in its
1032                  * own task_struct.  Those for dead threads in the group
1033                  * are in its signal_struct, as are those for the child
1034                  * processes it has previously reaped.  All these
1035                  * accumulate in the parent's signal_struct c* fields.
1036                  *
1037                  * We don't bother to take a lock here to protect these
1038                  * p->signal fields, because they are only touched by
1039                  * __exit_signal, which runs with tasklist_lock
1040                  * write-locked anyway, and so is excluded here.  We do
1041                  * need to protect the access to p->parent->signal fields,
1042                  * as other threads in the parent group can be right
1043                  * here reaping other children at the same time.
1044                  */
1045                 spin_lock_irq(&p->parent->sighand->siglock);
1046                 p->parent->signal->cutime =
1047                         cputime_add(p->parent->signal->cutime,
1048                         cputime_add(p->utime,
1049                         cputime_add(p->signal->utime,
1050                                     p->signal->cutime)));
1051                 p->parent->signal->cstime =
1052                         cputime_add(p->parent->signal->cstime,
1053                         cputime_add(p->stime,
1054                         cputime_add(p->signal->stime,
1055                                     p->signal->cstime)));
1056                 p->parent->signal->cmin_flt +=
1057                         p->min_flt + p->signal->min_flt + p->signal->cmin_flt;
1058                 p->parent->signal->cmaj_flt +=
1059                         p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt;
1060                 p->parent->signal->cnvcsw +=
1061                         p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw;
1062                 p->parent->signal->cnivcsw +=
1063                         p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw;
1064                 spin_unlock_irq(&p->parent->sighand->siglock);
1065         }
1066
1067         /*
1068          * Now we are sure this task is interesting, and no other
1069          * thread can reap it because we set its state to EXIT_DEAD.
1070          */
1071         read_unlock(&tasklist_lock);
1072
1073         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1074         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1075                 ? p->signal->group_exit_code : p->exit_code;
1076         if (!retval && stat_addr)
1077                 retval = put_user(status, stat_addr);
1078         if (!retval && infop)
1079                 retval = put_user(SIGCHLD, &infop->si_signo);
1080         if (!retval && infop)
1081                 retval = put_user(0, &infop->si_errno);
1082         if (!retval && infop) {
1083                 int why;
1084
1085                 if ((status & 0x7f) == 0) {
1086                         why = CLD_EXITED;
1087                         status >>= 8;
1088                 } else {
1089                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1090                         status &= 0x7f;
1091                 }
1092                 retval = put_user((short)why, &infop->si_code);
1093                 if (!retval)
1094                         retval = put_user(status, &infop->si_status);
1095         }
1096         if (!retval && infop)
1097                 retval = put_user(p->pid, &infop->si_pid);
1098         if (!retval && infop)
1099                 retval = put_user(p->uid, &infop->si_uid);
1100         if (retval) {
1101                 // TODO: is this safe?
1102                 p->exit_state = EXIT_ZOMBIE;
1103                 return retval;
1104         }
1105         retval = p->pid;
1106         if (p->real_parent != p->parent) {
1107                 write_lock_irq(&tasklist_lock);
1108                 /* Double-check with lock held.  */
1109                 if (p->real_parent != p->parent) {
1110                         __ptrace_unlink(p);
1111                         // TODO: is this safe?
1112                         p->exit_state = EXIT_ZOMBIE;
1113                         /*
1114                          * If this is not a detached task, notify the parent.
1115                          * If it's still not detached after that, don't release
1116                          * it now.
1117                          */
1118                         if (p->exit_signal != -1) {
1119                                 do_notify_parent(p, p->exit_signal);
1120                                 if (p->exit_signal != -1)
1121                                         p = NULL;
1122                         }
1123                 }
1124                 write_unlock_irq(&tasklist_lock);
1125         }
1126         if (p != NULL)
1127                 release_task(p);
1128         BUG_ON(!retval);
1129         return retval;
1130 }
1131
1132 /*
1133  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1134  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1135  * the lock and this task is uninteresting.  If we return nonzero, we have
1136  * released the lock and the system call should return.
1137  */
1138 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1139                              struct siginfo __user *infop,
1140                              int __user *stat_addr, struct rusage __user *ru)
1141 {
1142         int retval, exit_code;
1143
1144         if (!p->exit_code)
1145                 return 0;
1146         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1147             p->signal && p->signal->group_stop_count > 0)
1148                 /*
1149                  * A group stop is in progress and this is the group leader.
1150                  * We won't report until all threads have stopped.
1151                  */
1152                 return 0;
1153
1154         /*
1155          * Now we are pretty sure this task is interesting.
1156          * Make sure it doesn't get reaped out from under us while we
1157          * give up the lock and then examine it below.  We don't want to
1158          * keep holding onto the tasklist_lock while we call getrusage and
1159          * possibly take page faults for user memory.
1160          */
1161         get_task_struct(p);
1162         read_unlock(&tasklist_lock);
1163
1164         if (unlikely(noreap)) {
1165                 pid_t pid = p->pid;
1166                 uid_t uid = p->uid;
1167                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1168
1169                 exit_code = p->exit_code;
1170                 if (unlikely(!exit_code) ||
1171                     unlikely(p->state > TASK_STOPPED))
1172                         goto bail_ref;
1173                 return wait_noreap_copyout(p, pid, uid,
1174                                            why, (exit_code << 8) | 0x7f,
1175                                            infop, ru);
1176         }
1177
1178         write_lock_irq(&tasklist_lock);
1179
1180         /*
1181          * This uses xchg to be atomic with the thread resuming and setting
1182          * it.  It must also be done with the write lock held to prevent a
1183          * race with the EXIT_ZOMBIE case.
1184          */
1185         exit_code = xchg(&p->exit_code, 0);
1186         if (unlikely(p->exit_state)) {
1187                 /*
1188                  * The task resumed and then died.  Let the next iteration
1189                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1190                  * already be zero here if it resumed and did _exit(0).
1191                  * The task itself is dead and won't touch exit_code again;
1192                  * other processors in this function are locked out.
1193                  */
1194                 p->exit_code = exit_code;
1195                 exit_code = 0;
1196         }
1197         if (unlikely(exit_code == 0)) {
1198                 /*
1199                  * Another thread in this function got to it first, or it
1200                  * resumed, or it resumed and then died.
1201                  */
1202                 write_unlock_irq(&tasklist_lock);
1203 bail_ref:
1204                 put_task_struct(p);
1205                 /*
1206                  * We are returning to the wait loop without having successfully
1207                  * removed the process and having released the lock. We cannot
1208                  * continue, since the "p" task pointer is potentially stale.
1209                  *
1210                  * Return -EAGAIN, and do_wait() will restart the loop from the
1211                  * beginning. Do _not_ re-acquire the lock.
1212                  */
1213                 return -EAGAIN;
1214         }
1215
1216         /* move to end of parent's list to avoid starvation */
1217         remove_parent(p);
1218         add_parent(p, p->parent);
1219
1220         write_unlock_irq(&tasklist_lock);
1221
1222         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1223         if (!retval && stat_addr)
1224                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1225         if (!retval && infop)
1226                 retval = put_user(SIGCHLD, &infop->si_signo);
1227         if (!retval && infop)
1228                 retval = put_user(0, &infop->si_errno);
1229         if (!retval && infop)
1230                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1231                                           ? CLD_TRAPPED : CLD_STOPPED),
1232                                   &infop->si_code);
1233         if (!retval && infop)
1234                 retval = put_user(exit_code, &infop->si_status);
1235         if (!retval && infop)
1236                 retval = put_user(p->pid, &infop->si_pid);
1237         if (!retval && infop)
1238                 retval = put_user(p->uid, &infop->si_uid);
1239         if (!retval)
1240                 retval = p->pid;
1241         put_task_struct(p);
1242
1243         BUG_ON(!retval);
1244         return retval;
1245 }
1246
1247 /*
1248  * Handle do_wait work for one task in a live, non-stopped state.
1249  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1250  * the lock and this task is uninteresting.  If we return nonzero, we have
1251  * released the lock and the system call should return.
1252  */
1253 static int wait_task_continued(task_t *p, int noreap,
1254                                struct siginfo __user *infop,
1255                                int __user *stat_addr, struct rusage __user *ru)
1256 {
1257         int retval;
1258         pid_t pid;
1259         uid_t uid;
1260
1261         if (unlikely(!p->signal))
1262                 return 0;
1263
1264         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1265                 return 0;
1266
1267         spin_lock_irq(&p->sighand->siglock);
1268         /* Re-check with the lock held.  */
1269         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1270                 spin_unlock_irq(&p->sighand->siglock);
1271                 return 0;
1272         }
1273         if (!noreap)
1274                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1275         spin_unlock_irq(&p->sighand->siglock);
1276
1277         pid = p->pid;
1278         uid = p->uid;
1279         get_task_struct(p);
1280         read_unlock(&tasklist_lock);
1281
1282         if (!infop) {
1283                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1284                 put_task_struct(p);
1285                 if (!retval && stat_addr)
1286                         retval = put_user(0xffff, stat_addr);
1287                 if (!retval)
1288                         retval = p->pid;
1289         } else {
1290                 retval = wait_noreap_copyout(p, pid, uid,
1291                                              CLD_CONTINUED, SIGCONT,
1292                                              infop, ru);
1293                 BUG_ON(retval == 0);
1294         }
1295
1296         return retval;
1297 }
1298
1299
1300 static inline int my_ptrace_child(struct task_struct *p)
1301 {
1302         if (!(p->ptrace & PT_PTRACED))
1303                 return 0;
1304         if (!(p->ptrace & PT_ATTACHED))
1305                 return 1;
1306         /*
1307          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1308          * we are the attacher.  If we are the real parent, this is a race
1309          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1310          * which we have to switch the parent links, but has already set
1311          * the flags in p->ptrace.
1312          */
1313         return (p->parent != p->real_parent);
1314 }
1315
1316 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1317                     int __user *stat_addr, struct rusage __user *ru)
1318 {
1319         DECLARE_WAITQUEUE(wait, current);
1320         struct task_struct *tsk;
1321         int flag, retval;
1322
1323         add_wait_queue(&current->signal->wait_chldexit,&wait);
1324 repeat:
1325         /*
1326          * We will set this flag if we see any child that might later
1327          * match our criteria, even if we are not able to reap it yet.
1328          */
1329         flag = 0;
1330         current->state = TASK_INTERRUPTIBLE;
1331         read_lock(&tasklist_lock);
1332         tsk = current;
1333         do {
1334                 struct task_struct *p;
1335                 struct list_head *_p;
1336                 int ret;
1337
1338                 list_for_each(_p,&tsk->children) {
1339                         p = list_entry(_p,struct task_struct,sibling);
1340
1341                         ret = eligible_child(pid, options, p);
1342                         if (!ret)
1343                                 continue;
1344
1345                         switch (p->state) {
1346                         case TASK_TRACED:
1347                                 if (!my_ptrace_child(p))
1348                                         continue;
1349                                 /*FALLTHROUGH*/
1350                         case TASK_STOPPED:
1351                                 /*
1352                                  * It's stopped now, so it might later
1353                                  * continue, exit, or stop again.
1354                                  */
1355                                 flag = 1;
1356                                 if (!(options & WUNTRACED) &&
1357                                     !my_ptrace_child(p))
1358                                         continue;
1359                                 retval = wait_task_stopped(p, ret == 2,
1360                                                            (options & WNOWAIT),
1361                                                            infop,
1362                                                            stat_addr, ru);
1363                                 if (retval == -EAGAIN)
1364                                         goto repeat;
1365                                 if (retval != 0) /* He released the lock.  */
1366                                         goto end;
1367                                 break;
1368                         default:
1369                         // case EXIT_DEAD:
1370                                 if (p->exit_state == EXIT_DEAD)
1371                                         continue;
1372                         // case EXIT_ZOMBIE:
1373                                 if (p->exit_state == EXIT_ZOMBIE) {
1374                                         /*
1375                                          * Eligible but we cannot release
1376                                          * it yet:
1377                                          */
1378                                         if (ret == 2)
1379                                                 goto check_continued;
1380                                         if (!likely(options & WEXITED))
1381                                                 continue;
1382                                         retval = wait_task_zombie(
1383                                                 p, (options & WNOWAIT),
1384                                                 infop, stat_addr, ru);
1385                                         /* He released the lock.  */
1386                                         if (retval != 0)
1387                                                 goto end;
1388                                         break;
1389                                 }
1390 check_continued:
1391                                 /*
1392                                  * It's running now, so it might later
1393                                  * exit, stop, or stop and then continue.
1394                                  */
1395                                 flag = 1;
1396                                 if (!unlikely(options & WCONTINUED))
1397                                         continue;
1398                                 retval = wait_task_continued(
1399                                         p, (options & WNOWAIT),
1400                                         infop, stat_addr, ru);
1401                                 if (retval != 0) /* He released the lock.  */
1402                                         goto end;
1403                                 break;
1404                         }
1405                 }
1406                 if (!flag) {
1407                         list_for_each(_p, &tsk->ptrace_children) {
1408                                 p = list_entry(_p, struct task_struct,
1409                                                 ptrace_list);
1410                                 if (!eligible_child(pid, options, p))
1411                                         continue;
1412                                 flag = 1;
1413                                 break;
1414                         }
1415                 }
1416                 if (options & __WNOTHREAD)
1417                         break;
1418                 tsk = next_thread(tsk);
1419                 if (tsk->signal != current->signal)
1420                         BUG();
1421         } while (tsk != current);
1422
1423         read_unlock(&tasklist_lock);
1424         if (flag) {
1425                 retval = 0;
1426                 if (options & WNOHANG)
1427                         goto end;
1428                 retval = -ERESTARTSYS;
1429                 if (signal_pending(current))
1430                         goto end;
1431                 schedule();
1432                 goto repeat;
1433         }
1434         retval = -ECHILD;
1435 end:
1436         current->state = TASK_RUNNING;
1437         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1438         if (infop) {
1439                 if (retval > 0)
1440                 retval = 0;
1441                 else {
1442                         /*
1443                          * For a WNOHANG return, clear out all the fields
1444                          * we would set so the user can easily tell the
1445                          * difference.
1446                          */
1447                         if (!retval)
1448                                 retval = put_user(0, &infop->si_signo);
1449                         if (!retval)
1450                                 retval = put_user(0, &infop->si_errno);
1451                         if (!retval)
1452                                 retval = put_user(0, &infop->si_code);
1453                         if (!retval)
1454                                 retval = put_user(0, &infop->si_pid);
1455                         if (!retval)
1456                                 retval = put_user(0, &infop->si_uid);
1457                         if (!retval)
1458                                 retval = put_user(0, &infop->si_status);
1459                 }
1460         }
1461         return retval;
1462 }
1463
1464 asmlinkage long sys_waitid(int which, pid_t pid,
1465                            struct siginfo __user *infop, int options,
1466                            struct rusage __user *ru)
1467 {
1468         long ret;
1469
1470         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1471                 return -EINVAL;
1472         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1473                 return -EINVAL;
1474
1475         switch (which) {
1476         case P_ALL:
1477                 pid = -1;
1478                 break;
1479         case P_PID:
1480                 if (pid <= 0)
1481                         return -EINVAL;
1482                 break;
1483         case P_PGID:
1484                 if (pid <= 0)
1485                         return -EINVAL;
1486                 pid = -pid;
1487                 break;
1488         default:
1489                 return -EINVAL;
1490         }
1491
1492         ret = do_wait(pid, options, infop, NULL, ru);
1493
1494         /* avoid REGPARM breakage on x86: */
1495         prevent_tail_call(ret);
1496         return ret;
1497 }
1498
1499 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1500                           int options, struct rusage __user *ru)
1501 {
1502         long ret;
1503
1504         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1505                         __WNOTHREAD|__WCLONE|__WALL))
1506                 return -EINVAL;
1507         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1508
1509         /* avoid REGPARM breakage on x86: */
1510         prevent_tail_call(ret);
1511         return ret;
1512 }
1513
1514 #ifdef __ARCH_WANT_SYS_WAITPID
1515
1516 /*
1517  * sys_waitpid() remains for compatibility. waitpid() should be
1518  * implemented by calling sys_wait4() from libc.a.
1519  */
1520 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1521 {
1522         return sys_wait4(pid, stat_addr, options, NULL);
1523 }
1524
1525 #endif