Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34         PERF_TYPE_BREAKPOINT                    = 5,
35
36         PERF_TYPE_MAX,                          /* non-ABI */
37 };
38
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45         /*
46          * Common hardware events, generalized by the kernel:
47          */
48         PERF_COUNT_HW_CPU_CYCLES                = 0,
49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
51         PERF_COUNT_HW_CACHE_MISSES              = 3,
52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
54         PERF_COUNT_HW_BUS_CYCLES                = 6,
55
56         PERF_COUNT_HW_MAX,                      /* non-ABI */
57 };
58
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67         PERF_COUNT_HW_CACHE_L1D                 = 0,
68         PERF_COUNT_HW_CACHE_L1I                 = 1,
69         PERF_COUNT_HW_CACHE_LL                  = 2,
70         PERF_COUNT_HW_CACHE_DTLB                = 3,
71         PERF_COUNT_HW_CACHE_ITLB                = 4,
72         PERF_COUNT_HW_CACHE_BPU                 = 5,
73
74         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
75 };
76
77 enum perf_hw_cache_op_id {
78         PERF_COUNT_HW_CACHE_OP_READ             = 0,
79         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
80         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
81
82         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
83 };
84
85 enum perf_hw_cache_op_result_id {
86         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
87         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
88
89         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
90 };
91
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99         PERF_COUNT_SW_CPU_CLOCK                 = 0,
100         PERF_COUNT_SW_TASK_CLOCK                = 1,
101         PERF_COUNT_SW_PAGE_FAULTS               = 2,
102         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
103         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
104         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
105         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
106         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
107         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
108
109         PERF_COUNT_SW_MAX,                      /* non-ABI */
110 };
111
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117         PERF_SAMPLE_IP                          = 1U << 0,
118         PERF_SAMPLE_TID                         = 1U << 1,
119         PERF_SAMPLE_TIME                        = 1U << 2,
120         PERF_SAMPLE_ADDR                        = 1U << 3,
121         PERF_SAMPLE_READ                        = 1U << 4,
122         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
123         PERF_SAMPLE_ID                          = 1U << 6,
124         PERF_SAMPLE_CPU                         = 1U << 7,
125         PERF_SAMPLE_PERIOD                      = 1U << 8,
126         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
127         PERF_SAMPLE_RAW                         = 1U << 10,
128
129         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
130 };
131
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *      { u64           value;
138  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
139  *        { u64         time_running; } && PERF_FORMAT_RUNNING
140  *        { u64         id;           } && PERF_FORMAT_ID
141  *      } && !PERF_FORMAT_GROUP
142  *
143  *      { u64           nr;
144  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
145  *        { u64         time_running; } && PERF_FORMAT_RUNNING
146  *        { u64         value;
147  *          { u64       id;           } && PERF_FORMAT_ID
148  *        }             cntr[nr];
149  *      } && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
154         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
155         PERF_FORMAT_ID                          = 1U << 2,
156         PERF_FORMAT_GROUP                       = 1U << 3,
157
158         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
159 };
160
161 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
162
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167
168         /*
169          * Major type: hardware/software/tracepoint/etc.
170          */
171         __u32                   type;
172
173         /*
174          * Size of the attr structure, for fwd/bwd compat.
175          */
176         __u32                   size;
177
178         /*
179          * Type specific configuration information.
180          */
181         __u64                   config;
182
183         union {
184                 __u64           sample_period;
185                 __u64           sample_freq;
186         };
187
188         __u64                   sample_type;
189         __u64                   read_format;
190
191         __u64                   disabled       :  1, /* off by default        */
192                                 inherit        :  1, /* children inherit it   */
193                                 pinned         :  1, /* must always be on PMU */
194                                 exclusive      :  1, /* only group on PMU     */
195                                 exclude_user   :  1, /* don't count user      */
196                                 exclude_kernel :  1, /* ditto kernel          */
197                                 exclude_hv     :  1, /* ditto hypervisor      */
198                                 exclude_idle   :  1, /* don't count when idle */
199                                 mmap           :  1, /* include mmap data     */
200                                 comm           :  1, /* include comm data     */
201                                 freq           :  1, /* use freq, not period  */
202                                 inherit_stat   :  1, /* per task counts       */
203                                 enable_on_exec :  1, /* next exec enables     */
204                                 task           :  1, /* trace fork/exit       */
205                                 watermark      :  1, /* wakeup_watermark      */
206
207                                 __reserved_1   : 49;
208
209         union {
210                 __u32           wakeup_events;    /* wakeup every n events */
211                 __u32           wakeup_watermark; /* bytes before wakeup   */
212         };
213
214         __u32                   bp_type;
215         __u64                   bp_addr;
216         __u64                   bp_len;
217 };
218
219 /*
220  * Ioctls that can be done on a perf event fd:
221  */
222 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
223 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
224 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
225 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
226 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
227 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
228 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
229
230 enum perf_event_ioc_flags {
231         PERF_IOC_FLAG_GROUP             = 1U << 0,
232 };
233
234 /*
235  * Structure of the page that can be mapped via mmap
236  */
237 struct perf_event_mmap_page {
238         __u32   version;                /* version number of this structure */
239         __u32   compat_version;         /* lowest version this is compat with */
240
241         /*
242          * Bits needed to read the hw events in user-space.
243          *
244          *   u32 seq;
245          *   s64 count;
246          *
247          *   do {
248          *     seq = pc->lock;
249          *
250          *     barrier()
251          *     if (pc->index) {
252          *       count = pmc_read(pc->index - 1);
253          *       count += pc->offset;
254          *     } else
255          *       goto regular_read;
256          *
257          *     barrier();
258          *   } while (pc->lock != seq);
259          *
260          * NOTE: for obvious reason this only works on self-monitoring
261          *       processes.
262          */
263         __u32   lock;                   /* seqlock for synchronization */
264         __u32   index;                  /* hardware event identifier */
265         __s64   offset;                 /* add to hardware event value */
266         __u64   time_enabled;           /* time event active */
267         __u64   time_running;           /* time event on cpu */
268
269                 /*
270                  * Hole for extension of the self monitor capabilities
271                  */
272
273         __u64   __reserved[123];        /* align to 1k */
274
275         /*
276          * Control data for the mmap() data buffer.
277          *
278          * User-space reading the @data_head value should issue an rmb(), on
279          * SMP capable platforms, after reading this value -- see
280          * perf_event_wakeup().
281          *
282          * When the mapping is PROT_WRITE the @data_tail value should be
283          * written by userspace to reflect the last read data. In this case
284          * the kernel will not over-write unread data.
285          */
286         __u64   data_head;              /* head in the data section */
287         __u64   data_tail;              /* user-space written tail */
288 };
289
290 #define PERF_RECORD_MISC_CPUMODE_MASK           (3 << 0)
291 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN                (0 << 0)
292 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
293 #define PERF_RECORD_MISC_USER                   (2 << 0)
294 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
295
296 struct perf_event_header {
297         __u32   type;
298         __u16   misc;
299         __u16   size;
300 };
301
302 enum perf_event_type {
303
304         /*
305          * The MMAP events record the PROT_EXEC mappings so that we can
306          * correlate userspace IPs to code. They have the following structure:
307          *
308          * struct {
309          *      struct perf_event_header        header;
310          *
311          *      u32                             pid, tid;
312          *      u64                             addr;
313          *      u64                             len;
314          *      u64                             pgoff;
315          *      char                            filename[];
316          * };
317          */
318         PERF_RECORD_MMAP                        = 1,
319
320         /*
321          * struct {
322          *      struct perf_event_header        header;
323          *      u64                             id;
324          *      u64                             lost;
325          * };
326          */
327         PERF_RECORD_LOST                        = 2,
328
329         /*
330          * struct {
331          *      struct perf_event_header        header;
332          *
333          *      u32                             pid, tid;
334          *      char                            comm[];
335          * };
336          */
337         PERF_RECORD_COMM                        = 3,
338
339         /*
340          * struct {
341          *      struct perf_event_header        header;
342          *      u32                             pid, ppid;
343          *      u32                             tid, ptid;
344          *      u64                             time;
345          * };
346          */
347         PERF_RECORD_EXIT                        = 4,
348
349         /*
350          * struct {
351          *      struct perf_event_header        header;
352          *      u64                             time;
353          *      u64                             id;
354          *      u64                             stream_id;
355          * };
356          */
357         PERF_RECORD_THROTTLE            = 5,
358         PERF_RECORD_UNTHROTTLE          = 6,
359
360         /*
361          * struct {
362          *      struct perf_event_header        header;
363          *      u32                             pid, ppid;
364          *      u32                             tid, ptid;
365          *      u64                             time;
366          * };
367          */
368         PERF_RECORD_FORK                        = 7,
369
370         /*
371          * struct {
372          *      struct perf_event_header        header;
373          *      u32                             pid, tid;
374          *
375          *      struct read_format              values;
376          * };
377          */
378         PERF_RECORD_READ                        = 8,
379
380         /*
381          * struct {
382          *      struct perf_event_header        header;
383          *
384          *      { u64                   ip;       } && PERF_SAMPLE_IP
385          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
386          *      { u64                   time;     } && PERF_SAMPLE_TIME
387          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
388          *      { u64                   id;       } && PERF_SAMPLE_ID
389          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
390          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
391          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
392          *
393          *      { struct read_format    values;   } && PERF_SAMPLE_READ
394          *
395          *      { u64                   nr,
396          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
397          *
398          *      #
399          *      # The RAW record below is opaque data wrt the ABI
400          *      #
401          *      # That is, the ABI doesn't make any promises wrt to
402          *      # the stability of its content, it may vary depending
403          *      # on event, hardware, kernel version and phase of
404          *      # the moon.
405          *      #
406          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
407          *      #
408          *
409          *      { u32                   size;
410          *        char                  data[size];}&& PERF_SAMPLE_RAW
411          * };
412          */
413         PERF_RECORD_SAMPLE              = 9,
414
415         PERF_RECORD_MAX,                        /* non-ABI */
416 };
417
418 enum perf_callchain_context {
419         PERF_CONTEXT_HV                 = (__u64)-32,
420         PERF_CONTEXT_KERNEL             = (__u64)-128,
421         PERF_CONTEXT_USER               = (__u64)-512,
422
423         PERF_CONTEXT_GUEST              = (__u64)-2048,
424         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
425         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
426
427         PERF_CONTEXT_MAX                = (__u64)-4095,
428 };
429
430 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
431 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
432
433 #ifdef __KERNEL__
434 /*
435  * Kernel-internal data types and definitions:
436  */
437
438 #ifdef CONFIG_PERF_EVENTS
439 # include <asm/perf_event.h>
440 #endif
441
442 #ifdef CONFIG_HAVE_HW_BREAKPOINT
443 #include <asm/hw_breakpoint.h>
444 #endif
445
446 #include <linux/list.h>
447 #include <linux/mutex.h>
448 #include <linux/rculist.h>
449 #include <linux/rcupdate.h>
450 #include <linux/spinlock.h>
451 #include <linux/hrtimer.h>
452 #include <linux/fs.h>
453 #include <linux/pid_namespace.h>
454 #include <linux/workqueue.h>
455 #include <asm/atomic.h>
456
457 #define PERF_MAX_STACK_DEPTH            255
458
459 struct perf_callchain_entry {
460         __u64                           nr;
461         __u64                           ip[PERF_MAX_STACK_DEPTH];
462 };
463
464 struct perf_raw_record {
465         u32                             size;
466         void                            *data;
467 };
468
469 struct task_struct;
470
471 /**
472  * struct hw_perf_event - performance event hardware details:
473  */
474 struct hw_perf_event {
475 #ifdef CONFIG_PERF_EVENTS
476         union {
477                 struct { /* hardware */
478                         u64             config;
479                         unsigned long   config_base;
480                         unsigned long   event_base;
481                         int             idx;
482                 };
483                 struct { /* software */
484                         s64             remaining;
485                         struct hrtimer  hrtimer;
486                 };
487 #ifdef CONFIG_HAVE_HW_BREAKPOINT
488                 union { /* breakpoint */
489                         struct arch_hw_breakpoint       info;
490                 };
491 #endif
492         };
493         atomic64_t                      prev_count;
494         u64                             sample_period;
495         u64                             last_period;
496         atomic64_t                      period_left;
497         u64                             interrupts;
498
499         u64                             freq_count;
500         u64                             freq_interrupts;
501         u64                             freq_stamp;
502 #endif
503 };
504
505 struct perf_event;
506
507 /**
508  * struct pmu - generic performance monitoring unit
509  */
510 struct pmu {
511         int (*enable)                   (struct perf_event *event);
512         void (*disable)                 (struct perf_event *event);
513         void (*read)                    (struct perf_event *event);
514         void (*unthrottle)              (struct perf_event *event);
515 };
516
517 /**
518  * enum perf_event_active_state - the states of a event
519  */
520 enum perf_event_active_state {
521         PERF_EVENT_STATE_ERROR          = -2,
522         PERF_EVENT_STATE_OFF            = -1,
523         PERF_EVENT_STATE_INACTIVE       =  0,
524         PERF_EVENT_STATE_ACTIVE         =  1,
525 };
526
527 struct file;
528
529 struct perf_mmap_data {
530         struct rcu_head                 rcu_head;
531 #ifdef CONFIG_PERF_USE_VMALLOC
532         struct work_struct              work;
533 #endif
534         int                             data_order;
535         int                             nr_pages;       /* nr of data pages  */
536         int                             writable;       /* are we writable   */
537         int                             nr_locked;      /* nr pages mlocked  */
538
539         atomic_t                        poll;           /* POLL_ for wakeups */
540         atomic_t                        events;         /* event_id limit       */
541
542         atomic_long_t                   head;           /* write position    */
543         atomic_long_t                   done_head;      /* completed head    */
544
545         atomic_t                        lock;           /* concurrent writes */
546         atomic_t                        wakeup;         /* needs a wakeup    */
547         atomic_t                        lost;           /* nr records lost   */
548
549         long                            watermark;      /* wakeup watermark  */
550
551         struct perf_event_mmap_page     *user_page;
552         void                            *data_pages[0];
553 };
554
555 struct perf_pending_entry {
556         struct perf_pending_entry *next;
557         void (*func)(struct perf_pending_entry *);
558 };
559
560 struct perf_sample_data;
561
562 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
563                                         struct perf_sample_data *,
564                                         struct pt_regs *regs);
565
566 /**
567  * struct perf_event - performance event kernel representation:
568  */
569 struct perf_event {
570 #ifdef CONFIG_PERF_EVENTS
571         struct list_head                group_entry;
572         struct list_head                event_entry;
573         struct list_head                sibling_list;
574         int                             nr_siblings;
575         struct perf_event               *group_leader;
576         struct perf_event               *output;
577         const struct pmu                *pmu;
578
579         enum perf_event_active_state    state;
580         atomic64_t                      count;
581
582         /*
583          * These are the total time in nanoseconds that the event
584          * has been enabled (i.e. eligible to run, and the task has
585          * been scheduled in, if this is a per-task event)
586          * and running (scheduled onto the CPU), respectively.
587          *
588          * They are computed from tstamp_enabled, tstamp_running and
589          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
590          */
591         u64                             total_time_enabled;
592         u64                             total_time_running;
593
594         /*
595          * These are timestamps used for computing total_time_enabled
596          * and total_time_running when the event is in INACTIVE or
597          * ACTIVE state, measured in nanoseconds from an arbitrary point
598          * in time.
599          * tstamp_enabled: the notional time when the event was enabled
600          * tstamp_running: the notional time when the event was scheduled on
601          * tstamp_stopped: in INACTIVE state, the notional time when the
602          *      event was scheduled off.
603          */
604         u64                             tstamp_enabled;
605         u64                             tstamp_running;
606         u64                             tstamp_stopped;
607
608         struct perf_event_attr          attr;
609         struct hw_perf_event            hw;
610
611         struct perf_event_context       *ctx;
612         struct file                     *filp;
613
614         /*
615          * These accumulate total time (in nanoseconds) that children
616          * events have been enabled and running, respectively.
617          */
618         atomic64_t                      child_total_time_enabled;
619         atomic64_t                      child_total_time_running;
620
621         /*
622          * Protect attach/detach and child_list:
623          */
624         struct mutex                    child_mutex;
625         struct list_head                child_list;
626         struct perf_event               *parent;
627
628         int                             oncpu;
629         int                             cpu;
630
631         struct list_head                owner_entry;
632         struct task_struct              *owner;
633
634         /* mmap bits */
635         struct mutex                    mmap_mutex;
636         atomic_t                        mmap_count;
637         struct perf_mmap_data           *data;
638
639         /* poll related */
640         wait_queue_head_t               waitq;
641         struct fasync_struct            *fasync;
642
643         /* delayed work for NMIs and such */
644         int                             pending_wakeup;
645         int                             pending_kill;
646         int                             pending_disable;
647         struct perf_pending_entry       pending;
648
649         atomic_t                        event_limit;
650
651         void (*destroy)(struct perf_event *);
652         struct rcu_head                 rcu_head;
653
654         struct pid_namespace            *ns;
655         u64                             id;
656
657         perf_overflow_handler_t         overflow_handler;
658
659 #ifdef CONFIG_EVENT_PROFILE
660         struct event_filter             *filter;
661 #endif
662
663 #endif /* CONFIG_PERF_EVENTS */
664 };
665
666 /**
667  * struct perf_event_context - event context structure
668  *
669  * Used as a container for task events and CPU events as well:
670  */
671 struct perf_event_context {
672         /*
673          * Protect the states of the events in the list,
674          * nr_active, and the list:
675          */
676         raw_spinlock_t                  lock;
677         /*
678          * Protect the list of events.  Locking either mutex or lock
679          * is sufficient to ensure the list doesn't change; to change
680          * the list you need to lock both the mutex and the spinlock.
681          */
682         struct mutex                    mutex;
683
684         struct list_head                group_list;
685         struct list_head                event_list;
686         int                             nr_events;
687         int                             nr_active;
688         int                             is_active;
689         int                             nr_stat;
690         atomic_t                        refcount;
691         struct task_struct              *task;
692
693         /*
694          * Context clock, runs when context enabled.
695          */
696         u64                             time;
697         u64                             timestamp;
698
699         /*
700          * These fields let us detect when two contexts have both
701          * been cloned (inherited) from a common ancestor.
702          */
703         struct perf_event_context       *parent_ctx;
704         u64                             parent_gen;
705         u64                             generation;
706         int                             pin_count;
707         struct rcu_head                 rcu_head;
708 };
709
710 /**
711  * struct perf_event_cpu_context - per cpu event context structure
712  */
713 struct perf_cpu_context {
714         struct perf_event_context       ctx;
715         struct perf_event_context       *task_ctx;
716         int                             active_oncpu;
717         int                             max_pertask;
718         int                             exclusive;
719
720         /*
721          * Recursion avoidance:
722          *
723          * task, softirq, irq, nmi context
724          */
725         int                             recursion[4];
726 };
727
728 struct perf_output_handle {
729         struct perf_event               *event;
730         struct perf_mmap_data           *data;
731         unsigned long                   head;
732         unsigned long                   offset;
733         int                             nmi;
734         int                             sample;
735         int                             locked;
736 };
737
738 #ifdef CONFIG_PERF_EVENTS
739
740 /*
741  * Set by architecture code:
742  */
743 extern int perf_max_events;
744
745 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
746
747 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
748 extern void perf_event_task_sched_out(struct task_struct *task,
749                                         struct task_struct *next, int cpu);
750 extern void perf_event_task_tick(struct task_struct *task, int cpu);
751 extern int perf_event_init_task(struct task_struct *child);
752 extern void perf_event_exit_task(struct task_struct *child);
753 extern void perf_event_free_task(struct task_struct *task);
754 extern void set_perf_event_pending(void);
755 extern void perf_event_do_pending(void);
756 extern void perf_event_print_debug(void);
757 extern void __perf_disable(void);
758 extern bool __perf_enable(void);
759 extern void perf_disable(void);
760 extern void perf_enable(void);
761 extern int perf_event_task_disable(void);
762 extern int perf_event_task_enable(void);
763 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
764                struct perf_cpu_context *cpuctx,
765                struct perf_event_context *ctx, int cpu);
766 extern void perf_event_update_userpage(struct perf_event *event);
767 extern int perf_event_release_kernel(struct perf_event *event);
768 extern struct perf_event *
769 perf_event_create_kernel_counter(struct perf_event_attr *attr,
770                                 int cpu,
771                                 pid_t pid,
772                                 perf_overflow_handler_t callback);
773 extern u64 perf_event_read_value(struct perf_event *event,
774                                  u64 *enabled, u64 *running);
775
776 struct perf_sample_data {
777         u64                             type;
778
779         u64                             ip;
780         struct {
781                 u32     pid;
782                 u32     tid;
783         }                               tid_entry;
784         u64                             time;
785         u64                             addr;
786         u64                             id;
787         u64                             stream_id;
788         struct {
789                 u32     cpu;
790                 u32     reserved;
791         }                               cpu_entry;
792         u64                             period;
793         struct perf_callchain_entry     *callchain;
794         struct perf_raw_record          *raw;
795 };
796
797 extern void perf_output_sample(struct perf_output_handle *handle,
798                                struct perf_event_header *header,
799                                struct perf_sample_data *data,
800                                struct perf_event *event);
801 extern void perf_prepare_sample(struct perf_event_header *header,
802                                 struct perf_sample_data *data,
803                                 struct perf_event *event,
804                                 struct pt_regs *regs);
805
806 extern int perf_event_overflow(struct perf_event *event, int nmi,
807                                  struct perf_sample_data *data,
808                                  struct pt_regs *regs);
809
810 /*
811  * Return 1 for a software event, 0 for a hardware event
812  */
813 static inline int is_software_event(struct perf_event *event)
814 {
815         switch (event->attr.type) {
816         case PERF_TYPE_SOFTWARE:
817         case PERF_TYPE_TRACEPOINT:
818         /* for now the breakpoint stuff also works as software event */
819         case PERF_TYPE_BREAKPOINT:
820                 return 1;
821         }
822         return 0;
823 }
824
825 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
826
827 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
828
829 static inline void
830 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
831 {
832         if (atomic_read(&perf_swevent_enabled[event_id]))
833                 __perf_sw_event(event_id, nr, nmi, regs, addr);
834 }
835
836 extern void __perf_event_mmap(struct vm_area_struct *vma);
837
838 static inline void perf_event_mmap(struct vm_area_struct *vma)
839 {
840         if (vma->vm_flags & VM_EXEC)
841                 __perf_event_mmap(vma);
842 }
843
844 extern void perf_event_comm(struct task_struct *tsk);
845 extern void perf_event_fork(struct task_struct *tsk);
846
847 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
848
849 extern int sysctl_perf_event_paranoid;
850 extern int sysctl_perf_event_mlock;
851 extern int sysctl_perf_event_sample_rate;
852
853 extern void perf_event_init(void);
854 extern void perf_tp_event(int event_id, u64 addr, u64 count,
855                                  void *record, int entry_size);
856 extern void perf_bp_event(struct perf_event *event, void *data);
857
858 #ifndef perf_misc_flags
859 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
860                                  PERF_RECORD_MISC_KERNEL)
861 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
862 #endif
863
864 extern int perf_output_begin(struct perf_output_handle *handle,
865                              struct perf_event *event, unsigned int size,
866                              int nmi, int sample);
867 extern void perf_output_end(struct perf_output_handle *handle);
868 extern void perf_output_copy(struct perf_output_handle *handle,
869                              const void *buf, unsigned int len);
870 extern int perf_swevent_get_recursion_context(void);
871 extern void perf_swevent_put_recursion_context(int rctx);
872 extern void perf_event_enable(struct perf_event *event);
873 extern void perf_event_disable(struct perf_event *event);
874 #else
875 static inline void
876 perf_event_task_sched_in(struct task_struct *task, int cpu)             { }
877 static inline void
878 perf_event_task_sched_out(struct task_struct *task,
879                             struct task_struct *next, int cpu)          { }
880 static inline void
881 perf_event_task_tick(struct task_struct *task, int cpu)                 { }
882 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
883 static inline void perf_event_exit_task(struct task_struct *child)      { }
884 static inline void perf_event_free_task(struct task_struct *task)       { }
885 static inline void perf_event_do_pending(void)                          { }
886 static inline void perf_event_print_debug(void)                         { }
887 static inline void perf_disable(void)                                   { }
888 static inline void perf_enable(void)                                    { }
889 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
890 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
891
892 static inline void
893 perf_sw_event(u32 event_id, u64 nr, int nmi,
894                      struct pt_regs *regs, u64 addr)                    { }
895 static inline void
896 perf_bp_event(struct perf_event *event, void *data)             { }
897
898 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
899 static inline void perf_event_comm(struct task_struct *tsk)             { }
900 static inline void perf_event_fork(struct task_struct *tsk)             { }
901 static inline void perf_event_init(void)                                { }
902 static inline int  perf_swevent_get_recursion_context(void)  { return -1; }
903 static inline void perf_swevent_put_recursion_context(int rctx)         { }
904 static inline void perf_event_enable(struct perf_event *event)          { }
905 static inline void perf_event_disable(struct perf_event *event)         { }
906 #endif
907
908 #define perf_output_put(handle, x) \
909         perf_output_copy((handle), &(x), sizeof(x))
910
911 #endif /* __KERNEL__ */
912 #endif /* _LINUX_PERF_EVENT_H */