[libata] ahci: add SiS PCI IDs
[pandora-kernel.git] / include / linux / security.h
1 /*
2  * Linux Security plug
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8  * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9  *
10  *      This program is free software; you can redistribute it and/or modify
11  *      it under the terms of the GNU General Public License as published by
12  *      the Free Software Foundation; either version 2 of the License, or
13  *      (at your option) any later version.
14  *
15  *      Due to this file being licensed under the GPL there is controversy over
16  *      whether this permits you to write a module that #includes this file
17  *      without placing your module under the GPL.  Please consult a lawyer for
18  *      advice before doing this.
19  *
20  */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34
35 struct ctl_table;
36
37 /*
38  * These functions are in security/capability.c and are used
39  * as the default capabilities functions
40  */
41 extern int cap_capable (struct task_struct *tsk, int cap);
42 extern int cap_settime (struct timespec *ts, struct timezone *tz);
43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_bprm_set_security (struct linux_binprm *bprm);
48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
49 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
51 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
53 extern void cap_task_reparent_to_init (struct task_struct *p);
54 extern int cap_syslog (int type);
55 extern int cap_vm_enough_memory (long pages);
56
57 struct msghdr;
58 struct sk_buff;
59 struct sock;
60 struct sockaddr;
61 struct socket;
62 struct flowi;
63 struct dst_entry;
64 struct xfrm_selector;
65 struct xfrm_policy;
66 struct xfrm_state;
67 struct xfrm_user_sec_ctx;
68
69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
70 extern int cap_netlink_recv(struct sk_buff *skb, int cap);
71
72 /*
73  * Values used in the task_security_ops calls
74  */
75 /* setuid or setgid, id0 == uid or gid */
76 #define LSM_SETID_ID    1
77
78 /* setreuid or setregid, id0 == real, id1 == eff */
79 #define LSM_SETID_RE    2
80
81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
82 #define LSM_SETID_RES   4
83
84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
85 #define LSM_SETID_FS    8
86
87 /* forward declares to avoid warnings */
88 struct nfsctl_arg;
89 struct sched_param;
90 struct swap_info_struct;
91
92 /* bprm_apply_creds unsafe reasons */
93 #define LSM_UNSAFE_SHARE        1
94 #define LSM_UNSAFE_PTRACE       2
95 #define LSM_UNSAFE_PTRACE_CAP   4
96
97 #ifdef CONFIG_SECURITY
98
99 /**
100  * struct security_operations - main security structure
101  *
102  * Security hooks for program execution operations.
103  *
104  * @bprm_alloc_security:
105  *      Allocate and attach a security structure to the @bprm->security field.
106  *      The security field is initialized to NULL when the bprm structure is
107  *      allocated.
108  *      @bprm contains the linux_binprm structure to be modified.
109  *      Return 0 if operation was successful.
110  * @bprm_free_security:
111  *      @bprm contains the linux_binprm structure to be modified.
112  *      Deallocate and clear the @bprm->security field.
113  * @bprm_apply_creds:
114  *      Compute and set the security attributes of a process being transformed
115  *      by an execve operation based on the old attributes (current->security)
116  *      and the information saved in @bprm->security by the set_security hook.
117  *      Since this hook function (and its caller) are void, this hook can not
118  *      return an error.  However, it can leave the security attributes of the
119  *      process unchanged if an access failure occurs at this point.
120  *      bprm_apply_creds is called under task_lock.  @unsafe indicates various
121  *      reasons why it may be unsafe to change security state.
122  *      @bprm contains the linux_binprm structure.
123  * @bprm_post_apply_creds:
124  *      Runs after bprm_apply_creds with the task_lock dropped, so that
125  *      functions which cannot be called safely under the task_lock can
126  *      be used.  This hook is a good place to perform state changes on
127  *      the process such as closing open file descriptors to which access
128  *      is no longer granted if the attributes were changed.
129  *      Note that a security module might need to save state between
130  *      bprm_apply_creds and bprm_post_apply_creds to store the decision
131  *      on whether the process may proceed.
132  *      @bprm contains the linux_binprm structure.
133  * @bprm_set_security:
134  *      Save security information in the bprm->security field, typically based
135  *      on information about the bprm->file, for later use by the apply_creds
136  *      hook.  This hook may also optionally check permissions (e.g. for
137  *      transitions between security domains).
138  *      This hook may be called multiple times during a single execve, e.g. for
139  *      interpreters.  The hook can tell whether it has already been called by
140  *      checking to see if @bprm->security is non-NULL.  If so, then the hook
141  *      may decide either to retain the security information saved earlier or
142  *      to replace it.
143  *      @bprm contains the linux_binprm structure.
144  *      Return 0 if the hook is successful and permission is granted.
145  * @bprm_check_security:
146  *      This hook mediates the point when a search for a binary handler will
147  *      begin.  It allows a check the @bprm->security value which is set in
148  *      the preceding set_security call.  The primary difference from
149  *      set_security is that the argv list and envp list are reliably
150  *      available in @bprm.  This hook may be called multiple times
151  *      during a single execve; and in each pass set_security is called
152  *      first.
153  *      @bprm contains the linux_binprm structure.
154  *      Return 0 if the hook is successful and permission is granted.
155  * @bprm_secureexec:
156  *      Return a boolean value (0 or 1) indicating whether a "secure exec" 
157  *      is required.  The flag is passed in the auxiliary table
158  *      on the initial stack to the ELF interpreter to indicate whether libc 
159  *      should enable secure mode.
160  *      @bprm contains the linux_binprm structure.
161  *
162  * Security hooks for filesystem operations.
163  *
164  * @sb_alloc_security:
165  *      Allocate and attach a security structure to the sb->s_security field.
166  *      The s_security field is initialized to NULL when the structure is
167  *      allocated.
168  *      @sb contains the super_block structure to be modified.
169  *      Return 0 if operation was successful.
170  * @sb_free_security:
171  *      Deallocate and clear the sb->s_security field.
172  *      @sb contains the super_block structure to be modified.
173  * @sb_statfs:
174  *      Check permission before obtaining filesystem statistics for the @mnt
175  *      mountpoint.
176  *      @dentry is a handle on the superblock for the filesystem.
177  *      Return 0 if permission is granted.  
178  * @sb_mount:
179  *      Check permission before an object specified by @dev_name is mounted on
180  *      the mount point named by @nd.  For an ordinary mount, @dev_name
181  *      identifies a device if the file system type requires a device.  For a
182  *      remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
183  *      loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
184  *      pathname of the object being mounted.
185  *      @dev_name contains the name for object being mounted.
186  *      @nd contains the nameidata structure for mount point object.
187  *      @type contains the filesystem type.
188  *      @flags contains the mount flags.
189  *      @data contains the filesystem-specific data.
190  *      Return 0 if permission is granted.
191  * @sb_copy_data:
192  *      Allow mount option data to be copied prior to parsing by the filesystem,
193  *      so that the security module can extract security-specific mount
194  *      options cleanly (a filesystem may modify the data e.g. with strsep()).
195  *      This also allows the original mount data to be stripped of security-
196  *      specific options to avoid having to make filesystems aware of them.
197  *      @type the type of filesystem being mounted.
198  *      @orig the original mount data copied from userspace.
199  *      @copy copied data which will be passed to the security module.
200  *      Returns 0 if the copy was successful.
201  * @sb_check_sb:
202  *      Check permission before the device with superblock @mnt->sb is mounted
203  *      on the mount point named by @nd.
204  *      @mnt contains the vfsmount for device being mounted.
205  *      @nd contains the nameidata object for the mount point.
206  *      Return 0 if permission is granted.
207  * @sb_umount:
208  *      Check permission before the @mnt file system is unmounted.
209  *      @mnt contains the mounted file system.
210  *      @flags contains the unmount flags, e.g. MNT_FORCE.
211  *      Return 0 if permission is granted.
212  * @sb_umount_close:
213  *      Close any files in the @mnt mounted filesystem that are held open by
214  *      the security module.  This hook is called during an umount operation
215  *      prior to checking whether the filesystem is still busy.
216  *      @mnt contains the mounted filesystem.
217  * @sb_umount_busy:
218  *      Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
219  *      any files that were closed by umount_close.  This hook is called during
220  *      an umount operation if the umount fails after a call to the
221  *      umount_close hook.
222  *      @mnt contains the mounted filesystem.
223  * @sb_post_remount:
224  *      Update the security module's state when a filesystem is remounted.
225  *      This hook is only called if the remount was successful.
226  *      @mnt contains the mounted file system.
227  *      @flags contains the new filesystem flags.
228  *      @data contains the filesystem-specific data.
229  * @sb_post_mountroot:
230  *      Update the security module's state when the root filesystem is mounted.
231  *      This hook is only called if the mount was successful.
232  * @sb_post_addmount:
233  *      Update the security module's state when a filesystem is mounted.
234  *      This hook is called any time a mount is successfully grafetd to
235  *      the tree.
236  *      @mnt contains the mounted filesystem.
237  *      @mountpoint_nd contains the nameidata structure for the mount point.
238  * @sb_pivotroot:
239  *      Check permission before pivoting the root filesystem.
240  *      @old_nd contains the nameidata structure for the new location of the current root (put_old).
241  *      @new_nd contains the nameidata structure for the new root (new_root).
242  *      Return 0 if permission is granted.
243  * @sb_post_pivotroot:
244  *      Update module state after a successful pivot.
245  *      @old_nd contains the nameidata structure for the old root.
246  *      @new_nd contains the nameidata structure for the new root.
247  *
248  * Security hooks for inode operations.
249  *
250  * @inode_alloc_security:
251  *      Allocate and attach a security structure to @inode->i_security.  The
252  *      i_security field is initialized to NULL when the inode structure is
253  *      allocated.
254  *      @inode contains the inode structure.
255  *      Return 0 if operation was successful.
256  * @inode_free_security:
257  *      @inode contains the inode structure.
258  *      Deallocate the inode security structure and set @inode->i_security to
259  *      NULL. 
260  * @inode_init_security:
261  *      Obtain the security attribute name suffix and value to set on a newly
262  *      created inode and set up the incore security field for the new inode.
263  *      This hook is called by the fs code as part of the inode creation
264  *      transaction and provides for atomic labeling of the inode, unlike
265  *      the post_create/mkdir/... hooks called by the VFS.  The hook function
266  *      is expected to allocate the name and value via kmalloc, with the caller
267  *      being responsible for calling kfree after using them.
268  *      If the security module does not use security attributes or does
269  *      not wish to put a security attribute on this particular inode,
270  *      then it should return -EOPNOTSUPP to skip this processing.
271  *      @inode contains the inode structure of the newly created inode.
272  *      @dir contains the inode structure of the parent directory.
273  *      @name will be set to the allocated name suffix (e.g. selinux).
274  *      @value will be set to the allocated attribute value.
275  *      @len will be set to the length of the value.
276  *      Returns 0 if @name and @value have been successfully set,
277  *              -EOPNOTSUPP if no security attribute is needed, or
278  *              -ENOMEM on memory allocation failure.
279  * @inode_create:
280  *      Check permission to create a regular file.
281  *      @dir contains inode structure of the parent of the new file.
282  *      @dentry contains the dentry structure for the file to be created.
283  *      @mode contains the file mode of the file to be created.
284  *      Return 0 if permission is granted.
285  * @inode_link:
286  *      Check permission before creating a new hard link to a file.
287  *      @old_dentry contains the dentry structure for an existing link to the file.
288  *      @dir contains the inode structure of the parent directory of the new link.
289  *      @new_dentry contains the dentry structure for the new link.
290  *      Return 0 if permission is granted.
291  * @inode_unlink:
292  *      Check the permission to remove a hard link to a file. 
293  *      @dir contains the inode structure of parent directory of the file.
294  *      @dentry contains the dentry structure for file to be unlinked.
295  *      Return 0 if permission is granted.
296  * @inode_symlink:
297  *      Check the permission to create a symbolic link to a file.
298  *      @dir contains the inode structure of parent directory of the symbolic link.
299  *      @dentry contains the dentry structure of the symbolic link.
300  *      @old_name contains the pathname of file.
301  *      Return 0 if permission is granted.
302  * @inode_mkdir:
303  *      Check permissions to create a new directory in the existing directory
304  *      associated with inode strcture @dir. 
305  *      @dir containst the inode structure of parent of the directory to be created.
306  *      @dentry contains the dentry structure of new directory.
307  *      @mode contains the mode of new directory.
308  *      Return 0 if permission is granted.
309  * @inode_rmdir:
310  *      Check the permission to remove a directory.
311  *      @dir contains the inode structure of parent of the directory to be removed.
312  *      @dentry contains the dentry structure of directory to be removed.
313  *      Return 0 if permission is granted.
314  * @inode_mknod:
315  *      Check permissions when creating a special file (or a socket or a fifo
316  *      file created via the mknod system call).  Note that if mknod operation
317  *      is being done for a regular file, then the create hook will be called
318  *      and not this hook.
319  *      @dir contains the inode structure of parent of the new file.
320  *      @dentry contains the dentry structure of the new file.
321  *      @mode contains the mode of the new file.
322  *      @dev contains the the device number.
323  *      Return 0 if permission is granted.
324  * @inode_rename:
325  *      Check for permission to rename a file or directory.
326  *      @old_dir contains the inode structure for parent of the old link.
327  *      @old_dentry contains the dentry structure of the old link.
328  *      @new_dir contains the inode structure for parent of the new link.
329  *      @new_dentry contains the dentry structure of the new link.
330  *      Return 0 if permission is granted.
331  * @inode_readlink:
332  *      Check the permission to read the symbolic link.
333  *      @dentry contains the dentry structure for the file link.
334  *      Return 0 if permission is granted.
335  * @inode_follow_link:
336  *      Check permission to follow a symbolic link when looking up a pathname.
337  *      @dentry contains the dentry structure for the link.
338  *      @nd contains the nameidata structure for the parent directory.
339  *      Return 0 if permission is granted.
340  * @inode_permission:
341  *      Check permission before accessing an inode.  This hook is called by the
342  *      existing Linux permission function, so a security module can use it to
343  *      provide additional checking for existing Linux permission checks.
344  *      Notice that this hook is called when a file is opened (as well as many
345  *      other operations), whereas the file_security_ops permission hook is
346  *      called when the actual read/write operations are performed.
347  *      @inode contains the inode structure to check.
348  *      @mask contains the permission mask.
349  *     @nd contains the nameidata (may be NULL).
350  *      Return 0 if permission is granted.
351  * @inode_setattr:
352  *      Check permission before setting file attributes.  Note that the kernel
353  *      call to notify_change is performed from several locations, whenever
354  *      file attributes change (such as when a file is truncated, chown/chmod
355  *      operations, transferring disk quotas, etc).
356  *      @dentry contains the dentry structure for the file.
357  *      @attr is the iattr structure containing the new file attributes.
358  *      Return 0 if permission is granted.
359  * @inode_getattr:
360  *      Check permission before obtaining file attributes.
361  *      @mnt is the vfsmount where the dentry was looked up
362  *      @dentry contains the dentry structure for the file.
363  *      Return 0 if permission is granted.
364  * @inode_delete:
365  *      @inode contains the inode structure for deleted inode.
366  *      This hook is called when a deleted inode is released (i.e. an inode
367  *      with no hard links has its use count drop to zero).  A security module
368  *      can use this hook to release any persistent label associated with the
369  *      inode.
370  * @inode_setxattr:
371  *      Check permission before setting the extended attributes
372  *      @value identified by @name for @dentry.
373  *      Return 0 if permission is granted.
374  * @inode_post_setxattr:
375  *      Update inode security field after successful setxattr operation.
376  *      @value identified by @name for @dentry.
377  * @inode_getxattr:
378  *      Check permission before obtaining the extended attributes
379  *      identified by @name for @dentry.
380  *      Return 0 if permission is granted.
381  * @inode_listxattr:
382  *      Check permission before obtaining the list of extended attribute 
383  *      names for @dentry.
384  *      Return 0 if permission is granted.
385  * @inode_removexattr:
386  *      Check permission before removing the extended attribute
387  *      identified by @name for @dentry.
388  *      Return 0 if permission is granted.
389  * @inode_getsecurity:
390  *      Copy the extended attribute representation of the security label 
391  *      associated with @name for @inode into @buffer.  @buffer may be
392  *      NULL to request the size of the buffer required.  @size indicates
393  *      the size of @buffer in bytes.  Note that @name is the remainder
394  *      of the attribute name after the security. prefix has been removed.
395  *      @err is the return value from the preceding fs getxattr call,
396  *      and can be used by the security module to determine whether it
397  *      should try and canonicalize the attribute value.
398  *      Return number of bytes used/required on success.
399  * @inode_setsecurity:
400  *      Set the security label associated with @name for @inode from the
401  *      extended attribute value @value.  @size indicates the size of the
402  *      @value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
403  *      Note that @name is the remainder of the attribute name after the 
404  *      security. prefix has been removed.
405  *      Return 0 on success.
406  * @inode_listsecurity:
407  *      Copy the extended attribute names for the security labels
408  *      associated with @inode into @buffer.  The maximum size of @buffer
409  *      is specified by @buffer_size.  @buffer may be NULL to request
410  *      the size of the buffer required.
411  *      Returns number of bytes used/required on success.
412  *
413  * Security hooks for file operations
414  *
415  * @file_permission:
416  *      Check file permissions before accessing an open file.  This hook is
417  *      called by various operations that read or write files.  A security
418  *      module can use this hook to perform additional checking on these
419  *      operations, e.g.  to revalidate permissions on use to support privilege
420  *      bracketing or policy changes.  Notice that this hook is used when the
421  *      actual read/write operations are performed, whereas the
422  *      inode_security_ops hook is called when a file is opened (as well as
423  *      many other operations).
424  *      Caveat:  Although this hook can be used to revalidate permissions for
425  *      various system call operations that read or write files, it does not
426  *      address the revalidation of permissions for memory-mapped files.
427  *      Security modules must handle this separately if they need such
428  *      revalidation.
429  *      @file contains the file structure being accessed.
430  *      @mask contains the requested permissions.
431  *      Return 0 if permission is granted.
432  * @file_alloc_security:
433  *      Allocate and attach a security structure to the file->f_security field.
434  *      The security field is initialized to NULL when the structure is first
435  *      created.
436  *      @file contains the file structure to secure.
437  *      Return 0 if the hook is successful and permission is granted.
438  * @file_free_security:
439  *      Deallocate and free any security structures stored in file->f_security.
440  *      @file contains the file structure being modified.
441  * @file_ioctl:
442  *      @file contains the file structure.
443  *      @cmd contains the operation to perform.
444  *      @arg contains the operational arguments.
445  *      Check permission for an ioctl operation on @file.  Note that @arg can
446  *      sometimes represents a user space pointer; in other cases, it may be a
447  *      simple integer value.  When @arg represents a user space pointer, it
448  *      should never be used by the security module.
449  *      Return 0 if permission is granted.
450  * @file_mmap :
451  *      Check permissions for a mmap operation.  The @file may be NULL, e.g.
452  *      if mapping anonymous memory.
453  *      @file contains the file structure for file to map (may be NULL).
454  *      @reqprot contains the protection requested by the application.
455  *      @prot contains the protection that will be applied by the kernel.
456  *      @flags contains the operational flags.
457  *      Return 0 if permission is granted.
458  * @file_mprotect:
459  *      Check permissions before changing memory access permissions.
460  *      @vma contains the memory region to modify.
461  *      @reqprot contains the protection requested by the application.
462  *      @prot contains the protection that will be applied by the kernel.
463  *      Return 0 if permission is granted.
464  * @file_lock:
465  *      Check permission before performing file locking operations.
466  *      Note: this hook mediates both flock and fcntl style locks.
467  *      @file contains the file structure.
468  *      @cmd contains the posix-translated lock operation to perform
469  *      (e.g. F_RDLCK, F_WRLCK).
470  *      Return 0 if permission is granted.
471  * @file_fcntl:
472  *      Check permission before allowing the file operation specified by @cmd
473  *      from being performed on the file @file.  Note that @arg can sometimes
474  *      represents a user space pointer; in other cases, it may be a simple
475  *      integer value.  When @arg represents a user space pointer, it should
476  *      never be used by the security module.
477  *      @file contains the file structure.
478  *      @cmd contains the operation to be performed.
479  *      @arg contains the operational arguments.
480  *      Return 0 if permission is granted.
481  * @file_set_fowner:
482  *      Save owner security information (typically from current->security) in
483  *      file->f_security for later use by the send_sigiotask hook.
484  *      @file contains the file structure to update.
485  *      Return 0 on success.
486  * @file_send_sigiotask:
487  *      Check permission for the file owner @fown to send SIGIO or SIGURG to the
488  *      process @tsk.  Note that this hook is sometimes called from interrupt.
489  *      Note that the fown_struct, @fown, is never outside the context of a
490  *      struct file, so the file structure (and associated security information)
491  *      can always be obtained:
492  *              (struct file *)((long)fown - offsetof(struct file,f_owner));
493  *      @tsk contains the structure of task receiving signal.
494  *      @fown contains the file owner information.
495  *      @sig is the signal that will be sent.  When 0, kernel sends SIGIO.
496  *      Return 0 if permission is granted.
497  * @file_receive:
498  *      This hook allows security modules to control the ability of a process
499  *      to receive an open file descriptor via socket IPC.
500  *      @file contains the file structure being received.
501  *      Return 0 if permission is granted.
502  *
503  * Security hooks for task operations.
504  *
505  * @task_create:
506  *      Check permission before creating a child process.  See the clone(2)
507  *      manual page for definitions of the @clone_flags.
508  *      @clone_flags contains the flags indicating what should be shared.
509  *      Return 0 if permission is granted.
510  * @task_alloc_security:
511  *      @p contains the task_struct for child process.
512  *      Allocate and attach a security structure to the p->security field. The
513  *      security field is initialized to NULL when the task structure is
514  *      allocated.
515  *      Return 0 if operation was successful.
516  * @task_free_security:
517  *      @p contains the task_struct for process.
518  *      Deallocate and clear the p->security field.
519  * @task_setuid:
520  *      Check permission before setting one or more of the user identity
521  *      attributes of the current process.  The @flags parameter indicates
522  *      which of the set*uid system calls invoked this hook and how to
523  *      interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
524  *      definitions at the beginning of this file for the @flags values and
525  *      their meanings.
526  *      @id0 contains a uid.
527  *      @id1 contains a uid.
528  *      @id2 contains a uid.
529  *      @flags contains one of the LSM_SETID_* values.
530  *      Return 0 if permission is granted.
531  * @task_post_setuid:
532  *      Update the module's state after setting one or more of the user
533  *      identity attributes of the current process.  The @flags parameter
534  *      indicates which of the set*uid system calls invoked this hook.  If
535  *      @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
536  *      parameters are not used.
537  *      @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
538  *      @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
539  *      @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
540  *      @flags contains one of the LSM_SETID_* values.
541  *      Return 0 on success.
542  * @task_setgid:
543  *      Check permission before setting one or more of the group identity
544  *      attributes of the current process.  The @flags parameter indicates
545  *      which of the set*gid system calls invoked this hook and how to
546  *      interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
547  *      definitions at the beginning of this file for the @flags values and
548  *      their meanings.
549  *      @id0 contains a gid.
550  *      @id1 contains a gid.
551  *      @id2 contains a gid.
552  *      @flags contains one of the LSM_SETID_* values.
553  *      Return 0 if permission is granted.
554  * @task_setpgid:
555  *      Check permission before setting the process group identifier of the
556  *      process @p to @pgid.
557  *      @p contains the task_struct for process being modified.
558  *      @pgid contains the new pgid.
559  *      Return 0 if permission is granted.
560  * @task_getpgid:
561  *      Check permission before getting the process group identifier of the
562  *      process @p.
563  *      @p contains the task_struct for the process.
564  *      Return 0 if permission is granted.
565  * @task_getsid:
566  *      Check permission before getting the session identifier of the process
567  *      @p.
568  *      @p contains the task_struct for the process.
569  *      Return 0 if permission is granted.
570  * @task_getsecid:
571  *      Retrieve the security identifier of the process @p.
572  *      @p contains the task_struct for the process and place is into @secid.
573  * @task_setgroups:
574  *      Check permission before setting the supplementary group set of the
575  *      current process.
576  *      @group_info contains the new group information.
577  *      Return 0 if permission is granted.
578  * @task_setnice:
579  *      Check permission before setting the nice value of @p to @nice.
580  *      @p contains the task_struct of process.
581  *      @nice contains the new nice value.
582  *      Return 0 if permission is granted.
583  * @task_setioprio
584  *      Check permission before setting the ioprio value of @p to @ioprio.
585  *      @p contains the task_struct of process.
586  *      @ioprio contains the new ioprio value
587  *      Return 0 if permission is granted.
588  * @task_getioprio
589  *      Check permission before getting the ioprio value of @p.
590  *      @p contains the task_struct of process.
591  *      Return 0 if permission is granted.
592  * @task_setrlimit:
593  *      Check permission before setting the resource limits of the current
594  *      process for @resource to @new_rlim.  The old resource limit values can
595  *      be examined by dereferencing (current->signal->rlim + resource).
596  *      @resource contains the resource whose limit is being set.
597  *      @new_rlim contains the new limits for @resource.
598  *      Return 0 if permission is granted.
599  * @task_setscheduler:
600  *      Check permission before setting scheduling policy and/or parameters of
601  *      process @p based on @policy and @lp.
602  *      @p contains the task_struct for process.
603  *      @policy contains the scheduling policy.
604  *      @lp contains the scheduling parameters.
605  *      Return 0 if permission is granted.
606  * @task_getscheduler:
607  *      Check permission before obtaining scheduling information for process
608  *      @p.
609  *      @p contains the task_struct for process.
610  *      Return 0 if permission is granted.
611  * @task_movememory
612  *      Check permission before moving memory owned by process @p.
613  *      @p contains the task_struct for process.
614  *      Return 0 if permission is granted.
615  * @task_kill:
616  *      Check permission before sending signal @sig to @p.  @info can be NULL,
617  *      the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
618  *      SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
619  *      from the kernel and should typically be permitted.
620  *      SIGIO signals are handled separately by the send_sigiotask hook in
621  *      file_security_ops.
622  *      @p contains the task_struct for process.
623  *      @info contains the signal information.
624  *      @sig contains the signal value.
625  *      @secid contains the sid of the process where the signal originated
626  *      Return 0 if permission is granted.
627  * @task_wait:
628  *      Check permission before allowing a process to reap a child process @p
629  *      and collect its status information.
630  *      @p contains the task_struct for process.
631  *      Return 0 if permission is granted.
632  * @task_prctl:
633  *      Check permission before performing a process control operation on the
634  *      current process.
635  *      @option contains the operation.
636  *      @arg2 contains a argument.
637  *      @arg3 contains a argument.
638  *      @arg4 contains a argument.
639  *      @arg5 contains a argument.
640  *      Return 0 if permission is granted.
641  * @task_reparent_to_init:
642  *      Set the security attributes in @p->security for a kernel thread that
643  *      is being reparented to the init task.
644  *      @p contains the task_struct for the kernel thread.
645  * @task_to_inode:
646  *      Set the security attributes for an inode based on an associated task's
647  *      security attributes, e.g. for /proc/pid inodes.
648  *      @p contains the task_struct for the task.
649  *      @inode contains the inode structure for the inode.
650  *
651  * Security hooks for Netlink messaging.
652  *
653  * @netlink_send:
654  *      Save security information for a netlink message so that permission
655  *      checking can be performed when the message is processed.  The security
656  *      information can be saved using the eff_cap field of the
657  *      netlink_skb_parms structure.  Also may be used to provide fine
658  *      grained control over message transmission.
659  *      @sk associated sock of task sending the message.,
660  *      @skb contains the sk_buff structure for the netlink message.
661  *      Return 0 if the information was successfully saved and message
662  *      is allowed to be transmitted.
663  * @netlink_recv:
664  *      Check permission before processing the received netlink message in
665  *      @skb.
666  *      @skb contains the sk_buff structure for the netlink message.
667  *      @cap indicates the capability required
668  *      Return 0 if permission is granted.
669  *
670  * Security hooks for Unix domain networking.
671  *
672  * @unix_stream_connect:
673  *      Check permissions before establishing a Unix domain stream connection
674  *      between @sock and @other.
675  *      @sock contains the socket structure.
676  *      @other contains the peer socket structure.
677  *      Return 0 if permission is granted.
678  * @unix_may_send:
679  *      Check permissions before connecting or sending datagrams from @sock to
680  *      @other.
681  *      @sock contains the socket structure.
682  *      @sock contains the peer socket structure.
683  *      Return 0 if permission is granted.
684  *
685  * The @unix_stream_connect and @unix_may_send hooks were necessary because
686  * Linux provides an alternative to the conventional file name space for Unix
687  * domain sockets.  Whereas binding and connecting to sockets in the file name
688  * space is mediated by the typical file permissions (and caught by the mknod
689  * and permission hooks in inode_security_ops), binding and connecting to
690  * sockets in the abstract name space is completely unmediated.  Sufficient
691  * control of Unix domain sockets in the abstract name space isn't possible
692  * using only the socket layer hooks, since we need to know the actual target
693  * socket, which is not looked up until we are inside the af_unix code.
694  *
695  * Security hooks for socket operations.
696  *
697  * @socket_create:
698  *      Check permissions prior to creating a new socket.
699  *      @family contains the requested protocol family.
700  *      @type contains the requested communications type.
701  *      @protocol contains the requested protocol.
702  *      @kern set to 1 if a kernel socket.
703  *      Return 0 if permission is granted.
704  * @socket_post_create:
705  *      This hook allows a module to update or allocate a per-socket security
706  *      structure. Note that the security field was not added directly to the
707  *      socket structure, but rather, the socket security information is stored
708  *      in the associated inode.  Typically, the inode alloc_security hook will
709  *      allocate and and attach security information to
710  *      sock->inode->i_security.  This hook may be used to update the
711  *      sock->inode->i_security field with additional information that wasn't
712  *      available when the inode was allocated.
713  *      @sock contains the newly created socket structure.
714  *      @family contains the requested protocol family.
715  *      @type contains the requested communications type.
716  *      @protocol contains the requested protocol.
717  *      @kern set to 1 if a kernel socket.
718  * @socket_bind:
719  *      Check permission before socket protocol layer bind operation is
720  *      performed and the socket @sock is bound to the address specified in the
721  *      @address parameter.
722  *      @sock contains the socket structure.
723  *      @address contains the address to bind to.
724  *      @addrlen contains the length of address.
725  *      Return 0 if permission is granted.  
726  * @socket_connect:
727  *      Check permission before socket protocol layer connect operation
728  *      attempts to connect socket @sock to a remote address, @address.
729  *      @sock contains the socket structure.
730  *      @address contains the address of remote endpoint.
731  *      @addrlen contains the length of address.
732  *      Return 0 if permission is granted.  
733  * @socket_listen:
734  *      Check permission before socket protocol layer listen operation.
735  *      @sock contains the socket structure.
736  *      @backlog contains the maximum length for the pending connection queue.
737  *      Return 0 if permission is granted.
738  * @socket_accept:
739  *      Check permission before accepting a new connection.  Note that the new
740  *      socket, @newsock, has been created and some information copied to it,
741  *      but the accept operation has not actually been performed.
742  *      @sock contains the listening socket structure.
743  *      @newsock contains the newly created server socket for connection.
744  *      Return 0 if permission is granted.
745  * @socket_post_accept:
746  *      This hook allows a security module to copy security
747  *      information into the newly created socket's inode.
748  *      @sock contains the listening socket structure.
749  *      @newsock contains the newly created server socket for connection.
750  * @socket_sendmsg:
751  *      Check permission before transmitting a message to another socket.
752  *      @sock contains the socket structure.
753  *      @msg contains the message to be transmitted.
754  *      @size contains the size of message.
755  *      Return 0 if permission is granted.
756  * @socket_recvmsg:
757  *      Check permission before receiving a message from a socket.
758  *      @sock contains the socket structure.
759  *      @msg contains the message structure.
760  *      @size contains the size of message structure.
761  *      @flags contains the operational flags.
762  *      Return 0 if permission is granted.  
763  * @socket_getsockname:
764  *      Check permission before the local address (name) of the socket object
765  *      @sock is retrieved.
766  *      @sock contains the socket structure.
767  *      Return 0 if permission is granted.
768  * @socket_getpeername:
769  *      Check permission before the remote address (name) of a socket object
770  *      @sock is retrieved.
771  *      @sock contains the socket structure.
772  *      Return 0 if permission is granted.
773  * @socket_getsockopt:
774  *      Check permissions before retrieving the options associated with socket
775  *      @sock.
776  *      @sock contains the socket structure.
777  *      @level contains the protocol level to retrieve option from.
778  *      @optname contains the name of option to retrieve.
779  *      Return 0 if permission is granted.
780  * @socket_setsockopt:
781  *      Check permissions before setting the options associated with socket
782  *      @sock.
783  *      @sock contains the socket structure.
784  *      @level contains the protocol level to set options for.
785  *      @optname contains the name of the option to set.
786  *      Return 0 if permission is granted.  
787  * @socket_shutdown:
788  *      Checks permission before all or part of a connection on the socket
789  *      @sock is shut down.
790  *      @sock contains the socket structure.
791  *      @how contains the flag indicating how future sends and receives are handled.
792  *      Return 0 if permission is granted.
793  * @socket_sock_rcv_skb:
794  *      Check permissions on incoming network packets.  This hook is distinct
795  *      from Netfilter's IP input hooks since it is the first time that the
796  *      incoming sk_buff @skb has been associated with a particular socket, @sk.
797  *      @sk contains the sock (not socket) associated with the incoming sk_buff.
798  *      @skb contains the incoming network data.
799  * @socket_getpeersec:
800  *      This hook allows the security module to provide peer socket security
801  *      state to userspace via getsockopt SO_GETPEERSEC.
802  *      @sock is the local socket.
803  *      @optval userspace memory where the security state is to be copied.
804  *      @optlen userspace int where the module should copy the actual length
805  *      of the security state.
806  *      @len as input is the maximum length to copy to userspace provided
807  *      by the caller.
808  *      Return 0 if all is well, otherwise, typical getsockopt return
809  *      values.
810  * @sk_alloc_security:
811  *      Allocate and attach a security structure to the sk->sk_security field,
812  *      which is used to copy security attributes between local stream sockets.
813  * @sk_free_security:
814  *      Deallocate security structure.
815  * @sk_getsid:
816  *      Retrieve the LSM-specific sid for the sock to enable caching of network
817  *      authorizations.
818  *
819  * Security hooks for XFRM operations.
820  *
821  * @xfrm_policy_alloc_security:
822  *      @xp contains the xfrm_policy being added to Security Policy Database
823  *      used by the XFRM system.
824  *      @sec_ctx contains the security context information being provided by
825  *      the user-level policy update program (e.g., setkey).
826  *      Allocate a security structure to the xp->security field.
827  *      The security field is initialized to NULL when the xfrm_policy is
828  *      allocated.
829  *      Return 0 if operation was successful (memory to allocate, legal context)
830  * @xfrm_policy_clone_security:
831  *      @old contains an existing xfrm_policy in the SPD.
832  *      @new contains a new xfrm_policy being cloned from old.
833  *      Allocate a security structure to the new->security field
834  *      that contains the information from the old->security field.
835  *      Return 0 if operation was successful (memory to allocate).
836  * @xfrm_policy_free_security:
837  *      @xp contains the xfrm_policy
838  *      Deallocate xp->security.
839  * @xfrm_policy_delete_security:
840  *      @xp contains the xfrm_policy.
841  *      Authorize deletion of xp->security.
842  * @xfrm_state_alloc_security:
843  *      @x contains the xfrm_state being added to the Security Association
844  *      Database by the XFRM system.
845  *      @sec_ctx contains the security context information being provided by
846  *      the user-level SA generation program (e.g., setkey or racoon).
847  *      Allocate a security structure to the x->security field.  The
848  *      security field is initialized to NULL when the xfrm_state is
849  *      allocated.
850  *      Return 0 if operation was successful (memory to allocate, legal context).
851  * @xfrm_state_free_security:
852  *      @x contains the xfrm_state.
853  *      Deallocate x->security.
854  * @xfrm_state_delete_security:
855  *      @x contains the xfrm_state.
856  *      Authorize deletion of x->security.
857  * @xfrm_policy_lookup:
858  *      @xp contains the xfrm_policy for which the access control is being
859  *      checked.
860  *      @sk_sid contains the sock security label that is used to authorize
861  *      access to the policy xp.
862  *      @dir contains the direction of the flow (input or output).
863  *      Check permission when a sock selects a xfrm_policy for processing
864  *      XFRMs on a packet.  The hook is called when selecting either a
865  *      per-socket policy or a generic xfrm policy.
866  *      Return 0 if permission is granted.
867  *
868  * Security hooks affecting all Key Management operations
869  *
870  * @key_alloc:
871  *      Permit allocation of a key and assign security data. Note that key does
872  *      not have a serial number assigned at this point.
873  *      @key points to the key.
874  *      @flags is the allocation flags
875  *      Return 0 if permission is granted, -ve error otherwise.
876  * @key_free:
877  *      Notification of destruction; free security data.
878  *      @key points to the key.
879  *      No return value.
880  * @key_permission:
881  *      See whether a specific operational right is granted to a process on a
882  *      key.
883  *      @key_ref refers to the key (key pointer + possession attribute bit).
884  *      @context points to the process to provide the context against which to
885  *       evaluate the security data on the key.
886  *      @perm describes the combination of permissions required of this key.
887  *      Return 1 if permission granted, 0 if permission denied and -ve it the
888  *      normal permissions model should be effected.
889  *
890  * Security hooks affecting all System V IPC operations.
891  *
892  * @ipc_permission:
893  *      Check permissions for access to IPC
894  *      @ipcp contains the kernel IPC permission structure
895  *      @flag contains the desired (requested) permission set
896  *      Return 0 if permission is granted.
897  *
898  * Security hooks for individual messages held in System V IPC message queues
899  * @msg_msg_alloc_security:
900  *      Allocate and attach a security structure to the msg->security field.
901  *      The security field is initialized to NULL when the structure is first
902  *      created.
903  *      @msg contains the message structure to be modified.
904  *      Return 0 if operation was successful and permission is granted.
905  * @msg_msg_free_security:
906  *      Deallocate the security structure for this message.
907  *      @msg contains the message structure to be modified.
908  *
909  * Security hooks for System V IPC Message Queues
910  *
911  * @msg_queue_alloc_security:
912  *      Allocate and attach a security structure to the
913  *      msq->q_perm.security field. The security field is initialized to
914  *      NULL when the structure is first created.
915  *      @msq contains the message queue structure to be modified.
916  *      Return 0 if operation was successful and permission is granted.
917  * @msg_queue_free_security:
918  *      Deallocate security structure for this message queue.
919  *      @msq contains the message queue structure to be modified.
920  * @msg_queue_associate:
921  *      Check permission when a message queue is requested through the
922  *      msgget system call.  This hook is only called when returning the
923  *      message queue identifier for an existing message queue, not when a
924  *      new message queue is created.
925  *      @msq contains the message queue to act upon.
926  *      @msqflg contains the operation control flags.
927  *      Return 0 if permission is granted.
928  * @msg_queue_msgctl:
929  *      Check permission when a message control operation specified by @cmd
930  *      is to be performed on the message queue @msq.
931  *      The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
932  *      @msq contains the message queue to act upon.  May be NULL.
933  *      @cmd contains the operation to be performed.
934  *      Return 0 if permission is granted.  
935  * @msg_queue_msgsnd:
936  *      Check permission before a message, @msg, is enqueued on the message
937  *      queue, @msq.
938  *      @msq contains the message queue to send message to.
939  *      @msg contains the message to be enqueued.
940  *      @msqflg contains operational flags.
941  *      Return 0 if permission is granted.
942  * @msg_queue_msgrcv:
943  *      Check permission before a message, @msg, is removed from the message
944  *      queue, @msq.  The @target task structure contains a pointer to the 
945  *      process that will be receiving the message (not equal to the current 
946  *      process when inline receives are being performed).
947  *      @msq contains the message queue to retrieve message from.
948  *      @msg contains the message destination.
949  *      @target contains the task structure for recipient process.
950  *      @type contains the type of message requested.
951  *      @mode contains the operational flags.
952  *      Return 0 if permission is granted.
953  *
954  * Security hooks for System V Shared Memory Segments
955  *
956  * @shm_alloc_security:
957  *      Allocate and attach a security structure to the shp->shm_perm.security
958  *      field.  The security field is initialized to NULL when the structure is
959  *      first created.
960  *      @shp contains the shared memory structure to be modified.
961  *      Return 0 if operation was successful and permission is granted.
962  * @shm_free_security:
963  *      Deallocate the security struct for this memory segment.
964  *      @shp contains the shared memory structure to be modified.
965  * @shm_associate:
966  *      Check permission when a shared memory region is requested through the
967  *      shmget system call.  This hook is only called when returning the shared
968  *      memory region identifier for an existing region, not when a new shared
969  *      memory region is created.
970  *      @shp contains the shared memory structure to be modified.
971  *      @shmflg contains the operation control flags.
972  *      Return 0 if permission is granted.
973  * @shm_shmctl:
974  *      Check permission when a shared memory control operation specified by
975  *      @cmd is to be performed on the shared memory region @shp.
976  *      The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
977  *      @shp contains shared memory structure to be modified.
978  *      @cmd contains the operation to be performed.
979  *      Return 0 if permission is granted.
980  * @shm_shmat:
981  *      Check permissions prior to allowing the shmat system call to attach the
982  *      shared memory segment @shp to the data segment of the calling process.
983  *      The attaching address is specified by @shmaddr.
984  *      @shp contains the shared memory structure to be modified.
985  *      @shmaddr contains the address to attach memory region to.
986  *      @shmflg contains the operational flags.
987  *      Return 0 if permission is granted.
988  *
989  * Security hooks for System V Semaphores
990  *
991  * @sem_alloc_security:
992  *      Allocate and attach a security structure to the sma->sem_perm.security
993  *      field.  The security field is initialized to NULL when the structure is
994  *      first created.
995  *      @sma contains the semaphore structure
996  *      Return 0 if operation was successful and permission is granted.
997  * @sem_free_security:
998  *      deallocate security struct for this semaphore
999  *      @sma contains the semaphore structure.
1000  * @sem_associate:
1001  *      Check permission when a semaphore is requested through the semget
1002  *      system call.  This hook is only called when returning the semaphore
1003  *      identifier for an existing semaphore, not when a new one must be
1004  *      created.
1005  *      @sma contains the semaphore structure.
1006  *      @semflg contains the operation control flags.
1007  *      Return 0 if permission is granted.
1008  * @sem_semctl:
1009  *      Check permission when a semaphore operation specified by @cmd is to be
1010  *      performed on the semaphore @sma.  The @sma may be NULL, e.g. for 
1011  *      IPC_INFO or SEM_INFO.
1012  *      @sma contains the semaphore structure.  May be NULL.
1013  *      @cmd contains the operation to be performed.
1014  *      Return 0 if permission is granted.
1015  * @sem_semop
1016  *      Check permissions before performing operations on members of the
1017  *      semaphore set @sma.  If the @alter flag is nonzero, the semaphore set 
1018  *      may be modified.
1019  *      @sma contains the semaphore structure.
1020  *      @sops contains the operations to perform.
1021  *      @nsops contains the number of operations to perform.
1022  *      @alter contains the flag indicating whether changes are to be made.
1023  *      Return 0 if permission is granted.
1024  *
1025  * @ptrace:
1026  *      Check permission before allowing the @parent process to trace the
1027  *      @child process.
1028  *      Security modules may also want to perform a process tracing check
1029  *      during an execve in the set_security or apply_creds hooks of
1030  *      binprm_security_ops if the process is being traced and its security
1031  *      attributes would be changed by the execve.
1032  *      @parent contains the task_struct structure for parent process.
1033  *      @child contains the task_struct structure for child process.
1034  *      Return 0 if permission is granted.
1035  * @capget:
1036  *      Get the @effective, @inheritable, and @permitted capability sets for
1037  *      the @target process.  The hook may also perform permission checking to
1038  *      determine if the current process is allowed to see the capability sets
1039  *      of the @target process.
1040  *      @target contains the task_struct structure for target process.
1041  *      @effective contains the effective capability set.
1042  *      @inheritable contains the inheritable capability set.
1043  *      @permitted contains the permitted capability set.
1044  *      Return 0 if the capability sets were successfully obtained.
1045  * @capset_check:
1046  *      Check permission before setting the @effective, @inheritable, and
1047  *      @permitted capability sets for the @target process.
1048  *      Caveat:  @target is also set to current if a set of processes is
1049  *      specified (i.e. all processes other than current and init or a
1050  *      particular process group).  Hence, the capset_set hook may need to
1051  *      revalidate permission to the actual target process.
1052  *      @target contains the task_struct structure for target process.
1053  *      @effective contains the effective capability set.
1054  *      @inheritable contains the inheritable capability set.
1055  *      @permitted contains the permitted capability set.
1056  *      Return 0 if permission is granted.
1057  * @capset_set:
1058  *      Set the @effective, @inheritable, and @permitted capability sets for
1059  *      the @target process.  Since capset_check cannot always check permission
1060  *      to the real @target process, this hook may also perform permission
1061  *      checking to determine if the current process is allowed to set the
1062  *      capability sets of the @target process.  However, this hook has no way
1063  *      of returning an error due to the structure of the sys_capset code.
1064  *      @target contains the task_struct structure for target process.
1065  *      @effective contains the effective capability set.
1066  *      @inheritable contains the inheritable capability set.
1067  *      @permitted contains the permitted capability set.
1068  * @capable:
1069  *      Check whether the @tsk process has the @cap capability.
1070  *      @tsk contains the task_struct for the process.
1071  *      @cap contains the capability <include/linux/capability.h>.
1072  *      Return 0 if the capability is granted for @tsk.
1073  * @acct:
1074  *      Check permission before enabling or disabling process accounting.  If
1075  *      accounting is being enabled, then @file refers to the open file used to
1076  *      store accounting records.  If accounting is being disabled, then @file
1077  *      is NULL.
1078  *      @file contains the file structure for the accounting file (may be NULL).
1079  *      Return 0 if permission is granted.
1080  * @sysctl:
1081  *      Check permission before accessing the @table sysctl variable in the
1082  *      manner specified by @op.
1083  *      @table contains the ctl_table structure for the sysctl variable.
1084  *      @op contains the operation (001 = search, 002 = write, 004 = read).
1085  *      Return 0 if permission is granted.
1086  * @syslog:
1087  *      Check permission before accessing the kernel message ring or changing
1088  *      logging to the console.
1089  *      See the syslog(2) manual page for an explanation of the @type values.  
1090  *      @type contains the type of action.
1091  *      Return 0 if permission is granted.
1092  * @settime:
1093  *      Check permission to change the system time.
1094  *      struct timespec and timezone are defined in include/linux/time.h
1095  *      @ts contains new time
1096  *      @tz contains new timezone
1097  *      Return 0 if permission is granted.
1098  * @vm_enough_memory:
1099  *      Check permissions for allocating a new virtual mapping.
1100  *      @pages contains the number of pages.
1101  *      Return 0 if permission is granted.
1102  *
1103  * @register_security:
1104  *      allow module stacking.
1105  *      @name contains the name of the security module being stacked.
1106  *      @ops contains a pointer to the struct security_operations of the module to stack.
1107  * @unregister_security:
1108  *      remove a stacked module.
1109  *      @name contains the name of the security module being unstacked.
1110  *      @ops contains a pointer to the struct security_operations of the module to unstack.
1111  * 
1112  * This is the main security structure.
1113  */
1114 struct security_operations {
1115         int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1116         int (*capget) (struct task_struct * target,
1117                        kernel_cap_t * effective,
1118                        kernel_cap_t * inheritable, kernel_cap_t * permitted);
1119         int (*capset_check) (struct task_struct * target,
1120                              kernel_cap_t * effective,
1121                              kernel_cap_t * inheritable,
1122                              kernel_cap_t * permitted);
1123         void (*capset_set) (struct task_struct * target,
1124                             kernel_cap_t * effective,
1125                             kernel_cap_t * inheritable,
1126                             kernel_cap_t * permitted);
1127         int (*capable) (struct task_struct * tsk, int cap);
1128         int (*acct) (struct file * file);
1129         int (*sysctl) (struct ctl_table * table, int op);
1130         int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1131         int (*quota_on) (struct dentry * dentry);
1132         int (*syslog) (int type);
1133         int (*settime) (struct timespec *ts, struct timezone *tz);
1134         int (*vm_enough_memory) (long pages);
1135
1136         int (*bprm_alloc_security) (struct linux_binprm * bprm);
1137         void (*bprm_free_security) (struct linux_binprm * bprm);
1138         void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1139         void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1140         int (*bprm_set_security) (struct linux_binprm * bprm);
1141         int (*bprm_check_security) (struct linux_binprm * bprm);
1142         int (*bprm_secureexec) (struct linux_binprm * bprm);
1143
1144         int (*sb_alloc_security) (struct super_block * sb);
1145         void (*sb_free_security) (struct super_block * sb);
1146         int (*sb_copy_data)(struct file_system_type *type,
1147                             void *orig, void *copy);
1148         int (*sb_kern_mount) (struct super_block *sb, void *data);
1149         int (*sb_statfs) (struct dentry *dentry);
1150         int (*sb_mount) (char *dev_name, struct nameidata * nd,
1151                          char *type, unsigned long flags, void *data);
1152         int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1153         int (*sb_umount) (struct vfsmount * mnt, int flags);
1154         void (*sb_umount_close) (struct vfsmount * mnt);
1155         void (*sb_umount_busy) (struct vfsmount * mnt);
1156         void (*sb_post_remount) (struct vfsmount * mnt,
1157                                  unsigned long flags, void *data);
1158         void (*sb_post_mountroot) (void);
1159         void (*sb_post_addmount) (struct vfsmount * mnt,
1160                                   struct nameidata * mountpoint_nd);
1161         int (*sb_pivotroot) (struct nameidata * old_nd,
1162                              struct nameidata * new_nd);
1163         void (*sb_post_pivotroot) (struct nameidata * old_nd,
1164                                    struct nameidata * new_nd);
1165
1166         int (*inode_alloc_security) (struct inode *inode);      
1167         void (*inode_free_security) (struct inode *inode);
1168         int (*inode_init_security) (struct inode *inode, struct inode *dir,
1169                                     char **name, void **value, size_t *len);
1170         int (*inode_create) (struct inode *dir,
1171                              struct dentry *dentry, int mode);
1172         int (*inode_link) (struct dentry *old_dentry,
1173                            struct inode *dir, struct dentry *new_dentry);
1174         int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1175         int (*inode_symlink) (struct inode *dir,
1176                               struct dentry *dentry, const char *old_name);
1177         int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1178         int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1179         int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1180                             int mode, dev_t dev);
1181         int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1182                              struct inode *new_dir, struct dentry *new_dentry);
1183         int (*inode_readlink) (struct dentry *dentry);
1184         int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1185         int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1186         int (*inode_setattr)    (struct dentry *dentry, struct iattr *attr);
1187         int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1188         void (*inode_delete) (struct inode *inode);
1189         int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1190                                size_t size, int flags);
1191         void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1192                                      size_t size, int flags);
1193         int (*inode_getxattr) (struct dentry *dentry, char *name);
1194         int (*inode_listxattr) (struct dentry *dentry);
1195         int (*inode_removexattr) (struct dentry *dentry, char *name);
1196         const char *(*inode_xattr_getsuffix) (void);
1197         int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1198         int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1199         int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1200
1201         int (*file_permission) (struct file * file, int mask);
1202         int (*file_alloc_security) (struct file * file);
1203         void (*file_free_security) (struct file * file);
1204         int (*file_ioctl) (struct file * file, unsigned int cmd,
1205                            unsigned long arg);
1206         int (*file_mmap) (struct file * file,
1207                           unsigned long reqprot,
1208                           unsigned long prot, unsigned long flags);
1209         int (*file_mprotect) (struct vm_area_struct * vma,
1210                               unsigned long reqprot,
1211                               unsigned long prot);
1212         int (*file_lock) (struct file * file, unsigned int cmd);
1213         int (*file_fcntl) (struct file * file, unsigned int cmd,
1214                            unsigned long arg);
1215         int (*file_set_fowner) (struct file * file);
1216         int (*file_send_sigiotask) (struct task_struct * tsk,
1217                                     struct fown_struct * fown, int sig);
1218         int (*file_receive) (struct file * file);
1219
1220         int (*task_create) (unsigned long clone_flags);
1221         int (*task_alloc_security) (struct task_struct * p);
1222         void (*task_free_security) (struct task_struct * p);
1223         int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1224         int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1225                                  uid_t old_euid, uid_t old_suid, int flags);
1226         int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1227         int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1228         int (*task_getpgid) (struct task_struct * p);
1229         int (*task_getsid) (struct task_struct * p);
1230         void (*task_getsecid) (struct task_struct * p, u32 * secid);
1231         int (*task_setgroups) (struct group_info *group_info);
1232         int (*task_setnice) (struct task_struct * p, int nice);
1233         int (*task_setioprio) (struct task_struct * p, int ioprio);
1234         int (*task_getioprio) (struct task_struct * p);
1235         int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1236         int (*task_setscheduler) (struct task_struct * p, int policy,
1237                                   struct sched_param * lp);
1238         int (*task_getscheduler) (struct task_struct * p);
1239         int (*task_movememory) (struct task_struct * p);
1240         int (*task_kill) (struct task_struct * p,
1241                           struct siginfo * info, int sig, u32 secid);
1242         int (*task_wait) (struct task_struct * p);
1243         int (*task_prctl) (int option, unsigned long arg2,
1244                            unsigned long arg3, unsigned long arg4,
1245                            unsigned long arg5);
1246         void (*task_reparent_to_init) (struct task_struct * p);
1247         void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1248
1249         int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1250
1251         int (*msg_msg_alloc_security) (struct msg_msg * msg);
1252         void (*msg_msg_free_security) (struct msg_msg * msg);
1253
1254         int (*msg_queue_alloc_security) (struct msg_queue * msq);
1255         void (*msg_queue_free_security) (struct msg_queue * msq);
1256         int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1257         int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1258         int (*msg_queue_msgsnd) (struct msg_queue * msq,
1259                                  struct msg_msg * msg, int msqflg);
1260         int (*msg_queue_msgrcv) (struct msg_queue * msq,
1261                                  struct msg_msg * msg,
1262                                  struct task_struct * target,
1263                                  long type, int mode);
1264
1265         int (*shm_alloc_security) (struct shmid_kernel * shp);
1266         void (*shm_free_security) (struct shmid_kernel * shp);
1267         int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1268         int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1269         int (*shm_shmat) (struct shmid_kernel * shp, 
1270                           char __user *shmaddr, int shmflg);
1271
1272         int (*sem_alloc_security) (struct sem_array * sma);
1273         void (*sem_free_security) (struct sem_array * sma);
1274         int (*sem_associate) (struct sem_array * sma, int semflg);
1275         int (*sem_semctl) (struct sem_array * sma, int cmd);
1276         int (*sem_semop) (struct sem_array * sma, 
1277                           struct sembuf * sops, unsigned nsops, int alter);
1278
1279         int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1280         int (*netlink_recv) (struct sk_buff * skb, int cap);
1281
1282         /* allow module stacking */
1283         int (*register_security) (const char *name,
1284                                   struct security_operations *ops);
1285         int (*unregister_security) (const char *name,
1286                                     struct security_operations *ops);
1287
1288         void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1289
1290         int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1291         int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1292
1293 #ifdef CONFIG_SECURITY_NETWORK
1294         int (*unix_stream_connect) (struct socket * sock,
1295                                     struct socket * other, struct sock * newsk);
1296         int (*unix_may_send) (struct socket * sock, struct socket * other);
1297
1298         int (*socket_create) (int family, int type, int protocol, int kern);
1299         void (*socket_post_create) (struct socket * sock, int family,
1300                                     int type, int protocol, int kern);
1301         int (*socket_bind) (struct socket * sock,
1302                             struct sockaddr * address, int addrlen);
1303         int (*socket_connect) (struct socket * sock,
1304                                struct sockaddr * address, int addrlen);
1305         int (*socket_listen) (struct socket * sock, int backlog);
1306         int (*socket_accept) (struct socket * sock, struct socket * newsock);
1307         void (*socket_post_accept) (struct socket * sock,
1308                                     struct socket * newsock);
1309         int (*socket_sendmsg) (struct socket * sock,
1310                                struct msghdr * msg, int size);
1311         int (*socket_recvmsg) (struct socket * sock,
1312                                struct msghdr * msg, int size, int flags);
1313         int (*socket_getsockname) (struct socket * sock);
1314         int (*socket_getpeername) (struct socket * sock);
1315         int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1316         int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1317         int (*socket_shutdown) (struct socket * sock, int how);
1318         int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1319         int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1320         int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen);
1321         int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1322         void (*sk_free_security) (struct sock *sk);
1323         unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir);
1324 #endif  /* CONFIG_SECURITY_NETWORK */
1325
1326 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1327         int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx);
1328         int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1329         void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1330         int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1331         int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
1332         void (*xfrm_state_free_security) (struct xfrm_state *x);
1333         int (*xfrm_state_delete_security) (struct xfrm_state *x);
1334         int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir);
1335 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1336
1337         /* key management security hooks */
1338 #ifdef CONFIG_KEYS
1339         int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1340         void (*key_free)(struct key *key);
1341         int (*key_permission)(key_ref_t key_ref,
1342                               struct task_struct *context,
1343                               key_perm_t perm);
1344
1345 #endif  /* CONFIG_KEYS */
1346
1347 };
1348
1349 /* global variables */
1350 extern struct security_operations *security_ops;
1351
1352 /* inline stuff */
1353 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1354 {
1355         return security_ops->ptrace (parent, child);
1356 }
1357
1358 static inline int security_capget (struct task_struct *target,
1359                                    kernel_cap_t *effective,
1360                                    kernel_cap_t *inheritable,
1361                                    kernel_cap_t *permitted)
1362 {
1363         return security_ops->capget (target, effective, inheritable, permitted);
1364 }
1365
1366 static inline int security_capset_check (struct task_struct *target,
1367                                          kernel_cap_t *effective,
1368                                          kernel_cap_t *inheritable,
1369                                          kernel_cap_t *permitted)
1370 {
1371         return security_ops->capset_check (target, effective, inheritable, permitted);
1372 }
1373
1374 static inline void security_capset_set (struct task_struct *target,
1375                                         kernel_cap_t *effective,
1376                                         kernel_cap_t *inheritable,
1377                                         kernel_cap_t *permitted)
1378 {
1379         security_ops->capset_set (target, effective, inheritable, permitted);
1380 }
1381
1382 static inline int security_capable(struct task_struct *tsk, int cap)
1383 {
1384         return security_ops->capable(tsk, cap);
1385 }
1386
1387 static inline int security_acct (struct file *file)
1388 {
1389         return security_ops->acct (file);
1390 }
1391
1392 static inline int security_sysctl(struct ctl_table *table, int op)
1393 {
1394         return security_ops->sysctl(table, op);
1395 }
1396
1397 static inline int security_quotactl (int cmds, int type, int id,
1398                                      struct super_block *sb)
1399 {
1400         return security_ops->quotactl (cmds, type, id, sb);
1401 }
1402
1403 static inline int security_quota_on (struct dentry * dentry)
1404 {
1405         return security_ops->quota_on (dentry);
1406 }
1407
1408 static inline int security_syslog(int type)
1409 {
1410         return security_ops->syslog(type);
1411 }
1412
1413 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1414 {
1415         return security_ops->settime(ts, tz);
1416 }
1417
1418
1419 static inline int security_vm_enough_memory(long pages)
1420 {
1421         return security_ops->vm_enough_memory(pages);
1422 }
1423
1424 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1425 {
1426         return security_ops->bprm_alloc_security (bprm);
1427 }
1428 static inline void security_bprm_free (struct linux_binprm *bprm)
1429 {
1430         security_ops->bprm_free_security (bprm);
1431 }
1432 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1433 {
1434         security_ops->bprm_apply_creds (bprm, unsafe);
1435 }
1436 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1437 {
1438         security_ops->bprm_post_apply_creds (bprm);
1439 }
1440 static inline int security_bprm_set (struct linux_binprm *bprm)
1441 {
1442         return security_ops->bprm_set_security (bprm);
1443 }
1444
1445 static inline int security_bprm_check (struct linux_binprm *bprm)
1446 {
1447         return security_ops->bprm_check_security (bprm);
1448 }
1449
1450 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1451 {
1452         return security_ops->bprm_secureexec (bprm);
1453 }
1454
1455 static inline int security_sb_alloc (struct super_block *sb)
1456 {
1457         return security_ops->sb_alloc_security (sb);
1458 }
1459
1460 static inline void security_sb_free (struct super_block *sb)
1461 {
1462         security_ops->sb_free_security (sb);
1463 }
1464
1465 static inline int security_sb_copy_data (struct file_system_type *type,
1466                                          void *orig, void *copy)
1467 {
1468         return security_ops->sb_copy_data (type, orig, copy);
1469 }
1470
1471 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1472 {
1473         return security_ops->sb_kern_mount (sb, data);
1474 }
1475
1476 static inline int security_sb_statfs (struct dentry *dentry)
1477 {
1478         return security_ops->sb_statfs (dentry);
1479 }
1480
1481 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1482                                     char *type, unsigned long flags,
1483                                     void *data)
1484 {
1485         return security_ops->sb_mount (dev_name, nd, type, flags, data);
1486 }
1487
1488 static inline int security_sb_check_sb (struct vfsmount *mnt,
1489                                         struct nameidata *nd)
1490 {
1491         return security_ops->sb_check_sb (mnt, nd);
1492 }
1493
1494 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1495 {
1496         return security_ops->sb_umount (mnt, flags);
1497 }
1498
1499 static inline void security_sb_umount_close (struct vfsmount *mnt)
1500 {
1501         security_ops->sb_umount_close (mnt);
1502 }
1503
1504 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1505 {
1506         security_ops->sb_umount_busy (mnt);
1507 }
1508
1509 static inline void security_sb_post_remount (struct vfsmount *mnt,
1510                                              unsigned long flags, void *data)
1511 {
1512         security_ops->sb_post_remount (mnt, flags, data);
1513 }
1514
1515 static inline void security_sb_post_mountroot (void)
1516 {
1517         security_ops->sb_post_mountroot ();
1518 }
1519
1520 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1521                                               struct nameidata *mountpoint_nd)
1522 {
1523         security_ops->sb_post_addmount (mnt, mountpoint_nd);
1524 }
1525
1526 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1527                                          struct nameidata *new_nd)
1528 {
1529         return security_ops->sb_pivotroot (old_nd, new_nd);
1530 }
1531
1532 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1533                                                struct nameidata *new_nd)
1534 {
1535         security_ops->sb_post_pivotroot (old_nd, new_nd);
1536 }
1537
1538 static inline int security_inode_alloc (struct inode *inode)
1539 {
1540         return security_ops->inode_alloc_security (inode);
1541 }
1542
1543 static inline void security_inode_free (struct inode *inode)
1544 {
1545         security_ops->inode_free_security (inode);
1546 }
1547
1548 static inline int security_inode_init_security (struct inode *inode,
1549                                                 struct inode *dir,
1550                                                 char **name,
1551                                                 void **value,
1552                                                 size_t *len)
1553 {
1554         if (unlikely (IS_PRIVATE (inode)))
1555                 return -EOPNOTSUPP;
1556         return security_ops->inode_init_security (inode, dir, name, value, len);
1557 }
1558         
1559 static inline int security_inode_create (struct inode *dir,
1560                                          struct dentry *dentry,
1561                                          int mode)
1562 {
1563         if (unlikely (IS_PRIVATE (dir)))
1564                 return 0;
1565         return security_ops->inode_create (dir, dentry, mode);
1566 }
1567
1568 static inline int security_inode_link (struct dentry *old_dentry,
1569                                        struct inode *dir,
1570                                        struct dentry *new_dentry)
1571 {
1572         if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1573                 return 0;
1574         return security_ops->inode_link (old_dentry, dir, new_dentry);
1575 }
1576
1577 static inline int security_inode_unlink (struct inode *dir,
1578                                          struct dentry *dentry)
1579 {
1580         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1581                 return 0;
1582         return security_ops->inode_unlink (dir, dentry);
1583 }
1584
1585 static inline int security_inode_symlink (struct inode *dir,
1586                                           struct dentry *dentry,
1587                                           const char *old_name)
1588 {
1589         if (unlikely (IS_PRIVATE (dir)))
1590                 return 0;
1591         return security_ops->inode_symlink (dir, dentry, old_name);
1592 }
1593
1594 static inline int security_inode_mkdir (struct inode *dir,
1595                                         struct dentry *dentry,
1596                                         int mode)
1597 {
1598         if (unlikely (IS_PRIVATE (dir)))
1599                 return 0;
1600         return security_ops->inode_mkdir (dir, dentry, mode);
1601 }
1602
1603 static inline int security_inode_rmdir (struct inode *dir,
1604                                         struct dentry *dentry)
1605 {
1606         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1607                 return 0;
1608         return security_ops->inode_rmdir (dir, dentry);
1609 }
1610
1611 static inline int security_inode_mknod (struct inode *dir,
1612                                         struct dentry *dentry,
1613                                         int mode, dev_t dev)
1614 {
1615         if (unlikely (IS_PRIVATE (dir)))
1616                 return 0;
1617         return security_ops->inode_mknod (dir, dentry, mode, dev);
1618 }
1619
1620 static inline int security_inode_rename (struct inode *old_dir,
1621                                          struct dentry *old_dentry,
1622                                          struct inode *new_dir,
1623                                          struct dentry *new_dentry)
1624 {
1625         if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1626             (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1627                 return 0;
1628         return security_ops->inode_rename (old_dir, old_dentry,
1629                                            new_dir, new_dentry);
1630 }
1631
1632 static inline int security_inode_readlink (struct dentry *dentry)
1633 {
1634         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1635                 return 0;
1636         return security_ops->inode_readlink (dentry);
1637 }
1638
1639 static inline int security_inode_follow_link (struct dentry *dentry,
1640                                               struct nameidata *nd)
1641 {
1642         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1643                 return 0;
1644         return security_ops->inode_follow_link (dentry, nd);
1645 }
1646
1647 static inline int security_inode_permission (struct inode *inode, int mask,
1648                                              struct nameidata *nd)
1649 {
1650         if (unlikely (IS_PRIVATE (inode)))
1651                 return 0;
1652         return security_ops->inode_permission (inode, mask, nd);
1653 }
1654
1655 static inline int security_inode_setattr (struct dentry *dentry,
1656                                           struct iattr *attr)
1657 {
1658         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1659                 return 0;
1660         return security_ops->inode_setattr (dentry, attr);
1661 }
1662
1663 static inline int security_inode_getattr (struct vfsmount *mnt,
1664                                           struct dentry *dentry)
1665 {
1666         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1667                 return 0;
1668         return security_ops->inode_getattr (mnt, dentry);
1669 }
1670
1671 static inline void security_inode_delete (struct inode *inode)
1672 {
1673         if (unlikely (IS_PRIVATE (inode)))
1674                 return;
1675         security_ops->inode_delete (inode);
1676 }
1677
1678 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1679                                            void *value, size_t size, int flags)
1680 {
1681         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1682                 return 0;
1683         return security_ops->inode_setxattr (dentry, name, value, size, flags);
1684 }
1685
1686 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1687                                                 void *value, size_t size, int flags)
1688 {
1689         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1690                 return;
1691         security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1692 }
1693
1694 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1695 {
1696         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1697                 return 0;
1698         return security_ops->inode_getxattr (dentry, name);
1699 }
1700
1701 static inline int security_inode_listxattr (struct dentry *dentry)
1702 {
1703         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1704                 return 0;
1705         return security_ops->inode_listxattr (dentry);
1706 }
1707
1708 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1709 {
1710         if (unlikely (IS_PRIVATE (dentry->d_inode)))
1711                 return 0;
1712         return security_ops->inode_removexattr (dentry, name);
1713 }
1714
1715 static inline const char *security_inode_xattr_getsuffix(void)
1716 {
1717         return security_ops->inode_xattr_getsuffix();
1718 }
1719
1720 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1721 {
1722         if (unlikely (IS_PRIVATE (inode)))
1723                 return 0;
1724         return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1725 }
1726
1727 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1728 {
1729         if (unlikely (IS_PRIVATE (inode)))
1730                 return 0;
1731         return security_ops->inode_setsecurity(inode, name, value, size, flags);
1732 }
1733
1734 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1735 {
1736         if (unlikely (IS_PRIVATE (inode)))
1737                 return 0;
1738         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1739 }
1740
1741 static inline int security_file_permission (struct file *file, int mask)
1742 {
1743         return security_ops->file_permission (file, mask);
1744 }
1745
1746 static inline int security_file_alloc (struct file *file)
1747 {
1748         return security_ops->file_alloc_security (file);
1749 }
1750
1751 static inline void security_file_free (struct file *file)
1752 {
1753         security_ops->file_free_security (file);
1754 }
1755
1756 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1757                                        unsigned long arg)
1758 {
1759         return security_ops->file_ioctl (file, cmd, arg);
1760 }
1761
1762 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1763                                       unsigned long prot,
1764                                       unsigned long flags)
1765 {
1766         return security_ops->file_mmap (file, reqprot, prot, flags);
1767 }
1768
1769 static inline int security_file_mprotect (struct vm_area_struct *vma,
1770                                           unsigned long reqprot,
1771                                           unsigned long prot)
1772 {
1773         return security_ops->file_mprotect (vma, reqprot, prot);
1774 }
1775
1776 static inline int security_file_lock (struct file *file, unsigned int cmd)
1777 {
1778         return security_ops->file_lock (file, cmd);
1779 }
1780
1781 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1782                                        unsigned long arg)
1783 {
1784         return security_ops->file_fcntl (file, cmd, arg);
1785 }
1786
1787 static inline int security_file_set_fowner (struct file *file)
1788 {
1789         return security_ops->file_set_fowner (file);
1790 }
1791
1792 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1793                                                 struct fown_struct *fown,
1794                                                 int sig)
1795 {
1796         return security_ops->file_send_sigiotask (tsk, fown, sig);
1797 }
1798
1799 static inline int security_file_receive (struct file *file)
1800 {
1801         return security_ops->file_receive (file);
1802 }
1803
1804 static inline int security_task_create (unsigned long clone_flags)
1805 {
1806         return security_ops->task_create (clone_flags);
1807 }
1808
1809 static inline int security_task_alloc (struct task_struct *p)
1810 {
1811         return security_ops->task_alloc_security (p);
1812 }
1813
1814 static inline void security_task_free (struct task_struct *p)
1815 {
1816         security_ops->task_free_security (p);
1817 }
1818
1819 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1820                                         int flags)
1821 {
1822         return security_ops->task_setuid (id0, id1, id2, flags);
1823 }
1824
1825 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1826                                              uid_t old_suid, int flags)
1827 {
1828         return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1829 }
1830
1831 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1832                                         int flags)
1833 {
1834         return security_ops->task_setgid (id0, id1, id2, flags);
1835 }
1836
1837 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1838 {
1839         return security_ops->task_setpgid (p, pgid);
1840 }
1841
1842 static inline int security_task_getpgid (struct task_struct *p)
1843 {
1844         return security_ops->task_getpgid (p);
1845 }
1846
1847 static inline int security_task_getsid (struct task_struct *p)
1848 {
1849         return security_ops->task_getsid (p);
1850 }
1851
1852 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1853 {
1854         security_ops->task_getsecid (p, secid);
1855 }
1856
1857 static inline int security_task_setgroups (struct group_info *group_info)
1858 {
1859         return security_ops->task_setgroups (group_info);
1860 }
1861
1862 static inline int security_task_setnice (struct task_struct *p, int nice)
1863 {
1864         return security_ops->task_setnice (p, nice);
1865 }
1866
1867 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1868 {
1869         return security_ops->task_setioprio (p, ioprio);
1870 }
1871
1872 static inline int security_task_getioprio (struct task_struct *p)
1873 {
1874         return security_ops->task_getioprio (p);
1875 }
1876
1877 static inline int security_task_setrlimit (unsigned int resource,
1878                                            struct rlimit *new_rlim)
1879 {
1880         return security_ops->task_setrlimit (resource, new_rlim);
1881 }
1882
1883 static inline int security_task_setscheduler (struct task_struct *p,
1884                                               int policy,
1885                                               struct sched_param *lp)
1886 {
1887         return security_ops->task_setscheduler (p, policy, lp);
1888 }
1889
1890 static inline int security_task_getscheduler (struct task_struct *p)
1891 {
1892         return security_ops->task_getscheduler (p);
1893 }
1894
1895 static inline int security_task_movememory (struct task_struct *p)
1896 {
1897         return security_ops->task_movememory (p);
1898 }
1899
1900 static inline int security_task_kill (struct task_struct *p,
1901                                       struct siginfo *info, int sig,
1902                                       u32 secid)
1903 {
1904         return security_ops->task_kill (p, info, sig, secid);
1905 }
1906
1907 static inline int security_task_wait (struct task_struct *p)
1908 {
1909         return security_ops->task_wait (p);
1910 }
1911
1912 static inline int security_task_prctl (int option, unsigned long arg2,
1913                                        unsigned long arg3,
1914                                        unsigned long arg4,
1915                                        unsigned long arg5)
1916 {
1917         return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1918 }
1919
1920 static inline void security_task_reparent_to_init (struct task_struct *p)
1921 {
1922         security_ops->task_reparent_to_init (p);
1923 }
1924
1925 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1926 {
1927         security_ops->task_to_inode(p, inode);
1928 }
1929
1930 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1931                                            short flag)
1932 {
1933         return security_ops->ipc_permission (ipcp, flag);
1934 }
1935
1936 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1937 {
1938         return security_ops->msg_msg_alloc_security (msg);
1939 }
1940
1941 static inline void security_msg_msg_free (struct msg_msg * msg)
1942 {
1943         security_ops->msg_msg_free_security(msg);
1944 }
1945
1946 static inline int security_msg_queue_alloc (struct msg_queue *msq)
1947 {
1948         return security_ops->msg_queue_alloc_security (msq);
1949 }
1950
1951 static inline void security_msg_queue_free (struct msg_queue *msq)
1952 {
1953         security_ops->msg_queue_free_security (msq);
1954 }
1955
1956 static inline int security_msg_queue_associate (struct msg_queue * msq, 
1957                                                 int msqflg)
1958 {
1959         return security_ops->msg_queue_associate (msq, msqflg);
1960 }
1961
1962 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
1963 {
1964         return security_ops->msg_queue_msgctl (msq, cmd);
1965 }
1966
1967 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
1968                                              struct msg_msg * msg, int msqflg)
1969 {
1970         return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
1971 }
1972
1973 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
1974                                              struct msg_msg * msg,
1975                                              struct task_struct * target,
1976                                              long type, int mode)
1977 {
1978         return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
1979 }
1980
1981 static inline int security_shm_alloc (struct shmid_kernel *shp)
1982 {
1983         return security_ops->shm_alloc_security (shp);
1984 }
1985
1986 static inline void security_shm_free (struct shmid_kernel *shp)
1987 {
1988         security_ops->shm_free_security (shp);
1989 }
1990
1991 static inline int security_shm_associate (struct shmid_kernel * shp, 
1992                                           int shmflg)
1993 {
1994         return security_ops->shm_associate(shp, shmflg);
1995 }
1996
1997 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
1998 {
1999         return security_ops->shm_shmctl (shp, cmd);
2000 }
2001
2002 static inline int security_shm_shmat (struct shmid_kernel * shp, 
2003                                       char __user *shmaddr, int shmflg)
2004 {
2005         return security_ops->shm_shmat(shp, shmaddr, shmflg);
2006 }
2007
2008 static inline int security_sem_alloc (struct sem_array *sma)
2009 {
2010         return security_ops->sem_alloc_security (sma);
2011 }
2012
2013 static inline void security_sem_free (struct sem_array *sma)
2014 {
2015         security_ops->sem_free_security (sma);
2016 }
2017
2018 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2019 {
2020         return security_ops->sem_associate (sma, semflg);
2021 }
2022
2023 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2024 {
2025         return security_ops->sem_semctl(sma, cmd);
2026 }
2027
2028 static inline int security_sem_semop (struct sem_array * sma, 
2029                                       struct sembuf * sops, unsigned nsops, 
2030                                       int alter)
2031 {
2032         return security_ops->sem_semop(sma, sops, nsops, alter);
2033 }
2034
2035 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2036 {
2037         if (unlikely (inode && IS_PRIVATE (inode)))
2038                 return;
2039         security_ops->d_instantiate (dentry, inode);
2040 }
2041
2042 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2043 {
2044         return security_ops->getprocattr(p, name, value, size);
2045 }
2046
2047 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2048 {
2049         return security_ops->setprocattr(p, name, value, size);
2050 }
2051
2052 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2053 {
2054         return security_ops->netlink_send(sk, skb);
2055 }
2056
2057 static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2058 {
2059         return security_ops->netlink_recv(skb, cap);
2060 }
2061
2062 /* prototypes */
2063 extern int security_init        (void);
2064 extern int register_security    (struct security_operations *ops);
2065 extern int unregister_security  (struct security_operations *ops);
2066 extern int mod_reg_security     (const char *name, struct security_operations *ops);
2067 extern int mod_unreg_security   (const char *name, struct security_operations *ops);
2068 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2069                                              struct dentry *parent, void *data,
2070                                              struct file_operations *fops);
2071 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2072 extern void securityfs_remove(struct dentry *dentry);
2073
2074
2075 #else /* CONFIG_SECURITY */
2076
2077 /*
2078  * This is the default capabilities functionality.  Most of these functions
2079  * are just stubbed out, but a few must call the proper capable code.
2080  */
2081
2082 static inline int security_init(void)
2083 {
2084         return 0;
2085 }
2086
2087 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2088 {
2089         return cap_ptrace (parent, child);
2090 }
2091
2092 static inline int security_capget (struct task_struct *target,
2093                                    kernel_cap_t *effective,
2094                                    kernel_cap_t *inheritable,
2095                                    kernel_cap_t *permitted)
2096 {
2097         return cap_capget (target, effective, inheritable, permitted);
2098 }
2099
2100 static inline int security_capset_check (struct task_struct *target,
2101                                          kernel_cap_t *effective,
2102                                          kernel_cap_t *inheritable,
2103                                          kernel_cap_t *permitted)
2104 {
2105         return cap_capset_check (target, effective, inheritable, permitted);
2106 }
2107
2108 static inline void security_capset_set (struct task_struct *target,
2109                                         kernel_cap_t *effective,
2110                                         kernel_cap_t *inheritable,
2111                                         kernel_cap_t *permitted)
2112 {
2113         cap_capset_set (target, effective, inheritable, permitted);
2114 }
2115
2116 static inline int security_capable(struct task_struct *tsk, int cap)
2117 {
2118         return cap_capable(tsk, cap);
2119 }
2120
2121 static inline int security_acct (struct file *file)
2122 {
2123         return 0;
2124 }
2125
2126 static inline int security_sysctl(struct ctl_table *table, int op)
2127 {
2128         return 0;
2129 }
2130
2131 static inline int security_quotactl (int cmds, int type, int id,
2132                                      struct super_block * sb)
2133 {
2134         return 0;
2135 }
2136
2137 static inline int security_quota_on (struct dentry * dentry)
2138 {
2139         return 0;
2140 }
2141
2142 static inline int security_syslog(int type)
2143 {
2144         return cap_syslog(type);
2145 }
2146
2147 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2148 {
2149         return cap_settime(ts, tz);
2150 }
2151
2152 static inline int security_vm_enough_memory(long pages)
2153 {
2154         return cap_vm_enough_memory(pages);
2155 }
2156
2157 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2158 {
2159         return 0;
2160 }
2161
2162 static inline void security_bprm_free (struct linux_binprm *bprm)
2163 { }
2164
2165 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2166
2167         cap_bprm_apply_creds (bprm, unsafe);
2168 }
2169
2170 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2171 {
2172         return;
2173 }
2174
2175 static inline int security_bprm_set (struct linux_binprm *bprm)
2176 {
2177         return cap_bprm_set_security (bprm);
2178 }
2179
2180 static inline int security_bprm_check (struct linux_binprm *bprm)
2181 {
2182         return 0;
2183 }
2184
2185 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2186 {
2187         return cap_bprm_secureexec(bprm);
2188 }
2189
2190 static inline int security_sb_alloc (struct super_block *sb)
2191 {
2192         return 0;
2193 }
2194
2195 static inline void security_sb_free (struct super_block *sb)
2196 { }
2197
2198 static inline int security_sb_copy_data (struct file_system_type *type,
2199                                          void *orig, void *copy)
2200 {
2201         return 0;
2202 }
2203
2204 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2205 {
2206         return 0;
2207 }
2208
2209 static inline int security_sb_statfs (struct dentry *dentry)
2210 {
2211         return 0;
2212 }
2213
2214 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2215                                     char *type, unsigned long flags,
2216                                     void *data)
2217 {
2218         return 0;
2219 }
2220
2221 static inline int security_sb_check_sb (struct vfsmount *mnt,
2222                                         struct nameidata *nd)
2223 {
2224         return 0;
2225 }
2226
2227 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2228 {
2229         return 0;
2230 }
2231
2232 static inline void security_sb_umount_close (struct vfsmount *mnt)
2233 { }
2234
2235 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2236 { }
2237
2238 static inline void security_sb_post_remount (struct vfsmount *mnt,
2239                                              unsigned long flags, void *data)
2240 { }
2241
2242 static inline void security_sb_post_mountroot (void)
2243 { }
2244
2245 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2246                                               struct nameidata *mountpoint_nd)
2247 { }
2248
2249 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2250                                          struct nameidata *new_nd)
2251 {
2252         return 0;
2253 }
2254
2255 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2256                                                struct nameidata *new_nd)
2257 { }
2258
2259 static inline int security_inode_alloc (struct inode *inode)
2260 {
2261         return 0;
2262 }
2263
2264 static inline void security_inode_free (struct inode *inode)
2265 { }
2266
2267 static inline int security_inode_init_security (struct inode *inode,
2268                                                 struct inode *dir,
2269                                                 char **name,
2270                                                 void **value,
2271                                                 size_t *len)
2272 {
2273         return -EOPNOTSUPP;
2274 }
2275         
2276 static inline int security_inode_create (struct inode *dir,
2277                                          struct dentry *dentry,
2278                                          int mode)
2279 {
2280         return 0;
2281 }
2282
2283 static inline int security_inode_link (struct dentry *old_dentry,
2284                                        struct inode *dir,
2285                                        struct dentry *new_dentry)
2286 {
2287         return 0;
2288 }
2289
2290 static inline int security_inode_unlink (struct inode *dir,
2291                                          struct dentry *dentry)
2292 {
2293         return 0;
2294 }
2295
2296 static inline int security_inode_symlink (struct inode *dir,
2297                                           struct dentry *dentry,
2298                                           const char *old_name)
2299 {
2300         return 0;
2301 }
2302
2303 static inline int security_inode_mkdir (struct inode *dir,
2304                                         struct dentry *dentry,
2305                                         int mode)
2306 {
2307         return 0;
2308 }
2309
2310 static inline int security_inode_rmdir (struct inode *dir,
2311                                         struct dentry *dentry)
2312 {
2313         return 0;
2314 }
2315
2316 static inline int security_inode_mknod (struct inode *dir,
2317                                         struct dentry *dentry,
2318                                         int mode, dev_t dev)
2319 {
2320         return 0;
2321 }
2322
2323 static inline int security_inode_rename (struct inode *old_dir,
2324                                          struct dentry *old_dentry,
2325                                          struct inode *new_dir,
2326                                          struct dentry *new_dentry)
2327 {
2328         return 0;
2329 }
2330
2331 static inline int security_inode_readlink (struct dentry *dentry)
2332 {
2333         return 0;
2334 }
2335
2336 static inline int security_inode_follow_link (struct dentry *dentry,
2337                                               struct nameidata *nd)
2338 {
2339         return 0;
2340 }
2341
2342 static inline int security_inode_permission (struct inode *inode, int mask,
2343                                              struct nameidata *nd)
2344 {
2345         return 0;
2346 }
2347
2348 static inline int security_inode_setattr (struct dentry *dentry,
2349                                           struct iattr *attr)
2350 {
2351         return 0;
2352 }
2353
2354 static inline int security_inode_getattr (struct vfsmount *mnt,
2355                                           struct dentry *dentry)
2356 {
2357         return 0;
2358 }
2359
2360 static inline void security_inode_delete (struct inode *inode)
2361 { }
2362
2363 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2364                                            void *value, size_t size, int flags)
2365 {
2366         return cap_inode_setxattr(dentry, name, value, size, flags);
2367 }
2368
2369 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2370                                                  void *value, size_t size, int flags)
2371 { }
2372
2373 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2374 {
2375         return 0;
2376 }
2377
2378 static inline int security_inode_listxattr (struct dentry *dentry)
2379 {
2380         return 0;
2381 }
2382
2383 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2384 {
2385         return cap_inode_removexattr(dentry, name);
2386 }
2387
2388 static inline const char *security_inode_xattr_getsuffix (void)
2389 {
2390         return NULL ;
2391 }
2392
2393 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2394 {
2395         return -EOPNOTSUPP;
2396 }
2397
2398 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2399 {
2400         return -EOPNOTSUPP;
2401 }
2402
2403 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2404 {
2405         return 0;
2406 }
2407
2408 static inline int security_file_permission (struct file *file, int mask)
2409 {
2410         return 0;
2411 }
2412
2413 static inline int security_file_alloc (struct file *file)
2414 {
2415         return 0;
2416 }
2417
2418 static inline void security_file_free (struct file *file)
2419 { }
2420
2421 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2422                                        unsigned long arg)
2423 {
2424         return 0;
2425 }
2426
2427 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2428                                       unsigned long prot,
2429                                       unsigned long flags)
2430 {
2431         return 0;
2432 }
2433
2434 static inline int security_file_mprotect (struct vm_area_struct *vma,
2435                                           unsigned long reqprot,
2436                                           unsigned long prot)
2437 {
2438         return 0;
2439 }
2440
2441 static inline int security_file_lock (struct file *file, unsigned int cmd)
2442 {
2443         return 0;
2444 }
2445
2446 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2447                                        unsigned long arg)
2448 {
2449         return 0;
2450 }
2451
2452 static inline int security_file_set_fowner (struct file *file)
2453 {
2454         return 0;
2455 }
2456
2457 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2458                                                 struct fown_struct *fown,
2459                                                 int sig)
2460 {
2461         return 0;
2462 }
2463
2464 static inline int security_file_receive (struct file *file)
2465 {
2466         return 0;
2467 }
2468
2469 static inline int security_task_create (unsigned long clone_flags)
2470 {
2471         return 0;
2472 }
2473
2474 static inline int security_task_alloc (struct task_struct *p)
2475 {
2476         return 0;
2477 }
2478
2479 static inline void security_task_free (struct task_struct *p)
2480 { }
2481
2482 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2483                                         int flags)
2484 {
2485         return 0;
2486 }
2487
2488 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2489                                              uid_t old_suid, int flags)
2490 {
2491         return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2492 }
2493
2494 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2495                                         int flags)
2496 {
2497         return 0;
2498 }
2499
2500 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2501 {
2502         return 0;
2503 }
2504
2505 static inline int security_task_getpgid (struct task_struct *p)
2506 {
2507         return 0;
2508 }
2509
2510 static inline int security_task_getsid (struct task_struct *p)
2511 {
2512         return 0;
2513 }
2514
2515 static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2516 { }
2517
2518 static inline int security_task_setgroups (struct group_info *group_info)
2519 {
2520         return 0;
2521 }
2522
2523 static inline int security_task_setnice (struct task_struct *p, int nice)
2524 {
2525         return 0;
2526 }
2527
2528 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2529 {
2530         return 0;
2531 }
2532
2533 static inline int security_task_getioprio (struct task_struct *p)
2534 {
2535         return 0;
2536 }
2537
2538 static inline int security_task_setrlimit (unsigned int resource,
2539                                            struct rlimit *new_rlim)
2540 {
2541         return 0;
2542 }
2543
2544 static inline int security_task_setscheduler (struct task_struct *p,
2545                                               int policy,
2546                                               struct sched_param *lp)
2547 {
2548         return 0;
2549 }
2550
2551 static inline int security_task_getscheduler (struct task_struct *p)
2552 {
2553         return 0;
2554 }
2555
2556 static inline int security_task_movememory (struct task_struct *p)
2557 {
2558         return 0;
2559 }
2560
2561 static inline int security_task_kill (struct task_struct *p,
2562                                       struct siginfo *info, int sig,
2563                                       u32 secid)
2564 {
2565         return 0;
2566 }
2567
2568 static inline int security_task_wait (struct task_struct *p)
2569 {
2570         return 0;
2571 }
2572
2573 static inline int security_task_prctl (int option, unsigned long arg2,
2574                                        unsigned long arg3,
2575                                        unsigned long arg4,
2576                                        unsigned long arg5)
2577 {
2578         return 0;
2579 }
2580
2581 static inline void security_task_reparent_to_init (struct task_struct *p)
2582 {
2583         cap_task_reparent_to_init (p);
2584 }
2585
2586 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2587 { }
2588
2589 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2590                                            short flag)
2591 {
2592         return 0;
2593 }
2594
2595 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2596 {
2597         return 0;
2598 }
2599
2600 static inline void security_msg_msg_free (struct msg_msg * msg)
2601 { }
2602
2603 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2604 {
2605         return 0;
2606 }
2607
2608 static inline void security_msg_queue_free (struct msg_queue *msq)
2609 { }
2610
2611 static inline int security_msg_queue_associate (struct msg_queue * msq, 
2612                                                 int msqflg)
2613 {
2614         return 0;
2615 }
2616
2617 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2618 {
2619         return 0;
2620 }
2621
2622 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2623                                              struct msg_msg * msg, int msqflg)
2624 {
2625         return 0;
2626 }
2627
2628 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2629                                              struct msg_msg * msg,
2630                                              struct task_struct * target,
2631                                              long type, int mode)
2632 {
2633         return 0;
2634 }
2635
2636 static inline int security_shm_alloc (struct shmid_kernel *shp)
2637 {
2638         return 0;
2639 }
2640
2641 static inline void security_shm_free (struct shmid_kernel *shp)
2642 { }
2643
2644 static inline int security_shm_associate (struct shmid_kernel * shp, 
2645                                           int shmflg)
2646 {
2647         return 0;
2648 }
2649
2650 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2651 {
2652         return 0;
2653 }
2654
2655 static inline int security_shm_shmat (struct shmid_kernel * shp, 
2656                                       char __user *shmaddr, int shmflg)
2657 {
2658         return 0;
2659 }
2660
2661 static inline int security_sem_alloc (struct sem_array *sma)
2662 {
2663         return 0;
2664 }
2665
2666 static inline void security_sem_free (struct sem_array *sma)
2667 { }
2668
2669 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2670 {
2671         return 0;
2672 }
2673
2674 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2675 {
2676         return 0;
2677 }
2678
2679 static inline int security_sem_semop (struct sem_array * sma, 
2680                                       struct sembuf * sops, unsigned nsops, 
2681                                       int alter)
2682 {
2683         return 0;
2684 }
2685
2686 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2687 { }
2688
2689 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2690 {
2691         return -EINVAL;
2692 }
2693
2694 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2695 {
2696         return -EINVAL;
2697 }
2698
2699 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2700 {
2701         return cap_netlink_send (sk, skb);
2702 }
2703
2704 static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2705 {
2706         return cap_netlink_recv (skb, cap);
2707 }
2708
2709 static inline struct dentry *securityfs_create_dir(const char *name,
2710                                         struct dentry *parent)
2711 {
2712         return ERR_PTR(-ENODEV);
2713 }
2714
2715 static inline struct dentry *securityfs_create_file(const char *name,
2716                                                 mode_t mode,
2717                                                 struct dentry *parent,
2718                                                 void *data,
2719                                                 struct file_operations *fops)
2720 {
2721         return ERR_PTR(-ENODEV);
2722 }
2723
2724 static inline void securityfs_remove(struct dentry *dentry)
2725 {
2726 }
2727
2728 #endif  /* CONFIG_SECURITY */
2729
2730 #ifdef CONFIG_SECURITY_NETWORK
2731 static inline int security_unix_stream_connect(struct socket * sock,
2732                                                struct socket * other, 
2733                                                struct sock * newsk)
2734 {
2735         return security_ops->unix_stream_connect(sock, other, newsk);
2736 }
2737
2738
2739 static inline int security_unix_may_send(struct socket * sock, 
2740                                          struct socket * other)
2741 {
2742         return security_ops->unix_may_send(sock, other);
2743 }
2744
2745 static inline int security_socket_create (int family, int type,
2746                                           int protocol, int kern)
2747 {
2748         return security_ops->socket_create(family, type, protocol, kern);
2749 }
2750
2751 static inline void security_socket_post_create(struct socket * sock, 
2752                                                int family,
2753                                                int type, 
2754                                                int protocol, int kern)
2755 {
2756         security_ops->socket_post_create(sock, family, type,
2757                                          protocol, kern);
2758 }
2759
2760 static inline int security_socket_bind(struct socket * sock, 
2761                                        struct sockaddr * address, 
2762                                        int addrlen)
2763 {
2764         return security_ops->socket_bind(sock, address, addrlen);
2765 }
2766
2767 static inline int security_socket_connect(struct socket * sock, 
2768                                           struct sockaddr * address, 
2769                                           int addrlen)
2770 {
2771         return security_ops->socket_connect(sock, address, addrlen);
2772 }
2773
2774 static inline int security_socket_listen(struct socket * sock, int backlog)
2775 {
2776         return security_ops->socket_listen(sock, backlog);
2777 }
2778
2779 static inline int security_socket_accept(struct socket * sock, 
2780                                          struct socket * newsock)
2781 {
2782         return security_ops->socket_accept(sock, newsock);
2783 }
2784
2785 static inline void security_socket_post_accept(struct socket * sock, 
2786                                                struct socket * newsock)
2787 {
2788         security_ops->socket_post_accept(sock, newsock);
2789 }
2790
2791 static inline int security_socket_sendmsg(struct socket * sock, 
2792                                           struct msghdr * msg, int size)
2793 {
2794         return security_ops->socket_sendmsg(sock, msg, size);
2795 }
2796
2797 static inline int security_socket_recvmsg(struct socket * sock, 
2798                                           struct msghdr * msg, int size, 
2799                                           int flags)
2800 {
2801         return security_ops->socket_recvmsg(sock, msg, size, flags);
2802 }
2803
2804 static inline int security_socket_getsockname(struct socket * sock)
2805 {
2806         return security_ops->socket_getsockname(sock);
2807 }
2808
2809 static inline int security_socket_getpeername(struct socket * sock)
2810 {
2811         return security_ops->socket_getpeername(sock);
2812 }
2813
2814 static inline int security_socket_getsockopt(struct socket * sock, 
2815                                              int level, int optname)
2816 {
2817         return security_ops->socket_getsockopt(sock, level, optname);
2818 }
2819
2820 static inline int security_socket_setsockopt(struct socket * sock, 
2821                                              int level, int optname)
2822 {
2823         return security_ops->socket_setsockopt(sock, level, optname);
2824 }
2825
2826 static inline int security_socket_shutdown(struct socket * sock, int how)
2827 {
2828         return security_ops->socket_shutdown(sock, how);
2829 }
2830
2831 static inline int security_sock_rcv_skb (struct sock * sk, 
2832                                          struct sk_buff * skb)
2833 {
2834         return security_ops->socket_sock_rcv_skb (sk, skb);
2835 }
2836
2837 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2838                                                     int __user *optlen, unsigned len)
2839 {
2840         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2841 }
2842
2843 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2844                                                    u32 *seclen)
2845 {
2846         return security_ops->socket_getpeersec_dgram(skb, secdata, seclen);
2847 }
2848
2849 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2850 {
2851         return security_ops->sk_alloc_security(sk, family, priority);
2852 }
2853
2854 static inline void security_sk_free(struct sock *sk)
2855 {
2856         return security_ops->sk_free_security(sk);
2857 }
2858
2859 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2860 {
2861         return security_ops->sk_getsid(sk, fl, dir);
2862 }
2863 #else   /* CONFIG_SECURITY_NETWORK */
2864 static inline int security_unix_stream_connect(struct socket * sock,
2865                                                struct socket * other, 
2866                                                struct sock * newsk)
2867 {
2868         return 0;
2869 }
2870
2871 static inline int security_unix_may_send(struct socket * sock, 
2872                                          struct socket * other)
2873 {
2874         return 0;
2875 }
2876
2877 static inline int security_socket_create (int family, int type,
2878                                           int protocol, int kern)
2879 {
2880         return 0;
2881 }
2882
2883 static inline void security_socket_post_create(struct socket * sock, 
2884                                                int family,
2885                                                int type, 
2886                                                int protocol, int kern)
2887 {
2888 }
2889
2890 static inline int security_socket_bind(struct socket * sock, 
2891                                        struct sockaddr * address, 
2892                                        int addrlen)
2893 {
2894         return 0;
2895 }
2896
2897 static inline int security_socket_connect(struct socket * sock, 
2898                                           struct sockaddr * address, 
2899                                           int addrlen)
2900 {
2901         return 0;
2902 }
2903
2904 static inline int security_socket_listen(struct socket * sock, int backlog)
2905 {
2906         return 0;
2907 }
2908
2909 static inline int security_socket_accept(struct socket * sock, 
2910                                          struct socket * newsock)
2911 {
2912         return 0;
2913 }
2914
2915 static inline void security_socket_post_accept(struct socket * sock, 
2916                                                struct socket * newsock)
2917 {
2918 }
2919
2920 static inline int security_socket_sendmsg(struct socket * sock, 
2921                                           struct msghdr * msg, int size)
2922 {
2923         return 0;
2924 }
2925
2926 static inline int security_socket_recvmsg(struct socket * sock, 
2927                                           struct msghdr * msg, int size, 
2928                                           int flags)
2929 {
2930         return 0;
2931 }
2932
2933 static inline int security_socket_getsockname(struct socket * sock)
2934 {
2935         return 0;
2936 }
2937
2938 static inline int security_socket_getpeername(struct socket * sock)
2939 {
2940         return 0;
2941 }
2942
2943 static inline int security_socket_getsockopt(struct socket * sock, 
2944                                              int level, int optname)
2945 {
2946         return 0;
2947 }
2948
2949 static inline int security_socket_setsockopt(struct socket * sock, 
2950                                              int level, int optname)
2951 {
2952         return 0;
2953 }
2954
2955 static inline int security_socket_shutdown(struct socket * sock, int how)
2956 {
2957         return 0;
2958 }
2959 static inline int security_sock_rcv_skb (struct sock * sk, 
2960                                          struct sk_buff * skb)
2961 {
2962         return 0;
2963 }
2964
2965 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2966                                                     int __user *optlen, unsigned len)
2967 {
2968         return -ENOPROTOOPT;
2969 }
2970
2971 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2972                                                    u32 *seclen)
2973 {
2974         return -ENOPROTOOPT;
2975 }
2976
2977 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2978 {
2979         return 0;
2980 }
2981
2982 static inline void security_sk_free(struct sock *sk)
2983 {
2984 }
2985
2986 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2987 {
2988         return 0;
2989 }
2990 #endif  /* CONFIG_SECURITY_NETWORK */
2991
2992 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2993 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
2994 {
2995         return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
2996 }
2997
2998 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
2999 {
3000         return security_ops->xfrm_policy_clone_security(old, new);
3001 }
3002
3003 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3004 {
3005         security_ops->xfrm_policy_free_security(xp);
3006 }
3007
3008 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3009 {
3010         return security_ops->xfrm_policy_delete_security(xp);
3011 }
3012
3013 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
3014 {
3015         return security_ops->xfrm_state_alloc_security(x, sec_ctx);
3016 }
3017
3018 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3019 {
3020         return security_ops->xfrm_state_delete_security(x);
3021 }
3022
3023 static inline void security_xfrm_state_free(struct xfrm_state *x)
3024 {
3025         security_ops->xfrm_state_free_security(x);
3026 }
3027
3028 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
3029 {
3030         return security_ops->xfrm_policy_lookup(xp, sk_sid, dir);
3031 }
3032 #else   /* CONFIG_SECURITY_NETWORK_XFRM */
3033 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3034 {
3035         return 0;
3036 }
3037
3038 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3039 {
3040         return 0;
3041 }
3042
3043 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3044 {
3045 }
3046
3047 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3048 {
3049         return 0;
3050 }
3051
3052 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
3053 {
3054         return 0;
3055 }
3056
3057 static inline void security_xfrm_state_free(struct xfrm_state *x)
3058 {
3059 }
3060
3061 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3062 {
3063         return 0;
3064 }
3065
3066 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
3067 {
3068         return 0;
3069 }
3070 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
3071
3072 #ifdef CONFIG_KEYS
3073 #ifdef CONFIG_SECURITY
3074 static inline int security_key_alloc(struct key *key,
3075                                      struct task_struct *tsk,
3076                                      unsigned long flags)
3077 {
3078         return security_ops->key_alloc(key, tsk, flags);
3079 }
3080
3081 static inline void security_key_free(struct key *key)
3082 {
3083         security_ops->key_free(key);
3084 }
3085
3086 static inline int security_key_permission(key_ref_t key_ref,
3087                                           struct task_struct *context,
3088                                           key_perm_t perm)
3089 {
3090         return security_ops->key_permission(key_ref, context, perm);
3091 }
3092
3093 #else
3094
3095 static inline int security_key_alloc(struct key *key,
3096                                      struct task_struct *tsk,
3097                                      unsigned long flags)
3098 {
3099         return 0;
3100 }
3101
3102 static inline void security_key_free(struct key *key)
3103 {
3104 }
3105
3106 static inline int security_key_permission(key_ref_t key_ref,
3107                                           struct task_struct *context,
3108                                           key_perm_t perm)
3109 {
3110         return 0;
3111 }
3112
3113 #endif
3114 #endif /* CONFIG_KEYS */
3115
3116 #endif /* ! __LINUX_SECURITY_H */
3117