Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[pandora-kernel.git] / include / linux / skbuff.h
1 /*
2  *      Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *      Authors:
5  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB          /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
42                                  ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)    \
44         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51  *
52  *      NONE: device failed to checksum this packet.
53  *              skb->csum is undefined.
54  *
55  *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
56  *              skb->csum is undefined.
57  *            It is bad option, but, unfortunately, many of vendors do this.
58  *            Apparently with secret goal to sell you new device, when you
59  *            will add new protocol to your host. F.e. IPv6. 8)
60  *
61  *      COMPLETE: the most generic way. Device supplied checksum of _all_
62  *          the packet as seen by netif_rx in skb->csum.
63  *          NOTE: Even if device supports only some protocols, but
64  *          is able to produce some skb->csum, it MUST use COMPLETE,
65  *          not UNNECESSARY.
66  *
67  *      PARTIAL: identical to the case for output below.  This may occur
68  *          on a packet received directly from another Linux OS, e.g.,
69  *          a virtualised Linux kernel on the same host.  The packet can
70  *          be treated in the same way as UNNECESSARY except that on
71  *          output (i.e., forwarding) the checksum must be filled in
72  *          by the OS or the hardware.
73  *
74  * B. Checksumming on output.
75  *
76  *      NONE: skb is checksummed by protocol or csum is not required.
77  *
78  *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
79  *      from skb->csum_start to the end and to record the checksum
80  *      at skb->csum_start + skb->csum_offset.
81  *
82  *      Device must show its capabilities in dev->features, set
83  *      at device setup time.
84  *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85  *                        everything.
86  *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
87  *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88  *                        TCP/UDP over IPv4. Sigh. Vendors like this
89  *                        way by an unknown reason. Though, see comment above
90  *                        about CHECKSUM_UNNECESSARY. 8)
91  *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92  *
93  *      Any questions? No questions, good.              --ANK
94  */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102         atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108         atomic_t use;
109         struct net_device *physindev;
110         struct net_device *physoutdev;
111         unsigned int mask;
112         unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117         /* These two members must be first. */
118         struct sk_buff  *next;
119         struct sk_buff  *prev;
120
121         __u32           qlen;
122         spinlock_t      lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133         struct page *page;
134         __u32 page_offset;
135         __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139  * the end of the header data, ie. at skb->end.
140  */
141 struct skb_shared_info {
142         atomic_t        dataref;
143         unsigned short  nr_frags;
144         unsigned short  gso_size;
145         /* Warning: this field is not always filled in (UFO)! */
146         unsigned short  gso_segs;
147         unsigned short  gso_type;
148         __be32          ip6_frag_id;
149         struct sk_buff  *frag_list;
150         skb_frag_t      frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves.  The higher 16 bits hold references
154  * to the payload part of skb->data.  The lower 16 bits hold references to
155  * the entire skb->data.  A clone of a headerless skb holds the length of
156  * the header in skb->hdr_len.
157  *
158  * All users must obey the rule that the skb->data reference count must be
159  * greater than or equal to the payload reference count.
160  *
161  * Holding a reference to the payload part means that the user does not
162  * care about modifications to the header part of skb->data.
163  */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169         SKB_FCLONE_UNAVAILABLE,
170         SKB_FCLONE_ORIG,
171         SKB_FCLONE_CLONE,
172 };
173
174 enum {
175         SKB_GSO_TCPV4 = 1 << 0,
176         SKB_GSO_UDP = 1 << 1,
177
178         /* This indicates the skb is from an untrusted source. */
179         SKB_GSO_DODGY = 1 << 2,
180
181         /* This indicates the tcp segment has CWR set. */
182         SKB_GSO_TCP_ECN = 1 << 3,
183
184         SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /** 
198  *      struct sk_buff - socket buffer
199  *      @next: Next buffer in list
200  *      @prev: Previous buffer in list
201  *      @sk: Socket we are owned by
202  *      @tstamp: Time we arrived
203  *      @dev: Device we arrived on/are leaving by
204  *      @transport_header: Transport layer header
205  *      @network_header: Network layer header
206  *      @mac_header: Link layer header
207  *      @dst: destination entry
208  *      @sp: the security path, used for xfrm
209  *      @cb: Control buffer. Free for use by every layer. Put private vars here
210  *      @len: Length of actual data
211  *      @data_len: Data length
212  *      @mac_len: Length of link layer header
213  *      @hdr_len: writable header length of cloned skb
214  *      @csum: Checksum (must include start/offset pair)
215  *      @csum_start: Offset from skb->head where checksumming should start
216  *      @csum_offset: Offset from csum_start where checksum should be stored
217  *      @local_df: allow local fragmentation
218  *      @cloned: Head may be cloned (check refcnt to be sure)
219  *      @nohdr: Payload reference only, must not modify header
220  *      @pkt_type: Packet class
221  *      @fclone: skbuff clone status
222  *      @ip_summed: Driver fed us an IP checksum
223  *      @priority: Packet queueing priority
224  *      @users: User count - see {datagram,tcp}.c
225  *      @protocol: Packet protocol from driver
226  *      @truesize: Buffer size 
227  *      @head: Head of buffer
228  *      @data: Data head pointer
229  *      @tail: Tail pointer
230  *      @end: End pointer
231  *      @destructor: Destruct function
232  *      @mark: Generic packet mark
233  *      @nfct: Associated connection, if any
234  *      @ipvs_property: skbuff is owned by ipvs
235  *      @peeked: this packet has been seen already, so stats have been
236  *              done for it, don't do them again
237  *      @nf_trace: netfilter packet trace flag
238  *      @nfctinfo: Relationship of this skb to the connection
239  *      @nfct_reasm: netfilter conntrack re-assembly pointer
240  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241  *      @iif: ifindex of device we arrived on
242  *      @queue_mapping: Queue mapping for multiqueue devices
243  *      @tc_index: Traffic control index
244  *      @tc_verd: traffic control verdict
245  *      @dma_cookie: a cookie to one of several possible DMA operations
246  *              done by skb DMA functions
247  *      @secmark: security marking
248  */
249
250 struct sk_buff {
251         /* These two members must be first. */
252         struct sk_buff          *next;
253         struct sk_buff          *prev;
254
255         struct sock             *sk;
256         ktime_t                 tstamp;
257         struct net_device       *dev;
258
259         union {
260                 struct  dst_entry       *dst;
261                 struct  rtable          *rtable;
262         };
263         struct  sec_path        *sp;
264
265         /*
266          * This is the control buffer. It is free to use for every
267          * layer. Please put your private variables there. If you
268          * want to keep them across layers you have to do a skb_clone()
269          * first. This is owned by whoever has the skb queued ATM.
270          */
271         char                    cb[48];
272
273         unsigned int            len,
274                                 data_len;
275         __u16                   mac_len,
276                                 hdr_len;
277         union {
278                 __wsum          csum;
279                 struct {
280                         __u16   csum_start;
281                         __u16   csum_offset;
282                 };
283         };
284         __u32                   priority;
285         __u8                    local_df:1,
286                                 cloned:1,
287                                 ip_summed:2,
288                                 nohdr:1,
289                                 nfctinfo:3;
290         __u8                    pkt_type:3,
291                                 fclone:2,
292                                 ipvs_property:1,
293                                 peeked:1,
294                                 nf_trace:1;
295         __be16                  protocol;
296
297         void                    (*destructor)(struct sk_buff *skb);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299         struct nf_conntrack     *nfct;
300         struct sk_buff          *nfct_reasm;
301 #endif
302 #ifdef CONFIG_BRIDGE_NETFILTER
303         struct nf_bridge_info   *nf_bridge;
304 #endif
305
306         int                     iif;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
308         __u16                   queue_mapping;
309 #endif
310 #ifdef CONFIG_NET_SCHED
311         __u16                   tc_index;       /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313         __u16                   tc_verd;        /* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317         __u8                    ndisc_nodetype:2;
318 #endif
319         /* 14 bit hole */
320
321 #ifdef CONFIG_NET_DMA
322         dma_cookie_t            dma_cookie;
323 #endif
324 #ifdef CONFIG_NETWORK_SECMARK
325         __u32                   secmark;
326 #endif
327
328         __u32                   mark;
329
330         sk_buff_data_t          transport_header;
331         sk_buff_data_t          network_header;
332         sk_buff_data_t          mac_header;
333         /* These elements must be at the end, see alloc_skb() for details.  */
334         sk_buff_data_t          tail;
335         sk_buff_data_t          end;
336         unsigned char           *head,
337                                 *data;
338         unsigned int            truesize;
339         atomic_t                users;
340 };
341
342 #ifdef __KERNEL__
343 /*
344  *      Handling routines are only of interest to the kernel
345  */
346 #include <linux/slab.h>
347
348 #include <asm/system.h>
349
350 extern void kfree_skb(struct sk_buff *skb);
351 extern void            __kfree_skb(struct sk_buff *skb);
352 extern struct sk_buff *__alloc_skb(unsigned int size,
353                                    gfp_t priority, int fclone, int node);
354 static inline struct sk_buff *alloc_skb(unsigned int size,
355                                         gfp_t priority)
356 {
357         return __alloc_skb(size, priority, 0, -1);
358 }
359
360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
361                                                gfp_t priority)
362 {
363         return __alloc_skb(size, priority, 1, -1);
364 }
365
366 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
367 extern struct sk_buff *skb_clone(struct sk_buff *skb,
368                                  gfp_t priority);
369 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
370                                 gfp_t priority);
371 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
372                                  gfp_t gfp_mask);
373 extern int             pskb_expand_head(struct sk_buff *skb,
374                                         int nhead, int ntail,
375                                         gfp_t gfp_mask);
376 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
377                                             unsigned int headroom);
378 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
379                                        int newheadroom, int newtailroom,
380                                        gfp_t priority);
381 extern int             skb_to_sgvec(struct sk_buff *skb,
382                                     struct scatterlist *sg, int offset,
383                                     int len);
384 extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
385                                     struct sk_buff **trailer);
386 extern int             skb_pad(struct sk_buff *skb, int pad);
387 #define dev_kfree_skb(a)        kfree_skb(a)
388 extern void           skb_over_panic(struct sk_buff *skb, int len,
389                                      void *here);
390 extern void           skb_under_panic(struct sk_buff *skb, int len,
391                                       void *here);
392 extern void           skb_truesize_bug(struct sk_buff *skb);
393
394 static inline void skb_truesize_check(struct sk_buff *skb)
395 {
396         int len = sizeof(struct sk_buff) + skb->len;
397
398         if (unlikely((int)skb->truesize < len))
399                 skb_truesize_bug(skb);
400 }
401
402 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
403                         int getfrag(void *from, char *to, int offset,
404                         int len,int odd, struct sk_buff *skb),
405                         void *from, int length);
406
407 struct skb_seq_state
408 {
409         __u32           lower_offset;
410         __u32           upper_offset;
411         __u32           frag_idx;
412         __u32           stepped_offset;
413         struct sk_buff  *root_skb;
414         struct sk_buff  *cur_skb;
415         __u8            *frag_data;
416 };
417
418 extern void           skb_prepare_seq_read(struct sk_buff *skb,
419                                            unsigned int from, unsigned int to,
420                                            struct skb_seq_state *st);
421 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
422                                    struct skb_seq_state *st);
423 extern void           skb_abort_seq_read(struct skb_seq_state *st);
424
425 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
426                                     unsigned int to, struct ts_config *config,
427                                     struct ts_state *state);
428
429 #ifdef NET_SKBUFF_DATA_USES_OFFSET
430 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
431 {
432         return skb->head + skb->end;
433 }
434 #else
435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
436 {
437         return skb->end;
438 }
439 #endif
440
441 /* Internal */
442 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
443
444 /**
445  *      skb_queue_empty - check if a queue is empty
446  *      @list: queue head
447  *
448  *      Returns true if the queue is empty, false otherwise.
449  */
450 static inline int skb_queue_empty(const struct sk_buff_head *list)
451 {
452         return list->next == (struct sk_buff *)list;
453 }
454
455 /**
456  *      skb_get - reference buffer
457  *      @skb: buffer to reference
458  *
459  *      Makes another reference to a socket buffer and returns a pointer
460  *      to the buffer.
461  */
462 static inline struct sk_buff *skb_get(struct sk_buff *skb)
463 {
464         atomic_inc(&skb->users);
465         return skb;
466 }
467
468 /*
469  * If users == 1, we are the only owner and are can avoid redundant
470  * atomic change.
471  */
472
473 /**
474  *      skb_cloned - is the buffer a clone
475  *      @skb: buffer to check
476  *
477  *      Returns true if the buffer was generated with skb_clone() and is
478  *      one of multiple shared copies of the buffer. Cloned buffers are
479  *      shared data so must not be written to under normal circumstances.
480  */
481 static inline int skb_cloned(const struct sk_buff *skb)
482 {
483         return skb->cloned &&
484                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
485 }
486
487 /**
488  *      skb_header_cloned - is the header a clone
489  *      @skb: buffer to check
490  *
491  *      Returns true if modifying the header part of the buffer requires
492  *      the data to be copied.
493  */
494 static inline int skb_header_cloned(const struct sk_buff *skb)
495 {
496         int dataref;
497
498         if (!skb->cloned)
499                 return 0;
500
501         dataref = atomic_read(&skb_shinfo(skb)->dataref);
502         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
503         return dataref != 1;
504 }
505
506 /**
507  *      skb_header_release - release reference to header
508  *      @skb: buffer to operate on
509  *
510  *      Drop a reference to the header part of the buffer.  This is done
511  *      by acquiring a payload reference.  You must not read from the header
512  *      part of skb->data after this.
513  */
514 static inline void skb_header_release(struct sk_buff *skb)
515 {
516         BUG_ON(skb->nohdr);
517         skb->nohdr = 1;
518         atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
519 }
520
521 /**
522  *      skb_shared - is the buffer shared
523  *      @skb: buffer to check
524  *
525  *      Returns true if more than one person has a reference to this
526  *      buffer.
527  */
528 static inline int skb_shared(const struct sk_buff *skb)
529 {
530         return atomic_read(&skb->users) != 1;
531 }
532
533 /**
534  *      skb_share_check - check if buffer is shared and if so clone it
535  *      @skb: buffer to check
536  *      @pri: priority for memory allocation
537  *
538  *      If the buffer is shared the buffer is cloned and the old copy
539  *      drops a reference. A new clone with a single reference is returned.
540  *      If the buffer is not shared the original buffer is returned. When
541  *      being called from interrupt status or with spinlocks held pri must
542  *      be GFP_ATOMIC.
543  *
544  *      NULL is returned on a memory allocation failure.
545  */
546 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
547                                               gfp_t pri)
548 {
549         might_sleep_if(pri & __GFP_WAIT);
550         if (skb_shared(skb)) {
551                 struct sk_buff *nskb = skb_clone(skb, pri);
552                 kfree_skb(skb);
553                 skb = nskb;
554         }
555         return skb;
556 }
557
558 /*
559  *      Copy shared buffers into a new sk_buff. We effectively do COW on
560  *      packets to handle cases where we have a local reader and forward
561  *      and a couple of other messy ones. The normal one is tcpdumping
562  *      a packet thats being forwarded.
563  */
564
565 /**
566  *      skb_unshare - make a copy of a shared buffer
567  *      @skb: buffer to check
568  *      @pri: priority for memory allocation
569  *
570  *      If the socket buffer is a clone then this function creates a new
571  *      copy of the data, drops a reference count on the old copy and returns
572  *      the new copy with the reference count at 1. If the buffer is not a clone
573  *      the original buffer is returned. When called with a spinlock held or
574  *      from interrupt state @pri must be %GFP_ATOMIC
575  *
576  *      %NULL is returned on a memory allocation failure.
577  */
578 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
579                                           gfp_t pri)
580 {
581         might_sleep_if(pri & __GFP_WAIT);
582         if (skb_cloned(skb)) {
583                 struct sk_buff *nskb = skb_copy(skb, pri);
584                 kfree_skb(skb); /* Free our shared copy */
585                 skb = nskb;
586         }
587         return skb;
588 }
589
590 /**
591  *      skb_peek
592  *      @list_: list to peek at
593  *
594  *      Peek an &sk_buff. Unlike most other operations you _MUST_
595  *      be careful with this one. A peek leaves the buffer on the
596  *      list and someone else may run off with it. You must hold
597  *      the appropriate locks or have a private queue to do this.
598  *
599  *      Returns %NULL for an empty list or a pointer to the head element.
600  *      The reference count is not incremented and the reference is therefore
601  *      volatile. Use with caution.
602  */
603 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
604 {
605         struct sk_buff *list = ((struct sk_buff *)list_)->next;
606         if (list == (struct sk_buff *)list_)
607                 list = NULL;
608         return list;
609 }
610
611 /**
612  *      skb_peek_tail
613  *      @list_: list to peek at
614  *
615  *      Peek an &sk_buff. Unlike most other operations you _MUST_
616  *      be careful with this one. A peek leaves the buffer on the
617  *      list and someone else may run off with it. You must hold
618  *      the appropriate locks or have a private queue to do this.
619  *
620  *      Returns %NULL for an empty list or a pointer to the tail element.
621  *      The reference count is not incremented and the reference is therefore
622  *      volatile. Use with caution.
623  */
624 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
625 {
626         struct sk_buff *list = ((struct sk_buff *)list_)->prev;
627         if (list == (struct sk_buff *)list_)
628                 list = NULL;
629         return list;
630 }
631
632 /**
633  *      skb_queue_len   - get queue length
634  *      @list_: list to measure
635  *
636  *      Return the length of an &sk_buff queue.
637  */
638 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
639 {
640         return list_->qlen;
641 }
642
643 /*
644  * This function creates a split out lock class for each invocation;
645  * this is needed for now since a whole lot of users of the skb-queue
646  * infrastructure in drivers have different locking usage (in hardirq)
647  * than the networking core (in softirq only). In the long run either the
648  * network layer or drivers should need annotation to consolidate the
649  * main types of usage into 3 classes.
650  */
651 static inline void skb_queue_head_init(struct sk_buff_head *list)
652 {
653         spin_lock_init(&list->lock);
654         list->prev = list->next = (struct sk_buff *)list;
655         list->qlen = 0;
656 }
657
658 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
659                 struct lock_class_key *class)
660 {
661         skb_queue_head_init(list);
662         lockdep_set_class(&list->lock, class);
663 }
664
665 /*
666  *      Insert an sk_buff on a list.
667  *
668  *      The "__skb_xxxx()" functions are the non-atomic ones that
669  *      can only be called with interrupts disabled.
670  */
671 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
672 static inline void __skb_insert(struct sk_buff *newsk,
673                                 struct sk_buff *prev, struct sk_buff *next,
674                                 struct sk_buff_head *list)
675 {
676         newsk->next = next;
677         newsk->prev = prev;
678         next->prev  = prev->next = newsk;
679         list->qlen++;
680 }
681
682 /**
683  *      __skb_queue_after - queue a buffer at the list head
684  *      @list: list to use
685  *      @prev: place after this buffer
686  *      @newsk: buffer to queue
687  *
688  *      Queue a buffer int the middle of a list. This function takes no locks
689  *      and you must therefore hold required locks before calling it.
690  *
691  *      A buffer cannot be placed on two lists at the same time.
692  */
693 static inline void __skb_queue_after(struct sk_buff_head *list,
694                                      struct sk_buff *prev,
695                                      struct sk_buff *newsk)
696 {
697         __skb_insert(newsk, prev, prev->next, list);
698 }
699
700 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
701                        struct sk_buff_head *list);
702
703 static inline void __skb_queue_before(struct sk_buff_head *list,
704                                       struct sk_buff *next,
705                                       struct sk_buff *newsk)
706 {
707         __skb_insert(newsk, next->prev, next, list);
708 }
709
710 /**
711  *      __skb_queue_head - queue a buffer at the list head
712  *      @list: list to use
713  *      @newsk: buffer to queue
714  *
715  *      Queue a buffer at the start of a list. This function takes no locks
716  *      and you must therefore hold required locks before calling it.
717  *
718  *      A buffer cannot be placed on two lists at the same time.
719  */
720 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
721 static inline void __skb_queue_head(struct sk_buff_head *list,
722                                     struct sk_buff *newsk)
723 {
724         __skb_queue_after(list, (struct sk_buff *)list, newsk);
725 }
726
727 /**
728  *      __skb_queue_tail - queue a buffer at the list tail
729  *      @list: list to use
730  *      @newsk: buffer to queue
731  *
732  *      Queue a buffer at the end of a list. This function takes no locks
733  *      and you must therefore hold required locks before calling it.
734  *
735  *      A buffer cannot be placed on two lists at the same time.
736  */
737 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
738 static inline void __skb_queue_tail(struct sk_buff_head *list,
739                                    struct sk_buff *newsk)
740 {
741         __skb_queue_before(list, (struct sk_buff *)list, newsk);
742 }
743
744 /*
745  * remove sk_buff from list. _Must_ be called atomically, and with
746  * the list known..
747  */
748 extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
749 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
750 {
751         struct sk_buff *next, *prev;
752
753         list->qlen--;
754         next       = skb->next;
755         prev       = skb->prev;
756         skb->next  = skb->prev = NULL;
757         next->prev = prev;
758         prev->next = next;
759 }
760
761 /**
762  *      __skb_dequeue - remove from the head of the queue
763  *      @list: list to dequeue from
764  *
765  *      Remove the head of the list. This function does not take any locks
766  *      so must be used with appropriate locks held only. The head item is
767  *      returned or %NULL if the list is empty.
768  */
769 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
770 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
771 {
772         struct sk_buff *skb = skb_peek(list);
773         if (skb)
774                 __skb_unlink(skb, list);
775         return skb;
776 }
777
778 /**
779  *      __skb_dequeue_tail - remove from the tail of the queue
780  *      @list: list to dequeue from
781  *
782  *      Remove the tail of the list. This function does not take any locks
783  *      so must be used with appropriate locks held only. The tail item is
784  *      returned or %NULL if the list is empty.
785  */
786 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
787 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
788 {
789         struct sk_buff *skb = skb_peek_tail(list);
790         if (skb)
791                 __skb_unlink(skb, list);
792         return skb;
793 }
794
795
796 static inline int skb_is_nonlinear(const struct sk_buff *skb)
797 {
798         return skb->data_len;
799 }
800
801 static inline unsigned int skb_headlen(const struct sk_buff *skb)
802 {
803         return skb->len - skb->data_len;
804 }
805
806 static inline int skb_pagelen(const struct sk_buff *skb)
807 {
808         int i, len = 0;
809
810         for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
811                 len += skb_shinfo(skb)->frags[i].size;
812         return len + skb_headlen(skb);
813 }
814
815 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
816                                       struct page *page, int off, int size)
817 {
818         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
819
820         frag->page                = page;
821         frag->page_offset         = off;
822         frag->size                = size;
823         skb_shinfo(skb)->nr_frags = i + 1;
824 }
825
826 #define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
827 #define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
828 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
829
830 #ifdef NET_SKBUFF_DATA_USES_OFFSET
831 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
832 {
833         return skb->head + skb->tail;
834 }
835
836 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
837 {
838         skb->tail = skb->data - skb->head;
839 }
840
841 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
842 {
843         skb_reset_tail_pointer(skb);
844         skb->tail += offset;
845 }
846 #else /* NET_SKBUFF_DATA_USES_OFFSET */
847 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
848 {
849         return skb->tail;
850 }
851
852 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
853 {
854         skb->tail = skb->data;
855 }
856
857 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
858 {
859         skb->tail = skb->data + offset;
860 }
861
862 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
863
864 /*
865  *      Add data to an sk_buff
866  */
867 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
868 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
869 {
870         unsigned char *tmp = skb_tail_pointer(skb);
871         SKB_LINEAR_ASSERT(skb);
872         skb->tail += len;
873         skb->len  += len;
874         return tmp;
875 }
876
877 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
878 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
879 {
880         skb->data -= len;
881         skb->len  += len;
882         return skb->data;
883 }
884
885 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
886 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
887 {
888         skb->len -= len;
889         BUG_ON(skb->len < skb->data_len);
890         return skb->data += len;
891 }
892
893 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
894
895 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
896 {
897         if (len > skb_headlen(skb) &&
898             !__pskb_pull_tail(skb, len-skb_headlen(skb)))
899                 return NULL;
900         skb->len -= len;
901         return skb->data += len;
902 }
903
904 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
905 {
906         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
907 }
908
909 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
910 {
911         if (likely(len <= skb_headlen(skb)))
912                 return 1;
913         if (unlikely(len > skb->len))
914                 return 0;
915         return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
916 }
917
918 /**
919  *      skb_headroom - bytes at buffer head
920  *      @skb: buffer to check
921  *
922  *      Return the number of bytes of free space at the head of an &sk_buff.
923  */
924 static inline unsigned int skb_headroom(const struct sk_buff *skb)
925 {
926         return skb->data - skb->head;
927 }
928
929 /**
930  *      skb_tailroom - bytes at buffer end
931  *      @skb: buffer to check
932  *
933  *      Return the number of bytes of free space at the tail of an sk_buff
934  */
935 static inline int skb_tailroom(const struct sk_buff *skb)
936 {
937         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
938 }
939
940 /**
941  *      skb_reserve - adjust headroom
942  *      @skb: buffer to alter
943  *      @len: bytes to move
944  *
945  *      Increase the headroom of an empty &sk_buff by reducing the tail
946  *      room. This is only allowed for an empty buffer.
947  */
948 static inline void skb_reserve(struct sk_buff *skb, int len)
949 {
950         skb->data += len;
951         skb->tail += len;
952 }
953
954 #ifdef NET_SKBUFF_DATA_USES_OFFSET
955 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
956 {
957         return skb->head + skb->transport_header;
958 }
959
960 static inline void skb_reset_transport_header(struct sk_buff *skb)
961 {
962         skb->transport_header = skb->data - skb->head;
963 }
964
965 static inline void skb_set_transport_header(struct sk_buff *skb,
966                                             const int offset)
967 {
968         skb_reset_transport_header(skb);
969         skb->transport_header += offset;
970 }
971
972 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
973 {
974         return skb->head + skb->network_header;
975 }
976
977 static inline void skb_reset_network_header(struct sk_buff *skb)
978 {
979         skb->network_header = skb->data - skb->head;
980 }
981
982 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
983 {
984         skb_reset_network_header(skb);
985         skb->network_header += offset;
986 }
987
988 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
989 {
990         return skb->head + skb->mac_header;
991 }
992
993 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
994 {
995         return skb->mac_header != ~0U;
996 }
997
998 static inline void skb_reset_mac_header(struct sk_buff *skb)
999 {
1000         skb->mac_header = skb->data - skb->head;
1001 }
1002
1003 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1004 {
1005         skb_reset_mac_header(skb);
1006         skb->mac_header += offset;
1007 }
1008
1009 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1010
1011 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1012 {
1013         return skb->transport_header;
1014 }
1015
1016 static inline void skb_reset_transport_header(struct sk_buff *skb)
1017 {
1018         skb->transport_header = skb->data;
1019 }
1020
1021 static inline void skb_set_transport_header(struct sk_buff *skb,
1022                                             const int offset)
1023 {
1024         skb->transport_header = skb->data + offset;
1025 }
1026
1027 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1028 {
1029         return skb->network_header;
1030 }
1031
1032 static inline void skb_reset_network_header(struct sk_buff *skb)
1033 {
1034         skb->network_header = skb->data;
1035 }
1036
1037 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1038 {
1039         skb->network_header = skb->data + offset;
1040 }
1041
1042 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1043 {
1044         return skb->mac_header;
1045 }
1046
1047 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1048 {
1049         return skb->mac_header != NULL;
1050 }
1051
1052 static inline void skb_reset_mac_header(struct sk_buff *skb)
1053 {
1054         skb->mac_header = skb->data;
1055 }
1056
1057 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1058 {
1059         skb->mac_header = skb->data + offset;
1060 }
1061 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1062
1063 static inline int skb_transport_offset(const struct sk_buff *skb)
1064 {
1065         return skb_transport_header(skb) - skb->data;
1066 }
1067
1068 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1069 {
1070         return skb->transport_header - skb->network_header;
1071 }
1072
1073 static inline int skb_network_offset(const struct sk_buff *skb)
1074 {
1075         return skb_network_header(skb) - skb->data;
1076 }
1077
1078 /*
1079  * CPUs often take a performance hit when accessing unaligned memory
1080  * locations. The actual performance hit varies, it can be small if the
1081  * hardware handles it or large if we have to take an exception and fix it
1082  * in software.
1083  *
1084  * Since an ethernet header is 14 bytes network drivers often end up with
1085  * the IP header at an unaligned offset. The IP header can be aligned by
1086  * shifting the start of the packet by 2 bytes. Drivers should do this
1087  * with:
1088  *
1089  * skb_reserve(NET_IP_ALIGN);
1090  *
1091  * The downside to this alignment of the IP header is that the DMA is now
1092  * unaligned. On some architectures the cost of an unaligned DMA is high
1093  * and this cost outweighs the gains made by aligning the IP header.
1094  * 
1095  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1096  * to be overridden.
1097  */
1098 #ifndef NET_IP_ALIGN
1099 #define NET_IP_ALIGN    2
1100 #endif
1101
1102 /*
1103  * The networking layer reserves some headroom in skb data (via
1104  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1105  * the header has to grow. In the default case, if the header has to grow
1106  * 16 bytes or less we avoid the reallocation.
1107  *
1108  * Unfortunately this headroom changes the DMA alignment of the resulting
1109  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1110  * on some architectures. An architecture can override this value,
1111  * perhaps setting it to a cacheline in size (since that will maintain
1112  * cacheline alignment of the DMA). It must be a power of 2.
1113  *
1114  * Various parts of the networking layer expect at least 16 bytes of
1115  * headroom, you should not reduce this.
1116  */
1117 #ifndef NET_SKB_PAD
1118 #define NET_SKB_PAD     16
1119 #endif
1120
1121 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1122
1123 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1124 {
1125         if (unlikely(skb->data_len)) {
1126                 WARN_ON(1);
1127                 return;
1128         }
1129         skb->len = len;
1130         skb_set_tail_pointer(skb, len);
1131 }
1132
1133 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1134
1135 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1136 {
1137         if (skb->data_len)
1138                 return ___pskb_trim(skb, len);
1139         __skb_trim(skb, len);
1140         return 0;
1141 }
1142
1143 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1144 {
1145         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1146 }
1147
1148 /**
1149  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1150  *      @skb: buffer to alter
1151  *      @len: new length
1152  *
1153  *      This is identical to pskb_trim except that the caller knows that
1154  *      the skb is not cloned so we should never get an error due to out-
1155  *      of-memory.
1156  */
1157 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1158 {
1159         int err = pskb_trim(skb, len);
1160         BUG_ON(err);
1161 }
1162
1163 /**
1164  *      skb_orphan - orphan a buffer
1165  *      @skb: buffer to orphan
1166  *
1167  *      If a buffer currently has an owner then we call the owner's
1168  *      destructor function and make the @skb unowned. The buffer continues
1169  *      to exist but is no longer charged to its former owner.
1170  */
1171 static inline void skb_orphan(struct sk_buff *skb)
1172 {
1173         if (skb->destructor)
1174                 skb->destructor(skb);
1175         skb->destructor = NULL;
1176         skb->sk         = NULL;
1177 }
1178
1179 /**
1180  *      __skb_queue_purge - empty a list
1181  *      @list: list to empty
1182  *
1183  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1184  *      the list and one reference dropped. This function does not take the
1185  *      list lock and the caller must hold the relevant locks to use it.
1186  */
1187 extern void skb_queue_purge(struct sk_buff_head *list);
1188 static inline void __skb_queue_purge(struct sk_buff_head *list)
1189 {
1190         struct sk_buff *skb;
1191         while ((skb = __skb_dequeue(list)) != NULL)
1192                 kfree_skb(skb);
1193 }
1194
1195 /**
1196  *      __dev_alloc_skb - allocate an skbuff for receiving
1197  *      @length: length to allocate
1198  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1199  *
1200  *      Allocate a new &sk_buff and assign it a usage count of one. The
1201  *      buffer has unspecified headroom built in. Users should allocate
1202  *      the headroom they think they need without accounting for the
1203  *      built in space. The built in space is used for optimisations.
1204  *
1205  *      %NULL is returned if there is no free memory.
1206  */
1207 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1208                                               gfp_t gfp_mask)
1209 {
1210         struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1211         if (likely(skb))
1212                 skb_reserve(skb, NET_SKB_PAD);
1213         return skb;
1214 }
1215
1216 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1217
1218 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1219                 unsigned int length, gfp_t gfp_mask);
1220
1221 /**
1222  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1223  *      @dev: network device to receive on
1224  *      @length: length to allocate
1225  *
1226  *      Allocate a new &sk_buff and assign it a usage count of one. The
1227  *      buffer has unspecified headroom built in. Users should allocate
1228  *      the headroom they think they need without accounting for the
1229  *      built in space. The built in space is used for optimisations.
1230  *
1231  *      %NULL is returned if there is no free memory. Although this function
1232  *      allocates memory it can be called from an interrupt.
1233  */
1234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1235                 unsigned int length)
1236 {
1237         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1238 }
1239
1240 /**
1241  *      skb_clone_writable - is the header of a clone writable
1242  *      @skb: buffer to check
1243  *      @len: length up to which to write
1244  *
1245  *      Returns true if modifying the header part of the cloned buffer
1246  *      does not requires the data to be copied.
1247  */
1248 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1249 {
1250         return !skb_header_cloned(skb) &&
1251                skb_headroom(skb) + len <= skb->hdr_len;
1252 }
1253
1254 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1255                             int cloned)
1256 {
1257         int delta = 0;
1258
1259         if (headroom < NET_SKB_PAD)
1260                 headroom = NET_SKB_PAD;
1261         if (headroom > skb_headroom(skb))
1262                 delta = headroom - skb_headroom(skb);
1263
1264         if (delta || cloned)
1265                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1266                                         GFP_ATOMIC);
1267         return 0;
1268 }
1269
1270 /**
1271  *      skb_cow - copy header of skb when it is required
1272  *      @skb: buffer to cow
1273  *      @headroom: needed headroom
1274  *
1275  *      If the skb passed lacks sufficient headroom or its data part
1276  *      is shared, data is reallocated. If reallocation fails, an error
1277  *      is returned and original skb is not changed.
1278  *
1279  *      The result is skb with writable area skb->head...skb->tail
1280  *      and at least @headroom of space at head.
1281  */
1282 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1283 {
1284         return __skb_cow(skb, headroom, skb_cloned(skb));
1285 }
1286
1287 /**
1288  *      skb_cow_head - skb_cow but only making the head writable
1289  *      @skb: buffer to cow
1290  *      @headroom: needed headroom
1291  *
1292  *      This function is identical to skb_cow except that we replace the
1293  *      skb_cloned check by skb_header_cloned.  It should be used when
1294  *      you only need to push on some header and do not need to modify
1295  *      the data.
1296  */
1297 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1298 {
1299         return __skb_cow(skb, headroom, skb_header_cloned(skb));
1300 }
1301
1302 /**
1303  *      skb_padto       - pad an skbuff up to a minimal size
1304  *      @skb: buffer to pad
1305  *      @len: minimal length
1306  *
1307  *      Pads up a buffer to ensure the trailing bytes exist and are
1308  *      blanked. If the buffer already contains sufficient data it
1309  *      is untouched. Otherwise it is extended. Returns zero on
1310  *      success. The skb is freed on error.
1311  */
1312  
1313 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1314 {
1315         unsigned int size = skb->len;
1316         if (likely(size >= len))
1317                 return 0;
1318         return skb_pad(skb, len-size);
1319 }
1320
1321 static inline int skb_add_data(struct sk_buff *skb,
1322                                char __user *from, int copy)
1323 {
1324         const int off = skb->len;
1325
1326         if (skb->ip_summed == CHECKSUM_NONE) {
1327                 int err = 0;
1328                 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1329                                                             copy, 0, &err);
1330                 if (!err) {
1331                         skb->csum = csum_block_add(skb->csum, csum, off);
1332                         return 0;
1333                 }
1334         } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1335                 return 0;
1336
1337         __skb_trim(skb, off);
1338         return -EFAULT;
1339 }
1340
1341 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1342                                    struct page *page, int off)
1343 {
1344         if (i) {
1345                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1346
1347                 return page == frag->page &&
1348                        off == frag->page_offset + frag->size;
1349         }
1350         return 0;
1351 }
1352
1353 static inline int __skb_linearize(struct sk_buff *skb)
1354 {
1355         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1356 }
1357
1358 /**
1359  *      skb_linearize - convert paged skb to linear one
1360  *      @skb: buffer to linarize
1361  *
1362  *      If there is no free memory -ENOMEM is returned, otherwise zero
1363  *      is returned and the old skb data released.
1364  */
1365 static inline int skb_linearize(struct sk_buff *skb)
1366 {
1367         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1368 }
1369
1370 /**
1371  *      skb_linearize_cow - make sure skb is linear and writable
1372  *      @skb: buffer to process
1373  *
1374  *      If there is no free memory -ENOMEM is returned, otherwise zero
1375  *      is returned and the old skb data released.
1376  */
1377 static inline int skb_linearize_cow(struct sk_buff *skb)
1378 {
1379         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1380                __skb_linearize(skb) : 0;
1381 }
1382
1383 /**
1384  *      skb_postpull_rcsum - update checksum for received skb after pull
1385  *      @skb: buffer to update
1386  *      @start: start of data before pull
1387  *      @len: length of data pulled
1388  *
1389  *      After doing a pull on a received packet, you need to call this to
1390  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1391  *      CHECKSUM_NONE so that it can be recomputed from scratch.
1392  */
1393
1394 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1395                                       const void *start, unsigned int len)
1396 {
1397         if (skb->ip_summed == CHECKSUM_COMPLETE)
1398                 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1399 }
1400
1401 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1402
1403 /**
1404  *      pskb_trim_rcsum - trim received skb and update checksum
1405  *      @skb: buffer to trim
1406  *      @len: new length
1407  *
1408  *      This is exactly the same as pskb_trim except that it ensures the
1409  *      checksum of received packets are still valid after the operation.
1410  */
1411
1412 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1413 {
1414         if (likely(len >= skb->len))
1415                 return 0;
1416         if (skb->ip_summed == CHECKSUM_COMPLETE)
1417                 skb->ip_summed = CHECKSUM_NONE;
1418         return __pskb_trim(skb, len);
1419 }
1420
1421 #define skb_queue_walk(queue, skb) \
1422                 for (skb = (queue)->next;                                       \
1423                      prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1424                      skb = skb->next)
1425
1426 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
1427                 for (skb = (queue)->next, tmp = skb->next;                      \
1428                      skb != (struct sk_buff *)(queue);                          \
1429                      skb = tmp, tmp = skb->next)
1430
1431 #define skb_queue_reverse_walk(queue, skb) \
1432                 for (skb = (queue)->prev;                                       \
1433                      prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1434                      skb = skb->prev)
1435
1436
1437 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1438                                            int *peeked, int *err);
1439 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1440                                          int noblock, int *err);
1441 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1442                                      struct poll_table_struct *wait);
1443 extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1444                                                int offset, struct iovec *to,
1445                                                int size);
1446 extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1447                                                         int hlen,
1448                                                         struct iovec *iov);
1449 extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1450 extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1451                                          unsigned int flags);
1452 extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1453                                     int len, __wsum csum);
1454 extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1455                                      void *to, int len);
1456 extern int             skb_store_bits(struct sk_buff *skb, int offset,
1457                                       const void *from, int len);
1458 extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1459                                               int offset, u8 *to, int len,
1460                                               __wsum csum);
1461 extern int             skb_splice_bits(struct sk_buff *skb,
1462                                                 unsigned int offset,
1463                                                 struct pipe_inode_info *pipe,
1464                                                 unsigned int len,
1465                                                 unsigned int flags);
1466 extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1467 extern void            skb_split(struct sk_buff *skb,
1468                                  struct sk_buff *skb1, const u32 len);
1469
1470 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1471
1472 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1473                                        int len, void *buffer)
1474 {
1475         int hlen = skb_headlen(skb);
1476
1477         if (hlen - offset >= len)
1478                 return skb->data + offset;
1479
1480         if (skb_copy_bits(skb, offset, buffer, len) < 0)
1481                 return NULL;
1482
1483         return buffer;
1484 }
1485
1486 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1487                                              void *to,
1488                                              const unsigned int len)
1489 {
1490         memcpy(to, skb->data, len);
1491 }
1492
1493 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1494                                                     const int offset, void *to,
1495                                                     const unsigned int len)
1496 {
1497         memcpy(to, skb->data + offset, len);
1498 }
1499
1500 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1501                                            const void *from,
1502                                            const unsigned int len)
1503 {
1504         memcpy(skb->data, from, len);
1505 }
1506
1507 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1508                                                   const int offset,
1509                                                   const void *from,
1510                                                   const unsigned int len)
1511 {
1512         memcpy(skb->data + offset, from, len);
1513 }
1514
1515 extern void skb_init(void);
1516
1517 /**
1518  *      skb_get_timestamp - get timestamp from a skb
1519  *      @skb: skb to get stamp from
1520  *      @stamp: pointer to struct timeval to store stamp in
1521  *
1522  *      Timestamps are stored in the skb as offsets to a base timestamp.
1523  *      This function converts the offset back to a struct timeval and stores
1524  *      it in stamp.
1525  */
1526 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1527 {
1528         *stamp = ktime_to_timeval(skb->tstamp);
1529 }
1530
1531 static inline void __net_timestamp(struct sk_buff *skb)
1532 {
1533         skb->tstamp = ktime_get_real();
1534 }
1535
1536 static inline ktime_t net_timedelta(ktime_t t)
1537 {
1538         return ktime_sub(ktime_get_real(), t);
1539 }
1540
1541 static inline ktime_t net_invalid_timestamp(void)
1542 {
1543         return ktime_set(0, 0);
1544 }
1545
1546 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1547 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1548
1549 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1550 {
1551         return skb->ip_summed & CHECKSUM_UNNECESSARY;
1552 }
1553
1554 /**
1555  *      skb_checksum_complete - Calculate checksum of an entire packet
1556  *      @skb: packet to process
1557  *
1558  *      This function calculates the checksum over the entire packet plus
1559  *      the value of skb->csum.  The latter can be used to supply the
1560  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1561  *      checksum.
1562  *
1563  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1564  *      this function can be used to verify that checksum on received
1565  *      packets.  In that case the function should return zero if the
1566  *      checksum is correct.  In particular, this function will return zero
1567  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1568  *      hardware has already verified the correctness of the checksum.
1569  */
1570 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1571 {
1572         return skb_csum_unnecessary(skb) ?
1573                0 : __skb_checksum_complete(skb);
1574 }
1575
1576 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1577 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1578 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1579 {
1580         if (nfct && atomic_dec_and_test(&nfct->use))
1581                 nf_conntrack_destroy(nfct);
1582 }
1583 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1584 {
1585         if (nfct)
1586                 atomic_inc(&nfct->use);
1587 }
1588 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1589 {
1590         if (skb)
1591                 atomic_inc(&skb->users);
1592 }
1593 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1594 {
1595         if (skb)
1596                 kfree_skb(skb);
1597 }
1598 #endif
1599 #ifdef CONFIG_BRIDGE_NETFILTER
1600 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1601 {
1602         if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1603                 kfree(nf_bridge);
1604 }
1605 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1606 {
1607         if (nf_bridge)
1608                 atomic_inc(&nf_bridge->use);
1609 }
1610 #endif /* CONFIG_BRIDGE_NETFILTER */
1611 static inline void nf_reset(struct sk_buff *skb)
1612 {
1613 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1614         nf_conntrack_put(skb->nfct);
1615         skb->nfct = NULL;
1616         nf_conntrack_put_reasm(skb->nfct_reasm);
1617         skb->nfct_reasm = NULL;
1618 #endif
1619 #ifdef CONFIG_BRIDGE_NETFILTER
1620         nf_bridge_put(skb->nf_bridge);
1621         skb->nf_bridge = NULL;
1622 #endif
1623 }
1624
1625 /* Note: This doesn't put any conntrack and bridge info in dst. */
1626 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1627 {
1628 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1629         dst->nfct = src->nfct;
1630         nf_conntrack_get(src->nfct);
1631         dst->nfctinfo = src->nfctinfo;
1632         dst->nfct_reasm = src->nfct_reasm;
1633         nf_conntrack_get_reasm(src->nfct_reasm);
1634 #endif
1635 #ifdef CONFIG_BRIDGE_NETFILTER
1636         dst->nf_bridge  = src->nf_bridge;
1637         nf_bridge_get(src->nf_bridge);
1638 #endif
1639 }
1640
1641 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1642 {
1643 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1644         nf_conntrack_put(dst->nfct);
1645         nf_conntrack_put_reasm(dst->nfct_reasm);
1646 #endif
1647 #ifdef CONFIG_BRIDGE_NETFILTER
1648         nf_bridge_put(dst->nf_bridge);
1649 #endif
1650         __nf_copy(dst, src);
1651 }
1652
1653 #ifdef CONFIG_NETWORK_SECMARK
1654 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1655 {
1656         to->secmark = from->secmark;
1657 }
1658
1659 static inline void skb_init_secmark(struct sk_buff *skb)
1660 {
1661         skb->secmark = 0;
1662 }
1663 #else
1664 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1665 { }
1666
1667 static inline void skb_init_secmark(struct sk_buff *skb)
1668 { }
1669 #endif
1670
1671 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1672 {
1673 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1674         skb->queue_mapping = queue_mapping;
1675 #endif
1676 }
1677
1678 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1679 {
1680 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1681         return skb->queue_mapping;
1682 #else
1683         return 0;
1684 #endif
1685 }
1686
1687 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1688 {
1689 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1690         to->queue_mapping = from->queue_mapping;
1691 #endif
1692 }
1693
1694 static inline int skb_is_gso(const struct sk_buff *skb)
1695 {
1696         return skb_shinfo(skb)->gso_size;
1697 }
1698
1699 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1700 {
1701         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1702 }
1703
1704 static inline void skb_forward_csum(struct sk_buff *skb)
1705 {
1706         /* Unfortunately we don't support this one.  Any brave souls? */
1707         if (skb->ip_summed == CHECKSUM_COMPLETE)
1708                 skb->ip_summed = CHECKSUM_NONE;
1709 }
1710
1711 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1712 #endif  /* __KERNEL__ */
1713 #endif  /* _LINUX_SKBUFF_H */