xfs: semaphore cleanup
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         RB_CLEAR_NODE(&bp->b_rbnode);
192         sema_init(&bp->b_sema, 0); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
266                 uint            i;
267
268                 if (xfs_buf_is_vmapped(bp))
269                         vm_unmap_ram(bp->b_addr - bp->b_offset,
270                                         bp->b_page_count);
271
272                 for (i = 0; i < bp->b_page_count; i++) {
273                         struct page     *page = bp->b_pages[i];
274
275                         if (bp->b_flags & _XBF_PAGE_CACHE)
276                                 ASSERT(!PagePrivate(page));
277                         page_cache_release(page);
278                 }
279         }
280         _xfs_buf_free_pages(bp);
281         xfs_buf_deallocate(bp);
282 }
283
284 /*
285  *      Finds all pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 _xfs_buf_lookup_pages(
289         xfs_buf_t               *bp,
290         uint                    flags)
291 {
292         struct address_space    *mapping = bp->b_target->bt_mapping;
293         size_t                  blocksize = bp->b_target->bt_bsize;
294         size_t                  size = bp->b_count_desired;
295         size_t                  nbytes, offset;
296         gfp_t                   gfp_mask = xb_to_gfp(flags);
297         unsigned short          page_count, i;
298         pgoff_t                 first;
299         xfs_off_t               end;
300         int                     error;
301
302         end = bp->b_file_offset + bp->b_buffer_length;
303         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
304
305         error = _xfs_buf_get_pages(bp, page_count, flags);
306         if (unlikely(error))
307                 return error;
308         bp->b_flags |= _XBF_PAGE_CACHE;
309
310         offset = bp->b_offset;
311         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
312
313         for (i = 0; i < bp->b_page_count; i++) {
314                 struct page     *page;
315                 uint            retries = 0;
316
317               retry:
318                 page = find_or_create_page(mapping, first + i, gfp_mask);
319                 if (unlikely(page == NULL)) {
320                         if (flags & XBF_READ_AHEAD) {
321                                 bp->b_page_count = i;
322                                 for (i = 0; i < bp->b_page_count; i++)
323                                         unlock_page(bp->b_pages[i]);
324                                 return -ENOMEM;
325                         }
326
327                         /*
328                          * This could deadlock.
329                          *
330                          * But until all the XFS lowlevel code is revamped to
331                          * handle buffer allocation failures we can't do much.
332                          */
333                         if (!(++retries % 100))
334                                 printk(KERN_ERR
335                                         "XFS: possible memory allocation "
336                                         "deadlock in %s (mode:0x%x)\n",
337                                         __func__, gfp_mask);
338
339                         XFS_STATS_INC(xb_page_retries);
340                         xfsbufd_wakeup(NULL, 0, gfp_mask);
341                         congestion_wait(BLK_RW_ASYNC, HZ/50);
342                         goto retry;
343                 }
344
345                 XFS_STATS_INC(xb_page_found);
346
347                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348                 size -= nbytes;
349
350                 ASSERT(!PagePrivate(page));
351                 if (!PageUptodate(page)) {
352                         page_count--;
353                         if (blocksize >= PAGE_CACHE_SIZE) {
354                                 if (flags & XBF_READ)
355                                         bp->b_flags |= _XBF_PAGE_LOCKED;
356                         } else if (!PagePrivate(page)) {
357                                 if (test_page_region(page, offset, nbytes))
358                                         page_count++;
359                         }
360                 }
361
362                 bp->b_pages[i] = page;
363                 offset = 0;
364         }
365
366         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367                 for (i = 0; i < bp->b_page_count; i++)
368                         unlock_page(bp->b_pages[i]);
369         }
370
371         if (page_count == bp->b_page_count)
372                 bp->b_flags |= XBF_DONE;
373
374         return error;
375 }
376
377 /*
378  *      Map buffer into kernel address-space if nessecary.
379  */
380 STATIC int
381 _xfs_buf_map_pages(
382         xfs_buf_t               *bp,
383         uint                    flags)
384 {
385         /* A single page buffer is always mappable */
386         if (bp->b_page_count == 1) {
387                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388                 bp->b_flags |= XBF_MAPPED;
389         } else if (flags & XBF_MAPPED) {
390                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391                                         -1, PAGE_KERNEL);
392                 if (unlikely(bp->b_addr == NULL))
393                         return -ENOMEM;
394                 bp->b_addr += bp->b_offset;
395                 bp->b_flags |= XBF_MAPPED;
396         }
397
398         return 0;
399 }
400
401 /*
402  *      Finding and Reading Buffers
403  */
404
405 /*
406  *      Look up, and creates if absent, a lockable buffer for
407  *      a given range of an inode.  The buffer is returned
408  *      locked.  If other overlapping buffers exist, they are
409  *      released before the new buffer is created and locked,
410  *      which may imply that this call will block until those buffers
411  *      are unlocked.  No I/O is implied by this call.
412  */
413 xfs_buf_t *
414 _xfs_buf_find(
415         xfs_buftarg_t           *btp,   /* block device target          */
416         xfs_off_t               ioff,   /* starting offset of range     */
417         size_t                  isize,  /* length of range              */
418         xfs_buf_flags_t         flags,
419         xfs_buf_t               *new_bp)
420 {
421         xfs_off_t               range_base;
422         size_t                  range_length;
423         struct xfs_perag        *pag;
424         struct rb_node          **rbp;
425         struct rb_node          *parent;
426         xfs_buf_t               *bp;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         /* get tree root */
436         pag = xfs_perag_get(btp->bt_mount,
437                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439         /* walk tree */
440         spin_lock(&pag->pag_buf_lock);
441         rbp = &pag->pag_buf_tree.rb_node;
442         parent = NULL;
443         bp = NULL;
444         while (*rbp) {
445                 parent = *rbp;
446                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448                 if (range_base < bp->b_file_offset)
449                         rbp = &(*rbp)->rb_left;
450                 else if (range_base > bp->b_file_offset)
451                         rbp = &(*rbp)->rb_right;
452                 else {
453                         /*
454                          * found a block offset match. If the range doesn't
455                          * match, the only way this is allowed is if the buffer
456                          * in the cache is stale and the transaction that made
457                          * it stale has not yet committed. i.e. we are
458                          * reallocating a busy extent. Skip this buffer and
459                          * continue searching to the right for an exact match.
460                          */
461                         if (bp->b_buffer_length != range_length) {
462                                 ASSERT(bp->b_flags & XBF_STALE);
463                                 rbp = &(*rbp)->rb_right;
464                                 continue;
465                         }
466                         atomic_inc(&bp->b_hold);
467                         goto found;
468                 }
469         }
470
471         /* No match found */
472         if (new_bp) {
473                 _xfs_buf_initialize(new_bp, btp, range_base,
474                                 range_length, flags);
475                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477                 /* the buffer keeps the perag reference until it is freed */
478                 new_bp->b_pag = pag;
479                 spin_unlock(&pag->pag_buf_lock);
480         } else {
481                 XFS_STATS_INC(xb_miss_locked);
482                 spin_unlock(&pag->pag_buf_lock);
483                 xfs_perag_put(pag);
484         }
485         return new_bp;
486
487 found:
488         spin_unlock(&pag->pag_buf_lock);
489         xfs_perag_put(pag);
490
491         /* Attempt to get the semaphore without sleeping,
492          * if this does not work then we need to drop the
493          * spinlock and do a hard attempt on the semaphore.
494          */
495         if (down_trylock(&bp->b_sema)) {
496                 if (!(flags & XBF_TRYLOCK)) {
497                         /* wait for buffer ownership */
498                         xfs_buf_lock(bp);
499                         XFS_STATS_INC(xb_get_locked_waited);
500                 } else {
501                         /* We asked for a trylock and failed, no need
502                          * to look at file offset and length here, we
503                          * know that this buffer at least overlaps our
504                          * buffer and is locked, therefore our buffer
505                          * either does not exist, or is this buffer.
506                          */
507                         xfs_buf_rele(bp);
508                         XFS_STATS_INC(xb_busy_locked);
509                         return NULL;
510                 }
511         } else {
512                 /* trylock worked */
513                 XB_SET_OWNER(bp);
514         }
515
516         if (bp->b_flags & XBF_STALE) {
517                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
518                 bp->b_flags &= XBF_MAPPED;
519         }
520
521         trace_xfs_buf_find(bp, flags, _RET_IP_);
522         XFS_STATS_INC(xb_get_locked);
523         return bp;
524 }
525
526 /*
527  *      Assembles a buffer covering the specified range.
528  *      Storage in memory for all portions of the buffer will be allocated,
529  *      although backing storage may not be.
530  */
531 xfs_buf_t *
532 xfs_buf_get(
533         xfs_buftarg_t           *target,/* target for buffer            */
534         xfs_off_t               ioff,   /* starting offset of range     */
535         size_t                  isize,  /* length of range              */
536         xfs_buf_flags_t         flags)
537 {
538         xfs_buf_t               *bp, *new_bp;
539         int                     error = 0, i;
540
541         new_bp = xfs_buf_allocate(flags);
542         if (unlikely(!new_bp))
543                 return NULL;
544
545         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
546         if (bp == new_bp) {
547                 error = _xfs_buf_lookup_pages(bp, flags);
548                 if (error)
549                         goto no_buffer;
550         } else {
551                 xfs_buf_deallocate(new_bp);
552                 if (unlikely(bp == NULL))
553                         return NULL;
554         }
555
556         for (i = 0; i < bp->b_page_count; i++)
557                 mark_page_accessed(bp->b_pages[i]);
558
559         if (!(bp->b_flags & XBF_MAPPED)) {
560                 error = _xfs_buf_map_pages(bp, flags);
561                 if (unlikely(error)) {
562                         printk(KERN_WARNING "%s: failed to map pages\n",
563                                         __func__);
564                         goto no_buffer;
565                 }
566         }
567
568         XFS_STATS_INC(xb_get);
569
570         /*
571          * Always fill in the block number now, the mapped cases can do
572          * their own overlay of this later.
573          */
574         bp->b_bn = ioff;
575         bp->b_count_desired = bp->b_buffer_length;
576
577         trace_xfs_buf_get(bp, flags, _RET_IP_);
578         return bp;
579
580  no_buffer:
581         if (flags & (XBF_LOCK | XBF_TRYLOCK))
582                 xfs_buf_unlock(bp);
583         xfs_buf_rele(bp);
584         return NULL;
585 }
586
587 STATIC int
588 _xfs_buf_read(
589         xfs_buf_t               *bp,
590         xfs_buf_flags_t         flags)
591 {
592         int                     status;
593
594         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602         status = xfs_buf_iorequest(bp);
603         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604                 return status;
605         return xfs_buf_iowait(bp);
606 }
607
608 xfs_buf_t *
609 xfs_buf_read(
610         xfs_buftarg_t           *target,
611         xfs_off_t               ioff,
612         size_t                  isize,
613         xfs_buf_flags_t         flags)
614 {
615         xfs_buf_t               *bp;
616
617         flags |= XBF_READ;
618
619         bp = xfs_buf_get(target, ioff, isize, flags);
620         if (bp) {
621                 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
623                 if (!XFS_BUF_ISDONE(bp)) {
624                         XFS_STATS_INC(xb_get_read);
625                         _xfs_buf_read(bp, flags);
626                 } else if (flags & XBF_ASYNC) {
627                         /*
628                          * Read ahead call which is already satisfied,
629                          * drop the buffer
630                          */
631                         goto no_buffer;
632                 } else {
633                         /* We do not want read in the flags */
634                         bp->b_flags &= ~XBF_READ;
635                 }
636         }
637
638         return bp;
639
640  no_buffer:
641         if (flags & (XBF_LOCK | XBF_TRYLOCK))
642                 xfs_buf_unlock(bp);
643         xfs_buf_rele(bp);
644         return NULL;
645 }
646
647 /*
648  *      If we are not low on memory then do the readahead in a deadlock
649  *      safe manner.
650  */
651 void
652 xfs_buf_readahead(
653         xfs_buftarg_t           *target,
654         xfs_off_t               ioff,
655         size_t                  isize)
656 {
657         struct backing_dev_info *bdi;
658
659         bdi = target->bt_mapping->backing_dev_info;
660         if (bdi_read_congested(bdi))
661                 return;
662
663         xfs_buf_read(target, ioff, isize,
664                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
665 }
666
667 /*
668  * Read an uncached buffer from disk. Allocates and returns a locked
669  * buffer containing the disk contents or nothing.
670  */
671 struct xfs_buf *
672 xfs_buf_read_uncached(
673         struct xfs_mount        *mp,
674         struct xfs_buftarg      *target,
675         xfs_daddr_t             daddr,
676         size_t                  length,
677         int                     flags)
678 {
679         xfs_buf_t               *bp;
680         int                     error;
681
682         bp = xfs_buf_get_uncached(target, length, flags);
683         if (!bp)
684                 return NULL;
685
686         /* set up the buffer for a read IO */
687         xfs_buf_lock(bp);
688         XFS_BUF_SET_ADDR(bp, daddr);
689         XFS_BUF_READ(bp);
690         XFS_BUF_BUSY(bp);
691
692         xfsbdstrat(mp, bp);
693         error = xfs_buf_iowait(bp);
694         if (error || bp->b_error) {
695                 xfs_buf_relse(bp);
696                 return NULL;
697         }
698         return bp;
699 }
700
701 xfs_buf_t *
702 xfs_buf_get_empty(
703         size_t                  len,
704         xfs_buftarg_t           *target)
705 {
706         xfs_buf_t               *bp;
707
708         bp = xfs_buf_allocate(0);
709         if (bp)
710                 _xfs_buf_initialize(bp, target, 0, len, 0);
711         return bp;
712 }
713
714 static inline struct page *
715 mem_to_page(
716         void                    *addr)
717 {
718         if ((!is_vmalloc_addr(addr))) {
719                 return virt_to_page(addr);
720         } else {
721                 return vmalloc_to_page(addr);
722         }
723 }
724
725 int
726 xfs_buf_associate_memory(
727         xfs_buf_t               *bp,
728         void                    *mem,
729         size_t                  len)
730 {
731         int                     rval;
732         int                     i = 0;
733         unsigned long           pageaddr;
734         unsigned long           offset;
735         size_t                  buflen;
736         int                     page_count;
737
738         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
739         offset = (unsigned long)mem - pageaddr;
740         buflen = PAGE_CACHE_ALIGN(len + offset);
741         page_count = buflen >> PAGE_CACHE_SHIFT;
742
743         /* Free any previous set of page pointers */
744         if (bp->b_pages)
745                 _xfs_buf_free_pages(bp);
746
747         bp->b_pages = NULL;
748         bp->b_addr = mem;
749
750         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
751         if (rval)
752                 return rval;
753
754         bp->b_offset = offset;
755
756         for (i = 0; i < bp->b_page_count; i++) {
757                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
758                 pageaddr += PAGE_CACHE_SIZE;
759         }
760
761         bp->b_count_desired = len;
762         bp->b_buffer_length = buflen;
763         bp->b_flags |= XBF_MAPPED;
764         bp->b_flags &= ~_XBF_PAGE_LOCKED;
765
766         return 0;
767 }
768
769 xfs_buf_t *
770 xfs_buf_get_uncached(
771         struct xfs_buftarg      *target,
772         size_t                  len,
773         int                     flags)
774 {
775         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
776         int                     error, i;
777         xfs_buf_t               *bp;
778
779         bp = xfs_buf_allocate(0);
780         if (unlikely(bp == NULL))
781                 goto fail;
782         _xfs_buf_initialize(bp, target, 0, len, 0);
783
784         error = _xfs_buf_get_pages(bp, page_count, 0);
785         if (error)
786                 goto fail_free_buf;
787
788         for (i = 0; i < page_count; i++) {
789                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
790                 if (!bp->b_pages[i])
791                         goto fail_free_mem;
792         }
793         bp->b_flags |= _XBF_PAGES;
794
795         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
796         if (unlikely(error)) {
797                 printk(KERN_WARNING "%s: failed to map pages\n",
798                                 __func__);
799                 goto fail_free_mem;
800         }
801
802         xfs_buf_unlock(bp);
803
804         trace_xfs_buf_get_uncached(bp, _RET_IP_);
805         return bp;
806
807  fail_free_mem:
808         while (--i >= 0)
809                 __free_page(bp->b_pages[i]);
810         _xfs_buf_free_pages(bp);
811  fail_free_buf:
812         xfs_buf_deallocate(bp);
813  fail:
814         return NULL;
815 }
816
817 /*
818  *      Increment reference count on buffer, to hold the buffer concurrently
819  *      with another thread which may release (free) the buffer asynchronously.
820  *      Must hold the buffer already to call this function.
821  */
822 void
823 xfs_buf_hold(
824         xfs_buf_t               *bp)
825 {
826         trace_xfs_buf_hold(bp, _RET_IP_);
827         atomic_inc(&bp->b_hold);
828 }
829
830 /*
831  *      Releases a hold on the specified buffer.  If the
832  *      the hold count is 1, calls xfs_buf_free.
833  */
834 void
835 xfs_buf_rele(
836         xfs_buf_t               *bp)
837 {
838         struct xfs_perag        *pag = bp->b_pag;
839
840         trace_xfs_buf_rele(bp, _RET_IP_);
841
842         if (!pag) {
843                 ASSERT(!bp->b_relse);
844                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
845                 if (atomic_dec_and_test(&bp->b_hold))
846                         xfs_buf_free(bp);
847                 return;
848         }
849
850         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
851         ASSERT(atomic_read(&bp->b_hold) > 0);
852         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
853                 if (bp->b_relse) {
854                         atomic_inc(&bp->b_hold);
855                         spin_unlock(&pag->pag_buf_lock);
856                         bp->b_relse(bp);
857                 } else {
858                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
859                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
860                         spin_unlock(&pag->pag_buf_lock);
861                         xfs_perag_put(pag);
862                         xfs_buf_free(bp);
863                 }
864         }
865 }
866
867
868 /*
869  *      Mutual exclusion on buffers.  Locking model:
870  *
871  *      Buffers associated with inodes for which buffer locking
872  *      is not enabled are not protected by semaphores, and are
873  *      assumed to be exclusively owned by the caller.  There is a
874  *      spinlock in the buffer, used by the caller when concurrent
875  *      access is possible.
876  */
877
878 /*
879  *      Locks a buffer object, if it is not already locked.
880  *      Note that this in no way locks the underlying pages, so it is only
881  *      useful for synchronizing concurrent use of buffer objects, not for
882  *      synchronizing independent access to the underlying pages.
883  */
884 int
885 xfs_buf_cond_lock(
886         xfs_buf_t               *bp)
887 {
888         int                     locked;
889
890         locked = down_trylock(&bp->b_sema) == 0;
891         if (locked)
892                 XB_SET_OWNER(bp);
893
894         trace_xfs_buf_cond_lock(bp, _RET_IP_);
895         return locked ? 0 : -EBUSY;
896 }
897
898 int
899 xfs_buf_lock_value(
900         xfs_buf_t               *bp)
901 {
902         return bp->b_sema.count;
903 }
904
905 /*
906  *      Locks a buffer object.
907  *      Note that this in no way locks the underlying pages, so it is only
908  *      useful for synchronizing concurrent use of buffer objects, not for
909  *      synchronizing independent access to the underlying pages.
910  *
911  *      If we come across a stale, pinned, locked buffer, we know that we
912  *      are being asked to lock a buffer that has been reallocated. Because
913  *      it is pinned, we know that the log has not been pushed to disk and
914  *      hence it will still be locked. Rather than sleeping until someone
915  *      else pushes the log, push it ourselves before trying to get the lock.
916  */
917 void
918 xfs_buf_lock(
919         xfs_buf_t               *bp)
920 {
921         trace_xfs_buf_lock(bp, _RET_IP_);
922
923         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
924                 xfs_log_force(bp->b_target->bt_mount, 0);
925         if (atomic_read(&bp->b_io_remaining))
926                 blk_run_address_space(bp->b_target->bt_mapping);
927         down(&bp->b_sema);
928         XB_SET_OWNER(bp);
929
930         trace_xfs_buf_lock_done(bp, _RET_IP_);
931 }
932
933 /*
934  *      Releases the lock on the buffer object.
935  *      If the buffer is marked delwri but is not queued, do so before we
936  *      unlock the buffer as we need to set flags correctly.  We also need to
937  *      take a reference for the delwri queue because the unlocker is going to
938  *      drop their's and they don't know we just queued it.
939  */
940 void
941 xfs_buf_unlock(
942         xfs_buf_t               *bp)
943 {
944         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
945                 atomic_inc(&bp->b_hold);
946                 bp->b_flags |= XBF_ASYNC;
947                 xfs_buf_delwri_queue(bp, 0);
948         }
949
950         XB_CLEAR_OWNER(bp);
951         up(&bp->b_sema);
952
953         trace_xfs_buf_unlock(bp, _RET_IP_);
954 }
955
956 STATIC void
957 xfs_buf_wait_unpin(
958         xfs_buf_t               *bp)
959 {
960         DECLARE_WAITQUEUE       (wait, current);
961
962         if (atomic_read(&bp->b_pin_count) == 0)
963                 return;
964
965         add_wait_queue(&bp->b_waiters, &wait);
966         for (;;) {
967                 set_current_state(TASK_UNINTERRUPTIBLE);
968                 if (atomic_read(&bp->b_pin_count) == 0)
969                         break;
970                 if (atomic_read(&bp->b_io_remaining))
971                         blk_run_address_space(bp->b_target->bt_mapping);
972                 schedule();
973         }
974         remove_wait_queue(&bp->b_waiters, &wait);
975         set_current_state(TASK_RUNNING);
976 }
977
978 /*
979  *      Buffer Utility Routines
980  */
981
982 STATIC void
983 xfs_buf_iodone_work(
984         struct work_struct      *work)
985 {
986         xfs_buf_t               *bp =
987                 container_of(work, xfs_buf_t, b_iodone_work);
988
989         /*
990          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
991          * ordered flag and reissue them.  Because we can't tell the higher
992          * layers directly that they should not issue ordered I/O anymore, they
993          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
994          */
995         if ((bp->b_error == EOPNOTSUPP) &&
996             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
997                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
998                 bp->b_flags &= ~XBF_ORDERED;
999                 bp->b_flags |= _XFS_BARRIER_FAILED;
1000                 xfs_buf_iorequest(bp);
1001         } else if (bp->b_iodone)
1002                 (*(bp->b_iodone))(bp);
1003         else if (bp->b_flags & XBF_ASYNC)
1004                 xfs_buf_relse(bp);
1005 }
1006
1007 void
1008 xfs_buf_ioend(
1009         xfs_buf_t               *bp,
1010         int                     schedule)
1011 {
1012         trace_xfs_buf_iodone(bp, _RET_IP_);
1013
1014         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1015         if (bp->b_error == 0)
1016                 bp->b_flags |= XBF_DONE;
1017
1018         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1019                 if (schedule) {
1020                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1021                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1022                 } else {
1023                         xfs_buf_iodone_work(&bp->b_iodone_work);
1024                 }
1025         } else {
1026                 complete(&bp->b_iowait);
1027         }
1028 }
1029
1030 void
1031 xfs_buf_ioerror(
1032         xfs_buf_t               *bp,
1033         int                     error)
1034 {
1035         ASSERT(error >= 0 && error <= 0xffff);
1036         bp->b_error = (unsigned short)error;
1037         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1038 }
1039
1040 int
1041 xfs_bwrite(
1042         struct xfs_mount        *mp,
1043         struct xfs_buf          *bp)
1044 {
1045         int                     error;
1046
1047         bp->b_flags |= XBF_WRITE;
1048         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1049
1050         xfs_buf_delwri_dequeue(bp);
1051         xfs_bdstrat_cb(bp);
1052
1053         error = xfs_buf_iowait(bp);
1054         if (error)
1055                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1056         xfs_buf_relse(bp);
1057         return error;
1058 }
1059
1060 void
1061 xfs_bdwrite(
1062         void                    *mp,
1063         struct xfs_buf          *bp)
1064 {
1065         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1066
1067         bp->b_flags &= ~XBF_READ;
1068         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1069
1070         xfs_buf_delwri_queue(bp, 1);
1071 }
1072
1073 /*
1074  * Called when we want to stop a buffer from getting written or read.
1075  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1076  * so that the proper iodone callbacks get called.
1077  */
1078 STATIC int
1079 xfs_bioerror(
1080         xfs_buf_t *bp)
1081 {
1082 #ifdef XFSERRORDEBUG
1083         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1084 #endif
1085
1086         /*
1087          * No need to wait until the buffer is unpinned, we aren't flushing it.
1088          */
1089         XFS_BUF_ERROR(bp, EIO);
1090
1091         /*
1092          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1093          */
1094         XFS_BUF_UNREAD(bp);
1095         XFS_BUF_UNDELAYWRITE(bp);
1096         XFS_BUF_UNDONE(bp);
1097         XFS_BUF_STALE(bp);
1098
1099         xfs_buf_ioend(bp, 0);
1100
1101         return EIO;
1102 }
1103
1104 /*
1105  * Same as xfs_bioerror, except that we are releasing the buffer
1106  * here ourselves, and avoiding the xfs_buf_ioend call.
1107  * This is meant for userdata errors; metadata bufs come with
1108  * iodone functions attached, so that we can track down errors.
1109  */
1110 STATIC int
1111 xfs_bioerror_relse(
1112         struct xfs_buf  *bp)
1113 {
1114         int64_t         fl = XFS_BUF_BFLAGS(bp);
1115         /*
1116          * No need to wait until the buffer is unpinned.
1117          * We aren't flushing it.
1118          *
1119          * chunkhold expects B_DONE to be set, whether
1120          * we actually finish the I/O or not. We don't want to
1121          * change that interface.
1122          */
1123         XFS_BUF_UNREAD(bp);
1124         XFS_BUF_UNDELAYWRITE(bp);
1125         XFS_BUF_DONE(bp);
1126         XFS_BUF_STALE(bp);
1127         XFS_BUF_CLR_IODONE_FUNC(bp);
1128         if (!(fl & XBF_ASYNC)) {
1129                 /*
1130                  * Mark b_error and B_ERROR _both_.
1131                  * Lot's of chunkcache code assumes that.
1132                  * There's no reason to mark error for
1133                  * ASYNC buffers.
1134                  */
1135                 XFS_BUF_ERROR(bp, EIO);
1136                 XFS_BUF_FINISH_IOWAIT(bp);
1137         } else {
1138                 xfs_buf_relse(bp);
1139         }
1140
1141         return EIO;
1142 }
1143
1144
1145 /*
1146  * All xfs metadata buffers except log state machine buffers
1147  * get this attached as their b_bdstrat callback function.
1148  * This is so that we can catch a buffer
1149  * after prematurely unpinning it to forcibly shutdown the filesystem.
1150  */
1151 int
1152 xfs_bdstrat_cb(
1153         struct xfs_buf  *bp)
1154 {
1155         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1156                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1157                 /*
1158                  * Metadata write that didn't get logged but
1159                  * written delayed anyway. These aren't associated
1160                  * with a transaction, and can be ignored.
1161                  */
1162                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1163                         return xfs_bioerror_relse(bp);
1164                 else
1165                         return xfs_bioerror(bp);
1166         }
1167
1168         xfs_buf_iorequest(bp);
1169         return 0;
1170 }
1171
1172 /*
1173  * Wrapper around bdstrat so that we can stop data from going to disk in case
1174  * we are shutting down the filesystem.  Typically user data goes thru this
1175  * path; one of the exceptions is the superblock.
1176  */
1177 void
1178 xfsbdstrat(
1179         struct xfs_mount        *mp,
1180         struct xfs_buf          *bp)
1181 {
1182         if (XFS_FORCED_SHUTDOWN(mp)) {
1183                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1184                 xfs_bioerror_relse(bp);
1185                 return;
1186         }
1187
1188         xfs_buf_iorequest(bp);
1189 }
1190
1191 STATIC void
1192 _xfs_buf_ioend(
1193         xfs_buf_t               *bp,
1194         int                     schedule)
1195 {
1196         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1197                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1198                 xfs_buf_ioend(bp, schedule);
1199         }
1200 }
1201
1202 STATIC void
1203 xfs_buf_bio_end_io(
1204         struct bio              *bio,
1205         int                     error)
1206 {
1207         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1208         unsigned int            blocksize = bp->b_target->bt_bsize;
1209         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1210
1211         xfs_buf_ioerror(bp, -error);
1212
1213         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1214                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1215
1216         do {
1217                 struct page     *page = bvec->bv_page;
1218
1219                 ASSERT(!PagePrivate(page));
1220                 if (unlikely(bp->b_error)) {
1221                         if (bp->b_flags & XBF_READ)
1222                                 ClearPageUptodate(page);
1223                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1224                         SetPageUptodate(page);
1225                 } else if (!PagePrivate(page) &&
1226                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1227                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1228                 }
1229
1230                 if (--bvec >= bio->bi_io_vec)
1231                         prefetchw(&bvec->bv_page->flags);
1232
1233                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1234                         unlock_page(page);
1235         } while (bvec >= bio->bi_io_vec);
1236
1237         _xfs_buf_ioend(bp, 1);
1238         bio_put(bio);
1239 }
1240
1241 STATIC void
1242 _xfs_buf_ioapply(
1243         xfs_buf_t               *bp)
1244 {
1245         int                     rw, map_i, total_nr_pages, nr_pages;
1246         struct bio              *bio;
1247         int                     offset = bp->b_offset;
1248         int                     size = bp->b_count_desired;
1249         sector_t                sector = bp->b_bn;
1250         unsigned int            blocksize = bp->b_target->bt_bsize;
1251
1252         total_nr_pages = bp->b_page_count;
1253         map_i = 0;
1254
1255         if (bp->b_flags & XBF_ORDERED) {
1256                 ASSERT(!(bp->b_flags & XBF_READ));
1257                 rw = WRITE_BARRIER;
1258         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1259                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1260                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1261                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1262         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1263                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1264                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1265                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1266         } else {
1267                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1268                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1269         }
1270
1271         /* Special code path for reading a sub page size buffer in --
1272          * we populate up the whole page, and hence the other metadata
1273          * in the same page.  This optimization is only valid when the
1274          * filesystem block size is not smaller than the page size.
1275          */
1276         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1277             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1278               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1279             (blocksize >= PAGE_CACHE_SIZE)) {
1280                 bio = bio_alloc(GFP_NOIO, 1);
1281
1282                 bio->bi_bdev = bp->b_target->bt_bdev;
1283                 bio->bi_sector = sector - (offset >> BBSHIFT);
1284                 bio->bi_end_io = xfs_buf_bio_end_io;
1285                 bio->bi_private = bp;
1286
1287                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1288                 size = 0;
1289
1290                 atomic_inc(&bp->b_io_remaining);
1291
1292                 goto submit_io;
1293         }
1294
1295 next_chunk:
1296         atomic_inc(&bp->b_io_remaining);
1297         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1298         if (nr_pages > total_nr_pages)
1299                 nr_pages = total_nr_pages;
1300
1301         bio = bio_alloc(GFP_NOIO, nr_pages);
1302         bio->bi_bdev = bp->b_target->bt_bdev;
1303         bio->bi_sector = sector;
1304         bio->bi_end_io = xfs_buf_bio_end_io;
1305         bio->bi_private = bp;
1306
1307         for (; size && nr_pages; nr_pages--, map_i++) {
1308                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1309
1310                 if (nbytes > size)
1311                         nbytes = size;
1312
1313                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1314                 if (rbytes < nbytes)
1315                         break;
1316
1317                 offset = 0;
1318                 sector += nbytes >> BBSHIFT;
1319                 size -= nbytes;
1320                 total_nr_pages--;
1321         }
1322
1323 submit_io:
1324         if (likely(bio->bi_size)) {
1325                 if (xfs_buf_is_vmapped(bp)) {
1326                         flush_kernel_vmap_range(bp->b_addr,
1327                                                 xfs_buf_vmap_len(bp));
1328                 }
1329                 submit_bio(rw, bio);
1330                 if (size)
1331                         goto next_chunk;
1332         } else {
1333                 /*
1334                  * if we get here, no pages were added to the bio. However,
1335                  * we can't just error out here - if the pages are locked then
1336                  * we have to unlock them otherwise we can hang on a later
1337                  * access to the page.
1338                  */
1339                 xfs_buf_ioerror(bp, EIO);
1340                 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1341                         int i;
1342                         for (i = 0; i < bp->b_page_count; i++)
1343                                 unlock_page(bp->b_pages[i]);
1344                 }
1345                 bio_put(bio);
1346         }
1347 }
1348
1349 int
1350 xfs_buf_iorequest(
1351         xfs_buf_t               *bp)
1352 {
1353         trace_xfs_buf_iorequest(bp, _RET_IP_);
1354
1355         if (bp->b_flags & XBF_DELWRI) {
1356                 xfs_buf_delwri_queue(bp, 1);
1357                 return 0;
1358         }
1359
1360         if (bp->b_flags & XBF_WRITE) {
1361                 xfs_buf_wait_unpin(bp);
1362         }
1363
1364         xfs_buf_hold(bp);
1365
1366         /* Set the count to 1 initially, this will stop an I/O
1367          * completion callout which happens before we have started
1368          * all the I/O from calling xfs_buf_ioend too early.
1369          */
1370         atomic_set(&bp->b_io_remaining, 1);
1371         _xfs_buf_ioapply(bp);
1372         _xfs_buf_ioend(bp, 0);
1373
1374         xfs_buf_rele(bp);
1375         return 0;
1376 }
1377
1378 /*
1379  *      Waits for I/O to complete on the buffer supplied.
1380  *      It returns immediately if no I/O is pending.
1381  *      It returns the I/O error code, if any, or 0 if there was no error.
1382  */
1383 int
1384 xfs_buf_iowait(
1385         xfs_buf_t               *bp)
1386 {
1387         trace_xfs_buf_iowait(bp, _RET_IP_);
1388
1389         if (atomic_read(&bp->b_io_remaining))
1390                 blk_run_address_space(bp->b_target->bt_mapping);
1391         wait_for_completion(&bp->b_iowait);
1392
1393         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1394         return bp->b_error;
1395 }
1396
1397 xfs_caddr_t
1398 xfs_buf_offset(
1399         xfs_buf_t               *bp,
1400         size_t                  offset)
1401 {
1402         struct page             *page;
1403
1404         if (bp->b_flags & XBF_MAPPED)
1405                 return XFS_BUF_PTR(bp) + offset;
1406
1407         offset += bp->b_offset;
1408         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1409         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1410 }
1411
1412 /*
1413  *      Move data into or out of a buffer.
1414  */
1415 void
1416 xfs_buf_iomove(
1417         xfs_buf_t               *bp,    /* buffer to process            */
1418         size_t                  boff,   /* starting buffer offset       */
1419         size_t                  bsize,  /* length to copy               */
1420         void                    *data,  /* data address                 */
1421         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1422 {
1423         size_t                  bend, cpoff, csize;
1424         struct page             *page;
1425
1426         bend = boff + bsize;
1427         while (boff < bend) {
1428                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1429                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1430                 csize = min_t(size_t,
1431                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1432
1433                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1434
1435                 switch (mode) {
1436                 case XBRW_ZERO:
1437                         memset(page_address(page) + cpoff, 0, csize);
1438                         break;
1439                 case XBRW_READ:
1440                         memcpy(data, page_address(page) + cpoff, csize);
1441                         break;
1442                 case XBRW_WRITE:
1443                         memcpy(page_address(page) + cpoff, data, csize);
1444                 }
1445
1446                 boff += csize;
1447                 data += csize;
1448         }
1449 }
1450
1451 /*
1452  *      Handling of buffer targets (buftargs).
1453  */
1454
1455 /*
1456  *      Wait for any bufs with callbacks that have been submitted but
1457  *      have not yet returned... walk the hash list for the target.
1458  */
1459 void
1460 xfs_wait_buftarg(
1461         struct xfs_buftarg      *btp)
1462 {
1463         struct xfs_perag        *pag;
1464         uint                    i;
1465
1466         for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1467                 pag = xfs_perag_get(btp->bt_mount, i);
1468                 spin_lock(&pag->pag_buf_lock);
1469                 while (rb_first(&pag->pag_buf_tree)) {
1470                         spin_unlock(&pag->pag_buf_lock);
1471                         delay(100);
1472                         spin_lock(&pag->pag_buf_lock);
1473                 }
1474                 spin_unlock(&pag->pag_buf_lock);
1475                 xfs_perag_put(pag);
1476         }
1477 }
1478
1479 /*
1480  *      buftarg list for delwrite queue processing
1481  */
1482 static LIST_HEAD(xfs_buftarg_list);
1483 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1484
1485 STATIC void
1486 xfs_register_buftarg(
1487         xfs_buftarg_t           *btp)
1488 {
1489         spin_lock(&xfs_buftarg_lock);
1490         list_add(&btp->bt_list, &xfs_buftarg_list);
1491         spin_unlock(&xfs_buftarg_lock);
1492 }
1493
1494 STATIC void
1495 xfs_unregister_buftarg(
1496         xfs_buftarg_t           *btp)
1497 {
1498         spin_lock(&xfs_buftarg_lock);
1499         list_del(&btp->bt_list);
1500         spin_unlock(&xfs_buftarg_lock);
1501 }
1502
1503 void
1504 xfs_free_buftarg(
1505         struct xfs_mount        *mp,
1506         struct xfs_buftarg      *btp)
1507 {
1508         xfs_flush_buftarg(btp, 1);
1509         if (mp->m_flags & XFS_MOUNT_BARRIER)
1510                 xfs_blkdev_issue_flush(btp);
1511         iput(btp->bt_mapping->host);
1512
1513         /* Unregister the buftarg first so that we don't get a
1514          * wakeup finding a non-existent task
1515          */
1516         xfs_unregister_buftarg(btp);
1517         kthread_stop(btp->bt_task);
1518
1519         kmem_free(btp);
1520 }
1521
1522 STATIC int
1523 xfs_setsize_buftarg_flags(
1524         xfs_buftarg_t           *btp,
1525         unsigned int            blocksize,
1526         unsigned int            sectorsize,
1527         int                     verbose)
1528 {
1529         btp->bt_bsize = blocksize;
1530         btp->bt_sshift = ffs(sectorsize) - 1;
1531         btp->bt_smask = sectorsize - 1;
1532
1533         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1534                 printk(KERN_WARNING
1535                         "XFS: Cannot set_blocksize to %u on device %s\n",
1536                         sectorsize, XFS_BUFTARG_NAME(btp));
1537                 return EINVAL;
1538         }
1539
1540         if (verbose &&
1541             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1542                 printk(KERN_WARNING
1543                         "XFS: %u byte sectors in use on device %s.  "
1544                         "This is suboptimal; %u or greater is ideal.\n",
1545                         sectorsize, XFS_BUFTARG_NAME(btp),
1546                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1547         }
1548
1549         return 0;
1550 }
1551
1552 /*
1553  *      When allocating the initial buffer target we have not yet
1554  *      read in the superblock, so don't know what sized sectors
1555  *      are being used is at this early stage.  Play safe.
1556  */
1557 STATIC int
1558 xfs_setsize_buftarg_early(
1559         xfs_buftarg_t           *btp,
1560         struct block_device     *bdev)
1561 {
1562         return xfs_setsize_buftarg_flags(btp,
1563                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1564 }
1565
1566 int
1567 xfs_setsize_buftarg(
1568         xfs_buftarg_t           *btp,
1569         unsigned int            blocksize,
1570         unsigned int            sectorsize)
1571 {
1572         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1573 }
1574
1575 STATIC int
1576 xfs_mapping_buftarg(
1577         xfs_buftarg_t           *btp,
1578         struct block_device     *bdev)
1579 {
1580         struct backing_dev_info *bdi;
1581         struct inode            *inode;
1582         struct address_space    *mapping;
1583         static const struct address_space_operations mapping_aops = {
1584                 .sync_page = block_sync_page,
1585                 .migratepage = fail_migrate_page,
1586         };
1587
1588         inode = new_inode(bdev->bd_inode->i_sb);
1589         if (!inode) {
1590                 printk(KERN_WARNING
1591                         "XFS: Cannot allocate mapping inode for device %s\n",
1592                         XFS_BUFTARG_NAME(btp));
1593                 return ENOMEM;
1594         }
1595         inode->i_mode = S_IFBLK;
1596         inode->i_bdev = bdev;
1597         inode->i_rdev = bdev->bd_dev;
1598         bdi = blk_get_backing_dev_info(bdev);
1599         if (!bdi)
1600                 bdi = &default_backing_dev_info;
1601         mapping = &inode->i_data;
1602         mapping->a_ops = &mapping_aops;
1603         mapping->backing_dev_info = bdi;
1604         mapping_set_gfp_mask(mapping, GFP_NOFS);
1605         btp->bt_mapping = mapping;
1606         return 0;
1607 }
1608
1609 STATIC int
1610 xfs_alloc_delwrite_queue(
1611         xfs_buftarg_t           *btp,
1612         const char              *fsname)
1613 {
1614         int     error = 0;
1615
1616         INIT_LIST_HEAD(&btp->bt_list);
1617         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1618         spin_lock_init(&btp->bt_delwrite_lock);
1619         btp->bt_flags = 0;
1620         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1621         if (IS_ERR(btp->bt_task)) {
1622                 error = PTR_ERR(btp->bt_task);
1623                 goto out_error;
1624         }
1625         xfs_register_buftarg(btp);
1626 out_error:
1627         return error;
1628 }
1629
1630 xfs_buftarg_t *
1631 xfs_alloc_buftarg(
1632         struct xfs_mount        *mp,
1633         struct block_device     *bdev,
1634         int                     external,
1635         const char              *fsname)
1636 {
1637         xfs_buftarg_t           *btp;
1638
1639         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1640
1641         btp->bt_mount = mp;
1642         btp->bt_dev =  bdev->bd_dev;
1643         btp->bt_bdev = bdev;
1644         if (xfs_setsize_buftarg_early(btp, bdev))
1645                 goto error;
1646         if (xfs_mapping_buftarg(btp, bdev))
1647                 goto error;
1648         if (xfs_alloc_delwrite_queue(btp, fsname))
1649                 goto error;
1650         return btp;
1651
1652 error:
1653         kmem_free(btp);
1654         return NULL;
1655 }
1656
1657
1658 /*
1659  *      Delayed write buffer handling
1660  */
1661 STATIC void
1662 xfs_buf_delwri_queue(
1663         xfs_buf_t               *bp,
1664         int                     unlock)
1665 {
1666         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1667         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1668
1669         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1670
1671         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1672
1673         spin_lock(dwlk);
1674         /* If already in the queue, dequeue and place at tail */
1675         if (!list_empty(&bp->b_list)) {
1676                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1677                 if (unlock)
1678                         atomic_dec(&bp->b_hold);
1679                 list_del(&bp->b_list);
1680         }
1681
1682         if (list_empty(dwq)) {
1683                 /* start xfsbufd as it is about to have something to do */
1684                 wake_up_process(bp->b_target->bt_task);
1685         }
1686
1687         bp->b_flags |= _XBF_DELWRI_Q;
1688         list_add_tail(&bp->b_list, dwq);
1689         bp->b_queuetime = jiffies;
1690         spin_unlock(dwlk);
1691
1692         if (unlock)
1693                 xfs_buf_unlock(bp);
1694 }
1695
1696 void
1697 xfs_buf_delwri_dequeue(
1698         xfs_buf_t               *bp)
1699 {
1700         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1701         int                     dequeued = 0;
1702
1703         spin_lock(dwlk);
1704         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1705                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1706                 list_del_init(&bp->b_list);
1707                 dequeued = 1;
1708         }
1709         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1710         spin_unlock(dwlk);
1711
1712         if (dequeued)
1713                 xfs_buf_rele(bp);
1714
1715         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1716 }
1717
1718 /*
1719  * If a delwri buffer needs to be pushed before it has aged out, then promote
1720  * it to the head of the delwri queue so that it will be flushed on the next
1721  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1722  * than the age currently needed to flush the buffer. Hence the next time the
1723  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1724  */
1725 void
1726 xfs_buf_delwri_promote(
1727         struct xfs_buf  *bp)
1728 {
1729         struct xfs_buftarg *btp = bp->b_target;
1730         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1731
1732         ASSERT(bp->b_flags & XBF_DELWRI);
1733         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1734
1735         /*
1736          * Check the buffer age before locking the delayed write queue as we
1737          * don't need to promote buffers that are already past the flush age.
1738          */
1739         if (bp->b_queuetime < jiffies - age)
1740                 return;
1741         bp->b_queuetime = jiffies - age;
1742         spin_lock(&btp->bt_delwrite_lock);
1743         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1744         spin_unlock(&btp->bt_delwrite_lock);
1745 }
1746
1747 STATIC void
1748 xfs_buf_runall_queues(
1749         struct workqueue_struct *queue)
1750 {
1751         flush_workqueue(queue);
1752 }
1753
1754 STATIC int
1755 xfsbufd_wakeup(
1756         struct shrinker         *shrink,
1757         int                     priority,
1758         gfp_t                   mask)
1759 {
1760         xfs_buftarg_t           *btp;
1761
1762         spin_lock(&xfs_buftarg_lock);
1763         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1764                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1765                         continue;
1766                 if (list_empty(&btp->bt_delwrite_queue))
1767                         continue;
1768                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1769                 wake_up_process(btp->bt_task);
1770         }
1771         spin_unlock(&xfs_buftarg_lock);
1772         return 0;
1773 }
1774
1775 /*
1776  * Move as many buffers as specified to the supplied list
1777  * idicating if we skipped any buffers to prevent deadlocks.
1778  */
1779 STATIC int
1780 xfs_buf_delwri_split(
1781         xfs_buftarg_t   *target,
1782         struct list_head *list,
1783         unsigned long   age)
1784 {
1785         xfs_buf_t       *bp, *n;
1786         struct list_head *dwq = &target->bt_delwrite_queue;
1787         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1788         int             skipped = 0;
1789         int             force;
1790
1791         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1792         INIT_LIST_HEAD(list);
1793         spin_lock(dwlk);
1794         list_for_each_entry_safe(bp, n, dwq, b_list) {
1795                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1796                 ASSERT(bp->b_flags & XBF_DELWRI);
1797
1798                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1799                         if (!force &&
1800                             time_before(jiffies, bp->b_queuetime + age)) {
1801                                 xfs_buf_unlock(bp);
1802                                 break;
1803                         }
1804
1805                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1806                                          _XBF_RUN_QUEUES);
1807                         bp->b_flags |= XBF_WRITE;
1808                         list_move_tail(&bp->b_list, list);
1809                 } else
1810                         skipped++;
1811         }
1812         spin_unlock(dwlk);
1813
1814         return skipped;
1815
1816 }
1817
1818 /*
1819  * Compare function is more complex than it needs to be because
1820  * the return value is only 32 bits and we are doing comparisons
1821  * on 64 bit values
1822  */
1823 static int
1824 xfs_buf_cmp(
1825         void            *priv,
1826         struct list_head *a,
1827         struct list_head *b)
1828 {
1829         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1830         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1831         xfs_daddr_t             diff;
1832
1833         diff = ap->b_bn - bp->b_bn;
1834         if (diff < 0)
1835                 return -1;
1836         if (diff > 0)
1837                 return 1;
1838         return 0;
1839 }
1840
1841 void
1842 xfs_buf_delwri_sort(
1843         xfs_buftarg_t   *target,
1844         struct list_head *list)
1845 {
1846         list_sort(NULL, list, xfs_buf_cmp);
1847 }
1848
1849 STATIC int
1850 xfsbufd(
1851         void            *data)
1852 {
1853         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1854
1855         current->flags |= PF_MEMALLOC;
1856
1857         set_freezable();
1858
1859         do {
1860                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1861                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1862                 int     count = 0;
1863                 struct list_head tmp;
1864
1865                 if (unlikely(freezing(current))) {
1866                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1867                         refrigerator();
1868                 } else {
1869                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1870                 }
1871
1872                 /* sleep for a long time if there is nothing to do. */
1873                 if (list_empty(&target->bt_delwrite_queue))
1874                         tout = MAX_SCHEDULE_TIMEOUT;
1875                 schedule_timeout_interruptible(tout);
1876
1877                 xfs_buf_delwri_split(target, &tmp, age);
1878                 list_sort(NULL, &tmp, xfs_buf_cmp);
1879                 while (!list_empty(&tmp)) {
1880                         struct xfs_buf *bp;
1881                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1882                         list_del_init(&bp->b_list);
1883                         xfs_bdstrat_cb(bp);
1884                         count++;
1885                 }
1886                 if (count)
1887                         blk_run_address_space(target->bt_mapping);
1888
1889         } while (!kthread_should_stop());
1890
1891         return 0;
1892 }
1893
1894 /*
1895  *      Go through all incore buffers, and release buffers if they belong to
1896  *      the given device. This is used in filesystem error handling to
1897  *      preserve the consistency of its metadata.
1898  */
1899 int
1900 xfs_flush_buftarg(
1901         xfs_buftarg_t   *target,
1902         int             wait)
1903 {
1904         xfs_buf_t       *bp;
1905         int             pincount = 0;
1906         LIST_HEAD(tmp_list);
1907         LIST_HEAD(wait_list);
1908
1909         xfs_buf_runall_queues(xfsconvertd_workqueue);
1910         xfs_buf_runall_queues(xfsdatad_workqueue);
1911         xfs_buf_runall_queues(xfslogd_workqueue);
1912
1913         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1914         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1915
1916         /*
1917          * Dropped the delayed write list lock, now walk the temporary list.
1918          * All I/O is issued async and then if we need to wait for completion
1919          * we do that after issuing all the IO.
1920          */
1921         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1922         while (!list_empty(&tmp_list)) {
1923                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1924                 ASSERT(target == bp->b_target);
1925                 list_del_init(&bp->b_list);
1926                 if (wait) {
1927                         bp->b_flags &= ~XBF_ASYNC;
1928                         list_add(&bp->b_list, &wait_list);
1929                 }
1930                 xfs_bdstrat_cb(bp);
1931         }
1932
1933         if (wait) {
1934                 /* Expedite and wait for IO to complete. */
1935                 blk_run_address_space(target->bt_mapping);
1936                 while (!list_empty(&wait_list)) {
1937                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1938
1939                         list_del_init(&bp->b_list);
1940                         xfs_buf_iowait(bp);
1941                         xfs_buf_relse(bp);
1942                 }
1943         }
1944
1945         return pincount;
1946 }
1947
1948 int __init
1949 xfs_buf_init(void)
1950 {
1951         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1952                                                 KM_ZONE_HWALIGN, NULL);
1953         if (!xfs_buf_zone)
1954                 goto out;
1955
1956         xfslogd_workqueue = alloc_workqueue("xfslogd",
1957                                         WQ_RESCUER | WQ_HIGHPRI, 1);
1958         if (!xfslogd_workqueue)
1959                 goto out_free_buf_zone;
1960
1961         xfsdatad_workqueue = create_workqueue("xfsdatad");
1962         if (!xfsdatad_workqueue)
1963                 goto out_destroy_xfslogd_workqueue;
1964
1965         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1966         if (!xfsconvertd_workqueue)
1967                 goto out_destroy_xfsdatad_workqueue;
1968
1969         register_shrinker(&xfs_buf_shake);
1970         return 0;
1971
1972  out_destroy_xfsdatad_workqueue:
1973         destroy_workqueue(xfsdatad_workqueue);
1974  out_destroy_xfslogd_workqueue:
1975         destroy_workqueue(xfslogd_workqueue);
1976  out_free_buf_zone:
1977         kmem_zone_destroy(xfs_buf_zone);
1978  out:
1979         return -ENOMEM;
1980 }
1981
1982 void
1983 xfs_buf_terminate(void)
1984 {
1985         unregister_shrinker(&xfs_buf_shake);
1986         destroy_workqueue(xfsconvertd_workqueue);
1987         destroy_workqueue(xfsdatad_workqueue);
1988         destroy_workqueue(xfslogd_workqueue);
1989         kmem_zone_destroy(xfs_buf_zone);
1990 }
1991
1992 #ifdef CONFIG_KDB_MODULES
1993 struct list_head *
1994 xfs_get_buftarg_list(void)
1995 {
1996         return &xfs_buftarg_list;
1997 }
1998 #endif