Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide-2.6
[pandora-kernel.git] / include / linux / usb / gadget.h
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  */
14
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17
18 #include <linux/slab.h>
19
20 struct usb_ep;
21
22 /**
23  * struct usb_request - describes one i/o request
24  * @buf: Buffer used for data.  Always provide this; some controllers
25  *      only use PIO, or don't use DMA for some endpoints.
26  * @dma: DMA address corresponding to 'buf'.  If you don't set this
27  *      field, and the usb controller needs one, it is responsible
28  *      for mapping and unmapping the buffer.
29  * @length: Length of that data
30  * @no_interrupt: If true, hints that no completion irq is needed.
31  *      Helpful sometimes with deep request queues that are handled
32  *      directly by DMA controllers.
33  * @zero: If true, when writing data, makes the last packet be "short"
34  *     by adding a zero length packet as needed;
35  * @short_not_ok: When reading data, makes short packets be
36  *     treated as errors (queue stops advancing till cleanup).
37  * @complete: Function called when request completes, so this request and
38  *      its buffer may be re-used.  The function will always be called with
39  *      interrupts disabled, and it must not sleep.
40  *      Reads terminate with a short packet, or when the buffer fills,
41  *      whichever comes first.  When writes terminate, some data bytes
42  *      will usually still be in flight (often in a hardware fifo).
43  *      Errors (for reads or writes) stop the queue from advancing
44  *      until the completion function returns, so that any transfers
45  *      invalidated by the error may first be dequeued.
46  * @context: For use by the completion callback
47  * @list: For use by the gadget driver.
48  * @status: Reports completion code, zero or a negative errno.
49  *      Normally, faults block the transfer queue from advancing until
50  *      the completion callback returns.
51  *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
52  *      or when the driver disabled the endpoint.
53  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
54  *      transfers) this may be less than the requested length.  If the
55  *      short_not_ok flag is set, short reads are treated as errors
56  *      even when status otherwise indicates successful completion.
57  *      Note that for writes (IN transfers) some data bytes may still
58  *      reside in a device-side FIFO when the request is reported as
59  *      complete.
60  *
61  * These are allocated/freed through the endpoint they're used with.  The
62  * hardware's driver can add extra per-request data to the memory it returns,
63  * which often avoids separate memory allocations (potential failures),
64  * later when the request is queued.
65  *
66  * Request flags affect request handling, such as whether a zero length
67  * packet is written (the "zero" flag), whether a short read should be
68  * treated as an error (blocking request queue advance, the "short_not_ok"
69  * flag), or hinting that an interrupt is not required (the "no_interrupt"
70  * flag, for use with deep request queues).
71  *
72  * Bulk endpoints can use any size buffers, and can also be used for interrupt
73  * transfers. interrupt-only endpoints can be much less functional.
74  *
75  * NOTE:  this is analagous to 'struct urb' on the host side, except that
76  * it's thinner and promotes more pre-allocation.
77  */
78
79 struct usb_request {
80         void                    *buf;
81         unsigned                length;
82         dma_addr_t              dma;
83
84         unsigned                no_interrupt:1;
85         unsigned                zero:1;
86         unsigned                short_not_ok:1;
87
88         void                    (*complete)(struct usb_ep *ep,
89                                         struct usb_request *req);
90         void                    *context;
91         struct list_head        list;
92
93         int                     status;
94         unsigned                actual;
95 };
96
97 /*-------------------------------------------------------------------------*/
98
99 /* endpoint-specific parts of the api to the usb controller hardware.
100  * unlike the urb model, (de)multiplexing layers are not required.
101  * (so this api could slash overhead if used on the host side...)
102  *
103  * note that device side usb controllers commonly differ in how many
104  * endpoints they support, as well as their capabilities.
105  */
106 struct usb_ep_ops {
107         int (*enable) (struct usb_ep *ep,
108                 const struct usb_endpoint_descriptor *desc);
109         int (*disable) (struct usb_ep *ep);
110
111         struct usb_request *(*alloc_request) (struct usb_ep *ep,
112                 gfp_t gfp_flags);
113         void (*free_request) (struct usb_ep *ep, struct usb_request *req);
114
115         int (*queue) (struct usb_ep *ep, struct usb_request *req,
116                 gfp_t gfp_flags);
117         int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
118
119         int (*set_halt) (struct usb_ep *ep, int value);
120         int (*set_wedge) (struct usb_ep *ep);
121
122         int (*fifo_status) (struct usb_ep *ep);
123         void (*fifo_flush) (struct usb_ep *ep);
124 };
125
126 /**
127  * struct usb_ep - device side representation of USB endpoint
128  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
129  * @ops: Function pointers used to access hardware-specific operations.
130  * @ep_list:the gadget's ep_list holds all of its endpoints
131  * @maxpacket:The maximum packet size used on this endpoint.  The initial
132  *      value can sometimes be reduced (hardware allowing), according to
133  *      the endpoint descriptor used to configure the endpoint.
134  * @driver_data:for use by the gadget driver.  all other fields are
135  *      read-only to gadget drivers.
136  *
137  * the bus controller driver lists all the general purpose endpoints in
138  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
139  * and is accessed only in response to a driver setup() callback.
140  */
141 struct usb_ep {
142         void                    *driver_data;
143
144         const char              *name;
145         const struct usb_ep_ops *ops;
146         struct list_head        ep_list;
147         unsigned                maxpacket:16;
148 };
149
150 /*-------------------------------------------------------------------------*/
151
152 /**
153  * usb_ep_enable - configure endpoint, making it usable
154  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
155  *      drivers discover endpoints through the ep_list of a usb_gadget.
156  * @desc:descriptor for desired behavior.  caller guarantees this pointer
157  *      remains valid until the endpoint is disabled; the data byte order
158  *      is little-endian (usb-standard).
159  *
160  * when configurations are set, or when interface settings change, the driver
161  * will enable or disable the relevant endpoints.  while it is enabled, an
162  * endpoint may be used for i/o until the driver receives a disconnect() from
163  * the host or until the endpoint is disabled.
164  *
165  * the ep0 implementation (which calls this routine) must ensure that the
166  * hardware capabilities of each endpoint match the descriptor provided
167  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
168  * for interrupt transfers as well as bulk, but it likely couldn't be used
169  * for iso transfers or for endpoint 14.  some endpoints are fully
170  * configurable, with more generic names like "ep-a".  (remember that for
171  * USB, "in" means "towards the USB master".)
172  *
173  * returns zero, or a negative error code.
174  */
175 static inline int usb_ep_enable(struct usb_ep *ep,
176                                 const struct usb_endpoint_descriptor *desc)
177 {
178         return ep->ops->enable(ep, desc);
179 }
180
181 /**
182  * usb_ep_disable - endpoint is no longer usable
183  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
184  *
185  * no other task may be using this endpoint when this is called.
186  * any pending and uncompleted requests will complete with status
187  * indicating disconnect (-ESHUTDOWN) before this call returns.
188  * gadget drivers must call usb_ep_enable() again before queueing
189  * requests to the endpoint.
190  *
191  * returns zero, or a negative error code.
192  */
193 static inline int usb_ep_disable(struct usb_ep *ep)
194 {
195         return ep->ops->disable(ep);
196 }
197
198 /**
199  * usb_ep_alloc_request - allocate a request object to use with this endpoint
200  * @ep:the endpoint to be used with with the request
201  * @gfp_flags:GFP_* flags to use
202  *
203  * Request objects must be allocated with this call, since they normally
204  * need controller-specific setup and may even need endpoint-specific
205  * resources such as allocation of DMA descriptors.
206  * Requests may be submitted with usb_ep_queue(), and receive a single
207  * completion callback.  Free requests with usb_ep_free_request(), when
208  * they are no longer needed.
209  *
210  * Returns the request, or null if one could not be allocated.
211  */
212 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
213                                                        gfp_t gfp_flags)
214 {
215         return ep->ops->alloc_request(ep, gfp_flags);
216 }
217
218 /**
219  * usb_ep_free_request - frees a request object
220  * @ep:the endpoint associated with the request
221  * @req:the request being freed
222  *
223  * Reverses the effect of usb_ep_alloc_request().
224  * Caller guarantees the request is not queued, and that it will
225  * no longer be requeued (or otherwise used).
226  */
227 static inline void usb_ep_free_request(struct usb_ep *ep,
228                                        struct usb_request *req)
229 {
230         ep->ops->free_request(ep, req);
231 }
232
233 /**
234  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
235  * @ep:the endpoint associated with the request
236  * @req:the request being submitted
237  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
238  *      pre-allocate all necessary memory with the request.
239  *
240  * This tells the device controller to perform the specified request through
241  * that endpoint (reading or writing a buffer).  When the request completes,
242  * including being canceled by usb_ep_dequeue(), the request's completion
243  * routine is called to return the request to the driver.  Any endpoint
244  * (except control endpoints like ep0) may have more than one transfer
245  * request queued; they complete in FIFO order.  Once a gadget driver
246  * submits a request, that request may not be examined or modified until it
247  * is given back to that driver through the completion callback.
248  *
249  * Each request is turned into one or more packets.  The controller driver
250  * never merges adjacent requests into the same packet.  OUT transfers
251  * will sometimes use data that's already buffered in the hardware.
252  * Drivers can rely on the fact that the first byte of the request's buffer
253  * always corresponds to the first byte of some USB packet, for both
254  * IN and OUT transfers.
255  *
256  * Bulk endpoints can queue any amount of data; the transfer is packetized
257  * automatically.  The last packet will be short if the request doesn't fill it
258  * out completely.  Zero length packets (ZLPs) should be avoided in portable
259  * protocols since not all usb hardware can successfully handle zero length
260  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
261  * the request 'zero' flag is set.)  Bulk endpoints may also be used
262  * for interrupt transfers; but the reverse is not true, and some endpoints
263  * won't support every interrupt transfer.  (Such as 768 byte packets.)
264  *
265  * Interrupt-only endpoints are less functional than bulk endpoints, for
266  * example by not supporting queueing or not handling buffers that are
267  * larger than the endpoint's maxpacket size.  They may also treat data
268  * toggle differently.
269  *
270  * Control endpoints ... after getting a setup() callback, the driver queues
271  * one response (even if it would be zero length).  That enables the
272  * status ack, after transfering data as specified in the response.  Setup
273  * functions may return negative error codes to generate protocol stalls.
274  * (Note that some USB device controllers disallow protocol stall responses
275  * in some cases.)  When control responses are deferred (the response is
276  * written after the setup callback returns), then usb_ep_set_halt() may be
277  * used on ep0 to trigger protocol stalls.  Depending on the controller,
278  * it may not be possible to trigger a status-stage protocol stall when the
279  * data stage is over, that is, from within the response's completion
280  * routine.
281  *
282  * For periodic endpoints, like interrupt or isochronous ones, the usb host
283  * arranges to poll once per interval, and the gadget driver usually will
284  * have queued some data to transfer at that time.
285  *
286  * Returns zero, or a negative error code.  Endpoints that are not enabled
287  * report errors; errors will also be
288  * reported when the usb peripheral is disconnected.
289  */
290 static inline int usb_ep_queue(struct usb_ep *ep,
291                                struct usb_request *req, gfp_t gfp_flags)
292 {
293         return ep->ops->queue(ep, req, gfp_flags);
294 }
295
296 /**
297  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
298  * @ep:the endpoint associated with the request
299  * @req:the request being canceled
300  *
301  * if the request is still active on the endpoint, it is dequeued and its
302  * completion routine is called (with status -ECONNRESET); else a negative
303  * error code is returned.
304  *
305  * note that some hardware can't clear out write fifos (to unlink the request
306  * at the head of the queue) except as part of disconnecting from usb.  such
307  * restrictions prevent drivers from supporting configuration changes,
308  * even to configuration zero (a "chapter 9" requirement).
309  */
310 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
311 {
312         return ep->ops->dequeue(ep, req);
313 }
314
315 /**
316  * usb_ep_set_halt - sets the endpoint halt feature.
317  * @ep: the non-isochronous endpoint being stalled
318  *
319  * Use this to stall an endpoint, perhaps as an error report.
320  * Except for control endpoints,
321  * the endpoint stays halted (will not stream any data) until the host
322  * clears this feature; drivers may need to empty the endpoint's request
323  * queue first, to make sure no inappropriate transfers happen.
324  *
325  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
326  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
327  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
328  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
329  *
330  * Returns zero, or a negative error code.  On success, this call sets
331  * underlying hardware state that blocks data transfers.
332  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
333  * transfer requests are still queued, or if the controller hardware
334  * (usually a FIFO) still holds bytes that the host hasn't collected.
335  */
336 static inline int usb_ep_set_halt(struct usb_ep *ep)
337 {
338         return ep->ops->set_halt(ep, 1);
339 }
340
341 /**
342  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
343  * @ep:the bulk or interrupt endpoint being reset
344  *
345  * Use this when responding to the standard usb "set interface" request,
346  * for endpoints that aren't reconfigured, after clearing any other state
347  * in the endpoint's i/o queue.
348  *
349  * Returns zero, or a negative error code.  On success, this call clears
350  * the underlying hardware state reflecting endpoint halt and data toggle.
351  * Note that some hardware can't support this request (like pxa2xx_udc),
352  * and accordingly can't correctly implement interface altsettings.
353  */
354 static inline int usb_ep_clear_halt(struct usb_ep *ep)
355 {
356         return ep->ops->set_halt(ep, 0);
357 }
358
359 /**
360  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
361  * @ep: the endpoint being wedged
362  *
363  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
364  * requests. If the gadget driver clears the halt status, it will
365  * automatically unwedge the endpoint.
366  *
367  * Returns zero on success, else negative errno.
368  */
369 static inline int
370 usb_ep_set_wedge(struct usb_ep *ep)
371 {
372         if (ep->ops->set_wedge)
373                 return ep->ops->set_wedge(ep);
374         else
375                 return ep->ops->set_halt(ep, 1);
376 }
377
378 /**
379  * usb_ep_fifo_status - returns number of bytes in fifo, or error
380  * @ep: the endpoint whose fifo status is being checked.
381  *
382  * FIFO endpoints may have "unclaimed data" in them in certain cases,
383  * such as after aborted transfers.  Hosts may not have collected all
384  * the IN data written by the gadget driver (and reported by a request
385  * completion).  The gadget driver may not have collected all the data
386  * written OUT to it by the host.  Drivers that need precise handling for
387  * fault reporting or recovery may need to use this call.
388  *
389  * This returns the number of such bytes in the fifo, or a negative
390  * errno if the endpoint doesn't use a FIFO or doesn't support such
391  * precise handling.
392  */
393 static inline int usb_ep_fifo_status(struct usb_ep *ep)
394 {
395         if (ep->ops->fifo_status)
396                 return ep->ops->fifo_status(ep);
397         else
398                 return -EOPNOTSUPP;
399 }
400
401 /**
402  * usb_ep_fifo_flush - flushes contents of a fifo
403  * @ep: the endpoint whose fifo is being flushed.
404  *
405  * This call may be used to flush the "unclaimed data" that may exist in
406  * an endpoint fifo after abnormal transaction terminations.  The call
407  * must never be used except when endpoint is not being used for any
408  * protocol translation.
409  */
410 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
411 {
412         if (ep->ops->fifo_flush)
413                 ep->ops->fifo_flush(ep);
414 }
415
416
417 /*-------------------------------------------------------------------------*/
418
419 struct usb_gadget;
420
421 /* the rest of the api to the controller hardware: device operations,
422  * which don't involve endpoints (or i/o).
423  */
424 struct usb_gadget_ops {
425         int     (*get_frame)(struct usb_gadget *);
426         int     (*wakeup)(struct usb_gadget *);
427         int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
428         int     (*vbus_session) (struct usb_gadget *, int is_active);
429         int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
430         int     (*pullup) (struct usb_gadget *, int is_on);
431         int     (*ioctl)(struct usb_gadget *,
432                                 unsigned code, unsigned long param);
433 };
434
435 /**
436  * struct usb_gadget - represents a usb slave device
437  * @ops: Function pointers used to access hardware-specific operations.
438  * @ep0: Endpoint zero, used when reading or writing responses to
439  *      driver setup() requests
440  * @ep_list: List of other endpoints supported by the device.
441  * @speed: Speed of current connection to USB host.
442  * @is_dualspeed: True if the controller supports both high and full speed
443  *      operation.  If it does, the gadget driver must also support both.
444  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
445  *      gadget driver must provide a USB OTG descriptor.
446  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
447  *      is in the Mini-AB jack, and HNP has been used to switch roles
448  *      so that the "A" device currently acts as A-Peripheral, not A-Host.
449  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
450  *      supports HNP at this port.
451  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
452  *      only supports HNP on a different root port.
453  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
454  *      enabled HNP support.
455  * @name: Identifies the controller hardware type.  Used in diagnostics
456  *      and sometimes configuration.
457  * @dev: Driver model state for this abstract device.
458  *
459  * Gadgets have a mostly-portable "gadget driver" implementing device
460  * functions, handling all usb configurations and interfaces.  Gadget
461  * drivers talk to hardware-specific code indirectly, through ops vectors.
462  * That insulates the gadget driver from hardware details, and packages
463  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
464  * and "usb_ep" interfaces provide that insulation from the hardware.
465  *
466  * Except for the driver data, all fields in this structure are
467  * read-only to the gadget driver.  That driver data is part of the
468  * "driver model" infrastructure in 2.6 (and later) kernels, and for
469  * earlier systems is grouped in a similar structure that's not known
470  * to the rest of the kernel.
471  *
472  * Values of the three OTG device feature flags are updated before the
473  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
474  * driver suspend() calls.  They are valid only when is_otg, and when the
475  * device is acting as a B-Peripheral (so is_a_peripheral is false).
476  */
477 struct usb_gadget {
478         /* readonly to gadget driver */
479         const struct usb_gadget_ops     *ops;
480         struct usb_ep                   *ep0;
481         struct list_head                ep_list;        /* of usb_ep */
482         enum usb_device_speed           speed;
483         unsigned                        is_dualspeed:1;
484         unsigned                        is_otg:1;
485         unsigned                        is_a_peripheral:1;
486         unsigned                        b_hnp_enable:1;
487         unsigned                        a_hnp_support:1;
488         unsigned                        a_alt_hnp_support:1;
489         const char                      *name;
490         struct device                   dev;
491 };
492
493 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
494         { dev_set_drvdata(&gadget->dev, data); }
495 static inline void *get_gadget_data(struct usb_gadget *gadget)
496         { return dev_get_drvdata(&gadget->dev); }
497 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
498 {
499         return container_of(dev, struct usb_gadget, dev);
500 }
501
502 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
503 #define gadget_for_each_ep(tmp, gadget) \
504         list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
505
506
507 /**
508  * gadget_is_dualspeed - return true iff the hardware handles high speed
509  * @g: controller that might support both high and full speeds
510  */
511 static inline int gadget_is_dualspeed(struct usb_gadget *g)
512 {
513 #ifdef CONFIG_USB_GADGET_DUALSPEED
514         /* runtime test would check "g->is_dualspeed" ... that might be
515          * useful to work around hardware bugs, but is mostly pointless
516          */
517         return 1;
518 #else
519         return 0;
520 #endif
521 }
522
523 /**
524  * gadget_is_otg - return true iff the hardware is OTG-ready
525  * @g: controller that might have a Mini-AB connector
526  *
527  * This is a runtime test, since kernels with a USB-OTG stack sometimes
528  * run on boards which only have a Mini-B (or Mini-A) connector.
529  */
530 static inline int gadget_is_otg(struct usb_gadget *g)
531 {
532 #ifdef CONFIG_USB_OTG
533         return g->is_otg;
534 #else
535         return 0;
536 #endif
537 }
538
539 /**
540  * usb_gadget_frame_number - returns the current frame number
541  * @gadget: controller that reports the frame number
542  *
543  * Returns the usb frame number, normally eleven bits from a SOF packet,
544  * or negative errno if this device doesn't support this capability.
545  */
546 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
547 {
548         return gadget->ops->get_frame(gadget);
549 }
550
551 /**
552  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
553  * @gadget: controller used to wake up the host
554  *
555  * Returns zero on success, else negative error code if the hardware
556  * doesn't support such attempts, or its support has not been enabled
557  * by the usb host.  Drivers must return device descriptors that report
558  * their ability to support this, or hosts won't enable it.
559  *
560  * This may also try to use SRP to wake the host and start enumeration,
561  * even if OTG isn't otherwise in use.  OTG devices may also start
562  * remote wakeup even when hosts don't explicitly enable it.
563  */
564 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
565 {
566         if (!gadget->ops->wakeup)
567                 return -EOPNOTSUPP;
568         return gadget->ops->wakeup(gadget);
569 }
570
571 /**
572  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
573  * @gadget:the device being declared as self-powered
574  *
575  * this affects the device status reported by the hardware driver
576  * to reflect that it now has a local power supply.
577  *
578  * returns zero on success, else negative errno.
579  */
580 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
581 {
582         if (!gadget->ops->set_selfpowered)
583                 return -EOPNOTSUPP;
584         return gadget->ops->set_selfpowered(gadget, 1);
585 }
586
587 /**
588  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
589  * @gadget:the device being declared as bus-powered
590  *
591  * this affects the device status reported by the hardware driver.
592  * some hardware may not support bus-powered operation, in which
593  * case this feature's value can never change.
594  *
595  * returns zero on success, else negative errno.
596  */
597 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
598 {
599         if (!gadget->ops->set_selfpowered)
600                 return -EOPNOTSUPP;
601         return gadget->ops->set_selfpowered(gadget, 0);
602 }
603
604 /**
605  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
606  * @gadget:The device which now has VBUS power.
607  * Context: can sleep
608  *
609  * This call is used by a driver for an external transceiver (or GPIO)
610  * that detects a VBUS power session starting.  Common responses include
611  * resuming the controller, activating the D+ (or D-) pullup to let the
612  * host detect that a USB device is attached, and starting to draw power
613  * (8mA or possibly more, especially after SET_CONFIGURATION).
614  *
615  * Returns zero on success, else negative errno.
616  */
617 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
618 {
619         if (!gadget->ops->vbus_session)
620                 return -EOPNOTSUPP;
621         return gadget->ops->vbus_session(gadget, 1);
622 }
623
624 /**
625  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
626  * @gadget:The device whose VBUS usage is being described
627  * @mA:How much current to draw, in milliAmperes.  This should be twice
628  *      the value listed in the configuration descriptor bMaxPower field.
629  *
630  * This call is used by gadget drivers during SET_CONFIGURATION calls,
631  * reporting how much power the device may consume.  For example, this
632  * could affect how quickly batteries are recharged.
633  *
634  * Returns zero on success, else negative errno.
635  */
636 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
637 {
638         if (!gadget->ops->vbus_draw)
639                 return -EOPNOTSUPP;
640         return gadget->ops->vbus_draw(gadget, mA);
641 }
642
643 /**
644  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
645  * @gadget:the device whose VBUS supply is being described
646  * Context: can sleep
647  *
648  * This call is used by a driver for an external transceiver (or GPIO)
649  * that detects a VBUS power session ending.  Common responses include
650  * reversing everything done in usb_gadget_vbus_connect().
651  *
652  * Returns zero on success, else negative errno.
653  */
654 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
655 {
656         if (!gadget->ops->vbus_session)
657                 return -EOPNOTSUPP;
658         return gadget->ops->vbus_session(gadget, 0);
659 }
660
661 /**
662  * usb_gadget_connect - software-controlled connect to USB host
663  * @gadget:the peripheral being connected
664  *
665  * Enables the D+ (or potentially D-) pullup.  The host will start
666  * enumerating this gadget when the pullup is active and a VBUS session
667  * is active (the link is powered).  This pullup is always enabled unless
668  * usb_gadget_disconnect() has been used to disable it.
669  *
670  * Returns zero on success, else negative errno.
671  */
672 static inline int usb_gadget_connect(struct usb_gadget *gadget)
673 {
674         if (!gadget->ops->pullup)
675                 return -EOPNOTSUPP;
676         return gadget->ops->pullup(gadget, 1);
677 }
678
679 /**
680  * usb_gadget_disconnect - software-controlled disconnect from USB host
681  * @gadget:the peripheral being disconnected
682  *
683  * Disables the D+ (or potentially D-) pullup, which the host may see
684  * as a disconnect (when a VBUS session is active).  Not all systems
685  * support software pullup controls.
686  *
687  * This routine may be used during the gadget driver bind() call to prevent
688  * the peripheral from ever being visible to the USB host, unless later
689  * usb_gadget_connect() is called.  For example, user mode components may
690  * need to be activated before the system can talk to hosts.
691  *
692  * Returns zero on success, else negative errno.
693  */
694 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
695 {
696         if (!gadget->ops->pullup)
697                 return -EOPNOTSUPP;
698         return gadget->ops->pullup(gadget, 0);
699 }
700
701
702 /*-------------------------------------------------------------------------*/
703
704 /**
705  * struct usb_gadget_driver - driver for usb 'slave' devices
706  * @function: String describing the gadget's function
707  * @speed: Highest speed the driver handles.
708  * @bind: Invoked when the driver is bound to a gadget, usually
709  *      after registering the driver.
710  *      At that point, ep0 is fully initialized, and ep_list holds
711  *      the currently-available endpoints.
712  *      Called in a context that permits sleeping.
713  * @setup: Invoked for ep0 control requests that aren't handled by
714  *      the hardware level driver. Most calls must be handled by
715  *      the gadget driver, including descriptor and configuration
716  *      management.  The 16 bit members of the setup data are in
717  *      USB byte order. Called in_interrupt; this may not sleep.  Driver
718  *      queues a response to ep0, or returns negative to stall.
719  * @disconnect: Invoked after all transfers have been stopped,
720  *      when the host is disconnected.  May be called in_interrupt; this
721  *      may not sleep.  Some devices can't detect disconnect, so this might
722  *      not be called except as part of controller shutdown.
723  * @unbind: Invoked when the driver is unbound from a gadget,
724  *      usually from rmmod (after a disconnect is reported).
725  *      Called in a context that permits sleeping.
726  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
727  * @resume: Invoked on USB resume.  May be called in_interrupt.
728  * @driver: Driver model state for this driver.
729  *
730  * Devices are disabled till a gadget driver successfully bind()s, which
731  * means the driver will handle setup() requests needed to enumerate (and
732  * meet "chapter 9" requirements) then do some useful work.
733  *
734  * If gadget->is_otg is true, the gadget driver must provide an OTG
735  * descriptor during enumeration, or else fail the bind() call.  In such
736  * cases, no USB traffic may flow until both bind() returns without
737  * having called usb_gadget_disconnect(), and the USB host stack has
738  * initialized.
739  *
740  * Drivers use hardware-specific knowledge to configure the usb hardware.
741  * endpoint addressing is only one of several hardware characteristics that
742  * are in descriptors the ep0 implementation returns from setup() calls.
743  *
744  * Except for ep0 implementation, most driver code shouldn't need change to
745  * run on top of different usb controllers.  It'll use endpoints set up by
746  * that ep0 implementation.
747  *
748  * The usb controller driver handles a few standard usb requests.  Those
749  * include set_address, and feature flags for devices, interfaces, and
750  * endpoints (the get_status, set_feature, and clear_feature requests).
751  *
752  * Accordingly, the driver's setup() callback must always implement all
753  * get_descriptor requests, returning at least a device descriptor and
754  * a configuration descriptor.  Drivers must make sure the endpoint
755  * descriptors match any hardware constraints. Some hardware also constrains
756  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
757  *
758  * The driver's setup() callback must also implement set_configuration,
759  * and should also implement set_interface, get_configuration, and
760  * get_interface.  Setting a configuration (or interface) is where
761  * endpoints should be activated or (config 0) shut down.
762  *
763  * (Note that only the default control endpoint is supported.  Neither
764  * hosts nor devices generally support control traffic except to ep0.)
765  *
766  * Most devices will ignore USB suspend/resume operations, and so will
767  * not provide those callbacks.  However, some may need to change modes
768  * when the host is not longer directing those activities.  For example,
769  * local controls (buttons, dials, etc) may need to be re-enabled since
770  * the (remote) host can't do that any longer; or an error state might
771  * be cleared, to make the device behave identically whether or not
772  * power is maintained.
773  */
774 struct usb_gadget_driver {
775         char                    *function;
776         enum usb_device_speed   speed;
777         int                     (*bind)(struct usb_gadget *);
778         void                    (*unbind)(struct usb_gadget *);
779         int                     (*setup)(struct usb_gadget *,
780                                         const struct usb_ctrlrequest *);
781         void                    (*disconnect)(struct usb_gadget *);
782         void                    (*suspend)(struct usb_gadget *);
783         void                    (*resume)(struct usb_gadget *);
784
785         /* FIXME support safe rmmod */
786         struct device_driver    driver;
787 };
788
789
790
791 /*-------------------------------------------------------------------------*/
792
793 /* driver modules register and unregister, as usual.
794  * these calls must be made in a context that can sleep.
795  *
796  * these will usually be implemented directly by the hardware-dependent
797  * usb bus interface driver, which will only support a single driver.
798  */
799
800 /**
801  * usb_gadget_register_driver - register a gadget driver
802  * @driver:the driver being registered
803  * Context: can sleep
804  *
805  * Call this in your gadget driver's module initialization function,
806  * to tell the underlying usb controller driver about your driver.
807  * The driver's bind() function will be called to bind it to a
808  * gadget before this registration call returns.  It's expected that
809  * the bind() functions will be in init sections.
810  */
811 int usb_gadget_register_driver(struct usb_gadget_driver *driver);
812
813 /**
814  * usb_gadget_unregister_driver - unregister a gadget driver
815  * @driver:the driver being unregistered
816  * Context: can sleep
817  *
818  * Call this in your gadget driver's module cleanup function,
819  * to tell the underlying usb controller that your driver is
820  * going away.  If the controller is connected to a USB host,
821  * it will first disconnect().  The driver is also requested
822  * to unbind() and clean up any device state, before this procedure
823  * finally returns.  It's expected that the unbind() functions
824  * will in in exit sections, so may not be linked in some kernels.
825  */
826 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
827
828 /*-------------------------------------------------------------------------*/
829
830 /* utility to simplify dealing with string descriptors */
831
832 /**
833  * struct usb_string - wraps a C string and its USB id
834  * @id:the (nonzero) ID for this string
835  * @s:the string, in UTF-8 encoding
836  *
837  * If you're using usb_gadget_get_string(), use this to wrap a string
838  * together with its ID.
839  */
840 struct usb_string {
841         u8                      id;
842         const char              *s;
843 };
844
845 /**
846  * struct usb_gadget_strings - a set of USB strings in a given language
847  * @language:identifies the strings' language (0x0409 for en-us)
848  * @strings:array of strings with their ids
849  *
850  * If you're using usb_gadget_get_string(), use this to wrap all the
851  * strings for a given language.
852  */
853 struct usb_gadget_strings {
854         u16                     language;       /* 0x0409 for en-us */
855         struct usb_string       *strings;
856 };
857
858 /* put descriptor for string with that id into buf (buflen >= 256) */
859 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
860
861 /*-------------------------------------------------------------------------*/
862
863 /* utility to simplify managing config descriptors */
864
865 /* write vector of descriptors into buffer */
866 int usb_descriptor_fillbuf(void *, unsigned,
867                 const struct usb_descriptor_header **);
868
869 /* build config descriptor from single descriptor vector */
870 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
871         void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
872
873 /* copy a NULL-terminated vector of descriptors */
874 struct usb_descriptor_header **usb_copy_descriptors(
875                 struct usb_descriptor_header **);
876
877 /* return copy of endpoint descriptor given original descriptor set */
878 struct usb_endpoint_descriptor *usb_find_endpoint(
879         struct usb_descriptor_header **src,
880         struct usb_descriptor_header **copy,
881         struct usb_endpoint_descriptor *match);
882
883 /**
884  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
885  * @v: vector of descriptors
886  */
887 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
888 {
889         kfree(v);
890 }
891
892 /*-------------------------------------------------------------------------*/
893
894 /* utility wrapping a simple endpoint selection policy */
895
896 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
897                         struct usb_endpoint_descriptor *) __devinit;
898
899 extern void usb_ep_autoconfig_reset(struct usb_gadget *) __devinit;
900
901 #endif /* __LINUX_USB_GADGET_H */